1 //===----- LegalizeIntegerTypes.cpp - Legalization of integer types -------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements integer type expansion and promotion for LegalizeTypes.
11 // Promotion is the act of changing a computation in an illegal type into a
12 // computation in a larger type. For example, implementing i8 arithmetic in an
13 // i32 register (often needed on powerpc).
14 // Expansion is the act of changing a computation in an illegal type into a
15 // computation in two identical registers of a smaller type. For example,
16 // implementing i64 arithmetic in two i32 registers (often needed on 32-bit
17 // targets).
18 //
19 //===----------------------------------------------------------------------===//
20
21 #include "LegalizeTypes.h"
22 #include "llvm/IR/DerivedTypes.h"
23 #include "llvm/Support/ErrorHandling.h"
24 #include "llvm/Support/raw_ostream.h"
25 using namespace llvm;
26
27 #define DEBUG_TYPE "legalize-types"
28
29 //===----------------------------------------------------------------------===//
30 // Integer Result Promotion
31 //===----------------------------------------------------------------------===//
32
33 /// PromoteIntegerResult - This method is called when a result of a node is
34 /// found to be in need of promotion to a larger type. At this point, the node
35 /// may also have invalid operands or may have other results that need
36 /// expansion, we just know that (at least) one result needs promotion.
PromoteIntegerResult(SDNode * N,unsigned ResNo)37 void DAGTypeLegalizer::PromoteIntegerResult(SDNode *N, unsigned ResNo) {
38 DEBUG(dbgs() << "Promote integer result: "; N->dump(&DAG); dbgs() << "\n");
39 SDValue Res = SDValue();
40
41 // See if the target wants to custom expand this node.
42 if (CustomLowerNode(N, N->getValueType(ResNo), true))
43 return;
44
45 switch (N->getOpcode()) {
46 default:
47 #ifndef NDEBUG
48 dbgs() << "PromoteIntegerResult #" << ResNo << ": ";
49 N->dump(&DAG); dbgs() << "\n";
50 #endif
51 llvm_unreachable("Do not know how to promote this operator!");
52 case ISD::MERGE_VALUES:Res = PromoteIntRes_MERGE_VALUES(N, ResNo); break;
53 case ISD::AssertSext: Res = PromoteIntRes_AssertSext(N); break;
54 case ISD::AssertZext: Res = PromoteIntRes_AssertZext(N); break;
55 case ISD::BITCAST: Res = PromoteIntRes_BITCAST(N); break;
56 case ISD::BITREVERSE: Res = PromoteIntRes_BITREVERSE(N); break;
57 case ISD::BSWAP: Res = PromoteIntRes_BSWAP(N); break;
58 case ISD::BUILD_PAIR: Res = PromoteIntRes_BUILD_PAIR(N); break;
59 case ISD::Constant: Res = PromoteIntRes_Constant(N); break;
60 case ISD::CONVERT_RNDSAT:
61 Res = PromoteIntRes_CONVERT_RNDSAT(N); break;
62 case ISD::CTLZ_ZERO_UNDEF:
63 case ISD::CTLZ: Res = PromoteIntRes_CTLZ(N); break;
64 case ISD::CTPOP: Res = PromoteIntRes_CTPOP(N); break;
65 case ISD::CTTZ_ZERO_UNDEF:
66 case ISD::CTTZ: Res = PromoteIntRes_CTTZ(N); break;
67 case ISD::EXTRACT_VECTOR_ELT:
68 Res = PromoteIntRes_EXTRACT_VECTOR_ELT(N); break;
69 case ISD::LOAD: Res = PromoteIntRes_LOAD(cast<LoadSDNode>(N)); break;
70 case ISD::MLOAD: Res = PromoteIntRes_MLOAD(cast<MaskedLoadSDNode>(N));
71 break;
72 case ISD::MGATHER: Res = PromoteIntRes_MGATHER(cast<MaskedGatherSDNode>(N));
73 break;
74 case ISD::SELECT: Res = PromoteIntRes_SELECT(N); break;
75 case ISD::VSELECT: Res = PromoteIntRes_VSELECT(N); break;
76 case ISD::SELECT_CC: Res = PromoteIntRes_SELECT_CC(N); break;
77 case ISD::SETCC: Res = PromoteIntRes_SETCC(N); break;
78 case ISD::SMIN:
79 case ISD::SMAX: Res = PromoteIntRes_SExtIntBinOp(N); break;
80 case ISD::UMIN:
81 case ISD::UMAX: Res = PromoteIntRes_ZExtIntBinOp(N); break;
82
83 case ISD::SHL: Res = PromoteIntRes_SHL(N); break;
84 case ISD::SIGN_EXTEND_INREG:
85 Res = PromoteIntRes_SIGN_EXTEND_INREG(N); break;
86 case ISD::SRA: Res = PromoteIntRes_SRA(N); break;
87 case ISD::SRL: Res = PromoteIntRes_SRL(N); break;
88 case ISD::TRUNCATE: Res = PromoteIntRes_TRUNCATE(N); break;
89 case ISD::UNDEF: Res = PromoteIntRes_UNDEF(N); break;
90 case ISD::VAARG: Res = PromoteIntRes_VAARG(N); break;
91
92 case ISD::EXTRACT_SUBVECTOR:
93 Res = PromoteIntRes_EXTRACT_SUBVECTOR(N); break;
94 case ISD::VECTOR_SHUFFLE:
95 Res = PromoteIntRes_VECTOR_SHUFFLE(N); break;
96 case ISD::INSERT_VECTOR_ELT:
97 Res = PromoteIntRes_INSERT_VECTOR_ELT(N); break;
98 case ISD::BUILD_VECTOR:
99 Res = PromoteIntRes_BUILD_VECTOR(N); break;
100 case ISD::SCALAR_TO_VECTOR:
101 Res = PromoteIntRes_SCALAR_TO_VECTOR(N); break;
102 case ISD::CONCAT_VECTORS:
103 Res = PromoteIntRes_CONCAT_VECTORS(N); break;
104
105 case ISD::SIGN_EXTEND:
106 case ISD::ZERO_EXTEND:
107 case ISD::ANY_EXTEND: Res = PromoteIntRes_INT_EXTEND(N); break;
108
109 case ISD::FP_TO_SINT:
110 case ISD::FP_TO_UINT: Res = PromoteIntRes_FP_TO_XINT(N); break;
111
112 case ISD::FP_TO_FP16: Res = PromoteIntRes_FP_TO_FP16(N); break;
113
114 case ISD::AND:
115 case ISD::OR:
116 case ISD::XOR:
117 case ISD::ADD:
118 case ISD::SUB:
119 case ISD::MUL: Res = PromoteIntRes_SimpleIntBinOp(N); break;
120
121 case ISD::SDIV:
122 case ISD::SREM: Res = PromoteIntRes_SExtIntBinOp(N); break;
123
124 case ISD::UDIV:
125 case ISD::UREM: Res = PromoteIntRes_ZExtIntBinOp(N); break;
126
127 case ISD::SADDO:
128 case ISD::SSUBO: Res = PromoteIntRes_SADDSUBO(N, ResNo); break;
129 case ISD::UADDO:
130 case ISD::USUBO: Res = PromoteIntRes_UADDSUBO(N, ResNo); break;
131 case ISD::SMULO:
132 case ISD::UMULO: Res = PromoteIntRes_XMULO(N, ResNo); break;
133
134 case ISD::ATOMIC_LOAD:
135 Res = PromoteIntRes_Atomic0(cast<AtomicSDNode>(N)); break;
136
137 case ISD::ATOMIC_LOAD_ADD:
138 case ISD::ATOMIC_LOAD_SUB:
139 case ISD::ATOMIC_LOAD_AND:
140 case ISD::ATOMIC_LOAD_OR:
141 case ISD::ATOMIC_LOAD_XOR:
142 case ISD::ATOMIC_LOAD_NAND:
143 case ISD::ATOMIC_LOAD_MIN:
144 case ISD::ATOMIC_LOAD_MAX:
145 case ISD::ATOMIC_LOAD_UMIN:
146 case ISD::ATOMIC_LOAD_UMAX:
147 case ISD::ATOMIC_SWAP:
148 Res = PromoteIntRes_Atomic1(cast<AtomicSDNode>(N)); break;
149
150 case ISD::ATOMIC_CMP_SWAP:
151 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS:
152 Res = PromoteIntRes_AtomicCmpSwap(cast<AtomicSDNode>(N), ResNo);
153 break;
154 }
155
156 // If the result is null then the sub-method took care of registering it.
157 if (Res.getNode())
158 SetPromotedInteger(SDValue(N, ResNo), Res);
159 }
160
PromoteIntRes_MERGE_VALUES(SDNode * N,unsigned ResNo)161 SDValue DAGTypeLegalizer::PromoteIntRes_MERGE_VALUES(SDNode *N,
162 unsigned ResNo) {
163 SDValue Op = DisintegrateMERGE_VALUES(N, ResNo);
164 return GetPromotedInteger(Op);
165 }
166
PromoteIntRes_AssertSext(SDNode * N)167 SDValue DAGTypeLegalizer::PromoteIntRes_AssertSext(SDNode *N) {
168 // Sign-extend the new bits, and continue the assertion.
169 SDValue Op = SExtPromotedInteger(N->getOperand(0));
170 return DAG.getNode(ISD::AssertSext, SDLoc(N),
171 Op.getValueType(), Op, N->getOperand(1));
172 }
173
PromoteIntRes_AssertZext(SDNode * N)174 SDValue DAGTypeLegalizer::PromoteIntRes_AssertZext(SDNode *N) {
175 // Zero the new bits, and continue the assertion.
176 SDValue Op = ZExtPromotedInteger(N->getOperand(0));
177 return DAG.getNode(ISD::AssertZext, SDLoc(N),
178 Op.getValueType(), Op, N->getOperand(1));
179 }
180
PromoteIntRes_Atomic0(AtomicSDNode * N)181 SDValue DAGTypeLegalizer::PromoteIntRes_Atomic0(AtomicSDNode *N) {
182 EVT ResVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
183 SDValue Res = DAG.getAtomic(N->getOpcode(), SDLoc(N),
184 N->getMemoryVT(), ResVT,
185 N->getChain(), N->getBasePtr(),
186 N->getMemOperand(), N->getOrdering(),
187 N->getSynchScope());
188 // Legalize the chain result - switch anything that used the old chain to
189 // use the new one.
190 ReplaceValueWith(SDValue(N, 1), Res.getValue(1));
191 return Res;
192 }
193
PromoteIntRes_Atomic1(AtomicSDNode * N)194 SDValue DAGTypeLegalizer::PromoteIntRes_Atomic1(AtomicSDNode *N) {
195 SDValue Op2 = GetPromotedInteger(N->getOperand(2));
196 SDValue Res = DAG.getAtomic(N->getOpcode(), SDLoc(N),
197 N->getMemoryVT(),
198 N->getChain(), N->getBasePtr(),
199 Op2, N->getMemOperand(), N->getOrdering(),
200 N->getSynchScope());
201 // Legalize the chain result - switch anything that used the old chain to
202 // use the new one.
203 ReplaceValueWith(SDValue(N, 1), Res.getValue(1));
204 return Res;
205 }
206
PromoteIntRes_AtomicCmpSwap(AtomicSDNode * N,unsigned ResNo)207 SDValue DAGTypeLegalizer::PromoteIntRes_AtomicCmpSwap(AtomicSDNode *N,
208 unsigned ResNo) {
209 if (ResNo == 1) {
210 assert(N->getOpcode() == ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS);
211 EVT SVT = getSetCCResultType(N->getOperand(2).getValueType());
212 EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(1));
213
214 // Only use the result of getSetCCResultType if it is legal,
215 // otherwise just use the promoted result type (NVT).
216 if (!TLI.isTypeLegal(SVT))
217 SVT = NVT;
218
219 SDVTList VTs = DAG.getVTList(N->getValueType(0), SVT, MVT::Other);
220 SDValue Res = DAG.getAtomicCmpSwap(
221 ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, SDLoc(N), N->getMemoryVT(), VTs,
222 N->getChain(), N->getBasePtr(), N->getOperand(2), N->getOperand(3),
223 N->getMemOperand(), N->getSuccessOrdering(), N->getFailureOrdering(),
224 N->getSynchScope());
225 ReplaceValueWith(SDValue(N, 0), Res.getValue(0));
226 ReplaceValueWith(SDValue(N, 2), Res.getValue(2));
227 return Res.getValue(1);
228 }
229
230 SDValue Op2 = GetPromotedInteger(N->getOperand(2));
231 SDValue Op3 = GetPromotedInteger(N->getOperand(3));
232 SDVTList VTs =
233 DAG.getVTList(Op2.getValueType(), N->getValueType(1), MVT::Other);
234 SDValue Res = DAG.getAtomicCmpSwap(
235 N->getOpcode(), SDLoc(N), N->getMemoryVT(), VTs, N->getChain(),
236 N->getBasePtr(), Op2, Op3, N->getMemOperand(), N->getSuccessOrdering(),
237 N->getFailureOrdering(), N->getSynchScope());
238 // Update the use to N with the newly created Res.
239 for (unsigned i = 1, NumResults = N->getNumValues(); i < NumResults; ++i)
240 ReplaceValueWith(SDValue(N, i), Res.getValue(i));
241 return Res;
242 }
243
PromoteIntRes_BITCAST(SDNode * N)244 SDValue DAGTypeLegalizer::PromoteIntRes_BITCAST(SDNode *N) {
245 SDValue InOp = N->getOperand(0);
246 EVT InVT = InOp.getValueType();
247 EVT NInVT = TLI.getTypeToTransformTo(*DAG.getContext(), InVT);
248 EVT OutVT = N->getValueType(0);
249 EVT NOutVT = TLI.getTypeToTransformTo(*DAG.getContext(), OutVT);
250 SDLoc dl(N);
251
252 switch (getTypeAction(InVT)) {
253 case TargetLowering::TypeLegal:
254 break;
255 case TargetLowering::TypePromoteInteger:
256 if (NOutVT.bitsEq(NInVT) && !NOutVT.isVector() && !NInVT.isVector())
257 // The input promotes to the same size. Convert the promoted value.
258 return DAG.getNode(ISD::BITCAST, dl, NOutVT, GetPromotedInteger(InOp));
259 break;
260 case TargetLowering::TypeSoftenFloat:
261 // Promote the integer operand by hand.
262 return DAG.getNode(ISD::ANY_EXTEND, dl, NOutVT, GetSoftenedFloat(InOp));
263 case TargetLowering::TypePromoteFloat: {
264 // Convert the promoted float by hand.
265 SDValue PromotedOp = GetPromotedFloat(InOp);
266 return DAG.getNode(ISD::FP_TO_FP16, dl, NOutVT, PromotedOp);
267 break;
268 }
269 case TargetLowering::TypeExpandInteger:
270 case TargetLowering::TypeExpandFloat:
271 break;
272 case TargetLowering::TypeScalarizeVector:
273 // Convert the element to an integer and promote it by hand.
274 if (!NOutVT.isVector())
275 return DAG.getNode(ISD::ANY_EXTEND, dl, NOutVT,
276 BitConvertToInteger(GetScalarizedVector(InOp)));
277 break;
278 case TargetLowering::TypeSplitVector: {
279 // For example, i32 = BITCAST v2i16 on alpha. Convert the split
280 // pieces of the input into integers and reassemble in the final type.
281 SDValue Lo, Hi;
282 GetSplitVector(N->getOperand(0), Lo, Hi);
283 Lo = BitConvertToInteger(Lo);
284 Hi = BitConvertToInteger(Hi);
285
286 if (DAG.getDataLayout().isBigEndian())
287 std::swap(Lo, Hi);
288
289 InOp = DAG.getNode(ISD::ANY_EXTEND, dl,
290 EVT::getIntegerVT(*DAG.getContext(),
291 NOutVT.getSizeInBits()),
292 JoinIntegers(Lo, Hi));
293 return DAG.getNode(ISD::BITCAST, dl, NOutVT, InOp);
294 }
295 case TargetLowering::TypeWidenVector:
296 // The input is widened to the same size. Convert to the widened value.
297 // Make sure that the outgoing value is not a vector, because this would
298 // make us bitcast between two vectors which are legalized in different ways.
299 if (NOutVT.bitsEq(NInVT) && !NOutVT.isVector())
300 return DAG.getNode(ISD::BITCAST, dl, NOutVT, GetWidenedVector(InOp));
301 }
302
303 return DAG.getNode(ISD::ANY_EXTEND, dl, NOutVT,
304 CreateStackStoreLoad(InOp, OutVT));
305 }
306
PromoteIntRes_BSWAP(SDNode * N)307 SDValue DAGTypeLegalizer::PromoteIntRes_BSWAP(SDNode *N) {
308 SDValue Op = GetPromotedInteger(N->getOperand(0));
309 EVT OVT = N->getValueType(0);
310 EVT NVT = Op.getValueType();
311 SDLoc dl(N);
312
313 unsigned DiffBits = NVT.getScalarSizeInBits() - OVT.getScalarSizeInBits();
314 return DAG.getNode(
315 ISD::SRL, dl, NVT, DAG.getNode(ISD::BSWAP, dl, NVT, Op),
316 DAG.getConstant(DiffBits, dl,
317 TLI.getShiftAmountTy(NVT, DAG.getDataLayout())));
318 }
319
PromoteIntRes_BITREVERSE(SDNode * N)320 SDValue DAGTypeLegalizer::PromoteIntRes_BITREVERSE(SDNode *N) {
321 SDValue Op = GetPromotedInteger(N->getOperand(0));
322 EVT OVT = N->getValueType(0);
323 EVT NVT = Op.getValueType();
324 SDLoc dl(N);
325
326 unsigned DiffBits = NVT.getScalarSizeInBits() - OVT.getScalarSizeInBits();
327 return DAG.getNode(
328 ISD::SRL, dl, NVT, DAG.getNode(ISD::BITREVERSE, dl, NVT, Op),
329 DAG.getConstant(DiffBits, dl,
330 TLI.getShiftAmountTy(NVT, DAG.getDataLayout())));
331 }
332
PromoteIntRes_BUILD_PAIR(SDNode * N)333 SDValue DAGTypeLegalizer::PromoteIntRes_BUILD_PAIR(SDNode *N) {
334 // The pair element type may be legal, or may not promote to the same type as
335 // the result, for example i14 = BUILD_PAIR (i7, i7). Handle all cases.
336 return DAG.getNode(ISD::ANY_EXTEND, SDLoc(N),
337 TLI.getTypeToTransformTo(*DAG.getContext(),
338 N->getValueType(0)), JoinIntegers(N->getOperand(0),
339 N->getOperand(1)));
340 }
341
PromoteIntRes_Constant(SDNode * N)342 SDValue DAGTypeLegalizer::PromoteIntRes_Constant(SDNode *N) {
343 EVT VT = N->getValueType(0);
344 // FIXME there is no actual debug info here
345 SDLoc dl(N);
346 // Zero extend things like i1, sign extend everything else. It shouldn't
347 // matter in theory which one we pick, but this tends to give better code?
348 unsigned Opc = VT.isByteSized() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
349 SDValue Result = DAG.getNode(Opc, dl,
350 TLI.getTypeToTransformTo(*DAG.getContext(), VT),
351 SDValue(N, 0));
352 assert(isa<ConstantSDNode>(Result) && "Didn't constant fold ext?");
353 return Result;
354 }
355
PromoteIntRes_CONVERT_RNDSAT(SDNode * N)356 SDValue DAGTypeLegalizer::PromoteIntRes_CONVERT_RNDSAT(SDNode *N) {
357 ISD::CvtCode CvtCode = cast<CvtRndSatSDNode>(N)->getCvtCode();
358 assert ((CvtCode == ISD::CVT_SS || CvtCode == ISD::CVT_SU ||
359 CvtCode == ISD::CVT_US || CvtCode == ISD::CVT_UU ||
360 CvtCode == ISD::CVT_SF || CvtCode == ISD::CVT_UF) &&
361 "can only promote integers");
362 EVT OutVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
363 return DAG.getConvertRndSat(OutVT, SDLoc(N), N->getOperand(0),
364 N->getOperand(1), N->getOperand(2),
365 N->getOperand(3), N->getOperand(4), CvtCode);
366 }
367
PromoteIntRes_CTLZ(SDNode * N)368 SDValue DAGTypeLegalizer::PromoteIntRes_CTLZ(SDNode *N) {
369 // Zero extend to the promoted type and do the count there.
370 SDValue Op = ZExtPromotedInteger(N->getOperand(0));
371 SDLoc dl(N);
372 EVT OVT = N->getValueType(0);
373 EVT NVT = Op.getValueType();
374 Op = DAG.getNode(N->getOpcode(), dl, NVT, Op);
375 // Subtract off the extra leading bits in the bigger type.
376 return DAG.getNode(
377 ISD::SUB, dl, NVT, Op,
378 DAG.getConstant(NVT.getScalarSizeInBits() - OVT.getScalarSizeInBits(), dl,
379 NVT));
380 }
381
PromoteIntRes_CTPOP(SDNode * N)382 SDValue DAGTypeLegalizer::PromoteIntRes_CTPOP(SDNode *N) {
383 // Zero extend to the promoted type and do the count there.
384 SDValue Op = ZExtPromotedInteger(N->getOperand(0));
385 return DAG.getNode(ISD::CTPOP, SDLoc(N), Op.getValueType(), Op);
386 }
387
PromoteIntRes_CTTZ(SDNode * N)388 SDValue DAGTypeLegalizer::PromoteIntRes_CTTZ(SDNode *N) {
389 SDValue Op = GetPromotedInteger(N->getOperand(0));
390 EVT OVT = N->getValueType(0);
391 EVT NVT = Op.getValueType();
392 SDLoc dl(N);
393 if (N->getOpcode() == ISD::CTTZ) {
394 // The count is the same in the promoted type except if the original
395 // value was zero. This can be handled by setting the bit just off
396 // the top of the original type.
397 auto TopBit = APInt::getOneBitSet(NVT.getScalarSizeInBits(),
398 OVT.getScalarSizeInBits());
399 Op = DAG.getNode(ISD::OR, dl, NVT, Op, DAG.getConstant(TopBit, dl, NVT));
400 }
401 return DAG.getNode(N->getOpcode(), dl, NVT, Op);
402 }
403
PromoteIntRes_EXTRACT_VECTOR_ELT(SDNode * N)404 SDValue DAGTypeLegalizer::PromoteIntRes_EXTRACT_VECTOR_ELT(SDNode *N) {
405 SDLoc dl(N);
406 EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
407 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, NVT, N->getOperand(0),
408 N->getOperand(1));
409 }
410
PromoteIntRes_FP_TO_XINT(SDNode * N)411 SDValue DAGTypeLegalizer::PromoteIntRes_FP_TO_XINT(SDNode *N) {
412 EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
413 unsigned NewOpc = N->getOpcode();
414 SDLoc dl(N);
415
416 // If we're promoting a UINT to a larger size and the larger FP_TO_UINT is
417 // not Legal, check to see if we can use FP_TO_SINT instead. (If both UINT
418 // and SINT conversions are Custom, there is no way to tell which is
419 // preferable. We choose SINT because that's the right thing on PPC.)
