1 /*
2  *  Copyright (c) 2012 The WebRTC project authors. All Rights Reserved.
3  *
4  *  Use of this source code is governed by a BSD-style license
5  *  that can be found in the LICENSE file in the root of the source
6  *  tree. An additional intellectual property rights grant can be found
7  *  in the file PATENTS.  All contributing project authors may
8  *  be found in the AUTHORS file in the root of the source tree.
9  */
10 
11 #include <assert.h>
12 #include <math.h>
13 #include <string.h>
14 #include <stdlib.h>
15 
16 #include "webrtc/common_audio/fft4g.h"
17 #include "webrtc/common_audio/signal_processing/include/signal_processing_library.h"
18 #include "webrtc/modules/audio_processing/ns/noise_suppression.h"
19 #include "webrtc/modules/audio_processing/ns/ns_core.h"
20 #include "webrtc/modules/audio_processing/ns/windows_private.h"
21 
22 // Set Feature Extraction Parameters.
set_feature_extraction_parameters(NoiseSuppressionC * self)23 static void set_feature_extraction_parameters(NoiseSuppressionC* self) {
24   // Bin size of histogram.
25   self->featureExtractionParams.binSizeLrt = 0.1f;
26   self->featureExtractionParams.binSizeSpecFlat = 0.05f;
27   self->featureExtractionParams.binSizeSpecDiff = 0.1f;
28 
29   // Range of histogram over which LRT threshold is computed.
30   self->featureExtractionParams.rangeAvgHistLrt = 1.f;
31 
32   // Scale parameters: multiply dominant peaks of the histograms by scale factor
33   // to obtain thresholds for prior model.
34   // For LRT and spectral difference.
35   self->featureExtractionParams.factor1ModelPars = 1.2f;
36   // For spectral_flatness: used when noise is flatter than speech.
37   self->featureExtractionParams.factor2ModelPars = 0.9f;
38 
39   // Peak limit for spectral flatness (varies between 0 and 1).
40   self->featureExtractionParams.thresPosSpecFlat = 0.6f;
41 
42   // Limit on spacing of two highest peaks in histogram: spacing determined by
43   // bin size.
44   self->featureExtractionParams.limitPeakSpacingSpecFlat =
45       2 * self->featureExtractionParams.binSizeSpecFlat;
46   self->featureExtractionParams.limitPeakSpacingSpecDiff =
47       2 * self->featureExtractionParams.binSizeSpecDiff;
48 
49   // Limit on relevance of second peak.
50   self->featureExtractionParams.limitPeakWeightsSpecFlat = 0.5f;
51   self->featureExtractionParams.limitPeakWeightsSpecDiff = 0.5f;
52 
53   // Fluctuation limit of LRT feature.
54   self->featureExtractionParams.thresFluctLrt = 0.05f;
55 
56   // Limit on the max and min values for the feature thresholds.
57   self->featureExtractionParams.maxLrt = 1.f;
58   self->featureExtractionParams.minLrt = 0.2f;
59 
60   self->featureExtractionParams.maxSpecFlat = 0.95f;
61   self->featureExtractionParams.minSpecFlat = 0.1f;
62 
63   self->featureExtractionParams.maxSpecDiff = 1.f;
64   self->featureExtractionParams.minSpecDiff = 0.16f;
65 
66   // Criteria of weight of histogram peak to accept/reject feature.
67   self->featureExtractionParams.thresWeightSpecFlat =
68       (int)(0.3 * (self->modelUpdatePars[1]));  // For spectral flatness.
69   self->featureExtractionParams.thresWeightSpecDiff =
70       (int)(0.3 * (self->modelUpdatePars[1]));  // For spectral difference.
71 }
72 
73 // Initialize state.
WebRtcNs_InitCore(NoiseSuppressionC * self,uint32_t fs)74 int WebRtcNs_InitCore(NoiseSuppressionC* self, uint32_t fs) {
75   int i;
76   // Check for valid pointer.
77   if (self == NULL) {
78     return -1;
79   }
80 
81   // Initialization of struct.
82   if (fs == 8000 || fs == 16000 || fs == 32000 || fs == 48000) {
83     self->fs = fs;
84   } else {
85     return -1;
86   }
87   self->windShift = 0;
88   // We only support 10ms frames.
89   if (fs == 8000) {
90     self->blockLen = 80;
91     self->anaLen = 128;
92     self->window = kBlocks80w128;
93   } else {
94     self->blockLen = 160;
95     self->anaLen = 256;
96     self->window = kBlocks160w256;
97   }
98   self->magnLen = self->anaLen / 2 + 1;  // Number of frequency bins.
99 
100   // Initialize FFT work arrays.
101   self->ip[0] = 0;  // Setting this triggers initialization.
102   memset(self->dataBuf, 0, sizeof(float) * ANAL_BLOCKL_MAX);
103   WebRtc_rdft(self->anaLen, 1, self->dataBuf, self->ip, self->wfft);
104 
105   memset(self->analyzeBuf, 0, sizeof(float) * ANAL_BLOCKL_MAX);
106   memset(self->dataBuf, 0, sizeof(float) * ANAL_BLOCKL_MAX);
107   memset(self->syntBuf, 0, sizeof(float) * ANAL_BLOCKL_MAX);
108 
109   // For HB processing.
110   memset(self->dataBufHB,
111          0,
112          sizeof(float) * NUM_HIGH_BANDS_MAX * ANAL_BLOCKL_MAX);
113 
114   // For quantile noise estimation.
115   memset(self->quantile, 0, sizeof(float) * HALF_ANAL_BLOCKL);
116   for (i = 0; i < SIMULT * HALF_ANAL_BLOCKL; i++) {
117     self->lquantile[i] = 8.f;
118     self->density[i] = 0.3f;
119   }
120 
121   for (i = 0; i < SIMULT; i++) {
122     self->counter[i] =
123         (int)floor((float)(END_STARTUP_LONG * (i + 1)) / (float)SIMULT);
124   }
125 
126   self->updates = 0;
127 
128   // Wiener filter initialization.
129   for (i = 0; i < HALF_ANAL_BLOCKL; i++) {
130     self->smooth[i] = 1.f;
131   }
132 
133   // Set the aggressiveness: default.
134   self->aggrMode = 0;
135 
136   // Initialize variables for new method.
137   self->priorSpeechProb = 0.5f;  // Prior prob for speech/noise.
138   // Previous analyze mag spectrum.
139   memset(self->magnPrevAnalyze, 0, sizeof(float) * HALF_ANAL_BLOCKL);
140   // Previous process mag spectrum.
141   memset(self->magnPrevProcess, 0, sizeof(float) * HALF_ANAL_BLOCKL);
142   // Current noise-spectrum.
143   memset(self->noise, 0, sizeof(float) * HALF_ANAL_BLOCKL);
144   // Previous noise-spectrum.
145   memset(self->noisePrev, 0, sizeof(float) * HALF_ANAL_BLOCKL);
146   // Conservative noise spectrum estimate.
147   memset(self->magnAvgPause, 0, sizeof(float) * HALF_ANAL_BLOCKL);
148   // For estimation of HB in second pass.
149   memset(self->speechProb, 0, sizeof(float) * HALF_ANAL_BLOCKL);
150   // Initial average magnitude spectrum.
151   memset(self->initMagnEst, 0, sizeof(float) * HALF_ANAL_BLOCKL);
152   for (i = 0; i < HALF_ANAL_BLOCKL; i++) {
153     // Smooth LR (same as threshold).
154     self->logLrtTimeAvg[i] = LRT_FEATURE_THR;
155   }
156 
157   // Feature quantities.
158   // Spectral flatness (start on threshold).
159   self->featureData[0] = SF_FEATURE_THR;
160   self->featureData[1] = 0.f;  // Spectral entropy: not used in this version.
161   self->featureData[2] = 0.f;  // Spectral variance: not used in this version.
162   // Average LRT factor (start on threshold).
163   self->featureData[3] = LRT_FEATURE_THR;
164   // Spectral template diff (start on threshold).
165   self->featureData[4] = SF_FEATURE_THR;
166   self->featureData[5] = 0.f;  // Normalization for spectral difference.
167   // Window time-average of input magnitude spectrum.
168   self->featureData[6] = 0.f;
169 
170   // Histogram quantities: used to estimate/update thresholds for features.
