1 /*
2 * Simple XZ decoder command line tool
3 *
4 * Author: Lasse Collin <lasse.collin@tukaani.org>
5 *
6 * This file has been put into the public domain.
7 * You can do whatever you want with this file.
8 * Modified for toybox by Isaac Dunham
9 USE_XZCAT(NEWTOY(xzcat, NULL, TOYFLAG_USR|TOYFLAG_BIN))
10
11 config XZCAT
12 bool "xzcat"
13 default n
14 help
15 usage: xzcat [filename...]
16
17 Decompress listed files to stdout. Use stdin if no files listed.
18
19 */
20 #define FOR_xzcat
21 #include "toys.h"
22
23 // BEGIN xz.h
24
25 /**
26 * enum xz_ret - Return codes
27 * @XZ_OK: Everything is OK so far. More input or more
28 * output space is required to continue.
29 * @XZ_STREAM_END: Operation finished successfully.
30 * @XZ_UNSUPPORTED_CHECK: Integrity check type is not supported. Decoding
31 * is still possible in multi-call mode by simply
32 * calling xz_dec_run() again.
33 * Note that this return value is used only if
34 * XZ_DEC_ANY_CHECK was defined at build time,
35 * which is not used in the kernel. Unsupported
36 * check types return XZ_OPTIONS_ERROR if
37 * XZ_DEC_ANY_CHECK was not defined at build time.
38 * @XZ_MEM_ERROR: Allocating memory failed. The amount of memory
39 * that was tried to be allocated was no more than the
40 * dict_max argument given to xz_dec_init().
41 * @XZ_MEMLIMIT_ERROR: A bigger LZMA2 dictionary would be needed than
42 * allowed by the dict_max argument given to
43 * xz_dec_init().
44 * @XZ_FORMAT_ERROR: File format was not recognized (wrong magic
45 * bytes).
46 * @XZ_OPTIONS_ERROR: This implementation doesn't support the requested
47 * compression options. In the decoder this means
48 * that the header CRC32 matches, but the header
49 * itself specifies something that we don't support.
50 * @XZ_DATA_ERROR: Compressed data is corrupt.
51 * @XZ_BUF_ERROR: Cannot make any progress. Details are slightly
52 * different between multi-call and single-call
53 * mode; more information below.
54 *
55 * XZ_BUF_ERROR is returned when two consecutive calls to XZ code cannot
56 * consume any input and cannot produce any new output. This happens when
57 * there is no new input available, or the output buffer is full while at
58 * least one output byte is still pending. Assuming your code is not buggy,
59 * you can get this error only when decoding a compressed stream that is
60 * truncated or otherwise corrupt.
61 */
62 enum xz_ret {
63 XZ_OK,
64 XZ_STREAM_END,
65 XZ_UNSUPPORTED_CHECK,
66 XZ_MEM_ERROR,
67 XZ_MEMLIMIT_ERROR,
68 XZ_FORMAT_ERROR,
69 XZ_OPTIONS_ERROR,
70 XZ_DATA_ERROR,
71 XZ_BUF_ERROR
72 };
73
74 /**
75 * struct xz_buf - Passing input and output buffers to XZ code
76 * @in: Beginning of the input buffer. This may be NULL if and only
77 * if in_pos is equal to in_size.
78 * @in_pos: Current position in the input buffer. This must not exceed
79 * in_size.
80 * @in_size: Size of the input buffer
81 * @out: Beginning of the output buffer. This may be NULL if and only
82 * if out_pos is equal to out_size.
83 * @out_pos: Current position in the output buffer. This must not exceed
84 * out_size.
85 * @out_size: Size of the output buffer
86 *
87 * Only the contents of the output buffer from out[out_pos] onward, and
88 * the variables in_pos and out_pos are modified by the XZ code.
89 */
90 struct xz_buf {
91 const uint8_t *in;
92 size_t in_pos;
93 size_t in_size;
94
95 uint8_t *out;
96 size_t out_pos;
97 size_t out_size;
98 };
99
100 /**
101 * struct xz_dec - Opaque type to hold the XZ decoder state
102 */
103 struct xz_dec;
104
105 /**
106 * xz_dec_init() - Allocate and initialize a XZ decoder state
107 * @mode: Operation mode
108 * @dict_max: Maximum size of the LZMA2 dictionary (history buffer) for
109 * multi-call decoding. LZMA2 dictionary is always 2^n bytes
110 * or 2^n + 2^(n-1) bytes (the latter sizes are less common
111 * in practice), so other values for dict_max don't make sense.
112 * In the kernel, dictionary sizes of 64 KiB, 128 KiB, 256 KiB,
113 * 512 KiB, and 1 MiB are probably the only reasonable values,
114 * except for kernel and initramfs images where a bigger
115 * dictionary can be fine and useful.
116 *
117 * dict_max specifies the maximum allowed dictionary size that xz_dec_run()
118 * may allocate once it has parsed the dictionary size from the stream
119 * headers. This way excessive allocations can be avoided while still
120 * limiting the maximum memory usage to a sane value to prevent running the
121 * system out of memory when decompressing streams from untrusted sources.
122 *
123 * On success, xz_dec_init() returns a pointer to struct xz_dec, which is
124 * ready to be used with xz_dec_run(). If memory allocation fails,
125 * xz_dec_init() returns NULL.
126 */
127 struct xz_dec *xz_dec_init(uint32_t dict_max);
128
129 /**
130 * xz_dec_run() - Run the XZ decoder
131 * @s: Decoder state allocated using xz_dec_init()
132 * @b: Input and output buffers
133 *
134 * The possible return values depend on build options and operation mode.
135 * See enum xz_ret for details.
136 *
137 * Note that if an error occurs in single-call mode (return value is not
138 * XZ_STREAM_END), b->in_pos and b->out_pos are not modified and the
139 * contents of the output buffer from b->out[b->out_pos] onward are
140 * undefined. This is true even after XZ_BUF_ERROR, because with some filter
141 * chains, there may be a second pass over the output buffer, and this pass
142 * cannot be properly done if the output buffer is truncated. Thus, you
143 * cannot give the single-call decoder a too small buffer and then expect to
144 * get that amount valid data from the beginning of the stream. You must use
145 * the multi-call decoder if you don't want to uncompress the whole stream.
146 */
147 enum xz_ret xz_dec_run(struct xz_dec *s, struct xz_buf *b);
148
149 /**
150 * xz_dec_reset() - Reset an already allocated decoder state
151 * @s: Decoder state allocated using xz_dec_init()
152 *
153 * This function can be used to reset the multi-call decoder state without
154 * freeing and reallocating memory with xz_dec_end() and xz_dec_init().
155 *
156 * In single-call mode, xz_dec_reset() is always called in the beginning of
157 * xz_dec_run(). Thus, explicit call to xz_dec_reset() is useful only in
158 * multi-call mode.
159 */
160 void xz_dec_reset(struct xz_dec *s);
161
162 /**
163 * xz_dec_end() - Free the memory allocated for the decoder state
164 * @s: Decoder state allocated using xz_dec_init(). If s is NULL,
165 * this function does nothing.
166 */
167 void xz_dec_end(struct xz_dec *s);
168
169 /*
170 * Update CRC32 value using the polynomial from IEEE-802.3. To start a new
171 * calculation, the third argument must be zero. To continue the calculation,
172 * the previously returned value is passed as the third argument.
173 */
174 static uint32_t xz_crc32_table[256];
175
xz_crc32(const uint8_t * buf,size_t size,uint32_t crc)176 uint32_t xz_crc32(const uint8_t *buf, size_t size, uint32_t crc)
177 {
178 crc = ~crc;
179
180 while (size != 0) {
181 crc = xz_crc32_table[*buf++ ^ (crc & 0xFF)] ^ (crc >> 8);
182 --size;
183 }
184
185 return ~crc;
186 }
187
188 static uint64_t xz_crc64_table[256];
189
190
191 // END xz.h
192
193 static uint8_t in[BUFSIZ];
194 static uint8_t out[BUFSIZ];
195
do_xzcat(int fd,char * name)196 void do_xzcat(int fd, char *name)
197 {
198 struct xz_buf b;
199 struct xz_dec *s;
200 enum xz_ret ret;
201 const char *msg;
202
203 crc_init(xz_crc32_table, 1);
204 const uint64_t poly = 0xC96C5795D7870F42ULL;
205 uint32_t i;
206 uint32_t j;
207 uint64_t r;
208
209 /* initialize CRC64 table*/
210 for (i = 0; i < 256; ++i) {
211 r = i;
212 for (j = 0; j < 8; ++j)
213 r = (r >> 1) ^ (poly & ~((r & 1) - 1));
214
215 xz_crc64_table[i] = r;
216 }
217
218 /*
219 * Support up to 64 MiB dictionary. The actually needed memory
220 * is allocated once the headers have been parsed.
221 */
222 s = xz_dec_init(1 << 26);
223 if (s == NULL) {
224 msg = "Memory allocation failed\n";
225 goto error;
226 }
227
228 b.in = in;
229 b.in_pos = 0;
230 b.in_size = 0;
231 b.out = out;
232 b.out_pos = 0;
233 b.out_size = BUFSIZ;
234
235 for (;;) {
236 if (b.in_pos == b.in_size) {
237 b.in_size = read(fd, in, sizeof(in));
238 b.in_pos = 0;
239 }
240
241 ret = xz_dec_run(s, &b);
242
243 if (b.out_pos == sizeof(out)) {
244 if (fwrite(out, 1, b.out_pos, stdout) != b.out_pos) {
245 msg = "Write error\n";
246 goto error;
247 }
248
249 b.out_pos = 0;
250 }
251
252 if (ret == XZ_OK)
253 continue;
254
255 if (ret == XZ_UNSUPPORTED_CHECK)
256 continue;
257
258 if (fwrite(out, 1, b.out_pos, stdout) != b.out_pos) {
259 msg = "Write error\n";
260 goto error;
261 }
262
263 switch (ret) {
264 case XZ_STREAM_END:
265 xz_dec_end(s);
266 return;
267
268 case XZ_MEM_ERROR:
269 msg = "Memory allocation failed\n";
270 goto error;
271
272 case XZ_MEMLIMIT_ERROR:
273 msg = "Memory usage limit reached\n";
274 goto error;
275
276 case XZ_FORMAT_ERROR:
277 msg = "Not a .xz file\n";
278 goto error;
279
280 case XZ_OPTIONS_ERROR:
281 msg = "Unsupported options in the .xz headers\n";
282 goto error;
283
284 case XZ_DATA_ERROR:
285 case XZ_BUF_ERROR:
286 msg = "File is corrupt\n";
287 goto error;
288
289 default:
290 msg = "Bug!\n";
291 goto error;
292 }
293 }
294
295 error:
296 xz_dec_end(s);
297 error_exit("%s", msg);
298 }
299
xzcat_main(void)300 void xzcat_main(void)
301 {
302 loopfiles(toys.optargs, do_xzcat);
303 }
304
305 // BEGIN xz_private.h
306
307
308 /* Uncomment as needed to enable BCJ filter decoders.
309 * These cost about 2.5 k when all are enabled; SPARC and IA64 make 0.7 k
310 * */
311
312 #define XZ_DEC_X86
313 #define XZ_DEC_POWERPC
314 #define XZ_DEC_IA64
315 #define XZ_DEC_ARM
316 #define XZ_DEC_ARMTHUMB
317 #define XZ_DEC_SPARC
318
319
320 #define memeq(a, b, size) (memcmp(a, b, size) == 0)
321
322 #ifndef min
323 # define min(x, y) ((x) < (y) ? (x) : (y))
324 #endif
325 #define min_t(type, x, y) min(x, y)
326
327
328 /* Inline functions to access unaligned unsigned 32-bit integers */
329 #ifndef get_unaligned_le32
get_unaligned_le32(const uint8_t * buf)330 static inline uint32_t get_unaligned_le32(const uint8_t *buf)
331 {
332 return (uint32_t)buf[0]
333 | ((uint32_t)buf[1] << 8)
334 | ((uint32_t)buf[2] << 16)
335 | ((uint32_t)buf[3] << 24);
336 }
337 #endif
338
339 #ifndef get_unaligned_be32
get_unaligned_be32(const uint8_t * buf)340 static inline uint32_t get_unaligned_be32(const uint8_t *buf)
341 {
342 return (uint32_t)(buf[0] << 24)
343 | ((uint32_t)buf[1] << 16)
344 | ((uint32_t)buf[2] << 8)
345 | (uint32_t)buf[3];
346 }
347 #endif
348
349 #ifndef put_unaligned_le32
put_unaligned_le32(uint32_t val,uint8_t * buf)350 static inline void put_unaligned_le32(uint32_t val, uint8_t *buf)
351 {
352 buf[0] = (uint8_t)val;
353 buf[1] = (uint8_t)(val >> 8);
354 buf[2] = (uint8_t)(val >> 16);
355 buf[3] = (uint8_t)(val >> 24);
356 }
357 #endif
358
359 #ifndef put_unaligned_be32
put_unaligned_be32(uint32_t val,uint8_t * buf)360 static inline void put_unaligned_be32(uint32_t val, uint8_t *buf)
361 {
362 buf[0] = (uint8_t)(val >> 24);
363 buf[1] = (uint8_t)(val >> 16);
364 buf[2] = (uint8_t)(val >> 8);
365 buf[3] = (uint8_t)val;
366 }
367 #endif
368
369 /*
370 * Use get_unaligned_le32() also for aligned access for simplicity. On
371 * little endian systems, #define get_le32(ptr) (*(const uint32_t *)(ptr))
372 * could save a few bytes in code size.
373 */
374 #ifndef get_le32
375 # define get_le32 get_unaligned_le32
376 #endif
377
378 /*
379 * If any of the BCJ filter decoders are wanted, define XZ_DEC_BCJ.
380 * XZ_DEC_BCJ is used to enable generic support for BCJ decoders.
381 */
382 #ifndef XZ_DEC_BCJ
383 # if defined(XZ_DEC_X86) || defined(XZ_DEC_POWERPC) \
384 || defined(XZ_DEC_IA64) || defined(XZ_DEC_ARM) \
385 || defined(XZ_DEC_ARM) || defined(XZ_DEC_ARMTHUMB) \
386 || defined(XZ_DEC_SPARC)
387 # define XZ_DEC_BCJ
388 # endif
389 #endif
390
391 /*
392 * Allocate memory for LZMA2 decoder. xz_dec_lzma2_reset() must be used
393 * before calling xz_dec_lzma2_run().
394 */
395 struct xz_dec_lzma2 *xz_dec_lzma2_create(uint32_t dict_max);
396
397 /*
398 * Decode the LZMA2 properties (one byte) and reset the decoder. Return
399 * XZ_OK on success, XZ_MEMLIMIT_ERROR if the preallocated dictionary is not
400 * big enough, and XZ_OPTIONS_ERROR if props indicates something that this
401 * decoder doesn't support.