420 if (N->getOpcode() == ISD::FP_TO_UINT &&
421 !TLI.isOperationLegal(ISD::FP_TO_UINT, NVT) &&
422 TLI.isOperationLegalOrCustom(ISD::FP_TO_SINT, NVT))
423 NewOpc = ISD::FP_TO_SINT;
424
425 SDValue Res = DAG.getNode(NewOpc, dl, NVT, N->getOperand(0));
426
427 // Assert that the converted value fits in the original type. If it doesn't
428 // (eg: because the value being converted is too big), then the result of the
429 // original operation was undefined anyway, so the assert is still correct.
430 return DAG.getNode(N->getOpcode() == ISD::FP_TO_UINT ?
431 ISD::AssertZext : ISD::AssertSext, dl, NVT, Res,
432 DAG.getValueType(N->getValueType(0).getScalarType()));
433 }
434
PromoteIntRes_FP_TO_FP16(SDNode * N)435 SDValue DAGTypeLegalizer::PromoteIntRes_FP_TO_FP16(SDNode *N) {
436 EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
437 SDLoc dl(N);
438
439 return DAG.getNode(N->getOpcode(), dl, NVT, N->getOperand(0));
440 }
441
PromoteIntRes_INT_EXTEND(SDNode * N)442 SDValue DAGTypeLegalizer::PromoteIntRes_INT_EXTEND(SDNode *N) {
443 EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
444 SDLoc dl(N);
445
446 if (getTypeAction(N->getOperand(0).getValueType())
447 == TargetLowering::TypePromoteInteger) {
448 SDValue Res = GetPromotedInteger(N->getOperand(0));
449 assert(Res.getValueType().bitsLE(NVT) && "Extension doesn't make sense!");
450
451 // If the result and operand types are the same after promotion, simplify
452 // to an in-register extension.
453 if (NVT == Res.getValueType()) {
454 // The high bits are not guaranteed to be anything. Insert an extend.
455 if (N->getOpcode() == ISD::SIGN_EXTEND)
456 return DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, NVT, Res,
457 DAG.getValueType(N->getOperand(0).getValueType()));
458 if (N->getOpcode() == ISD::ZERO_EXTEND)
459 return DAG.getZeroExtendInReg(Res, dl,
460 N->getOperand(0).getValueType().getScalarType());
461 assert(N->getOpcode() == ISD::ANY_EXTEND && "Unknown integer extension!");
462 return Res;
463 }
464 }
465
466 // Otherwise, just extend the original operand all the way to the larger type.
467 return DAG.getNode(N->getOpcode(), dl, NVT, N->getOperand(0));
468 }
469
PromoteIntRes_LOAD(LoadSDNode * N)470 SDValue DAGTypeLegalizer::PromoteIntRes_LOAD(LoadSDNode *N) {
471 assert(ISD::isUNINDEXEDLoad(N) && "Indexed load during type legalization!");
472 EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
473 ISD::LoadExtType ExtType =
474 ISD::isNON_EXTLoad(N) ? ISD::EXTLOAD : N->getExtensionType();
475 SDLoc dl(N);
476 SDValue Res = DAG.getExtLoad(ExtType, dl, NVT, N->getChain(), N->getBasePtr(),
477 N->getMemoryVT(), N->getMemOperand());
478
479 // Legalize the chain result - switch anything that used the old chain to
480 // use the new one.
481 ReplaceValueWith(SDValue(N, 1), Res.getValue(1));
482 return Res;
483 }
484
PromoteIntRes_MLOAD(MaskedLoadSDNode * N)485 SDValue DAGTypeLegalizer::PromoteIntRes_MLOAD(MaskedLoadSDNode *N) {
486 EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
487 SDValue ExtSrc0 = GetPromotedInteger(N->getSrc0());
488
489 SDLoc dl(N);
490 SDValue Res = DAG.getMaskedLoad(NVT, dl, N->getChain(), N->getBasePtr(),
491 N->getMask(), ExtSrc0, N->getMemoryVT(),
492 N->getMemOperand(), ISD::SEXTLOAD);
493 // Legalize the chain result - switch anything that used the old chain to
494 // use the new one.
495 ReplaceValueWith(SDValue(N, 1), Res.getValue(1));
496 return Res;
497 }
498
PromoteIntRes_MGATHER(MaskedGatherSDNode * N)499 SDValue DAGTypeLegalizer::PromoteIntRes_MGATHER(MaskedGatherSDNode *N) {
500 EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
501 SDValue ExtSrc0 = GetPromotedInteger(N->getValue());
502 assert(NVT == ExtSrc0.getValueType() &&
503 "Gather result type and the passThru agrument type should be the same");
504
505 SDLoc dl(N);
506 SDValue Ops[] = {N->getChain(), ExtSrc0, N->getMask(), N->getBasePtr(),
507 N->getIndex()};
508 SDValue Res = DAG.getMaskedGather(DAG.getVTList(NVT, MVT::Other),
509 N->getMemoryVT(), dl, Ops,
510 N->getMemOperand());
511 // Legalize the chain result - switch anything that used the old chain to
512 // use the new one.
513 ReplaceValueWith(SDValue(N, 1), Res.getValue(1));
514 return Res;
515 }
516
517 /// Promote the overflow flag of an overflowing arithmetic node.
PromoteIntRes_Overflow(SDNode * N)518 SDValue DAGTypeLegalizer::PromoteIntRes_Overflow(SDNode *N) {
519 // Simply change the return type of the boolean result.
520 EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(1));
521 EVT ValueVTs[] = { N->getValueType(0), NVT };
522 SDValue Ops[] = { N->getOperand(0), N->getOperand(1) };
523 SDValue Res = DAG.getNode(N->getOpcode(), SDLoc(N),
524 DAG.getVTList(ValueVTs), Ops);
525
526 // Modified the sum result - switch anything that used the old sum to use
527 // the new one.
528 ReplaceValueWith(SDValue(N, 0), Res);
529
530 return SDValue(Res.getNode(), 1);
531 }
532
PromoteIntRes_SADDSUBO(SDNode * N,unsigned ResNo)533 SDValue DAGTypeLegalizer::PromoteIntRes_SADDSUBO(SDNode *N, unsigned ResNo) {
534 if (ResNo == 1)
535 return PromoteIntRes_Overflow(N);
536
537 // The operation overflowed iff the result in the larger type is not the
538 // sign extension of its truncation to the original type.
539 SDValue LHS = SExtPromotedInteger(N->getOperand(0));
540 SDValue RHS = SExtPromotedInteger(N->getOperand(1));
541 EVT OVT = N->getOperand(0).getValueType();
542 EVT NVT = LHS.getValueType();
543 SDLoc dl(N);
544
545 // Do the arithmetic in the larger type.
546 unsigned Opcode = N->getOpcode() == ISD::SADDO ? ISD::ADD : ISD::SUB;
547 SDValue Res = DAG.getNode(Opcode, dl, NVT, LHS, RHS);
548
549 // Calculate the overflow flag: sign extend the arithmetic result from
550 // the original type.
551 SDValue Ofl = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, NVT, Res,
552 DAG.getValueType(OVT));
553 // Overflowed if and only if this is not equal to Res.
554 Ofl = DAG.getSetCC(dl, N->getValueType(1), Ofl, Res, ISD::SETNE);
555
556 // Use the calculated overflow everywhere.
557 ReplaceValueWith(SDValue(N, 1), Ofl);
558
559 return Res;
560 }
561
PromoteIntRes_SELECT(SDNode * N)562 SDValue DAGTypeLegalizer::PromoteIntRes_SELECT(SDNode *N) {
563 SDValue LHS = GetPromotedInteger(N->getOperand(1));
564 SDValue RHS = GetPromotedInteger(N->getOperand(2));
565 return DAG.getSelect(SDLoc(N),
566 LHS.getValueType(), N->getOperand(0), LHS, RHS);
567 }
568
PromoteIntRes_VSELECT(SDNode * N)569 SDValue DAGTypeLegalizer::PromoteIntRes_VSELECT(SDNode *N) {
570 SDValue Mask = N->getOperand(0);
571 EVT OpTy = N->getOperand(1).getValueType();
572
573 // Promote all the way up to the canonical SetCC type.
574 Mask = PromoteTargetBoolean(Mask, OpTy);
575 SDValue LHS = GetPromotedInteger(N->getOperand(1));
576 SDValue RHS = GetPromotedInteger(N->getOperand(2));
577 return DAG.getNode(ISD::VSELECT, SDLoc(N),
578 LHS.getValueType(), Mask, LHS, RHS);
579 }
580
PromoteIntRes_SELECT_CC(SDNode * N)581 SDValue DAGTypeLegalizer::PromoteIntRes_SELECT_CC(SDNode *N) {
582 SDValue LHS = GetPromotedInteger(N->getOperand(2));
583 SDValue RHS = GetPromotedInteger(N->getOperand(3));
584 return DAG.getNode(ISD::SELECT_CC, SDLoc(N),
585 LHS.getValueType(), N->getOperand(0),
586 N->getOperand(1), LHS, RHS, N->getOperand(4));
587 }
588
PromoteIntRes_SETCC(SDNode * N)589 SDValue DAGTypeLegalizer::PromoteIntRes_SETCC(SDNode *N) {
590 EVT SVT = getSetCCResultType(N->getOperand(0).getValueType());
591
592 EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
593
594 // Only use the result of getSetCCResultType if it is legal,
595 // otherwise just use the promoted result type (NVT).
596 if (!TLI.isTypeLegal(SVT))
597 SVT = NVT;
598
599 SDLoc dl(N);
600 assert(SVT.isVector() == N->getOperand(0).getValueType().isVector() &&
601 "Vector compare must return a vector result!");
602
603 SDValue LHS = N->getOperand(0);
604 SDValue RHS = N->getOperand(1);
605 if (LHS.getValueType() != RHS.getValueType()) {
606 if (getTypeAction(LHS.getValueType()) == TargetLowering::TypePromoteInteger &&
607 !LHS.getValueType().isVector())
608 LHS = GetPromotedInteger(LHS);
609 if (getTypeAction(RHS.getValueType()) == TargetLowering::TypePromoteInteger &&
610 !RHS.getValueType().isVector())
611 RHS = GetPromotedInteger(RHS);
612 }
613
614 // Get the SETCC result using the canonical SETCC type.
615 SDValue SetCC = DAG.getNode(N->getOpcode(), dl, SVT, LHS, RHS,
616 N->getOperand(2));
617
618 assert(NVT.bitsLE(SVT) && "Integer type overpromoted?");
619 // Convert to the expected type.
620 return DAG.getNode(ISD::TRUNCATE, dl, NVT, SetCC);
621 }
622
PromoteIntRes_SHL(SDNode * N)623 SDValue DAGTypeLegalizer::PromoteIntRes_SHL(SDNode *N) {
624 SDValue LHS = N->getOperand(0);
625 SDValue RHS = N->getOperand(1);
626 if (getTypeAction(LHS.getValueType()) == TargetLowering::TypePromoteInteger)
627 LHS = GetPromotedInteger(LHS);
628 if (getTypeAction(RHS.getValueType()) == TargetLowering::TypePromoteInteger)
629 RHS = ZExtPromotedInteger(RHS);
630 return DAG.getNode(ISD::SHL, SDLoc(N), LHS.getValueType(), LHS, RHS);
631 }
632
PromoteIntRes_SIGN_EXTEND_INREG(SDNode * N)633 SDValue DAGTypeLegalizer::PromoteIntRes_SIGN_EXTEND_INREG(SDNode *N) {
634 SDValue Op = GetPromotedInteger(N->getOperand(0));
635 return DAG.getNode(ISD::SIGN_EXTEND_INREG, SDLoc(N),
636 Op.getValueType(), Op, N->getOperand(1));
637 }
638
PromoteIntRes_SimpleIntBinOp(SDNode * N)639 SDValue DAGTypeLegalizer::PromoteIntRes_SimpleIntBinOp(SDNode *N) {
640 // The input may have strange things in the top bits of the registers, but
641 // these operations don't care. They may have weird bits going out, but
642 // that too is okay if they are integer operations.
643 SDValue LHS = GetPromotedInteger(N->getOperand(0));
644 SDValue RHS = GetPromotedInteger(N->getOperand(1));
645 return DAG.getNode(N->getOpcode(), SDLoc(N),
646 LHS.getValueType(), LHS, RHS);
647 }
648
PromoteIntRes_SExtIntBinOp(SDNode * N)649 SDValue DAGTypeLegalizer::PromoteIntRes_SExtIntBinOp(SDNode *N) {
650 // Sign extend the input.
651 SDValue LHS = SExtPromotedInteger(N->getOperand(0));
652 SDValue RHS = SExtPromotedInteger(N->getOperand(1));
653 return DAG.getNode(N->getOpcode(), SDLoc(N),
654 LHS.getValueType(), LHS, RHS);
655 }
656
PromoteIntRes_ZExtIntBinOp(SDNode * N)657 SDValue DAGTypeLegalizer::PromoteIntRes_ZExtIntBinOp(SDNode *N) {
658 // Zero extend the input.
659 SDValue LHS = ZExtPromotedInteger(N->getOperand(0));
660 SDValue RHS = ZExtPromotedInteger(N->getOperand(1));
661 return DAG.getNode(N->getOpcode(), SDLoc(N),
662 LHS.getValueType(), LHS, RHS);
663 }
664
PromoteIntRes_SRA(SDNode * N)665 SDValue DAGTypeLegalizer::PromoteIntRes_SRA(SDNode *N) {
666 SDValue LHS = N->getOperand(0);
667 SDValue RHS = N->getOperand(1);
668 // The input value must be properly sign extended.
669 if (getTypeAction(LHS.getValueType()) == TargetLowering::TypePromoteInteger)
670 LHS = SExtPromotedInteger(LHS);
671 if (getTypeAction(RHS.getValueType()) == TargetLowering::TypePromoteInteger)
672 RHS = ZExtPromotedInteger(RHS);
673 return DAG.getNode(ISD::SRA, SDLoc(N), LHS.getValueType(), LHS, RHS);
674 }
675
PromoteIntRes_SRL(SDNode * N)676 SDValue DAGTypeLegalizer::PromoteIntRes_SRL(SDNode *N) {
677 SDValue LHS = N->getOperand(0);
678 SDValue RHS = N->getOperand(1);
679 // The input value must be properly zero extended.
680 if (getTypeAction(LHS.getValueType()) == TargetLowering::TypePromoteInteger)
681 LHS = ZExtPromotedInteger(LHS);
682 if (getTypeAction(RHS.getValueType()) == TargetLowering::TypePromoteInteger)
683 RHS = ZExtPromotedInteger(RHS);
684 return DAG.getNode(ISD::SRL, SDLoc(N), LHS.getValueType(), LHS, RHS);
685 }
686
PromoteIntRes_TRUNCATE(SDNode * N)687 SDValue DAGTypeLegalizer::PromoteIntRes_TRUNCATE(SDNode *N) {
688 EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
689 SDValue Res;
690 SDValue InOp = N->getOperand(0);
691 SDLoc dl(N);
692
693 switch (getTypeAction(InOp.getValueType())) {
694 default: llvm_unreachable("Unknown type action!");
695 case TargetLowering::TypeLegal:
696 case TargetLowering::TypeExpandInteger:
697 Res = InOp;
698 break;
699 case TargetLowering::TypePromoteInteger:
700 Res = GetPromotedInteger(InOp);
701 break;
702 case TargetLowering::TypeSplitVector:
703 EVT InVT = InOp.getValueType();
704 assert(InVT.isVector() && "Cannot split scalar types");
705 unsigned NumElts = InVT.getVectorNumElements();
706 assert(NumElts == NVT.getVectorNumElements() &&
707 "Dst and Src must have the same number of elements");
708 assert(isPowerOf2_32(NumElts) &&
709 "Promoted vector type must be a power of two");
710
711 SDValue EOp1, EOp2;
712 GetSplitVector(InOp, EOp1, EOp2);
713
714 EVT HalfNVT = EVT::getVectorVT(*DAG.getContext(), NVT.getScalarType(),
715 NumElts/2);
716 EOp1 = DAG.getNode(ISD::TRUNCATE, dl, HalfNVT, EOp1);
717 EOp2 = DAG.getNode(ISD::TRUNCATE, dl, HalfNVT, EOp2);
718
719 return DAG.getNode(ISD::CONCAT_VECTORS, dl, NVT, EOp1, EOp2);
720 }
721
722 // Truncate to NVT instead of VT
723 return DAG.getNode(ISD::TRUNCATE, dl, NVT, Res);
724 }
725
PromoteIntRes_UADDSUBO(SDNode * N,unsigned ResNo)726 SDValue DAGTypeLegalizer::PromoteIntRes_UADDSUBO(SDNode *N, unsigned ResNo) {
727 if (ResNo == 1)
728 return PromoteIntRes_Overflow(N);
729
730 // The operation overflowed iff the result in the larger type is not the
731 // zero extension of its truncation to the original type.
732 SDValue LHS = ZExtPromotedInteger(N->getOperand(0));
733 SDValue RHS = ZExtPromotedInteger(N->getOperand(1));
734 EVT OVT = N->getOperand(0).getValueType();
735 EVT NVT = LHS.getValueType();
736 SDLoc dl(N);
737
738 // Do the arithmetic in the larger type.
739 unsigned Opcode = N->getOpcode() == ISD::UADDO ? ISD::ADD : ISD::SUB;
740 SDValue Res = DAG.getNode(Opcode, dl, NVT, LHS, RHS);
741
742 // Calculate the overflow flag: zero extend the arithmetic result from
743 // the original type.
744 SDValue Ofl = DAG.getZeroExtendInReg(Res, dl, OVT);
745 // Overflowed if and only if this is not equal to Res.
746 Ofl = DAG.getSetCC(dl, N->getValueType(1), Ofl, Res, ISD::SETNE);
747
748 // Use the calculated overflow everywhere.
749 ReplaceValueWith(SDValue(N, 1), Ofl);
750
751 return Res;
752 }
753
PromoteIntRes_XMULO(SDNode * N,unsigned ResNo)754 SDValue DAGTypeLegalizer::PromoteIntRes_XMULO(SDNode *N, unsigned ResNo) {
755 // Promote the overflow bit trivially.
756 if (ResNo == 1)
757 return PromoteIntRes_Overflow(N);
758
759 SDValue LHS = N->getOperand(0), RHS = N->getOperand(1);
760 SDLoc DL(N);
761 EVT SmallVT = LHS.getValueType();
762
763 // To determine if the result overflowed in a larger type, we extend the
764 // input to the larger type, do the multiply (checking if it overflows),
765 // then also check the high bits of the result to see if overflow happened
766 // there.
767 if (N->getOpcode() == ISD::SMULO) {
768 LHS = SExtPromotedInteger(LHS);
769 RHS = SExtPromotedInteger(RHS);
770 } else {
771 LHS = ZExtPromotedInteger(LHS);
772 RHS = ZExtPromotedInteger(RHS);
773 }
774 SDVTList VTs = DAG.getVTList(LHS.getValueType(), N->getValueType(1));
775 SDValue Mul = DAG.getNode(N->getOpcode(), DL, VTs, LHS, RHS);
776
777 // Overflow occurred if it occurred in the larger type, or if the high part
778 // of the result does not zero/sign-extend the low part. Check this second
779 // possibility first.
780 SDValue Overflow;
781 if (N->getOpcode() == ISD::UMULO) {
782 // Unsigned overflow occurred if the high part is non-zero.
783 SDValue Hi = DAG.getNode(ISD::SRL, DL, Mul.getValueType(), Mul,
784 DAG.getIntPtrConstant(SmallVT.getSizeInBits(),
785 DL));
786 Overflow = DAG.getSetCC(DL, N->getValueType(1), Hi,
787 DAG.getConstant(0, DL, Hi.getValueType()),
788 ISD::SETNE);
789 } else {
790 // Signed overflow occurred if the high part does not sign extend the low.
791 SDValue SExt = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, Mul.getValueType(),
792 Mul, DAG.getValueType(SmallVT));
793 Overflow = DAG.getSetCC(DL, N->getValueType(1), SExt, Mul, ISD::SETNE);
794 }
795
796 // The only other way for overflow to occur is if the multiplication in the
797 // larger type itself overflowed.
798 Overflow = DAG.getNode(ISD::OR, DL, N->getValueType(1), Overflow,
799 SDValue(Mul.getNode(), 1));
800
801 // Use the calculated overflow everywhere.
802 ReplaceValueWith(SDValue(N, 1), Overflow);
803 return Mul;
804 }
805
PromoteIntRes_UNDEF(SDNode * N)806 SDValue DAGTypeLegalizer::PromoteIntRes_UNDEF(SDNode *N) {
807 return DAG.getUNDEF(TLI.getTypeToTransformTo(*DAG.getContext(),
808 N->getValueType(0)));
809 }
810
PromoteIntRes_VAARG(SDNode * N)811 SDValue DAGTypeLegalizer::PromoteIntRes_VAARG(SDNode *N) {
812 SDValue Chain = N->getOperand(0); // Get the chain.
813 SDValue Ptr = N->getOperand(1); // Get the pointer.
814 EVT VT = N->getValueType(0);
815 SDLoc dl(N);
816
817 MVT RegVT = TLI.getRegisterType(*DAG.getContext(), VT);
818 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), VT);
819 // The argument is passed as NumRegs registers of type RegVT.
820
821 SmallVector<SDValue, 8> Parts(NumRegs);
822 for (unsigned i = 0; i < NumRegs; ++i) {
823 Parts[i] = DAG.getVAArg(RegVT, dl, Chain, Ptr, N->getOperand(2),
824 N->getConstantOperandVal(3));
825 Chain = Parts[i].getValue(1);
826 }
827
828 // Handle endianness of the load.
829 if (DAG.getDataLayout().isBigEndian())
830 std::reverse(Parts.begin(), Parts.end());
831
832 // Assemble the parts in the promoted type.
833 EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
834 SDValue Res = DAG.getNode(ISD::ZERO_EXTEND, dl, NVT, Parts[0]);
835 for (unsigned i = 1; i < NumRegs; ++i) {
836 SDValue Part = DAG.getNode(ISD::ZERO_EXTEND, dl, NVT, Parts[i]);
837 // Shift it to the right position and "or" it in.
838 Part = DAG.getNode(ISD::SHL, dl, NVT, Part,
839 DAG.getConstant(i * RegVT.getSizeInBits(), dl,
840 TLI.getPointerTy(DAG.getDataLayout())));
841 Res = DAG.getNode(ISD::OR, dl, NVT, Res, Part);
842 }
843
844 // Modified the chain result - switch anything that used the old chain to
845 // use the new one.
846 ReplaceValueWith(SDValue(N, 1), Chain);
847
848 return Res;
849 }
850
851 //===----------------------------------------------------------------------===//
852 // Integer Operand Promotion
853 //===----------------------------------------------------------------------===//
854
855 /// PromoteIntegerOperand - This method is called when the specified operand of
856 /// the specified node is found to need promotion. At this point, all of the
857 /// result types of the node are known to be legal, but other operands of the
858 /// node may need promotion or expansion as well as the specified one.