171   memset(self->histLrt, 0, sizeof(int) * HIST_PAR_EST);
172   memset(self->histSpecFlat, 0, sizeof(int) * HIST_PAR_EST);
173   memset(self->histSpecDiff, 0, sizeof(int) * HIST_PAR_EST);
174 
175 
176   self->blockInd = -1;  // Frame counter.
177   // Default threshold for LRT feature.
178   self->priorModelPars[0] = LRT_FEATURE_THR;
179   // Threshold for spectral flatness: determined on-line.
180   self->priorModelPars[1] = 0.5f;
181   // sgn_map par for spectral measure: 1 for flatness measure.
182   self->priorModelPars[2] = 1.f;
183   // Threshold for template-difference feature: determined on-line.
184   self->priorModelPars[3] = 0.5f;
185   // Default weighting parameter for LRT feature.
186   self->priorModelPars[4] = 1.f;
187   // Default weighting parameter for spectral flatness feature.
188   self->priorModelPars[5] = 0.f;
189   // Default weighting parameter for spectral difference feature.
190   self->priorModelPars[6] = 0.f;
191 
192   // Update flag for parameters:
193   // 0 no update, 1 = update once, 2 = update every window.
194   self->modelUpdatePars[0] = 2;
195   self->modelUpdatePars[1] = 500;  // Window for update.
196   // Counter for update of conservative noise spectrum.
197   self->modelUpdatePars[2] = 0;
198   // Counter if the feature thresholds are updated during the sequence.
199   self->modelUpdatePars[3] = self->modelUpdatePars[1];
200 
201   self->signalEnergy = 0.0;
202   self->sumMagn = 0.0;
203   self->whiteNoiseLevel = 0.0;
204   self->pinkNoiseNumerator = 0.0;
205   self->pinkNoiseExp = 0.0;
206 
207   set_feature_extraction_parameters(self);
208 
209   // Default mode.
210   WebRtcNs_set_policy_core(self, 0);
211 
212   self->initFlag = 1;
213   return 0;
214 }
215 
216 // Estimate noise.
NoiseEstimation(NoiseSuppressionC * self,float * magn,float * noise)217 static void NoiseEstimation(NoiseSuppressionC* self,
218                             float* magn,
219                             float* noise) {
220   size_t i, s, offset;
221   float lmagn[HALF_ANAL_BLOCKL], delta;
222 
223   if (self->updates < END_STARTUP_LONG) {
224     self->updates++;
225   }
226 
227   for (i = 0; i < self->magnLen; i++) {
228     lmagn[i] = (float)log(magn[i]);
229   }
230 
231   // Loop over simultaneous estimates.
232   for (s = 0; s < SIMULT; s++) {
233     offset = s * self->magnLen;
234 
235     // newquantest(...)
236     for (i = 0; i < self->magnLen; i++) {
237       // Compute delta.
238       if (self->density[offset + i] > 1.0) {
239         delta = FACTOR * 1.f / self->density[offset + i];
240       } else {
241         delta = FACTOR;
242       }
243 
244       // Update log quantile estimate.
245       if (lmagn[i] > self->lquantile[offset + i]) {
246         self->lquantile[offset + i] +=
247             QUANTILE * delta / (float)(self->counter[s] + 1);
248       } else {
249         self->lquantile[offset + i] -=
250             (1.f - QUANTILE) * delta / (float)(self->counter[s] + 1);
251       }
252 
253       // Update density estimate.
254       if (fabs(lmagn[i] - self->lquantile[offset + i]) < WIDTH) {
255         self->density[offset + i] =
256             ((float)self->counter[s] * self->density[offset + i] +
257              1.f / (2.f * WIDTH)) /
258             (float)(self->counter[s] + 1);
259       }
260     }  // End loop over magnitude spectrum.
261 
262     if (self->counter[s] >= END_STARTUP_LONG) {
263       self->counter[s] = 0;
264       if (self->updates >= END_STARTUP_LONG) {
265         for (i = 0; i < self->magnLen; i++) {
266           self->quantile[i] = (float)exp(self->lquantile[offset + i]);
267         }
268       }
269     }
270 
271     self->counter[s]++;
272   }  // End loop over simultaneous estimates.
273 
274   // Sequentially update the noise during startup.
275   if (self->updates < END_STARTUP_LONG) {
276     // Use the last "s" to get noise during startup that differ from zero.
277     for (i = 0; i < self->magnLen; i++) {
278       self->quantile[i] = (float)exp(self->lquantile[offset + i]);
279     }
280   }
281 
282   for (i = 0; i < self->magnLen; i++) {
283     noise[i] = self->quantile[i];
284   }
285 }
286 
287 // Extract thresholds for feature parameters.
288 // Histograms are computed over some window size (given by
289 // self->modelUpdatePars[1]).
290 // Thresholds and weights are extracted every window.
291 // |flag| = 0 updates histogram only, |flag| = 1 computes the threshold/weights.
292 // Threshold and weights are returned in: self->priorModelPars.
FeatureParameterExtraction(NoiseSuppressionC * self,int flag)293 static void FeatureParameterExtraction(NoiseSuppressionC* self, int flag) {
294   int i, useFeatureSpecFlat, useFeatureSpecDiff, numHistLrt;
295   int maxPeak1, maxPeak2;
296   int weightPeak1SpecFlat, weightPeak2SpecFlat, weightPeak1SpecDiff,
297       weightPeak2SpecDiff;
298 
299   float binMid, featureSum;
300   float posPeak1SpecFlat, posPeak2SpecFlat, posPeak1SpecDiff, posPeak2SpecDiff;
301   float fluctLrt, avgHistLrt, avgSquareHistLrt, avgHistLrtCompl;
302 
303   // 3 features: LRT, flatness, difference.
304   // lrt_feature = self->featureData[3];
305   // flat_feature = self->featureData[0];
306   // diff_feature = self->featureData[4];
307 
308   // Update histograms.
309   if (flag == 0) {
310     // LRT
311     if ((self->featureData[3] <
312          HIST_PAR_EST * self->featureExtractionParams.binSizeLrt) &&
313         (self->featureData[3] >= 0.0)) {
314       i = (int)(self->featureData[3] /
315                 self->featureExtractionParams.binSizeLrt);
316       self->histLrt[i]++;
317     }
318     // Spectral flatness.
319     if ((self->featureData[0] <
320          HIST_PAR_EST * self->featureExtractionParams.binSizeSpecFlat) &&
321         (self->featureData[0] >= 0.0)) {
322       i = (int)(self->featureData[0] /
323                 self->featureExtractionParams.binSizeSpecFlat);
324       self->histSpecFlat[i]++;
325     }
326     // Spectral difference.
327     if ((self->featureData[4] <
328          HIST_PAR_EST * self->featureExtractionParams.binSizeSpecDiff) &&
329         (self->featureData[4] >= 0.0)) {
330       i = (int)(self->featureData[4] /
331                 self->featureExtractionParams.binSizeSpecDiff);
332       self->histSpecDiff[i]++;
333     }
334   }
335 
336   // Extract parameters for speech/noise probability.
337   if (flag == 1) {
338     // LRT feature: compute the average over
339     // self->featureExtractionParams.rangeAvgHistLrt.
340     avgHistLrt = 0.0;
341     avgHistLrtCompl = 0.0;
342     avgSquareHistLrt = 0.0;
343     numHistLrt = 0;
344     for (i = 0; i < HIST_PAR_EST; i++) {
345       binMid = ((float)i + 0.5f) * self->featureExtractionParams.binSizeLrt;
346       if (binMid <= self->featureExtractionParams.rangeAvgHistLrt) {
347         avgHistLrt += self->histLrt[i] * binMid;
348         numHistLrt += self->histLrt[i];
349       }
350       avgSquareHistLrt += self->histLrt[i] * binMid * binMid;
351       avgHistLrtCompl += self->histLrt[i] * binMid;
352     }
353     if (numHistLrt > 0) {
354       avgHistLrt = avgHistLrt / ((float)numHistLrt);
355     }
356     avgHistLrtCompl = avgHistLrtCompl / ((float)self->modelUpdatePars[1]);
357     avgSquareHistLrt = avgSquareHistLrt / ((float)self->modelUpdatePars[1]);
358     fluctLrt = avgSquareHistLrt - avgHistLrt * avgHistLrtCompl;
359     // Get threshold for LRT feature.
360     if (fluctLrt < self->featureExtractionParams.thresFluctLrt) {
361       // Very low fluctuation, so likely noise.