402 */
403 enum xz_ret xz_dec_lzma2_reset(struct xz_dec_lzma2 *s,
404 uint8_t props);
405
406 /* Decode raw LZMA2 stream from b->in to b->out. */
407 enum xz_ret xz_dec_lzma2_run(struct xz_dec_lzma2 *s,
408 struct xz_buf *b);
409
410 // END "xz_private.h"
411
412
413
414
415 /*
416 * Branch/Call/Jump (BCJ) filter decoders
417 * The rest of the code is inside this ifdef. It makes things a little more
418 * convenient when building without support for any BCJ filters.
419 */
420 #ifdef XZ_DEC_BCJ
421
422 struct xz_dec_bcj {
423 /* Type of the BCJ filter being used */
424 enum {
425 BCJ_X86 = 4, /* x86 or x86-64 */
426 BCJ_POWERPC = 5, /* Big endian only */
427 BCJ_IA64 = 6, /* Big or little endian */
428 BCJ_ARM = 7, /* Little endian only */
429 BCJ_ARMTHUMB = 8, /* Little endian only */
430 BCJ_SPARC = 9 /* Big or little endian */
431 } type;
432
433 /*
434 * Return value of the next filter in the chain. We need to preserve
435 * this information across calls, because we must not call the next
436 * filter anymore once it has returned XZ_STREAM_END.
437 */
438 enum xz_ret ret;
439
440 /*
441 * Absolute position relative to the beginning of the uncompressed
442 * data (in a single .xz Block). We care only about the lowest 32
443 * bits so this doesn't need to be uint64_t even with big files.
444 */
445 uint32_t pos;
446
447 /* x86 filter state */
448 uint32_t x86_prev_mask;
449
450 /* Temporary space to hold the variables from struct xz_buf */
451 uint8_t *out;
452 size_t out_pos;
453 size_t out_size;
454
455 struct {
456 /* Amount of already filtered data in the beginning of buf */
457 size_t filtered;
458
459 /* Total amount of data currently stored in buf */
460 size_t size;
461
462 /*
463 * Buffer to hold a mix of filtered and unfiltered data. This
464 * needs to be big enough to hold Alignment + 2 * Look-ahead:
465 *
466 * Type Alignment Look-ahead
467 * x86 1 4
468 * PowerPC 4 0
469 * IA-64 16 0
470 * ARM 4 0
471 * ARM-Thumb 2 2
472 * SPARC 4 0
473 */
474 uint8_t buf[16];
475 } temp;
476 };
477
478 /*
479 * Decode the Filter ID of a BCJ filter. This implementation doesn't
480 * support custom start offsets, so no decoding of Filter Properties
481 * is needed. Returns XZ_OK if the given Filter ID is supported.
482 * Otherwise XZ_OPTIONS_ERROR is returned.
483 */
484 enum xz_ret xz_dec_bcj_reset(struct xz_dec_bcj *s, uint8_t id);
485
486 /*
487 * Decode raw BCJ + LZMA2 stream. This must be used only if there actually is
488 * a BCJ filter in the chain. If the chain has only LZMA2, xz_dec_lzma2_run()
489 * must be called directly.
490 */
491 enum xz_ret xz_dec_bcj_run(struct xz_dec_bcj *s,
492 struct xz_dec_lzma2 *lzma2,
493 struct xz_buf *b);
494
495 #ifdef XZ_DEC_X86
496 /*
497 * This is used to test the most significant byte of a memory address
498 * in an x86 instruction.
499 */
bcj_x86_test_msbyte(uint8_t b)500 static inline int bcj_x86_test_msbyte(uint8_t b)
501 {
502 return b == 0x00 || b == 0xFF;
503 }
504
bcj_x86(struct xz_dec_bcj * s,uint8_t * buf,size_t size)505 static size_t bcj_x86(struct xz_dec_bcj *s, uint8_t *buf, size_t size)
506 {
507 static const int mask_to_allowed_status[8]
508 = { 1,1,1,0,1,0,0,0 };
509
510 static const uint8_t mask_to_bit_num[8] = { 0, 1, 2, 2, 3, 3, 3, 3 };
511
512 size_t i;
513 size_t prev_pos = (size_t)-1;
514 uint32_t prev_mask = s->x86_prev_mask;
515 uint32_t src;
516 uint32_t dest;
517 uint32_t j;
518 uint8_t b;
519
520 if (size <= 4)
521 return 0;
522
523 size -= 4;
524 for (i = 0; i < size; ++i) {
525 if ((buf[i] & 0xFE) != 0xE8)
526 continue;
527
528 prev_pos = i - prev_pos;
529 if (prev_pos > 3) {
530 prev_mask = 0;
531 } else {
532 prev_mask = (prev_mask << (prev_pos - 1)) & 7;
533 if (prev_mask != 0) {
534 b = buf[i + 4 - mask_to_bit_num[prev_mask]];
535 if (!mask_to_allowed_status[prev_mask]
536 || bcj_x86_test_msbyte(b)) {
537 prev_pos = i;
538 prev_mask = (prev_mask << 1) | 1;
539 continue;
540 }
541 }
542 }
543
544 prev_pos = i;
545
546 if (bcj_x86_test_msbyte(buf[i + 4])) {
547 src = get_unaligned_le32(buf + i + 1);
548 for (;;) {
549 dest = src - (s->pos + (uint32_t)i + 5);
550 if (prev_mask == 0)
551 break;
552
553 j = mask_to_bit_num[prev_mask] * 8;
554 b = (uint8_t)(dest >> (24 - j));
555 if (!bcj_x86_test_msbyte(b))
556 break;
557
558 src = dest ^ (((uint32_t)1 << (32 - j)) - 1);
559 }
560
561 dest &= 0x01FFFFFF;
562 dest |= (uint32_t)0 - (dest & 0x01000000);
563 put_unaligned_le32(dest, buf + i + 1);
564 i += 4;
565 } else {
566 prev_mask = (prev_mask << 1) | 1;
567 }
568 }
569
570 prev_pos = i - prev_pos;
571 s->x86_prev_mask = prev_pos > 3 ? 0 : prev_mask << (prev_pos - 1);
572 return i;
573 }
574 #endif
575
576 #ifdef XZ_DEC_POWERPC
bcj_powerpc(struct xz_dec_bcj * s,uint8_t * buf,size_t size)577 static size_t bcj_powerpc(struct xz_dec_bcj *s, uint8_t *buf, size_t size)
578 {
579 size_t i;
580 uint32_t instr;
581
582 for (i = 0; i + 4 <= size; i += 4) {
583 instr = get_unaligned_be32(buf + i);
584 if ((instr & 0xFC000003) == 0x48000001) {
585 instr &= 0x03FFFFFC;
586 instr -= s->pos + (uint32_t)i;
587 instr &= 0x03FFFFFC;
588 instr |= 0x48000001;
589 put_unaligned_be32(instr, buf + i);
590 }
591 }
592
593 return i;
594 }
595 #endif
596
597 #ifdef XZ_DEC_IA64
bcj_ia64(struct xz_dec_bcj * s,uint8_t * buf,size_t size)598 static size_t bcj_ia64(struct xz_dec_bcj *s, uint8_t *buf, size_t size)
599 {
600 static const uint8_t branch_table[32] = {
601 0, 0, 0, 0, 0, 0, 0, 0,
602 0, 0, 0, 0, 0, 0, 0, 0,
603 4, 4, 6, 6, 0, 0, 7, 7,
604 4, 4, 0, 0, 4, 4, 0, 0
605 };
606
607 /*
608 * The local variables take a little bit stack space, but it's less
609 * than what LZMA2 decoder takes, so it doesn't make sense to reduce
610 * stack usage here without doing that for the LZMA2 decoder too.
611 */
612
613 /* Loop counters */
614 size_t i;
615 size_t j;
616
617 /* Instruction slot (0, 1, or 2) in the 128-bit instruction word */
618 uint32_t slot;
619
620 /* Bitwise offset of the instruction indicated by slot */
621 uint32_t bit_pos;
622
623 /* bit_pos split into byte and bit parts */
624 uint32_t byte_pos;
625 uint32_t bit_res;
626
627 /* Address part of an instruction */
628 uint32_t addr;
629
630 /* Mask used to detect which instructions to convert */
631 uint32_t mask;
632
633 /* 41-bit instruction stored somewhere in the lowest 48 bits */
634 uint64_t instr;
635
636 /* Instruction normalized with bit_res for easier manipulation */
637 uint64_t norm;
638
639 for (i = 0; i + 16 <= size; i += 16) {
640 mask = branch_table[buf[i] & 0x1F];
641 for (slot = 0, bit_pos = 5; slot < 3; ++slot, bit_pos += 41) {
642 if (((mask >> slot) & 1) == 0)
643 continue;
644
645 byte_pos = bit_pos >> 3;
646 bit_res = bit_pos & 7;
647 instr = 0;
648 for (j = 0; j < 6; ++j)
649 instr |= (uint64_t)(buf[i + j + byte_pos])
650 << (8 * j);
651
652 norm = instr >> bit_res;
653
654 if (((norm >> 37) & 0x0F) == 0x05
655 && ((norm >> 9) & 0x07) == 0) {
656 addr = (norm >> 13) & 0x0FFFFF;
657 addr |= ((uint32_t)(norm >> 36) & 1) << 20;
658 addr <<= 4;
659 addr -= s->pos + (uint32_t)i;
660 addr >>= 4;
661
662 norm &= ~((uint64_t)0x8FFFFF << 13);
663 norm |= (uint64_t)(addr & 0x0FFFFF) << 13;
664 norm |= (uint64_t)(addr & 0x100000)
665 << (36 - 20);
666
667 instr &= (1 << bit_res) - 1;
668 instr |= norm << bit_res;
669
670 for (j = 0; j < 6; j++)
671 buf[i + j + byte_pos]
672 = (uint8_t)(instr >> (8 * j));
673 }
674 }
675 }
676
677 return i;
678 }
679 #endif
680
681 #ifdef XZ_DEC_ARM
bcj_arm(struct xz_dec_bcj * s,uint8_t * buf,size_t size)682 static size_t bcj_arm(struct xz_dec_bcj *s, uint8_t *buf, size_t size)
683 {
684 size_t i;
685 uint32_t addr;
686
687 for (i = 0; i + 4 <= size; i += 4) {
688 if (buf[i + 3] == 0xEB) {
689 addr = (uint32_t)buf[i] | ((uint32_t)buf[i + 1] << 8)
690 | ((uint32_t)buf[i + 2] << 16);
691 addr <<= 2;
692 addr -= s->pos + (uint32_t)i + 8;
693 addr >>= 2;
694 buf[i] = (uint8_t)addr;
695 buf[i + 1] = (uint8_t)(addr >> 8);
696 buf[i + 2] = (uint8_t)(addr >> 16);
697 }
698 }
699
700 return i;
701 }
702 #endif
703
704 #ifdef XZ_DEC_ARMTHUMB
bcj_armthumb(struct xz_dec_bcj * s,uint8_t * buf,size_t size)705 static size_t bcj_armthumb(struct xz_dec_bcj *s, uint8_t *buf, size_t size)
706 {
707 size_t i;
708 uint32_t addr;
709
710 for (i = 0; i + 4 <= size; i += 2) {
711 if ((buf[i + 1] & 0xF8) == 0xF0
712 && (buf[i + 3] & 0xF8) == 0xF8) {
713 addr = (((uint32_t)buf[i + 1] & 0x07) << 19)
714 | ((uint32_t)buf[i] << 11)
715 | (((uint32_t)buf[i + 3] & 0x07) << 8)
716 | (uint32_t)buf[i + 2];
717 addr <<= 1;
718 addr -= s->pos + (uint32_t)i + 4;
719 addr >>= 1;
720 buf[i + 1] = (uint8_t)(0xF0 | ((addr >> 19) & 0x07));
721 buf[i] = (uint8_t)(addr >> 11);
722 buf[i + 3] = (uint8_t)(0xF8 | ((addr >> 8) & 0x07));
723 buf[i + 2] = (uint8_t)addr;
724 i += 2;
725 }
726 }
727
728 return i;
729 }
730 #endif
731
732 #ifdef XZ_DEC_SPARC
bcj_sparc(struct xz_dec_bcj * s,uint8_t * buf,size_t size)733 static size_t bcj_sparc(struct xz_dec_bcj *s, uint8_t *buf, size_t size)
734 {
735 size_t i;
736 uint32_t instr;
737
738 for (i = 0; i + 4 <= size; i += 4) {
739 instr = get_unaligned_be32(buf + i);
740 if ((instr >> 22) == 0x100 || (instr >> 22) == 0x1FF) {
741 instr <<= 2;
742 instr -= s->pos + (uint32_t)i;
743 instr >>= 2;
744 instr = ((uint32_t)0x40000000 - (instr & 0x400000))
745 | 0x40000000 | (instr & 0x3FFFFF);
746 put_unaligned_be32(instr, buf + i);
747 }
748 }
749
750 return i;
751 }
752 #endif
753
754 /*
755 * Apply the selected BCJ filter. Update *pos and s->pos to match the amount
756 * of data that got filtered.
757 *
758 * NOTE: This is implemented as a switch statement to avoid using function
759 * pointers, which could be problematic in the kernel boot code, which must
760 * avoid pointers to static data (at least on x86).
761 */
bcj_apply(struct xz_dec_bcj * s,uint8_t * buf,size_t * pos,size_t size)762 static void bcj_apply(struct xz_dec_bcj *s,
763 uint8_t *buf, size_t *pos, size_t size)
764 {
765 size_t filtered;
766
767 buf += *pos;
768 size -= *pos;
769
770 switch (s->type) {
771 #ifdef XZ_DEC_X86
772 case BCJ_X86:
773 filtered = bcj_x86(s, buf, size);
774 break;
775 #endif
776 #ifdef XZ_DEC_POWERPC
777 case BCJ_POWERPC:
778 filtered = bcj_powerpc(s, buf, size);
779 break;
780 #endif
781 #ifdef XZ_DEC_IA64
782 case BCJ_IA64:
783 filtered = bcj_ia64(s, buf, size);
784 break;
785 #endif
786 #ifdef XZ_DEC_ARM
787 case BCJ_ARM:
788 filtered = bcj_arm(s, buf, size);
789 break;
790 #endif
791 #ifdef XZ_DEC_ARMTHUMB
792 case BCJ_ARMTHUMB:
793 filtered = bcj_armthumb(s, buf, size);
794 break;
795 #endif
796 #ifdef XZ_DEC_SPARC
797 case BCJ_SPARC:
798 filtered = bcj_sparc(s, buf, size);
799 break;
800 #endif
801 default:
802 /* Never reached but silence compiler warnings. */
803 filtered = 0;
804 break;
805 }
806
807 *pos += filtered;
808 s->pos += filtered;
809 }
810
811 /*
812 * Flush pending filtered data from temp to the output buffer.