PromoteIntegerOperand(SDNode * N,unsigned OpNo)859 bool DAGTypeLegalizer::PromoteIntegerOperand(SDNode *N, unsigned OpNo) {
860 DEBUG(dbgs() << "Promote integer operand: "; N->dump(&DAG); dbgs() << "\n");
861 SDValue Res = SDValue();
862
863 if (CustomLowerNode(N, N->getOperand(OpNo).getValueType(), false))
864 return false;
865
866 switch (N->getOpcode()) {
867 default:
868 #ifndef NDEBUG
869 dbgs() << "PromoteIntegerOperand Op #" << OpNo << ": ";
870 N->dump(&DAG); dbgs() << "\n";
871 #endif
872 llvm_unreachable("Do not know how to promote this operator's operand!");
873
874 case ISD::ANY_EXTEND: Res = PromoteIntOp_ANY_EXTEND(N); break;
875 case ISD::ATOMIC_STORE:
876 Res = PromoteIntOp_ATOMIC_STORE(cast<AtomicSDNode>(N));
877 break;
878 case ISD::BITCAST: Res = PromoteIntOp_BITCAST(N); break;
879 case ISD::BR_CC: Res = PromoteIntOp_BR_CC(N, OpNo); break;
880 case ISD::BRCOND: Res = PromoteIntOp_BRCOND(N, OpNo); break;
881 case ISD::BUILD_PAIR: Res = PromoteIntOp_BUILD_PAIR(N); break;
882 case ISD::BUILD_VECTOR: Res = PromoteIntOp_BUILD_VECTOR(N); break;
883 case ISD::CONCAT_VECTORS: Res = PromoteIntOp_CONCAT_VECTORS(N); break;
884 case ISD::EXTRACT_VECTOR_ELT: Res = PromoteIntOp_EXTRACT_VECTOR_ELT(N); break;
885 case ISD::CONVERT_RNDSAT:
886 Res = PromoteIntOp_CONVERT_RNDSAT(N); break;
887 case ISD::INSERT_VECTOR_ELT:
888 Res = PromoteIntOp_INSERT_VECTOR_ELT(N, OpNo);break;
889 case ISD::SCALAR_TO_VECTOR:
890 Res = PromoteIntOp_SCALAR_TO_VECTOR(N); break;
891 case ISD::VSELECT:
892 case ISD::SELECT: Res = PromoteIntOp_SELECT(N, OpNo); break;
893 case ISD::SELECT_CC: Res = PromoteIntOp_SELECT_CC(N, OpNo); break;
894 case ISD::SETCC: Res = PromoteIntOp_SETCC(N, OpNo); break;
895 case ISD::SIGN_EXTEND: Res = PromoteIntOp_SIGN_EXTEND(N); break;
896 case ISD::SINT_TO_FP: Res = PromoteIntOp_SINT_TO_FP(N); break;
897 case ISD::STORE: Res = PromoteIntOp_STORE(cast<StoreSDNode>(N),
898 OpNo); break;
899 case ISD::MSTORE: Res = PromoteIntOp_MSTORE(cast<MaskedStoreSDNode>(N),
900 OpNo); break;
901 case ISD::MLOAD: Res = PromoteIntOp_MLOAD(cast<MaskedLoadSDNode>(N),
902 OpNo); break;
903 case ISD::MGATHER: Res = PromoteIntOp_MGATHER(cast<MaskedGatherSDNode>(N),
904 OpNo); break;
905 case ISD::MSCATTER: Res = PromoteIntOp_MSCATTER(cast<MaskedScatterSDNode>(N),
906 OpNo); break;
907 case ISD::TRUNCATE: Res = PromoteIntOp_TRUNCATE(N); break;
908 case ISD::FP16_TO_FP:
909 case ISD::UINT_TO_FP: Res = PromoteIntOp_UINT_TO_FP(N); break;
910 case ISD::ZERO_EXTEND: Res = PromoteIntOp_ZERO_EXTEND(N); break;
911 case ISD::EXTRACT_SUBVECTOR: Res = PromoteIntOp_EXTRACT_SUBVECTOR(N); break;
912
913 case ISD::SHL:
914 case ISD::SRA:
915 case ISD::SRL:
916 case ISD::ROTL:
917 case ISD::ROTR: Res = PromoteIntOp_Shift(N); break;
918 }
919
920 // If the result is null, the sub-method took care of registering results etc.
921 if (!Res.getNode()) return false;
922
923 // If the result is N, the sub-method updated N in place. Tell the legalizer
924 // core about this.
925 if (Res.getNode() == N)
926 return true;
927
928 assert(Res.getValueType() == N->getValueType(0) && N->getNumValues() == 1 &&
929 "Invalid operand expansion");
930
931 ReplaceValueWith(SDValue(N, 0), Res);
932 return false;
933 }
934
935 /// PromoteSetCCOperands - Promote the operands of a comparison. This code is
936 /// shared among BR_CC, SELECT_CC, and SETCC handlers.
PromoteSetCCOperands(SDValue & NewLHS,SDValue & NewRHS,ISD::CondCode CCCode)937 void DAGTypeLegalizer::PromoteSetCCOperands(SDValue &NewLHS,SDValue &NewRHS,
938 ISD::CondCode CCCode) {
939 // We have to insert explicit sign or zero extends. Note that we could
940 // insert sign extends for ALL conditions, but zero extend is cheaper on
941 // many machines (an AND instead of two shifts), so prefer it.
942 switch (CCCode) {
943 default: llvm_unreachable("Unknown integer comparison!");
944 case ISD::SETEQ:
945 case ISD::SETNE: {
946 SDValue OpL = GetPromotedInteger(NewLHS);
947 SDValue OpR = GetPromotedInteger(NewRHS);
948
949 // We would prefer to promote the comparison operand with sign extension,
950 // if we find the operand is actually to truncate an AssertSext. With this
951 // optimization, we can avoid inserting real truncate instruction, which
952 // is redudant eventually.
953 if (OpL->getOpcode() == ISD::AssertSext &&
954 cast<VTSDNode>(OpL->getOperand(1))->getVT() == NewLHS.getValueType() &&
955 OpR->getOpcode() == ISD::AssertSext &&
956 cast<VTSDNode>(OpR->getOperand(1))->getVT() == NewRHS.getValueType()) {
957 NewLHS = OpL;
958 NewRHS = OpR;
959 } else {
960 NewLHS = ZExtPromotedInteger(NewLHS);
961 NewRHS = ZExtPromotedInteger(NewRHS);
962 }
963 break;
964 }
965 case ISD::SETUGE:
966 case ISD::SETUGT:
967 case ISD::SETULE:
968 case ISD::SETULT:
969 // ALL of these operations will work if we either sign or zero extend
970 // the operands (including the unsigned comparisons!). Zero extend is
971 // usually a simpler/cheaper operation, so prefer it.
972 NewLHS = ZExtPromotedInteger(NewLHS);
973 NewRHS = ZExtPromotedInteger(NewRHS);
974 break;
975 case ISD::SETGE:
976 case ISD::SETGT:
977 case ISD::SETLT:
978 case ISD::SETLE:
979 NewLHS = SExtPromotedInteger(NewLHS);
980 NewRHS = SExtPromotedInteger(NewRHS);
981 break;
982 }
983 }
984
PromoteIntOp_ANY_EXTEND(SDNode * N)985 SDValue DAGTypeLegalizer::PromoteIntOp_ANY_EXTEND(SDNode *N) {
986 SDValue Op = GetPromotedInteger(N->getOperand(0));
987 return DAG.getNode(ISD::ANY_EXTEND, SDLoc(N), N->getValueType(0), Op);
988 }
989
PromoteIntOp_ATOMIC_STORE(AtomicSDNode * N)990 SDValue DAGTypeLegalizer::PromoteIntOp_ATOMIC_STORE(AtomicSDNode *N) {
991 SDValue Op2 = GetPromotedInteger(N->getOperand(2));
992 return DAG.getAtomic(N->getOpcode(), SDLoc(N), N->getMemoryVT(),
993 N->getChain(), N->getBasePtr(), Op2, N->getMemOperand(),
994 N->getOrdering(), N->getSynchScope());
995 }
996
PromoteIntOp_BITCAST(SDNode * N)997 SDValue DAGTypeLegalizer::PromoteIntOp_BITCAST(SDNode *N) {
998 // This should only occur in unusual situations like bitcasting to an
999 // x86_fp80, so just turn it into a store+load
1000 return CreateStackStoreLoad(N->getOperand(0), N->getValueType(0));
1001 }
1002
PromoteIntOp_BR_CC(SDNode * N,unsigned OpNo)1003 SDValue DAGTypeLegalizer::PromoteIntOp_BR_CC(SDNode *N, unsigned OpNo) {
1004 assert(OpNo == 2 && "Don't know how to promote this operand!");
1005
1006 SDValue LHS = N->getOperand(2);
1007 SDValue RHS = N->getOperand(3);
1008 PromoteSetCCOperands(LHS, RHS, cast<CondCodeSDNode>(N->getOperand(1))->get());
1009
1010 // The chain (Op#0), CC (#1) and basic block destination (Op#4) are always
1011 // legal types.
1012 return SDValue(DAG.UpdateNodeOperands(N, N->getOperand(0),
1013 N->getOperand(1), LHS, RHS, N->getOperand(4)),
1014 0);
1015 }
1016
PromoteIntOp_BRCOND(SDNode * N,unsigned OpNo)1017 SDValue DAGTypeLegalizer::PromoteIntOp_BRCOND(SDNode *N, unsigned OpNo) {
1018 assert(OpNo == 1 && "only know how to promote condition");
1019
1020 // Promote all the way up to the canonical SetCC type.
1021 SDValue Cond = PromoteTargetBoolean(N->getOperand(1), MVT::Other);
1022
1023 // The chain (Op#0) and basic block destination (Op#2) are always legal types.
1024 return SDValue(DAG.UpdateNodeOperands(N, N->getOperand(0), Cond,
1025 N->getOperand(2)), 0);
1026 }
1027
PromoteIntOp_BUILD_PAIR(SDNode * N)1028 SDValue DAGTypeLegalizer::PromoteIntOp_BUILD_PAIR(SDNode *N) {
1029 // Since the result type is legal, the operands must promote to it.
1030 EVT OVT = N->getOperand(0).getValueType();
1031 SDValue Lo = ZExtPromotedInteger(N->getOperand(0));
1032 SDValue Hi = GetPromotedInteger(N->getOperand(1));
1033 assert(Lo.getValueType() == N->getValueType(0) && "Operand over promoted?");
1034 SDLoc dl(N);
1035
1036 Hi = DAG.getNode(ISD::SHL, dl, N->getValueType(0), Hi,
1037 DAG.getConstant(OVT.getSizeInBits(), dl,
1038 TLI.getPointerTy(DAG.getDataLayout())));
1039 return DAG.getNode(ISD::OR, dl, N->getValueType(0), Lo, Hi);
1040 }
1041
PromoteIntOp_BUILD_VECTOR(SDNode * N)1042 SDValue DAGTypeLegalizer::PromoteIntOp_BUILD_VECTOR(SDNode *N) {
1043 // The vector type is legal but the element type is not. This implies
1044 // that the vector is a power-of-two in length and that the element
1045 // type does not have a strange size (eg: it is not i1).
1046 EVT VecVT = N->getValueType(0);
1047 unsigned NumElts = VecVT.getVectorNumElements();
1048 assert(!((NumElts & 1) && (!TLI.isTypeLegal(VecVT))) &&
1049 "Legal vector of one illegal element?");
1050
1051 // Promote the inserted value. The type does not need to match the
1052 // vector element type. Check that any extra bits introduced will be
1053 // truncated away.
1054 assert(N->getOperand(0).getValueType().getSizeInBits() >=
1055 N->getValueType(0).getVectorElementType().getSizeInBits() &&
1056 "Type of inserted value narrower than vector element type!");
1057
1058 SmallVector<SDValue, 16> NewOps;
1059 for (unsigned i = 0; i < NumElts; ++i)
1060 NewOps.push_back(GetPromotedInteger(N->getOperand(i)));
1061
1062 return SDValue(DAG.UpdateNodeOperands(N, NewOps), 0);
1063 }
1064
PromoteIntOp_CONVERT_RNDSAT(SDNode * N)1065 SDValue DAGTypeLegalizer::PromoteIntOp_CONVERT_RNDSAT(SDNode *N) {
1066 ISD::CvtCode CvtCode = cast<CvtRndSatSDNode>(N)->getCvtCode();
1067 assert ((CvtCode == ISD::CVT_SS || CvtCode == ISD::CVT_SU ||
1068 CvtCode == ISD::CVT_US || CvtCode == ISD::CVT_UU ||
1069 CvtCode == ISD::CVT_FS || CvtCode == ISD::CVT_FU) &&
1070 "can only promote integer arguments");
1071 SDValue InOp = GetPromotedInteger(N->getOperand(0));
1072 return DAG.getConvertRndSat(N->getValueType(0), SDLoc(N), InOp,
1073 N->getOperand(1), N->getOperand(2),
1074 N->getOperand(3), N->getOperand(4), CvtCode);
1075 }
1076
PromoteIntOp_INSERT_VECTOR_ELT(SDNode * N,unsigned OpNo)1077 SDValue DAGTypeLegalizer::PromoteIntOp_INSERT_VECTOR_ELT(SDNode *N,
1078 unsigned OpNo) {
1079 if (OpNo == 1) {
1080 // Promote the inserted value. This is valid because the type does not
1081 // have to match the vector element type.
1082
1083 // Check that any extra bits introduced will be truncated away.
1084 assert(N->getOperand(1).getValueType().getSizeInBits() >=
1085 N->getValueType(0).getVectorElementType().getSizeInBits() &&
1086 "Type of inserted value narrower than vector element type!");
1087 return SDValue(DAG.UpdateNodeOperands(N, N->getOperand(0),
1088 GetPromotedInteger(N->getOperand(1)),
1089 N->getOperand(2)),
1090 0);
1091 }
1092
1093 assert(OpNo == 2 && "Different operand and result vector types?");
1094
1095 // Promote the index.
1096 SDValue Idx = DAG.getZExtOrTrunc(N->getOperand(2), SDLoc(N),
1097 TLI.getVectorIdxTy(DAG.getDataLayout()));
1098 return SDValue(DAG.UpdateNodeOperands(N, N->getOperand(0),
1099 N->getOperand(1), Idx), 0);
1100 }
1101
PromoteIntOp_SCALAR_TO_VECTOR(SDNode * N)1102 SDValue DAGTypeLegalizer::PromoteIntOp_SCALAR_TO_VECTOR(SDNode *N) {
1103 // Integer SCALAR_TO_VECTOR operands are implicitly truncated, so just promote
1104 // the operand in place.
1105 return SDValue(DAG.UpdateNodeOperands(N,
1106 GetPromotedInteger(N->getOperand(0))), 0);
1107 }
1108
PromoteIntOp_SELECT(SDNode * N,unsigned OpNo)1109 SDValue DAGTypeLegalizer::PromoteIntOp_SELECT(SDNode *N, unsigned OpNo) {
1110 assert(OpNo == 0 && "Only know how to promote the condition!");
1111 SDValue Cond = N->getOperand(0);
1112 EVT OpTy = N->getOperand(1).getValueType();
1113
1114 // Promote all the way up to the canonical SetCC type.
1115 EVT OpVT = N->getOpcode() == ISD::SELECT ? OpTy.getScalarType() : OpTy;
1116 Cond = PromoteTargetBoolean(Cond, OpVT);
1117
1118 return SDValue(DAG.UpdateNodeOperands(N, Cond, N->getOperand(1),
1119 N->getOperand(2)), 0);
1120 }
1121
PromoteIntOp_SELECT_CC(SDNode * N,unsigned OpNo)1122 SDValue DAGTypeLegalizer::PromoteIntOp_SELECT_CC(SDNode *N, unsigned OpNo) {
1123 assert(OpNo == 0 && "Don't know how to promote this operand!");
1124
1125 SDValue LHS = N->getOperand(0);
1126 SDValue RHS = N->getOperand(1);
1127 PromoteSetCCOperands(LHS, RHS, cast<CondCodeSDNode>(N->getOperand(4))->get());
1128
1129 // The CC (#4) and the possible return values (#2 and #3) have legal types.
1130 return SDValue(DAG.UpdateNodeOperands(N, LHS, RHS, N->getOperand(2),
1131 N->getOperand(3), N->getOperand(4)), 0);
1132 }
1133
PromoteIntOp_SETCC(SDNode * N,unsigned OpNo)1134 SDValue DAGTypeLegalizer::PromoteIntOp_SETCC(SDNode *N, unsigned OpNo) {
1135 assert(OpNo == 0 && "Don't know how to promote this operand!");
1136
1137 SDValue LHS = N->getOperand(0);
1138 SDValue RHS = N->getOperand(1);
1139 PromoteSetCCOperands(LHS, RHS, cast<CondCodeSDNode>(N->getOperand(2))->get());
1140
1141 // The CC (#2) is always legal.
1142 return SDValue(DAG.UpdateNodeOperands(N, LHS, RHS, N->getOperand(2)), 0);
1143 }
1144
PromoteIntOp_Shift(SDNode * N)1145 SDValue DAGTypeLegalizer::PromoteIntOp_Shift(SDNode *N) {
1146 return SDValue(DAG.UpdateNodeOperands(N, N->getOperand(0),
1147 ZExtPromotedInteger(N->getOperand(1))), 0);
1148 }
1149
PromoteIntOp_SIGN_EXTEND(SDNode * N)1150 SDValue DAGTypeLegalizer::PromoteIntOp_SIGN_EXTEND(SDNode *N) {
1151 SDValue Op = GetPromotedInteger(N->getOperand(0));
1152 SDLoc dl(N);
1153 Op = DAG.getNode(ISD::ANY_EXTEND, dl, N->getValueType(0), Op);
1154 return DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, Op.getValueType(),
1155 Op, DAG.getValueType(N->getOperand(0).getValueType()));
1156 }
1157
PromoteIntOp_SINT_TO_FP(SDNode * N)1158 SDValue DAGTypeLegalizer::PromoteIntOp_SINT_TO_FP(SDNode *N) {
1159 return SDValue(DAG.UpdateNodeOperands(N,
1160 SExtPromotedInteger(N->getOperand(0))), 0);
1161 }
1162
PromoteIntOp_STORE(StoreSDNode * N,unsigned OpNo)1163 SDValue DAGTypeLegalizer::PromoteIntOp_STORE(StoreSDNode *N, unsigned OpNo){
1164 assert(ISD::isUNINDEXEDStore(N) && "Indexed store during type legalization!");
1165 SDValue Ch = N->getChain(), Ptr = N->getBasePtr();
1166 SDLoc dl(N);
1167
1168 SDValue Val = GetPromotedInteger(N->getValue()); // Get promoted value.
1169
1170 // Truncate the value and store the result.
1171 return DAG.getTruncStore(Ch, dl, Val, Ptr,
1172 N->getMemoryVT(), N->getMemOperand());
1173 }
1174
PromoteIntOp_MSTORE(MaskedStoreSDNode * N,unsigned OpNo)1175 SDValue DAGTypeLegalizer::PromoteIntOp_MSTORE(MaskedStoreSDNode *N,
1176 unsigned OpNo) {
1177
1178 SDValue DataOp = N->getValue();
1179 EVT DataVT = DataOp.getValueType();
1180 SDValue Mask = N->getMask();
1181 SDLoc dl(N);
1182
1183 bool TruncateStore = false;
1184 if (OpNo == 2) {
1185 // Mask comes before the data operand. If the data operand is legal, we just
1186 // promote the mask.
1187 // When the data operand has illegal type, we should legalize the data
1188 // operand first. The mask will be promoted/splitted/widened according to
1189 // the data operand type.
1190 if (TLI.isTypeLegal(DataVT))
1191 Mask = PromoteTargetBoolean(Mask, DataVT);
1192 else {
1193 if (getTypeAction(DataVT) == TargetLowering::TypePromoteInteger)
1194 return PromoteIntOp_MSTORE(N, 3);
1195
1196 else if (getTypeAction(DataVT) == TargetLowering::TypeWidenVector)
1197 return WidenVecOp_MSTORE(N, 3);
1198
1199 else {
1200 assert (getTypeAction(DataVT) == TargetLowering::TypeSplitVector);
1201 return SplitVecOp_MSTORE(N, 3);
1202 }
1203 }
1204 } else { // Data operand
1205 assert(OpNo == 3 && "Unexpected operand for promotion");
1206 DataOp = GetPromotedInteger(DataOp);
1207 Mask = PromoteTargetBoolean(Mask, DataOp.getValueType());
1208 TruncateStore = true;
1209 }
1210
1211 return DAG.getMaskedStore(N->getChain(), dl, DataOp, N->getBasePtr(), Mask,
1212 N->getMemoryVT(), N->getMemOperand(),
1213 TruncateStore);
1214 }
1215
PromoteIntOp_MLOAD(MaskedLoadSDNode * N,unsigned OpNo)1216 SDValue DAGTypeLegalizer::PromoteIntOp_MLOAD(MaskedLoadSDNode *N,
1217 unsigned OpNo) {
1218 assert(OpNo == 2 && "Only know how to promote the mask!");
1219 EVT DataVT = N->getValueType(0);
1220 SDValue Mask = PromoteTargetBoolean(N->getOperand(OpNo), DataVT);
1221 SmallVector<SDValue, 4> NewOps(N->op_begin(), N->op_end());
1222 NewOps[OpNo] = Mask;
1223 return SDValue(DAG.UpdateNodeOperands(N, NewOps), 0);
1224 }
1225
PromoteIntOp_MGATHER(MaskedGatherSDNode * N,unsigned OpNo)1226 SDValue DAGTypeLegalizer::PromoteIntOp_MGATHER(MaskedGatherSDNode *N,
1227 unsigned OpNo) {
1228
1229 SmallVector<SDValue, 5> NewOps(N->op_begin(), N->op_end());
1230 if (OpNo == 2) {
1231 // The Mask
1232 EVT DataVT = N->getValueType(0);
1233 NewOps[OpNo] = PromoteTargetBoolean(N->getOperand(OpNo), DataVT);
1234 } else
1235 NewOps[OpNo] = GetPromotedInteger(N->getOperand(OpNo));
1236 return SDValue(DAG.UpdateNodeOperands(N, NewOps), 0);
1237 }
1238
PromoteIntOp_MSCATTER(MaskedScatterSDNode * N,unsigned OpNo)1239 SDValue DAGTypeLegalizer::PromoteIntOp_MSCATTER(MaskedScatterSDNode *N,
1240 unsigned OpNo) {
1241 SmallVector<SDValue, 5> NewOps(N->op_begin(), N->op_end());
1242 if (OpNo == 2) {
1243 // The Mask
1244 EVT DataVT = N->getValue().getValueType();
1245 NewOps[OpNo] = PromoteTargetBoolean(N->getOperand(OpNo), DataVT);
1246 } else
1247 NewOps[OpNo] = GetPromotedInteger(N->getOperand(OpNo));
1248 return SDValue(DAG.UpdateNodeOperands(N, NewOps), 0);
1249 }
1250
PromoteIntOp_TRUNCATE(SDNode * N)1251 SDValue DAGTypeLegalizer::PromoteIntOp_TRUNCATE(SDNode *N) {
1252 SDValue Op = GetPromotedInteger(N->getOperand(0));
1253 return DAG.getNode(ISD::TRUNCATE, SDLoc(N), N->getValueType(0), Op);
1254 }
1255
PromoteIntOp_UINT_TO_FP(SDNode * N)1256 SDValue DAGTypeLegalizer::PromoteIntOp_UINT_TO_FP(SDNode *N) {
1257 return SDValue(DAG.UpdateNodeOperands(N,
1258 ZExtPromotedInteger(N->getOperand(0))), 0);
1259 }
1260
PromoteIntOp_ZERO_EXTEND(SDNode * N)1261 SDValue DAGTypeLegalizer::PromoteIntOp_ZERO_EXTEND(SDNode *N) {
1262 SDLoc dl(N);
1263 SDValue Op = GetPromotedInteger(N->getOperand(0));
1264 Op = DAG.getNode(ISD::ANY_EXTEND, dl, N->getValueType(0), Op);
1265 return DAG.getZeroExtendInReg(Op, dl,
1266 N->getOperand(0).getValueType().getScalarType());
1267 }
1268
1269
1270 //===----------------------------------------------------------------------===//
1271 // Integer Result Expansion
1272 //===----------------------------------------------------------------------===//
1273
1274 /// ExpandIntegerResult - This method is called when the specified result of the
1275 /// specified node is found to need expansion. At this point, the node may also
1276 /// have invalid operands or may have other results that need promotion, we just
1277 /// know that (at least) one result needs expansion.
