1 //===- InstCombineAndOrXor.cpp --------------------------------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the visitAnd, visitOr, and visitXor functions.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "InstCombineInternal.h"
15 #include "llvm/Analysis/InstructionSimplify.h"
16 #include "llvm/IR/ConstantRange.h"
17 #include "llvm/IR/Intrinsics.h"
18 #include "llvm/IR/PatternMatch.h"
19 #include "llvm/Transforms/Utils/CmpInstAnalysis.h"
20 using namespace llvm;
21 using namespace PatternMatch;
22
23 #define DEBUG_TYPE "instcombine"
24
dyn_castNotVal(Value * V)25 static inline Value *dyn_castNotVal(Value *V) {
26 // If this is not(not(x)) don't return that this is a not: we want the two
27 // not's to be folded first.
28 if (BinaryOperator::isNot(V)) {
29 Value *Operand = BinaryOperator::getNotArgument(V);
30 if (!IsFreeToInvert(Operand, Operand->hasOneUse()))
31 return Operand;
32 }
33
34 // Constants can be considered to be not'ed values...
35 if (ConstantInt *C = dyn_cast<ConstantInt>(V))
36 return ConstantInt::get(C->getType(), ~C->getValue());
37 return nullptr;
38 }
39
40 /// Similar to getICmpCode but for FCmpInst. This encodes a fcmp predicate into
41 /// a three bit mask. It also returns whether it is an ordered predicate by
42 /// reference.
getFCmpCode(FCmpInst::Predicate CC,bool & isOrdered)43 static unsigned getFCmpCode(FCmpInst::Predicate CC, bool &isOrdered) {
44 isOrdered = false;
45 switch (CC) {
46 case FCmpInst::FCMP_ORD: isOrdered = true; return 0; // 000
47 case FCmpInst::FCMP_UNO: return 0; // 000
48 case FCmpInst::FCMP_OGT: isOrdered = true; return 1; // 001
49 case FCmpInst::FCMP_UGT: return 1; // 001
50 case FCmpInst::FCMP_OEQ: isOrdered = true; return 2; // 010
51 case FCmpInst::FCMP_UEQ: return 2; // 010
52 case FCmpInst::FCMP_OGE: isOrdered = true; return 3; // 011
53 case FCmpInst::FCMP_UGE: return 3; // 011
54 case FCmpInst::FCMP_OLT: isOrdered = true; return 4; // 100
55 case FCmpInst::FCMP_ULT: return 4; // 100
56 case FCmpInst::FCMP_ONE: isOrdered = true; return 5; // 101
57 case FCmpInst::FCMP_UNE: return 5; // 101
58 case FCmpInst::FCMP_OLE: isOrdered = true; return 6; // 110
59 case FCmpInst::FCMP_ULE: return 6; // 110
60 // True -> 7
61 default:
62 // Not expecting FCMP_FALSE and FCMP_TRUE;
63 llvm_unreachable("Unexpected FCmp predicate!");
64 }
65 }
66
67 /// This is the complement of getICmpCode, which turns an opcode and two
68 /// operands into either a constant true or false, or a brand new ICmp
69 /// instruction. The sign is passed in to determine which kind of predicate to
70 /// use in the new icmp instruction.
getNewICmpValue(bool Sign,unsigned Code,Value * LHS,Value * RHS,InstCombiner::BuilderTy * Builder)71 static Value *getNewICmpValue(bool Sign, unsigned Code, Value *LHS, Value *RHS,
72 InstCombiner::BuilderTy *Builder) {
73 ICmpInst::Predicate NewPred;
74 if (Value *NewConstant = getICmpValue(Sign, Code, LHS, RHS, NewPred))
75 return NewConstant;
76 return Builder->CreateICmp(NewPred, LHS, RHS);
77 }
78
79 /// This is the complement of getFCmpCode, which turns an opcode and two
80 /// operands into either a FCmp instruction. isordered is passed in to determine
81 /// which kind of predicate to use in the new fcmp instruction.
getFCmpValue(bool isordered,unsigned code,Value * LHS,Value * RHS,InstCombiner::BuilderTy * Builder)82 static Value *getFCmpValue(bool isordered, unsigned code,
83 Value *LHS, Value *RHS,
84 InstCombiner::BuilderTy *Builder) {
85 CmpInst::Predicate Pred;
86 switch (code) {
87 default: llvm_unreachable("Illegal FCmp code!");
88 case 0: Pred = isordered ? FCmpInst::FCMP_ORD : FCmpInst::FCMP_UNO; break;
89 case 1: Pred = isordered ? FCmpInst::FCMP_OGT : FCmpInst::FCMP_UGT; break;
90 case 2: Pred = isordered ? FCmpInst::FCMP_OEQ : FCmpInst::FCMP_UEQ; break;
91 case 3: Pred = isordered ? FCmpInst::FCMP_OGE : FCmpInst::FCMP_UGE; break;
92 case 4: Pred = isordered ? FCmpInst::FCMP_OLT : FCmpInst::FCMP_ULT; break;
93 case 5: Pred = isordered ? FCmpInst::FCMP_ONE : FCmpInst::FCMP_UNE; break;
94 case 6: Pred = isordered ? FCmpInst::FCMP_OLE : FCmpInst::FCMP_ULE; break;
95 case 7:
96 if (!isordered)
97 return ConstantInt::get(CmpInst::makeCmpResultType(LHS->getType()), 1);
98 Pred = FCmpInst::FCMP_ORD; break;
99 }
100 return Builder->CreateFCmp(Pred, LHS, RHS);
101 }
102
103 /// \brief Transform BITWISE_OP(BSWAP(A),BSWAP(B)) to BSWAP(BITWISE_OP(A, B))
104 /// \param I Binary operator to transform.
105 /// \return Pointer to node that must replace the original binary operator, or
106 /// null pointer if no transformation was made.
SimplifyBSwap(BinaryOperator & I)107 Value *InstCombiner::SimplifyBSwap(BinaryOperator &I) {
108 IntegerType *ITy = dyn_cast<IntegerType>(I.getType());
109
110 // Can't do vectors.
111 if (I.getType()->isVectorTy()) return nullptr;
112
113 // Can only do bitwise ops.
114 unsigned Op = I.getOpcode();
115 if (Op != Instruction::And && Op != Instruction::Or &&
116 Op != Instruction::Xor)
117 return nullptr;
118
119 Value *OldLHS = I.getOperand(0);
120 Value *OldRHS = I.getOperand(1);
121 ConstantInt *ConstLHS = dyn_cast<ConstantInt>(OldLHS);
122 ConstantInt *ConstRHS = dyn_cast<ConstantInt>(OldRHS);
123 IntrinsicInst *IntrLHS = dyn_cast<IntrinsicInst>(OldLHS);
124 IntrinsicInst *IntrRHS = dyn_cast<IntrinsicInst>(OldRHS);
125 bool IsBswapLHS = (IntrLHS && IntrLHS->getIntrinsicID() == Intrinsic::bswap);
126 bool IsBswapRHS = (IntrRHS && IntrRHS->getIntrinsicID() == Intrinsic::bswap);
127
128 if (!IsBswapLHS && !IsBswapRHS)
129 return nullptr;
130
131 if (!IsBswapLHS && !ConstLHS)
132 return nullptr;
133
134 if (!IsBswapRHS && !ConstRHS)
135 return nullptr;
136
137 /// OP( BSWAP(x), BSWAP(y) ) -> BSWAP( OP(x, y) )
138 /// OP( BSWAP(x), CONSTANT ) -> BSWAP( OP(x, BSWAP(CONSTANT) ) )
139 Value *NewLHS = IsBswapLHS ? IntrLHS->getOperand(0) :
140 Builder->getInt(ConstLHS->getValue().byteSwap());
141
142 Value *NewRHS = IsBswapRHS ? IntrRHS->getOperand(0) :
143 Builder->getInt(ConstRHS->getValue().byteSwap());
144
145 Value *BinOp = nullptr;
146 if (Op == Instruction::And)
147 BinOp = Builder->CreateAnd(NewLHS, NewRHS);
148 else if (Op == Instruction::Or)
149 BinOp = Builder->CreateOr(NewLHS, NewRHS);
150 else //if (Op == Instruction::Xor)
151 BinOp = Builder->CreateXor(NewLHS, NewRHS);
152
153 Function *F = Intrinsic::getDeclaration(I.getModule(), Intrinsic::bswap, ITy);
154 return Builder->CreateCall(F, BinOp);
155 }
156
157 /// This handles expressions of the form ((val OP C1) & C2). Where
158 /// the Op parameter is 'OP', OpRHS is 'C1', and AndRHS is 'C2'. Op is
159 /// guaranteed to be a binary operator.
OptAndOp(Instruction * Op,ConstantInt * OpRHS,ConstantInt * AndRHS,BinaryOperator & TheAnd)160 Instruction *InstCombiner::OptAndOp(Instruction *Op,
161 ConstantInt *OpRHS,
162 ConstantInt *AndRHS,
163 BinaryOperator &TheAnd) {
164 Value *X = Op->getOperand(0);
165 Constant *Together = nullptr;
166 if (!Op->isShift())
167 Together = ConstantExpr::getAnd(AndRHS, OpRHS);
168
169 switch (Op->getOpcode()) {
170 case Instruction::Xor:
171 if (Op->hasOneUse()) {
172 // (X ^ C1) & C2 --> (X & C2) ^ (C1&C2)
173 Value *And = Builder->CreateAnd(X, AndRHS);
174 And->takeName(Op);
175 return BinaryOperator::CreateXor(And, Together);
176 }
177 break;
178 case Instruction::Or:
179 if (Op->hasOneUse()){
180 if (Together != OpRHS) {
181 // (X | C1) & C2 --> (X | (C1&C2)) & C2
182 Value *Or = Builder->CreateOr(X, Together);
183 Or->takeName(Op);
184 return BinaryOperator::CreateAnd(Or, AndRHS);
185 }
186
187 ConstantInt *TogetherCI = dyn_cast<ConstantInt>(Together);
188 if (TogetherCI && !TogetherCI->isZero()){
189 // (X | C1) & C2 --> (X & (C2^(C1&C2))) | C1
190 // NOTE: This reduces the number of bits set in the & mask, which
191 // can expose opportunities for store narrowing.
192 Together = ConstantExpr::getXor(AndRHS, Together);
193 Value *And = Builder->CreateAnd(X, Together);
194 And->takeName(Op);
195 return BinaryOperator::CreateOr(And, OpRHS);
196 }
197 }
198
199 break;
200 case Instruction::Add:
201 if (Op->hasOneUse()) {
202 // Adding a one to a single bit bit-field should be turned into an XOR
203 // of the bit. First thing to check is to see if this AND is with a
204 // single bit constant.
205 const APInt &AndRHSV = AndRHS->getValue();
206
207 // If there is only one bit set.
208 if (AndRHSV.isPowerOf2()) {
209 // Ok, at this point, we know that we are masking the result of the
210 // ADD down to exactly one bit. If the constant we are adding has
211 // no bits set below this bit, then we can eliminate the ADD.
212 const APInt& AddRHS = OpRHS->getValue();
213
214 // Check to see if any bits below the one bit set in AndRHSV are set.
215 if ((AddRHS & (AndRHSV-1)) == 0) {
216 // If not, the only thing that can effect the output of the AND is
217 // the bit specified by AndRHSV. If that bit is set, the effect of
218 // the XOR is to toggle the bit. If it is clear, then the ADD has
219 // no effect.
220 if ((AddRHS & AndRHSV) == 0) { // Bit is not set, noop
221 TheAnd.setOperand(0, X);
222 return &TheAnd;
223 } else {
224 // Pull the XOR out of the AND.
225 Value *NewAnd = Builder->CreateAnd(X, AndRHS);
226 NewAnd->takeName(Op);
227 return BinaryOperator::CreateXor(NewAnd, AndRHS);
228 }
229 }
230 }
231 }
232 break;
233
234 case Instruction::Shl: {
235 // We know that the AND will not produce any of the bits shifted in, so if
236 // the anded constant includes them, clear them now!
237 //
238 uint32_t BitWidth = AndRHS->getType()->getBitWidth();
239 uint32_t OpRHSVal = OpRHS->getLimitedValue(BitWidth);
240 APInt ShlMask(APInt::getHighBitsSet(BitWidth, BitWidth-OpRHSVal));
241 ConstantInt *CI = Builder->getInt(AndRHS->getValue() & ShlMask);
242
243 if (CI->getValue() == ShlMask)
244 // Masking out bits that the shift already masks.
245 return ReplaceInstUsesWith(TheAnd, Op); // No need for the and.
246
247 if (CI != AndRHS) { // Reducing bits set in and.
248 TheAnd.setOperand(1, CI);
249 return &TheAnd;
250 }
251 break;
252 }
253 case Instruction::LShr: {
254 // We know that the AND will not produce any of the bits shifted in, so if
255 // the anded constant includes them, clear them now! This only applies to
256 // unsigned shifts, because a signed shr may bring in set bits!
257 //
258 uint32_t BitWidth = AndRHS->getType()->getBitWidth();
259 uint32_t OpRHSVal = OpRHS->getLimitedValue(BitWidth);
260 APInt ShrMask(APInt::getLowBitsSet(BitWidth, BitWidth - OpRHSVal));
261 ConstantInt *CI = Builder->getInt(AndRHS->getValue() & ShrMask);
262
263 if (CI->getValue() == ShrMask)
264 // Masking out bits that the shift already masks.
265 return ReplaceInstUsesWith(TheAnd, Op);
266
267 if (CI != AndRHS) {
268 TheAnd.setOperand(1, CI); // Reduce bits set in and cst.
269 return &TheAnd;
270 }
271 break;
272 }
273 case Instruction::AShr:
274 // Signed shr.
275 // See if this is shifting in some sign extension, then masking it out
276 // with an and.
277 if (Op->hasOneUse()) {
278 uint32_t BitWidth = AndRHS->getType()->getBitWidth();
279 uint32_t OpRHSVal = OpRHS->getLimitedValue(BitWidth);
280 APInt ShrMask(APInt::getLowBitsSet(BitWidth, BitWidth - OpRHSVal));
281 Constant *C = Builder->getInt(AndRHS->getValue() & ShrMask);
282 if (C == AndRHS) { // Masking out bits shifted in.
283 // (Val ashr C1) & C2 -> (Val lshr C1) & C2
284 // Make the argument unsigned.
285 Value *ShVal = Op->getOperand(0);
286 ShVal = Builder->CreateLShr(ShVal, OpRHS, Op->getName());
287 return BinaryOperator::CreateAnd(ShVal, AndRHS, TheAnd.getName());
288 }
289 }
290 break;
291 }
292 return nullptr;
293 }
294
295 /// Emit a computation of: (V >= Lo && V < Hi) if Inside is true, otherwise
296 /// (V < Lo || V >= Hi). In practice, we emit the more efficient
297 /// (V-Lo) \<u Hi-Lo. This method expects that Lo <= Hi. isSigned indicates
298 /// whether to treat the V, Lo and HI as signed or not. IB is the location to
299 /// insert new instructions.
InsertRangeTest(Value * V,Constant * Lo,Constant * Hi,bool isSigned,bool Inside)300 Value *InstCombiner::InsertRangeTest(Value *V, Constant *Lo, Constant *Hi,
301 bool isSigned, bool Inside) {
302 assert(cast<ConstantInt>(ConstantExpr::getICmp((isSigned ?
303 ICmpInst::ICMP_SLE:ICmpInst::ICMP_ULE), Lo, Hi))->getZExtValue() &&
304 "Lo is not <= Hi in range emission code!");
305
306 if (Inside) {
307 if (Lo == Hi) // Trivially false.
308 return Builder->getFalse();
309
310 // V >= Min && V < Hi --> V < Hi
311 if (cast<ConstantInt>(Lo)->isMinValue(isSigned)) {
312 ICmpInst::Predicate pred = (isSigned ?
313 ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT);
314 return Builder->CreateICmp(pred, V, Hi);
315 }
316
317 // Emit V-Lo <u Hi-Lo
318 Constant *NegLo = ConstantExpr::getNeg(Lo);
319 Value *Add = Builder->CreateAdd(V, NegLo, V->getName()+".off");
320 Constant *UpperBound = ConstantExpr::getAdd(NegLo, Hi);
321 return Builder->CreateICmpULT(Add, UpperBound);
322 }
323
324 if (Lo == Hi) // Trivially true.
325 return Builder->getTrue();
326
327 // V < Min || V >= Hi -> V > Hi-1
328 Hi = SubOne(cast<ConstantInt>(Hi));
329 if (cast<ConstantInt>(Lo)->isMinValue(isSigned)) {
330 ICmpInst::Predicate pred = (isSigned ?
331 ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT);
332 return Builder->CreateICmp(pred, V, Hi);
333 }
334
335 // Emit V-Lo >u Hi-1-Lo
336 // Note that Hi has already had one subtracted from it, above.