362       self->priorModelPars[0] = self->featureExtractionParams.maxLrt;
363     } else {
364       self->priorModelPars[0] =
365           self->featureExtractionParams.factor1ModelPars * avgHistLrt;
366       // Check if value is within min/max range.
367       if (self->priorModelPars[0] < self->featureExtractionParams.minLrt) {
368         self->priorModelPars[0] = self->featureExtractionParams.minLrt;
369       }
370       if (self->priorModelPars[0] > self->featureExtractionParams.maxLrt) {
371         self->priorModelPars[0] = self->featureExtractionParams.maxLrt;
372       }
373     }
374     // Done with LRT feature.
375 
376     // For spectral flatness and spectral difference: compute the main peaks of
377     // histogram.
378     maxPeak1 = 0;
379     maxPeak2 = 0;
380     posPeak1SpecFlat = 0.0;
381     posPeak2SpecFlat = 0.0;
382     weightPeak1SpecFlat = 0;
383     weightPeak2SpecFlat = 0;
384 
385     // Peaks for flatness.
386     for (i = 0; i < HIST_PAR_EST; i++) {
387       binMid =
388           (i + 0.5f) * self->featureExtractionParams.binSizeSpecFlat;
389       if (self->histSpecFlat[i] > maxPeak1) {
390         // Found new "first" peak.
391         maxPeak2 = maxPeak1;
392         weightPeak2SpecFlat = weightPeak1SpecFlat;
393         posPeak2SpecFlat = posPeak1SpecFlat;
394 
395         maxPeak1 = self->histSpecFlat[i];
396         weightPeak1SpecFlat = self->histSpecFlat[i];
397         posPeak1SpecFlat = binMid;
398       } else if (self->histSpecFlat[i] > maxPeak2) {
399         // Found new "second" peak.
400         maxPeak2 = self->histSpecFlat[i];
401         weightPeak2SpecFlat = self->histSpecFlat[i];
402         posPeak2SpecFlat = binMid;
403       }
404     }
405 
406     // Compute two peaks for spectral difference.
407     maxPeak1 = 0;
408     maxPeak2 = 0;
409     posPeak1SpecDiff = 0.0;
410     posPeak2SpecDiff = 0.0;
411     weightPeak1SpecDiff = 0;
412     weightPeak2SpecDiff = 0;
413     // Peaks for spectral difference.
414     for (i = 0; i < HIST_PAR_EST; i++) {
415       binMid =
416           ((float)i + 0.5f) * self->featureExtractionParams.binSizeSpecDiff;
417       if (self->histSpecDiff[i] > maxPeak1) {
418         // Found new "first" peak.
419         maxPeak2 = maxPeak1;
420         weightPeak2SpecDiff = weightPeak1SpecDiff;
421         posPeak2SpecDiff = posPeak1SpecDiff;
422 
423         maxPeak1 = self->histSpecDiff[i];
424         weightPeak1SpecDiff = self->histSpecDiff[i];
425         posPeak1SpecDiff = binMid;
426       } else if (self->histSpecDiff[i] > maxPeak2) {
427         // Found new "second" peak.
428         maxPeak2 = self->histSpecDiff[i];
429         weightPeak2SpecDiff = self->histSpecDiff[i];
430         posPeak2SpecDiff = binMid;
431       }
432     }
433 
434     // For spectrum flatness feature.
435     useFeatureSpecFlat = 1;
436     // Merge the two peaks if they are close.
437     if ((fabs(posPeak2SpecFlat - posPeak1SpecFlat) <
438          self->featureExtractionParams.limitPeakSpacingSpecFlat) &&
439         (weightPeak2SpecFlat >
440          self->featureExtractionParams.limitPeakWeightsSpecFlat *
441              weightPeak1SpecFlat)) {
442       weightPeak1SpecFlat += weightPeak2SpecFlat;
443       posPeak1SpecFlat = 0.5f * (posPeak1SpecFlat + posPeak2SpecFlat);
444     }
445     // Reject if weight of peaks is not large enough, or peak value too small.
446     if (weightPeak1SpecFlat <
447             self->featureExtractionParams.thresWeightSpecFlat ||
448         posPeak1SpecFlat < self->featureExtractionParams.thresPosSpecFlat) {
449       useFeatureSpecFlat = 0;
450     }
451     // If selected, get the threshold.
452     if (useFeatureSpecFlat == 1) {
453       // Compute the threshold.
454       self->priorModelPars[1] =
455           self->featureExtractionParams.factor2ModelPars * posPeak1SpecFlat;
456       // Check if value is within min/max range.
457       if (self->priorModelPars[1] < self->featureExtractionParams.minSpecFlat) {
458         self->priorModelPars[1] = self->featureExtractionParams.minSpecFlat;
459       }
460       if (self->priorModelPars[1] > self->featureExtractionParams.maxSpecFlat) {
461         self->priorModelPars[1] = self->featureExtractionParams.maxSpecFlat;
462       }
463     }
464     // Done with flatness feature.
465 
466     // For template feature.
467     useFeatureSpecDiff = 1;
468     // Merge the two peaks if they are close.
469     if ((fabs(posPeak2SpecDiff - posPeak1SpecDiff) <
470          self->featureExtractionParams.limitPeakSpacingSpecDiff) &&
471         (weightPeak2SpecDiff >
472          self->featureExtractionParams.limitPeakWeightsSpecDiff *
473              weightPeak1SpecDiff)) {
474       weightPeak1SpecDiff += weightPeak2SpecDiff;
475       posPeak1SpecDiff = 0.5f * (posPeak1SpecDiff + posPeak2SpecDiff);
476     }
477     // Get the threshold value.
478     self->priorModelPars[3] =
479         self->featureExtractionParams.factor1ModelPars * posPeak1SpecDiff;
480     // Reject if weight of peaks is not large enough.
481     if (weightPeak1SpecDiff <
482         self->featureExtractionParams.thresWeightSpecDiff) {
483       useFeatureSpecDiff = 0;
484     }
485     // Check if value is within min/max range.
486     if (self->priorModelPars[3] < self->featureExtractionParams.minSpecDiff) {
487       self->priorModelPars[3] = self->featureExtractionParams.minSpecDiff;
488     }
489     if (self->priorModelPars[3] > self->featureExtractionParams.maxSpecDiff) {
490       self->priorModelPars[3] = self->featureExtractionParams.maxSpecDiff;
491     }
492     // Done with spectral difference feature.
493 
494     // Don't use template feature if fluctuation of LRT feature is very low:
495     // most likely just noise state.
496     if (fluctLrt < self->featureExtractionParams.thresFluctLrt) {
497       useFeatureSpecDiff = 0;
498     }
499 
500     // Select the weights between the features.
501     // self->priorModelPars[4] is weight for LRT: always selected.
502     // self->priorModelPars[5] is weight for spectral flatness.
503     // self->priorModelPars[6] is weight for spectral difference.
504     featureSum = (float)(1 + useFeatureSpecFlat + useFeatureSpecDiff);
505     self->priorModelPars[4] = 1.f / featureSum;
506     self->priorModelPars[5] = ((float)useFeatureSpecFlat) / featureSum;
507     self->priorModelPars[6] = ((float)useFeatureSpecDiff) / featureSum;
508 
509     // Set hists to zero for next update.
510     if (self->modelUpdatePars[0] >= 1) {
511       for (i = 0; i < HIST_PAR_EST; i++) {
512         self->histLrt[i] = 0;
513         self->histSpecFlat[i] = 0;
514         self->histSpecDiff[i] = 0;
515       }
516     }
517   }  // End of flag == 1.
518 }
519 
520 // Compute spectral flatness on input spectrum.
521 // |magnIn| is the magnitude spectrum.
522 // Spectral flatness is returned in self->featureData[0].
ComputeSpectralFlatness(NoiseSuppressionC * self,const float * magnIn)523 static void ComputeSpectralFlatness(NoiseSuppressionC* self,
524                                     const float* magnIn) {
525   size_t i;
526   size_t shiftLP = 1;  // Option to remove first bin(s) from spectral measures.
527   float avgSpectralFlatnessNum, avgSpectralFlatnessDen, spectralTmp;
528 
529   // Compute spectral measures.
530   // For flatness.