ExpandIntegerResult(SDNode * N,unsigned ResNo)1278 void DAGTypeLegalizer::ExpandIntegerResult(SDNode *N, unsigned ResNo) {
1279 DEBUG(dbgs() << "Expand integer result: "; N->dump(&DAG); dbgs() << "\n");
1280 SDValue Lo, Hi;
1281 Lo = Hi = SDValue();
1282
1283 // See if the target wants to custom expand this node.
1284 if (CustomLowerNode(N, N->getValueType(ResNo), true))
1285 return;
1286
1287 switch (N->getOpcode()) {
1288 default:
1289 #ifndef NDEBUG
1290 dbgs() << "ExpandIntegerResult #" << ResNo << ": ";
1291 N->dump(&DAG); dbgs() << "\n";
1292 #endif
1293 llvm_unreachable("Do not know how to expand the result of this operator!");
1294
1295 case ISD::MERGE_VALUES: SplitRes_MERGE_VALUES(N, ResNo, Lo, Hi); break;
1296 case ISD::SELECT: SplitRes_SELECT(N, Lo, Hi); break;
1297 case ISD::SELECT_CC: SplitRes_SELECT_CC(N, Lo, Hi); break;
1298 case ISD::UNDEF: SplitRes_UNDEF(N, Lo, Hi); break;
1299
1300 case ISD::BITCAST: ExpandRes_BITCAST(N, Lo, Hi); break;
1301 case ISD::BUILD_PAIR: ExpandRes_BUILD_PAIR(N, Lo, Hi); break;
1302 case ISD::EXTRACT_ELEMENT: ExpandRes_EXTRACT_ELEMENT(N, Lo, Hi); break;
1303 case ISD::EXTRACT_VECTOR_ELT: ExpandRes_EXTRACT_VECTOR_ELT(N, Lo, Hi); break;
1304 case ISD::VAARG: ExpandRes_VAARG(N, Lo, Hi); break;
1305
1306 case ISD::ANY_EXTEND: ExpandIntRes_ANY_EXTEND(N, Lo, Hi); break;
1307 case ISD::AssertSext: ExpandIntRes_AssertSext(N, Lo, Hi); break;
1308 case ISD::AssertZext: ExpandIntRes_AssertZext(N, Lo, Hi); break;
1309 case ISD::BITREVERSE: ExpandIntRes_BITREVERSE(N, Lo, Hi); break;
1310 case ISD::BSWAP: ExpandIntRes_BSWAP(N, Lo, Hi); break;
1311 case ISD::Constant: ExpandIntRes_Constant(N, Lo, Hi); break;
1312 case ISD::CTLZ_ZERO_UNDEF:
1313 case ISD::CTLZ: ExpandIntRes_CTLZ(N, Lo, Hi); break;
1314 case ISD::CTPOP: ExpandIntRes_CTPOP(N, Lo, Hi); break;
1315 case ISD::CTTZ_ZERO_UNDEF:
1316 case ISD::CTTZ: ExpandIntRes_CTTZ(N, Lo, Hi); break;
1317 case ISD::FP_TO_SINT: ExpandIntRes_FP_TO_SINT(N, Lo, Hi); break;
1318 case ISD::FP_TO_UINT: ExpandIntRes_FP_TO_UINT(N, Lo, Hi); break;
1319 case ISD::LOAD: ExpandIntRes_LOAD(cast<LoadSDNode>(N), Lo, Hi); break;
1320 case ISD::MUL: ExpandIntRes_MUL(N, Lo, Hi); break;
1321 case ISD::READCYCLECOUNTER: ExpandIntRes_READCYCLECOUNTER(N, Lo, Hi); break;
1322 case ISD::SDIV: ExpandIntRes_SDIV(N, Lo, Hi); break;
1323 case ISD::SIGN_EXTEND: ExpandIntRes_SIGN_EXTEND(N, Lo, Hi); break;
1324 case ISD::SIGN_EXTEND_INREG: ExpandIntRes_SIGN_EXTEND_INREG(N, Lo, Hi); break;
1325 case ISD::SREM: ExpandIntRes_SREM(N, Lo, Hi); break;
1326 case ISD::TRUNCATE: ExpandIntRes_TRUNCATE(N, Lo, Hi); break;
1327 case ISD::UDIV: ExpandIntRes_UDIV(N, Lo, Hi); break;
1328 case ISD::UREM: ExpandIntRes_UREM(N, Lo, Hi); break;
1329 case ISD::ZERO_EXTEND: ExpandIntRes_ZERO_EXTEND(N, Lo, Hi); break;
1330 case ISD::ATOMIC_LOAD: ExpandIntRes_ATOMIC_LOAD(N, Lo, Hi); break;
1331
1332 case ISD::ATOMIC_LOAD_ADD:
1333 case ISD::ATOMIC_LOAD_SUB:
1334 case ISD::ATOMIC_LOAD_AND:
1335 case ISD::ATOMIC_LOAD_OR:
1336 case ISD::ATOMIC_LOAD_XOR:
1337 case ISD::ATOMIC_LOAD_NAND:
1338 case ISD::ATOMIC_LOAD_MIN:
1339 case ISD::ATOMIC_LOAD_MAX:
1340 case ISD::ATOMIC_LOAD_UMIN:
1341 case ISD::ATOMIC_LOAD_UMAX:
1342 case ISD::ATOMIC_SWAP:
1343 case ISD::ATOMIC_CMP_SWAP: {
1344 std::pair<SDValue, SDValue> Tmp = ExpandAtomic(N);
1345 SplitInteger(Tmp.first, Lo, Hi);
1346 ReplaceValueWith(SDValue(N, 1), Tmp.second);
1347 break;
1348 }
1349 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: {
1350 AtomicSDNode *AN = cast<AtomicSDNode>(N);
1351 SDVTList VTs = DAG.getVTList(N->getValueType(0), MVT::Other);
1352 SDValue Tmp = DAG.getAtomicCmpSwap(
1353 ISD::ATOMIC_CMP_SWAP, SDLoc(N), AN->getMemoryVT(), VTs,
1354 N->getOperand(0), N->getOperand(1), N->getOperand(2), N->getOperand(3),
1355 AN->getMemOperand(), AN->getSuccessOrdering(), AN->getFailureOrdering(),
1356 AN->getSynchScope());
1357
1358 // Expanding to the strong ATOMIC_CMP_SWAP node means we can determine
1359 // success simply by comparing the loaded value against the ingoing
1360 // comparison.
1361 SDValue Success = DAG.getSetCC(SDLoc(N), N->getValueType(1), Tmp,
1362 N->getOperand(2), ISD::SETEQ);
1363
1364 SplitInteger(Tmp, Lo, Hi);
1365 ReplaceValueWith(SDValue(N, 1), Success);
1366 ReplaceValueWith(SDValue(N, 2), Tmp.getValue(1));
1367 break;
1368 }
1369
1370 case ISD::AND:
1371 case ISD::OR:
1372 case ISD::XOR: ExpandIntRes_Logical(N, Lo, Hi); break;
1373
1374 case ISD::ADD:
1375 case ISD::SUB: ExpandIntRes_ADDSUB(N, Lo, Hi); break;
1376
1377 case ISD::ADDC:
1378 case ISD::SUBC: ExpandIntRes_ADDSUBC(N, Lo, Hi); break;
1379
1380 case ISD::ADDE:
1381 case ISD::SUBE: ExpandIntRes_ADDSUBE(N, Lo, Hi); break;
1382
1383 case ISD::SHL:
1384 case ISD::SRA:
1385 case ISD::SRL: ExpandIntRes_Shift(N, Lo, Hi); break;
1386
1387 case ISD::SADDO:
1388 case ISD::SSUBO: ExpandIntRes_SADDSUBO(N, Lo, Hi); break;
1389 case ISD::UADDO:
1390 case ISD::USUBO: ExpandIntRes_UADDSUBO(N, Lo, Hi); break;
1391 case ISD::UMULO:
1392 case ISD::SMULO: ExpandIntRes_XMULO(N, Lo, Hi); break;
1393 }
1394
1395 // If Lo/Hi is null, the sub-method took care of registering results etc.
1396 if (Lo.getNode())
1397 SetExpandedInteger(SDValue(N, ResNo), Lo, Hi);
1398 }
1399
1400 /// Lower an atomic node to the appropriate builtin call.
ExpandAtomic(SDNode * Node)1401 std::pair <SDValue, SDValue> DAGTypeLegalizer::ExpandAtomic(SDNode *Node) {
1402 unsigned Opc = Node->getOpcode();
1403 MVT VT = cast<AtomicSDNode>(Node)->getMemoryVT().getSimpleVT();
1404 RTLIB::Libcall LC = RTLIB::getATOMIC(Opc, VT);
1405 assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unexpected atomic op or value type!");
1406
1407 return ExpandChainLibCall(LC, Node, false);
1408 }
1409
1410 /// N is a shift by a value that needs to be expanded,
1411 /// and the shift amount is a constant 'Amt'. Expand the operation.
ExpandShiftByConstant(SDNode * N,const APInt & Amt,SDValue & Lo,SDValue & Hi)1412 void DAGTypeLegalizer::ExpandShiftByConstant(SDNode *N, const APInt &Amt,
1413 SDValue &Lo, SDValue &Hi) {
1414 SDLoc DL(N);
1415 // Expand the incoming operand to be shifted, so that we have its parts
1416 SDValue InL, InH;
1417 GetExpandedInteger(N->getOperand(0), InL, InH);
1418
1419 // Though Amt shouldn't usually be 0, it's possible. E.g. when legalization
1420 // splitted a vector shift, like this: <op1, op2> SHL <0, 2>.
1421 if (!Amt) {
1422 Lo = InL;
1423 Hi = InH;
1424 return;
1425 }
1426
1427 EVT NVT = InL.getValueType();
1428 unsigned VTBits = N->getValueType(0).getSizeInBits();
1429 unsigned NVTBits = NVT.getSizeInBits();
1430 EVT ShTy = N->getOperand(1).getValueType();
1431
1432 if (N->getOpcode() == ISD::SHL) {
1433 if (Amt.ugt(VTBits)) {
1434 Lo = Hi = DAG.getConstant(0, DL, NVT);
1435 } else if (Amt.ugt(NVTBits)) {
1436 Lo = DAG.getConstant(0, DL, NVT);
1437 Hi = DAG.getNode(ISD::SHL, DL,
1438 NVT, InL, DAG.getConstant(Amt - NVTBits, DL, ShTy));
1439 } else if (Amt == NVTBits) {
1440 Lo = DAG.getConstant(0, DL, NVT);
1441 Hi = InL;
1442 } else if (Amt == 1 &&
1443 TLI.isOperationLegalOrCustom(ISD::ADDC,
1444 TLI.getTypeToExpandTo(*DAG.getContext(), NVT))) {
1445 // Emit this X << 1 as X+X.
1446 SDVTList VTList = DAG.getVTList(NVT, MVT::Glue);
1447 SDValue LoOps[2] = { InL, InL };
1448 Lo = DAG.getNode(ISD::ADDC, DL, VTList, LoOps);
1449 SDValue HiOps[3] = { InH, InH, Lo.getValue(1) };
1450 Hi = DAG.getNode(ISD::ADDE, DL, VTList, HiOps);
1451 } else {
1452 Lo = DAG.getNode(ISD::SHL, DL, NVT, InL, DAG.getConstant(Amt, DL, ShTy));
1453 Hi = DAG.getNode(ISD::OR, DL, NVT,
1454 DAG.getNode(ISD::SHL, DL, NVT, InH,
1455 DAG.getConstant(Amt, DL, ShTy)),
1456 DAG.getNode(ISD::SRL, DL, NVT, InL,
1457 DAG.getConstant(-Amt + NVTBits, DL, ShTy)));
1458 }
1459 return;
1460 }
1461
1462 if (N->getOpcode() == ISD::SRL) {
1463 if (Amt.ugt(VTBits)) {
1464 Lo = Hi = DAG.getConstant(0, DL, NVT);
1465 } else if (Amt.ugt(NVTBits)) {
1466 Lo = DAG.getNode(ISD::SRL, DL,
1467 NVT, InH, DAG.getConstant(Amt - NVTBits, DL, ShTy));
1468 Hi = DAG.getConstant(0, DL, NVT);
1469 } else if (Amt == NVTBits) {
1470 Lo = InH;
1471 Hi = DAG.getConstant(0, DL, NVT);
1472 } else {
1473 Lo = DAG.getNode(ISD::OR, DL, NVT,
1474 DAG.getNode(ISD::SRL, DL, NVT, InL,
1475 DAG.getConstant(Amt, DL, ShTy)),
1476 DAG.getNode(ISD::SHL, DL, NVT, InH,
1477 DAG.getConstant(-Amt + NVTBits, DL, ShTy)));
1478 Hi = DAG.getNode(ISD::SRL, DL, NVT, InH, DAG.getConstant(Amt, DL, ShTy));
1479 }
1480 return;
1481 }
1482
1483 assert(N->getOpcode() == ISD::SRA && "Unknown shift!");
1484 if (Amt.ugt(VTBits)) {
1485 Hi = Lo = DAG.getNode(ISD::SRA, DL, NVT, InH,
1486 DAG.getConstant(NVTBits - 1, DL, ShTy));
1487 } else if (Amt.ugt(NVTBits)) {
1488 Lo = DAG.getNode(ISD::SRA, DL, NVT, InH,
1489 DAG.getConstant(Amt - NVTBits, DL, ShTy));
1490 Hi = DAG.getNode(ISD::SRA, DL, NVT, InH,
1491 DAG.getConstant(NVTBits - 1, DL, ShTy));
1492 } else if (Amt == NVTBits) {
1493 Lo = InH;
1494 Hi = DAG.getNode(ISD::SRA, DL, NVT, InH,
1495 DAG.getConstant(NVTBits - 1, DL, ShTy));
1496 } else {
1497 Lo = DAG.getNode(ISD::OR, DL, NVT,
1498 DAG.getNode(ISD::SRL, DL, NVT, InL,
1499 DAG.getConstant(Amt, DL, ShTy)),
1500 DAG.getNode(ISD::SHL, DL, NVT, InH,
1501 DAG.getConstant(-Amt + NVTBits, DL, ShTy)));
1502 Hi = DAG.getNode(ISD::SRA, DL, NVT, InH, DAG.getConstant(Amt, DL, ShTy));
1503 }
1504 }
1505
1506 /// ExpandShiftWithKnownAmountBit - Try to determine whether we can simplify
1507 /// this shift based on knowledge of the high bit of the shift amount. If we
1508 /// can tell this, we know that it is >= 32 or < 32, without knowing the actual
1509 /// shift amount.
1510 bool DAGTypeLegalizer::
ExpandShiftWithKnownAmountBit(SDNode * N,SDValue & Lo,SDValue & Hi)1511 ExpandShiftWithKnownAmountBit(SDNode *N, SDValue &Lo, SDValue &Hi) {
1512 SDValue Amt = N->getOperand(1);
1513 EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
1514 EVT ShTy = Amt.getValueType();
1515 unsigned ShBits = ShTy.getScalarType().getSizeInBits();
1516 unsigned NVTBits = NVT.getScalarType().getSizeInBits();
1517 assert(isPowerOf2_32(NVTBits) &&
1518 "Expanded integer type size not a power of two!");
1519 SDLoc dl(N);
1520
1521 APInt HighBitMask = APInt::getHighBitsSet(ShBits, ShBits - Log2_32(NVTBits));
1522 APInt KnownZero, KnownOne;
1523 DAG.computeKnownBits(N->getOperand(1), KnownZero, KnownOne);
1524
1525 // If we don't know anything about the high bits, exit.
1526 if (((KnownZero|KnownOne) & HighBitMask) == 0)
1527 return false;
1528
1529 // Get the incoming operand to be shifted.
1530 SDValue InL, InH;
1531 GetExpandedInteger(N->getOperand(0), InL, InH);
1532
1533 // If we know that any of the high bits of the shift amount are one, then we
1534 // can do this as a couple of simple shifts.
1535 if (KnownOne.intersects(HighBitMask)) {
1536 // Mask out the high bit, which we know is set.
1537 Amt = DAG.getNode(ISD::AND, dl, ShTy, Amt,
1538 DAG.getConstant(~HighBitMask, dl, ShTy));
1539
1540 switch (N->getOpcode()) {
1541 default: llvm_unreachable("Unknown shift");
1542 case ISD::SHL:
1543 Lo = DAG.getConstant(0, dl, NVT); // Low part is zero.
1544 Hi = DAG.getNode(ISD::SHL, dl, NVT, InL, Amt); // High part from Lo part.
1545 return true;
1546 case ISD::SRL:
1547 Hi = DAG.getConstant(0, dl, NVT); // Hi part is zero.
1548 Lo = DAG.getNode(ISD::SRL, dl, NVT, InH, Amt); // Lo part from Hi part.
1549 return true;
1550 case ISD::SRA:
1551 Hi = DAG.getNode(ISD::SRA, dl, NVT, InH, // Sign extend high part.
1552 DAG.getConstant(NVTBits - 1, dl, ShTy));
1553 Lo = DAG.getNode(ISD::SRA, dl, NVT, InH, Amt); // Lo part from Hi part.
1554 return true;
1555 }
1556 }
1557
1558 // If we know that all of the high bits of the shift amount are zero, then we
1559 // can do this as a couple of simple shifts.
1560 if ((KnownZero & HighBitMask) == HighBitMask) {
1561 // Calculate 31-x. 31 is used instead of 32 to avoid creating an undefined
1562 // shift if x is zero. We can use XOR here because x is known to be smaller
1563 // than 32.
1564 SDValue Amt2 = DAG.getNode(ISD::XOR, dl, ShTy, Amt,
1565 DAG.getConstant(NVTBits - 1, dl, ShTy));
1566
1567 unsigned Op1, Op2;
1568 switch (N->getOpcode()) {
1569 default: llvm_unreachable("Unknown shift");
1570 case ISD::SHL: Op1 = ISD::SHL; Op2 = ISD::SRL; break;
1571 case ISD::SRL:
1572 case ISD::SRA: Op1 = ISD::SRL; Op2 = ISD::SHL; break;
1573 }
1574
1575 // When shifting right the arithmetic for Lo and Hi is swapped.
1576 if (N->getOpcode() != ISD::SHL)
1577 std::swap(InL, InH);
1578
1579 // Use a little trick to get the bits that move from Lo to Hi. First
1580 // shift by one bit.
1581 SDValue Sh1 = DAG.getNode(Op2, dl, NVT, InL, DAG.getConstant(1, dl, ShTy));
1582 // Then compute the remaining shift with amount-1.
1583 SDValue Sh2 = DAG.getNode(Op2, dl, NVT, Sh1, Amt2);
1584
1585 Lo = DAG.getNode(N->getOpcode(), dl, NVT, InL, Amt);
1586 Hi = DAG.getNode(ISD::OR, dl, NVT, DAG.getNode(Op1, dl, NVT, InH, Amt),Sh2);
1587
1588 if (N->getOpcode() != ISD::SHL)
1589 std::swap(Hi, Lo);
1590 return true;
1591 }
1592
1593 return false;
1594 }
1595
1596 /// ExpandShiftWithUnknownAmountBit - Fully general expansion of integer shift
1597 /// of any size.
1598 bool DAGTypeLegalizer::
ExpandShiftWithUnknownAmountBit(SDNode * N,SDValue & Lo,SDValue & Hi)1599 ExpandShiftWithUnknownAmountBit(SDNode *N, SDValue &Lo, SDValue &Hi) {
1600 SDValue Amt = N->getOperand(1);
1601 EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
1602 EVT ShTy = Amt.getValueType();
1603 unsigned NVTBits = NVT.getSizeInBits();
1604 assert(isPowerOf2_32(NVTBits) &&
1605 "Expanded integer type size not a power of two!");
1606 SDLoc dl(N);
1607
1608 // Get the incoming operand to be shifted.
1609 SDValue InL, InH;
1610 GetExpandedInteger(N->getOperand(0), InL, InH);
1611
1612 SDValue NVBitsNode = DAG.getConstant(NVTBits, dl, ShTy);
1613 SDValue AmtExcess = DAG.getNode(ISD::SUB, dl, ShTy, Amt, NVBitsNode);
1614 SDValue AmtLack = DAG.getNode(ISD::SUB, dl, ShTy, NVBitsNode, Amt);
1615 SDValue isShort = DAG.getSetCC(dl, getSetCCResultType(ShTy),
1616 Amt, NVBitsNode, ISD::SETULT);
1617 SDValue isZero = DAG.getSetCC(dl, getSetCCResultType(ShTy),
1618 Amt, DAG.getConstant(0, dl, ShTy),
1619 ISD::SETEQ);
1620
1621 SDValue LoS, HiS, LoL, HiL;
1622 switch (N->getOpcode()) {
1623 default: llvm_unreachable("Unknown shift");
1624 case ISD::SHL:
1625 // Short: ShAmt < NVTBits
1626 LoS = DAG.getNode(ISD::SHL, dl, NVT, InL, Amt);
1627 HiS = DAG.getNode(ISD::OR, dl, NVT,
1628 DAG.getNode(ISD::SHL, dl, NVT, InH, Amt),
1629 DAG.getNode(ISD::SRL, dl, NVT, InL, AmtLack));
1630
1631 // Long: ShAmt >= NVTBits
1632 LoL = DAG.getConstant(0, dl, NVT); // Lo part is zero.
1633 HiL = DAG.getNode(ISD::SHL, dl, NVT, InL, AmtExcess); // Hi from Lo part.
1634
1635 Lo = DAG.getSelect(dl, NVT, isShort, LoS, LoL);
1636 Hi = DAG.getSelect(dl, NVT, isZero, InH,
1637 DAG.getSelect(dl, NVT, isShort, HiS, HiL));
1638 return true;
1639 case ISD::SRL:
1640 // Short: ShAmt < NVTBits
1641 HiS = DAG.getNode(ISD::SRL, dl, NVT, InH, Amt);
1642 LoS = DAG.getNode(ISD::OR, dl, NVT,
1643 DAG.getNode(ISD::SRL, dl, NVT, InL, Amt),
1644 // FIXME: If Amt is zero, the following shift generates an undefined result
1645 // on some architectures.