337 ConstantInt *NegLo = cast<ConstantInt>(ConstantExpr::getNeg(Lo));
338 Value *Add = Builder->CreateAdd(V, NegLo, V->getName()+".off");
339 Constant *LowerBound = ConstantExpr::getAdd(NegLo, Hi);
340 return Builder->CreateICmpUGT(Add, LowerBound);
341 }
342
343 /// Returns true iff Val consists of one contiguous run of 1s with any number
344 /// of 0s on either side. The 1s are allowed to wrap from LSB to MSB,
345 /// so 0x000FFF0, 0x0000FFFF, and 0xFF0000FF are all runs. 0x0F0F0000 is
346 /// not, since all 1s are not contiguous.
isRunOfOnes(ConstantInt * Val,uint32_t & MB,uint32_t & ME)347 static bool isRunOfOnes(ConstantInt *Val, uint32_t &MB, uint32_t &ME) {
348 const APInt& V = Val->getValue();
349 uint32_t BitWidth = Val->getType()->getBitWidth();
350 if (!APIntOps::isShiftedMask(BitWidth, V)) return false;
351
352 // look for the first zero bit after the run of ones
353 MB = BitWidth - ((V - 1) ^ V).countLeadingZeros();
354 // look for the first non-zero bit
355 ME = V.getActiveBits();
356 return true;
357 }
358
359 /// This is part of an expression (LHS +/- RHS) & Mask, where isSub determines
360 /// whether the operator is a sub. If we can fold one of the following xforms:
361 ///
362 /// ((A & N) +/- B) & Mask -> (A +/- B) & Mask iff N&Mask == Mask
363 /// ((A | N) +/- B) & Mask -> (A +/- B) & Mask iff N&Mask == 0
364 /// ((A ^ N) +/- B) & Mask -> (A +/- B) & Mask iff N&Mask == 0
365 ///
366 /// return (A +/- B).
367 ///
FoldLogicalPlusAnd(Value * LHS,Value * RHS,ConstantInt * Mask,bool isSub,Instruction & I)368 Value *InstCombiner::FoldLogicalPlusAnd(Value *LHS, Value *RHS,
369 ConstantInt *Mask, bool isSub,
370 Instruction &I) {
371 Instruction *LHSI = dyn_cast<Instruction>(LHS);
372 if (!LHSI || LHSI->getNumOperands() != 2 ||
373 !isa<ConstantInt>(LHSI->getOperand(1))) return nullptr;
374
375 ConstantInt *N = cast<ConstantInt>(LHSI->getOperand(1));
376
377 switch (LHSI->getOpcode()) {
378 default: return nullptr;
379 case Instruction::And:
380 if (ConstantExpr::getAnd(N, Mask) == Mask) {
381 // If the AndRHS is a power of two minus one (0+1+), this is simple.
382 if ((Mask->getValue().countLeadingZeros() +
383 Mask->getValue().countPopulation()) ==
384 Mask->getValue().getBitWidth())
385 break;
386
387 // Otherwise, if Mask is 0+1+0+, and if B is known to have the low 0+
388 // part, we don't need any explicit masks to take them out of A. If that
389 // is all N is, ignore it.
390 uint32_t MB = 0, ME = 0;
391 if (isRunOfOnes(Mask, MB, ME)) { // begin/end bit of run, inclusive
392 uint32_t BitWidth = cast<IntegerType>(RHS->getType())->getBitWidth();
393 APInt Mask(APInt::getLowBitsSet(BitWidth, MB-1));
394 if (MaskedValueIsZero(RHS, Mask, 0, &I))
395 break;
396 }
397 }
398 return nullptr;
399 case Instruction::Or:
400 case Instruction::Xor:
401 // If the AndRHS is a power of two minus one (0+1+), and N&Mask == 0
402 if ((Mask->getValue().countLeadingZeros() +
403 Mask->getValue().countPopulation()) == Mask->getValue().getBitWidth()
404 && ConstantExpr::getAnd(N, Mask)->isNullValue())
405 break;
406 return nullptr;
407 }
408
409 if (isSub)
410 return Builder->CreateSub(LHSI->getOperand(0), RHS, "fold");
411 return Builder->CreateAdd(LHSI->getOperand(0), RHS, "fold");
412 }
413
414 /// enum for classifying (icmp eq (A & B), C) and (icmp ne (A & B), C)
415 /// One of A and B is considered the mask, the other the value. This is
416 /// described as the "AMask" or "BMask" part of the enum. If the enum
417 /// contains only "Mask", then both A and B can be considered masks.
418 /// If A is the mask, then it was proven, that (A & C) == C. This
419 /// is trivial if C == A, or C == 0. If both A and C are constants, this
420 /// proof is also easy.
421 /// For the following explanations we assume that A is the mask.
422 /// The part "AllOnes" declares, that the comparison is true only
423 /// if (A & B) == A, or all bits of A are set in B.
424 /// Example: (icmp eq (A & 3), 3) -> FoldMskICmp_AMask_AllOnes
425 /// The part "AllZeroes" declares, that the comparison is true only
426 /// if (A & B) == 0, or all bits of A are cleared in B.
427 /// Example: (icmp eq (A & 3), 0) -> FoldMskICmp_Mask_AllZeroes
428 /// The part "Mixed" declares, that (A & B) == C and C might or might not
429 /// contain any number of one bits and zero bits.
430 /// Example: (icmp eq (A & 3), 1) -> FoldMskICmp_AMask_Mixed
431 /// The Part "Not" means, that in above descriptions "==" should be replaced
432 /// by "!=".
433 /// Example: (icmp ne (A & 3), 3) -> FoldMskICmp_AMask_NotAllOnes
434 /// If the mask A contains a single bit, then the following is equivalent:
435 /// (icmp eq (A & B), A) equals (icmp ne (A & B), 0)
436 /// (icmp ne (A & B), A) equals (icmp eq (A & B), 0)
437 enum MaskedICmpType {
438 FoldMskICmp_AMask_AllOnes = 1,
439 FoldMskICmp_AMask_NotAllOnes = 2,
440 FoldMskICmp_BMask_AllOnes = 4,
441 FoldMskICmp_BMask_NotAllOnes = 8,
442 FoldMskICmp_Mask_AllZeroes = 16,
443 FoldMskICmp_Mask_NotAllZeroes = 32,
444 FoldMskICmp_AMask_Mixed = 64,
445 FoldMskICmp_AMask_NotMixed = 128,
446 FoldMskICmp_BMask_Mixed = 256,
447 FoldMskICmp_BMask_NotMixed = 512
448 };
449
450 /// Return the set of pattern classes (from MaskedICmpType)
451 /// that (icmp SCC (A & B), C) satisfies.
getTypeOfMaskedICmp(Value * A,Value * B,Value * C,ICmpInst::Predicate SCC)452 static unsigned getTypeOfMaskedICmp(Value* A, Value* B, Value* C,
453 ICmpInst::Predicate SCC)
454 {
455 ConstantInt *ACst = dyn_cast<ConstantInt>(A);
456 ConstantInt *BCst = dyn_cast<ConstantInt>(B);
457 ConstantInt *CCst = dyn_cast<ConstantInt>(C);
458 bool icmp_eq = (SCC == ICmpInst::ICMP_EQ);
459 bool icmp_abit = (ACst && !ACst->isZero() &&
460 ACst->getValue().isPowerOf2());
461 bool icmp_bbit = (BCst && !BCst->isZero() &&
462 BCst->getValue().isPowerOf2());
463 unsigned result = 0;
464 if (CCst && CCst->isZero()) {
465 // if C is zero, then both A and B qualify as mask
466 result |= (icmp_eq ? (FoldMskICmp_Mask_AllZeroes |
467 FoldMskICmp_Mask_AllZeroes |
468 FoldMskICmp_AMask_Mixed |
469 FoldMskICmp_BMask_Mixed)
470 : (FoldMskICmp_Mask_NotAllZeroes |
471 FoldMskICmp_Mask_NotAllZeroes |
472 FoldMskICmp_AMask_NotMixed |
473 FoldMskICmp_BMask_NotMixed));
474 if (icmp_abit)
475 result |= (icmp_eq ? (FoldMskICmp_AMask_NotAllOnes |
476 FoldMskICmp_AMask_NotMixed)
477 : (FoldMskICmp_AMask_AllOnes |
478 FoldMskICmp_AMask_Mixed));
479 if (icmp_bbit)
480 result |= (icmp_eq ? (FoldMskICmp_BMask_NotAllOnes |
481 FoldMskICmp_BMask_NotMixed)
482 : (FoldMskICmp_BMask_AllOnes |
483 FoldMskICmp_BMask_Mixed));
484 return result;
485 }
486 if (A == C) {
487 result |= (icmp_eq ? (FoldMskICmp_AMask_AllOnes |
488 FoldMskICmp_AMask_Mixed)
489 : (FoldMskICmp_AMask_NotAllOnes |
490 FoldMskICmp_AMask_NotMixed));
491 if (icmp_abit)
492 result |= (icmp_eq ? (FoldMskICmp_Mask_NotAllZeroes |
493 FoldMskICmp_AMask_NotMixed)
494 : (FoldMskICmp_Mask_AllZeroes |
495 FoldMskICmp_AMask_Mixed));
496 } else if (ACst && CCst &&
497 ConstantExpr::getAnd(ACst, CCst) == CCst) {
498 result |= (icmp_eq ? FoldMskICmp_AMask_Mixed
499 : FoldMskICmp_AMask_NotMixed);
500 }
501 if (B == C) {
502 result |= (icmp_eq ? (FoldMskICmp_BMask_AllOnes |
503 FoldMskICmp_BMask_Mixed)
504 : (FoldMskICmp_BMask_NotAllOnes |
505 FoldMskICmp_BMask_NotMixed));
506 if (icmp_bbit)
507 result |= (icmp_eq ? (FoldMskICmp_Mask_NotAllZeroes |
508 FoldMskICmp_BMask_NotMixed)
509 : (FoldMskICmp_Mask_AllZeroes |
510 FoldMskICmp_BMask_Mixed));
511 } else if (BCst && CCst &&
512 ConstantExpr::getAnd(BCst, CCst) == CCst) {
513 result |= (icmp_eq ? FoldMskICmp_BMask_Mixed
514 : FoldMskICmp_BMask_NotMixed);
515 }
516 return result;
517 }
518
519 /// Convert an analysis of a masked ICmp into its equivalent if all boolean
520 /// operations had the opposite sense. Since each "NotXXX" flag (recording !=)
521 /// is adjacent to the corresponding normal flag (recording ==), this just
522 /// involves swapping those bits over.
conjugateICmpMask(unsigned Mask)523 static unsigned conjugateICmpMask(unsigned Mask) {
524 unsigned NewMask;
525 NewMask = (Mask & (FoldMskICmp_AMask_AllOnes | FoldMskICmp_BMask_AllOnes |
526 FoldMskICmp_Mask_AllZeroes | FoldMskICmp_AMask_Mixed |
527 FoldMskICmp_BMask_Mixed))
528 << 1;
529
530 NewMask |=
531 (Mask & (FoldMskICmp_AMask_NotAllOnes | FoldMskICmp_BMask_NotAllOnes |
532 FoldMskICmp_Mask_NotAllZeroes | FoldMskICmp_AMask_NotMixed |
533 FoldMskICmp_BMask_NotMixed))
534 >> 1;
535
536 return NewMask;
537 }
538
539 /// Decompose an icmp into the form ((X & Y) pred Z) if possible.
540 /// The returned predicate is either == or !=. Returns false if
541 /// decomposition fails.
decomposeBitTestICmp(const ICmpInst * I,ICmpInst::Predicate & Pred,Value * & X,Value * & Y,Value * & Z)542 static bool decomposeBitTestICmp(const ICmpInst *I, ICmpInst::Predicate &Pred,
543 Value *&X, Value *&Y, Value *&Z) {
544 ConstantInt *C = dyn_cast<ConstantInt>(I->getOperand(1));
545 if (!C)
546 return false;
547
548 switch (I->getPredicate()) {
549 default:
550 return false;
551 case ICmpInst::ICMP_SLT:
552 // X < 0 is equivalent to (X & SignBit) != 0.
553 if (!C->isZero())
554 return false;
555 Y = ConstantInt::get(I->getContext(), APInt::getSignBit(C->getBitWidth()));
556 Pred = ICmpInst::ICMP_NE;
557 break;
558 case ICmpInst::ICMP_SGT:
559 // X > -1 is equivalent to (X & SignBit) == 0.
560 if (!C->isAllOnesValue())
561 return false;
562 Y = ConstantInt::get(I->getContext(), APInt::getSignBit(C->getBitWidth()));
563 Pred = ICmpInst::ICMP_EQ;
564 break;
565 case ICmpInst::ICMP_ULT:
566 // X <u 2^n is equivalent to (X & ~(2^n-1)) == 0.
567 if (!C->getValue().isPowerOf2())
568 return false;
569 Y = ConstantInt::get(I->getContext(), -C->getValue());
570 Pred = ICmpInst::ICMP_EQ;
571 break;
572 case ICmpInst::ICMP_UGT:
573 // X >u 2^n-1 is equivalent to (X & ~(2^n-1)) != 0.
574 if (!(C->getValue() + 1).isPowerOf2())
575 return false;
576 Y = ConstantInt::get(I->getContext(), ~C->getValue());
577 Pred = ICmpInst::ICMP_NE;
578 break;
579 }
580
581 X = I->getOperand(0);
582 Z = ConstantInt::getNullValue(C->getType());
583 return true;
584 }
585
586 /// Handle (icmp(A & B) ==/!= C) &/| (icmp(A & D) ==/!= E)
587 /// Return the set of pattern classes (from MaskedICmpType)
588 /// that both LHS and RHS satisfy.
foldLogOpOfMaskedICmpsHelper(Value * & A,Value * & B,Value * & C,Value * & D,Value * & E,ICmpInst * LHS,ICmpInst * RHS,ICmpInst::Predicate & LHSCC,ICmpInst::Predicate & RHSCC)589 static unsigned foldLogOpOfMaskedICmpsHelper(Value*& A,
590 Value*& B, Value*& C,
591 Value*& D, Value*& E,
592 ICmpInst *LHS, ICmpInst *RHS,
593 ICmpInst::Predicate &LHSCC,
594 ICmpInst::Predicate &RHSCC) {
595 if (LHS->getOperand(0)->getType() != RHS->getOperand(0)->getType()) return 0;
596 // vectors are not (yet?) supported
597 if (LHS->getOperand(0)->getType()->isVectorTy()) return 0;
598
599 // Here comes the tricky part:
600 // LHS might be of the form L11 & L12 == X, X == L21 & L22,
601 // and L11 & L12 == L21 & L22. The same goes for RHS.
602 // Now we must find those components L** and R**, that are equal, so
603 // that we can extract the parameters A, B, C, D, and E for the canonical
604 // above.
605 Value *L1 = LHS->getOperand(0);
606 Value *L2 = LHS->getOperand(1);
607 Value *L11,*L12,*L21,*L22;
608 // Check whether the icmp can be decomposed into a bit test.
609 if (decomposeBitTestICmp(LHS, LHSCC, L11, L12, L2)) {
610 L21 = L22 = L1 = nullptr;
611 } else {
612 // Look for ANDs in the LHS icmp.
613 if (!L1->getType()->isIntegerTy()) {
614 // You can icmp pointers, for example. They really aren't masks.
615 L11 = L12 = nullptr;
616 } else if (!match(L1, m_And(m_Value(L11), m_Value(L12)))) {
617 // Any icmp can be viewed as being trivially masked; if it allows us to
618 // remove one, it's worth it.
619 L11 = L1;
620 L12 = Constant::getAllOnesValue(L1->getType());
621 }
622
623 if (!L2->getType()->isIntegerTy()) {
624 // You can icmp pointers, for example. They really aren't masks.
625 L21 = L22 = nullptr;
626 } else if (!match(L2, m_And(m_Value(L21), m_Value(L22)))) {
627 L21 = L2;
628 L22 = Constant::getAllOnesValue(L2->getType());
629 }
630 }
631
632 // Bail if LHS was a icmp that can't be decomposed into an equality.
633 if (!ICmpInst::isEquality(LHSCC))
634 return 0;
635
636 Value *R1 = RHS->getOperand(0);
637 Value *R2 = RHS->getOperand(1);
638 Value *R11,*R12;
639 bool ok = false;
640 if (decomposeBitTestICmp(RHS, RHSCC, R11, R12, R2)) {
641 if (R11 == L11 || R11 == L12 || R11 == L21 || R11 == L22) {
642 A = R11; D = R12;
643 } else if (R12 == L11 || R12 == L12 || R12 == L21 || R12 == L22) {
644 A = R12; D = R11;
645 } else {
646 return 0;
647 }
648 E = R2; R1 = nullptr; ok = true;
649 } else if (R1->getType()->isIntegerTy()) {
650 if (!match(R1, m_And(m_Value(R11), m_Value(R12)))) {
651 // As before, model no mask as a trivial mask if it'll let us do an
652 // optimization.