813 * Move the remaining mixture of possibly filtered and unfiltered
814 * data to the beginning of temp.
815 */
bcj_flush(struct xz_dec_bcj * s,struct xz_buf * b)816 static void bcj_flush(struct xz_dec_bcj *s, struct xz_buf *b)
817 {
818 size_t copy_size;
819
820 copy_size = min_t(size_t, s->temp.filtered, b->out_size - b->out_pos);
821 memcpy(b->out + b->out_pos, s->temp.buf, copy_size);
822 b->out_pos += copy_size;
823
824 s->temp.filtered -= copy_size;
825 s->temp.size -= copy_size;
826 memmove(s->temp.buf, s->temp.buf + copy_size, s->temp.size);
827 }
828
829 /*
830 * The BCJ filter functions are primitive in sense that they process the
831 * data in chunks of 1-16 bytes. To hide this issue, this function does
832 * some buffering.
833 */
xz_dec_bcj_run(struct xz_dec_bcj * s,struct xz_dec_lzma2 * lzma2,struct xz_buf * b)834 enum xz_ret xz_dec_bcj_run(struct xz_dec_bcj *s,
835 struct xz_dec_lzma2 *lzma2,
836 struct xz_buf *b)
837 {
838 size_t out_start;
839
840 /*
841 * Flush pending already filtered data to the output buffer. Return
842 * immediatelly if we couldn't flush everything, or if the next
843 * filter in the chain had already returned XZ_STREAM_END.
844 */
845 if (s->temp.filtered > 0) {
846 bcj_flush(s, b);
847 if (s->temp.filtered > 0)
848 return XZ_OK;
849
850 if (s->ret == XZ_STREAM_END)
851 return XZ_STREAM_END;
852 }
853
854 /*
855 * If we have more output space than what is currently pending in
856 * temp, copy the unfiltered data from temp to the output buffer
857 * and try to fill the output buffer by decoding more data from the
858 * next filter in the chain. Apply the BCJ filter on the new data
859 * in the output buffer. If everything cannot be filtered, copy it
860 * to temp and rewind the output buffer position accordingly.
861 *
862 * This needs to be always run when temp.size == 0 to handle a special
863 * case where the output buffer is full and the next filter has no
864 * more output coming but hasn't returned XZ_STREAM_END yet.
865 */
866 if (s->temp.size < b->out_size - b->out_pos || s->temp.size == 0) {
867 out_start = b->out_pos;
868 memcpy(b->out + b->out_pos, s->temp.buf, s->temp.size);
869 b->out_pos += s->temp.size;
870
871 s->ret = xz_dec_lzma2_run(lzma2, b);
872 if (s->ret != XZ_STREAM_END
873 && (s->ret != XZ_OK ))
874 return s->ret;
875
876 bcj_apply(s, b->out, &out_start, b->out_pos);
877
878 /*
879 * As an exception, if the next filter returned XZ_STREAM_END,
880 * we can do that too, since the last few bytes that remain
881 * unfiltered are meant to remain unfiltered.
882 */
883 if (s->ret == XZ_STREAM_END)
884 return XZ_STREAM_END;
885
886 s->temp.size = b->out_pos - out_start;
887 b->out_pos -= s->temp.size;
888 memcpy(s->temp.buf, b->out + b->out_pos, s->temp.size);
889
890 /*
891 * If there wasn't enough input to the next filter to fill
892 * the output buffer with unfiltered data, there's no point
893 * to try decoding more data to temp.
894 */
895 if (b->out_pos + s->temp.size < b->out_size)
896 return XZ_OK;
897 }
898
899 /*
900 * We have unfiltered data in temp. If the output buffer isn't full
901 * yet, try to fill the temp buffer by decoding more data from the
902 * next filter. Apply the BCJ filter on temp. Then we hopefully can
903 * fill the actual output buffer by copying filtered data from temp.
904 * A mix of filtered and unfiltered data may be left in temp; it will
905 * be taken care on the next call to this function.
906 */
907 if (b->out_pos < b->out_size) {
908 /* Make b->out{,_pos,_size} temporarily point to s->temp. */
909 s->out = b->out;
910 s->out_pos = b->out_pos;
911 s->out_size = b->out_size;
912 b->out = s->temp.buf;
913 b->out_pos = s->temp.size;
914 b->out_size = sizeof(s->temp.buf);
915
916 s->ret = xz_dec_lzma2_run(lzma2, b);
917
918 s->temp.size = b->out_pos;
919 b->out = s->out;
920 b->out_pos = s->out_pos;
921 b->out_size = s->out_size;
922
923 if (s->ret != XZ_OK && s->ret != XZ_STREAM_END)
924 return s->ret;
925
926 bcj_apply(s, s->temp.buf, &s->temp.filtered, s->temp.size);
927
928 /*
929 * If the next filter returned XZ_STREAM_END, we mark that
930 * everything is filtered, since the last unfiltered bytes
931 * of the stream are meant to be left as is.
932 */
933 if (s->ret == XZ_STREAM_END)
934 s->temp.filtered = s->temp.size;
935
936 bcj_flush(s, b);
937 if (s->temp.filtered > 0)
938 return XZ_OK;
939 }
940
941 return s->ret;
942 }
943
xz_dec_bcj_reset(struct xz_dec_bcj * s,uint8_t id)944 enum xz_ret xz_dec_bcj_reset(struct xz_dec_bcj *s, uint8_t id)
945 {
946 switch (id) {
947 #ifdef XZ_DEC_X86
948 case BCJ_X86:
949 #endif
950 #ifdef XZ_DEC_POWERPC
951 case BCJ_POWERPC:
952 #endif
953 #ifdef XZ_DEC_IA64
954 case BCJ_IA64:
955 #endif
956 #ifdef XZ_DEC_ARM
957 case BCJ_ARM:
958 #endif
959 #ifdef XZ_DEC_ARMTHUMB
960 case BCJ_ARMTHUMB:
961 #endif
962 #ifdef XZ_DEC_SPARC
963 case BCJ_SPARC:
964 #endif
965 break;
966
967 default:
968 /* Unsupported Filter ID */
969 return XZ_OPTIONS_ERROR;
970 }
971
972 s->type = id;
973 s->ret = XZ_OK;
974 s->pos = 0;
975 s->x86_prev_mask = 0;
976 s->temp.filtered = 0;
977 s->temp.size = 0;
978
979 return XZ_OK;
980 }
981
982 #endif
983 /*
984 * LZMA2 decoder
985 */
986
987
988 // BEGIN xz_lzma2.h
989 /*
990 * LZMA2 definitions
991 *
992 */
993
994
995 /* Range coder constants */
996 #define RC_SHIFT_BITS 8
997 #define RC_TOP_BITS 24
998 #define RC_TOP_VALUE (1 << RC_TOP_BITS)
999 #define RC_BIT_MODEL_TOTAL_BITS 11
1000 #define RC_BIT_MODEL_TOTAL (1 << RC_BIT_MODEL_TOTAL_BITS)
1001 #define RC_MOVE_BITS 5
1002
1003 /*
1004 * Maximum number of position states. A position state is the lowest pb
1005 * number of bits of the current uncompressed offset. In some places there
1006 * are different sets of probabilities for different position states.
1007 */
1008 #define POS_STATES_MAX (1 << 4)
1009
1010 /*
1011 * This enum is used to track which LZMA symbols have occurred most recently
1012 * and in which order. This information is used to predict the next symbol.
1013 *
1014 * Symbols:
1015 * - Literal: One 8-bit byte
1016 * - Match: Repeat a chunk of data at some distance
1017 * - Long repeat: Multi-byte match at a recently seen distance
1018 * - Short repeat: One-byte repeat at a recently seen distance
1019 *
1020 * The symbol names are in from STATE_oldest_older_previous. REP means
1021 * either short or long repeated match, and NONLIT means any non-literal.
1022 */
1023 enum lzma_state {
1024 STATE_LIT_LIT,
1025 STATE_MATCH_LIT_LIT,
1026 STATE_REP_LIT_LIT,
1027 STATE_SHORTREP_LIT_LIT,
1028 STATE_MATCH_LIT,
1029 STATE_REP_LIT,
1030 STATE_SHORTREP_LIT,
1031 STATE_LIT_MATCH,
1032 STATE_LIT_LONGREP,
1033 STATE_LIT_SHORTREP,
1034 STATE_NONLIT_MATCH,
1035 STATE_NONLIT_REP
1036 };
1037
1038 /* Total number of states */
1039 #define STATES 12
1040
1041 /* The lowest 7 states indicate that the previous state was a literal. */
1042 #define LIT_STATES 7
1043
1044 /* Indicate that the latest symbol was a literal. */
lzma_state_literal(enum lzma_state * state)1045 static inline void lzma_state_literal(enum lzma_state *state)
1046 {
1047 if (*state <= STATE_SHORTREP_LIT_LIT)
1048 *state = STATE_LIT_LIT;
1049 else if (*state <= STATE_LIT_SHORTREP)
1050 *state -= 3;
1051 else
1052 *state -= 6;
1053 }
1054
1055 /* Indicate that the latest symbol was a match. */
lzma_state_match(enum lzma_state * state)1056 static inline void lzma_state_match(enum lzma_state *state)
1057 {
1058 *state = *state < LIT_STATES ? STATE_LIT_MATCH : STATE_NONLIT_MATCH;
1059 }
1060
1061 /* Indicate that the latest state was a long repeated match. */
lzma_state_long_rep(enum lzma_state * state)1062 static inline void lzma_state_long_rep(enum lzma_state *state)
1063 {
1064 *state = *state < LIT_STATES ? STATE_LIT_LONGREP : STATE_NONLIT_REP;
1065 }
1066
1067 /* Indicate that the latest symbol was a short match. */
lzma_state_short_rep(enum lzma_state * state)1068 static inline void lzma_state_short_rep(enum lzma_state *state)
1069 {
1070 *state = *state < LIT_STATES ? STATE_LIT_SHORTREP : STATE_NONLIT_REP;
1071 }
1072
1073 /* Test if the previous symbol was a literal. */
lzma_state_is_literal(enum lzma_state state)1074 static inline int lzma_state_is_literal(enum lzma_state state)
1075 {
1076 return state < LIT_STATES;
1077 }
1078
1079 /* Each literal coder is divided in three sections:
1080 * - 0x001-0x0FF: Without match byte
1081 * - 0x101-0x1FF: With match byte; match bit is 0
1082 * - 0x201-0x2FF: With match byte; match bit is 1
1083 *
1084 * Match byte is used when the previous LZMA symbol was something else than
1085 * a literal (that is, it was some kind of match).
1086 */
1087 #define LITERAL_CODER_SIZE 0x300
1088
1089 /* Maximum number of literal coders */
1090 #define LITERAL_CODERS_MAX (1 << 4)
1091
1092 /* Minimum length of a match is two bytes. */
1093 #define MATCH_LEN_MIN 2
1094
1095 /* Match length is encoded with 4, 5, or 10 bits.
1096 *
1097 * Length Bits
1098 * 2-9 4 = Choice=0 + 3 bits
1099 * 10-17 5 = Choice=1 + Choice2=0 + 3 bits
1100 * 18-273 10 = Choice=1 + Choice2=1 + 8 bits
1101 */
1102 #define LEN_LOW_BITS 3
1103 #define LEN_LOW_SYMBOLS (1 << LEN_LOW_BITS)
1104 #define LEN_MID_BITS 3
1105 #define LEN_MID_SYMBOLS (1 << LEN_MID_BITS)
1106 #define LEN_HIGH_BITS 8
1107 #define LEN_HIGH_SYMBOLS (1 << LEN_HIGH_BITS)
1108 #define LEN_SYMBOLS (LEN_LOW_SYMBOLS + LEN_MID_SYMBOLS + LEN_HIGH_SYMBOLS)
1109
1110 /*
1111 * Maximum length of a match is 273 which is a result of the encoding
1112 * described above.
1113 */
1114 #define MATCH_LEN_MAX (MATCH_LEN_MIN + LEN_SYMBOLS - 1)
1115
1116 /*
1117 * Different sets of probabilities are used for match distances that have
1118 * very short match length: Lengths of 2, 3, and 4 bytes have a separate
1119 * set of probabilities for each length. The matches with longer length
1120 * use a shared set of probabilities.
1121 */
1122 #define DIST_STATES 4
1123
1124 /*
1125 * Get the index of the appropriate probability array for decoding
1126 * the distance slot.
1127 */
lzma_get_dist_state(uint32_t len)1128 static inline uint32_t lzma_get_dist_state(uint32_t len)
1129 {
1130 return len < DIST_STATES + MATCH_LEN_MIN
1131 ? len - MATCH_LEN_MIN : DIST_STATES - 1;
1132 }
1133
1134 /*
1135 * The highest two bits of a 32-bit match distance are encoded using six bits.
1136 * This six-bit value is called a distance slot. This way encoding a 32-bit
1137 * value takes 6-36 bits, larger values taking more bits.
1138 */
1139 #define DIST_SLOT_BITS 6
1140 #define DIST_SLOTS (1 << DIST_SLOT_BITS)
1141
1142 /* Match distances up to 127 are fully encoded using probabilities. Since
1143 * the highest two bits (distance slot) are always encoded using six bits,
1144 * the distances 0-3 don't need any additional bits to encode, since the
1145 * distance slot itself is the same as the actual distance. DIST_MODEL_START
1146 * indicates the first distance slot where at least one additional bit is
1147 * needed.
1148 */
1149 #define DIST_MODEL_START 4
1150
1151 /*
1152 * Match distances greater than 127 are encoded in three pieces:
1153 * - distance slot: the highest two bits
1154 * - direct bits: 2-26 bits below the highest two bits
1155 * - alignment bits: four lowest bits
1156 *
1157 * Direct bits don't use any probabilities.
1158 *
1159 * The distance slot value of 14 is for distances 128-191.
1160 */
1161 #define DIST_MODEL_END 14
1162
1163 /* Distance slots that indicate a distance <= 127. */
1164 #define FULL_DISTANCES_BITS (DIST_MODEL_END / 2)
1165 #define FULL_DISTANCES (1 << FULL_DISTANCES_BITS)
1166
1167 /*
1168 * For match distances greater than 127, only the highest two bits and the
1169 * lowest four bits (alignment) is encoded using probabilities.
1170 */
1171 #define ALIGN_BITS 4
1172 #define ALIGN_SIZE (1 << ALIGN_BITS)
1173 #define ALIGN_MASK (ALIGN_SIZE - 1)
1174
1175 /* Total number of all probability variables */
1176 #define PROBS_TOTAL (1846 + LITERAL_CODERS_MAX * LITERAL_CODER_SIZE)
1177
1178 /*
1179 * LZMA remembers the four most recent match distances. Reusing these
1180 * distances tends to take less space than re-encoding the actual
1181 * distance value.
