1 
2 /* -----------------------------------------------------------------------------------------------------------
3 Software License for The Fraunhofer FDK AAC Codec Library for Android
4 
5 � Copyright  1995 - 2013 Fraunhofer-Gesellschaft zur F�rderung der angewandten Forschung e.V.
6   All rights reserved.
7 
8  1.    INTRODUCTION
9 The Fraunhofer FDK AAC Codec Library for Android ("FDK AAC Codec") is software that implements
10 the MPEG Advanced Audio Coding ("AAC") encoding and decoding scheme for digital audio.
11 This FDK AAC Codec software is intended to be used on a wide variety of Android devices.
12 
13 AAC's HE-AAC and HE-AAC v2 versions are regarded as today's most efficient general perceptual
14 audio codecs. AAC-ELD is considered the best-performing full-bandwidth communications codec by
15 independent studies and is widely deployed. AAC has been standardized by ISO and IEC as part
16 of the MPEG specifications.
17 
18 Patent licenses for necessary patent claims for the FDK AAC Codec (including those of Fraunhofer)
19 may be obtained through Via Licensing (www.vialicensing.com) or through the respective patent owners
20 individually for the purpose of encoding or decoding bit streams in products that are compliant with
21 the ISO/IEC MPEG audio standards. Please note that most manufacturers of Android devices already license
22 these patent claims through Via Licensing or directly from the patent owners, and therefore FDK AAC Codec
23 software may already be covered under those patent licenses when it is used for those licensed purposes only.
24 
25 Commercially-licensed AAC software libraries, including floating-point versions with enhanced sound quality,
26 are also available from Fraunhofer. Users are encouraged to check the Fraunhofer website for additional
27 applications information and documentation.
28 
29 2.    COPYRIGHT LICENSE
30 
31 Redistribution and use in source and binary forms, with or without modification, are permitted without
32 payment of copyright license fees provided that you satisfy the following conditions:
33 
34 You must retain the complete text of this software license in redistributions of the FDK AAC Codec or
35 your modifications thereto in source code form.
36 
37 You must retain the complete text of this software license in the documentation and/or other materials
38 provided with redistributions of the FDK AAC Codec or your modifications thereto in binary form.
39 You must make available free of charge copies of the complete source code of the FDK AAC Codec and your
40 modifications thereto to recipients of copies in binary form.
41 
42 The name of Fraunhofer may not be used to endorse or promote products derived from this library without
43 prior written permission.
44 
45 You may not charge copyright license fees for anyone to use, copy or distribute the FDK AAC Codec
46 software or your modifications thereto.
47 
48 Your modified versions of the FDK AAC Codec must carry prominent notices stating that you changed the software
49 and the date of any change. For modified versions of the FDK AAC Codec, the term
50 "Fraunhofer FDK AAC Codec Library for Android" must be replaced by the term
51 "Third-Party Modified Version of the Fraunhofer FDK AAC Codec Library for Android."
52 
53 3.    NO PATENT LICENSE
54 
55 NO EXPRESS OR IMPLIED LICENSES TO ANY PATENT CLAIMS, including without limitation the patents of Fraunhofer,
56 ARE GRANTED BY THIS SOFTWARE LICENSE. Fraunhofer provides no warranty of patent non-infringement with
57 respect to this software.
58 
59 You may use this FDK AAC Codec software or modifications thereto only for purposes that are authorized
60 by appropriate patent licenses.
61 
62 4.    DISCLAIMER
63 
64 This FDK AAC Codec software is provided by Fraunhofer on behalf of the copyright holders and contributors
65 "AS IS" and WITHOUT ANY EXPRESS OR IMPLIED WARRANTIES, including but not limited to the implied warranties
66 of merchantability and fitness for a particular purpose. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR
67 CONTRIBUTORS BE LIABLE for any direct, indirect, incidental, special, exemplary, or consequential damages,
68 including but not limited to procurement of substitute goods or services; loss of use, data, or profits,
69 or business interruption, however caused and on any theory of liability, whether in contract, strict
70 liability, or tort (including negligence), arising in any way out of the use of this software, even if
71 advised of the possibility of such damage.
72 
73 5.    CONTACT INFORMATION
74 
75 Fraunhofer Institute for Integrated Circuits IIS
76 Attention: Audio and Multimedia Departments - FDK AAC LL
77 Am Wolfsmantel 33
78 91058 Erlangen, Germany
79 
80 www.iis.fraunhofer.de/amm
81 amm-info@iis.fraunhofer.de
82 ----------------------------------------------------------------------------------------------------------- */
83 
84 /*!