653 R11 = R1;
654 R12 = Constant::getAllOnesValue(R1->getType());
655 }
656
657 if (R11 == L11 || R11 == L12 || R11 == L21 || R11 == L22) {
658 A = R11; D = R12; E = R2; ok = true;
659 } else if (R12 == L11 || R12 == L12 || R12 == L21 || R12 == L22) {
660 A = R12; D = R11; E = R2; ok = true;
661 }
662 }
663
664 // Bail if RHS was a icmp that can't be decomposed into an equality.
665 if (!ICmpInst::isEquality(RHSCC))
666 return 0;
667
668 // Look for ANDs in on the right side of the RHS icmp.
669 if (!ok && R2->getType()->isIntegerTy()) {
670 if (!match(R2, m_And(m_Value(R11), m_Value(R12)))) {
671 R11 = R2;
672 R12 = Constant::getAllOnesValue(R2->getType());
673 }
674
675 if (R11 == L11 || R11 == L12 || R11 == L21 || R11 == L22) {
676 A = R11; D = R12; E = R1; ok = true;
677 } else if (R12 == L11 || R12 == L12 || R12 == L21 || R12 == L22) {
678 A = R12; D = R11; E = R1; ok = true;
679 } else {
680 return 0;
681 }
682 }
683 if (!ok)
684 return 0;
685
686 if (L11 == A) {
687 B = L12; C = L2;
688 } else if (L12 == A) {
689 B = L11; C = L2;
690 } else if (L21 == A) {
691 B = L22; C = L1;
692 } else if (L22 == A) {
693 B = L21; C = L1;
694 }
695
696 unsigned left_type = getTypeOfMaskedICmp(A, B, C, LHSCC);
697 unsigned right_type = getTypeOfMaskedICmp(A, D, E, RHSCC);
698 return left_type & right_type;
699 }
700
701 /// Try to fold (icmp(A & B) ==/!= C) &/| (icmp(A & D) ==/!= E)
702 /// into a single (icmp(A & X) ==/!= Y).
foldLogOpOfMaskedICmps(ICmpInst * LHS,ICmpInst * RHS,bool IsAnd,llvm::InstCombiner::BuilderTy * Builder)703 static Value *foldLogOpOfMaskedICmps(ICmpInst *LHS, ICmpInst *RHS, bool IsAnd,
704 llvm::InstCombiner::BuilderTy *Builder) {
705 Value *A = nullptr, *B = nullptr, *C = nullptr, *D = nullptr, *E = nullptr;
706 ICmpInst::Predicate LHSCC = LHS->getPredicate(), RHSCC = RHS->getPredicate();
707 unsigned mask = foldLogOpOfMaskedICmpsHelper(A, B, C, D, E, LHS, RHS,
708 LHSCC, RHSCC);
709 if (mask == 0) return nullptr;
710 assert(ICmpInst::isEquality(LHSCC) && ICmpInst::isEquality(RHSCC) &&
711 "foldLogOpOfMaskedICmpsHelper must return an equality predicate.");
712
713 // In full generality:
714 // (icmp (A & B) Op C) | (icmp (A & D) Op E)
715 // == ![ (icmp (A & B) !Op C) & (icmp (A & D) !Op E) ]
716 //
717 // If the latter can be converted into (icmp (A & X) Op Y) then the former is
718 // equivalent to (icmp (A & X) !Op Y).
719 //
720 // Therefore, we can pretend for the rest of this function that we're dealing
721 // with the conjunction, provided we flip the sense of any comparisons (both
722 // input and output).
723
724 // In most cases we're going to produce an EQ for the "&&" case.
725 ICmpInst::Predicate NEWCC = IsAnd ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE;
726 if (!IsAnd) {
727 // Convert the masking analysis into its equivalent with negated
728 // comparisons.
729 mask = conjugateICmpMask(mask);
730 }
731
732 if (mask & FoldMskICmp_Mask_AllZeroes) {
733 // (icmp eq (A & B), 0) & (icmp eq (A & D), 0)
734 // -> (icmp eq (A & (B|D)), 0)
735 Value *newOr = Builder->CreateOr(B, D);
736 Value *newAnd = Builder->CreateAnd(A, newOr);
737 // we can't use C as zero, because we might actually handle
738 // (icmp ne (A & B), B) & (icmp ne (A & D), D)
739 // with B and D, having a single bit set
740 Value *zero = Constant::getNullValue(A->getType());
741 return Builder->CreateICmp(NEWCC, newAnd, zero);
742 }
743 if (mask & FoldMskICmp_BMask_AllOnes) {
744 // (icmp eq (A & B), B) & (icmp eq (A & D), D)
745 // -> (icmp eq (A & (B|D)), (B|D))
746 Value *newOr = Builder->CreateOr(B, D);
747 Value *newAnd = Builder->CreateAnd(A, newOr);
748 return Builder->CreateICmp(NEWCC, newAnd, newOr);
749 }
750 if (mask & FoldMskICmp_AMask_AllOnes) {
751 // (icmp eq (A & B), A) & (icmp eq (A & D), A)
752 // -> (icmp eq (A & (B&D)), A)
753 Value *newAnd1 = Builder->CreateAnd(B, D);
754 Value *newAnd = Builder->CreateAnd(A, newAnd1);
755 return Builder->CreateICmp(NEWCC, newAnd, A);
756 }
757
758 // Remaining cases assume at least that B and D are constant, and depend on
759 // their actual values. This isn't strictly, necessary, just a "handle the
760 // easy cases for now" decision.
761 ConstantInt *BCst = dyn_cast<ConstantInt>(B);
762 if (!BCst) return nullptr;
763 ConstantInt *DCst = dyn_cast<ConstantInt>(D);
764 if (!DCst) return nullptr;
765
766 if (mask & (FoldMskICmp_Mask_NotAllZeroes | FoldMskICmp_BMask_NotAllOnes)) {
767 // (icmp ne (A & B), 0) & (icmp ne (A & D), 0) and
768 // (icmp ne (A & B), B) & (icmp ne (A & D), D)
769 // -> (icmp ne (A & B), 0) or (icmp ne (A & D), 0)
770 // Only valid if one of the masks is a superset of the other (check "B&D" is
771 // the same as either B or D).
772 APInt NewMask = BCst->getValue() & DCst->getValue();
773
774 if (NewMask == BCst->getValue())
775 return LHS;
776 else if (NewMask == DCst->getValue())
777 return RHS;
778 }
779 if (mask & FoldMskICmp_AMask_NotAllOnes) {
780 // (icmp ne (A & B), B) & (icmp ne (A & D), D)
781 // -> (icmp ne (A & B), A) or (icmp ne (A & D), A)
782 // Only valid if one of the masks is a superset of the other (check "B|D" is
783 // the same as either B or D).
784 APInt NewMask = BCst->getValue() | DCst->getValue();
785
786 if (NewMask == BCst->getValue())
787 return LHS;
788 else if (NewMask == DCst->getValue())
789 return RHS;
790 }
791 if (mask & FoldMskICmp_BMask_Mixed) {
792 // (icmp eq (A & B), C) & (icmp eq (A & D), E)
793 // We already know that B & C == C && D & E == E.
794 // If we can prove that (B & D) & (C ^ E) == 0, that is, the bits of
795 // C and E, which are shared by both the mask B and the mask D, don't
796 // contradict, then we can transform to
797 // -> (icmp eq (A & (B|D)), (C|E))
798 // Currently, we only handle the case of B, C, D, and E being constant.
799 // we can't simply use C and E, because we might actually handle
800 // (icmp ne (A & B), B) & (icmp eq (A & D), D)
801 // with B and D, having a single bit set
802 ConstantInt *CCst = dyn_cast<ConstantInt>(C);
803 if (!CCst) return nullptr;
804 ConstantInt *ECst = dyn_cast<ConstantInt>(E);
805 if (!ECst) return nullptr;
806 if (LHSCC != NEWCC)
807 CCst = cast<ConstantInt>(ConstantExpr::getXor(BCst, CCst));
808 if (RHSCC != NEWCC)
809 ECst = cast<ConstantInt>(ConstantExpr::getXor(DCst, ECst));
810 // if there is a conflict we should actually return a false for the
811 // whole construct
812 if (((BCst->getValue() & DCst->getValue()) &
813 (CCst->getValue() ^ ECst->getValue())) != 0)
814 return ConstantInt::get(LHS->getType(), !IsAnd);
815 Value *newOr1 = Builder->CreateOr(B, D);
816 Value *newOr2 = ConstantExpr::getOr(CCst, ECst);
817 Value *newAnd = Builder->CreateAnd(A, newOr1);
818 return Builder->CreateICmp(NEWCC, newAnd, newOr2);
819 }
820 return nullptr;
821 }
822
823 /// Try to fold a signed range checked with lower bound 0 to an unsigned icmp.
824 /// Example: (icmp sge x, 0) & (icmp slt x, n) --> icmp ult x, n
825 /// If \p Inverted is true then the check is for the inverted range, e.g.
826 /// (icmp slt x, 0) | (icmp sgt x, n) --> icmp ugt x, n
simplifyRangeCheck(ICmpInst * Cmp0,ICmpInst * Cmp1,bool Inverted)827 Value *InstCombiner::simplifyRangeCheck(ICmpInst *Cmp0, ICmpInst *Cmp1,
828 bool Inverted) {
829 // Check the lower range comparison, e.g. x >= 0
830 // InstCombine already ensured that if there is a constant it's on the RHS.
831 ConstantInt *RangeStart = dyn_cast<ConstantInt>(Cmp0->getOperand(1));
832 if (!RangeStart)
833 return nullptr;
834
835 ICmpInst::Predicate Pred0 = (Inverted ? Cmp0->getInversePredicate() :
836 Cmp0->getPredicate());
837
838 // Accept x > -1 or x >= 0 (after potentially inverting the predicate).
839 if (!((Pred0 == ICmpInst::ICMP_SGT && RangeStart->isMinusOne()) ||
840 (Pred0 == ICmpInst::ICMP_SGE && RangeStart->isZero())))
841 return nullptr;
842
843 ICmpInst::Predicate Pred1 = (Inverted ? Cmp1->getInversePredicate() :
844 Cmp1->getPredicate());
845
846 Value *Input = Cmp0->getOperand(0);
847 Value *RangeEnd;
848 if (Cmp1->getOperand(0) == Input) {
849 // For the upper range compare we have: icmp x, n
850 RangeEnd = Cmp1->getOperand(1);
851 } else if (Cmp1->getOperand(1) == Input) {
852 // For the upper range compare we have: icmp n, x
853 RangeEnd = Cmp1->getOperand(0);
854 Pred1 = ICmpInst::getSwappedPredicate(Pred1);
855 } else {
856 return nullptr;
857 }
858
859 // Check the upper range comparison, e.g. x < n
860 ICmpInst::Predicate NewPred;
861 switch (Pred1) {
862 case ICmpInst::ICMP_SLT: NewPred = ICmpInst::ICMP_ULT; break;
863 case ICmpInst::ICMP_SLE: NewPred = ICmpInst::ICMP_ULE; break;
864 default: return nullptr;
865 }
866
867 // This simplification is only valid if the upper range is not negative.
868 bool IsNegative, IsNotNegative;
869 ComputeSignBit(RangeEnd, IsNotNegative, IsNegative, /*Depth=*/0, Cmp1);
870 if (!IsNotNegative)
871 return nullptr;
872
873 if (Inverted)
874 NewPred = ICmpInst::getInversePredicate(NewPred);
875
876 return Builder->CreateICmp(NewPred, Input, RangeEnd);
877 }
878
879 /// Fold (icmp)&(icmp) if possible.
FoldAndOfICmps(ICmpInst * LHS,ICmpInst * RHS)880 Value *InstCombiner::FoldAndOfICmps(ICmpInst *LHS, ICmpInst *RHS) {
881 ICmpInst::Predicate LHSCC = LHS->getPredicate(), RHSCC = RHS->getPredicate();
882
883 // (icmp1 A, B) & (icmp2 A, B) --> (icmp3 A, B)
884 if (PredicatesFoldable(LHSCC, RHSCC)) {
885 if (LHS->getOperand(0) == RHS->getOperand(1) &&
886 LHS->getOperand(1) == RHS->getOperand(0))
887 LHS->swapOperands();
888 if (LHS->getOperand(0) == RHS->getOperand(0) &&
889 LHS->getOperand(1) == RHS->getOperand(1)) {
890 Value *Op0 = LHS->getOperand(0), *Op1 = LHS->getOperand(1);
891 unsigned Code = getICmpCode(LHS) & getICmpCode(RHS);
892 bool isSigned = LHS->isSigned() || RHS->isSigned();
893 return getNewICmpValue(isSigned, Code, Op0, Op1, Builder);
894 }
895 }
896
897 // handle (roughly): (icmp eq (A & B), C) & (icmp eq (A & D), E)
898 if (Value *V = foldLogOpOfMaskedICmps(LHS, RHS, true, Builder))
899 return V;
900
901 // E.g. (icmp sge x, 0) & (icmp slt x, n) --> icmp ult x, n
902 if (Value *V = simplifyRangeCheck(LHS, RHS, /*Inverted=*/false))
903 return V;
904
905 // E.g. (icmp slt x, n) & (icmp sge x, 0) --> icmp ult x, n
906 if (Value *V = simplifyRangeCheck(RHS, LHS, /*Inverted=*/false))
907 return V;
908
909 // This only handles icmp of constants: (icmp1 A, C1) & (icmp2 B, C2).
910 Value *Val = LHS->getOperand(0), *Val2 = RHS->getOperand(0);
911 ConstantInt *LHSCst = dyn_cast<ConstantInt>(LHS->getOperand(1));
912 ConstantInt *RHSCst = dyn_cast<ConstantInt>(RHS->getOperand(1));
913 if (!LHSCst || !RHSCst) return nullptr;
914
915 if (LHSCst == RHSCst && LHSCC == RHSCC) {
916 // (icmp ult A, C) & (icmp ult B, C) --> (icmp ult (A|B), C)
917 // where C is a power of 2
918 if (LHSCC == ICmpInst::ICMP_ULT &&
919 LHSCst->getValue().isPowerOf2()) {
920 Value *NewOr = Builder->CreateOr(Val, Val2);
921 return Builder->CreateICmp(LHSCC, NewOr, LHSCst);
922 }
923
924 // (icmp eq A, 0) & (icmp eq B, 0) --> (icmp eq (A|B), 0)
925 if (LHSCC == ICmpInst::ICMP_EQ && LHSCst->isZero()) {
926 Value *NewOr = Builder->CreateOr(Val, Val2);
927 return Builder->CreateICmp(LHSCC, NewOr, LHSCst);
928 }
929 }
930
931 // (trunc x) == C1 & (and x, CA) == C2 -> (and x, CA|CMAX) == C1|C2
932 // where CMAX is the all ones value for the truncated type,
933 // iff the lower bits of C2 and CA are zero.
934 if (LHSCC == ICmpInst::ICMP_EQ && LHSCC == RHSCC &&
935 LHS->hasOneUse() && RHS->hasOneUse()) {
936 Value *V;
937 ConstantInt *AndCst, *SmallCst = nullptr, *BigCst = nullptr;
938
939 // (trunc x) == C1 & (and x, CA) == C2
940 // (and x, CA) == C2 & (trunc x) == C1
941 if (match(Val2, m_Trunc(m_Value(V))) &&
942 match(Val, m_And(m_Specific(V), m_ConstantInt(AndCst)))) {
943 SmallCst = RHSCst;
944 BigCst = LHSCst;
945 } else if (match(Val, m_Trunc(m_Value(V))) &&
946 match(Val2, m_And(m_Specific(V), m_ConstantInt(AndCst)))) {
947 SmallCst = LHSCst;
948 BigCst = RHSCst;
949 }
950
951 if (SmallCst && BigCst) {
952 unsigned BigBitSize = BigCst->getType()->getBitWidth();
953 unsigned SmallBitSize = SmallCst->getType()->getBitWidth();
954
955 // Check that the low bits are zero.
956 APInt Low = APInt::getLowBitsSet(BigBitSize, SmallBitSize);
957 if ((Low & AndCst->getValue()) == 0 && (Low & BigCst->getValue()) == 0) {
958 Value *NewAnd = Builder->CreateAnd(V, Low | AndCst->getValue());
959 APInt N = SmallCst->getValue().zext(BigBitSize) | BigCst->getValue();
960 Value *NewVal = ConstantInt::get(AndCst->getType()->getContext(), N);
961 return Builder->CreateICmp(LHSCC, NewAnd, NewVal);
962 }
963 }
964 }
965
966 // From here on, we only handle:
967 // (icmp1 A, C1) & (icmp2 A, C2) --> something simpler.
968 if (Val != Val2) return nullptr;
969
970 // ICMP_[US][GL]E X, CST is folded to ICMP_[US][GL]T elsewhere.