1182 */
1183 #define REPS 4
1184
1185
1186 // END xz_lzma2.h
1187
1188 /*
1189 * Range decoder initialization eats the first five bytes of each LZMA chunk.
1190 */
1191 #define RC_INIT_BYTES 5
1192
1193 /*
1194 * Minimum number of usable input buffer to safely decode one LZMA symbol.
1195 * The worst case is that we decode 22 bits using probabilities and 26
1196 * direct bits. This may decode at maximum of 20 bytes of input. However,
1197 * lzma_main() does an extra normalization before returning, thus we
1198 * need to put 21 here.
1199 */
1200 #define LZMA_IN_REQUIRED 21
1201
1202 /*
1203 * Dictionary (history buffer)
1204 *
1205 * These are always true:
1206 * start <= pos <= full <= end
1207 * pos <= limit <= end
1208 * end == size
1209 * size <= size_max
1210 * allocated <= size
1211 *
1212 * Most of these variables are size_t as a relic of single-call mode,
1213 * in which the dictionary variables address the actual output
1214 * buffer directly.
1215 */
1216 struct dictionary {
1217 /* Beginning of the history buffer */
1218 uint8_t *buf;
1219
1220 /* Old position in buf (before decoding more data) */
1221 size_t start;
1222
1223 /* Position in buf */
1224 size_t pos;
1225
1226 /*
1227 * How full dictionary is. This is used to detect corrupt input that
1228 * would read beyond the beginning of the uncompressed stream.
1229 */
1230 size_t full;
1231
1232 /* Write limit; we don't write to buf[limit] or later bytes. */
1233 size_t limit;
1234
1235 /* End of the dictionary buffer. This is the same as the dictionary size. */
1236 size_t end;
1237
1238 /*
1239 * Size of the dictionary as specified in Block Header. This is used
1240 * together with "full" to detect corrupt input that would make us
1241 * read beyond the beginning of the uncompressed stream.
1242 */
1243 uint32_t size;
1244
1245 /*
1246 * Maximum allowed dictionary size.
1247 */
1248 uint32_t size_max;
1249
1250 /*
1251 * Amount of memory currently allocated for the dictionary.
1252 */
1253 uint32_t allocated;
1254 };
1255
1256 /* Range decoder */
1257 struct rc_dec {
1258 uint32_t range;
1259 uint32_t code;
1260
1261 /*
1262 * Number of initializing bytes remaining to be read
1263 * by rc_read_init().
1264 */
1265 uint32_t init_bytes_left;
1266
1267 /*
1268 * Buffer from which we read our input. It can be either
1269 * temp.buf or the caller-provided input buffer.
1270 */
1271 const uint8_t *in;
1272 size_t in_pos;
1273 size_t in_limit;
1274 };
1275
1276 /* Probabilities for a length decoder. */
1277 struct lzma_len_dec {
1278 /* Probability of match length being at least 10 */
1279 uint16_t choice;
1280
1281 /* Probability of match length being at least 18 */
1282 uint16_t choice2;
1283
1284 /* Probabilities for match lengths 2-9 */
1285 uint16_t low[POS_STATES_MAX][LEN_LOW_SYMBOLS];
1286
1287 /* Probabilities for match lengths 10-17 */
1288 uint16_t mid[POS_STATES_MAX][LEN_MID_SYMBOLS];
1289
1290 /* Probabilities for match lengths 18-273 */
1291 uint16_t high[LEN_HIGH_SYMBOLS];
1292 };
1293
1294 struct lzma_dec {
1295 /* Distances of latest four matches */
1296 uint32_t rep0;
1297 uint32_t rep1;
1298 uint32_t rep2;
1299 uint32_t rep3;
1300
1301 /* Types of the most recently seen LZMA symbols */
1302 enum lzma_state state;
1303
1304 /*
1305 * Length of a match. This is updated so that dict_repeat can
1306 * be called again to finish repeating the whole match.
1307 */
1308 uint32_t len;
1309
1310 /*
1311 * LZMA properties or related bit masks (number of literal
1312 * context bits, a mask dervied from the number of literal
1313 * position bits, and a mask dervied from the number
1314 * position bits)
1315 */
1316 uint32_t lc;
1317 uint32_t literal_pos_mask; /* (1 << lp) - 1 */
1318 uint32_t pos_mask; /* (1 << pb) - 1 */
1319
1320 /* If 1, it's a match. Otherwise it's a single 8-bit literal. */
1321 uint16_t is_match[STATES][POS_STATES_MAX];
1322
1323 /* If 1, it's a repeated match. The distance is one of rep0 .. rep3. */
1324 uint16_t is_rep[STATES];
1325
1326 /*
1327 * If 0, distance of a repeated match is rep0.
1328 * Otherwise check is_rep1.
1329 */
1330 uint16_t is_rep0[STATES];
1331
1332 /*
1333 * If 0, distance of a repeated match is rep1.
1334 * Otherwise check is_rep2.
1335 */
1336 uint16_t is_rep1[STATES];
1337
1338 /* If 0, distance of a repeated match is rep2. Otherwise it is rep3. */
1339 uint16_t is_rep2[STATES];
1340
1341 /*
1342 * If 1, the repeated match has length of one byte. Otherwise
1343 * the length is decoded from rep_len_decoder.
1344 */
1345 uint16_t is_rep0_long[STATES][POS_STATES_MAX];
1346
1347 /*
1348 * Probability tree for the highest two bits of the match
1349 * distance. There is a separate probability tree for match
1350 * lengths of 2 (i.e. MATCH_LEN_MIN), 3, 4, and [5, 273].
1351 */
1352 uint16_t dist_slot[DIST_STATES][DIST_SLOTS];
1353
1354 /*
1355 * Probility trees for additional bits for match distance
1356 * when the distance is in the range [4, 127].
1357 */
1358 uint16_t dist_special[FULL_DISTANCES - DIST_MODEL_END];
1359
1360 /*
1361 * Probability tree for the lowest four bits of a match
1362 * distance that is equal to or greater than 128.
1363 */
1364 uint16_t dist_align[ALIGN_SIZE];
1365
1366 /* Length of a normal match */
1367 struct lzma_len_dec match_len_dec;
1368
1369 /* Length of a repeated match */
1370 struct lzma_len_dec rep_len_dec;
1371
1372 /* Probabilities of literals */
1373 uint16_t literal[LITERAL_CODERS_MAX][LITERAL_CODER_SIZE];
1374 };
1375
1376 struct lzma2_dec {
1377 /* Position in xz_dec_lzma2_run(). */
1378 enum lzma2_seq {
1379 SEQ_CONTROL,
1380 SEQ_UNCOMPRESSED_1,
1381 SEQ_UNCOMPRESSED_2,
1382 SEQ_COMPRESSED_0,
1383 SEQ_COMPRESSED_1,
1384 SEQ_PROPERTIES,
1385 SEQ_LZMA_PREPARE,
1386 SEQ_LZMA_RUN,
1387 SEQ_COPY
1388 } sequence;
1389
1390 /* Next position after decoding the compressed size of the chunk. */
1391 enum lzma2_seq next_sequence;
1392
1393 /* Uncompressed size of LZMA chunk (2 MiB at maximum) */
1394 uint32_t uncompressed;
1395
1396 /*
1397 * Compressed size of LZMA chunk or compressed/uncompressed
1398 * size of uncompressed chunk (64 KiB at maximum)
1399 */
1400 uint32_t compressed;
1401
1402 /*
1403 * True if dictionary reset is needed. This is false before
1404 * the first chunk (LZMA or uncompressed).
1405 */
1406 int need_dict_reset;
1407
1408 /*
1409 * True if new LZMA properties are needed. This is false
1410 * before the first LZMA chunk.
1411 */
1412 int need_props;
1413 };
1414
1415 struct xz_dec_lzma2 {
1416 /*
1417 * The order below is important on x86 to reduce code size and
1418 * it shouldn't hurt on other platforms. Everything up to and
1419 * including lzma.pos_mask are in the first 128 bytes on x86-32,
1420 * which allows using smaller instructions to access those
1421 * variables. On x86-64, fewer variables fit into the first 128
1422 * bytes, but this is still the best order without sacrificing
1423 * the readability by splitting the structures.
1424 */
1425 struct rc_dec rc;
1426 struct dictionary dict;
1427 struct lzma2_dec lzma2;
1428 struct lzma_dec lzma;
1429
1430 /*
1431 * Temporary buffer which holds small number of input bytes between
1432 * decoder calls. See lzma2_lzma() for details.
1433 */
1434 struct {
1435 uint32_t size;
1436 uint8_t buf[3 * LZMA_IN_REQUIRED];
1437 } temp;
1438 };
1439
1440 /**************
1441 * Dictionary *
1442 **************/
1443
1444 /* Reset the dictionary state. */
dict_reset(struct dictionary * dict)1445 static void dict_reset(struct dictionary *dict)
1446 {
1447 dict->start = 0;
1448 dict->pos = 0;
1449 dict->limit = 0;
1450 dict->full = 0;
1451 }
1452
1453 /* Set dictionary write limit */
dict_limit(struct dictionary * dict,size_t out_max)1454 static void dict_limit(struct dictionary *dict, size_t out_max)
1455 {
1456 if (dict->end - dict->pos <= out_max)
1457 dict->limit = dict->end;
1458 else
1459 dict->limit = dict->pos + out_max;
1460 }
1461
1462 /* Return true if at least one byte can be written into the dictionary. */
dict_has_space(const struct dictionary * dict)1463 static inline int dict_has_space(const struct dictionary *dict)
1464 {
1465 return dict->pos < dict->limit;
1466 }
1467
1468 /*
1469 * Get a byte from the dictionary at the given distance. The distance is
1470 * assumed to valid, or as a special case, zero when the dictionary is
1471 * still empty. This special case is needed for single-call decoding to
1472 * avoid writing a '\0' to the end of the destination buffer.
1473 */
dict_get(const struct dictionary * dict,uint32_t dist)1474 static inline uint32_t dict_get(const struct dictionary *dict, uint32_t dist)
1475 {
1476 size_t offset = dict->pos - dist - 1;
1477
1478 if (dist >= dict->pos)
1479 offset += dict->end;
1480
1481 return dict->full > 0 ? dict->buf[offset] : 0;
1482 }
1483
1484 /*
1485 * Put one byte into the dictionary. It is assumed that there is space for it.
1486 */
dict_put(struct dictionary * dict,uint8_t byte)1487 static inline void dict_put(struct dictionary *dict, uint8_t byte)
1488 {
1489 dict->buf[dict->pos++] = byte;
1490
1491 if (dict->full < dict->pos)
1492 dict->full = dict->pos;
1493 }
1494
1495 /*
1496 * Repeat given number of bytes from the given distance. If the distance is
1497 * invalid, false is returned. On success, true is returned and *len is
1498 * updated to indicate how many bytes were left to be repeated.
1499 */
dict_repeat(struct dictionary * dict,uint32_t * len,uint32_t dist)1500 static int dict_repeat(struct dictionary *dict, uint32_t *len, uint32_t dist)
1501 {
1502 size_t back;
1503 uint32_t left;
1504
1505 if (dist >= dict->full || dist >= dict->size) return 0;
1506
1507 left = min_t(size_t, dict->limit - dict->pos, *len);
1508 *len -= left;
1509
1510 back = dict->pos - dist - 1;
1511 if (dist >= dict->pos)
1512 back += dict->end;
1513
1514 do {
1515 dict->buf[dict->pos++] = dict->buf[back++];
1516 if (back == dict->end)
1517 back = 0;
1518 } while (--left > 0);
1519
1520 if (dict->full < dict->pos)
1521 dict->full = dict->pos;
1522
1523 return 1;
1524 }
1525
1526 /* Copy uncompressed data as is from input to dictionary and output buffers. */
dict_uncompressed(struct dictionary * dict,struct xz_buf * b,uint32_t * left)1527 static void dict_uncompressed(struct dictionary *dict, struct xz_buf *b,
1528 uint32_t *left)
1529 {
1530 size_t copy_size;
1531
1532 while (*left > 0 && b->in_pos < b->in_size
1533 && b->out_pos < b->out_size) {
1534 copy_size = min(b->in_size - b->in_pos,
1535 b->out_size - b->out_pos);
1536 if (copy_size > dict->end - dict->pos)
1537 copy_size = dict->end - dict->pos;
1538 if (copy_size > *left)
1539 copy_size = *left;
1540
1541 *left -= copy_size;
1542
1543 memcpy(dict->buf + dict->pos, b->in + b->in_pos, copy_size);
1544 dict->pos += copy_size;
1545
1546 if (dict->full < dict->pos)
1547 dict->full = dict->pos;
1548
1549 if (dict->pos == dict->end)
1550 dict->pos = 0;
1551
1552 memcpy(b->out + b->out_pos, b->in + b->in_pos,
1553 copy_size);
1554
1555 dict->start = dict->pos;
1556
1557 b->out_pos += copy_size;
1558 b->in_pos += copy_size;
1559 }
1560 }
1561
1562 /*
1563 * Flush pending data from dictionary to b->out. It is assumed that there is
1564 * enough space in b->out. This is guaranteed because caller uses dict_limit()
1565 * before decoding data into the dictionary.
1566 */
dict_flush(struct dictionary * dict,struct xz_buf * b)1567 static uint32_t dict_flush(struct dictionary *dict, struct xz_buf *b)
1568 {
1569 size_t copy_size = dict->pos - dict->start;
1570
1571 if (dict->pos == dict->end)
1572 dict->pos = 0;
1573
1574 memcpy(b->out + b->out_pos, dict->buf + dict->start,
1575 copy_size);
1576
1577 dict->start = dict->pos;
1578 b->out_pos += copy_size;
1579 return copy_size;
1580 }
1581
1582 /*****************
1583 * Range decoder *
1584 *****************/
1585
1586 /* Reset the range decoder. */
rc_reset(struct rc_dec * rc)1587 static void rc_reset(struct rc_dec *rc)
1588 {
1589 rc->range = (uint32_t)-1;
1590 rc->code = 0;
1591 rc->init_bytes_left = RC_INIT_BYTES;
1592 }
1593
1594 /*
1595 * Read the first five initial bytes into rc->code if they haven't been
1596 * read already. (Yes, the first byte gets completely ignored.)