1646 DAG.getNode(ISD::SHL, dl, NVT, InH, AmtLack));
1647
1648 // Long: ShAmt >= NVTBits
1649 HiL = DAG.getConstant(0, dl, NVT); // Hi part is zero.
1650 LoL = DAG.getNode(ISD::SRL, dl, NVT, InH, AmtExcess); // Lo from Hi part.
1651
1652 Lo = DAG.getSelect(dl, NVT, isZero, InL,
1653 DAG.getSelect(dl, NVT, isShort, LoS, LoL));
1654 Hi = DAG.getSelect(dl, NVT, isShort, HiS, HiL);
1655 return true;
1656 case ISD::SRA:
1657 // Short: ShAmt < NVTBits
1658 HiS = DAG.getNode(ISD::SRA, dl, NVT, InH, Amt);
1659 LoS = DAG.getNode(ISD::OR, dl, NVT,
1660 DAG.getNode(ISD::SRL, dl, NVT, InL, Amt),
1661 DAG.getNode(ISD::SHL, dl, NVT, InH, AmtLack));
1662
1663 // Long: ShAmt >= NVTBits
1664 HiL = DAG.getNode(ISD::SRA, dl, NVT, InH, // Sign of Hi part.
1665 DAG.getConstant(NVTBits - 1, dl, ShTy));
1666 LoL = DAG.getNode(ISD::SRA, dl, NVT, InH, AmtExcess); // Lo from Hi part.
1667
1668 Lo = DAG.getSelect(dl, NVT, isZero, InL,
1669 DAG.getSelect(dl, NVT, isShort, LoS, LoL));
1670 Hi = DAG.getSelect(dl, NVT, isShort, HiS, HiL);
1671 return true;
1672 }
1673 }
1674
ExpandIntRes_ADDSUB(SDNode * N,SDValue & Lo,SDValue & Hi)1675 void DAGTypeLegalizer::ExpandIntRes_ADDSUB(SDNode *N,
1676 SDValue &Lo, SDValue &Hi) {
1677 SDLoc dl(N);
1678 // Expand the subcomponents.
1679 SDValue LHSL, LHSH, RHSL, RHSH;
1680 GetExpandedInteger(N->getOperand(0), LHSL, LHSH);
1681 GetExpandedInteger(N->getOperand(1), RHSL, RHSH);
1682
1683 EVT NVT = LHSL.getValueType();
1684 SDValue LoOps[2] = { LHSL, RHSL };
1685 SDValue HiOps[3] = { LHSH, RHSH };
1686
1687 // Do not generate ADDC/ADDE or SUBC/SUBE if the target does not support
1688 // them. TODO: Teach operation legalization how to expand unsupported
1689 // ADDC/ADDE/SUBC/SUBE. The problem is that these operations generate
1690 // a carry of type MVT::Glue, but there doesn't seem to be any way to
1691 // generate a value of this type in the expanded code sequence.
1692 bool hasCarry =
1693 TLI.isOperationLegalOrCustom(N->getOpcode() == ISD::ADD ?
1694 ISD::ADDC : ISD::SUBC,
1695 TLI.getTypeToExpandTo(*DAG.getContext(), NVT));
1696
1697 if (hasCarry) {
1698 SDVTList VTList = DAG.getVTList(NVT, MVT::Glue);
1699 if (N->getOpcode() == ISD::ADD) {
1700 Lo = DAG.getNode(ISD::ADDC, dl, VTList, LoOps);
1701 HiOps[2] = Lo.getValue(1);
1702 Hi = DAG.getNode(ISD::ADDE, dl, VTList, HiOps);
1703 } else {
1704 Lo = DAG.getNode(ISD::SUBC, dl, VTList, LoOps);
1705 HiOps[2] = Lo.getValue(1);
1706 Hi = DAG.getNode(ISD::SUBE, dl, VTList, HiOps);
1707 }
1708 return;
1709 }
1710
1711 bool hasOVF =
1712 TLI.isOperationLegalOrCustom(N->getOpcode() == ISD::ADD ?
1713 ISD::UADDO : ISD::USUBO,
1714 TLI.getTypeToExpandTo(*DAG.getContext(), NVT));
1715 if (hasOVF) {
1716 SDVTList VTList = DAG.getVTList(NVT, NVT);
1717 TargetLoweringBase::BooleanContent BoolType = TLI.getBooleanContents(NVT);
1718 int RevOpc;
1719 if (N->getOpcode() == ISD::ADD) {
1720 RevOpc = ISD::SUB;
1721 Lo = DAG.getNode(ISD::UADDO, dl, VTList, LoOps);
1722 Hi = DAG.getNode(ISD::ADD, dl, NVT, makeArrayRef(HiOps, 2));
1723 } else {
1724 RevOpc = ISD::ADD;
1725 Lo = DAG.getNode(ISD::USUBO, dl, VTList, LoOps);
1726 Hi = DAG.getNode(ISD::SUB, dl, NVT, makeArrayRef(HiOps, 2));
1727 }
1728 SDValue OVF = Lo.getValue(1);
1729
1730 switch (BoolType) {
1731 case TargetLoweringBase::UndefinedBooleanContent:
1732 OVF = DAG.getNode(ISD::AND, dl, NVT, DAG.getConstant(1, dl, NVT), OVF);
1733 // Fallthrough
1734 case TargetLoweringBase::ZeroOrOneBooleanContent:
1735 Hi = DAG.getNode(N->getOpcode(), dl, NVT, Hi, OVF);
1736 break;
1737 case TargetLoweringBase::ZeroOrNegativeOneBooleanContent:
1738 Hi = DAG.getNode(RevOpc, dl, NVT, Hi, OVF);
1739 }
1740 return;
1741 }
1742
1743 if (N->getOpcode() == ISD::ADD) {
1744 Lo = DAG.getNode(ISD::ADD, dl, NVT, LoOps);
1745 Hi = DAG.getNode(ISD::ADD, dl, NVT, makeArrayRef(HiOps, 2));
1746 SDValue Cmp1 = DAG.getSetCC(dl, getSetCCResultType(NVT), Lo, LoOps[0],
1747 ISD::SETULT);
1748 SDValue Carry1 = DAG.getSelect(dl, NVT, Cmp1,
1749 DAG.getConstant(1, dl, NVT),
1750 DAG.getConstant(0, dl, NVT));
1751 SDValue Cmp2 = DAG.getSetCC(dl, getSetCCResultType(NVT), Lo, LoOps[1],
1752 ISD::SETULT);
1753 SDValue Carry2 = DAG.getSelect(dl, NVT, Cmp2,
1754 DAG.getConstant(1, dl, NVT), Carry1);
1755 Hi = DAG.getNode(ISD::ADD, dl, NVT, Hi, Carry2);
1756 } else {
1757 Lo = DAG.getNode(ISD::SUB, dl, NVT, LoOps);
1758 Hi = DAG.getNode(ISD::SUB, dl, NVT, makeArrayRef(HiOps, 2));
1759 SDValue Cmp =
1760 DAG.getSetCC(dl, getSetCCResultType(LoOps[0].getValueType()),
1761 LoOps[0], LoOps[1], ISD::SETULT);
1762 SDValue Borrow = DAG.getSelect(dl, NVT, Cmp,
1763 DAG.getConstant(1, dl, NVT),
1764 DAG.getConstant(0, dl, NVT));
1765 Hi = DAG.getNode(ISD::SUB, dl, NVT, Hi, Borrow);
1766 }
1767 }
1768
ExpandIntRes_ADDSUBC(SDNode * N,SDValue & Lo,SDValue & Hi)1769 void DAGTypeLegalizer::ExpandIntRes_ADDSUBC(SDNode *N,
1770 SDValue &Lo, SDValue &Hi) {
1771 // Expand the subcomponents.
1772 SDValue LHSL, LHSH, RHSL, RHSH;
1773 SDLoc dl(N);
1774 GetExpandedInteger(N->getOperand(0), LHSL, LHSH);
1775 GetExpandedInteger(N->getOperand(1), RHSL, RHSH);
1776 SDVTList VTList = DAG.getVTList(LHSL.getValueType(), MVT::Glue);
1777 SDValue LoOps[2] = { LHSL, RHSL };
1778 SDValue HiOps[3] = { LHSH, RHSH };
1779
1780 if (N->getOpcode() == ISD::ADDC) {
1781 Lo = DAG.getNode(ISD::ADDC, dl, VTList, LoOps);
1782 HiOps[2] = Lo.getValue(1);
1783 Hi = DAG.getNode(ISD::ADDE, dl, VTList, HiOps);
1784 } else {
1785 Lo = DAG.getNode(ISD::SUBC, dl, VTList, LoOps);
1786 HiOps[2] = Lo.getValue(1);
1787 Hi = DAG.getNode(ISD::SUBE, dl, VTList, HiOps);
1788 }
1789
1790 // Legalized the flag result - switch anything that used the old flag to
1791 // use the new one.
1792 ReplaceValueWith(SDValue(N, 1), Hi.getValue(1));
1793 }
1794
ExpandIntRes_ADDSUBE(SDNode * N,SDValue & Lo,SDValue & Hi)1795 void DAGTypeLegalizer::ExpandIntRes_ADDSUBE(SDNode *N,
1796 SDValue &Lo, SDValue &Hi) {
1797 // Expand the subcomponents.
1798 SDValue LHSL, LHSH, RHSL, RHSH;
1799 SDLoc dl(N);
1800 GetExpandedInteger(N->getOperand(0), LHSL, LHSH);
1801 GetExpandedInteger(N->getOperand(1), RHSL, RHSH);
1802 SDVTList VTList = DAG.getVTList(LHSL.getValueType(), MVT::Glue);
1803 SDValue LoOps[3] = { LHSL, RHSL, N->getOperand(2) };
1804 SDValue HiOps[3] = { LHSH, RHSH };
1805
1806 Lo = DAG.getNode(N->getOpcode(), dl, VTList, LoOps);
1807 HiOps[2] = Lo.getValue(1);
1808 Hi = DAG.getNode(N->getOpcode(), dl, VTList, HiOps);
1809
1810 // Legalized the flag result - switch anything that used the old flag to
1811 // use the new one.
1812 ReplaceValueWith(SDValue(N, 1), Hi.getValue(1));
1813 }
1814
ExpandIntRes_ANY_EXTEND(SDNode * N,SDValue & Lo,SDValue & Hi)1815 void DAGTypeLegalizer::ExpandIntRes_ANY_EXTEND(SDNode *N,
1816 SDValue &Lo, SDValue &Hi) {
1817 EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
1818 SDLoc dl(N);
1819 SDValue Op = N->getOperand(0);
1820 if (Op.getValueType().bitsLE(NVT)) {
1821 // The low part is any extension of the input (which degenerates to a copy).
1822 Lo = DAG.getNode(ISD::ANY_EXTEND, dl, NVT, Op);
1823 Hi = DAG.getUNDEF(NVT); // The high part is undefined.
1824 } else {
1825 // For example, extension of an i48 to an i64. The operand type necessarily
1826 // promotes to the result type, so will end up being expanded too.
1827 assert(getTypeAction(Op.getValueType()) ==
1828 TargetLowering::TypePromoteInteger &&
1829 "Only know how to promote this result!");
1830 SDValue Res = GetPromotedInteger(Op);
1831 assert(Res.getValueType() == N->getValueType(0) &&
1832 "Operand over promoted?");
1833 // Split the promoted operand. This will simplify when it is expanded.
1834 SplitInteger(Res, Lo, Hi);
1835 }
1836 }
1837
ExpandIntRes_AssertSext(SDNode * N,SDValue & Lo,SDValue & Hi)1838 void DAGTypeLegalizer::ExpandIntRes_AssertSext(SDNode *N,
1839 SDValue &Lo, SDValue &Hi) {
1840 SDLoc dl(N);
1841 GetExpandedInteger(N->getOperand(0), Lo, Hi);
1842 EVT NVT = Lo.getValueType();
1843 EVT EVT = cast<VTSDNode>(N->getOperand(1))->getVT();
1844 unsigned NVTBits = NVT.getSizeInBits();
1845 unsigned EVTBits = EVT.getSizeInBits();
1846
1847 if (NVTBits < EVTBits) {
1848 Hi = DAG.getNode(ISD::AssertSext, dl, NVT, Hi,
1849 DAG.getValueType(EVT::getIntegerVT(*DAG.getContext(),
1850 EVTBits - NVTBits)));
1851 } else {
1852 Lo = DAG.getNode(ISD::AssertSext, dl, NVT, Lo, DAG.getValueType(EVT));
1853 // The high part replicates the sign bit of Lo, make it explicit.
1854 Hi = DAG.getNode(ISD::SRA, dl, NVT, Lo,
1855 DAG.getConstant(NVTBits - 1, dl,
1856 TLI.getPointerTy(DAG.getDataLayout())));
1857 }
1858 }
1859
ExpandIntRes_AssertZext(SDNode * N,SDValue & Lo,SDValue & Hi)1860 void DAGTypeLegalizer::ExpandIntRes_AssertZext(SDNode *N,
1861 SDValue &Lo, SDValue &Hi) {
1862 SDLoc dl(N);
1863 GetExpandedInteger(N->getOperand(0), Lo, Hi);
1864 EVT NVT = Lo.getValueType();
1865 EVT EVT = cast<VTSDNode>(N->getOperand(1))->getVT();
1866 unsigned NVTBits = NVT.getSizeInBits();
1867 unsigned EVTBits = EVT.getSizeInBits();
1868
1869 if (NVTBits < EVTBits) {
1870 Hi = DAG.getNode(ISD::AssertZext, dl, NVT, Hi,
1871 DAG.getValueType(EVT::getIntegerVT(*DAG.getContext(),
1872 EVTBits - NVTBits)));
1873 } else {
1874 Lo = DAG.getNode(ISD::AssertZext, dl, NVT, Lo, DAG.getValueType(EVT));
1875 // The high part must be zero, make it explicit.
1876 Hi = DAG.getConstant(0, dl, NVT);
1877 }
1878 }
1879
ExpandIntRes_BITREVERSE(SDNode * N,SDValue & Lo,SDValue & Hi)1880 void DAGTypeLegalizer::ExpandIntRes_BITREVERSE(SDNode *N,
1881 SDValue &Lo, SDValue &Hi) {
1882 SDLoc dl(N);
1883 GetExpandedInteger(N->getOperand(0), Hi, Lo); // Note swapped operands.
1884 Lo = DAG.getNode(ISD::BITREVERSE, dl, Lo.getValueType(), Lo);
1885 Hi = DAG.getNode(ISD::BITREVERSE, dl, Hi.getValueType(), Hi);
1886 }
1887
ExpandIntRes_BSWAP(SDNode * N,SDValue & Lo,SDValue & Hi)1888 void DAGTypeLegalizer::ExpandIntRes_BSWAP(SDNode *N,
1889 SDValue &Lo, SDValue &Hi) {
1890 SDLoc dl(N);
1891 GetExpandedInteger(N->getOperand(0), Hi, Lo); // Note swapped operands.
1892 Lo = DAG.getNode(ISD::BSWAP, dl, Lo.getValueType(), Lo);
1893 Hi = DAG.getNode(ISD::BSWAP, dl, Hi.getValueType(), Hi);
1894 }
1895
ExpandIntRes_Constant(SDNode * N,SDValue & Lo,SDValue & Hi)1896 void DAGTypeLegalizer::ExpandIntRes_Constant(SDNode *N,
1897 SDValue &Lo, SDValue &Hi) {
1898 EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
1899 unsigned NBitWidth = NVT.getSizeInBits();
1900 auto Constant = cast<ConstantSDNode>(N);
1901 const APInt &Cst = Constant->getAPIntValue();
1902 bool IsTarget = Constant->isTargetOpcode();
1903 bool IsOpaque = Constant->isOpaque();
1904 SDLoc dl(N);
1905 Lo = DAG.getConstant(Cst.trunc(NBitWidth), dl, NVT, IsTarget, IsOpaque);
1906 Hi = DAG.getConstant(Cst.lshr(NBitWidth).trunc(NBitWidth), dl, NVT, IsTarget,
1907 IsOpaque);
1908 }
1909
ExpandIntRes_CTLZ(SDNode * N,SDValue & Lo,SDValue & Hi)1910 void DAGTypeLegalizer::ExpandIntRes_CTLZ(SDNode *N,
1911 SDValue &Lo, SDValue &Hi) {
1912 SDLoc dl(N);
1913 // ctlz (HiLo) -> Hi != 0 ? ctlz(Hi) : (ctlz(Lo)+32)
1914 GetExpandedInteger(N->getOperand(0), Lo, Hi);
1915 EVT NVT = Lo.getValueType();
1916
1917 SDValue HiNotZero = DAG.getSetCC(dl, getSetCCResultType(NVT), Hi,
1918 DAG.getConstant(0, dl, NVT), ISD::SETNE);
1919
1920 SDValue LoLZ = DAG.getNode(N->getOpcode(), dl, NVT, Lo);
1921 SDValue HiLZ = DAG.getNode(ISD::CTLZ_ZERO_UNDEF, dl, NVT, Hi);
1922
1923 Lo = DAG.getSelect(dl, NVT, HiNotZero, HiLZ,
1924 DAG.getNode(ISD::ADD, dl, NVT, LoLZ,
1925 DAG.getConstant(NVT.getSizeInBits(), dl,
1926 NVT)));
1927 Hi = DAG.getConstant(0, dl, NVT);
1928 }
1929
ExpandIntRes_CTPOP(SDNode * N,SDValue & Lo,SDValue & Hi)1930 void DAGTypeLegalizer::ExpandIntRes_CTPOP(SDNode *N,
1931 SDValue &Lo, SDValue &Hi) {
1932 SDLoc dl(N);
1933 // ctpop(HiLo) -> ctpop(Hi)+ctpop(Lo)
1934 GetExpandedInteger(N->getOperand(0), Lo, Hi);
1935 EVT NVT = Lo.getValueType();
1936 Lo = DAG.getNode(ISD::ADD, dl, NVT, DAG.getNode(ISD::CTPOP, dl, NVT, Lo),
1937 DAG.getNode(ISD::CTPOP, dl, NVT, Hi));
1938 Hi = DAG.getConstant(0, dl, NVT);
1939 }
1940
ExpandIntRes_CTTZ(SDNode * N,SDValue & Lo,SDValue & Hi)1941 void DAGTypeLegalizer::ExpandIntRes_CTTZ(SDNode *N,
1942 SDValue &Lo, SDValue &Hi) {
1943 SDLoc dl(N);
1944 // cttz (HiLo) -> Lo != 0 ? cttz(Lo) : (cttz(Hi)+32)
1945 GetExpandedInteger(N->getOperand(0), Lo, Hi);
1946 EVT NVT = Lo.getValueType();
1947
1948 SDValue LoNotZero = DAG.getSetCC(dl, getSetCCResultType(NVT), Lo,
1949 DAG.getConstant(0, dl, NVT), ISD::SETNE);
1950
1951 SDValue LoLZ = DAG.getNode(ISD::CTTZ_ZERO_UNDEF, dl, NVT, Lo);
1952 SDValue HiLZ = DAG.getNode(N->getOpcode(), dl, NVT, Hi);
1953
1954 Lo = DAG.getSelect(dl, NVT, LoNotZero, LoLZ,
1955 DAG.getNode(ISD::ADD, dl, NVT, HiLZ,
1956 DAG.getConstant(NVT.getSizeInBits(), dl,
1957 NVT)));
1958 Hi = DAG.getConstant(0, dl, NVT);
1959 }
1960
ExpandIntRes_FP_TO_SINT(SDNode * N,SDValue & Lo,SDValue & Hi)1961 void DAGTypeLegalizer::ExpandIntRes_FP_TO_SINT(SDNode *N, SDValue &Lo,
1962 SDValue &Hi) {
1963 SDLoc dl(N);
1964 EVT VT = N->getValueType(0);
1965
1966 SDValue Op = N->getOperand(0);
1967 if (getTypeAction(Op.getValueType()) == TargetLowering::TypePromoteFloat)
1968 Op = GetPromotedFloat(Op);
1969
1970 RTLIB::Libcall LC = RTLIB::getFPTOSINT(Op.getValueType(), VT);
1971 assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unexpected fp-to-sint conversion!");
1972 SplitInteger(TLI.makeLibCall(DAG, LC, VT, Op, true/*irrelevant*/, dl).first,
1973 Lo, Hi);
1974 }
1975
ExpandIntRes_FP_TO_UINT(SDNode * N,SDValue & Lo,SDValue & Hi)1976 void DAGTypeLegalizer::ExpandIntRes_FP_TO_UINT(SDNode *N, SDValue &Lo,
1977 SDValue &Hi) {
1978 SDLoc dl(N);
1979 EVT VT = N->getValueType(0);
1980
1981 SDValue Op = N->getOperand(0);
1982 if (getTypeAction(Op.getValueType()) == TargetLowering::TypePromoteFloat)
1983 Op = GetPromotedFloat(Op);
1984
1985 RTLIB::Libcall LC = RTLIB::getFPTOUINT(Op.getValueType(), VT);
1986 assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unexpected fp-to-uint conversion!");
1987 SplitInteger(TLI.makeLibCall(DAG, LC, VT, Op, false/*irrelevant*/, dl).first,
1988 Lo, Hi);
1989 }
1990
ExpandIntRes_LOAD(LoadSDNode * N,SDValue & Lo,SDValue & Hi)1991 void DAGTypeLegalizer::ExpandIntRes_LOAD(LoadSDNode *N,
1992 SDValue &Lo, SDValue &Hi) {
1993 if (ISD::isNormalLoad(N)) {
1994 ExpandRes_NormalLoad(N, Lo, Hi);
1995 return;
1996 }
1997
1998 assert(ISD::isUNINDEXEDLoad(N) && "Indexed load during type legalization!");
1999
2000 EVT VT = N->getValueType(0);
2001 EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), VT);
2002 SDValue Ch = N->getChain();
2003 SDValue Ptr = N->getBasePtr();
2004 ISD::LoadExtType ExtType = N->getExtensionType();
2005 unsigned Alignment = N->getAlignment();
2006 bool isVolatile = N->isVolatile();
2007 bool isNonTemporal = N->isNonTemporal();
2008 bool isInvariant = N->isInvariant();
2009 AAMDNodes AAInfo = N->getAAInfo();
2010 SDLoc dl(N);
2011
2012 assert(NVT.isByteSized() && "Expanded type not byte sized!");
2013
2014 if (N->getMemoryVT().bitsLE(NVT)) {
2015 EVT MemVT = N->getMemoryVT();
2016
2017 Lo = DAG.getExtLoad(ExtType, dl, NVT, Ch, Ptr, N->getPointerInfo(),
2018 MemVT, isVolatile, isNonTemporal, isInvariant,
2019 Alignment, AAInfo);
2020
2021 // Remember the chain.
2022 Ch = Lo.getValue(1);
2023
2024 if (ExtType == ISD::SEXTLOAD) {
2025 // The high part is obtained by SRA'ing all but one of the bits of the
2026 // lo part.
2027 unsigned LoSize = Lo.getValueType().getSizeInBits();
2028 Hi = DAG.getNode(ISD::SRA, dl, NVT, Lo,
2029 DAG.getConstant(LoSize - 1, dl,
2030 TLI.getPointerTy(DAG.getDataLayout())));
2031 } else if (ExtType == ISD::ZEXTLOAD) {
2032 // The high part is just a zero.
2033 Hi = DAG.getConstant(0, dl, NVT);
2034 } else {
2035 assert(ExtType == ISD::EXTLOAD && "Unknown extload!");
2036 // The high part is undefined.
2037 Hi = DAG.getUNDEF(NVT);
2038 }
2039 } else if (DAG.getDataLayout().isLittleEndian()) {
2040 // Little-endian - low bits are at low addresses.