971 if (LHSCC == ICmpInst::ICMP_UGE || LHSCC == ICmpInst::ICMP_ULE ||
972 RHSCC == ICmpInst::ICMP_UGE || RHSCC == ICmpInst::ICMP_ULE ||
973 LHSCC == ICmpInst::ICMP_SGE || LHSCC == ICmpInst::ICMP_SLE ||
974 RHSCC == ICmpInst::ICMP_SGE || RHSCC == ICmpInst::ICMP_SLE)
975 return nullptr;
976
977 // Make a constant range that's the intersection of the two icmp ranges.
978 // If the intersection is empty, we know that the result is false.
979 ConstantRange LHSRange =
980 ConstantRange::makeAllowedICmpRegion(LHSCC, LHSCst->getValue());
981 ConstantRange RHSRange =
982 ConstantRange::makeAllowedICmpRegion(RHSCC, RHSCst->getValue());
983
984 if (LHSRange.intersectWith(RHSRange).isEmptySet())
985 return ConstantInt::get(CmpInst::makeCmpResultType(LHS->getType()), 0);
986
987 // We can't fold (ugt x, C) & (sgt x, C2).
988 if (!PredicatesFoldable(LHSCC, RHSCC))
989 return nullptr;
990
991 // Ensure that the larger constant is on the RHS.
992 bool ShouldSwap;
993 if (CmpInst::isSigned(LHSCC) ||
994 (ICmpInst::isEquality(LHSCC) &&
995 CmpInst::isSigned(RHSCC)))
996 ShouldSwap = LHSCst->getValue().sgt(RHSCst->getValue());
997 else
998 ShouldSwap = LHSCst->getValue().ugt(RHSCst->getValue());
999
1000 if (ShouldSwap) {
1001 std::swap(LHS, RHS);
1002 std::swap(LHSCst, RHSCst);
1003 std::swap(LHSCC, RHSCC);
1004 }
1005
1006 // At this point, we know we have two icmp instructions
1007 // comparing a value against two constants and and'ing the result
1008 // together. Because of the above check, we know that we only have
1009 // icmp eq, icmp ne, icmp [su]lt, and icmp [SU]gt here. We also know
1010 // (from the icmp folding check above), that the two constants
1011 // are not equal and that the larger constant is on the RHS
1012 assert(LHSCst != RHSCst && "Compares not folded above?");
1013
1014 switch (LHSCC) {
1015 default: llvm_unreachable("Unknown integer condition code!");
1016 case ICmpInst::ICMP_EQ:
1017 switch (RHSCC) {
1018 default: llvm_unreachable("Unknown integer condition code!");
1019 case ICmpInst::ICMP_NE: // (X == 13 & X != 15) -> X == 13
1020 case ICmpInst::ICMP_ULT: // (X == 13 & X < 15) -> X == 13
1021 case ICmpInst::ICMP_SLT: // (X == 13 & X < 15) -> X == 13
1022 return LHS;
1023 }
1024 case ICmpInst::ICMP_NE:
1025 switch (RHSCC) {
1026 default: llvm_unreachable("Unknown integer condition code!");
1027 case ICmpInst::ICMP_ULT:
1028 if (LHSCst == SubOne(RHSCst)) // (X != 13 & X u< 14) -> X < 13
1029 return Builder->CreateICmpULT(Val, LHSCst);
1030 if (LHSCst->isNullValue()) // (X != 0 & X u< 14) -> X-1 u< 13
1031 return InsertRangeTest(Val, AddOne(LHSCst), RHSCst, false, true);
1032 break; // (X != 13 & X u< 15) -> no change
1033 case ICmpInst::ICMP_SLT:
1034 if (LHSCst == SubOne(RHSCst)) // (X != 13 & X s< 14) -> X < 13
1035 return Builder->CreateICmpSLT(Val, LHSCst);
1036 break; // (X != 13 & X s< 15) -> no change
1037 case ICmpInst::ICMP_EQ: // (X != 13 & X == 15) -> X == 15
1038 case ICmpInst::ICMP_UGT: // (X != 13 & X u> 15) -> X u> 15
1039 case ICmpInst::ICMP_SGT: // (X != 13 & X s> 15) -> X s> 15
1040 return RHS;
1041 case ICmpInst::ICMP_NE:
1042 // Special case to get the ordering right when the values wrap around
1043 // zero.
1044 if (LHSCst->getValue() == 0 && RHSCst->getValue().isAllOnesValue())
1045 std::swap(LHSCst, RHSCst);
1046 if (LHSCst == SubOne(RHSCst)){// (X != 13 & X != 14) -> X-13 >u 1
1047 Constant *AddCST = ConstantExpr::getNeg(LHSCst);
1048 Value *Add = Builder->CreateAdd(Val, AddCST, Val->getName()+".off");
1049 return Builder->CreateICmpUGT(Add, ConstantInt::get(Add->getType(), 1),
1050 Val->getName()+".cmp");
1051 }
1052 break; // (X != 13 & X != 15) -> no change
1053 }
1054 break;
1055 case ICmpInst::ICMP_ULT:
1056 switch (RHSCC) {
1057 default: llvm_unreachable("Unknown integer condition code!");
1058 case ICmpInst::ICMP_EQ: // (X u< 13 & X == 15) -> false
1059 case ICmpInst::ICMP_UGT: // (X u< 13 & X u> 15) -> false
1060 return ConstantInt::get(CmpInst::makeCmpResultType(LHS->getType()), 0);
1061 case ICmpInst::ICMP_SGT: // (X u< 13 & X s> 15) -> no change
1062 break;
1063 case ICmpInst::ICMP_NE: // (X u< 13 & X != 15) -> X u< 13
1064 case ICmpInst::ICMP_ULT: // (X u< 13 & X u< 15) -> X u< 13
1065 return LHS;
1066 case ICmpInst::ICMP_SLT: // (X u< 13 & X s< 15) -> no change
1067 break;
1068 }
1069 break;
1070 case ICmpInst::ICMP_SLT:
1071 switch (RHSCC) {
1072 default: llvm_unreachable("Unknown integer condition code!");
1073 case ICmpInst::ICMP_UGT: // (X s< 13 & X u> 15) -> no change
1074 break;
1075 case ICmpInst::ICMP_NE: // (X s< 13 & X != 15) -> X < 13
1076 case ICmpInst::ICMP_SLT: // (X s< 13 & X s< 15) -> X < 13
1077 return LHS;
1078 case ICmpInst::ICMP_ULT: // (X s< 13 & X u< 15) -> no change
1079 break;
1080 }
1081 break;
1082 case ICmpInst::ICMP_UGT:
1083 switch (RHSCC) {
1084 default: llvm_unreachable("Unknown integer condition code!");
1085 case ICmpInst::ICMP_EQ: // (X u> 13 & X == 15) -> X == 15
1086 case ICmpInst::ICMP_UGT: // (X u> 13 & X u> 15) -> X u> 15
1087 return RHS;
1088 case ICmpInst::ICMP_SGT: // (X u> 13 & X s> 15) -> no change
1089 break;
1090 case ICmpInst::ICMP_NE:
1091 if (RHSCst == AddOne(LHSCst)) // (X u> 13 & X != 14) -> X u> 14
1092 return Builder->CreateICmp(LHSCC, Val, RHSCst);
1093 break; // (X u> 13 & X != 15) -> no change
1094 case ICmpInst::ICMP_ULT: // (X u> 13 & X u< 15) -> (X-14) <u 1
1095 return InsertRangeTest(Val, AddOne(LHSCst), RHSCst, false, true);
1096 case ICmpInst::ICMP_SLT: // (X u> 13 & X s< 15) -> no change
1097 break;
1098 }
1099 break;
1100 case ICmpInst::ICMP_SGT:
1101 switch (RHSCC) {
1102 default: llvm_unreachable("Unknown integer condition code!");
1103 case ICmpInst::ICMP_EQ: // (X s> 13 & X == 15) -> X == 15
1104 case ICmpInst::ICMP_SGT: // (X s> 13 & X s> 15) -> X s> 15
1105 return RHS;
1106 case ICmpInst::ICMP_UGT: // (X s> 13 & X u> 15) -> no change
1107 break;
1108 case ICmpInst::ICMP_NE:
1109 if (RHSCst == AddOne(LHSCst)) // (X s> 13 & X != 14) -> X s> 14
1110 return Builder->CreateICmp(LHSCC, Val, RHSCst);
1111 break; // (X s> 13 & X != 15) -> no change
1112 case ICmpInst::ICMP_SLT: // (X s> 13 & X s< 15) -> (X-14) s< 1
1113 return InsertRangeTest(Val, AddOne(LHSCst), RHSCst, true, true);
1114 case ICmpInst::ICMP_ULT: // (X s> 13 & X u< 15) -> no change
1115 break;
1116 }
1117 break;
1118 }
1119
1120 return nullptr;
1121 }
1122
1123 /// Optimize (fcmp)&(fcmp). NOTE: Unlike the rest of instcombine, this returns
1124 /// a Value which should already be inserted into the function.
FoldAndOfFCmps(FCmpInst * LHS,FCmpInst * RHS)1125 Value *InstCombiner::FoldAndOfFCmps(FCmpInst *LHS, FCmpInst *RHS) {
1126 if (LHS->getPredicate() == FCmpInst::FCMP_ORD &&
1127 RHS->getPredicate() == FCmpInst::FCMP_ORD) {
1128 if (LHS->getOperand(0)->getType() != RHS->getOperand(0)->getType())
1129 return nullptr;
1130
1131 // (fcmp ord x, c) & (fcmp ord y, c) -> (fcmp ord x, y)
1132 if (ConstantFP *LHSC = dyn_cast<ConstantFP>(LHS->getOperand(1)))
1133 if (ConstantFP *RHSC = dyn_cast<ConstantFP>(RHS->getOperand(1))) {
1134 // If either of the constants are nans, then the whole thing returns
1135 // false.
1136 if (LHSC->getValueAPF().isNaN() || RHSC->getValueAPF().isNaN())
1137 return Builder->getFalse();
1138 return Builder->CreateFCmpORD(LHS->getOperand(0), RHS->getOperand(0));
1139 }
1140
1141 // Handle vector zeros. This occurs because the canonical form of
1142 // "fcmp ord x,x" is "fcmp ord x, 0".
1143 if (isa<ConstantAggregateZero>(LHS->getOperand(1)) &&
1144 isa<ConstantAggregateZero>(RHS->getOperand(1)))
1145 return Builder->CreateFCmpORD(LHS->getOperand(0), RHS->getOperand(0));
1146 return nullptr;
1147 }
1148
1149 Value *Op0LHS = LHS->getOperand(0), *Op0RHS = LHS->getOperand(1);
1150 Value *Op1LHS = RHS->getOperand(0), *Op1RHS = RHS->getOperand(1);
1151 FCmpInst::Predicate Op0CC = LHS->getPredicate(), Op1CC = RHS->getPredicate();
1152
1153
1154 if (Op0LHS == Op1RHS && Op0RHS == Op1LHS) {
1155 // Swap RHS operands to match LHS.
1156 Op1CC = FCmpInst::getSwappedPredicate(Op1CC);
1157 std::swap(Op1LHS, Op1RHS);
1158 }
1159
1160 if (Op0LHS == Op1LHS && Op0RHS == Op1RHS) {
1161 // Simplify (fcmp cc0 x, y) & (fcmp cc1 x, y).
1162 if (Op0CC == Op1CC)
1163 return Builder->CreateFCmp((FCmpInst::Predicate)Op0CC, Op0LHS, Op0RHS);
1164 if (Op0CC == FCmpInst::FCMP_FALSE || Op1CC == FCmpInst::FCMP_FALSE)
1165 return ConstantInt::get(CmpInst::makeCmpResultType(LHS->getType()), 0);
1166 if (Op0CC == FCmpInst::FCMP_TRUE)
1167 return RHS;
1168 if (Op1CC == FCmpInst::FCMP_TRUE)
1169 return LHS;
1170
1171 bool Op0Ordered;
1172 bool Op1Ordered;
1173 unsigned Op0Pred = getFCmpCode(Op0CC, Op0Ordered);
1174 unsigned Op1Pred = getFCmpCode(Op1CC, Op1Ordered);
1175 // uno && ord -> false
1176 if (Op0Pred == 0 && Op1Pred == 0 && Op0Ordered != Op1Ordered)
1177 return ConstantInt::get(CmpInst::makeCmpResultType(LHS->getType()), 0);
1178 if (Op1Pred == 0) {
1179 std::swap(LHS, RHS);
1180 std::swap(Op0Pred, Op1Pred);
1181 std::swap(Op0Ordered, Op1Ordered);
1182 }
1183 if (Op0Pred == 0) {
1184 // uno && ueq -> uno && (uno || eq) -> uno
1185 // ord && olt -> ord && (ord && lt) -> olt
1186 if (!Op0Ordered && (Op0Ordered == Op1Ordered))
1187 return LHS;
1188 if (Op0Ordered && (Op0Ordered == Op1Ordered))
1189 return RHS;
1190
1191 // uno && oeq -> uno && (ord && eq) -> false
1192 if (!Op0Ordered)
1193 return ConstantInt::get(CmpInst::makeCmpResultType(LHS->getType()), 0);
1194 // ord && ueq -> ord && (uno || eq) -> oeq
1195 return getFCmpValue(true, Op1Pred, Op0LHS, Op0RHS, Builder);
1196 }
1197 }
1198
1199 return nullptr;
1200 }
1201
1202 /// Match De Morgan's Laws:
1203 /// (~A & ~B) == (~(A | B))
1204 /// (~A | ~B) == (~(A & B))
matchDeMorgansLaws(BinaryOperator & I,InstCombiner::BuilderTy * Builder)1205 static Instruction *matchDeMorgansLaws(BinaryOperator &I,
1206 InstCombiner::BuilderTy *Builder) {
1207 auto Opcode = I.getOpcode();
1208 assert((Opcode == Instruction::And || Opcode == Instruction::Or) &&
1209 "Trying to match De Morgan's Laws with something other than and/or");
1210 // Flip the logic operation.
1211 if (Opcode == Instruction::And)
1212 Opcode = Instruction::Or;
1213 else
1214 Opcode = Instruction::And;
1215
1216 Value *Op0 = I.getOperand(0);
1217 Value *Op1 = I.getOperand(1);
1218 // TODO: Use pattern matchers instead of dyn_cast.
1219 if (Value *Op0NotVal = dyn_castNotVal(Op0))
1220 if (Value *Op1NotVal = dyn_castNotVal(Op1))
1221 if (Op0->hasOneUse() && Op1->hasOneUse()) {
1222 Value *LogicOp = Builder->CreateBinOp(Opcode, Op0NotVal, Op1NotVal,
1223 I.getName() + ".demorgan");
1224 return BinaryOperator::CreateNot(LogicOp);
1225 }
1226
1227 // De Morgan's Law in disguise:
1228 // (zext(bool A) ^ 1) & (zext(bool B) ^ 1) -> zext(~(A | B))
1229 // (zext(bool A) ^ 1) | (zext(bool B) ^ 1) -> zext(~(A & B))
1230 Value *A = nullptr;
1231 Value *B = nullptr;
1232 ConstantInt *C1 = nullptr;
1233 if (match(Op0, m_OneUse(m_Xor(m_ZExt(m_Value(A)), m_ConstantInt(C1)))) &&
1234 match(Op1, m_OneUse(m_Xor(m_ZExt(m_Value(B)), m_Specific(C1))))) {
1235 // TODO: This check could be loosened to handle different type sizes.
1236 // Alternatively, we could fix the definition of m_Not to recognize a not
1237 // operation hidden by a zext?
1238 if (A->getType()->isIntegerTy(1) && B->getType()->isIntegerTy(1) &&
1239 C1->isOne()) {
1240 Value *LogicOp = Builder->CreateBinOp(Opcode, A, B,
1241 I.getName() + ".demorgan");
1242 Value *Not = Builder->CreateNot(LogicOp);
1243 return CastInst::CreateZExtOrBitCast(Not, I.getType());
1244 }
1245 }
1246
1247 return nullptr;
1248 }
1249
visitAnd(BinaryOperator & I)1250 Instruction *InstCombiner::visitAnd(BinaryOperator &I) {
1251 bool Changed = SimplifyAssociativeOrCommutative(I);
1252 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
1253
1254 if (Value *V = SimplifyVectorOp(I))
1255 return ReplaceInstUsesWith(I, V);
1256
1257 if (Value *V = SimplifyAndInst(Op0, Op1, DL, TLI, DT, AC))
1258 return ReplaceInstUsesWith(I, V);
1259
1260 // (A|B)&(A|C) -> A|(B&C) etc
1261 if (Value *V = SimplifyUsingDistributiveLaws(I))
1262 return ReplaceInstUsesWith(I, V);
1263
1264 // See if we can simplify any instructions used by the instruction whose sole
1265 // purpose is to compute bits we don't care about.