1597 */
rc_read_init(struct rc_dec * rc,struct xz_buf * b)1598 static int rc_read_init(struct rc_dec *rc, struct xz_buf *b)
1599 {
1600 while (rc->init_bytes_left > 0) {
1601 if (b->in_pos == b->in_size) return 0;
1602
1603 rc->code = (rc->code << 8) + b->in[b->in_pos++];
1604 --rc->init_bytes_left;
1605 }
1606
1607 return 1;
1608 }
1609
1610 /* Return true if there may not be enough input for the next decoding loop. */
rc_limit_exceeded(const struct rc_dec * rc)1611 static inline int rc_limit_exceeded(const struct rc_dec *rc)
1612 {
1613 return rc->in_pos > rc->in_limit;
1614 }
1615
1616 /*
1617 * Return true if it is possible (from point of view of range decoder) that
1618 * we have reached the end of the LZMA chunk.
1619 */
rc_is_finished(const struct rc_dec * rc)1620 static inline int rc_is_finished(const struct rc_dec *rc)
1621 {
1622 return rc->code == 0;
1623 }
1624
1625 /* Read the next input byte if needed. */
rc_normalize(struct rc_dec * rc)1626 static inline void rc_normalize(struct rc_dec *rc)
1627 {
1628 if (rc->range < RC_TOP_VALUE) {
1629 rc->range <<= RC_SHIFT_BITS;
1630 rc->code = (rc->code << RC_SHIFT_BITS) + rc->in[rc->in_pos++];
1631 }
1632 }
1633
1634 /*
1635 * Decode one bit. In some versions, this function has been splitted in three
1636 * functions so that the compiler is supposed to be able to more easily avoid
1637 * an extra branch. In this particular version of the LZMA decoder, this
1638 * doesn't seem to be a good idea (tested with GCC 3.3.6, 3.4.6, and 4.3.3
1639 * on x86). Using a non-splitted version results in nicer looking code too.
1640 *
1641 * NOTE: This must return an int. Do not make it return a bool or the speed
1642 * of the code generated by GCC 3.x decreases 10-15 %. (GCC 4.3 doesn't care,
1643 * and it generates 10-20 % faster code than GCC 3.x from this file anyway.)
1644 */
rc_bit(struct rc_dec * rc,uint16_t * prob)1645 static inline int rc_bit(struct rc_dec *rc, uint16_t *prob)
1646 {
1647 uint32_t bound;
1648 int bit;
1649
1650 rc_normalize(rc);
1651 bound = (rc->range >> RC_BIT_MODEL_TOTAL_BITS) * *prob;
1652 if (rc->code < bound) {
1653 rc->range = bound;
1654 *prob += (RC_BIT_MODEL_TOTAL - *prob) >> RC_MOVE_BITS;
1655 bit = 0;
1656 } else {
1657 rc->range -= bound;
1658 rc->code -= bound;
1659 *prob -= *prob >> RC_MOVE_BITS;
1660 bit = 1;
1661 }
1662
1663 return bit;
1664 }
1665
1666 /* Decode a bittree starting from the most significant bit. */
rc_bittree(struct rc_dec * rc,uint16_t * probs,uint32_t limit)1667 static inline uint32_t rc_bittree(struct rc_dec *rc,
1668 uint16_t *probs, uint32_t limit)
1669 {
1670 uint32_t symbol = 1;
1671
1672 do {
1673 if (rc_bit(rc, &probs[symbol]))
1674 symbol = (symbol << 1) + 1;
1675 else
1676 symbol <<= 1;
1677 } while (symbol < limit);
1678
1679 return symbol;
1680 }
1681
1682 /* Decode a bittree starting from the least significant bit. */
rc_bittree_reverse(struct rc_dec * rc,uint16_t * probs,uint32_t * dest,uint32_t limit)1683 static inline void rc_bittree_reverse(struct rc_dec *rc,
1684 uint16_t *probs,
1685 uint32_t *dest, uint32_t limit)
1686 {
1687 uint32_t symbol = 1;
1688 uint32_t i = 0;
1689
1690 do {
1691 if (rc_bit(rc, &probs[symbol])) {
1692 symbol = (symbol << 1) + 1;
1693 *dest += 1 << i;
1694 } else {
1695 symbol <<= 1;
1696 }
1697 } while (++i < limit);
1698 }
1699
1700 /* Decode direct bits (fixed fifty-fifty probability) */
rc_direct(struct rc_dec * rc,uint32_t * dest,uint32_t limit)1701 static inline void rc_direct(struct rc_dec *rc, uint32_t *dest, uint32_t limit)
1702 {
1703 uint32_t mask;
1704
1705 do {
1706 rc_normalize(rc);
1707 rc->range >>= 1;
1708 rc->code -= rc->range;
1709 mask = (uint32_t)0 - (rc->code >> 31);
1710 rc->code += rc->range & mask;
1711 *dest = (*dest << 1) + (mask + 1);
1712 } while (--limit > 0);
1713 }
1714
1715 /********
1716 * LZMA *
1717 ********/
1718
1719 /* Get pointer to literal coder probability array. */
lzma_literal_probs(struct xz_dec_lzma2 * s)1720 static uint16_t *lzma_literal_probs(struct xz_dec_lzma2 *s)
1721 {
1722 uint32_t prev_byte = dict_get(&s->dict, 0);
1723 uint32_t low = prev_byte >> (8 - s->lzma.lc);
1724 uint32_t high = (s->dict.pos & s->lzma.literal_pos_mask) << s->lzma.lc;
1725 return s->lzma.literal[low + high];
1726 }
1727
1728 /* Decode a literal (one 8-bit byte) */
lzma_literal(struct xz_dec_lzma2 * s)1729 static void lzma_literal(struct xz_dec_lzma2 *s)
1730 {
1731 uint16_t *probs;
1732 uint32_t symbol;
1733 uint32_t match_byte;
1734 uint32_t match_bit;
1735 uint32_t offset;
1736 uint32_t i;
1737
1738 probs = lzma_literal_probs(s);
1739
1740 if (lzma_state_is_literal(s->lzma.state)) {
1741 symbol = rc_bittree(&s->rc, probs, 0x100);
1742 } else {
1743 symbol = 1;
1744 match_byte = dict_get(&s->dict, s->lzma.rep0) << 1;
1745 offset = 0x100;
1746
1747 do {
1748 match_bit = match_byte & offset;
1749 match_byte <<= 1;
1750 i = offset + match_bit + symbol;
1751
1752 if (rc_bit(&s->rc, &probs[i])) {
1753 symbol = (symbol << 1) + 1;
1754 offset &= match_bit;
1755 } else {
1756 symbol <<= 1;
1757 offset &= ~match_bit;
1758 }
1759 } while (symbol < 0x100);
1760 }
1761
1762 dict_put(&s->dict, (uint8_t)symbol);
1763 lzma_state_literal(&s->lzma.state);
1764 }
1765
1766 /* Decode the length of the match into s->lzma.len. */
lzma_len(struct xz_dec_lzma2 * s,struct lzma_len_dec * l,uint32_t pos_state)1767 static void lzma_len(struct xz_dec_lzma2 *s, struct lzma_len_dec *l,
1768 uint32_t pos_state)
1769 {
1770 uint16_t *probs;
1771 uint32_t limit;
1772
1773 if (!rc_bit(&s->rc, &l->choice)) {
1774 probs = l->low[pos_state];
1775 limit = LEN_LOW_SYMBOLS;
1776 s->lzma.len = MATCH_LEN_MIN;
1777 } else {
1778 if (!rc_bit(&s->rc, &l->choice2)) {
1779 probs = l->mid[pos_state];
1780 limit = LEN_MID_SYMBOLS;
1781 s->lzma.len = MATCH_LEN_MIN + LEN_LOW_SYMBOLS;
1782 } else {
1783 probs = l->high;
1784 limit = LEN_HIGH_SYMBOLS;
1785 s->lzma.len = MATCH_LEN_MIN + LEN_LOW_SYMBOLS
1786 + LEN_MID_SYMBOLS;
1787 }
1788 }
1789
1790 s->lzma.len += rc_bittree(&s->rc, probs, limit) - limit;
1791 }
1792
1793 /* Decode a match. The distance will be stored in s->lzma.rep0. */
lzma_match(struct xz_dec_lzma2 * s,uint32_t pos_state)1794 static void lzma_match(struct xz_dec_lzma2 *s, uint32_t pos_state)
1795 {
1796 uint16_t *probs;
1797 uint32_t dist_slot;
1798 uint32_t limit;
1799
1800 lzma_state_match(&s->lzma.state);
1801
1802 s->lzma.rep3 = s->lzma.rep2;
1803 s->lzma.rep2 = s->lzma.rep1;
1804 s->lzma.rep1 = s->lzma.rep0;
1805
1806 lzma_len(s, &s->lzma.match_len_dec, pos_state);
1807
1808 probs = s->lzma.dist_slot[lzma_get_dist_state(s->lzma.len)];
1809 dist_slot = rc_bittree(&s->rc, probs, DIST_SLOTS) - DIST_SLOTS;
1810
1811 if (dist_slot < DIST_MODEL_START) {
1812 s->lzma.rep0 = dist_slot;
1813 } else {
1814 limit = (dist_slot >> 1) - 1;
1815 s->lzma.rep0 = 2 + (dist_slot & 1);
1816
1817 if (dist_slot < DIST_MODEL_END) {
1818 s->lzma.rep0 <<= limit;
1819 probs = s->lzma.dist_special + s->lzma.rep0
1820 - dist_slot - 1;
1821 rc_bittree_reverse(&s->rc, probs,
1822 &s->lzma.rep0, limit);
1823 } else {
1824 rc_direct(&s->rc, &s->lzma.rep0, limit - ALIGN_BITS);
1825 s->lzma.rep0 <<= ALIGN_BITS;
1826 rc_bittree_reverse(&s->rc, s->lzma.dist_align,
1827 &s->lzma.rep0, ALIGN_BITS);
1828 }
1829 }
1830 }
1831
1832 /*
1833 * Decode a repeated match. The distance is one of the four most recently
1834 * seen matches. The distance will be stored in s->lzma.rep0.
1835 */
lzma_rep_match(struct xz_dec_lzma2 * s,uint32_t pos_state)1836 static void lzma_rep_match(struct xz_dec_lzma2 *s, uint32_t pos_state)
1837 {
1838 uint32_t tmp;
1839
1840 if (!rc_bit(&s->rc, &s->lzma.is_rep0[s->lzma.state])) {
1841 if (!rc_bit(&s->rc, &s->lzma.is_rep0_long[
1842 s->lzma.state][pos_state])) {
1843 lzma_state_short_rep(&s->lzma.state);
1844 s->lzma.len = 1;
1845 return;
1846 }
1847 } else {
1848 if (!rc_bit(&s->rc, &s->lzma.is_rep1[s->lzma.state])) {
1849 tmp = s->lzma.rep1;
1850 } else {
1851 if (!rc_bit(&s->rc, &s->lzma.is_rep2[s->lzma.state])) {
1852 tmp = s->lzma.rep2;
1853 } else {
1854 tmp = s->lzma.rep3;
1855 s->lzma.rep3 = s->lzma.rep2;
1856 }
1857
1858 s->lzma.rep2 = s->lzma.rep1;
1859 }
1860
1861 s->lzma.rep1 = s->lzma.rep0;
1862 s->lzma.rep0 = tmp;
1863 }
1864
1865 lzma_state_long_rep(&s->lzma.state);
1866 lzma_len(s, &s->lzma.rep_len_dec, pos_state);
1867 }
1868
1869 /* LZMA decoder core */
lzma_main(struct xz_dec_lzma2 * s)1870 static int lzma_main(struct xz_dec_lzma2 *s)
1871 {
1872 uint32_t pos_state;
1873
1874 /*
1875 * If the dictionary was reached during the previous call, try to
1876 * finish the possibly pending repeat in the dictionary.
1877 */
1878 if (dict_has_space(&s->dict) && s->lzma.len > 0)
1879 dict_repeat(&s->dict, &s->lzma.len, s->lzma.rep0);
1880
1881 /*
1882 * Decode more LZMA symbols. One iteration may consume up to
1883 * LZMA_IN_REQUIRED - 1 bytes.
1884 */
1885 while (dict_has_space(&s->dict) && !rc_limit_exceeded(&s->rc)) {
1886 pos_state = s->dict.pos & s->lzma.pos_mask;
1887
1888 if (!rc_bit(&s->rc, &s->lzma.is_match[
1889 s->lzma.state][pos_state])) {
1890 lzma_literal(s);
1891 } else {
1892 if (rc_bit(&s->rc, &s->lzma.is_rep[s->lzma.state]))
1893 lzma_rep_match(s, pos_state);
1894 else
1895 lzma_match(s, pos_state);
1896
1897 if (!dict_repeat(&s->dict, &s->lzma.len, s->lzma.rep0))
1898 return 0;
1899 }
1900 }
1901
1902 /*
1903 * Having the range decoder always normalized when we are outside
1904 * this function makes it easier to correctly handle end of the chunk.
1905 */
1906 rc_normalize(&s->rc);
1907
1908 return 1;
1909 }
1910
1911 /*
1912 * Reset the LZMA decoder and range decoder state. Dictionary is nore reset
1913 * here, because LZMA state may be reset without resetting the dictionary.
1914 */
lzma_reset(struct xz_dec_lzma2 * s)1915 static void lzma_reset(struct xz_dec_lzma2 *s)
1916 {
1917 uint16_t *probs;
1918 size_t i;
1919
1920 s->lzma.state = STATE_LIT_LIT;
1921 s->lzma.rep0 = 0;
1922 s->lzma.rep1 = 0;
1923 s->lzma.rep2 = 0;
1924 s->lzma.rep3 = 0;
1925
1926 /*
1927 * All probabilities are initialized to the same value. This hack
1928 * makes the code smaller by avoiding a separate loop for each
1929 * probability array.
1930 *
1931 * This could be optimized so that only that part of literal
1932 * probabilities that are actually required. In the common case
1933 * we would write 12 KiB less.
1934 */
1935 probs = s->lzma.is_match[0];
1936 for (i = 0; i < PROBS_TOTAL; ++i)
1937 probs[i] = RC_BIT_MODEL_TOTAL / 2;
1938
1939 rc_reset(&s->rc);
1940 }
1941
1942 /*
1943 * Decode and validate LZMA properties (lc/lp/pb) and calculate the bit masks
1944 * from the decoded lp and pb values. On success, the LZMA decoder state is
1945 * reset and true is returned.