85   \file
86   \brief  FDK Fixed Point Arithmetic Library Interface
87 */
88 
89 #ifndef __TRANSCENDENT_H
90 #define __TRANSCENDENT_H
91 
92 #include "sbrdecoder.h"
93 #include "sbr_rom.h"
94 
95 /************************************************************************/
96 /*!
97   \brief   Get number of octaves between frequencies a and b
98 
99   The Result is scaled with 1/8.
100   The valid range for a and b is 1 to LOG_DUALIS_TABLE_SIZE.
101 
102   \return   ld(a/b) / 8
103 */
104 /************************************************************************/
FDK_getNumOctavesDiv8(INT a,INT b)105 static inline FIXP_SGL FDK_getNumOctavesDiv8(INT a, /*!< lower band */
106                                              INT b) /*!< upper band */
107 {
108   return ( (SHORT)((LONG)(CalcLdInt(b) - CalcLdInt(a))>>(FRACT_BITS-3)) );
109 }
110 
111 
112 /************************************************************************/
113 /*!
114   \brief   Add two values given by mantissa and exponent.
115 
116   Mantissas are in fract format with values between 0 and 1. <br>
117   The base for exponents is 2.  Example:  \f$  a = a\_m * 2^{a\_e}  \f$<br>
118 */
119 /************************************************************************/
FDK_add_MantExp(FIXP_SGL a_m,SCHAR a_e,FIXP_SGL b_m,SCHAR b_e,FIXP_SGL * ptrSum_m,SCHAR * ptrSum_e)120 inline void FDK_add_MantExp(FIXP_SGL a_m, /*!< Mantissa of 1st operand a */
121                      SCHAR     a_e,       /*!< Exponent of 1st operand a */
122                      FIXP_SGL  b_m,       /*!< Mantissa of 2nd operand b */
123                      SCHAR     b_e,       /*!< Exponent of 2nd operand b */
124                      FIXP_SGL *ptrSum_m,  /*!< Mantissa of result */
125                      SCHAR    *ptrSum_e)  /*!< Exponent of result */
126 {
127   FIXP_DBL accu;
128   int   shift;
129   int   shiftAbs;
130 
131   FIXP_DBL shiftedMantissa;
132   FIXP_DBL otherMantissa;
133 
134   /* Equalize exponents of the summands.
135      For the smaller summand, the exponent is adapted and
136      for compensation, the mantissa is shifted right. */
137 
138   shift = (int)(a_e - b_e);
139 
140   shiftAbs = (shift>0)? shift : -shift;
141   shiftAbs = (shiftAbs < DFRACT_BITS-1)? shiftAbs : DFRACT_BITS-1;
142   shiftedMantissa = (shift>0)? (FX_SGL2FX_DBL(b_m) >> shiftAbs) : (FX_SGL2FX_DBL(a_m) >> shiftAbs);
143   otherMantissa = (shift>0)? FX_SGL2FX_DBL(a_m) : FX_SGL2FX_DBL(b_m);
144   *ptrSum_e = (shift>0)? a_e : b_e;
145 
146   accu = (shiftedMantissa >> 1) + (otherMantissa >> 1);
147   /* shift by 1 bit to avoid overflow */
148 
149   if ( (accu >= (FL2FXCONST_DBL(0.5f) - (FIXP_DBL)1)) || (accu <= FL2FXCONST_DBL(-0.5f)) )
150     *ptrSum_e += 1;
151   else
152     accu = (shiftedMantissa + otherMantissa);
153 
154   *ptrSum_m = FX_DBL2FX_SGL(accu);
155 
156 }
157 
FDK_add_MantExp(FIXP_DBL a,SCHAR a_e,FIXP_DBL b,SCHAR b_e,FIXP_DBL * ptrSum,SCHAR * ptrSum_e)158 inline void FDK_add_MantExp(FIXP_DBL a,   /*!< Mantissa of 1st operand a */
159                      SCHAR     a_e,       /*!< Exponent of 1st operand a */
160                      FIXP_DBL  b,         /*!< Mantissa of 2nd operand b */
161                      SCHAR     b_e,       /*!< Exponent of 2nd operand b */
162                      FIXP_DBL *ptrSum,    /*!< Mantissa of result */
163                      SCHAR    *ptrSum_e)  /*!< Exponent of result */
164 {
165   FIXP_DBL accu;
166   int   shift;
167   int   shiftAbs;
168 
169   FIXP_DBL shiftedMantissa;
170   FIXP_DBL otherMantissa;
171 
172   /* Equalize exponents of the summands.