1266 if (SimplifyDemandedInstructionBits(I))
1267 return &I;
1268
1269 if (Value *V = SimplifyBSwap(I))
1270 return ReplaceInstUsesWith(I, V);
1271
1272 if (ConstantInt *AndRHS = dyn_cast<ConstantInt>(Op1)) {
1273 const APInt &AndRHSMask = AndRHS->getValue();
1274
1275 // Optimize a variety of ((val OP C1) & C2) combinations...
1276 if (BinaryOperator *Op0I = dyn_cast<BinaryOperator>(Op0)) {
1277 Value *Op0LHS = Op0I->getOperand(0);
1278 Value *Op0RHS = Op0I->getOperand(1);
1279 switch (Op0I->getOpcode()) {
1280 default: break;
1281 case Instruction::Xor:
1282 case Instruction::Or: {
1283 // If the mask is only needed on one incoming arm, push it up.
1284 if (!Op0I->hasOneUse()) break;
1285
1286 APInt NotAndRHS(~AndRHSMask);
1287 if (MaskedValueIsZero(Op0LHS, NotAndRHS, 0, &I)) {
1288 // Not masking anything out for the LHS, move to RHS.
1289 Value *NewRHS = Builder->CreateAnd(Op0RHS, AndRHS,
1290 Op0RHS->getName()+".masked");
1291 return BinaryOperator::Create(Op0I->getOpcode(), Op0LHS, NewRHS);
1292 }
1293 if (!isa<Constant>(Op0RHS) &&
1294 MaskedValueIsZero(Op0RHS, NotAndRHS, 0, &I)) {
1295 // Not masking anything out for the RHS, move to LHS.
1296 Value *NewLHS = Builder->CreateAnd(Op0LHS, AndRHS,
1297 Op0LHS->getName()+".masked");
1298 return BinaryOperator::Create(Op0I->getOpcode(), NewLHS, Op0RHS);
1299 }
1300
1301 break;
1302 }
1303 case Instruction::Add:
1304 // ((A & N) + B) & AndRHS -> (A + B) & AndRHS iff N&AndRHS == AndRHS.
1305 // ((A | N) + B) & AndRHS -> (A + B) & AndRHS iff N&AndRHS == 0
1306 // ((A ^ N) + B) & AndRHS -> (A + B) & AndRHS iff N&AndRHS == 0
1307 if (Value *V = FoldLogicalPlusAnd(Op0LHS, Op0RHS, AndRHS, false, I))
1308 return BinaryOperator::CreateAnd(V, AndRHS);
1309 if (Value *V = FoldLogicalPlusAnd(Op0RHS, Op0LHS, AndRHS, false, I))
1310 return BinaryOperator::CreateAnd(V, AndRHS); // Add commutes
1311 break;
1312
1313 case Instruction::Sub:
1314 // ((A & N) - B) & AndRHS -> (A - B) & AndRHS iff N&AndRHS == AndRHS.
1315 // ((A | N) - B) & AndRHS -> (A - B) & AndRHS iff N&AndRHS == 0
1316 // ((A ^ N) - B) & AndRHS -> (A - B) & AndRHS iff N&AndRHS == 0
1317 if (Value *V = FoldLogicalPlusAnd(Op0LHS, Op0RHS, AndRHS, true, I))
1318 return BinaryOperator::CreateAnd(V, AndRHS);
1319
1320 // -x & 1 -> x & 1
1321 if (AndRHSMask == 1 && match(Op0LHS, m_Zero()))
1322 return BinaryOperator::CreateAnd(Op0RHS, AndRHS);
1323
1324 // (A - N) & AndRHS -> -N & AndRHS iff A&AndRHS==0 and AndRHS
1325 // has 1's for all bits that the subtraction with A might affect.
1326 if (Op0I->hasOneUse() && !match(Op0LHS, m_Zero())) {
1327 uint32_t BitWidth = AndRHSMask.getBitWidth();
1328 uint32_t Zeros = AndRHSMask.countLeadingZeros();
1329 APInt Mask = APInt::getLowBitsSet(BitWidth, BitWidth - Zeros);
1330
1331 if (MaskedValueIsZero(Op0LHS, Mask, 0, &I)) {
1332 Value *NewNeg = Builder->CreateNeg(Op0RHS);
1333 return BinaryOperator::CreateAnd(NewNeg, AndRHS);
1334 }
1335 }
1336 break;
1337
1338 case Instruction::Shl:
1339 case Instruction::LShr:
1340 // (1 << x) & 1 --> zext(x == 0)
1341 // (1 >> x) & 1 --> zext(x == 0)
1342 if (AndRHSMask == 1 && Op0LHS == AndRHS) {
1343 Value *NewICmp =
1344 Builder->CreateICmpEQ(Op0RHS, Constant::getNullValue(I.getType()));
1345 return new ZExtInst(NewICmp, I.getType());
1346 }
1347 break;
1348 }
1349
1350 if (ConstantInt *Op0CI = dyn_cast<ConstantInt>(Op0I->getOperand(1)))
1351 if (Instruction *Res = OptAndOp(Op0I, Op0CI, AndRHS, I))
1352 return Res;
1353 }
1354
1355 // If this is an integer truncation, and if the source is an 'and' with
1356 // immediate, transform it. This frequently occurs for bitfield accesses.
1357 {
1358 Value *X = nullptr; ConstantInt *YC = nullptr;
1359 if (match(Op0, m_Trunc(m_And(m_Value(X), m_ConstantInt(YC))))) {
1360 // Change: and (trunc (and X, YC) to T), C2
1361 // into : and (trunc X to T), trunc(YC) & C2
1362 // This will fold the two constants together, which may allow
1363 // other simplifications.
1364 Value *NewCast = Builder->CreateTrunc(X, I.getType(), "and.shrunk");
1365 Constant *C3 = ConstantExpr::getTrunc(YC, I.getType());
1366 C3 = ConstantExpr::getAnd(C3, AndRHS);
1367 return BinaryOperator::CreateAnd(NewCast, C3);
1368 }
1369 }
1370
1371 // Try to fold constant and into select arguments.
1372 if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
1373 if (Instruction *R = FoldOpIntoSelect(I, SI))
1374 return R;
1375 if (isa<PHINode>(Op0))
1376 if (Instruction *NV = FoldOpIntoPhi(I))
1377 return NV;
1378 }
1379
1380 if (Instruction *DeMorgan = matchDeMorgansLaws(I, Builder))
1381 return DeMorgan;
1382
1383 {
1384 Value *A = nullptr, *B = nullptr, *C = nullptr, *D = nullptr;
1385 // (A|B) & ~(A&B) -> A^B
1386 if (match(Op0, m_Or(m_Value(A), m_Value(B))) &&
1387 match(Op1, m_Not(m_And(m_Value(C), m_Value(D)))) &&
1388 ((A == C && B == D) || (A == D && B == C)))
1389 return BinaryOperator::CreateXor(A, B);
1390
1391 // ~(A&B) & (A|B) -> A^B
1392 if (match(Op1, m_Or(m_Value(A), m_Value(B))) &&
1393 match(Op0, m_Not(m_And(m_Value(C), m_Value(D)))) &&
1394 ((A == C && B == D) || (A == D && B == C)))
1395 return BinaryOperator::CreateXor(A, B);
1396
1397 // A&(A^B) => A & ~B
1398 {
1399 Value *tmpOp0 = Op0;
1400 Value *tmpOp1 = Op1;
1401 if (Op0->hasOneUse() &&
1402 match(Op0, m_Xor(m_Value(A), m_Value(B)))) {
1403 if (A == Op1 || B == Op1 ) {
1404 tmpOp1 = Op0;
1405 tmpOp0 = Op1;
1406 // Simplify below
1407 }
1408 }
1409
1410 if (tmpOp1->hasOneUse() &&
1411 match(tmpOp1, m_Xor(m_Value(A), m_Value(B)))) {
1412 if (B == tmpOp0) {
1413 std::swap(A, B);
1414 }
1415 // Notice that the patten (A&(~B)) is actually (A&(-1^B)), so if
1416 // A is originally -1 (or a vector of -1 and undefs), then we enter
1417 // an endless loop. By checking that A is non-constant we ensure that
1418 // we will never get to the loop.
1419 if (A == tmpOp0 && !isa<Constant>(A)) // A&(A^B) -> A & ~B
1420 return BinaryOperator::CreateAnd(A, Builder->CreateNot(B));
1421 }
1422 }
1423
1424 // (A&((~A)|B)) -> A&B
1425 if (match(Op0, m_Or(m_Not(m_Specific(Op1)), m_Value(A))) ||
1426 match(Op0, m_Or(m_Value(A), m_Not(m_Specific(Op1)))))
1427 return BinaryOperator::CreateAnd(A, Op1);
1428 if (match(Op1, m_Or(m_Not(m_Specific(Op0)), m_Value(A))) ||
1429 match(Op1, m_Or(m_Value(A), m_Not(m_Specific(Op0)))))
1430 return BinaryOperator::CreateAnd(A, Op0);
1431
1432 // (A ^ B) & ((B ^ C) ^ A) -> (A ^ B) & ~C
1433 if (match(Op0, m_Xor(m_Value(A), m_Value(B))))
1434 if (match(Op1, m_Xor(m_Xor(m_Specific(B), m_Value(C)), m_Specific(A))))
1435 if (Op1->hasOneUse() || cast<BinaryOperator>(Op1)->hasOneUse())
1436 return BinaryOperator::CreateAnd(Op0, Builder->CreateNot(C));
1437
1438 // ((A ^ C) ^ B) & (B ^ A) -> (B ^ A) & ~C
1439 if (match(Op0, m_Xor(m_Xor(m_Value(A), m_Value(C)), m_Value(B))))
1440 if (match(Op1, m_Xor(m_Specific(B), m_Specific(A))))
1441 if (Op0->hasOneUse() || cast<BinaryOperator>(Op0)->hasOneUse())
1442 return BinaryOperator::CreateAnd(Op1, Builder->CreateNot(C));
1443
1444 // (A | B) & ((~A) ^ B) -> (A & B)
1445 if (match(Op0, m_Or(m_Value(A), m_Value(B))) &&
1446 match(Op1, m_Xor(m_Not(m_Specific(A)), m_Specific(B))))
1447 return BinaryOperator::CreateAnd(A, B);
1448
1449 // ((~A) ^ B) & (A | B) -> (A & B)
1450 if (match(Op0, m_Xor(m_Not(m_Value(A)), m_Value(B))) &&
1451 match(Op1, m_Or(m_Specific(A), m_Specific(B))))
1452 return BinaryOperator::CreateAnd(A, B);
1453 }
1454
1455 {
1456 ICmpInst *LHS = dyn_cast<ICmpInst>(Op0);
1457 ICmpInst *RHS = dyn_cast<ICmpInst>(Op1);
1458 if (LHS && RHS)
1459 if (Value *Res = FoldAndOfICmps(LHS, RHS))
1460 return ReplaceInstUsesWith(I, Res);
1461
1462 // TODO: Make this recursive; it's a little tricky because an arbitrary
1463 // number of 'and' instructions might have to be created.
1464 Value *X, *Y;
1465 if (LHS && match(Op1, m_OneUse(m_And(m_Value(X), m_Value(Y))))) {
1466 if (auto *Cmp = dyn_cast<ICmpInst>(X))
1467 if (Value *Res = FoldAndOfICmps(LHS, Cmp))
1468 return ReplaceInstUsesWith(I, Builder->CreateAnd(Res, Y));
1469 if (auto *Cmp = dyn_cast<ICmpInst>(Y))
1470 if (Value *Res = FoldAndOfICmps(LHS, Cmp))
1471 return ReplaceInstUsesWith(I, Builder->CreateAnd(Res, X));
1472 }
1473 if (RHS && match(Op0, m_OneUse(m_And(m_Value(X), m_Value(Y))))) {
1474 if (auto *Cmp = dyn_cast<ICmpInst>(X))
1475 if (Value *Res = FoldAndOfICmps(Cmp, RHS))
1476 return ReplaceInstUsesWith(I, Builder->CreateAnd(Res, Y));
1477 if (auto *Cmp = dyn_cast<ICmpInst>(Y))
1478 if (Value *Res = FoldAndOfICmps(Cmp, RHS))
1479 return ReplaceInstUsesWith(I, Builder->CreateAnd(Res, X));
1480 }
1481 }
1482
1483 // If and'ing two fcmp, try combine them into one.
1484 if (FCmpInst *LHS = dyn_cast<FCmpInst>(I.getOperand(0)))
1485 if (FCmpInst *RHS = dyn_cast<FCmpInst>(I.getOperand(1)))
1486 if (Value *Res = FoldAndOfFCmps(LHS, RHS))
1487 return ReplaceInstUsesWith(I, Res);
1488
1489
1490 if (CastInst *Op0C = dyn_cast<CastInst>(Op0)) {
1491 Value *Op0COp = Op0C->getOperand(0);
1492 Type *SrcTy = Op0COp->getType();
1493 // fold (and (cast A), (cast B)) -> (cast (and A, B))
1494 if (CastInst *Op1C = dyn_cast<CastInst>(Op1)) {
1495 if (Op0C->getOpcode() == Op1C->getOpcode() && // same cast kind ?
1496 SrcTy == Op1C->getOperand(0)->getType() &&
1497 SrcTy->isIntOrIntVectorTy()) {
1498 Value *Op1COp = Op1C->getOperand(0);
1499
1500 // Only do this if the casts both really cause code to be generated.
1501 if (ShouldOptimizeCast(Op0C->getOpcode(), Op0COp, I.getType()) &&
1502 ShouldOptimizeCast(Op1C->getOpcode(), Op1COp, I.getType())) {
1503 Value *NewOp = Builder->CreateAnd(Op0COp, Op1COp, I.getName());
1504 return CastInst::Create(Op0C->getOpcode(), NewOp, I.getType());
1505 }
1506
1507 // If this is and(cast(icmp), cast(icmp)), try to fold this even if the
1508 // cast is otherwise not optimizable. This happens for vector sexts.
1509 if (ICmpInst *RHS = dyn_cast<ICmpInst>(Op1COp))
1510 if (ICmpInst *LHS = dyn_cast<ICmpInst>(Op0COp))
1511 if (Value *Res = FoldAndOfICmps(LHS, RHS))
1512 return CastInst::Create(Op0C->getOpcode(), Res, I.getType());
1513
1514 // If this is and(cast(fcmp), cast(fcmp)), try to fold this even if the
1515 // cast is otherwise not optimizable. This happens for vector sexts.
1516 if (FCmpInst *RHS = dyn_cast<FCmpInst>(Op1COp))
1517 if (FCmpInst *LHS = dyn_cast<FCmpInst>(Op0COp))
1518 if (Value *Res = FoldAndOfFCmps(LHS, RHS))
1519 return CastInst::Create(Op0C->getOpcode(), Res, I.getType());
1520 }
1521 }
1522
1523 // If we are masking off the sign bit of a floating-point value, convert
1524 // this to the canonical fabs intrinsic call and cast back to integer.
1525 // The backend should know how to optimize fabs().
1526 // TODO: This transform should also apply to vectors.
1527 ConstantInt *CI;
1528 if (isa<BitCastInst>(Op0C) && SrcTy->isFloatingPointTy() &&
1529 match(Op1, m_ConstantInt(CI)) && CI->isMaxValue(true)) {
1530 Module *M = I.getModule();
1531 Function *Fabs = Intrinsic::getDeclaration(M, Intrinsic::fabs, SrcTy);
1532 Value *Call = Builder->CreateCall(Fabs, Op0COp, "fabs");
1533 return CastInst::CreateBitOrPointerCast(Call, I.getType());
1534 }
1535 }
1536
1537 {
1538 Value *X = nullptr;
1539 bool OpsSwapped = false;
1540 // Canonicalize SExt or Not to the LHS
1541 if (match(Op1, m_SExt(m_Value())) ||
1542 match(Op1, m_Not(m_Value()))) {
1543 std::swap(Op0, Op1);
1544 OpsSwapped = true;
1545 }
1546
1547 // Fold (and (sext bool to A), B) --> (select bool, B, 0)
1548 if (match(Op0, m_SExt(m_Value(X))) &&
1549 X->getType()->getScalarType()->isIntegerTy(1)) {
1550 Value *Zero = Constant::getNullValue(Op1->getType());
1551 return SelectInst::Create(X, Op1, Zero);
1552 }
1553
1554 // Fold (and ~(sext bool to A), B) --> (select bool, 0, B)
1555 if (match(Op0, m_Not(m_SExt(m_Value(X)))) &&
1556 X->getType()->getScalarType()->isIntegerTy(1)) {
1557 Value *Zero = Constant::getNullValue(Op0->getType());
1558 return SelectInst::Create(X, Zero, Op1);
1559 }
1560
1561 if (OpsSwapped)
1562 std::swap(Op0, Op1);
1563 }
1564
1565 return Changed ? &I : nullptr;
1566 }
1567
1568
1569 /// Analyze the specified subexpression and see if it is capable of providing
1570 /// pieces of a bswap or bitreverse. The subexpression provides a potential
1571 /// piece of a bswap or bitreverse if it can be proven that each non-zero bit in
1572 /// the output of the expression came from a corresponding bit in some other
1573 /// value. This function is recursive, and the end result is a mapping of
1574 /// (value, bitnumber) to bitnumber. It is the caller's responsibility to
1575 /// validate that all `value`s are identical and that the bitnumber to bitnumber
1576 /// mapping is correct for a bswap or bitreverse.