2041 Lo = DAG.getLoad(NVT, dl, Ch, Ptr, N->getPointerInfo(),
2042 isVolatile, isNonTemporal, isInvariant, Alignment,
2043 AAInfo);
2044
2045 unsigned ExcessBits =
2046 N->getMemoryVT().getSizeInBits() - NVT.getSizeInBits();
2047 EVT NEVT = EVT::getIntegerVT(*DAG.getContext(), ExcessBits);
2048
2049 // Increment the pointer to the other half.
2050 unsigned IncrementSize = NVT.getSizeInBits()/8;
2051 Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
2052 DAG.getConstant(IncrementSize, dl, Ptr.getValueType()));
2053 Hi = DAG.getExtLoad(ExtType, dl, NVT, Ch, Ptr,
2054 N->getPointerInfo().getWithOffset(IncrementSize), NEVT,
2055 isVolatile, isNonTemporal, isInvariant,
2056 MinAlign(Alignment, IncrementSize), AAInfo);
2057
2058 // Build a factor node to remember that this load is independent of the
2059 // other one.
2060 Ch = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
2061 Hi.getValue(1));
2062 } else {
2063 // Big-endian - high bits are at low addresses. Favor aligned loads at
2064 // the cost of some bit-fiddling.
2065 EVT MemVT = N->getMemoryVT();
2066 unsigned EBytes = MemVT.getStoreSize();
2067 unsigned IncrementSize = NVT.getSizeInBits()/8;
2068 unsigned ExcessBits = (EBytes - IncrementSize)*8;
2069
2070 // Load both the high bits and maybe some of the low bits.
2071 Hi = DAG.getExtLoad(ExtType, dl, NVT, Ch, Ptr, N->getPointerInfo(),
2072 EVT::getIntegerVT(*DAG.getContext(),
2073 MemVT.getSizeInBits() - ExcessBits),
2074 isVolatile, isNonTemporal, isInvariant, Alignment,
2075 AAInfo);
2076
2077 // Increment the pointer to the other half.
2078 Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
2079 DAG.getConstant(IncrementSize, dl, Ptr.getValueType()));
2080 // Load the rest of the low bits.
2081 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, NVT, Ch, Ptr,
2082 N->getPointerInfo().getWithOffset(IncrementSize),
2083 EVT::getIntegerVT(*DAG.getContext(), ExcessBits),
2084 isVolatile, isNonTemporal, isInvariant,
2085 MinAlign(Alignment, IncrementSize), AAInfo);
2086
2087 // Build a factor node to remember that this load is independent of the
2088 // other one.
2089 Ch = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
2090 Hi.getValue(1));
2091
2092 if (ExcessBits < NVT.getSizeInBits()) {
2093 // Transfer low bits from the bottom of Hi to the top of Lo.
2094 Lo = DAG.getNode(
2095 ISD::OR, dl, NVT, Lo,
2096 DAG.getNode(ISD::SHL, dl, NVT, Hi,
2097 DAG.getConstant(ExcessBits, dl,
2098 TLI.getPointerTy(DAG.getDataLayout()))));
2099 // Move high bits to the right position in Hi.
2100 Hi = DAG.getNode(ExtType == ISD::SEXTLOAD ? ISD::SRA : ISD::SRL, dl, NVT,
2101 Hi,
2102 DAG.getConstant(NVT.getSizeInBits() - ExcessBits, dl,
2103 TLI.getPointerTy(DAG.getDataLayout())));
2104 }
2105 }
2106
2107 // Legalize the chain result - switch anything that used the old chain to
2108 // use the new one.
2109 ReplaceValueWith(SDValue(N, 1), Ch);
2110 }
2111
ExpandIntRes_Logical(SDNode * N,SDValue & Lo,SDValue & Hi)2112 void DAGTypeLegalizer::ExpandIntRes_Logical(SDNode *N,
2113 SDValue &Lo, SDValue &Hi) {
2114 SDLoc dl(N);
2115 SDValue LL, LH, RL, RH;
2116 GetExpandedInteger(N->getOperand(0), LL, LH);
2117 GetExpandedInteger(N->getOperand(1), RL, RH);
2118 Lo = DAG.getNode(N->getOpcode(), dl, LL.getValueType(), LL, RL);
2119 Hi = DAG.getNode(N->getOpcode(), dl, LL.getValueType(), LH, RH);
2120 }
2121
ExpandIntRes_MUL(SDNode * N,SDValue & Lo,SDValue & Hi)2122 void DAGTypeLegalizer::ExpandIntRes_MUL(SDNode *N,
2123 SDValue &Lo, SDValue &Hi) {
2124 EVT VT = N->getValueType(0);
2125 EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), VT);
2126 SDLoc dl(N);
2127
2128 SDValue LL, LH, RL, RH;
2129 GetExpandedInteger(N->getOperand(0), LL, LH);
2130 GetExpandedInteger(N->getOperand(1), RL, RH);
2131
2132 if (TLI.expandMUL(N, Lo, Hi, NVT, DAG, LL, LH, RL, RH))
2133 return;
2134
2135 // If nothing else, we can make a libcall.
2136 RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL;
2137 if (VT == MVT::i16)
2138 LC = RTLIB::MUL_I16;
2139 else if (VT == MVT::i32)
2140 LC = RTLIB::MUL_I32;
2141 else if (VT == MVT::i64)
2142 LC = RTLIB::MUL_I64;
2143 else if (VT == MVT::i128)
2144 LC = RTLIB::MUL_I128;
2145 assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unsupported MUL!");
2146
2147 SDValue Ops[2] = { N->getOperand(0), N->getOperand(1) };
2148 SplitInteger(TLI.makeLibCall(DAG, LC, VT, Ops, true/*irrelevant*/, dl).first,
2149 Lo, Hi);
2150 }
2151
ExpandIntRes_READCYCLECOUNTER(SDNode * N,SDValue & Lo,SDValue & Hi)2152 void DAGTypeLegalizer::ExpandIntRes_READCYCLECOUNTER(SDNode *N, SDValue &Lo,
2153 SDValue &Hi) {
2154 SDLoc DL(N);
2155 EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
2156 SDVTList VTs = DAG.getVTList(NVT, NVT, MVT::Other);
2157 SDValue R = DAG.getNode(N->getOpcode(), DL, VTs, N->getOperand(0));
2158 Lo = R.getValue(0);
2159 Hi = R.getValue(1);
2160 ReplaceValueWith(SDValue(N, 1), R.getValue(2));
2161 }
2162
ExpandIntRes_SADDSUBO(SDNode * Node,SDValue & Lo,SDValue & Hi)2163 void DAGTypeLegalizer::ExpandIntRes_SADDSUBO(SDNode *Node,
2164 SDValue &Lo, SDValue &Hi) {
2165 SDValue LHS = Node->getOperand(0);
2166 SDValue RHS = Node->getOperand(1);
2167 SDLoc dl(Node);
2168
2169 // Expand the result by simply replacing it with the equivalent
2170 // non-overflow-checking operation.
2171 SDValue Sum = DAG.getNode(Node->getOpcode() == ISD::SADDO ?
2172 ISD::ADD : ISD::SUB, dl, LHS.getValueType(),
2173 LHS, RHS);
2174 SplitInteger(Sum, Lo, Hi);
2175
2176 // Compute the overflow.
2177 //
2178 // LHSSign -> LHS >= 0
2179 // RHSSign -> RHS >= 0
2180 // SumSign -> Sum >= 0
2181 //
2182 // Add:
2183 // Overflow -> (LHSSign == RHSSign) && (LHSSign != SumSign)
2184 // Sub:
2185 // Overflow -> (LHSSign != RHSSign) && (LHSSign != SumSign)
2186 //
2187 EVT OType = Node->getValueType(1);
2188 SDValue Zero = DAG.getConstant(0, dl, LHS.getValueType());
2189
2190 SDValue LHSSign = DAG.getSetCC(dl, OType, LHS, Zero, ISD::SETGE);
2191 SDValue RHSSign = DAG.getSetCC(dl, OType, RHS, Zero, ISD::SETGE);
2192 SDValue SignsMatch = DAG.getSetCC(dl, OType, LHSSign, RHSSign,
2193 Node->getOpcode() == ISD::SADDO ?
2194 ISD::SETEQ : ISD::SETNE);
2195
2196 SDValue SumSign = DAG.getSetCC(dl, OType, Sum, Zero, ISD::SETGE);
2197 SDValue SumSignNE = DAG.getSetCC(dl, OType, LHSSign, SumSign, ISD::SETNE);
2198
2199 SDValue Cmp = DAG.getNode(ISD::AND, dl, OType, SignsMatch, SumSignNE);
2200
2201 // Use the calculated overflow everywhere.
2202 ReplaceValueWith(SDValue(Node, 1), Cmp);
2203 }
2204
ExpandIntRes_SDIV(SDNode * N,SDValue & Lo,SDValue & Hi)2205 void DAGTypeLegalizer::ExpandIntRes_SDIV(SDNode *N,
2206 SDValue &Lo, SDValue &Hi) {
2207 EVT VT = N->getValueType(0);
2208 SDLoc dl(N);
2209 SDValue Ops[2] = { N->getOperand(0), N->getOperand(1) };
2210
2211 if (TLI.getOperationAction(ISD::SDIVREM, VT) == TargetLowering::Custom) {
2212 SDValue Res = DAG.getNode(ISD::SDIVREM, dl, DAG.getVTList(VT, VT), Ops);
2213 SplitInteger(Res.getValue(0), Lo, Hi);
2214 return;
2215 }
2216
2217 RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL;
2218 if (VT == MVT::i16)
2219 LC = RTLIB::SDIV_I16;
2220 else if (VT == MVT::i32)
2221 LC = RTLIB::SDIV_I32;
2222 else if (VT == MVT::i64)
2223 LC = RTLIB::SDIV_I64;
2224 else if (VT == MVT::i128)
2225 LC = RTLIB::SDIV_I128;
2226 assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unsupported SDIV!");
2227
2228 SplitInteger(TLI.makeLibCall(DAG, LC, VT, Ops, true, dl).first, Lo, Hi);
2229 }
2230
ExpandIntRes_Shift(SDNode * N,SDValue & Lo,SDValue & Hi)2231 void DAGTypeLegalizer::ExpandIntRes_Shift(SDNode *N,
2232 SDValue &Lo, SDValue &Hi) {
2233 EVT VT = N->getValueType(0);
2234 SDLoc dl(N);
2235
2236 // If we can emit an efficient shift operation, do so now. Check to see if
2237 // the RHS is a constant.
2238 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N->getOperand(1)))
2239 return ExpandShiftByConstant(N, CN->getAPIntValue(), Lo, Hi);
2240
2241 // If we can determine that the high bit of the shift is zero or one, even if
2242 // the low bits are variable, emit this shift in an optimized form.
2243 if (ExpandShiftWithKnownAmountBit(N, Lo, Hi))
2244 return;
2245
2246 // If this target supports shift_PARTS, use it. First, map to the _PARTS opc.
2247 unsigned PartsOpc;
2248 if (N->getOpcode() == ISD::SHL) {
2249 PartsOpc = ISD::SHL_PARTS;
2250 } else if (N->getOpcode() == ISD::SRL) {
2251 PartsOpc = ISD::SRL_PARTS;
2252 } else {
2253 assert(N->getOpcode() == ISD::SRA && "Unknown shift!");
2254 PartsOpc = ISD::SRA_PARTS;
2255 }
2256
2257 // Next check to see if the target supports this SHL_PARTS operation or if it
2258 // will custom expand it.
2259 EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), VT);
2260 TargetLowering::LegalizeAction Action = TLI.getOperationAction(PartsOpc, NVT);
2261 if ((Action == TargetLowering::Legal && TLI.isTypeLegal(NVT)) ||
2262 Action == TargetLowering::Custom) {
2263 // Expand the subcomponents.
2264 SDValue LHSL, LHSH;
2265 GetExpandedInteger(N->getOperand(0), LHSL, LHSH);
2266 EVT VT = LHSL.getValueType();
2267
2268 // If the shift amount operand is coming from a vector legalization it may
2269 // have an illegal type. Fix that first by casting the operand, otherwise
2270 // the new SHL_PARTS operation would need further legalization.
2271 SDValue ShiftOp = N->getOperand(1);
2272 EVT ShiftTy = TLI.getShiftAmountTy(VT, DAG.getDataLayout());
2273 assert(ShiftTy.getScalarType().getSizeInBits() >=
2274 Log2_32_Ceil(VT.getScalarType().getSizeInBits()) &&
2275 "ShiftAmountTy is too small to cover the range of this type!");
2276 if (ShiftOp.getValueType() != ShiftTy)
2277 ShiftOp = DAG.getZExtOrTrunc(ShiftOp, dl, ShiftTy);
2278
2279 SDValue Ops[] = { LHSL, LHSH, ShiftOp };
2280 Lo = DAG.getNode(PartsOpc, dl, DAG.getVTList(VT, VT), Ops);
2281 Hi = Lo.getValue(1);
2282 return;
2283 }
2284
2285 // Otherwise, emit a libcall.
2286 RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL;
2287 bool isSigned;
2288 if (N->getOpcode() == ISD::SHL) {
2289 isSigned = false; /*sign irrelevant*/
2290 if (VT == MVT::i16)
2291 LC = RTLIB::SHL_I16;
2292 else if (VT == MVT::i32)
2293 LC = RTLIB::SHL_I32;
2294 else if (VT == MVT::i64)
2295 LC = RTLIB::SHL_I64;
2296 else if (VT == MVT::i128)
2297 LC = RTLIB::SHL_I128;
2298 } else if (N->getOpcode() == ISD::SRL) {
2299 isSigned = false;
2300 if (VT == MVT::i16)
2301 LC = RTLIB::SRL_I16;
2302 else if (VT == MVT::i32)
2303 LC = RTLIB::SRL_I32;
2304 else if (VT == MVT::i64)
2305 LC = RTLIB::SRL_I64;
2306 else if (VT == MVT::i128)
2307 LC = RTLIB::SRL_I128;
2308 } else {
2309 assert(N->getOpcode() == ISD::SRA && "Unknown shift!");
2310 isSigned = true;
2311 if (VT == MVT::i16)
2312 LC = RTLIB::SRA_I16;
2313 else if (VT == MVT::i32)
2314 LC = RTLIB::SRA_I32;
2315 else if (VT == MVT::i64)
2316 LC = RTLIB::SRA_I64;
2317 else if (VT == MVT::i128)
2318 LC = RTLIB::SRA_I128;
2319 }
2320
2321 if (LC != RTLIB::UNKNOWN_LIBCALL && TLI.getLibcallName(LC)) {
2322 SDValue Ops[2] = { N->getOperand(0), N->getOperand(1) };
2323 SplitInteger(TLI.makeLibCall(DAG, LC, VT, Ops, isSigned, dl).first, Lo, Hi);
2324 return;
2325 }
2326
2327 if (!ExpandShiftWithUnknownAmountBit(N, Lo, Hi))
2328 llvm_unreachable("Unsupported shift!");
2329 }
2330
ExpandIntRes_SIGN_EXTEND(SDNode * N,SDValue & Lo,SDValue & Hi)2331 void DAGTypeLegalizer::ExpandIntRes_SIGN_EXTEND(SDNode *N,
2332 SDValue &Lo, SDValue &Hi) {
2333 EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
2334 SDLoc dl(N);
2335 SDValue Op = N->getOperand(0);
2336 if (Op.getValueType().bitsLE(NVT)) {
2337 // The low part is sign extension of the input (degenerates to a copy).
2338 Lo = DAG.getNode(ISD::SIGN_EXTEND, dl, NVT, N->getOperand(0));
2339 // The high part is obtained by SRA'ing all but one of the bits of low part.
2340 unsigned LoSize = NVT.getSizeInBits();
2341 Hi = DAG.getNode(
2342 ISD::SRA, dl, NVT, Lo,
2343 DAG.getConstant(LoSize - 1, dl, TLI.getPointerTy(DAG.getDataLayout())));
2344 } else {
2345 // For example, extension of an i48 to an i64. The operand type necessarily
2346 // promotes to the result type, so will end up being expanded too.
2347 assert(getTypeAction(Op.getValueType()) ==
2348 TargetLowering::TypePromoteInteger &&
2349 "Only know how to promote this result!");
2350 SDValue Res = GetPromotedInteger(Op);
2351 assert(Res.getValueType() == N->getValueType(0) &&
2352 "Operand over promoted?");
2353 // Split the promoted operand. This will simplify when it is expanded.
2354 SplitInteger(Res, Lo, Hi);
2355 unsigned ExcessBits =
2356 Op.getValueType().getSizeInBits() - NVT.getSizeInBits();
2357 Hi = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, Hi.getValueType(), Hi,
2358 DAG.getValueType(EVT::getIntegerVT(*DAG.getContext(),
2359 ExcessBits)));
2360 }
2361 }
2362
2363 void DAGTypeLegalizer::
ExpandIntRes_SIGN_EXTEND_INREG(SDNode * N,SDValue & Lo,SDValue & Hi)2364 ExpandIntRes_SIGN_EXTEND_INREG(SDNode *N, SDValue &Lo, SDValue &Hi) {
2365 SDLoc dl(N);
2366 GetExpandedInteger(N->getOperand(0), Lo, Hi);
2367 EVT EVT = cast<VTSDNode>(N->getOperand(1))->getVT();
2368
2369 if (EVT.bitsLE(Lo.getValueType())) {
2370 // sext_inreg the low part if needed.
2371 Lo = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, Lo.getValueType(), Lo,
2372 N->getOperand(1));
2373
2374 // The high part gets the sign extension from the lo-part. This handles
2375 // things like sextinreg V:i64 from i8.
2376 Hi = DAG.getNode(ISD::SRA, dl, Hi.getValueType(), Lo,
2377 DAG.getConstant(Hi.getValueType().getSizeInBits() - 1, dl,
2378 TLI.getPointerTy(DAG.getDataLayout())));
2379 } else {
2380 // For example, extension of an i48 to an i64. Leave the low part alone,
2381 // sext_inreg the high part.
2382 unsigned ExcessBits =
2383 EVT.getSizeInBits() - Lo.getValueType().getSizeInBits();
2384 Hi = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, Hi.getValueType(), Hi,
2385 DAG.getValueType(EVT::getIntegerVT(*DAG.getContext(),
2386 ExcessBits)));
2387 }
2388 }
2389
ExpandIntRes_SREM(SDNode * N,SDValue & Lo,SDValue & Hi)2390 void DAGTypeLegalizer::ExpandIntRes_SREM(SDNode *N,
2391 SDValue &Lo, SDValue &Hi) {
2392 EVT VT = N->getValueType(0);
2393 SDLoc dl(N);
2394 SDValue Ops[2] = { N->getOperand(0), N->getOperand(1) };
2395
2396 if (TLI.getOperationAction(ISD::SDIVREM, VT) == TargetLowering::Custom) {
2397 SDValue Res = DAG.getNode(ISD::SDIVREM, dl, DAG.getVTList(VT, VT), Ops);
2398 SplitInteger(Res.getValue(1), Lo, Hi);
2399 return;
2400 }
2401
2402 RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL;
2403 if (VT == MVT::i16)
2404 LC = RTLIB::SREM_I16;
2405 else if (VT == MVT::i32)
2406 LC = RTLIB::SREM_I32;
2407 else if (VT == MVT::i64)
2408 LC = RTLIB::SREM_I64;
2409 else if (VT == MVT::i128)
2410 LC = RTLIB::SREM_I128;
2411 assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unsupported SREM!");
2412
2413 SplitInteger(TLI.makeLibCall(DAG, LC, VT, Ops, true, dl).first, Lo, Hi);
2414 }
2415
ExpandIntRes_TRUNCATE(SDNode * N,SDValue & Lo,SDValue & Hi)2416 void DAGTypeLegalizer::ExpandIntRes_TRUNCATE(SDNode *N,
2417 SDValue &Lo, SDValue &Hi) {
2418 EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
2419 SDLoc dl(N);
2420 Lo = DAG.getNode(ISD::TRUNCATE, dl, NVT, N->getOperand(0));
2421 Hi = DAG.getNode(ISD::SRL, dl, N->getOperand(0).getValueType(),
2422 N->getOperand(0),
2423 DAG.getConstant(NVT.getSizeInBits(), dl,
2424 TLI.getPointerTy(DAG.getDataLayout())));
2425 Hi = DAG.getNode(ISD::TRUNCATE, dl, NVT, Hi);
2426 }
2427
ExpandIntRes_UADDSUBO(SDNode * N,SDValue & Lo,SDValue & Hi)2428 void DAGTypeLegalizer::ExpandIntRes_UADDSUBO(SDNode *N,
2429 SDValue &Lo, SDValue &Hi) {
2430 SDValue LHS = N->getOperand(0);
2431 SDValue RHS = N->getOperand(1);
2432 SDLoc dl(N);
2433
2434 // Expand the result by simply replacing it with the equivalent
2435 // non-overflow-checking operation.
2436 SDValue Sum = DAG.getNode(N->getOpcode() == ISD::UADDO ?
2437 ISD::ADD : ISD::SUB, dl, LHS.getValueType(),
2438 LHS, RHS);
2439 SplitInteger(Sum, Lo, Hi);
2440
2441 // Calculate the overflow: addition overflows iff a + b < a, and subtraction
2442 // overflows iff a - b > a.
2443 SDValue Ofl = DAG.getSetCC(dl, N->getValueType(1), Sum, LHS,
2444 N->getOpcode () == ISD::UADDO ?
2445 ISD::SETULT : ISD::SETUGT);
2446
2447 // Use the calculated overflow everywhere.
2448 ReplaceValueWith(SDValue(N, 1), Ofl);
2449 }
2450
ExpandIntRes_XMULO(SDNode * N,SDValue & Lo,SDValue & Hi)2451 void DAGTypeLegalizer::ExpandIntRes_XMULO(SDNode *N,
2452 SDValue &Lo, SDValue &Hi) {
2453 EVT VT = N->getValueType(0);
2454 SDLoc dl(N);
2455
2456 // A divide for UMULO should be faster than a function call.
2457 if (N->getOpcode() == ISD::UMULO) {
2458 SDValue LHS = N->getOperand(0), RHS = N->getOperand(1);
2459
2460 SDValue MUL = DAG.getNode(ISD::MUL, dl, LHS.getValueType(), LHS, RHS);
2461 SplitInteger(MUL, Lo, Hi);
2462
2463 // A divide for UMULO will be faster than a function call. Select to
2464 // make sure we aren't using 0.
2465 SDValue isZero = DAG.getSetCC(dl, getSetCCResultType(VT),
2466 RHS, DAG.getConstant(0, dl, VT), ISD::SETEQ);
2467 SDValue NotZero = DAG.getSelect(dl, VT, isZero,
2468 DAG.getConstant(1, dl, VT), RHS);
2469 SDValue DIV = DAG.getNode(ISD::UDIV, dl, VT, MUL, NotZero);
2470 SDValue Overflow = DAG.getSetCC(dl, N->getValueType(1), DIV, LHS,
2471 ISD::SETNE);
2472 Overflow = DAG.getSelect(dl, N->getValueType(1), isZero,
2473 DAG.getConstant(0, dl, N->getValueType(1)),
2474 Overflow);
2475 ReplaceValueWith(SDValue(N, 1), Overflow);
2476 return;
2477 }
2478
2479 Type *RetTy = VT.getTypeForEVT(*DAG.getContext());
2480 EVT PtrVT = TLI.getPointerTy(DAG.getDataLayout());
2481 Type *PtrTy = PtrVT.getTypeForEVT(*DAG.getContext());
2482
2483 // Replace this with a libcall that will check overflow.