1946 */
lzma_props(struct xz_dec_lzma2 * s,uint8_t props)1947 static int lzma_props(struct xz_dec_lzma2 *s, uint8_t props)
1948 {
1949 if (props > (4 * 5 + 4) * 9 + 8)
1950 return 0;
1951
1952 s->lzma.pos_mask = 0;
1953 while (props >= 9 * 5) {
1954 props -= 9 * 5;
1955 ++s->lzma.pos_mask;
1956 }
1957
1958 s->lzma.pos_mask = (1 << s->lzma.pos_mask) - 1;
1959
1960 s->lzma.literal_pos_mask = 0;
1961 while (props >= 9) {
1962 props -= 9;
1963 ++s->lzma.literal_pos_mask;
1964 }
1965
1966 s->lzma.lc = props;
1967
1968 if (s->lzma.lc + s->lzma.literal_pos_mask > 4)
1969 return 0;
1970
1971 s->lzma.literal_pos_mask = (1 << s->lzma.literal_pos_mask) - 1;
1972
1973 lzma_reset(s);
1974
1975 return 1;
1976 }
1977
1978 /*********
1979 * LZMA2 *
1980 *********/
1981
1982 /*
1983 * The LZMA decoder assumes that if the input limit (s->rc.in_limit) hasn't
1984 * been exceeded, it is safe to read up to LZMA_IN_REQUIRED bytes. This
1985 * wrapper function takes care of making the LZMA decoder's assumption safe.
1986 *
1987 * As long as there is plenty of input left to be decoded in the current LZMA
1988 * chunk, we decode directly from the caller-supplied input buffer until
1989 * there's LZMA_IN_REQUIRED bytes left. Those remaining bytes are copied into
1990 * s->temp.buf, which (hopefully) gets filled on the next call to this
1991 * function. We decode a few bytes from the temporary buffer so that we can
1992 * continue decoding from the caller-supplied input buffer again.
1993 */
lzma2_lzma(struct xz_dec_lzma2 * s,struct xz_buf * b)1994 static int lzma2_lzma(struct xz_dec_lzma2 *s, struct xz_buf *b)
1995 {
1996 size_t in_avail;
1997 uint32_t tmp;
1998
1999 in_avail = b->in_size - b->in_pos;
2000 if (s->temp.size > 0 || s->lzma2.compressed == 0) {
2001 tmp = 2 * LZMA_IN_REQUIRED - s->temp.size;
2002 if (tmp > s->lzma2.compressed - s->temp.size)
2003 tmp = s->lzma2.compressed - s->temp.size;
2004 if (tmp > in_avail)
2005 tmp = in_avail;
2006
2007 memcpy(s->temp.buf + s->temp.size, b->in + b->in_pos, tmp);
2008
2009 if (s->temp.size + tmp == s->lzma2.compressed) {
2010 memset(s->temp.buf + s->temp.size + tmp, 0,
2011 sizeof(s->temp.buf)
2012 - s->temp.size - tmp);
2013 s->rc.in_limit = s->temp.size + tmp;
2014 } else if (s->temp.size + tmp < LZMA_IN_REQUIRED) {
2015 s->temp.size += tmp;
2016 b->in_pos += tmp;
2017 return 1;
2018 } else {
2019 s->rc.in_limit = s->temp.size + tmp - LZMA_IN_REQUIRED;
2020 }
2021
2022 s->rc.in = s->temp.buf;
2023 s->rc.in_pos = 0;
2024
2025 if (!lzma_main(s) || s->rc.in_pos > s->temp.size + tmp)
2026 return 0;
2027
2028 s->lzma2.compressed -= s->rc.in_pos;
2029
2030 if (s->rc.in_pos < s->temp.size) {
2031 s->temp.size -= s->rc.in_pos;
2032 memmove(s->temp.buf, s->temp.buf + s->rc.in_pos,
2033 s->temp.size);
2034 return 1;
2035 }
2036
2037 b->in_pos += s->rc.in_pos - s->temp.size;
2038 s->temp.size = 0;
2039 }
2040
2041 in_avail = b->in_size - b->in_pos;
2042 if (in_avail >= LZMA_IN_REQUIRED) {
2043 s->rc.in = b->in;
2044 s->rc.in_pos = b->in_pos;
2045
2046 if (in_avail >= s->lzma2.compressed + LZMA_IN_REQUIRED)
2047 s->rc.in_limit = b->in_pos + s->lzma2.compressed;
2048 else
2049 s->rc.in_limit = b->in_size - LZMA_IN_REQUIRED;
2050
2051 if (!lzma_main(s))
2052 return 0;
2053
2054 in_avail = s->rc.in_pos - b->in_pos;
2055 if (in_avail > s->lzma2.compressed) return 0;
2056
2057 s->lzma2.compressed -= in_avail;
2058 b->in_pos = s->rc.in_pos;
2059 }
2060
2061 in_avail = b->in_size - b->in_pos;
2062 if (in_avail < LZMA_IN_REQUIRED) {
2063 if (in_avail > s->lzma2.compressed)
2064 in_avail = s->lzma2.compressed;
2065
2066 memcpy(s->temp.buf, b->in + b->in_pos, in_avail);
2067 s->temp.size = in_avail;
2068 b->in_pos += in_avail;
2069 }
2070
2071 return 1;
2072 }
2073
2074 /*
2075 * Take care of the LZMA2 control layer, and forward the job of actual LZMA
2076 * decoding or copying of uncompressed chunks to other functions.
2077 */
xz_dec_lzma2_run(struct xz_dec_lzma2 * s,struct xz_buf * b)2078 enum xz_ret xz_dec_lzma2_run(struct xz_dec_lzma2 *s,
2079 struct xz_buf *b)
2080 {
2081 uint32_t tmp;
2082
2083 while (b->in_pos < b->in_size || s->lzma2.sequence == SEQ_LZMA_RUN) {
2084 switch (s->lzma2.sequence) {
2085 case SEQ_CONTROL:
2086 /*
2087 * LZMA2 control byte
2088 *
2089 * Exact values:
2090 * 0x00 End marker
2091 * 0x01 Dictionary reset followed by
2092 * an uncompressed chunk
2093 * 0x02 Uncompressed chunk (no dictionary reset)
2094 *
2095 * Highest three bits (s->control & 0xE0):
2096 * 0xE0 Dictionary reset, new properties and state
2097 * reset, followed by LZMA compressed chunk
2098 * 0xC0 New properties and state reset, followed
2099 * by LZMA compressed chunk (no dictionary
2100 * reset)
2101 * 0xA0 State reset using old properties,
2102 * followed by LZMA compressed chunk (no
2103 * dictionary reset)
2104 * 0x80 LZMA chunk (no dictionary or state reset)
2105 *
2106 * For LZMA compressed chunks, the lowest five bits
2107 * (s->control & 1F) are the highest bits of the
2108 * uncompressed size (bits 16-20).
2109 *
2110 * A new LZMA2 stream must begin with a dictionary
2111 * reset. The first LZMA chunk must set new
2112 * properties and reset the LZMA state.
2113 *
2114 * Values that don't match anything described above
2115 * are invalid and we return XZ_DATA_ERROR.
2116 */
2117 tmp = b->in[b->in_pos++];
2118
2119 if (tmp == 0x00)
2120 return XZ_STREAM_END;
2121
2122 if (tmp >= 0xE0 || tmp == 0x01) {
2123 s->lzma2.need_props = 1;
2124 s->lzma2.need_dict_reset = 0;
2125 dict_reset(&s->dict);
2126 } else if (s->lzma2.need_dict_reset) {
2127 return XZ_DATA_ERROR;
2128 }
2129
2130 if (tmp >= 0x80) {
2131 s->lzma2.uncompressed = (tmp & 0x1F) << 16;
2132 s->lzma2.sequence = SEQ_UNCOMPRESSED_1;
2133
2134 if (tmp >= 0xC0) {
2135 /*
2136 * When there are new properties,
2137 * state reset is done at
2138 * SEQ_PROPERTIES.
2139 */
2140 s->lzma2.need_props = 0;
2141 s->lzma2.next_sequence
2142 = SEQ_PROPERTIES;
2143
2144 } else if (s->lzma2.need_props) {
2145 return XZ_DATA_ERROR;
2146
2147 } else {
2148 s->lzma2.next_sequence
2149 = SEQ_LZMA_PREPARE;
2150 if (tmp >= 0xA0)
2151 lzma_reset(s);
2152 }
2153 } else {
2154 if (tmp > 0x02)
2155 return XZ_DATA_ERROR;
2156
2157 s->lzma2.sequence = SEQ_COMPRESSED_0;
2158 s->lzma2.next_sequence = SEQ_COPY;
2159 }
2160
2161 break;
2162
2163 case SEQ_UNCOMPRESSED_1:
2164 s->lzma2.uncompressed
2165 += (uint32_t)b->in[b->in_pos++] << 8;
2166 s->lzma2.sequence = SEQ_UNCOMPRESSED_2;
2167 break;
2168
2169 case SEQ_UNCOMPRESSED_2:
2170 s->lzma2.uncompressed
2171 += (uint32_t)b->in[b->in_pos++] + 1;
2172 s->lzma2.sequence = SEQ_COMPRESSED_0;
2173 break;
2174
2175 case SEQ_COMPRESSED_0:
2176 s->lzma2.compressed
2177 = (uint32_t)b->in[b->in_pos++] << 8;
2178 s->lzma2.sequence = SEQ_COMPRESSED_1;
2179 break;
2180
2181 case SEQ_COMPRESSED_1:
2182 s->lzma2.compressed
2183 += (uint32_t)b->in[b->in_pos++] + 1;
2184 s->lzma2.sequence = s->lzma2.next_sequence;
2185 break;
2186
2187 case SEQ_PROPERTIES:
2188 if (!lzma_props(s, b->in[b->in_pos++]))
2189 return XZ_DATA_ERROR;
2190
2191 s->lzma2.sequence = SEQ_LZMA_PREPARE;
2192
2193 case SEQ_LZMA_PREPARE:
2194 if (s->lzma2.compressed < RC_INIT_BYTES)
2195 return XZ_DATA_ERROR;
2196
2197 if (!rc_read_init(&s->rc, b))
2198 return XZ_OK;
2199
2200 s->lzma2.compressed -= RC_INIT_BYTES;
2201 s->lzma2.sequence = SEQ_LZMA_RUN;
2202
2203 case SEQ_LZMA_RUN:
2204 /*
2205 * Set dictionary limit to indicate how much we want
2206 * to be encoded at maximum. Decode new data into the
2207 * dictionary. Flush the new data from dictionary to
2208 * b->out. Check if we finished decoding this chunk.
2209 * In case the dictionary got full but we didn't fill
2210 * the output buffer yet, we may run this loop
2211 * multiple times without changing s->lzma2.sequence.
2212 */
2213 dict_limit(&s->dict, min_t(size_t,
2214 b->out_size - b->out_pos,
2215 s->lzma2.uncompressed));
2216 if (!lzma2_lzma(s, b))
2217 return XZ_DATA_ERROR;
2218
2219 s->lzma2.uncompressed -= dict_flush(&s->dict, b);
2220
2221 if (s->lzma2.uncompressed == 0) {
2222 if (s->lzma2.compressed > 0 || s->lzma.len > 0
2223 || !rc_is_finished(&s->rc))
2224 return XZ_DATA_ERROR;
2225
2226 rc_reset(&s->rc);
2227 s->lzma2.sequence = SEQ_CONTROL;
2228
2229 } else if (b->out_pos == b->out_size
2230 || (b->in_pos == b->in_size
2231 && s->temp.size
2232 < s->lzma2.compressed)) {
2233 return XZ_OK;
2234 }
2235
2236 break;
2237
2238 case SEQ_COPY:
2239 dict_uncompressed(&s->dict, b, &s->lzma2.compressed);
2240 if (s->lzma2.compressed > 0)
2241 return XZ_OK;
2242
2243 s->lzma2.sequence = SEQ_CONTROL;
2244 break;
2245 }
2246 }
2247
2248 return XZ_OK;
2249 }
2250
xz_dec_lzma2_create(uint32_t dict_max)2251 struct xz_dec_lzma2 *xz_dec_lzma2_create(uint32_t dict_max)
2252 {
2253 struct xz_dec_lzma2 *s = malloc(sizeof(*s));
2254 if (s == NULL)
2255 return NULL;
2256
2257 s->dict.size_max = dict_max;
2258 s->dict.buf = NULL;
2259 s->dict.allocated = 0;
2260
2261 return s;
2262 }
2263
xz_dec_lzma2_reset(struct xz_dec_lzma2 * s,uint8_t props)2264 enum xz_ret xz_dec_lzma2_reset(struct xz_dec_lzma2 *s, uint8_t props)
2265 {
2266 /* This limits dictionary size to 3 GiB to keep parsing simpler. */
2267 if (props > 39)
2268 return XZ_OPTIONS_ERROR;
2269
2270 s->dict.size = 2 + (props & 1);
2271 s->dict.size <<= (props >> 1) + 11;
2272
2273 if (s->dict.size > s->dict.size_max)
2274 return XZ_MEMLIMIT_ERROR;
2275
2276 s->dict.end = s->dict.size;
2277
2278 if (s->dict.allocated < s->dict.size) {
2279 free(s->dict.buf);
2280 s->dict.buf = malloc(s->dict.size);
2281 if (s->dict.buf == NULL) {
2282 s->dict.allocated = 0;
2283 return XZ_MEM_ERROR;
2284 }
2285 }
2286
2287 s->lzma.len = 0;
2288
2289 s->lzma2.sequence = SEQ_CONTROL;
2290 s->lzma2.need_dict_reset = 1;
2291
2292 s->temp.size = 0;
2293
2294 return XZ_OK;
2295 }
2296
2297 /*
2298 * .xz Stream decoder
2299 */
2300
2301
2302 // BEGIN xz_stream.h
2303 /*
2304 * Definitions for handling the .xz file format
2305 */
2306
2307 /*
2308 * See the .xz file format specification at
2309 * http://tukaani.org/xz/xz-file-format.txt
2310 * to understand the container format.
2311 */
2312
2313 #define STREAM_HEADER_SIZE 12
2314
2315 #define HEADER_MAGIC "\3757zXZ"
2316 #define HEADER_MAGIC_SIZE 6
2317
2318 #define FOOTER_MAGIC "YZ"
2319 #define FOOTER_MAGIC_SIZE 2
2320
2321 /*
2322 * Variable-length integer can hold a 63-bit unsigned integer or a special
2323 * value indicating that the value is unknown.
2324 *
2325 * Experimental: vli_type can be defined to uint32_t to save a few bytes
2326 * in code size (no effect on speed). Doing so limits the uncompressed and
2327 * compressed size of the file to less than 256 MiB and may also weaken
2328 * error detection slightly.