531   avgSpectralFlatnessNum = 0.0;
532   avgSpectralFlatnessDen = self->sumMagn;
533   for (i = 0; i < shiftLP; i++) {
534     avgSpectralFlatnessDen -= magnIn[i];
535   }
536   // Compute log of ratio of the geometric to arithmetic mean: check for log(0)
537   // case.
538   for (i = shiftLP; i < self->magnLen; i++) {
539     if (magnIn[i] > 0.0) {
540       avgSpectralFlatnessNum += (float)log(magnIn[i]);
541     } else {
542       self->featureData[0] -= SPECT_FL_TAVG * self->featureData[0];
543       return;
544     }
545   }
546   // Normalize.
547   avgSpectralFlatnessDen = avgSpectralFlatnessDen / self->magnLen;
548   avgSpectralFlatnessNum = avgSpectralFlatnessNum / self->magnLen;
549 
550   // Ratio and inverse log: check for case of log(0).
551   spectralTmp = (float)exp(avgSpectralFlatnessNum) / avgSpectralFlatnessDen;
552 
553   // Time-avg update of spectral flatness feature.
554   self->featureData[0] += SPECT_FL_TAVG * (spectralTmp - self->featureData[0]);
555   // Done with flatness feature.
556 }
557 
558 // Compute prior and post SNR based on quantile noise estimation.
559 // Compute DD estimate of prior SNR.
560 // Inputs:
561 //   * |magn| is the signal magnitude spectrum estimate.
562 //   * |noise| is the magnitude noise spectrum estimate.
563 // Outputs:
564 //   * |snrLocPrior| is the computed prior SNR.
565 //   * |snrLocPost| is the computed post SNR.
ComputeSnr(const NoiseSuppressionC * self,const float * magn,const float * noise,float * snrLocPrior,float * snrLocPost)566 static void ComputeSnr(const NoiseSuppressionC* self,
567                        const float* magn,
568                        const float* noise,
569                        float* snrLocPrior,
570                        float* snrLocPost) {
571   size_t i;
572 
573   for (i = 0; i < self->magnLen; i++) {
574     // Previous post SNR.
575     // Previous estimate: based on previous frame with gain filter.
576     float previousEstimateStsa = self->magnPrevAnalyze[i] /
577         (self->noisePrev[i] + 0.0001f) * self->smooth[i];
578     // Post SNR.
579     snrLocPost[i] = 0.f;
580     if (magn[i] > noise[i]) {
581       snrLocPost[i] = magn[i] / (noise[i] + 0.0001f) - 1.f;
582     }
583     // DD estimate is sum of two terms: current estimate and previous estimate.
584     // Directed decision update of snrPrior.
585     snrLocPrior[i] =
586         DD_PR_SNR * previousEstimateStsa + (1.f - DD_PR_SNR) * snrLocPost[i];
587   }  // End of loop over frequencies.
588 }
589 
590 // Compute the difference measure between input spectrum and a template/learned
591 // noise spectrum.
592 // |magnIn| is the input spectrum.
593 // The reference/template spectrum is self->magnAvgPause[i].
594 // Returns (normalized) spectral difference in self->featureData[4].
ComputeSpectralDifference(NoiseSuppressionC * self,const float * magnIn)595 static void ComputeSpectralDifference(NoiseSuppressionC* self,
596                                       const float* magnIn) {
597   // avgDiffNormMagn = var(magnIn) - cov(magnIn, magnAvgPause)^2 /
598   // var(magnAvgPause)
599   size_t i;
600   float avgPause, avgMagn, covMagnPause, varPause, varMagn, avgDiffNormMagn;
601 
602   avgPause = 0.0;
603   avgMagn = self->sumMagn;
604   // Compute average quantities.
605   for (i = 0; i < self->magnLen; i++) {
606     // Conservative smooth noise spectrum from pause frames.
607     avgPause += self->magnAvgPause[i];
608   }
609   avgPause /= self->magnLen;
610   avgMagn /= self->magnLen;
611 
612   covMagnPause = 0.0;
613   varPause = 0.0;
614   varMagn = 0.0;
615   // Compute variance and covariance quantities.
616   for (i = 0; i < self->magnLen; i++) {
617     covMagnPause += (magnIn[i] - avgMagn) * (self->magnAvgPause[i] - avgPause);
618     varPause +=
619         (self->magnAvgPause[i] - avgPause) * (self->magnAvgPause[i] - avgPause);
620     varMagn += (magnIn[i] - avgMagn) * (magnIn[i] - avgMagn);
621   }
622   covMagnPause /= self->magnLen;
623   varPause /= self->magnLen;
624   varMagn /= self->magnLen;
625   // Update of average magnitude spectrum.
626   self->featureData[6] += self->signalEnergy;
627 
628   avgDiffNormMagn =
629       varMagn - (covMagnPause * covMagnPause) / (varPause + 0.0001f);
630   // Normalize and compute time-avg update of difference feature.
631   avgDiffNormMagn = (float)(avgDiffNormMagn / (self->featureData[5] + 0.0001f));
632   self->featureData[4] +=
633       SPECT_DIFF_TAVG * (avgDiffNormMagn - self->featureData[4]);
634 }
635 
636 // Compute speech/noise probability.
637 // Speech/noise probability is returned in |probSpeechFinal|.
638 // |magn| is the input magnitude spectrum.
639 // |noise| is the noise spectrum.
640 // |snrLocPrior| is the prior SNR for each frequency.
641 // |snrLocPost| is the post SNR for each frequency.
SpeechNoiseProb(NoiseSuppressionC * self,float * probSpeechFinal,const float * snrLocPrior,const float * snrLocPost)642 static void SpeechNoiseProb(NoiseSuppressionC* self,
643                             float* probSpeechFinal,
644                             const float* snrLocPrior,
645                             const float* snrLocPost) {
646   size_t i;
647   int sgnMap;
648   float invLrt, gainPrior, indPrior;
649   float logLrtTimeAvgKsum, besselTmp;
650   float indicator0, indicator1, indicator2;
651   float tmpFloat1, tmpFloat2;
652   float weightIndPrior0, weightIndPrior1, weightIndPrior2;
653   float threshPrior0, threshPrior1, threshPrior2;
654   float widthPrior, widthPrior0, widthPrior1, widthPrior2;
655 
656   widthPrior0 = WIDTH_PR_MAP;
657   // Width for pause region: lower range, so increase width in tanh map.
658   widthPrior1 = 2.f * WIDTH_PR_MAP;
659   widthPrior2 = 2.f * WIDTH_PR_MAP;  // For spectral-difference measure.
660 
661   // Threshold parameters for features.
662   threshPrior0 = self->priorModelPars[0];
663   threshPrior1 = self->priorModelPars[1];
664   threshPrior2 = self->priorModelPars[3];
665 
666   // Sign for flatness feature.
667   sgnMap = (int)(self->priorModelPars[2]);
668 
669   // Weight parameters for features.
670   weightIndPrior0 = self->priorModelPars[4];
671   weightIndPrior1 = self->priorModelPars[5];
672   weightIndPrior2 = self->priorModelPars[6];
673 
674   // Compute feature based on average LR factor.
675   // This is the average over all frequencies of the smooth log LRT.
676   logLrtTimeAvgKsum = 0.0;
677   for (i = 0; i < self->magnLen; i++) {
678     tmpFloat1 = 1.f + 2.f * snrLocPrior[i];
679     tmpFloat2 = 2.f * snrLocPrior[i] / (tmpFloat1 + 0.0001f);
680     besselTmp = (snrLocPost[i] + 1.f) * tmpFloat2;
681     self->logLrtTimeAvg[i] +=
682         LRT_TAVG * (besselTmp - (float)log(tmpFloat1) - self->logLrtTimeAvg[i]);
683     logLrtTimeAvgKsum += self->logLrtTimeAvg[i];
684   }
685   logLrtTimeAvgKsum = (float)logLrtTimeAvgKsum / (self->magnLen);
686   self->featureData[3] = logLrtTimeAvgKsum;
687   // Done with computation of LR factor.
688 
689   // Compute the indicator functions.
690   // Average LRT feature.
691   widthPrior = widthPrior0;
692   // Use larger width in tanh map for pause regions.
693   if (logLrtTimeAvgKsum < threshPrior0) {
694     widthPrior = widthPrior1;
695   }
696   // Compute indicator function: sigmoid map.
697   indicator0 =
698       0.5f *
699       ((float)tanh(widthPrior * (logLrtTimeAvgKsum - threshPrior0)) + 1.f);
700 
701   // Spectral flatness feature.