173      For the smaller summand, the exponent is adapted and
174      for compensation, the mantissa is shifted right. */
175 
176   shift = (int)(a_e - b_e);
177 
178   shiftAbs = (shift>0)? shift : -shift;
179   shiftAbs = (shiftAbs < DFRACT_BITS-1)? shiftAbs : DFRACT_BITS-1;
180   shiftedMantissa = (shift>0)? (b >> shiftAbs) : (a >> shiftAbs);
181   otherMantissa = (shift>0)? a : b;
182   *ptrSum_e = (shift>0)? a_e : b_e;
183 
184   accu = (shiftedMantissa >> 1) + (otherMantissa >> 1);
185   /* shift by 1 bit to avoid overflow */
186 
187   if ( (accu >= (FL2FXCONST_DBL(0.5f) - (FIXP_DBL)1)) || (accu <= FL2FXCONST_DBL(-0.5f)) )
188     *ptrSum_e += 1;
189   else
190     accu = (shiftedMantissa + otherMantissa);
191 
192   *ptrSum = accu;
193 
194 }
195 
196 /************************************************************************/
197 /*!
198   \brief   Divide two values given by mantissa and exponent.
199 
200   Mantissas are in fract format with values between 0 and 1. <br>
201   The base for exponents is 2.  Example:  \f$  a = a\_m * 2^{a\_e}  \f$<br>
202 
203   For performance reasons, the division is based on a table lookup
204   which limits accuracy.
205 */
206 /************************************************************************/
FDK_divide_MantExp(FIXP_SGL a_m,SCHAR a_e,FIXP_SGL b_m,SCHAR b_e,FIXP_SGL * ptrResult_m,SCHAR * ptrResult_e)207 static inline void FDK_divide_MantExp(FIXP_SGL a_m,           /*!< Mantissa of dividend a */
208                                       SCHAR     a_e,          /*!< Exponent of dividend a */
209                                       FIXP_SGL  b_m,          /*!< Mantissa of divisor b */
210                                       SCHAR     b_e,          /*!< Exponent of divisor b */
211                                       FIXP_SGL *ptrResult_m,  /*!< Mantissa of quotient a/b */
212                                       SCHAR    *ptrResult_e)  /*!< Exponent of quotient a/b */
213 
214 {
215   int preShift, postShift, index, shift;
216   FIXP_DBL ratio_m;
217   FIXP_SGL  bInv_m = FL2FXCONST_SGL(0.0f);
218 
219   preShift = CntLeadingZeros(FX_SGL2FX_DBL(b_m));
220 
221   /*
222     Shift b into the range from 0..INV_TABLE_SIZE-1,
223 
224     E.g. 10 bits must be skipped for INV_TABLE_BITS 8:
225     - leave 8 bits as index for table
226     - skip sign bit,
227     - skip first bit of mantissa, because this is always the same (>0.5)
228 
229     We are dealing with energies, so we need not care
230     about negative numbers
231   */
232 
233   /*
234     The first interval has half width so the lowest bit of the index is
235     needed for a doubled resolution.