2329 */
2330 typedef uint64_t vli_type;
2331
2332 #define VLI_MAX ((vli_type)-1 / 2)
2333 #define VLI_UNKNOWN ((vli_type)-1)
2334
2335 /* Maximum encoded size of a VLI */
2336 #define VLI_BYTES_MAX (sizeof(vli_type) * 8 / 7)
2337
2338 /* Integrity Check types */
2339 enum xz_check {
2340 XZ_CHECK_NONE = 0,
2341 XZ_CHECK_CRC32 = 1,
2342 XZ_CHECK_CRC64 = 4,
2343 XZ_CHECK_SHA256 = 10
2344 };
2345
2346 /* Maximum possible Check ID */
2347 #define XZ_CHECK_MAX 15
2348 // END xz_stream.h
2349
2350 #define IS_CRC64(check_type) ((check_type) == XZ_CHECK_CRC64)
2351
2352 /* Hash used to validate the Index field */
2353 struct xz_dec_hash {
2354 vli_type unpadded;
2355 vli_type uncompressed;
2356 uint32_t crc32;
2357 };
2358
2359 struct xz_dec {
2360 /* Position in dec_main() */
2361 enum {
2362 SEQ_STREAM_HEADER,
2363 SEQ_BLOCK_START,
2364 SEQ_BLOCK_HEADER,
2365 SEQ_BLOCK_UNCOMPRESS,
2366 SEQ_BLOCK_PADDING,
2367 SEQ_BLOCK_CHECK,
2368 SEQ_INDEX,
2369 SEQ_INDEX_PADDING,
2370 SEQ_INDEX_CRC32,
2371 SEQ_STREAM_FOOTER
2372 } sequence;
2373
2374 /* Position in variable-length integers and Check fields */
2375 uint32_t pos;
2376
2377 /* Variable-length integer decoded by dec_vli() */
2378 vli_type vli;
2379
2380 /* Saved in_pos and out_pos */
2381 size_t in_start;
2382 size_t out_start;
2383
2384 /* CRC32 or CRC64 value in Block or CRC32 value in Index */
2385 uint64_t crc;
2386
2387 /* Type of the integrity check calculated from uncompressed data */
2388 enum xz_check check_type;
2389
2390 /*
2391 * True if the next call to xz_dec_run() is allowed to return
2392 * XZ_BUF_ERROR.
2393 */
2394 int allow_buf_error;
2395
2396 /* Information stored in Block Header */
2397 struct {
2398 /*
2399 * Value stored in the Compressed Size field, or
2400 * VLI_UNKNOWN if Compressed Size is not present.
2401 */
2402 vli_type compressed;
2403
2404 /*
2405 * Value stored in the Uncompressed Size field, or
2406 * VLI_UNKNOWN if Uncompressed Size is not present.
2407 */
2408 vli_type uncompressed;
2409
2410 /* Size of the Block Header field */
2411 uint32_t size;
2412 } block_header;
2413
2414 /* Information collected when decoding Blocks */
2415 struct {
2416 /* Observed compressed size of the current Block */
2417 vli_type compressed;
2418
2419 /* Observed uncompressed size of the current Block */
2420 vli_type uncompressed;
2421
2422 /* Number of Blocks decoded so far */
2423 vli_type count;
2424
2425 /*
2426 * Hash calculated from the Block sizes. This is used to
2427 * validate the Index field.
2428 */
2429 struct xz_dec_hash hash;
2430 } block;
2431
2432 /* Variables needed when verifying the Index field */
2433 struct {
2434 /* Position in dec_index() */
2435 enum {
2436 SEQ_INDEX_COUNT,
2437 SEQ_INDEX_UNPADDED,
2438 SEQ_INDEX_UNCOMPRESSED
2439 } sequence;
2440
2441 /* Size of the Index in bytes */
2442 vli_type size;
2443
2444 /* Number of Records (matches block.count in valid files) */
2445 vli_type count;
2446
2447 /*
2448 * Hash calculated from the Records (matches block.hash in
2449 * valid files).
2450 */
2451 struct xz_dec_hash hash;
2452 } index;
2453
2454 /*
2455 * Temporary buffer needed to hold Stream Header, Block Header,
2456 * and Stream Footer. The Block Header is the biggest (1 KiB)
2457 * so we reserve space according to that. buf[] has to be aligned
2458 * to a multiple of four bytes; the size_t variables before it
2459 * should guarantee this.
2460 */
2461 struct {
2462 size_t pos;
2463 size_t size;
2464 uint8_t buf[1024];
2465 } temp;
2466
2467 struct xz_dec_lzma2 *lzma2;
2468
2469 #ifdef XZ_DEC_BCJ
2470 struct xz_dec_bcj *bcj;
2471 int bcj_active;
2472 #endif
2473 };
2474
2475 /* Sizes of the Check field with different Check IDs */
2476 static const uint8_t check_sizes[16] = {
2477 0,
2478 4, 4, 4,
2479 8, 8, 8,
2480 16, 16, 16,
2481 32, 32, 32,
2482 64, 64, 64
2483 };
2484
2485 /*
2486 * Fill s->temp by copying data starting from b->in[b->in_pos]. Caller
2487 * must have set s->temp.pos to indicate how much data we are supposed
2488 * to copy into s->temp.buf. Return true once s->temp.pos has reached
2489 * s->temp.size.
2490 */
fill_temp(struct xz_dec * s,struct xz_buf * b)2491 static int fill_temp(struct xz_dec *s, struct xz_buf *b)
2492 {
2493 size_t copy_size = min_t(size_t,
2494 b->in_size - b->in_pos, s->temp.size - s->temp.pos);
2495
2496 memcpy(s->temp.buf + s->temp.pos, b->in + b->in_pos, copy_size);
2497 b->in_pos += copy_size;
2498 s->temp.pos += copy_size;
2499
2500 if (s->temp.pos == s->temp.size) {
2501 s->temp.pos = 0;
2502 return 1;
2503 }
2504
2505 return 0;
2506 }
2507
2508 /* Decode a variable-length integer (little-endian base-128 encoding) */
dec_vli(struct xz_dec * s,const uint8_t * in,size_t * in_pos,size_t in_size)2509 static enum xz_ret dec_vli(struct xz_dec *s, const uint8_t *in,
2510 size_t *in_pos, size_t in_size)
2511 {
2512 uint8_t byte;
2513
2514 if (s->pos == 0)
2515 s->vli = 0;
2516
2517 while (*in_pos < in_size) {
2518 byte = in[*in_pos];
2519 ++*in_pos;
2520
2521 s->vli |= (vli_type)(byte & 0x7F) << s->pos;
2522
2523 if ((byte & 0x80) == 0) {
2524 /* Don't allow non-minimal encodings. */
2525 if (byte == 0 && s->pos != 0)
2526 return XZ_DATA_ERROR;
2527
2528 s->pos = 0;
2529 return XZ_STREAM_END;
2530 }
2531
2532 s->pos += 7;
2533 if (s->pos == 7 * VLI_BYTES_MAX)
2534 return XZ_DATA_ERROR;
2535 }
2536
2537 return XZ_OK;
2538 }
2539
2540 /*
2541 * Decode the Compressed Data field from a Block. Update and validate
2542 * the observed compressed and uncompressed sizes of the Block so that
2543 * they don't exceed the values possibly stored in the Block Header
2544 * (validation assumes that no integer overflow occurs, since vli_type
2545 * is normally uint64_t). Update the CRC32 or CRC64 value if presence of
2546 * the CRC32 or CRC64 field was indicated in Stream Header.
2547 *
2548 * Once the decoding is finished, validate that the observed sizes match
2549 * the sizes possibly stored in the Block Header. Update the hash and
2550 * Block count, which are later used to validate the Index field.
2551 */
dec_block(struct xz_dec * s,struct xz_buf * b)2552 static enum xz_ret dec_block(struct xz_dec *s, struct xz_buf *b)
2553 {
2554 enum xz_ret ret;
2555
2556 s->in_start = b->in_pos;
2557 s->out_start = b->out_pos;
2558
2559 #ifdef XZ_DEC_BCJ
2560 if (s->bcj_active)
2561 ret = xz_dec_bcj_run(s->bcj, s->lzma2, b);
2562 else
2563 #endif
2564 ret = xz_dec_lzma2_run(s->lzma2, b);
2565
2566 s->block.compressed += b->in_pos - s->in_start;
2567 s->block.uncompressed += b->out_pos - s->out_start;
2568
2569 /*
2570 * There is no need to separately check for VLI_UNKNOWN, since
2571 * the observed sizes are always smaller than VLI_UNKNOWN.
2572 */
2573 if (s->block.compressed > s->block_header.compressed
2574 || s->block.uncompressed
2575 > s->block_header.uncompressed)
2576 return XZ_DATA_ERROR;
2577
2578 if (s->check_type == XZ_CHECK_CRC32)
2579 s->crc = xz_crc32(b->out + s->out_start,
2580 b->out_pos - s->out_start, s->crc);
2581 else if (s->check_type == XZ_CHECK_CRC64)
2582 s->crc = ~(s->crc);
2583 size_t size = b->out_pos - s->out_start;
2584 uint8_t *buf = b->out + s->out_start;
2585 while (size) {
2586 s->crc = xz_crc64_table[*buf++ ^ (s->crc & 0xFF)] ^ (s->crc >> 8);
2587 --size;
2588 }
2589 s->crc=~(s->crc);
2590
2591 if (ret == XZ_STREAM_END) {
2592 if (s->block_header.compressed != VLI_UNKNOWN
2593 && s->block_header.compressed
2594 != s->block.compressed)
2595 return XZ_DATA_ERROR;
2596
2597 if (s->block_header.uncompressed != VLI_UNKNOWN
2598 && s->block_header.uncompressed
2599 != s->block.uncompressed)
2600 return XZ_DATA_ERROR;
2601
2602 s->block.hash.unpadded += s->block_header.size
2603 + s->block.compressed;
2604
2605 s->block.hash.unpadded += check_sizes[s->check_type];
2606
2607 s->block.hash.uncompressed += s->block.uncompressed;
2608 s->block.hash.crc32 = xz_crc32(
2609 (const uint8_t *)&s->block.hash,
2610 sizeof(s->block.hash), s->block.hash.crc32);
2611
2612 ++s->block.count;
2613 }
2614
2615 return ret;
2616 }
2617
2618 /* Update the Index size and the CRC32 value. */
index_update(struct xz_dec * s,const struct xz_buf * b)2619 static void index_update(struct xz_dec *s, const struct xz_buf *b)
2620 {
2621 size_t in_used = b->in_pos - s->in_start;
2622 s->index.size += in_used;
2623 s->crc = xz_crc32(b->in + s->in_start, in_used, s->crc);
2624 }
2625
2626 /*
2627 * Decode the Number of Records, Unpadded Size, and Uncompressed Size
2628 * fields from the Index field. That is, Index Padding and CRC32 are not
2629 * decoded by this function.
2630 *
2631 * This can return XZ_OK (more input needed), XZ_STREAM_END (everything
2632 * successfully decoded), or XZ_DATA_ERROR (input is corrupt).
2633 */
dec_index(struct xz_dec * s,struct xz_buf * b)2634 static enum xz_ret dec_index(struct xz_dec *s, struct xz_buf *b)
2635 {
2636 enum xz_ret ret;
2637
2638 do {
2639 ret = dec_vli(s, b->in, &b->in_pos, b->in_size);
2640 if (ret != XZ_STREAM_END) {
2641 index_update(s, b);
2642 return ret;
2643 }
2644
2645 switch (s->index.sequence) {
2646 case SEQ_INDEX_COUNT:
2647 s->index.count = s->vli;
2648
2649 /*
2650 * Validate that the Number of Records field
2651 * indicates the same number of Records as
2652 * there were Blocks in the Stream.
2653 */
2654 if (s->index.count != s->block.count)
2655 return XZ_DATA_ERROR;
2656
2657 s->index.sequence = SEQ_INDEX_UNPADDED;
2658 break;
2659
2660 case SEQ_INDEX_UNPADDED:
2661 s->index.hash.unpadded += s->vli;
2662 s->index.sequence = SEQ_INDEX_UNCOMPRESSED;
2663 break;
2664
2665 case SEQ_INDEX_UNCOMPRESSED:
2666 s->index.hash.uncompressed += s->vli;
2667 s->index.hash.crc32 = xz_crc32(
2668 (const uint8_t *)&s->index.hash,
2669 sizeof(s->index.hash),
2670 s->index.hash.crc32);
2671 --s->index.count;
2672 s->index.sequence = SEQ_INDEX_UNPADDED;
2673 break;
2674 }
2675 } while (s->index.count > 0);
2676
2677 return XZ_STREAM_END;
2678 }
2679
2680 /*
2681 * Validate that the next four or eight input bytes match the value
2682 * of s->crc. s->pos must be zero when starting to validate the first byte.
2683 * The "bits" argument allows using the same code for both CRC32 and CRC64.
2684 */
crc_validate(struct xz_dec * s,struct xz_buf * b,uint32_t bits)2685 static enum xz_ret crc_validate(struct xz_dec *s, struct xz_buf *b,
2686 uint32_t bits)
2687 {
2688 do {
2689 if (b->in_pos == b->in_size)
2690 return XZ_OK;
2691
2692 if (((s->crc >> s->pos) & 0xFF) != b->in[b->in_pos++])
2693 return XZ_DATA_ERROR;
2694
2695 s->pos += 8;
2696
2697 } while (s->pos < bits);
2698
2699 s->crc = 0;
2700 s->pos = 0;
2701
2702 return XZ_STREAM_END;
2703 }
2704
2705 /*
2706 * Skip over the Check field when the Check ID is not supported.
2707 * Returns true once the whole Check field has been skipped over.
2708 */
check_skip(struct xz_dec * s,struct xz_buf * b)2709 static int check_skip(struct xz_dec *s, struct xz_buf *b)
2710 {
2711 while (s->pos < check_sizes[s->check_type]) {
2712 if (b->in_pos == b->in_size) return 0;
2713
2714 ++b->in_pos;
2715 ++s->pos;
2716 }
2717
2718 s->pos = 0;
2719
2720 return 1;
2721 }
2722
2723 /* Decode the Stream Header field (the first 12 bytes of the .xz Stream). */
dec_stream_header(struct xz_dec * s)2724 static enum xz_ret dec_stream_header(struct xz_dec *s)
2725 {
2726 if (!memeq(s->temp.buf, HEADER_MAGIC, HEADER_MAGIC_SIZE))
2727 return XZ_FORMAT_ERROR;
2728
2729 if (xz_crc32(s->temp.buf + HEADER_MAGIC_SIZE, 2, 0)
2730 != get_le32(s->temp.buf + HEADER_MAGIC_SIZE + 2))
2731 return XZ_DATA_ERROR;
2732
2733 if (s->temp.buf[HEADER_MAGIC_SIZE] != 0)
2734 return XZ_OPTIONS_ERROR;
2735
2736 /*
2737 * Of integrity checks, we support none (Check ID = 0),
2738 * CRC32 (Check ID = 1), and optionally CRC64 (Check ID = 4).
2739 * However, if XZ_DEC_ANY_CHECK is defined, we will accept other
2740 * check types too, but then the check won't be verified and
2741 * a warning (XZ_UNSUPPORTED_CHECK) will be given.