702   tmpFloat1 = self->featureData[0];
703   widthPrior = widthPrior0;
704   // Use larger width in tanh map for pause regions.
705   if (sgnMap == 1 && (tmpFloat1 > threshPrior1)) {
706     widthPrior = widthPrior1;
707   }
708   if (sgnMap == -1 && (tmpFloat1 < threshPrior1)) {
709     widthPrior = widthPrior1;
710   }
711   // Compute indicator function: sigmoid map.
712   indicator1 =
713       0.5f *
714       ((float)tanh((float)sgnMap * widthPrior * (threshPrior1 - tmpFloat1)) +
715        1.f);
716 
717   // For template spectrum-difference.
718   tmpFloat1 = self->featureData[4];
719   widthPrior = widthPrior0;
720   // Use larger width in tanh map for pause regions.
721   if (tmpFloat1 < threshPrior2) {
722     widthPrior = widthPrior2;
723   }
724   // Compute indicator function: sigmoid map.
725   indicator2 =
726       0.5f * ((float)tanh(widthPrior * (tmpFloat1 - threshPrior2)) + 1.f);
727 
728   // Combine the indicator function with the feature weights.
729   indPrior = weightIndPrior0 * indicator0 + weightIndPrior1 * indicator1 +
730              weightIndPrior2 * indicator2;
731   // Done with computing indicator function.
732 
733   // Compute the prior probability.
734   self->priorSpeechProb += PRIOR_UPDATE * (indPrior - self->priorSpeechProb);
735   // Make sure probabilities are within range: keep floor to 0.01.
736   if (self->priorSpeechProb > 1.f) {
737     self->priorSpeechProb = 1.f;
738   }
739   if (self->priorSpeechProb < 0.01f) {
740     self->priorSpeechProb = 0.01f;
741   }
742 
743   // Final speech probability: combine prior model with LR factor:.
744   gainPrior = (1.f - self->priorSpeechProb) / (self->priorSpeechProb + 0.0001f);
745   for (i = 0; i < self->magnLen; i++) {
746     invLrt = (float)exp(-self->logLrtTimeAvg[i]);
747     invLrt = (float)gainPrior * invLrt;
748     probSpeechFinal[i] = 1.f / (1.f + invLrt);
749   }
750 }
751 
752 // Update the noise features.
753 // Inputs:
754 //   * |magn| is the signal magnitude spectrum estimate.
755 //   * |updateParsFlag| is an update flag for parameters.
FeatureUpdate(NoiseSuppressionC * self,const float * magn,int updateParsFlag)756 static void FeatureUpdate(NoiseSuppressionC* self,
757                           const float* magn,
758                           int updateParsFlag) {
759   // Compute spectral flatness on input spectrum.
760   ComputeSpectralFlatness(self, magn);
761   // Compute difference of input spectrum with learned/estimated noise spectrum.
762   ComputeSpectralDifference(self, magn);
763   // Compute histograms for parameter decisions (thresholds and weights for
764   // features).
765   // Parameters are extracted once every window time.
766   // (=self->modelUpdatePars[1])
767   if (updateParsFlag >= 1) {
768     // Counter update.
769     self->modelUpdatePars[3]--;
770     // Update histogram.
771     if (self->modelUpdatePars[3] > 0) {
772       FeatureParameterExtraction(self, 0);
773     }
774     // Compute model parameters.
775     if (self->modelUpdatePars[3] == 0) {
776       FeatureParameterExtraction(self, 1);
777       self->modelUpdatePars[3] = self->modelUpdatePars[1];
778       // If wish to update only once, set flag to zero.
779       if (updateParsFlag == 1) {
780         self->modelUpdatePars[0] = 0;
781       } else {
782         // Update every window:
783         // Get normalization for spectral difference for next window estimate.
784         self->featureData[6] =
785             self->featureData[6] / ((float)self->modelUpdatePars[1]);
786         self->featureData[5] =
787             0.5f * (self->featureData[6] + self->featureData[5]);
788         self->featureData[6] = 0.f;
789       }
790     }
791   }
792 }
793 
794 // Update the noise estimate.
795 // Inputs:
796 //   * |magn| is the signal magnitude spectrum estimate.
797 //   * |snrLocPrior| is the prior SNR.
798 //   * |snrLocPost| is the post SNR.
799 // Output:
800 //   * |noise| is the updated noise magnitude spectrum estimate.
UpdateNoiseEstimate(NoiseSuppressionC * self,const float * magn,const float * snrLocPrior,const float * snrLocPost,float * noise)801 static void UpdateNoiseEstimate(NoiseSuppressionC* self,
802                                 const float* magn,
803                                 const float* snrLocPrior,
804                                 const float* snrLocPost,
805                                 float* noise) {
806   size_t i;
807   float probSpeech, probNonSpeech;
808   // Time-avg parameter for noise update.
809   float gammaNoiseTmp = NOISE_UPDATE;
810   float gammaNoiseOld;
811   float noiseUpdateTmp;
812 
813   for (i = 0; i < self->magnLen; i++) {
814     probSpeech = self->speechProb[i];
815     probNonSpeech = 1.f - probSpeech;
816     // Temporary noise update:
817     // Use it for speech frames if update value is less than previous.
818     noiseUpdateTmp = gammaNoiseTmp * self->noisePrev[i] +
819                      (1.f - gammaNoiseTmp) * (probNonSpeech * magn[i] +
820                                               probSpeech * self->noisePrev[i]);
821     // Time-constant based on speech/noise state.
822     gammaNoiseOld = gammaNoiseTmp;
823     gammaNoiseTmp = NOISE_UPDATE;
824     // Increase gamma (i.e., less noise update) for frame likely to be speech.
825     if (probSpeech > PROB_RANGE) {
826       gammaNoiseTmp = SPEECH_UPDATE;
827     }
828     // Conservative noise update.
829     if (probSpeech < PROB_RANGE) {
830       self->magnAvgPause[i] += GAMMA_PAUSE * (magn[i] - self->magnAvgPause[i]);
831     }
832     // Noise update.
833     if (gammaNoiseTmp == gammaNoiseOld) {
834       noise[i] = noiseUpdateTmp;
835     } else {
836       noise[i] = gammaNoiseTmp * self->noisePrev[i] +
837                  (1.f - gammaNoiseTmp) * (probNonSpeech * magn[i] +
838                                           probSpeech * self->noisePrev[i]);
839       // Allow for noise update downwards:
840       // If noise update decreases the noise, it is safe, so allow it to
841       // happen.
842       if (noiseUpdateTmp < noise[i]) {
843         noise[i] = noiseUpdateTmp;
844       }
845     }
846   }  // End of freq loop.
847 }
848 
849 // Updates |buffer| with a new |frame|.
850 // Inputs:
851 //   * |frame| is a new speech frame or NULL for setting to zero.
852 //   * |frame_length| is the length of the new frame.
853 //   * |buffer_length| is the length of the buffer.
854 // Output:
855 //   * |buffer| is the updated buffer.
UpdateBuffer(const float * frame,size_t frame_length,size_t buffer_length,float * buffer)856 static void UpdateBuffer(const float* frame,
857                          size_t frame_length,
858                          size_t buffer_length,
859                          float* buffer) {
860   assert(buffer_length < 2 * frame_length);
861 
862   memcpy(buffer,
863          buffer + frame_length,
864          sizeof(*buffer) * (buffer_length - frame_length));
865   if (frame) {
866     memcpy(buffer + buffer_length - frame_length,
867            frame,
868            sizeof(*buffer) * frame_length);
869   } else {
870     memset(buffer + buffer_length - frame_length,
871            0,
872            sizeof(*buffer) * frame_length);
873   }
874 }
875 
876 // Transforms the signal from time to frequency domain.
877 // Inputs:
878 //   * |time_data| is the signal in the time domain.
879 //   * |time_data_length| is the length of the analysis buffer.
880 //   * |magnitude_length| is the length of the spectrum magnitude, which equals
881 //     the length of both |real| and |imag| (time_data_length / 2 + 1).
882 // Outputs:
883 //   * |time_data| is the signal in the frequency domain.
884 //   * |real| is the real part of the frequency domain.
885 //   * |imag| is the imaginary part of the frequency domain.
886 //   * |magn| is the calculated signal magnitude in the frequency domain.