236   */
237   shift = (FRACT_BITS - 2 - INV_TABLE_BITS - preShift);
238 
239   index = (shift<0)? (LONG)b_m << (-shift) : (LONG)b_m >> shift;
240 
241 
242   /* The index has INV_TABLE_BITS +1 valid bits here. Clear the other bits. */
243   index &= (1 << (INV_TABLE_BITS+1)) - 1;
244 
245     /* Remove offset of half an interval */
246   index--;
247 
248     /* Now the lowest bit is shifted out */
249   index = index >> 1;
250 
251     /* Fetch inversed mantissa from table: */
252   bInv_m = (index<0)? bInv_m : FDK_sbrDecoder_invTable[index];
253 
254     /* Multiply a with the inverse of b: */
255   ratio_m = (index<0)? FX_SGL2FX_DBL(a_m >> 1) : fMultDiv2(bInv_m,a_m);
256 
257   postShift = CntLeadingZeros(ratio_m)-1;
258 
259   *ptrResult_m = FX_DBL2FX_SGL(ratio_m << postShift);
260   *ptrResult_e = a_e - b_e + 1 + preShift - postShift;
261 }
262 
FDK_divide_MantExp(FIXP_DBL a_m,SCHAR a_e,FIXP_DBL b_m,SCHAR b_e,FIXP_DBL * ptrResult_m,SCHAR * ptrResult_e)263 static inline void FDK_divide_MantExp(FIXP_DBL a_m,           /*!< Mantissa of dividend a */
264                                       SCHAR     a_e,          /*!< Exponent of dividend a */
265                                       FIXP_DBL  b_m,          /*!< Mantissa of divisor b */
266                                       SCHAR     b_e,          /*!< Exponent of divisor b */
267                                       FIXP_DBL *ptrResult_m,  /*!< Mantissa of quotient a/b */
268                                       SCHAR    *ptrResult_e)  /*!< Exponent of quotient a/b */
269 
270 {
271   int preShift, postShift, index, shift;
272   FIXP_DBL ratio_m;
273   FIXP_SGL  bInv_m = FL2FXCONST_SGL(0.0f);
274 
275   preShift = CntLeadingZeros(b_m);
276 
277   /*
278     Shift b into the range from 0..INV_TABLE_SIZE-1,
279 
280     E.g. 10 bits must be skipped for INV_TABLE_BITS 8:
281     - leave 8 bits as index for table
282     - skip sign bit,
283     - skip first bit of mantissa, because this is always the same (>0.5)
284 
285     We are dealing with energies, so we need not care
286     about negative numbers
287   */
288 
289   /*
290     The first interval has half width so the lowest bit of the index is
291     needed for a doubled resolution.
292   */
293   shift = (DFRACT_BITS - 2 - INV_TABLE_BITS - preShift);
294 
295   index = (shift<0)? (LONG)b_m << (-shift) : (LONG)b_m >> shift;
296 
297 
298   /* The index has INV_TABLE_BITS +1 valid bits here. Clear the other bits. */
299   index &= (1 << (INV_TABLE_BITS+1)) - 1;
300 
301     /* Remove offset of half an interval */
302   index--;
303 
304     /* Now the lowest bit is shifted out */
305   index = index >> 1;
306 
307     /* Fetch inversed mantissa from table: */
308   bInv_m = (index<0)? bInv_m : FDK_sbrDecoder_invTable[index];
309 
310     /* Multiply a with the inverse of b: */
311   ratio_m = (index<0)? (a_m >> 1) : fMultDiv2(bInv_m,a_m);
312 
313   postShift = CntLeadingZeros(ratio_m)-1;
314 
315   *ptrResult_m = ratio_m << postShift;
316   *ptrResult_e = a_e - b_e + 1 + preShift - postShift;
317 }
318 
319 /*!
320   \brief   Calculate the squareroot of a number given by mantissa and exponent
321 
322   Mantissa is in fract format with values between 0 and 1. <br>
323   The base for the exponent is 2.  Example:  \f$  a = a\_m * 2^{a\_e}  \f$<br>
324   The operand is addressed via pointers and will be overwritten with the result.
325 
326   For performance reasons, the square root is based on a table lookup
327   which limits accuracy.
328 */
FDK_sqrt_MantExp(FIXP_DBL * mantissa,SCHAR * exponent,const SCHAR * destScale)329 static inline void FDK_sqrt_MantExp(FIXP_DBL *mantissa,    /*!< Pointer to mantissa */
330                                     SCHAR    *exponent,
331                                     const SCHAR *destScale)
332 {
333   FIXP_DBL input_m = *mantissa;
334   int   input_e = (int) *exponent;
335   FIXP_DBL result = FL2FXCONST_DBL(0.0f);
336   int    result_e = -FRACT_BITS;
337 
338   /* Call lookup square root, which does internally normalization. */
339   result   = sqrtFixp_lookup(input_m, &input_e);
340   result_e = input_e;
341 
342   /* Write result */
343   if (exponent==destScale) {
344     *mantissa = result;
345     *exponent = result_e;
346   } else {
347     int shift = result_e - *destScale;
348     *mantissa = (shift>=0) ? result << (INT)fixMin(DFRACT_BITS-1,shift)
349                            : result >> (INT)fixMin(DFRACT_BITS-1,-shift);
350     *exponent = *destScale;
351   }
352 }
353 
354 
355 #endif
356