2742 */
2743 s->check_type = s->temp.buf[HEADER_MAGIC_SIZE + 1];
2744
2745 if (s->check_type > XZ_CHECK_MAX)
2746 return XZ_OPTIONS_ERROR;
2747
2748 if (s->check_type > XZ_CHECK_CRC32 && !IS_CRC64(s->check_type))
2749 return XZ_UNSUPPORTED_CHECK;
2750
2751 return XZ_OK;
2752 }
2753
2754 /* Decode the Stream Footer field (the last 12 bytes of the .xz Stream) */
dec_stream_footer(struct xz_dec * s)2755 static enum xz_ret dec_stream_footer(struct xz_dec *s)
2756 {
2757 if (!memeq(s->temp.buf + 10, FOOTER_MAGIC, FOOTER_MAGIC_SIZE))
2758 return XZ_DATA_ERROR;
2759
2760 if (xz_crc32(s->temp.buf + 4, 6, 0) != get_le32(s->temp.buf))
2761 return XZ_DATA_ERROR;
2762
2763 /*
2764 * Validate Backward Size. Note that we never added the size of the
2765 * Index CRC32 field to s->index.size, thus we use s->index.size / 4
2766 * instead of s->index.size / 4 - 1.
2767 */
2768 if ((s->index.size >> 2) != get_le32(s->temp.buf + 4))
2769 return XZ_DATA_ERROR;
2770
2771 if (s->temp.buf[8] != 0 || s->temp.buf[9] != s->check_type)
2772 return XZ_DATA_ERROR;
2773
2774 /*
2775 * Use XZ_STREAM_END instead of XZ_OK to be more convenient
2776 * for the caller.
2777 */
2778 return XZ_STREAM_END;
2779 }
2780
2781 /* Decode the Block Header and initialize the filter chain. */
dec_block_header(struct xz_dec * s)2782 static enum xz_ret dec_block_header(struct xz_dec *s)
2783 {
2784 enum xz_ret ret;
2785
2786 /*
2787 * Validate the CRC32. We know that the temp buffer is at least
2788 * eight bytes so this is safe.
2789 */
2790 s->temp.size -= 4;
2791 if (xz_crc32(s->temp.buf, s->temp.size, 0)
2792 != get_le32(s->temp.buf + s->temp.size))
2793 return XZ_DATA_ERROR;
2794
2795 s->temp.pos = 2;
2796
2797 /*
2798 * Catch unsupported Block Flags. We support only one or two filters
2799 * in the chain, so we catch that with the same test.
2800 */
2801 #ifdef XZ_DEC_BCJ
2802 if (s->temp.buf[1] & 0x3E)
2803 #else
2804 if (s->temp.buf[1] & 0x3F)
2805 #endif
2806 return XZ_OPTIONS_ERROR;
2807
2808 /* Compressed Size */
2809 if (s->temp.buf[1] & 0x40) {
2810 if (dec_vli(s, s->temp.buf, &s->temp.pos, s->temp.size)
2811 != XZ_STREAM_END)
2812 return XZ_DATA_ERROR;
2813
2814 s->block_header.compressed = s->vli;
2815 } else {
2816 s->block_header.compressed = VLI_UNKNOWN;
2817 }
2818
2819 /* Uncompressed Size */
2820 if (s->temp.buf[1] & 0x80) {
2821 if (dec_vli(s, s->temp.buf, &s->temp.pos, s->temp.size)
2822 != XZ_STREAM_END)
2823 return XZ_DATA_ERROR;
2824
2825 s->block_header.uncompressed = s->vli;
2826 } else {
2827 s->block_header.uncompressed = VLI_UNKNOWN;
2828 }
2829
2830 #ifdef XZ_DEC_BCJ
2831 /* If there are two filters, the first one must be a BCJ filter. */
2832 s->bcj_active = s->temp.buf[1] & 0x01;
2833 if (s->bcj_active) {
2834 if (s->temp.size - s->temp.pos < 2)
2835 return XZ_OPTIONS_ERROR;
2836
2837 ret = xz_dec_bcj_reset(s->bcj, s->temp.buf[s->temp.pos++]);
2838 if (ret != XZ_OK)
2839 return ret;
2840
2841 /*
2842 * We don't support custom start offset,
2843 * so Size of Properties must be zero.
2844 */
2845 if (s->temp.buf[s->temp.pos++] != 0x00)
2846 return XZ_OPTIONS_ERROR;
2847 }
2848 #endif
2849
2850 /* Valid Filter Flags always take at least two bytes. */
2851 if (s->temp.size - s->temp.pos < 2)
2852 return XZ_DATA_ERROR;
2853
2854 /* Filter ID = LZMA2 */
2855 if (s->temp.buf[s->temp.pos++] != 0x21)
2856 return XZ_OPTIONS_ERROR;
2857
2858 /* Size of Properties = 1-byte Filter Properties */
2859 if (s->temp.buf[s->temp.pos++] != 0x01)
2860 return XZ_OPTIONS_ERROR;
2861
2862 /* Filter Properties contains LZMA2 dictionary size. */
2863 if (s->temp.size - s->temp.pos < 1)
2864 return XZ_DATA_ERROR;
2865
2866 ret = xz_dec_lzma2_reset(s->lzma2, s->temp.buf[s->temp.pos++]);
2867 if (ret != XZ_OK)
2868 return ret;
2869
2870 /* The rest must be Header Padding. */
2871 while (s->temp.pos < s->temp.size)
2872 if (s->temp.buf[s->temp.pos++] != 0x00)
2873 return XZ_OPTIONS_ERROR;
2874
2875 s->temp.pos = 0;
2876 s->block.compressed = 0;
2877 s->block.uncompressed = 0;
2878
2879 return XZ_OK;
2880 }
2881
dec_main(struct xz_dec * s,struct xz_buf * b)2882 static enum xz_ret dec_main(struct xz_dec *s, struct xz_buf *b)
2883 {
2884 enum xz_ret ret;
2885
2886 /*
2887 * Store the start position for the case when we are in the middle
2888 * of the Index field.
2889 */
2890 s->in_start = b->in_pos;
2891
2892 for (;;) {
2893 switch (s->sequence) {
2894 case SEQ_STREAM_HEADER:
2895 /*
2896 * Stream Header is copied to s->temp, and then
2897 * decoded from there. This way if the caller
2898 * gives us only little input at a time, we can
2899 * still keep the Stream Header decoding code
2900 * simple. Similar approach is used in many places
2901 * in this file.
2902 */
2903 if (!fill_temp(s, b))
2904 return XZ_OK;
2905
2906 /*
2907 * If dec_stream_header() returns
2908 * XZ_UNSUPPORTED_CHECK, it is still possible
2909 * to continue decoding if working in multi-call
2910 * mode. Thus, update s->sequence before calling
2911 * dec_stream_header().
2912 */
2913 s->sequence = SEQ_BLOCK_START;
2914
2915 ret = dec_stream_header(s);
2916 if (ret != XZ_OK)
2917 return ret;
2918
2919 case SEQ_BLOCK_START:
2920 /* We need one byte of input to continue. */
2921 if (b->in_pos == b->in_size)
2922 return XZ_OK;
2923
2924 /* See if this is the beginning of the Index field. */
2925 if (b->in[b->in_pos] == 0) {
2926 s->in_start = b->in_pos++;
2927 s->sequence = SEQ_INDEX;
2928 break;
2929 }
2930
2931 /*
2932 * Calculate the size of the Block Header and
2933 * prepare to decode it.
2934 */
2935 s->block_header.size
2936 = ((uint32_t)b->in[b->in_pos] + 1) * 4;
2937
2938 s->temp.size = s->block_header.size;
2939 s->temp.pos = 0;
2940 s->sequence = SEQ_BLOCK_HEADER;
2941
2942 case SEQ_BLOCK_HEADER:
2943 if (!fill_temp(s, b))
2944 return XZ_OK;
2945
2946 ret = dec_block_header(s);
2947 if (ret != XZ_OK)
2948 return ret;
2949
2950 s->sequence = SEQ_BLOCK_UNCOMPRESS;
2951
2952 case SEQ_BLOCK_UNCOMPRESS:
2953 ret = dec_block(s, b);
2954 if (ret != XZ_STREAM_END)
2955 return ret;
2956
2957 s->sequence = SEQ_BLOCK_PADDING;
2958
2959 case SEQ_BLOCK_PADDING:
2960 /*
2961 * Size of Compressed Data + Block Padding
2962 * must be a multiple of four. We don't need
2963 * s->block.compressed for anything else
2964 * anymore, so we use it here to test the size
2965 * of the Block Padding field.
2966 */
2967 while (s->block.compressed & 3) {
2968 if (b->in_pos == b->in_size)
2969 return XZ_OK;
2970
2971 if (b->in[b->in_pos++] != 0)
2972 return XZ_DATA_ERROR;
2973
2974 ++s->block.compressed;
2975 }
2976
2977 s->sequence = SEQ_BLOCK_CHECK;
2978
2979 case SEQ_BLOCK_CHECK:
2980 if (s->check_type == XZ_CHECK_CRC32) {
2981 ret = crc_validate(s, b, 32);
2982 if (ret != XZ_STREAM_END)
2983 return ret;
2984 }
2985 else if (IS_CRC64(s->check_type)) {
2986 ret = crc_validate(s, b, 64);
2987 if (ret != XZ_STREAM_END)
2988 return ret;
2989 }
2990 else if (!check_skip(s, b)) {
2991 return XZ_OK;
2992 }
2993
2994 s->sequence = SEQ_BLOCK_START;
2995 break;
2996
2997 case SEQ_INDEX:
2998 ret = dec_index(s, b);
2999 if (ret != XZ_STREAM_END)
3000 return ret;
3001
3002 s->sequence = SEQ_INDEX_PADDING;
3003
3004 case SEQ_INDEX_PADDING:
3005 while ((s->index.size + (b->in_pos - s->in_start))
3006 & 3) {
3007 if (b->in_pos == b->in_size) {
3008 index_update(s, b);
3009 return XZ_OK;
3010 }
3011
3012 if (b->in[b->in_pos++] != 0)
3013 return XZ_DATA_ERROR;
3014 }
3015
3016 /* Finish the CRC32 value and Index size. */
3017 index_update(s, b);
3018
3019 /* Compare the hashes to validate the Index field. */
3020 if (!memeq(&s->block.hash, &s->index.hash,
3021 sizeof(s->block.hash)))
3022 return XZ_DATA_ERROR;
3023
3024 s->sequence = SEQ_INDEX_CRC32;
3025
3026 case SEQ_INDEX_CRC32:
3027 ret = crc_validate(s, b, 32);
3028 if (ret != XZ_STREAM_END)
3029 return ret;
3030
3031 s->temp.size = STREAM_HEADER_SIZE;
3032 s->sequence = SEQ_STREAM_FOOTER;
3033
3034 case SEQ_STREAM_FOOTER:
3035 if (!fill_temp(s, b))
3036 return XZ_OK;
3037
3038 return dec_stream_footer(s);
3039 }
3040 }
3041
3042 /* Never reached */
3043 }
3044
3045 /*
3046 * xz_dec_run() is a wrapper for dec_main() to handle some special cases in
3047 * multi-call and single-call decoding.
3048 *
3049 * In multi-call mode, we must return XZ_BUF_ERROR when it seems clear that we
3050 * are not going to make any progress anymore. This is to prevent the caller
3051 * from calling us infinitely when the input file is truncated or otherwise
3052 * corrupt. Since zlib-style API allows that the caller fills the input buffer
3053 * only when the decoder doesn't produce any new output, we have to be careful
3054 * to avoid returning XZ_BUF_ERROR too easily: XZ_BUF_ERROR is returned only
3055 * after the second consecutive call to xz_dec_run() that makes no progress.
3056 *
3057 * In single-call mode, if we couldn't decode everything and no error
3058 * occurred, either the input is truncated or the output buffer is too small.
3059 * Since we know that the last input byte never produces any output, we know
3060 * that if all the input was consumed and decoding wasn't finished, the file
3061 * must be corrupt. Otherwise the output buffer has to be too small or the
3062 * file is corrupt in a way that decoding it produces too big output.
3063 *
3064 * If single-call decoding fails, we reset b->in_pos and b->out_pos back to
3065 * their original values. This is because with some filter chains there won't
3066 * be any valid uncompressed data in the output buffer unless the decoding
3067 * actually succeeds (that's the price to pay of using the output buffer as
3068 * the workspace).
3069 */
xz_dec_run(struct xz_dec * s,struct xz_buf * b)3070 enum xz_ret xz_dec_run(struct xz_dec *s, struct xz_buf *b)
3071 {
3072 size_t in_start;
3073 size_t out_start;
3074 enum xz_ret ret;
3075
3076 in_start = b->in_pos;
3077 out_start = b->out_pos;
3078 ret = dec_main(s, b);
3079
3080 if (ret == XZ_OK && in_start == b->in_pos && out_start == b->out_pos) {
3081 if (s->allow_buf_error)
3082 ret = XZ_BUF_ERROR;
3083
3084 s->allow_buf_error = 1;
3085 } else {
3086 s->allow_buf_error = 0;
3087 }
3088
3089 return ret;
3090 }
3091
xz_dec_init(uint32_t dict_max)3092 struct xz_dec *xz_dec_init(uint32_t dict_max)
3093 {
3094 struct xz_dec *s = malloc(sizeof(*s));
3095 if (!s)
3096 return NULL;
3097
3098 #ifdef XZ_DEC_BCJ
3099 s->bcj = malloc(sizeof(*s->bcj));
3100 if (!s->bcj)
3101 goto error_bcj;
3102 #endif
3103
3104 s->lzma2 = xz_dec_lzma2_create(dict_max);
3105 if (s->lzma2 == NULL)
3106 goto error_lzma2;
3107
3108 xz_dec_reset(s);
3109 return s;
3110
3111 error_lzma2:
3112 #ifdef XZ_DEC_BCJ
3113 free(s->bcj);
3114 error_bcj:
3115 #endif
3116 free(s);
3117 return NULL;
3118 }
3119
xz_dec_reset(struct xz_dec * s)3120 void xz_dec_reset(struct xz_dec *s)
3121 {
3122 s->sequence = SEQ_STREAM_HEADER;
3123 s->allow_buf_error = 0;
3124 s->pos = 0;
3125 s->crc = 0;
3126 memset(&s->block, 0, sizeof(s->block));
3127 memset(&s->index, 0, sizeof(s->index));
3128 s->temp.pos = 0;
3129 s->temp.size = STREAM_HEADER_SIZE;
3130 }
3131
xz_dec_end(struct xz_dec * s)3132 void xz_dec_end(struct xz_dec *s)
3133 {
3134 if (s != NULL) {
3135 free((s->lzma2)->dict.buf);
3136 free(s->lzma2);
3137
3138 #ifdef XZ_DEC_BCJ
3139 free(s->bcj);
3140 #endif
3141 free(s);
3142 }
3143 }
3144