FFT(NoiseSuppressionC * self,float * time_data,size_t time_data_length,size_t magnitude_length,float * real,float * imag,float * magn)887 static void FFT(NoiseSuppressionC* self,
888                 float* time_data,
889                 size_t time_data_length,
890                 size_t magnitude_length,
891                 float* real,
892                 float* imag,
893                 float* magn) {
894   size_t i;
895 
896   assert(magnitude_length == time_data_length / 2 + 1);
897 
898   WebRtc_rdft(time_data_length, 1, time_data, self->ip, self->wfft);
899 
900   imag[0] = 0;
901   real[0] = time_data[0];
902   magn[0] = fabsf(real[0]) + 1.f;
903   imag[magnitude_length - 1] = 0;
904   real[magnitude_length - 1] = time_data[1];
905   magn[magnitude_length - 1] = fabsf(real[magnitude_length - 1]) + 1.f;
906   for (i = 1; i < magnitude_length - 1; ++i) {
907     real[i] = time_data[2 * i];
908     imag[i] = time_data[2 * i + 1];
909     // Magnitude spectrum.
910     magn[i] = sqrtf(real[i] * real[i] + imag[i] * imag[i]) + 1.f;
911   }
912 }
913 
914 // Transforms the signal from frequency to time domain.
915 // Inputs:
916 //   * |real| is the real part of the frequency domain.
917 //   * |imag| is the imaginary part of the frequency domain.
918 //   * |magnitude_length| is the length of the spectrum magnitude, which equals
919 //     the length of both |real| and |imag|.
920 //   * |time_data_length| is the length of the analysis buffer
921 //     (2 * (magnitude_length - 1)).
922 // Output:
923 //   * |time_data| is the signal in the time domain.
IFFT(NoiseSuppressionC * self,const float * real,const float * imag,size_t magnitude_length,size_t time_data_length,float * time_data)924 static void IFFT(NoiseSuppressionC* self,
925                  const float* real,
926                  const float* imag,
927                  size_t magnitude_length,
928                  size_t time_data_length,
929                  float* time_data) {
930   size_t i;
931 
932   assert(time_data_length == 2 * (magnitude_length - 1));
933 
934   time_data[0] = real[0];
935   time_data[1] = real[magnitude_length - 1];
936   for (i = 1; i < magnitude_length - 1; ++i) {
937     time_data[2 * i] = real[i];
938     time_data[2 * i + 1] = imag[i];
939   }
940   WebRtc_rdft(time_data_length, -1, time_data, self->ip, self->wfft);
941 
942   for (i = 0; i < time_data_length; ++i) {
943     time_data[i] *= 2.f / time_data_length;  // FFT scaling.
944   }
945 }
946 
947 // Calculates the energy of a buffer.
948 // Inputs:
949 //   * |buffer| is the buffer over which the energy is calculated.
950 //   * |length| is the length of the buffer.
951 // Returns the calculated energy.
Energy(const float * buffer,size_t length)952 static float Energy(const float* buffer, size_t length) {
953   size_t i;
954   float energy = 0.f;
955 
956   for (i = 0; i < length; ++i) {
957     energy += buffer[i] * buffer[i];
958   }
959 
960   return energy;
961 }
962 
963 // Windows a buffer.
964 // Inputs:
965 //   * |window| is the window by which to multiply.
966 //   * |data| is the data without windowing.
967 //   * |length| is the length of the window and data.
968 // Output:
969 //   * |data_windowed| is the windowed data.
Windowing(const float * window,const float * data,size_t length,float * data_windowed)970 static void Windowing(const float* window,
971                       const float* data,
972                       size_t length,
973                       float* data_windowed) {
974   size_t i;
975 
976   for (i = 0; i < length; ++i) {
977     data_windowed[i] = window[i] * data[i];
978   }
979 }
980 
981 // Estimate prior SNR decision-directed and compute DD based Wiener Filter.
982 // Input:
983 //   * |magn| is the signal magnitude spectrum estimate.
984 // Output:
985 //   * |theFilter| is the frequency response of the computed Wiener filter.
ComputeDdBasedWienerFilter(const NoiseSuppressionC * self,const float * magn,float * theFilter)986 static void ComputeDdBasedWienerFilter(const NoiseSuppressionC* self,
987                                        const float* magn,
988                                        float* theFilter) {
989   size_t i;
990   float snrPrior, previousEstimateStsa, currentEstimateStsa;
991 
992   for (i = 0; i < self->magnLen; i++) {
993     // Previous estimate: based on previous frame with gain filter.
994     previousEstimateStsa = self->magnPrevProcess[i] /
995                            (self->noisePrev[i] + 0.0001f) * self->smooth[i];
996     // Post and prior SNR.
997     currentEstimateStsa = 0.f;
998     if (magn[i] > self->noise[i]) {
999       currentEstimateStsa = magn[i] / (self->noise[i] + 0.0001f) - 1.f;
1000     }
1001     // DD estimate is sum of two terms: current estimate and previous estimate.
1002     // Directed decision update of |snrPrior|.
1003     snrPrior = DD_PR_SNR * previousEstimateStsa +
1004                (1.f - DD_PR_SNR) * currentEstimateStsa;
1005     // Gain filter.
1006     theFilter[i] = snrPrior / (self->overdrive + snrPrior);
1007   }  // End of loop over frequencies.
1008 }
1009 
1010 // Changes the aggressiveness of the noise suppression method.
1011 // |mode| = 0 is mild (6dB), |mode| = 1 is medium (10dB) and |mode| = 2 is
1012 // aggressive (15dB).
1013 // Returns 0 on success and -1 otherwise.
WebRtcNs_set_policy_core(NoiseSuppressionC * self,int mode)1014 int WebRtcNs_set_policy_core(NoiseSuppressionC* self, int mode) {
1015   // Allow for modes: 0, 1, 2, 3.
1016   if (mode < 0 || mode > 3) {
1017     return (-1);
1018   }
1019 
1020   self->aggrMode = mode;
1021   if (mode == 0) {
1022     self->overdrive = 1.f;
1023     self->denoiseBound = 0.5f;
1024     self->gainmap = 0;
1025   } else if (mode == 1) {
1026     // self->overdrive = 1.25f;
1027     self->overdrive = 1.f;
1028     self->denoiseBound = 0.25f;
1029     self->gainmap = 1;
1030   } else if (mode == 2) {
1031     // self->overdrive = 1.25f;
1032     self->overdrive = 1.1f;
1033     self->denoiseBound = 0.125f;
1034     self->gainmap = 1;
1035   } else if (mode == 3) {
1036     // self->overdrive = 1.3f;
1037     self->overdrive = 1.25f;
1038     self->denoiseBound = 0.09f;
1039     self->gainmap = 1;
1040   }
1041   return 0;
1042 }
1043 
WebRtcNs_AnalyzeCore(NoiseSuppressionC * self,const float * speechFrame)1044 void WebRtcNs_AnalyzeCore(NoiseSuppressionC* self, const float* speechFrame) {
1045   size_t i;
1046   const size_t kStartBand = 5;  // Skip first frequency bins during estimation.
1047   int updateParsFlag;
1048   float energy;
1049   float signalEnergy = 0.f;
1050   float sumMagn = 0.f;
1051   float tmpFloat1, tmpFloat2, tmpFloat3;
1052   float winData[ANAL_BLOCKL_MAX];
1053   float magn[HALF_ANAL_BLOCKL], noise[HALF_ANAL_BLOCKL];
1054   float snrLocPost[HALF_ANAL_BLOCKL], snrLocPrior[HALF_ANAL_BLOCKL];
1055   float real[ANAL_BLOCKL_MAX], imag[HALF_ANAL_BLOCKL];
1056   // Variables during startup.
1057   float sum_log_i = 0.0;
1058   float sum_log_i_square = 0.0;
1059   float sum_log_magn = 0.0;
1060   float sum_log_i_log_magn = 0.0;
1061   float parametric_exp = 0.0;
1062   float parametric_num = 0.0;
1063 
1064   // Check that initiation has been done.
1065   assert(self->initFlag == 1);
1066   updateParsFlag = self->modelUpdatePars[0];
1067 
1068   // Update analysis buffer for L band.