1577 ///
1578 /// For example, if the current subexpression if "(shl i32 %X, 24)" then we know
1579 /// that the expression deposits the low byte of %X into the high byte of the
1580 /// result and that all other bits are zero. This expression is accepted,
1581 /// BitValues[24-31] are set to %X and BitProvenance[24-31] are set to [0-7].
1582 ///
1583 /// This function returns true if the match was unsuccessful and false if so.
1584 /// On entry to the function the "OverallLeftShift" is a signed integer value
1585 /// indicating the number of bits that the subexpression is later shifted. For
1586 /// example, if the expression is later right shifted by 16 bits, the
1587 /// OverallLeftShift value would be -16 on entry. This is used to specify which
1588 /// bits of BitValues are actually being set.
1589 ///
1590 /// Similarly, BitMask is a bitmask where a bit is clear if its corresponding
1591 /// bit is masked to zero by a user. For example, in (X & 255), X will be
1592 /// processed with a bytemask of 255. BitMask is always in the local
1593 /// (OverallLeftShift) coordinate space.
1594 ///
CollectBitParts(Value * V,int OverallLeftShift,APInt BitMask,SmallVectorImpl<Value * > & BitValues,SmallVectorImpl<int> & BitProvenance)1595 static bool CollectBitParts(Value *V, int OverallLeftShift, APInt BitMask,
1596 SmallVectorImpl<Value *> &BitValues,
1597 SmallVectorImpl<int> &BitProvenance) {
1598 if (Instruction *I = dyn_cast<Instruction>(V)) {
1599 // If this is an or instruction, it may be an inner node of the bswap.
1600 if (I->getOpcode() == Instruction::Or)
1601 return CollectBitParts(I->getOperand(0), OverallLeftShift, BitMask,
1602 BitValues, BitProvenance) ||
1603 CollectBitParts(I->getOperand(1), OverallLeftShift, BitMask,
1604 BitValues, BitProvenance);
1605
1606 // If this is a logical shift by a constant, recurse with OverallLeftShift
1607 // and BitMask adjusted.
1608 if (I->isLogicalShift() && isa<ConstantInt>(I->getOperand(1))) {
1609 unsigned ShAmt =
1610 cast<ConstantInt>(I->getOperand(1))->getLimitedValue(~0U);
1611 // Ensure the shift amount is defined.
1612 if (ShAmt > BitValues.size())
1613 return true;
1614
1615 unsigned BitShift = ShAmt;
1616 if (I->getOpcode() == Instruction::Shl) {
1617 // X << C -> collect(X, +C)
1618 OverallLeftShift += BitShift;
1619 BitMask = BitMask.lshr(BitShift);
1620 } else {
1621 // X >>u C -> collect(X, -C)
1622 OverallLeftShift -= BitShift;
1623 BitMask = BitMask.shl(BitShift);
1624 }
1625
1626 if (OverallLeftShift >= (int)BitValues.size())
1627 return true;
1628 if (OverallLeftShift <= -(int)BitValues.size())
1629 return true;
1630
1631 return CollectBitParts(I->getOperand(0), OverallLeftShift, BitMask,
1632 BitValues, BitProvenance);
1633 }
1634
1635 // If this is a logical 'and' with a mask that clears bits, clear the
1636 // corresponding bits in BitMask.
1637 if (I->getOpcode() == Instruction::And &&
1638 isa<ConstantInt>(I->getOperand(1))) {
1639 unsigned NumBits = BitValues.size();
1640 APInt Bit(I->getType()->getPrimitiveSizeInBits(), 1);
1641 const APInt &AndMask = cast<ConstantInt>(I->getOperand(1))->getValue();
1642
1643 for (unsigned i = 0; i != NumBits; ++i, Bit <<= 1) {
1644 // If this bit is masked out by a later operation, we don't care what
1645 // the and mask is.
1646 if (BitMask[i] == 0)
1647 continue;
1648
1649 // If the AndMask is zero for this bit, clear the bit.
1650 APInt MaskB = AndMask & Bit;
1651 if (MaskB == 0) {
1652 BitMask.clearBit(i);
1653 continue;
1654 }
1655
1656 // Otherwise, this bit is kept.
1657 }
1658
1659 return CollectBitParts(I->getOperand(0), OverallLeftShift, BitMask,
1660 BitValues, BitProvenance);
1661 }
1662 }
1663
1664 // Okay, we got to something that isn't a shift, 'or' or 'and'. This must be
1665 // the input value to the bswap/bitreverse. To be part of a bswap or
1666 // bitreverse we must be demanding a contiguous range of bits from it.
1667 unsigned InputBitLen = BitMask.countPopulation();
1668 unsigned InputBitNo = BitMask.countTrailingZeros();
1669 if (BitMask.getBitWidth() - BitMask.countLeadingZeros() - InputBitNo !=
1670 InputBitLen)
1671 // Not a contiguous set range of bits!
1672 return true;
1673
1674 // We know we're moving a contiguous range of bits from the input to the
1675 // output. Record which bits in the output came from which bits in the input.
1676 unsigned DestBitNo = InputBitNo + OverallLeftShift;
1677 for (unsigned I = 0; I < InputBitLen; ++I)
1678 BitProvenance[DestBitNo + I] = InputBitNo + I;
1679
1680 // If the destination bit value is already defined, the values are or'd
1681 // together, which isn't a bswap/bitreverse (unless it's an or of the same
1682 // bits).
1683 if (BitValues[DestBitNo] && BitValues[DestBitNo] != V)
1684 return true;
1685 for (unsigned I = 0; I < InputBitLen; ++I)
1686 BitValues[DestBitNo + I] = V;
1687
1688 return false;
1689 }
1690
bitTransformIsCorrectForBSwap(unsigned From,unsigned To,unsigned BitWidth)1691 static bool bitTransformIsCorrectForBSwap(unsigned From, unsigned To,
1692 unsigned BitWidth) {
1693 if (From % 8 != To % 8)
1694 return false;
1695 // Convert from bit indices to byte indices and check for a byte reversal.
1696 From >>= 3;
1697 To >>= 3;
1698 BitWidth >>= 3;
1699 return From == BitWidth - To - 1;
1700 }
1701
bitTransformIsCorrectForBitReverse(unsigned From,unsigned To,unsigned BitWidth)1702 static bool bitTransformIsCorrectForBitReverse(unsigned From, unsigned To,
1703 unsigned BitWidth) {
1704 return From == BitWidth - To - 1;
1705 }
1706
1707 /// Given an OR instruction, check to see if this is a bswap or bitreverse
1708 /// idiom. If so, insert the new intrinsic and return it.
MatchBSwapOrBitReverse(BinaryOperator & I)1709 Instruction *InstCombiner::MatchBSwapOrBitReverse(BinaryOperator &I) {
1710 IntegerType *ITy = dyn_cast<IntegerType>(I.getType());
1711 if (!ITy)
1712 return nullptr; // Can't do vectors.
1713 unsigned BW = ITy->getBitWidth();
1714
1715 /// We keep track of which bit (BitProvenance) inside which value (BitValues)
1716 /// defines each bit in the result.
1717 SmallVector<Value *, 8> BitValues(BW, nullptr);
1718 SmallVector<int, 8> BitProvenance(BW, -1);
1719
1720 // Try to find all the pieces corresponding to the bswap.
1721 APInt BitMask = APInt::getAllOnesValue(BitValues.size());
1722 if (CollectBitParts(&I, 0, BitMask, BitValues, BitProvenance))
1723 return nullptr;
1724
1725 // Check to see if all of the bits come from the same value.
1726 Value *V = BitValues[0];
1727 if (!V) return nullptr; // Didn't find a bit? Must be zero.
1728
1729 if (!std::all_of(BitValues.begin(), BitValues.end(),
1730 [&](const Value *X) { return X == V; }))
1731 return nullptr;
1732
1733 // Now, is the bit permutation correct for a bswap or a bitreverse? We can
1734 // only byteswap values with an even number of bytes.
1735 bool OKForBSwap = BW % 16 == 0, OKForBitReverse = true;;
1736 for (unsigned i = 0, e = BitValues.size(); i != e; ++i) {
1737 OKForBSwap &= bitTransformIsCorrectForBSwap(BitProvenance[i], i, BW);
1738 OKForBitReverse &=
1739 bitTransformIsCorrectForBitReverse(BitProvenance[i], i, BW);
1740 }
1741
1742 Intrinsic::ID Intrin;
1743 if (OKForBSwap)
1744 Intrin = Intrinsic::bswap;
1745 else if (OKForBitReverse)
1746 Intrin = Intrinsic::bitreverse;
1747 else
1748 return nullptr;
1749
1750 Function *F = Intrinsic::getDeclaration(I.getModule(), Intrin, ITy);
1751 return CallInst::Create(F, V);
1752 }
1753
1754 /// We have an expression of the form (A&C)|(B&D). Check if A is (cond?-1:0)
1755 /// and either B or D is ~(cond?-1,0) or (cond?0,-1), then we can simplify this
1756 /// expression to "cond ? C : D or B".
MatchSelectFromAndOr(Value * A,Value * B,Value * C,Value * D)1757 static Instruction *MatchSelectFromAndOr(Value *A, Value *B,
1758 Value *C, Value *D) {
1759 // If A is not a select of -1/0, this cannot match.
1760 Value *Cond = nullptr;
1761 if (!match(A, m_SExt(m_Value(Cond))) ||
1762 !Cond->getType()->isIntegerTy(1))
1763 return nullptr;
1764
1765 // ((cond?-1:0)&C) | (B&(cond?0:-1)) -> cond ? C : B.
1766 if (match(D, m_Not(m_SExt(m_Specific(Cond)))))
1767 return SelectInst::Create(Cond, C, B);
1768 if (match(D, m_SExt(m_Not(m_Specific(Cond)))))
1769 return SelectInst::Create(Cond, C, B);
1770
1771 // ((cond?-1:0)&C) | ((cond?0:-1)&D) -> cond ? C : D.
1772 if (match(B, m_Not(m_SExt(m_Specific(Cond)))))
1773 return SelectInst::Create(Cond, C, D);
1774 if (match(B, m_SExt(m_Not(m_Specific(Cond)))))
1775 return SelectInst::Create(Cond, C, D);
1776 return nullptr;
1777 }
1778
1779 /// Fold (icmp)|(icmp) if possible.
FoldOrOfICmps(ICmpInst * LHS,ICmpInst * RHS,Instruction * CxtI)1780 Value *InstCombiner::FoldOrOfICmps(ICmpInst *LHS, ICmpInst *RHS,
1781 Instruction *CxtI) {
1782 ICmpInst::Predicate LHSCC = LHS->getPredicate(), RHSCC = RHS->getPredicate();
1783
1784 // Fold (iszero(A & K1) | iszero(A & K2)) -> (A & (K1 | K2)) != (K1 | K2)
1785 // if K1 and K2 are a one-bit mask.
1786 ConstantInt *LHSCst = dyn_cast<ConstantInt>(LHS->getOperand(1));
1787 ConstantInt *RHSCst = dyn_cast<ConstantInt>(RHS->getOperand(1));
1788
1789 if (LHS->getPredicate() == ICmpInst::ICMP_EQ && LHSCst && LHSCst->isZero() &&
1790 RHS->getPredicate() == ICmpInst::ICMP_EQ && RHSCst && RHSCst->isZero()) {
1791
1792 BinaryOperator *LAnd = dyn_cast<BinaryOperator>(LHS->getOperand(0));
1793 BinaryOperator *RAnd = dyn_cast<BinaryOperator>(RHS->getOperand(0));
1794 if (LAnd && RAnd && LAnd->hasOneUse() && RHS->hasOneUse() &&
1795 LAnd->getOpcode() == Instruction::And &&
1796 RAnd->getOpcode() == Instruction::And) {
1797
1798 Value *Mask = nullptr;
1799 Value *Masked = nullptr;
1800 if (LAnd->getOperand(0) == RAnd->getOperand(0) &&
1801 isKnownToBeAPowerOfTwo(LAnd->getOperand(1), DL, false, 0, AC, CxtI,
1802 DT) &&
1803 isKnownToBeAPowerOfTwo(RAnd->getOperand(1), DL, false, 0, AC, CxtI,
1804 DT)) {
1805 Mask = Builder->CreateOr(LAnd->getOperand(1), RAnd->getOperand(1));
1806 Masked = Builder->CreateAnd(LAnd->getOperand(0), Mask);
1807 } else if (LAnd->getOperand(1) == RAnd->getOperand(1) &&
1808 isKnownToBeAPowerOfTwo(LAnd->getOperand(0), DL, false, 0, AC,
1809 CxtI, DT) &&
1810 isKnownToBeAPowerOfTwo(RAnd->getOperand(0), DL, false, 0, AC,
1811 CxtI, DT)) {
1812 Mask = Builder->CreateOr(LAnd->getOperand(0), RAnd->getOperand(0));
1813 Masked = Builder->CreateAnd(LAnd->getOperand(1), Mask);
1814 }
1815
1816 if (Masked)
1817 return Builder->CreateICmp(ICmpInst::ICMP_NE, Masked, Mask);
1818 }
1819 }
1820
1821 // Fold (icmp ult/ule (A + C1), C3) | (icmp ult/ule (A + C2), C3)
1822 // --> (icmp ult/ule ((A & ~(C1 ^ C2)) + max(C1, C2)), C3)
1823 // The original condition actually refers to the following two ranges:
1824 // [MAX_UINT-C1+1, MAX_UINT-C1+1+C3] and [MAX_UINT-C2+1, MAX_UINT-C2+1+C3]
1825 // We can fold these two ranges if:
1826 // 1) C1 and C2 is unsigned greater than C3.
1827 // 2) The two ranges are separated.
1828 // 3) C1 ^ C2 is one-bit mask.
1829 // 4) LowRange1 ^ LowRange2 and HighRange1 ^ HighRange2 are one-bit mask.
1830 // This implies all values in the two ranges differ by exactly one bit.