2484 RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL;
2485 if (VT == MVT::i32)
2486 LC = RTLIB::MULO_I32;
2487 else if (VT == MVT::i64)
2488 LC = RTLIB::MULO_I64;
2489 else if (VT == MVT::i128)
2490 LC = RTLIB::MULO_I128;
2491 assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unsupported XMULO!");
2492
2493 SDValue Temp = DAG.CreateStackTemporary(PtrVT);
2494 // Temporary for the overflow value, default it to zero.
2495 SDValue Chain = DAG.getStore(DAG.getEntryNode(), dl,
2496 DAG.getConstant(0, dl, PtrVT), Temp,
2497 MachinePointerInfo(), false, false, 0);
2498
2499 TargetLowering::ArgListTy Args;
2500 TargetLowering::ArgListEntry Entry;
2501 for (const SDValue &Op : N->op_values()) {
2502 EVT ArgVT = Op.getValueType();
2503 Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
2504 Entry.Node = Op;
2505 Entry.Ty = ArgTy;
2506 Entry.isSExt = true;
2507 Entry.isZExt = false;
2508 Args.push_back(Entry);
2509 }
2510
2511 // Also pass the address of the overflow check.
2512 Entry.Node = Temp;
2513 Entry.Ty = PtrTy->getPointerTo();
2514 Entry.isSExt = true;
2515 Entry.isZExt = false;
2516 Args.push_back(Entry);
2517
2518 SDValue Func = DAG.getExternalSymbol(TLI.getLibcallName(LC), PtrVT);
2519
2520 TargetLowering::CallLoweringInfo CLI(DAG);
2521 CLI.setDebugLoc(dl).setChain(Chain)
2522 .setCallee(TLI.getLibcallCallingConv(LC), RetTy, Func, std::move(Args), 0)
2523 .setSExtResult();
2524
2525 std::pair<SDValue, SDValue> CallInfo = TLI.LowerCallTo(CLI);
2526
2527 SplitInteger(CallInfo.first, Lo, Hi);
2528 SDValue Temp2 = DAG.getLoad(PtrVT, dl, CallInfo.second, Temp,
2529 MachinePointerInfo(), false, false, false, 0);
2530 SDValue Ofl = DAG.getSetCC(dl, N->getValueType(1), Temp2,
2531 DAG.getConstant(0, dl, PtrVT),
2532 ISD::SETNE);
2533 // Use the overflow from the libcall everywhere.
2534 ReplaceValueWith(SDValue(N, 1), Ofl);
2535 }
2536
ExpandIntRes_UDIV(SDNode * N,SDValue & Lo,SDValue & Hi)2537 void DAGTypeLegalizer::ExpandIntRes_UDIV(SDNode *N,
2538 SDValue &Lo, SDValue &Hi) {
2539 EVT VT = N->getValueType(0);
2540 SDLoc dl(N);
2541 SDValue Ops[2] = { N->getOperand(0), N->getOperand(1) };
2542
2543 if (TLI.getOperationAction(ISD::UDIVREM, VT) == TargetLowering::Custom) {
2544 SDValue Res = DAG.getNode(ISD::UDIVREM, dl, DAG.getVTList(VT, VT), Ops);
2545 SplitInteger(Res.getValue(0), Lo, Hi);
2546 return;
2547 }
2548
2549 RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL;
2550 if (VT == MVT::i16)
2551 LC = RTLIB::UDIV_I16;
2552 else if (VT == MVT::i32)
2553 LC = RTLIB::UDIV_I32;
2554 else if (VT == MVT::i64)
2555 LC = RTLIB::UDIV_I64;
2556 else if (VT == MVT::i128)
2557 LC = RTLIB::UDIV_I128;
2558 assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unsupported UDIV!");
2559
2560 SplitInteger(TLI.makeLibCall(DAG, LC, VT, Ops, false, dl).first, Lo, Hi);
2561 }
2562
ExpandIntRes_UREM(SDNode * N,SDValue & Lo,SDValue & Hi)2563 void DAGTypeLegalizer::ExpandIntRes_UREM(SDNode *N,
2564 SDValue &Lo, SDValue &Hi) {
2565 EVT VT = N->getValueType(0);
2566 SDLoc dl(N);
2567 SDValue Ops[2] = { N->getOperand(0), N->getOperand(1) };
2568
2569 if (TLI.getOperationAction(ISD::UDIVREM, VT) == TargetLowering::Custom) {
2570 SDValue Res = DAG.getNode(ISD::UDIVREM, dl, DAG.getVTList(VT, VT), Ops);
2571 SplitInteger(Res.getValue(1), Lo, Hi);
2572 return;
2573 }
2574
2575 RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL;
2576 if (VT == MVT::i16)
2577 LC = RTLIB::UREM_I16;
2578 else if (VT == MVT::i32)
2579 LC = RTLIB::UREM_I32;
2580 else if (VT == MVT::i64)
2581 LC = RTLIB::UREM_I64;
2582 else if (VT == MVT::i128)
2583 LC = RTLIB::UREM_I128;
2584 assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unsupported UREM!");
2585
2586 SplitInteger(TLI.makeLibCall(DAG, LC, VT, Ops, false, dl).first, Lo, Hi);
2587 }
2588
ExpandIntRes_ZERO_EXTEND(SDNode * N,SDValue & Lo,SDValue & Hi)2589 void DAGTypeLegalizer::ExpandIntRes_ZERO_EXTEND(SDNode *N,
2590 SDValue &Lo, SDValue &Hi) {
2591 EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
2592 SDLoc dl(N);
2593 SDValue Op = N->getOperand(0);
2594 if (Op.getValueType().bitsLE(NVT)) {
2595 // The low part is zero extension of the input (degenerates to a copy).
2596 Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, NVT, N->getOperand(0));
2597 Hi = DAG.getConstant(0, dl, NVT); // The high part is just a zero.
2598 } else {
2599 // For example, extension of an i48 to an i64. The operand type necessarily
2600 // promotes to the result type, so will end up being expanded too.
2601 assert(getTypeAction(Op.getValueType()) ==
2602 TargetLowering::TypePromoteInteger &&
2603 "Only know how to promote this result!");
2604 SDValue Res = GetPromotedInteger(Op);
2605 assert(Res.getValueType() == N->getValueType(0) &&
2606 "Operand over promoted?");
2607 // Split the promoted operand. This will simplify when it is expanded.
2608 SplitInteger(Res, Lo, Hi);
2609 unsigned ExcessBits =
2610 Op.getValueType().getSizeInBits() - NVT.getSizeInBits();
2611 Hi = DAG.getZeroExtendInReg(Hi, dl,
2612 EVT::getIntegerVT(*DAG.getContext(),
2613 ExcessBits));
2614 }
2615 }
2616
ExpandIntRes_ATOMIC_LOAD(SDNode * N,SDValue & Lo,SDValue & Hi)2617 void DAGTypeLegalizer::ExpandIntRes_ATOMIC_LOAD(SDNode *N,
2618 SDValue &Lo, SDValue &Hi) {
2619 SDLoc dl(N);
2620 EVT VT = cast<AtomicSDNode>(N)->getMemoryVT();
2621 SDVTList VTs = DAG.getVTList(VT, MVT::i1, MVT::Other);
2622 SDValue Zero = DAG.getConstant(0, dl, VT);
2623 SDValue Swap = DAG.getAtomicCmpSwap(
2624 ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, dl,
2625 cast<AtomicSDNode>(N)->getMemoryVT(), VTs, N->getOperand(0),
2626 N->getOperand(1), Zero, Zero, cast<AtomicSDNode>(N)->getMemOperand(),
2627 cast<AtomicSDNode>(N)->getOrdering(),
2628 cast<AtomicSDNode>(N)->getOrdering(),
2629 cast<AtomicSDNode>(N)->getSynchScope());
2630
2631 ReplaceValueWith(SDValue(N, 0), Swap.getValue(0));
2632 ReplaceValueWith(SDValue(N, 1), Swap.getValue(2));
2633 }
2634
2635 //===----------------------------------------------------------------------===//
2636 // Integer Operand Expansion
2637 //===----------------------------------------------------------------------===//
2638
2639 /// ExpandIntegerOperand - This method is called when the specified operand of
2640 /// the specified node is found to need expansion. At this point, all of the
2641 /// result types of the node are known to be legal, but other operands of the
2642 /// node may need promotion or expansion as well as the specified one.
ExpandIntegerOperand(SDNode * N,unsigned OpNo)2643 bool DAGTypeLegalizer::ExpandIntegerOperand(SDNode *N, unsigned OpNo) {
2644 DEBUG(dbgs() << "Expand integer operand: "; N->dump(&DAG); dbgs() << "\n");
2645 SDValue Res = SDValue();
2646
2647 if (CustomLowerNode(N, N->getOperand(OpNo).getValueType(), false))
2648 return false;
2649
2650 switch (N->getOpcode()) {
2651 default:
2652 #ifndef NDEBUG
2653 dbgs() << "ExpandIntegerOperand Op #" << OpNo << ": ";
2654 N->dump(&DAG); dbgs() << "\n";
2655 #endif
2656 llvm_unreachable("Do not know how to expand this operator's operand!");
2657
2658 case ISD::BITCAST: Res = ExpandOp_BITCAST(N); break;
2659 case ISD::BR_CC: Res = ExpandIntOp_BR_CC(N); break;
2660 case ISD::BUILD_VECTOR: Res = ExpandOp_BUILD_VECTOR(N); break;
2661 case ISD::EXTRACT_ELEMENT: Res = ExpandOp_EXTRACT_ELEMENT(N); break;
2662 case ISD::INSERT_VECTOR_ELT: Res = ExpandOp_INSERT_VECTOR_ELT(N); break;
2663 case ISD::SCALAR_TO_VECTOR: Res = ExpandOp_SCALAR_TO_VECTOR(N); break;
2664 case ISD::SELECT_CC: Res = ExpandIntOp_SELECT_CC(N); break;
2665 case ISD::SETCC: Res = ExpandIntOp_SETCC(N); break;
2666 case ISD::SETCCE: Res = ExpandIntOp_SETCCE(N); break;
2667 case ISD::SINT_TO_FP: Res = ExpandIntOp_SINT_TO_FP(N); break;
2668 case ISD::STORE: Res = ExpandIntOp_STORE(cast<StoreSDNode>(N), OpNo); break;
2669 case ISD::TRUNCATE: Res = ExpandIntOp_TRUNCATE(N); break;
2670 case ISD::UINT_TO_FP: Res = ExpandIntOp_UINT_TO_FP(N); break;
2671
2672 case ISD::SHL:
2673 case ISD::SRA:
2674 case ISD::SRL:
2675 case ISD::ROTL:
2676 case ISD::ROTR: Res = ExpandIntOp_Shift(N); break;
2677 case ISD::RETURNADDR:
2678 case ISD::FRAMEADDR: Res = ExpandIntOp_RETURNADDR(N); break;
2679
2680 case ISD::ATOMIC_STORE: Res = ExpandIntOp_ATOMIC_STORE(N); break;
2681 }
2682
2683 // If the result is null, the sub-method took care of registering results etc.
2684 if (!Res.getNode()) return false;
2685
2686 // If the result is N, the sub-method updated N in place. Tell the legalizer
2687 // core about this.
2688 if (Res.getNode() == N)
2689 return true;
2690
2691 assert(Res.getValueType() == N->getValueType(0) && N->getNumValues() == 1 &&
2692 "Invalid operand expansion");
2693
2694 ReplaceValueWith(SDValue(N, 0), Res);
2695 return false;
2696 }
2697
2698 /// IntegerExpandSetCCOperands - Expand the operands of a comparison. This code
2699 /// is shared among BR_CC, SELECT_CC, and SETCC handlers.
IntegerExpandSetCCOperands(SDValue & NewLHS,SDValue & NewRHS,ISD::CondCode & CCCode,SDLoc dl)2700 void DAGTypeLegalizer::IntegerExpandSetCCOperands(SDValue &NewLHS,
2701 SDValue &NewRHS,
2702 ISD::CondCode &CCCode,
2703 SDLoc dl) {
2704 SDValue LHSLo, LHSHi, RHSLo, RHSHi;
2705 GetExpandedInteger(NewLHS, LHSLo, LHSHi);
2706 GetExpandedInteger(NewRHS, RHSLo, RHSHi);
2707
2708 if (CCCode == ISD::SETEQ || CCCode == ISD::SETNE) {
2709 if (RHSLo == RHSHi) {
2710 if (ConstantSDNode *RHSCST = dyn_cast<ConstantSDNode>(RHSLo)) {
2711 if (RHSCST->isAllOnesValue()) {
2712 // Equality comparison to -1.
2713 NewLHS = DAG.getNode(ISD::AND, dl,
2714 LHSLo.getValueType(), LHSLo, LHSHi);
2715 NewRHS = RHSLo;
2716 return;
2717 }
2718 }
2719 }
2720
2721 NewLHS = DAG.getNode(ISD::XOR, dl, LHSLo.getValueType(), LHSLo, RHSLo);
2722 NewRHS = DAG.getNode(ISD::XOR, dl, LHSLo.getValueType(), LHSHi, RHSHi);
2723 NewLHS = DAG.getNode(ISD::OR, dl, NewLHS.getValueType(), NewLHS, NewRHS);
2724 NewRHS = DAG.getConstant(0, dl, NewLHS.getValueType());
2725 return;
2726 }
2727
2728 // If this is a comparison of the sign bit, just look at the top part.
2729 // X > -1, x < 0
2730 if (ConstantSDNode *CST = dyn_cast<ConstantSDNode>(NewRHS))
2731 if ((CCCode == ISD::SETLT && CST->isNullValue()) || // X < 0
2732 (CCCode == ISD::SETGT && CST->isAllOnesValue())) { // X > -1
2733 NewLHS = LHSHi;
2734 NewRHS = RHSHi;
2735 return;
2736 }
2737
2738 // FIXME: This generated code sucks.
2739 ISD::CondCode LowCC;
2740 switch (CCCode) {
2741 default: llvm_unreachable("Unknown integer setcc!");
2742 case ISD::SETLT:
2743 case ISD::SETULT: LowCC = ISD::SETULT; break;
2744 case ISD::SETGT:
2745 case ISD::SETUGT: LowCC = ISD::SETUGT; break;
2746 case ISD::SETLE:
2747 case ISD::SETULE: LowCC = ISD::SETULE; break;
2748 case ISD::SETGE:
2749 case ISD::SETUGE: LowCC = ISD::SETUGE; break;
2750 }
2751
2752 // Tmp1 = lo(op1) < lo(op2) // Always unsigned comparison
2753 // Tmp2 = hi(op1) < hi(op2) // Signedness depends on operands
2754 // dest = hi(op1) == hi(op2) ? Tmp1 : Tmp2;
2755
2756 // NOTE: on targets without efficient SELECT of bools, we can always use
2757 // this identity: (B1 ? B2 : B3) --> (B1 & B2)|(!B1&B3)
2758 TargetLowering::DAGCombinerInfo DagCombineInfo(DAG, AfterLegalizeTypes, true,
2759 nullptr);
2760 SDValue Tmp1, Tmp2;
2761 if (TLI.isTypeLegal(LHSLo.getValueType()) &&
2762 TLI.isTypeLegal(RHSLo.getValueType()))
2763 Tmp1 = TLI.SimplifySetCC(getSetCCResultType(LHSLo.getValueType()),
2764 LHSLo, RHSLo, LowCC, false, DagCombineInfo, dl);
2765 if (!Tmp1.getNode())
2766 Tmp1 = DAG.getSetCC(dl, getSetCCResultType(LHSLo.getValueType()),
2767 LHSLo, RHSLo, LowCC);
2768 if (TLI.isTypeLegal(LHSHi.getValueType()) &&
2769 TLI.isTypeLegal(RHSHi.getValueType()))
2770 Tmp2 = TLI.SimplifySetCC(getSetCCResultType(LHSHi.getValueType()),
2771 LHSHi, RHSHi, CCCode, false, DagCombineInfo, dl);
2772 if (!Tmp2.getNode())
2773 Tmp2 = DAG.getNode(ISD::SETCC, dl,
2774 getSetCCResultType(LHSHi.getValueType()),
2775 LHSHi, RHSHi, DAG.getCondCode(CCCode));
2776
2777 ConstantSDNode *Tmp1C = dyn_cast<ConstantSDNode>(Tmp1.getNode());
2778 ConstantSDNode *Tmp2C = dyn_cast<ConstantSDNode>(Tmp2.getNode());
2779 if ((Tmp1C && Tmp1C->isNullValue()) ||
2780 (Tmp2C && Tmp2C->isNullValue() &&
2781 (CCCode == ISD::SETLE || CCCode == ISD::SETGE ||
2782 CCCode == ISD::SETUGE || CCCode == ISD::SETULE)) ||
2783 (Tmp2C && Tmp2C->getAPIntValue() == 1 &&
2784 (CCCode == ISD::SETLT || CCCode == ISD::SETGT ||
2785 CCCode == ISD::SETUGT || CCCode == ISD::SETULT))) {
2786 // low part is known false, returns high part.
2787 // For LE / GE, if high part is known false, ignore the low part.
2788 // For LT / GT, if high part is known true, ignore the low part.
2789 NewLHS = Tmp2;
2790 NewRHS = SDValue();
2791 return;
2792 }
2793
2794 if (LHSHi == RHSHi) {
2795 // Comparing the low bits is enough.
2796 NewLHS = Tmp1;
2797 NewRHS = SDValue();
2798 return;
2799 }
2800
2801 // Lower with SETCCE if the target supports it.
2802 // FIXME: Make all targets support this, then remove the other lowering.
2803 if (TLI.getOperationAction(
2804 ISD::SETCCE,
2805 TLI.getTypeToExpandTo(*DAG.getContext(), LHSLo.getValueType())) ==
2806 TargetLowering::Custom) {
2807 // SETCCE can detect < and >= directly. For > and <=, flip operands and
2808 // condition code.
2809 bool FlipOperands = false;
2810 switch (CCCode) {
2811 case ISD::SETGT: CCCode = ISD::SETLT; FlipOperands = true; break;
2812 case ISD::SETUGT: CCCode = ISD::SETULT; FlipOperands = true; break;
2813 case ISD::SETLE: CCCode = ISD::SETGE; FlipOperands = true; break;
2814 case ISD::SETULE: CCCode = ISD::SETUGE; FlipOperands = true; break;
2815 default: break;
2816 }
2817 if (FlipOperands) {
2818 std::swap(LHSLo, RHSLo);
2819 std::swap(LHSHi, RHSHi);
2820 }
2821 // Perform a wide subtraction, feeding the carry from the low part into
2822 // SETCCE. The SETCCE operation is essentially looking at the high part of
2823 // the result of LHS - RHS. It is negative iff LHS < RHS. It is zero or
2824 // positive iff LHS >= RHS.
2825 SDVTList VTList = DAG.getVTList(LHSLo.getValueType(), MVT::Glue);
2826 SDValue LowCmp = DAG.getNode(ISD::SUBC, dl, VTList, LHSLo, RHSLo);
2827 SDValue Res =
2828 DAG.getNode(ISD::SETCCE, dl, getSetCCResultType(LHSLo.getValueType()),
2829 LHSHi, RHSHi, LowCmp.getValue(1), DAG.getCondCode(CCCode));
2830 NewLHS = Res;
2831 NewRHS = SDValue();
2832 return;
2833 }
2834
2835 NewLHS = TLI.SimplifySetCC(getSetCCResultType(LHSHi.getValueType()),
2836 LHSHi, RHSHi, ISD::SETEQ, false,
2837 DagCombineInfo, dl);
2838 if (!NewLHS.getNode())
2839 NewLHS = DAG.getSetCC(dl, getSetCCResultType(LHSHi.getValueType()),
2840 LHSHi, RHSHi, ISD::SETEQ);
2841 NewLHS = DAG.getSelect(dl, Tmp1.getValueType(),
2842 NewLHS, Tmp1, Tmp2);
2843 NewRHS = SDValue();
2844 }
2845
ExpandIntOp_BR_CC(SDNode * N)2846 SDValue DAGTypeLegalizer::ExpandIntOp_BR_CC(SDNode *N) {
2847 SDValue NewLHS = N->getOperand(2), NewRHS = N->getOperand(3);
2848 ISD::CondCode CCCode = cast<CondCodeSDNode>(N->getOperand(1))->get();
2849 IntegerExpandSetCCOperands(NewLHS, NewRHS, CCCode, SDLoc(N));
2850
2851 // If ExpandSetCCOperands returned a scalar, we need to compare the result
2852 // against zero to select between true and false values.
2853 if (!NewRHS.getNode()) {
2854 NewRHS = DAG.getConstant(0, SDLoc(N), NewLHS.getValueType());
2855 CCCode = ISD::SETNE;
2856 }
2857
2858 // Update N to have the operands specified.
2859 return SDValue(DAG.UpdateNodeOperands(N, N->getOperand(0),
2860 DAG.getCondCode(CCCode), NewLHS, NewRHS,
2861 N->getOperand(4)), 0);
2862 }
2863
ExpandIntOp_SELECT_CC(SDNode * N)2864 SDValue DAGTypeLegalizer::ExpandIntOp_SELECT_CC(SDNode *N) {
2865 SDValue NewLHS = N->getOperand(0), NewRHS = N->getOperand(1);
2866 ISD::CondCode CCCode = cast<CondCodeSDNode>(N->getOperand(4))->get();
2867 IntegerExpandSetCCOperands(NewLHS, NewRHS, CCCode, SDLoc(N));
2868
2869 // If ExpandSetCCOperands returned a scalar, we need to compare the result
2870 // against zero to select between true and false values.
2871 if (!NewRHS.getNode()) {
2872 NewRHS = DAG.getConstant(0, SDLoc(N), NewLHS.getValueType());
2873 CCCode = ISD::SETNE;
2874 }
2875
2876 // Update N to have the operands specified.
2877 return SDValue(DAG.UpdateNodeOperands(N, NewLHS, NewRHS,
2878 N->getOperand(2), N->getOperand(3),
2879 DAG.getCondCode(CCCode)), 0);
2880 }
2881
ExpandIntOp_SETCC(SDNode * N)2882 SDValue DAGTypeLegalizer::ExpandIntOp_SETCC(SDNode *N) {
2883 SDValue NewLHS = N->getOperand(0), NewRHS = N->getOperand(1);
2884 ISD::CondCode CCCode = cast<CondCodeSDNode>(N->getOperand(2))->get();
2885 IntegerExpandSetCCOperands(NewLHS, NewRHS, CCCode, SDLoc(N));
2886
2887 // If ExpandSetCCOperands returned a scalar, use it.
2888 if (!NewRHS.getNode()) {
2889 assert(NewLHS.getValueType() == N->getValueType(0) &&
2890 "Unexpected setcc expansion!");
2891 return NewLHS;
2892 }
2893
2894 // Otherwise, update N to have the operands specified.
2895 return SDValue(DAG.UpdateNodeOperands(N, NewLHS, NewRHS,
2896 DAG.getCondCode(CCCode)), 0);
2897 }
2898
ExpandIntOp_SETCCE(SDNode * N)2899 SDValue DAGTypeLegalizer::ExpandIntOp_SETCCE(SDNode *N) {
2900 SDValue LHS = N->getOperand(0);
2901 SDValue RHS = N->getOperand(1);
2902 SDValue Carry = N->getOperand(2);
2903 SDValue Cond = N->getOperand(3);
2904 SDLoc dl = SDLoc(N);
2905
2906 SDValue LHSLo, LHSHi, RHSLo, RHSHi;
2907 GetExpandedInteger(LHS, LHSLo, LHSHi);
2908 GetExpandedInteger(RHS, RHSLo, RHSHi);
2909
2910 // Expand to a SUBE for the low part and a smaller SETCCE for the high.