1069   UpdateBuffer(speechFrame, self->blockLen, self->anaLen, self->analyzeBuf);
1070 
1071   Windowing(self->window, self->analyzeBuf, self->anaLen, winData);
1072   energy = Energy(winData, self->anaLen);
1073   if (energy == 0.0) {
1074     // We want to avoid updating statistics in this case:
1075     // Updating feature statistics when we have zeros only will cause
1076     // thresholds to move towards zero signal situations. This in turn has the
1077     // effect that once the signal is "turned on" (non-zero values) everything
1078     // will be treated as speech and there is no noise suppression effect.
1079     // Depending on the duration of the inactive signal it takes a
1080     // considerable amount of time for the system to learn what is noise and
1081     // what is speech.
1082     return;
1083   }
1084 
1085   self->blockInd++;  // Update the block index only when we process a block.
1086 
1087   FFT(self, winData, self->anaLen, self->magnLen, real, imag, magn);
1088 
1089   for (i = 0; i < self->magnLen; i++) {
1090     signalEnergy += real[i] * real[i] + imag[i] * imag[i];
1091     sumMagn += magn[i];
1092     if (self->blockInd < END_STARTUP_SHORT) {
1093       if (i >= kStartBand) {
1094         tmpFloat2 = logf((float)i);
1095         sum_log_i += tmpFloat2;
1096         sum_log_i_square += tmpFloat2 * tmpFloat2;
1097         tmpFloat1 = logf(magn[i]);
1098         sum_log_magn += tmpFloat1;
1099         sum_log_i_log_magn += tmpFloat2 * tmpFloat1;
1100       }
1101     }
1102   }
1103   signalEnergy /= self->magnLen;
1104   self->signalEnergy = signalEnergy;
1105   self->sumMagn = sumMagn;
1106 
1107   // Quantile noise estimate.
1108   NoiseEstimation(self, magn, noise);
1109   // Compute simplified noise model during startup.
1110   if (self->blockInd < END_STARTUP_SHORT) {
1111     // Estimate White noise.
1112     self->whiteNoiseLevel += sumMagn / self->magnLen * self->overdrive;
1113     // Estimate Pink noise parameters.
1114     tmpFloat1 = sum_log_i_square * (self->magnLen - kStartBand);
1115     tmpFloat1 -= (sum_log_i * sum_log_i);
1116     tmpFloat2 =
1117         (sum_log_i_square * sum_log_magn - sum_log_i * sum_log_i_log_magn);
1118     tmpFloat3 = tmpFloat2 / tmpFloat1;
1119     // Constrain the estimated spectrum to be positive.
1120     if (tmpFloat3 < 0.f) {
1121       tmpFloat3 = 0.f;
1122     }
1123     self->pinkNoiseNumerator += tmpFloat3;
1124     tmpFloat2 = (sum_log_i * sum_log_magn);
1125     tmpFloat2 -= (self->magnLen - kStartBand) * sum_log_i_log_magn;
1126     tmpFloat3 = tmpFloat2 / tmpFloat1;
1127     // Constrain the pink noise power to be in the interval [0, 1].
1128     if (tmpFloat3 < 0.f) {
1129       tmpFloat3 = 0.f;
1130     }
1131     if (tmpFloat3 > 1.f) {
1132       tmpFloat3 = 1.f;
1133     }
1134     self->pinkNoiseExp += tmpFloat3;
1135 
1136     // Calculate frequency independent parts of parametric noise estimate.
1137     if (self->pinkNoiseExp > 0.f) {
1138       // Use pink noise estimate.
1139       parametric_num =
1140           expf(self->pinkNoiseNumerator / (float)(self->blockInd + 1));
1141       parametric_num *= (float)(self->blockInd + 1);
1142       parametric_exp = self->pinkNoiseExp / (float)(self->blockInd + 1);
1143     }
1144     for (i = 0; i < self->magnLen; i++) {
1145       // Estimate the background noise using the white and pink noise
1146       // parameters.
1147       if (self->pinkNoiseExp == 0.f) {
1148         // Use white noise estimate.
1149         self->parametricNoise[i] = self->whiteNoiseLevel;
1150       } else {
1151         // Use pink noise estimate.
1152         float use_band = (float)(i < kStartBand ? kStartBand : i);
1153         self->parametricNoise[i] =
1154             parametric_num / powf(use_band, parametric_exp);
1155       }
1156       // Weight quantile noise with modeled noise.
1157       noise[i] *= (self->blockInd);
1158       tmpFloat2 =
1159           self->parametricNoise[i] * (END_STARTUP_SHORT - self->blockInd);
1160       noise[i] += (tmpFloat2 / (float)(self->blockInd + 1));
1161       noise[i] /= END_STARTUP_SHORT;
1162     }
1163   }
1164   // Compute average signal during END_STARTUP_LONG time:
1165   // used to normalize spectral difference measure.
1166   if (self->blockInd < END_STARTUP_LONG) {
1167     self->featureData[5] *= self->blockInd;
1168     self->featureData[5] += signalEnergy;
1169     self->featureData[5] /= (self->blockInd + 1);
1170   }
1171 
1172   // Post and prior SNR needed for SpeechNoiseProb.
1173   ComputeSnr(self, magn, noise, snrLocPrior, snrLocPost);
1174 
1175   FeatureUpdate(self, magn, updateParsFlag);
1176   SpeechNoiseProb(self, self->speechProb, snrLocPrior, snrLocPost);
1177   UpdateNoiseEstimate(self, magn, snrLocPrior, snrLocPost, noise);
1178 
1179   // Keep track of noise spectrum for next frame.
1180   memcpy(self->noise, noise, sizeof(*noise) * self->magnLen);
1181   memcpy(self->magnPrevAnalyze, magn, sizeof(*magn) * self->magnLen);
1182 }
1183 
WebRtcNs_ProcessCore(NoiseSuppressionC * self,const float * const * speechFrame,size_t num_bands,float * const * outFrame)1184 void WebRtcNs_ProcessCore(NoiseSuppressionC* self,
1185                           const float* const* speechFrame,
1186                           size_t num_bands,
1187                           float* const* outFrame) {
1188   // Main routine for noise reduction.
1189   int flagHB = 0;
1190   size_t i, j;
1191 
1192   float energy1, energy2, gain, factor, factor1, factor2;
1193   float fout[BLOCKL_MAX];
1194   float winData[ANAL_BLOCKL_MAX];
1195   float magn[HALF_ANAL_BLOCKL];
1196   float theFilter[HALF_ANAL_BLOCKL], theFilterTmp[HALF_ANAL_BLOCKL];
1197   float real[ANAL_BLOCKL_MAX], imag[HALF_ANAL_BLOCKL];
1198 
1199   // SWB variables.
1200   int deltaBweHB = 1;
1201   int deltaGainHB = 1;
1202   float decayBweHB = 1.0;
1203   float gainMapParHB = 1.0;
1204   float gainTimeDomainHB = 1.0;
1205   float avgProbSpeechHB, avgProbSpeechHBTmp, avgFilterGainHB, gainModHB;
1206   float sumMagnAnalyze, sumMagnProcess;
1207 
1208   // Check that initiation has been done.
1209   assert(self->initFlag == 1);
1210   assert((num_bands - 1) <= NUM_HIGH_BANDS_MAX);
1211 
1212   const float* const* speechFrameHB = NULL;
1213   float* const* outFrameHB = NULL;
1214   size_t num_high_bands = 0;
1215   if (num_bands > 1) {
1216     speechFrameHB = &speechFrame[1];
1217     outFrameHB = &outFrame[1];
1218     num_high_bands = num_bands - 1;
1219     flagHB = 1;
1220     // Range for averaging low band quantities for H band gain.
1221     deltaBweHB = (int)self->magnLen / 4;
1222     deltaGainHB = deltaBweHB;
1223   }
1224 
1225   // Update analysis buffer for L band.
1226   UpdateBuffer(speechFrame[0], self->blockLen, self->anaLen, self->dataBuf);
1227 
1228   if (flagHB == 1) {
1229     // Update analysis buffer for H bands.
1230     for (i = 0; i < num_high_bands; ++i) {
1231       UpdateBuffer(speechFrameHB[i],
1232                    self->blockLen,
1233                    self->anaLen,
1234                    self->dataBufHB[i]);
1235     }
1236   }
1237 
1238   Windowing(self->window, self->dataBuf, self->anaLen, winData);
1239   energy1 = Energy(winData, self->anaLen);
1240   if (energy1 == 0.0) {
1241     // Synthesize the special case of zero input.
1242     // Read out fully processed segment.