1831
1832 if ((LHSCC == ICmpInst::ICMP_ULT || LHSCC == ICmpInst::ICMP_ULE) &&
1833 LHSCC == RHSCC && LHSCst && RHSCst && LHS->hasOneUse() &&
1834 RHS->hasOneUse() && LHSCst->getType() == RHSCst->getType() &&
1835 LHSCst->getValue() == (RHSCst->getValue())) {
1836
1837 Value *LAdd = LHS->getOperand(0);
1838 Value *RAdd = RHS->getOperand(0);
1839
1840 Value *LAddOpnd, *RAddOpnd;
1841 ConstantInt *LAddCst, *RAddCst;
1842 if (match(LAdd, m_Add(m_Value(LAddOpnd), m_ConstantInt(LAddCst))) &&
1843 match(RAdd, m_Add(m_Value(RAddOpnd), m_ConstantInt(RAddCst))) &&
1844 LAddCst->getValue().ugt(LHSCst->getValue()) &&
1845 RAddCst->getValue().ugt(LHSCst->getValue())) {
1846
1847 APInt DiffCst = LAddCst->getValue() ^ RAddCst->getValue();
1848 if (LAddOpnd == RAddOpnd && DiffCst.isPowerOf2()) {
1849 ConstantInt *MaxAddCst = nullptr;
1850 if (LAddCst->getValue().ult(RAddCst->getValue()))
1851 MaxAddCst = RAddCst;
1852 else
1853 MaxAddCst = LAddCst;
1854
1855 APInt RRangeLow = -RAddCst->getValue();
1856 APInt RRangeHigh = RRangeLow + LHSCst->getValue();
1857 APInt LRangeLow = -LAddCst->getValue();
1858 APInt LRangeHigh = LRangeLow + LHSCst->getValue();
1859 APInt LowRangeDiff = RRangeLow ^ LRangeLow;
1860 APInt HighRangeDiff = RRangeHigh ^ LRangeHigh;
1861 APInt RangeDiff = LRangeLow.sgt(RRangeLow) ? LRangeLow - RRangeLow
1862 : RRangeLow - LRangeLow;
1863
1864 if (LowRangeDiff.isPowerOf2() && LowRangeDiff == HighRangeDiff &&
1865 RangeDiff.ugt(LHSCst->getValue())) {
1866 Value *MaskCst = ConstantInt::get(LAddCst->getType(), ~DiffCst);
1867
1868 Value *NewAnd = Builder->CreateAnd(LAddOpnd, MaskCst);
1869 Value *NewAdd = Builder->CreateAdd(NewAnd, MaxAddCst);
1870 return (Builder->CreateICmp(LHS->getPredicate(), NewAdd, LHSCst));
1871 }
1872 }
1873 }
1874 }
1875
1876 // (icmp1 A, B) | (icmp2 A, B) --> (icmp3 A, B)
1877 if (PredicatesFoldable(LHSCC, RHSCC)) {
1878 if (LHS->getOperand(0) == RHS->getOperand(1) &&
1879 LHS->getOperand(1) == RHS->getOperand(0))
1880 LHS->swapOperands();
1881 if (LHS->getOperand(0) == RHS->getOperand(0) &&
1882 LHS->getOperand(1) == RHS->getOperand(1)) {
1883 Value *Op0 = LHS->getOperand(0), *Op1 = LHS->getOperand(1);
1884 unsigned Code = getICmpCode(LHS) | getICmpCode(RHS);
1885 bool isSigned = LHS->isSigned() || RHS->isSigned();
1886 return getNewICmpValue(isSigned, Code, Op0, Op1, Builder);
1887 }
1888 }
1889
1890 // handle (roughly):
1891 // (icmp ne (A & B), C) | (icmp ne (A & D), E)
1892 if (Value *V = foldLogOpOfMaskedICmps(LHS, RHS, false, Builder))
1893 return V;
1894
1895 Value *Val = LHS->getOperand(0), *Val2 = RHS->getOperand(0);
1896 if (LHS->hasOneUse() || RHS->hasOneUse()) {
1897 // (icmp eq B, 0) | (icmp ult A, B) -> (icmp ule A, B-1)
1898 // (icmp eq B, 0) | (icmp ugt B, A) -> (icmp ule A, B-1)
1899 Value *A = nullptr, *B = nullptr;
1900 if (LHSCC == ICmpInst::ICMP_EQ && LHSCst && LHSCst->isZero()) {
1901 B = Val;
1902 if (RHSCC == ICmpInst::ICMP_ULT && Val == RHS->getOperand(1))
1903 A = Val2;
1904 else if (RHSCC == ICmpInst::ICMP_UGT && Val == Val2)
1905 A = RHS->getOperand(1);
1906 }
1907 // (icmp ult A, B) | (icmp eq B, 0) -> (icmp ule A, B-1)
1908 // (icmp ugt B, A) | (icmp eq B, 0) -> (icmp ule A, B-1)
1909 else if (RHSCC == ICmpInst::ICMP_EQ && RHSCst && RHSCst->isZero()) {
1910 B = Val2;
1911 if (LHSCC == ICmpInst::ICMP_ULT && Val2 == LHS->getOperand(1))
1912 A = Val;
1913 else if (LHSCC == ICmpInst::ICMP_UGT && Val2 == Val)
1914 A = LHS->getOperand(1);
1915 }
1916 if (A && B)
1917 return Builder->CreateICmp(
1918 ICmpInst::ICMP_UGE,
1919 Builder->CreateAdd(B, ConstantInt::getSigned(B->getType(), -1)), A);
1920 }
1921
1922 // E.g. (icmp slt x, 0) | (icmp sgt x, n) --> icmp ugt x, n
1923 if (Value *V = simplifyRangeCheck(LHS, RHS, /*Inverted=*/true))
1924 return V;
1925
1926 // E.g. (icmp sgt x, n) | (icmp slt x, 0) --> icmp ugt x, n
1927 if (Value *V = simplifyRangeCheck(RHS, LHS, /*Inverted=*/true))
1928 return V;
1929
1930 // This only handles icmp of constants: (icmp1 A, C1) | (icmp2 B, C2).
1931 if (!LHSCst || !RHSCst) return nullptr;
1932
1933 if (LHSCst == RHSCst && LHSCC == RHSCC) {
1934 // (icmp ne A, 0) | (icmp ne B, 0) --> (icmp ne (A|B), 0)
1935 if (LHSCC == ICmpInst::ICMP_NE && LHSCst->isZero()) {
1936 Value *NewOr = Builder->CreateOr(Val, Val2);
1937 return Builder->CreateICmp(LHSCC, NewOr, LHSCst);
1938 }
1939 }
1940
1941 // (icmp ult (X + CA), C1) | (icmp eq X, C2) -> (icmp ule (X + CA), C1)
1942 // iff C2 + CA == C1.
1943 if (LHSCC == ICmpInst::ICMP_ULT && RHSCC == ICmpInst::ICMP_EQ) {
1944 ConstantInt *AddCst;
1945 if (match(Val, m_Add(m_Specific(Val2), m_ConstantInt(AddCst))))
1946 if (RHSCst->getValue() + AddCst->getValue() == LHSCst->getValue())
1947 return Builder->CreateICmpULE(Val, LHSCst);
1948 }
1949
1950 // From here on, we only handle:
1951 // (icmp1 A, C1) | (icmp2 A, C2) --> something simpler.
1952 if (Val != Val2) return nullptr;
1953
1954 // ICMP_[US][GL]E X, CST is folded to ICMP_[US][GL]T elsewhere.
1955 if (LHSCC == ICmpInst::ICMP_UGE || LHSCC == ICmpInst::ICMP_ULE ||
1956 RHSCC == ICmpInst::ICMP_UGE || RHSCC == ICmpInst::ICMP_ULE ||
1957 LHSCC == ICmpInst::ICMP_SGE || LHSCC == ICmpInst::ICMP_SLE ||
1958 RHSCC == ICmpInst::ICMP_SGE || RHSCC == ICmpInst::ICMP_SLE)
1959 return nullptr;
1960
1961 // We can't fold (ugt x, C) | (sgt x, C2).
1962 if (!PredicatesFoldable(LHSCC, RHSCC))
1963 return nullptr;
1964
1965 // Ensure that the larger constant is on the RHS.
1966 bool ShouldSwap;
1967 if (CmpInst::isSigned(LHSCC) ||
1968 (ICmpInst::isEquality(LHSCC) &&
1969 CmpInst::isSigned(RHSCC)))
1970 ShouldSwap = LHSCst->getValue().sgt(RHSCst->getValue());
1971 else
1972 ShouldSwap = LHSCst->getValue().ugt(RHSCst->getValue());
1973
1974 if (ShouldSwap) {
1975 std::swap(LHS, RHS);
1976 std::swap(LHSCst, RHSCst);
1977 std::swap(LHSCC, RHSCC);
1978 }
1979
1980 // At this point, we know we have two icmp instructions
1981 // comparing a value against two constants and or'ing the result
1982 // together. Because of the above check, we know that we only have
1983 // ICMP_EQ, ICMP_NE, ICMP_LT, and ICMP_GT here. We also know (from the
1984 // icmp folding check above), that the two constants are not
1985 // equal.
1986 assert(LHSCst != RHSCst && "Compares not folded above?");
1987
1988 switch (LHSCC) {
1989 default: llvm_unreachable("Unknown integer condition code!");
1990 case ICmpInst::ICMP_EQ:
1991 switch (RHSCC) {
1992 default: llvm_unreachable("Unknown integer condition code!");
1993 case ICmpInst::ICMP_EQ:
1994 if (LHS->getOperand(0) == RHS->getOperand(0)) {
1995 // if LHSCst and RHSCst differ only by one bit:
1996 // (A == C1 || A == C2) -> (A | (C1 ^ C2)) == C2
1997 assert(LHSCst->getValue().ule(LHSCst->getValue()));
1998
1999 APInt Xor = LHSCst->getValue() ^ RHSCst->getValue();
2000 if (Xor.isPowerOf2()) {
2001 Value *Cst = Builder->getInt(Xor);
2002 Value *Or = Builder->CreateOr(LHS->getOperand(0), Cst);
2003 return Builder->CreateICmp(ICmpInst::ICMP_EQ, Or, RHSCst);
2004 }
2005 }
2006
2007 if (LHSCst == SubOne(RHSCst)) {
2008 // (X == 13 | X == 14) -> X-13 <u 2
2009 Constant *AddCST = ConstantExpr::getNeg(LHSCst);
2010 Value *Add = Builder->CreateAdd(Val, AddCST, Val->getName()+".off");
2011 AddCST = ConstantExpr::getSub(AddOne(RHSCst), LHSCst);
2012 return Builder->CreateICmpULT(Add, AddCST);
2013 }
2014
2015 break; // (X == 13 | X == 15) -> no change
2016 case ICmpInst::ICMP_UGT: // (X == 13 | X u> 14) -> no change
2017 case ICmpInst::ICMP_SGT: // (X == 13 | X s> 14) -> no change
2018 break;
2019 case ICmpInst::ICMP_NE: // (X == 13 | X != 15) -> X != 15
2020 case ICmpInst::ICMP_ULT: // (X == 13 | X u< 15) -> X u< 15
2021 case ICmpInst::ICMP_SLT: // (X == 13 | X s< 15) -> X s< 15
2022 return RHS;
2023 }
2024 break;
2025 case ICmpInst::ICMP_NE:
2026 switch (RHSCC) {
2027 default: llvm_unreachable("Unknown integer condition code!");
2028 case ICmpInst::ICMP_EQ: // (X != 13 | X == 15) -> X != 13
2029 case ICmpInst::ICMP_UGT: // (X != 13 | X u> 15) -> X != 13
2030 case ICmpInst::ICMP_SGT: // (X != 13 | X s> 15) -> X != 13
2031 return LHS;
2032 case ICmpInst::ICMP_NE: // (X != 13 | X != 15) -> true
2033 case ICmpInst::ICMP_ULT: // (X != 13 | X u< 15) -> true
2034 case ICmpInst::ICMP_SLT: // (X != 13 | X s< 15) -> true
2035 return Builder->getTrue();
2036 }
2037 case ICmpInst::ICMP_ULT:
2038 switch (RHSCC) {
2039 default: llvm_unreachable("Unknown integer condition code!");
2040 case ICmpInst::ICMP_EQ: // (X u< 13 | X == 14) -> no change
2041 break;
2042 case ICmpInst::ICMP_UGT: // (X u< 13 | X u> 15) -> (X-13) u> 2
2043 // If RHSCst is [us]MAXINT, it is always false. Not handling
2044 // this can cause overflow.
2045 if (RHSCst->isMaxValue(false))
2046 return LHS;
2047 return InsertRangeTest(Val, LHSCst, AddOne(RHSCst), false, false);
2048 case ICmpInst::ICMP_SGT: // (X u< 13 | X s> 15) -> no change
2049 break;
2050 case ICmpInst::ICMP_NE: // (X u< 13 | X != 15) -> X != 15
2051 case ICmpInst::ICMP_ULT: // (X u< 13 | X u< 15) -> X u< 15
2052 return RHS;
2053 case ICmpInst::ICMP_SLT: // (X u< 13 | X s< 15) -> no change
2054 break;
2055 }
2056 break;
2057 case ICmpInst::ICMP_SLT:
2058 switch (RHSCC) {
2059 default: llvm_unreachable("Unknown integer condition code!");
2060 case ICmpInst::ICMP_EQ: // (X s< 13 | X == 14) -> no change
2061 break;
2062 case ICmpInst::ICMP_SGT: // (X s< 13 | X s> 15) -> (X-13) s> 2
2063 // If RHSCst is [us]MAXINT, it is always false. Not handling
2064 // this can cause overflow.
2065 if (RHSCst->isMaxValue(true))
2066 return LHS;
2067 return InsertRangeTest(Val, LHSCst, AddOne(RHSCst), true, false);
2068 case ICmpInst::ICMP_UGT: // (X s< 13 | X u> 15) -> no change
2069 break;
2070 case ICmpInst::ICMP_NE: // (X s< 13 | X != 15) -> X != 15
2071 case ICmpInst::ICMP_SLT: // (X s< 13 | X s< 15) -> X s< 15
2072 return RHS;
2073 case ICmpInst::ICMP_ULT: // (X s< 13 | X u< 15) -> no change
2074 break;
2075 }
2076 break;
2077 case ICmpInst::ICMP_UGT:
2078 switch (RHSCC) {
2079 default: llvm_unreachable("Unknown integer condition code!");
2080 case ICmpInst::ICMP_EQ: // (X u> 13 | X == 15) -> X u> 13
2081 case ICmpInst::ICMP_UGT: // (X u> 13 | X u> 15) -> X u> 13
2082 return LHS;
2083 case ICmpInst::ICMP_SGT: // (X u> 13 | X s> 15) -> no change
2084 break;
2085 case ICmpInst::ICMP_NE: // (X u> 13 | X != 15) -> true
2086 case ICmpInst::ICMP_ULT: // (X u> 13 | X u< 15) -> true
2087 return Builder->getTrue();
2088 case ICmpInst::ICMP_SLT: // (X u> 13 | X s< 15) -> no change
2089 break;
2090 }
2091 break;
2092 case ICmpInst::ICMP_SGT:
2093 switch (RHSCC) {
2094 default: llvm_unreachable("Unknown integer condition code!");
2095 case ICmpInst::ICMP_EQ: // (X s> 13 | X == 15) -> X > 13
2096 case ICmpInst::ICMP_SGT: // (X s> 13 | X s> 15) -> X > 13
2097 return LHS;
2098 case ICmpInst::ICMP_UGT: // (X s> 13 | X u> 15) -> no change
2099 break;
2100 case ICmpInst::ICMP_NE: // (X s> 13 | X != 15) -> true
2101 case ICmpInst::ICMP_SLT: // (X s> 13 | X s< 15) -> true
2102 return Builder->getTrue();
2103 case ICmpInst::ICMP_ULT: // (X s> 13 | X u< 15) -> no change
2104 break;
2105 }
2106 break;
2107 }
2108 return nullptr;
2109 }
2110
2111 /// Optimize (fcmp)|(fcmp). NOTE: Unlike the rest of instcombine, this returns
2112 /// a Value which should already be inserted into the function.
FoldOrOfFCmps(FCmpInst * LHS,FCmpInst * RHS)2113 Value *InstCombiner::FoldOrOfFCmps(FCmpInst *LHS, FCmpInst *RHS) {
2114 if (LHS->getPredicate() == FCmpInst::FCMP_UNO &&
2115 RHS->getPredicate() == FCmpInst::FCMP_UNO &&
2116 LHS->getOperand(0)->getType() == RHS->getOperand(0)->getType()) {
2117 if (ConstantFP *LHSC = dyn_cast<ConstantFP>(LHS->getOperand(1)))
2118 if (ConstantFP *RHSC = dyn_cast<ConstantFP>(RHS->getOperand(1))) {
2119 // If either of the constants are nans, then the whole thing returns
2120 // true.
2121 if (LHSC->getValueAPF().isNaN() || RHSC->getValueAPF().isNaN())
2122 return Builder->getTrue();
2123
2124 // Otherwise, no need to compare the two constants, compare the
2125 // rest.
2126 return Builder->CreateFCmpUNO(LHS->getOperand(0), RHS->getOperand(0));
2127 }
2128
2129 // Handle vector zeros. This occurs because the canonical form of
2130 // "fcmp uno x,x" is "fcmp uno x, 0".
2131 if (isa<ConstantAggregateZero>(LHS->getOperand(1)) &&
2132 isa<ConstantAggregateZero>(RHS->getOperand(1)))
2133 return Builder->CreateFCmpUNO(LHS->getOperand(0), RHS->getOperand(0));
2134
2135 return nullptr;
2136 }
2137
2138 Value *Op0LHS = LHS->getOperand(0), *Op0RHS = LHS->getOperand(1);
2139 Value *Op1LHS = RHS->getOperand(0), *Op1RHS = RHS->getOperand(1);
2140 FCmpInst::Predicate Op0CC = LHS->getPredicate(), Op1CC = RHS->getPredicate();
2141
2142 if (Op0LHS == Op1RHS && Op0RHS == Op1LHS) {
2143 // Swap RHS operands to match LHS.
2144 Op1CC = FCmpInst::getSwappedPredicate(Op1CC);
2145 std::swap(Op1LHS, Op1RHS);
2146 }
2147 if (Op0LHS == Op1LHS && Op0RHS == Op1RHS) {
2148 // Simplify (fcmp cc0 x, y) | (fcmp cc1 x, y).
2149 if (Op0CC == Op1CC)
2150 return Builder->CreateFCmp((FCmpInst::Predicate)Op0CC, Op0LHS, Op0RHS);
2151 if (Op0CC == FCmpInst::FCMP_TRUE || Op1CC == FCmpInst::FCMP_TRUE)
2152 return ConstantInt::get(CmpInst::makeCmpResultType(LHS->getType()), 1);
2153 if (Op0CC == FCmpInst::FCMP_FALSE)
2154 return RHS;
2155 if (Op1CC == FCmpInst::FCMP_FALSE)
2156 return LHS;
2157 bool Op0Ordered;
2158 bool Op1Ordered;
2159 unsigned Op0Pred = getFCmpCode(Op0CC, Op0Ordered);
2160 unsigned Op1Pred = getFCmpCode(Op1CC, Op1Ordered);
2161 if (Op0Ordered == Op1Ordered) {
2162 // If both are ordered or unordered, return a new fcmp with
2163 // or'ed predicates.