2911 SDVTList VTList = DAG.getVTList(LHSLo.getValueType(), MVT::Glue);
2912 SDValue LowCmp = DAG.getNode(ISD::SUBE, dl, VTList, LHSLo, RHSLo, Carry);
2913 return DAG.getNode(ISD::SETCCE, dl, N->getValueType(0), LHSHi, RHSHi,
2914 LowCmp.getValue(1), Cond);
2915 }
2916
ExpandIntOp_Shift(SDNode * N)2917 SDValue DAGTypeLegalizer::ExpandIntOp_Shift(SDNode *N) {
2918 // The value being shifted is legal, but the shift amount is too big.
2919 // It follows that either the result of the shift is undefined, or the
2920 // upper half of the shift amount is zero. Just use the lower half.
2921 SDValue Lo, Hi;
2922 GetExpandedInteger(N->getOperand(1), Lo, Hi);
2923 return SDValue(DAG.UpdateNodeOperands(N, N->getOperand(0), Lo), 0);
2924 }
2925
ExpandIntOp_RETURNADDR(SDNode * N)2926 SDValue DAGTypeLegalizer::ExpandIntOp_RETURNADDR(SDNode *N) {
2927 // The argument of RETURNADDR / FRAMEADDR builtin is 32 bit contant. This
2928 // surely makes pretty nice problems on 8/16 bit targets. Just truncate this
2929 // constant to valid type.
2930 SDValue Lo, Hi;
2931 GetExpandedInteger(N->getOperand(0), Lo, Hi);
2932 return SDValue(DAG.UpdateNodeOperands(N, Lo), 0);
2933 }
2934
ExpandIntOp_SINT_TO_FP(SDNode * N)2935 SDValue DAGTypeLegalizer::ExpandIntOp_SINT_TO_FP(SDNode *N) {
2936 SDValue Op = N->getOperand(0);
2937 EVT DstVT = N->getValueType(0);
2938 RTLIB::Libcall LC = RTLIB::getSINTTOFP(Op.getValueType(), DstVT);
2939 assert(LC != RTLIB::UNKNOWN_LIBCALL &&
2940 "Don't know how to expand this SINT_TO_FP!");
2941 return TLI.makeLibCall(DAG, LC, DstVT, Op, true, SDLoc(N)).first;
2942 }
2943
ExpandIntOp_STORE(StoreSDNode * N,unsigned OpNo)2944 SDValue DAGTypeLegalizer::ExpandIntOp_STORE(StoreSDNode *N, unsigned OpNo) {
2945 if (ISD::isNormalStore(N))
2946 return ExpandOp_NormalStore(N, OpNo);
2947
2948 assert(ISD::isUNINDEXEDStore(N) && "Indexed store during type legalization!");
2949 assert(OpNo == 1 && "Can only expand the stored value so far");
2950
2951 EVT VT = N->getOperand(1).getValueType();
2952 EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), VT);
2953 SDValue Ch = N->getChain();
2954 SDValue Ptr = N->getBasePtr();
2955 unsigned Alignment = N->getAlignment();
2956 bool isVolatile = N->isVolatile();
2957 bool isNonTemporal = N->isNonTemporal();
2958 AAMDNodes AAInfo = N->getAAInfo();
2959 SDLoc dl(N);
2960 SDValue Lo, Hi;
2961
2962 assert(NVT.isByteSized() && "Expanded type not byte sized!");
2963
2964 if (N->getMemoryVT().bitsLE(NVT)) {
2965 GetExpandedInteger(N->getValue(), Lo, Hi);
2966 return DAG.getTruncStore(Ch, dl, Lo, Ptr, N->getPointerInfo(),
2967 N->getMemoryVT(), isVolatile, isNonTemporal,
2968 Alignment, AAInfo);
2969 }
2970
2971 if (DAG.getDataLayout().isLittleEndian()) {
2972 // Little-endian - low bits are at low addresses.
2973 GetExpandedInteger(N->getValue(), Lo, Hi);
2974
2975 Lo = DAG.getStore(Ch, dl, Lo, Ptr, N->getPointerInfo(),
2976 isVolatile, isNonTemporal, Alignment, AAInfo);
2977
2978 unsigned ExcessBits =
2979 N->getMemoryVT().getSizeInBits() - NVT.getSizeInBits();
2980 EVT NEVT = EVT::getIntegerVT(*DAG.getContext(), ExcessBits);
2981
2982 // Increment the pointer to the other half.
2983 unsigned IncrementSize = NVT.getSizeInBits()/8;
2984 Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
2985 DAG.getConstant(IncrementSize, dl, Ptr.getValueType()));
2986 Hi = DAG.getTruncStore(Ch, dl, Hi, Ptr,
2987 N->getPointerInfo().getWithOffset(IncrementSize),
2988 NEVT, isVolatile, isNonTemporal,
2989 MinAlign(Alignment, IncrementSize), AAInfo);
2990 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo, Hi);
2991 }
2992
2993 // Big-endian - high bits are at low addresses. Favor aligned stores at
2994 // the cost of some bit-fiddling.
2995 GetExpandedInteger(N->getValue(), Lo, Hi);
2996
2997 EVT ExtVT = N->getMemoryVT();
2998 unsigned EBytes = ExtVT.getStoreSize();
2999 unsigned IncrementSize = NVT.getSizeInBits()/8;
3000 unsigned ExcessBits = (EBytes - IncrementSize)*8;
3001 EVT HiVT = EVT::getIntegerVT(*DAG.getContext(),
3002 ExtVT.getSizeInBits() - ExcessBits);
3003
3004 if (ExcessBits < NVT.getSizeInBits()) {
3005 // Transfer high bits from the top of Lo to the bottom of Hi.
3006 Hi = DAG.getNode(ISD::SHL, dl, NVT, Hi,
3007 DAG.getConstant(NVT.getSizeInBits() - ExcessBits, dl,
3008 TLI.getPointerTy(DAG.getDataLayout())));
3009 Hi = DAG.getNode(
3010 ISD::OR, dl, NVT, Hi,
3011 DAG.getNode(ISD::SRL, dl, NVT, Lo,
3012 DAG.getConstant(ExcessBits, dl,
3013 TLI.getPointerTy(DAG.getDataLayout()))));
3014 }
3015
3016 // Store both the high bits and maybe some of the low bits.
3017 Hi = DAG.getTruncStore(Ch, dl, Hi, Ptr, N->getPointerInfo(),
3018 HiVT, isVolatile, isNonTemporal, Alignment, AAInfo);
3019
3020 // Increment the pointer to the other half.
3021 Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
3022 DAG.getConstant(IncrementSize, dl, Ptr.getValueType()));
3023 // Store the lowest ExcessBits bits in the second half.
3024 Lo = DAG.getTruncStore(Ch, dl, Lo, Ptr,
3025 N->getPointerInfo().getWithOffset(IncrementSize),
3026 EVT::getIntegerVT(*DAG.getContext(), ExcessBits),
3027 isVolatile, isNonTemporal,
3028 MinAlign(Alignment, IncrementSize), AAInfo);
3029 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo, Hi);
3030 }
3031
ExpandIntOp_TRUNCATE(SDNode * N)3032 SDValue DAGTypeLegalizer::ExpandIntOp_TRUNCATE(SDNode *N) {
3033 SDValue InL, InH;
3034 GetExpandedInteger(N->getOperand(0), InL, InH);
3035 // Just truncate the low part of the source.
3036 return DAG.getNode(ISD::TRUNCATE, SDLoc(N), N->getValueType(0), InL);
3037 }
3038
ExpandIntOp_UINT_TO_FP(SDNode * N)3039 SDValue DAGTypeLegalizer::ExpandIntOp_UINT_TO_FP(SDNode *N) {
3040 SDValue Op = N->getOperand(0);
3041 EVT SrcVT = Op.getValueType();
3042 EVT DstVT = N->getValueType(0);
3043 SDLoc dl(N);
3044
3045 // The following optimization is valid only if every value in SrcVT (when
3046 // treated as signed) is representable in DstVT. Check that the mantissa
3047 // size of DstVT is >= than the number of bits in SrcVT -1.
3048 const fltSemantics &sem = DAG.EVTToAPFloatSemantics(DstVT);
3049 if (APFloat::semanticsPrecision(sem) >= SrcVT.getSizeInBits()-1 &&
3050 TLI.getOperationAction(ISD::SINT_TO_FP, SrcVT) == TargetLowering::Custom){
3051 // Do a signed conversion then adjust the result.
3052 SDValue SignedConv = DAG.getNode(ISD::SINT_TO_FP, dl, DstVT, Op);
3053 SignedConv = TLI.LowerOperation(SignedConv, DAG);
3054
3055 // The result of the signed conversion needs adjusting if the 'sign bit' of
3056 // the incoming integer was set. To handle this, we dynamically test to see
3057 // if it is set, and, if so, add a fudge factor.
3058
3059 const uint64_t F32TwoE32 = 0x4F800000ULL;
3060 const uint64_t F32TwoE64 = 0x5F800000ULL;
3061 const uint64_t F32TwoE128 = 0x7F800000ULL;
3062
3063 APInt FF(32, 0);
3064 if (SrcVT == MVT::i32)
3065 FF = APInt(32, F32TwoE32);
3066 else if (SrcVT == MVT::i64)
3067 FF = APInt(32, F32TwoE64);
3068 else if (SrcVT == MVT::i128)
3069 FF = APInt(32, F32TwoE128);
3070 else
3071 llvm_unreachable("Unsupported UINT_TO_FP!");
3072
3073 // Check whether the sign bit is set.
3074 SDValue Lo, Hi;
3075 GetExpandedInteger(Op, Lo, Hi);
3076 SDValue SignSet = DAG.getSetCC(dl,
3077 getSetCCResultType(Hi.getValueType()),
3078 Hi,
3079 DAG.getConstant(0, dl, Hi.getValueType()),
3080 ISD::SETLT);
3081
3082 // Build a 64 bit pair (0, FF) in the constant pool, with FF in the lo bits.
3083 SDValue FudgePtr =
3084 DAG.getConstantPool(ConstantInt::get(*DAG.getContext(), FF.zext(64)),
3085 TLI.getPointerTy(DAG.getDataLayout()));
3086
3087 // Get a pointer to FF if the sign bit was set, or to 0 otherwise.
3088 SDValue Zero = DAG.getIntPtrConstant(0, dl);
3089 SDValue Four = DAG.getIntPtrConstant(4, dl);
3090 if (DAG.getDataLayout().isBigEndian())
3091 std::swap(Zero, Four);
3092 SDValue Offset = DAG.getSelect(dl, Zero.getValueType(), SignSet,
3093 Zero, Four);
3094 unsigned Alignment = cast<ConstantPoolSDNode>(FudgePtr)->getAlignment();
3095 FudgePtr = DAG.getNode(ISD::ADD, dl, FudgePtr.getValueType(),
3096 FudgePtr, Offset);
3097 Alignment = std::min(Alignment, 4u);
3098
3099 // Load the value out, extending it from f32 to the destination float type.
3100 // FIXME: Avoid the extend by constructing the right constant pool?
3101 SDValue Fudge = DAG.getExtLoad(
3102 ISD::EXTLOAD, dl, DstVT, DAG.getEntryNode(), FudgePtr,
3103 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), MVT::f32,
3104 false, false, false, Alignment);
3105 return DAG.getNode(ISD::FADD, dl, DstVT, SignedConv, Fudge);
3106 }
3107
3108 // Otherwise, use a libcall.
3109 RTLIB::Libcall LC = RTLIB::getUINTTOFP(SrcVT, DstVT);
3110 assert(LC != RTLIB::UNKNOWN_LIBCALL &&
3111 "Don't know how to expand this UINT_TO_FP!");
3112 return TLI.makeLibCall(DAG, LC, DstVT, Op, true, dl).first;
3113 }
3114
ExpandIntOp_ATOMIC_STORE(SDNode * N)3115 SDValue DAGTypeLegalizer::ExpandIntOp_ATOMIC_STORE(SDNode *N) {
3116 SDLoc dl(N);
3117 SDValue Swap = DAG.getAtomic(ISD::ATOMIC_SWAP, dl,
3118 cast<AtomicSDNode>(N)->getMemoryVT(),
3119 N->getOperand(0),
3120 N->getOperand(1), N->getOperand(2),
3121 cast<AtomicSDNode>(N)->getMemOperand(),
3122 cast<AtomicSDNode>(N)->getOrdering(),
3123 cast<AtomicSDNode>(N)->getSynchScope());
3124 return Swap.getValue(1);
3125 }
3126
3127
PromoteIntRes_EXTRACT_SUBVECTOR(SDNode * N)3128 SDValue DAGTypeLegalizer::PromoteIntRes_EXTRACT_SUBVECTOR(SDNode *N) {
3129 SDValue InOp0 = N->getOperand(0);
3130 EVT InVT = InOp0.getValueType();
3131
3132 EVT OutVT = N->getValueType(0);
3133 EVT NOutVT = TLI.getTypeToTransformTo(*DAG.getContext(), OutVT);
3134 assert(NOutVT.isVector() && "This type must be promoted to a vector type");
3135 unsigned OutNumElems = OutVT.getVectorNumElements();
3136 EVT NOutVTElem = NOutVT.getVectorElementType();
3137
3138 SDLoc dl(N);
3139 SDValue BaseIdx = N->getOperand(1);
3140
3141 SmallVector<SDValue, 8> Ops;
3142 Ops.reserve(OutNumElems);
3143 for (unsigned i = 0; i != OutNumElems; ++i) {
3144
3145 // Extract the element from the original vector.
3146 SDValue Index = DAG.getNode(ISD::ADD, dl, BaseIdx.getValueType(),
3147 BaseIdx, DAG.getConstant(i, dl, BaseIdx.getValueType()));
3148 SDValue Ext = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl,
3149 InVT.getVectorElementType(), N->getOperand(0), Index);
3150
3151 SDValue Op = DAG.getNode(ISD::ANY_EXTEND, dl, NOutVTElem, Ext);
3152 // Insert the converted element to the new vector.
3153 Ops.push_back(Op);
3154 }
3155
3156 return DAG.getNode(ISD::BUILD_VECTOR, dl, NOutVT, Ops);
3157 }
3158
3159
PromoteIntRes_VECTOR_SHUFFLE(SDNode * N)3160 SDValue DAGTypeLegalizer::PromoteIntRes_VECTOR_SHUFFLE(SDNode *N) {
3161 ShuffleVectorSDNode *SV = cast<ShuffleVectorSDNode>(N);
3162 EVT VT = N->getValueType(0);
3163 SDLoc dl(N);
3164
3165 ArrayRef<int> NewMask = SV->getMask().slice(0, VT.getVectorNumElements());
3166
3167 SDValue V0 = GetPromotedInteger(N->getOperand(0));
3168 SDValue V1 = GetPromotedInteger(N->getOperand(1));
3169 EVT OutVT = V0.getValueType();
3170
3171 return DAG.getVectorShuffle(OutVT, dl, V0, V1, NewMask);
3172 }
3173
3174
PromoteIntRes_BUILD_VECTOR(SDNode * N)3175 SDValue DAGTypeLegalizer::PromoteIntRes_BUILD_VECTOR(SDNode *N) {
3176 EVT OutVT = N->getValueType(0);
3177 EVT NOutVT = TLI.getTypeToTransformTo(*DAG.getContext(), OutVT);
3178 assert(NOutVT.isVector() && "This type must be promoted to a vector type");
3179 unsigned NumElems = N->getNumOperands();
3180 EVT NOutVTElem = NOutVT.getVectorElementType();
3181
3182 SDLoc dl(N);
3183
3184 SmallVector<SDValue, 8> Ops;
3185 Ops.reserve(NumElems);
3186 for (unsigned i = 0; i != NumElems; ++i) {
3187 SDValue Op;
3188 // BUILD_VECTOR integer operand types are allowed to be larger than the
3189 // result's element type. This may still be true after the promotion. For
3190 // example, we might be promoting (<v?i1> = BV <i32>, <i32>, ...) to
3191 // (v?i16 = BV <i32>, <i32>, ...), and we can't any_extend <i32> to <i16>.
3192 if (N->getOperand(i).getValueType().bitsLT(NOutVTElem))
3193 Op = DAG.getNode(ISD::ANY_EXTEND, dl, NOutVTElem, N->getOperand(i));
3194 else
3195 Op = N->getOperand(i);
3196 Ops.push_back(Op);
3197 }
3198
3199 return DAG.getNode(ISD::BUILD_VECTOR, dl, NOutVT, Ops);
3200 }
3201
PromoteIntRes_SCALAR_TO_VECTOR(SDNode * N)3202 SDValue DAGTypeLegalizer::PromoteIntRes_SCALAR_TO_VECTOR(SDNode *N) {
3203
3204 SDLoc dl(N);
3205
3206 assert(!N->getOperand(0).getValueType().isVector() &&
3207 "Input must be a scalar");
3208
3209 EVT OutVT = N->getValueType(0);
3210 EVT NOutVT = TLI.getTypeToTransformTo(*DAG.getContext(), OutVT);
3211 assert(NOutVT.isVector() && "This type must be promoted to a vector type");
3212 EVT NOutVTElem = NOutVT.getVectorElementType();
3213
3214 SDValue Op = DAG.getNode(ISD::ANY_EXTEND, dl, NOutVTElem, N->getOperand(0));
3215
3216 return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, NOutVT, Op);
3217 }
3218
PromoteIntRes_CONCAT_VECTORS(SDNode * N)3219 SDValue DAGTypeLegalizer::PromoteIntRes_CONCAT_VECTORS(SDNode *N) {
3220 SDLoc dl(N);
3221
3222 EVT OutVT = N->getValueType(0);
3223 EVT NOutVT = TLI.getTypeToTransformTo(*DAG.getContext(), OutVT);
3224 assert(NOutVT.isVector() && "This type must be promoted to a vector type");
3225
3226 EVT InElemTy = OutVT.getVectorElementType();
3227 EVT OutElemTy = NOutVT.getVectorElementType();
3228
3229 unsigned NumElem = N->getOperand(0).getValueType().getVectorNumElements();
3230 unsigned NumOutElem = NOutVT.getVectorNumElements();
3231 unsigned NumOperands = N->getNumOperands();
3232 assert(NumElem * NumOperands == NumOutElem &&
3233 "Unexpected number of elements");
3234
3235 // Take the elements from the first vector.
3236 SmallVector<SDValue, 8> Ops(NumOutElem);
3237 for (unsigned i = 0; i < NumOperands; ++i) {
3238 SDValue Op = N->getOperand(i);
3239 for (unsigned j = 0; j < NumElem; ++j) {
3240 SDValue Ext = DAG.getNode(
3241 ISD::EXTRACT_VECTOR_ELT, dl, InElemTy, Op,
3242 DAG.getConstant(j, dl, TLI.getVectorIdxTy(DAG.getDataLayout())));
3243 Ops[i * NumElem + j] = DAG.getNode(ISD::ANY_EXTEND, dl, OutElemTy, Ext);
3244 }
3245 }
3246
3247 return DAG.getNode(ISD::BUILD_VECTOR, dl, NOutVT, Ops);
3248 }
3249
PromoteIntRes_INSERT_VECTOR_ELT(SDNode * N)3250 SDValue DAGTypeLegalizer::PromoteIntRes_INSERT_VECTOR_ELT(SDNode *N) {
3251 EVT OutVT = N->getValueType(0);
3252 EVT NOutVT = TLI.getTypeToTransformTo(*DAG.getContext(), OutVT);
3253 assert(NOutVT.isVector() && "This type must be promoted to a vector type");
3254
3255 EVT NOutVTElem = NOutVT.getVectorElementType();
3256
3257 SDLoc dl(N);
3258 SDValue V0 = GetPromotedInteger(N->getOperand(0));
3259
3260 SDValue ConvElem = DAG.getNode(ISD::ANY_EXTEND, dl,
3261 NOutVTElem, N->getOperand(1));
3262 return DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, NOutVT,
3263 V0, ConvElem, N->getOperand(2));
3264 }
3265
PromoteIntOp_EXTRACT_VECTOR_ELT(SDNode * N)3266 SDValue DAGTypeLegalizer::PromoteIntOp_EXTRACT_VECTOR_ELT(SDNode *N) {
3267 SDLoc dl(N);
3268 SDValue V0 = GetPromotedInteger(N->getOperand(0));
3269 SDValue V1 = DAG.getZExtOrTrunc(N->getOperand(1), dl,
3270 TLI.getVectorIdxTy(DAG.getDataLayout()));
3271 SDValue Ext = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl,
3272 V0->getValueType(0).getScalarType(), V0, V1);
3273
3274 // EXTRACT_VECTOR_ELT can return types which are wider than the incoming
3275 // element types. If this is the case then we need to expand the outgoing
3276 // value and not truncate it.
3277 return DAG.getAnyExtOrTrunc(Ext, dl, N->getValueType(0));
3278 }
3279
PromoteIntOp_EXTRACT_SUBVECTOR(SDNode * N)3280 SDValue DAGTypeLegalizer::PromoteIntOp_EXTRACT_SUBVECTOR(SDNode *N) {
3281 SDLoc dl(N);
3282 SDValue V0 = GetPromotedInteger(N->getOperand(0));
3283 MVT InVT = V0.getValueType().getSimpleVT();
3284 MVT OutVT = MVT::getVectorVT(InVT.getVectorElementType(),
3285 N->getValueType(0).getVectorNumElements());
3286 SDValue Ext = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, OutVT, V0, N->getOperand(1));
3287 return DAG.getNode(ISD::TRUNCATE, dl, N->getValueType(0), Ext);
3288 }
3289
PromoteIntOp_CONCAT_VECTORS(SDNode * N)3290 SDValue DAGTypeLegalizer::PromoteIntOp_CONCAT_VECTORS(SDNode *N) {
3291 SDLoc dl(N);
3292 unsigned NumElems = N->getNumOperands();
3293
3294 EVT RetSclrTy = N->getValueType(0).getVectorElementType();
3295
3296 SmallVector<SDValue, 8> NewOps;
3297 NewOps.reserve(NumElems);
3298
3299 // For each incoming vector
3300 for (unsigned VecIdx = 0; VecIdx != NumElems; ++VecIdx) {
3301 SDValue Incoming = GetPromotedInteger(N->getOperand(VecIdx));
3302 EVT SclrTy = Incoming->getValueType(0).getVectorElementType();
3303 unsigned NumElem = Incoming->getValueType(0).getVectorNumElements();
3304
3305 for (unsigned i=0; i<NumElem; ++i) {
3306 // Extract element from incoming vector
3307 SDValue Ex = DAG.getNode(
3308 ISD::EXTRACT_VECTOR_ELT, dl, SclrTy, Incoming,
3309 DAG.getConstant(i, dl, TLI.getVectorIdxTy(DAG.getDataLayout())));
3310 SDValue Tr = DAG.getNode(ISD::TRUNCATE, dl, RetSclrTy, Ex);
3311 NewOps.push_back(Tr);
3312 }
3313 }
3314
3315 return DAG.getNode(ISD::BUILD_VECTOR, dl, N->getValueType(0), NewOps);
3316 }
3317