1243     for (i = self->windShift; i < self->blockLen + self->windShift; i++) {
1244       fout[i - self->windShift] = self->syntBuf[i];
1245     }
1246     // Update synthesis buffer.
1247     UpdateBuffer(NULL, self->blockLen, self->anaLen, self->syntBuf);
1248 
1249     for (i = 0; i < self->blockLen; ++i)
1250       outFrame[0][i] =
1251           WEBRTC_SPL_SAT(WEBRTC_SPL_WORD16_MAX, fout[i], WEBRTC_SPL_WORD16_MIN);
1252 
1253     // For time-domain gain of HB.
1254     if (flagHB == 1) {
1255       for (i = 0; i < num_high_bands; ++i) {
1256         for (j = 0; j < self->blockLen; ++j) {
1257           outFrameHB[i][j] = WEBRTC_SPL_SAT(WEBRTC_SPL_WORD16_MAX,
1258                                             self->dataBufHB[i][j],
1259                                             WEBRTC_SPL_WORD16_MIN);
1260         }
1261       }
1262     }
1263 
1264     return;
1265   }
1266 
1267   FFT(self, winData, self->anaLen, self->magnLen, real, imag, magn);
1268 
1269   if (self->blockInd < END_STARTUP_SHORT) {
1270     for (i = 0; i < self->magnLen; i++) {
1271       self->initMagnEst[i] += magn[i];
1272     }
1273   }
1274 
1275   ComputeDdBasedWienerFilter(self, magn, theFilter);
1276 
1277   for (i = 0; i < self->magnLen; i++) {
1278     // Flooring bottom.
1279     if (theFilter[i] < self->denoiseBound) {
1280       theFilter[i] = self->denoiseBound;
1281     }
1282     // Flooring top.
1283     if (theFilter[i] > 1.f) {
1284       theFilter[i] = 1.f;
1285     }
1286     if (self->blockInd < END_STARTUP_SHORT) {
1287       theFilterTmp[i] =
1288           (self->initMagnEst[i] - self->overdrive * self->parametricNoise[i]);
1289       theFilterTmp[i] /= (self->initMagnEst[i] + 0.0001f);
1290       // Flooring bottom.
1291       if (theFilterTmp[i] < self->denoiseBound) {
1292         theFilterTmp[i] = self->denoiseBound;
1293       }
1294       // Flooring top.
1295       if (theFilterTmp[i] > 1.f) {
1296         theFilterTmp[i] = 1.f;
1297       }
1298       // Weight the two suppression filters.
1299       theFilter[i] *= (self->blockInd);
1300       theFilterTmp[i] *= (END_STARTUP_SHORT - self->blockInd);
1301       theFilter[i] += theFilterTmp[i];
1302       theFilter[i] /= (END_STARTUP_SHORT);
1303     }
1304 
1305     self->smooth[i] = theFilter[i];
1306     real[i] *= self->smooth[i];
1307     imag[i] *= self->smooth[i];
1308   }
1309   // Keep track of |magn| spectrum for next frame.
1310   memcpy(self->magnPrevProcess, magn, sizeof(*magn) * self->magnLen);
1311   memcpy(self->noisePrev, self->noise, sizeof(self->noise[0]) * self->magnLen);
1312   // Back to time domain.
1313   IFFT(self, real, imag, self->magnLen, self->anaLen, winData);
1314 
1315   // Scale factor: only do it after END_STARTUP_LONG time.
1316   factor = 1.f;
1317   if (self->gainmap == 1 && self->blockInd > END_STARTUP_LONG) {
1318     factor1 = 1.f;
1319     factor2 = 1.f;
1320 
1321     energy2 = Energy(winData, self->anaLen);
1322     gain = (float)sqrt(energy2 / (energy1 + 1.f));
1323 
1324     // Scaling for new version.
1325     if (gain > B_LIM) {
1326       factor1 = 1.f + 1.3f * (gain - B_LIM);
1327       if (gain * factor1 > 1.f) {
1328         factor1 = 1.f / gain;
1329       }
1330     }
1331     if (gain < B_LIM) {
1332       // Don't reduce scale too much for pause regions:
1333       // attenuation here should be controlled by flooring.
1334       if (gain <= self->denoiseBound) {
1335         gain = self->denoiseBound;
1336       }
1337       factor2 = 1.f - 0.3f * (B_LIM - gain);
1338     }
1339     // Combine both scales with speech/noise prob:
1340     // note prior (priorSpeechProb) is not frequency dependent.
1341     factor = self->priorSpeechProb * factor1 +
1342              (1.f - self->priorSpeechProb) * factor2;
1343   }  // Out of self->gainmap == 1.
1344 
1345   Windowing(self->window, winData, self->anaLen, winData);
1346 
1347   // Synthesis.
1348   for (i = 0; i < self->anaLen; i++) {
1349     self->syntBuf[i] += factor * winData[i];
1350   }
1351   // Read out fully processed segment.
1352   for (i = self->windShift; i < self->blockLen + self->windShift; i++) {
1353     fout[i - self->windShift] = self->syntBuf[i];
1354   }
1355   // Update synthesis buffer.
1356   UpdateBuffer(NULL, self->blockLen, self->anaLen, self->syntBuf);
1357 
1358   for (i = 0; i < self->blockLen; ++i)
1359     outFrame[0][i] =
1360         WEBRTC_SPL_SAT(WEBRTC_SPL_WORD16_MAX, fout[i], WEBRTC_SPL_WORD16_MIN);
1361 
1362   // For time-domain gain of HB.
1363   if (flagHB == 1) {
1364     // Average speech prob from low band.
1365     // Average over second half (i.e., 4->8kHz) of frequencies spectrum.
1366     avgProbSpeechHB = 0.0;
1367     for (i = self->magnLen - deltaBweHB - 1; i < self->magnLen - 1; i++) {
1368       avgProbSpeechHB += self->speechProb[i];
1369     }
1370     avgProbSpeechHB = avgProbSpeechHB / ((float)deltaBweHB);
1371     // If the speech was suppressed by a component between Analyze and
1372     // Process, for example the AEC, then it should not be considered speech
1373     // for high band suppression purposes.
1374     sumMagnAnalyze = 0;
1375     sumMagnProcess = 0;
1376     for (i = 0; i < self->magnLen; ++i) {
1377       sumMagnAnalyze += self->magnPrevAnalyze[i];
1378       sumMagnProcess += self->magnPrevProcess[i];
1379     }
1380     avgProbSpeechHB *= sumMagnProcess / sumMagnAnalyze;
1381     // Average filter gain from low band.
1382     // Average over second half (i.e., 4->8kHz) of frequencies spectrum.
1383     avgFilterGainHB = 0.0;
1384     for (i = self->magnLen - deltaGainHB - 1; i < self->magnLen - 1; i++) {
1385       avgFilterGainHB += self->smooth[i];
1386     }
1387     avgFilterGainHB = avgFilterGainHB / ((float)(deltaGainHB));
1388     avgProbSpeechHBTmp = 2.f * avgProbSpeechHB - 1.f;
1389     // Gain based on speech probability.
1390     gainModHB = 0.5f * (1.f + (float)tanh(gainMapParHB * avgProbSpeechHBTmp));
1391     // Combine gain with low band gain.
1392     gainTimeDomainHB = 0.5f * gainModHB + 0.5f * avgFilterGainHB;
1393     if (avgProbSpeechHB >= 0.5f) {
1394       gainTimeDomainHB = 0.25f * gainModHB + 0.75f * avgFilterGainHB;
1395     }
1396     gainTimeDomainHB = gainTimeDomainHB * decayBweHB;
1397     // Make sure gain is within flooring range.
1398     // Flooring bottom.
1399     if (gainTimeDomainHB < self->denoiseBound) {
1400       gainTimeDomainHB = self->denoiseBound;
1401     }
1402     // Flooring top.
1403     if (gainTimeDomainHB > 1.f) {
1404       gainTimeDomainHB = 1.f;
1405     }
1406     // Apply gain.
1407     for (i = 0; i < num_high_bands; ++i) {
1408       for (j = 0; j < self->blockLen; j++) {
1409         outFrameHB[i][j] =
1410             WEBRTC_SPL_SAT(WEBRTC_SPL_WORD16_MAX,
1411                            gainTimeDomainHB * self->dataBufHB[i][j],
1412                            WEBRTC_SPL_WORD16_MIN);
1413       }
1414     }
1415   }  // End of H band gain computation.
1416 }
1417