2164 return getFCmpValue(Op0Ordered, Op0Pred|Op1Pred, Op0LHS, Op0RHS, Builder);
2165 }
2166 }
2167 return nullptr;
2168 }
2169
2170 /// This helper function folds:
2171 ///
2172 /// ((A | B) & C1) | (B & C2)
2173 ///
2174 /// into:
2175 ///
2176 /// (A & C1) | B
2177 ///
2178 /// when the XOR of the two constants is "all ones" (-1).
FoldOrWithConstants(BinaryOperator & I,Value * Op,Value * A,Value * B,Value * C)2179 Instruction *InstCombiner::FoldOrWithConstants(BinaryOperator &I, Value *Op,
2180 Value *A, Value *B, Value *C) {
2181 ConstantInt *CI1 = dyn_cast<ConstantInt>(C);
2182 if (!CI1) return nullptr;
2183
2184 Value *V1 = nullptr;
2185 ConstantInt *CI2 = nullptr;
2186 if (!match(Op, m_And(m_Value(V1), m_ConstantInt(CI2)))) return nullptr;
2187
2188 APInt Xor = CI1->getValue() ^ CI2->getValue();
2189 if (!Xor.isAllOnesValue()) return nullptr;
2190
2191 if (V1 == A || V1 == B) {
2192 Value *NewOp = Builder->CreateAnd((V1 == A) ? B : A, CI1);
2193 return BinaryOperator::CreateOr(NewOp, V1);
2194 }
2195
2196 return nullptr;
2197 }
2198
2199 /// \brief This helper function folds:
2200 ///
2201 /// ((A | B) & C1) ^ (B & C2)
2202 ///
2203 /// into:
2204 ///
2205 /// (A & C1) ^ B
2206 ///
2207 /// when the XOR of the two constants is "all ones" (-1).
FoldXorWithConstants(BinaryOperator & I,Value * Op,Value * A,Value * B,Value * C)2208 Instruction *InstCombiner::FoldXorWithConstants(BinaryOperator &I, Value *Op,
2209 Value *A, Value *B, Value *C) {
2210 ConstantInt *CI1 = dyn_cast<ConstantInt>(C);
2211 if (!CI1)
2212 return nullptr;
2213
2214 Value *V1 = nullptr;
2215 ConstantInt *CI2 = nullptr;
2216 if (!match(Op, m_And(m_Value(V1), m_ConstantInt(CI2))))
2217 return nullptr;
2218
2219 APInt Xor = CI1->getValue() ^ CI2->getValue();
2220 if (!Xor.isAllOnesValue())
2221 return nullptr;
2222
2223 if (V1 == A || V1 == B) {
2224 Value *NewOp = Builder->CreateAnd(V1 == A ? B : A, CI1);
2225 return BinaryOperator::CreateXor(NewOp, V1);
2226 }
2227
2228 return nullptr;
2229 }
2230
visitOr(BinaryOperator & I)2231 Instruction *InstCombiner::visitOr(BinaryOperator &I) {
2232 bool Changed = SimplifyAssociativeOrCommutative(I);
2233 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
2234
2235 if (Value *V = SimplifyVectorOp(I))
2236 return ReplaceInstUsesWith(I, V);
2237
2238 if (Value *V = SimplifyOrInst(Op0, Op1, DL, TLI, DT, AC))
2239 return ReplaceInstUsesWith(I, V);
2240
2241 // (A&B)|(A&C) -> A&(B|C) etc
2242 if (Value *V = SimplifyUsingDistributiveLaws(I))
2243 return ReplaceInstUsesWith(I, V);
2244
2245 // See if we can simplify any instructions used by the instruction whose sole
2246 // purpose is to compute bits we don't care about.
2247 if (SimplifyDemandedInstructionBits(I))
2248 return &I;
2249
2250 if (Value *V = SimplifyBSwap(I))
2251 return ReplaceInstUsesWith(I, V);
2252
2253 if (ConstantInt *RHS = dyn_cast<ConstantInt>(Op1)) {
2254 ConstantInt *C1 = nullptr; Value *X = nullptr;
2255 // (X & C1) | C2 --> (X | C2) & (C1|C2)
2256 // iff (C1 & C2) == 0.
2257 if (match(Op0, m_And(m_Value(X), m_ConstantInt(C1))) &&
2258 (RHS->getValue() & C1->getValue()) != 0 &&
2259 Op0->hasOneUse()) {
2260 Value *Or = Builder->CreateOr(X, RHS);
2261 Or->takeName(Op0);
2262 return BinaryOperator::CreateAnd(Or,
2263 Builder->getInt(RHS->getValue() | C1->getValue()));
2264 }
2265
2266 // (X ^ C1) | C2 --> (X | C2) ^ (C1&~C2)
2267 if (match(Op0, m_Xor(m_Value(X), m_ConstantInt(C1))) &&
2268 Op0->hasOneUse()) {
2269 Value *Or = Builder->CreateOr(X, RHS);
2270 Or->takeName(Op0);
2271 return BinaryOperator::CreateXor(Or,
2272 Builder->getInt(C1->getValue() & ~RHS->getValue()));
2273 }
2274
2275 // Try to fold constant and into select arguments.
2276 if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
2277 if (Instruction *R = FoldOpIntoSelect(I, SI))
2278 return R;
2279
2280 if (isa<PHINode>(Op0))
2281 if (Instruction *NV = FoldOpIntoPhi(I))
2282 return NV;
2283 }
2284
2285 Value *A = nullptr, *B = nullptr;
2286 ConstantInt *C1 = nullptr, *C2 = nullptr;
2287
2288 // (A | B) | C and A | (B | C) -> bswap if possible.
2289 bool OrOfOrs = match(Op0, m_Or(m_Value(), m_Value())) ||
2290 match(Op1, m_Or(m_Value(), m_Value()));
2291 // (A >> B) | (C << D) and (A << B) | (B >> C) -> bswap if possible.
2292 bool OrOfShifts = match(Op0, m_LogicalShift(m_Value(), m_Value())) &&
2293 match(Op1, m_LogicalShift(m_Value(), m_Value()));
2294 // (A & B) | (C & D) -> bswap if possible.
2295 bool OrOfAnds = match(Op0, m_And(m_Value(), m_Value())) &&
2296 match(Op1, m_And(m_Value(), m_Value()));
2297
2298 if (OrOfOrs || OrOfShifts || OrOfAnds)
2299 if (Instruction *BSwap = MatchBSwapOrBitReverse(I))
2300 return BSwap;
2301
2302 // (X^C)|Y -> (X|Y)^C iff Y&C == 0
2303 if (Op0->hasOneUse() &&
2304 match(Op0, m_Xor(m_Value(A), m_ConstantInt(C1))) &&
2305 MaskedValueIsZero(Op1, C1->getValue(), 0, &I)) {
2306 Value *NOr = Builder->CreateOr(A, Op1);
2307 NOr->takeName(Op0);
2308 return BinaryOperator::CreateXor(NOr, C1);
2309 }
2310
2311 // Y|(X^C) -> (X|Y)^C iff Y&C == 0
2312 if (Op1->hasOneUse() &&
2313 match(Op1, m_Xor(m_Value(A), m_ConstantInt(C1))) &&
2314 MaskedValueIsZero(Op0, C1->getValue(), 0, &I)) {
2315 Value *NOr = Builder->CreateOr(A, Op0);
2316 NOr->takeName(Op0);
2317 return BinaryOperator::CreateXor(NOr, C1);
2318 }
2319
2320 // ((~A & B) | A) -> (A | B)
2321 if (match(Op0, m_And(m_Not(m_Value(A)), m_Value(B))) &&
2322 match(Op1, m_Specific(A)))
2323 return BinaryOperator::CreateOr(A, B);
2324
2325 // ((A & B) | ~A) -> (~A | B)
2326 if (match(Op0, m_And(m_Value(A), m_Value(B))) &&
2327 match(Op1, m_Not(m_Specific(A))))
2328 return BinaryOperator::CreateOr(Builder->CreateNot(A), B);
2329
2330 // (A & (~B)) | (A ^ B) -> (A ^ B)
2331 if (match(Op0, m_And(m_Value(A), m_Not(m_Value(B)))) &&
2332 match(Op1, m_Xor(m_Specific(A), m_Specific(B))))
2333 return BinaryOperator::CreateXor(A, B);
2334
2335 // (A ^ B) | ( A & (~B)) -> (A ^ B)
2336 if (match(Op0, m_Xor(m_Value(A), m_Value(B))) &&
2337 match(Op1, m_And(m_Specific(A), m_Not(m_Specific(B)))))
2338 return BinaryOperator::CreateXor(A, B);
2339
2340 // (A & C)|(B & D)
2341 Value *C = nullptr, *D = nullptr;
2342 if (match(Op0, m_And(m_Value(A), m_Value(C))) &&
2343 match(Op1, m_And(m_Value(B), m_Value(D)))) {
2344 Value *V1 = nullptr, *V2 = nullptr;
2345 C1 = dyn_cast<ConstantInt>(C);
2346 C2 = dyn_cast<ConstantInt>(D);
2347 if (C1 && C2) { // (A & C1)|(B & C2)
2348 if ((C1->getValue() & C2->getValue()) == 0) {
2349 // ((V | N) & C1) | (V & C2) --> (V|N) & (C1|C2)
2350 // iff (C1&C2) == 0 and (N&~C1) == 0
2351 if (match(A, m_Or(m_Value(V1), m_Value(V2))) &&
2352 ((V1 == B &&
2353 MaskedValueIsZero(V2, ~C1->getValue(), 0, &I)) || // (V|N)
2354 (V2 == B &&
2355 MaskedValueIsZero(V1, ~C1->getValue(), 0, &I)))) // (N|V)
2356 return BinaryOperator::CreateAnd(A,
2357 Builder->getInt(C1->getValue()|C2->getValue()));
2358 // Or commutes, try both ways.
2359 if (match(B, m_Or(m_Value(V1), m_Value(V2))) &&
2360 ((V1 == A &&
2361 MaskedValueIsZero(V2, ~C2->getValue(), 0, &I)) || // (V|N)
2362 (V2 == A &&
2363 MaskedValueIsZero(V1, ~C2->getValue(), 0, &I)))) // (N|V)
2364 return BinaryOperator::CreateAnd(B,
2365 Builder->getInt(C1->getValue()|C2->getValue()));
2366
2367 // ((V|C3)&C1) | ((V|C4)&C2) --> (V|C3|C4)&(C1|C2)
2368 // iff (C1&C2) == 0 and (C3&~C1) == 0 and (C4&~C2) == 0.
2369 ConstantInt *C3 = nullptr, *C4 = nullptr;
2370 if (match(A, m_Or(m_Value(V1), m_ConstantInt(C3))) &&
2371 (C3->getValue() & ~C1->getValue()) == 0 &&
2372 match(B, m_Or(m_Specific(V1), m_ConstantInt(C4))) &&
2373 (C4->getValue() & ~C2->getValue()) == 0) {
2374 V2 = Builder->CreateOr(V1, ConstantExpr::getOr(C3, C4), "bitfield");
2375 return BinaryOperator::CreateAnd(V2,
2376 Builder->getInt(C1->getValue()|C2->getValue()));
2377 }
2378 }
2379 }
2380
2381 // (A & (C0?-1:0)) | (B & ~(C0?-1:0)) -> C0 ? A : B, and commuted variants.
2382 // Don't do this for vector select idioms, the code generator doesn't handle
2383 // them well yet.
2384 if (!I.getType()->isVectorTy()) {
2385 if (Instruction *Match = MatchSelectFromAndOr(A, B, C, D))
2386 return Match;
2387 if (Instruction *Match = MatchSelectFromAndOr(B, A, D, C))
2388 return Match;
2389 if (Instruction *Match = MatchSelectFromAndOr(C, B, A, D))
2390 return Match;
2391 if (Instruction *Match = MatchSelectFromAndOr(D, A, B, C))
2392 return Match;
2393 }
2394
2395 // ((A&~B)|(~A&B)) -> A^B
2396 if ((match(C, m_Not(m_Specific(D))) &&
2397 match(B, m_Not(m_Specific(A)))))
2398 return BinaryOperator::CreateXor(A, D);
2399 // ((~B&A)|(~A&B)) -> A^B
2400 if ((match(A, m_Not(m_Specific(D))) &&
2401 match(B, m_Not(m_Specific(C)))))
2402 return BinaryOperator::CreateXor(C, D);
2403 // ((A&~B)|(B&~A)) -> A^B
2404 if ((match(C, m_Not(m_Specific(B))) &&
2405 match(D, m_Not(m_Specific(A)))))
2406 return BinaryOperator::CreateXor(A, B);
2407 // ((~B&A)|(B&~A)) -> A^B
2408 if ((match(A, m_Not(m_Specific(B))) &&
2409 match(D, m_Not(m_Specific(C)))))
2410 return BinaryOperator::CreateXor(C, B);
2411
2412 // ((A|B)&1)|(B&-2) -> (A&1) | B
2413 if (match(A, m_Or(m_Value(V1), m_Specific(B))) ||
2414 match(A, m_Or(m_Specific(B), m_Value(V1)))) {
2415 Instruction *Ret = FoldOrWithConstants(I, Op1, V1, B, C);
2416 if (Ret) return Ret;
2417 }
2418 // (B&-2)|((A|B)&1) -> (A&1) | B
2419 if (match(B, m_Or(m_Specific(A), m_Value(V1))) ||
2420 match(B, m_Or(m_Value(V1), m_Specific(A)))) {
2421 Instruction *Ret = FoldOrWithConstants(I, Op0, A, V1, D);
2422 if (Ret) return Ret;
2423 }
2424 // ((A^B)&1)|(B&-2) -> (A&1) ^ B
2425 if (match(A, m_Xor(m_Value(V1), m_Specific(B))) ||
2426 match(A, m_Xor(m_Specific(B), m_Value(V1)))) {
2427 Instruction *Ret = FoldXorWithConstants(I, Op1, V1, B, C);
2428 if (Ret) return Ret;
2429 }
2430 // (B&-2)|((A^B)&1) -> (A&1) ^ B
2431 if (match(B, m_Xor(m_Specific(A), m_Value(V1))) ||
2432 match(B, m_Xor(m_Value(V1), m_Specific(A)))) {
2433 Instruction *Ret = FoldXorWithConstants(I, Op0, A, V1, D);
2434 if (Ret) return Ret;
2435 }
2436 }
2437
2438 // (A ^ B) | ((B ^ C) ^ A) -> (A ^ B) | C
2439 if (match(Op0, m_Xor(m_Value(A), m_Value(B))))
2440 if (match(Op1, m_Xor(m_Xor(m_Specific(B), m_Value(C)), m_Specific(A))))
2441 if (Op1->hasOneUse() || cast<BinaryOperator>(Op1)->hasOneUse())
2442 return BinaryOperator::CreateOr(Op0, C);
2443
2444 // ((A ^ C) ^ B) | (B ^ A) -> (B ^ A) | C
2445 if (match(Op0, m_Xor(m_Xor(m_Value(A), m_Value(C)), m_Value(B))))
2446 if (match(Op1, m_Xor(m_Specific(B), m_Specific(A))))
2447 if (Op0->hasOneUse() || cast<BinaryOperator>(Op0)->hasOneUse())
2448 return BinaryOperator::CreateOr(Op1, C);
2449
2450 // ((B | C) & A) | B -> B | (A & C)
2451 if (match(Op0, m_And(m_Or(m_Specific(Op1), m_Value(C)), m_Value(A))))
2452 return BinaryOperator::CreateOr(Op1, Builder->CreateAnd(A, C));
2453
2454 if (Instruction *DeMorgan = matchDeMorgansLaws(I, Builder))
2455 return DeMorgan;
2456
2457 // Canonicalize xor to the RHS.
2458 bool SwappedForXor = false;
2459 if (match(Op0, m_Xor(m_Value(), m_Value()))) {
2460 std::swap(Op0, Op1);
2461 SwappedForXor = true;
2462 }
2463
2464 // A | ( A ^ B) -> A | B
2465 // A | (~A ^ B) -> A | ~B
2466 // (A & B) | (A ^ B)
2467 if (match(Op1, m_Xor(m_Value(A), m_Value(B)))) {
2468 if (Op0 == A || Op0 == B)
2469 return BinaryOperator::CreateOr(A, B);
2470
2471 if (match(Op0, m_And(m_Specific(A), m_Specific(B))) ||
2472 match(Op0, m_And(m_Specific(B), m_Specific(A))))
2473 return BinaryOperator::CreateOr(A, B);
2474
2475 if (Op1->hasOneUse() && match(A, m_Not(m_Specific(Op0)))) {
2476 Value *Not = Builder->CreateNot(B, B->getName()+".not");
2477 return BinaryOperator::CreateOr(Not, Op0);
2478 }
2479 if (Op1->hasOneUse() && match(B, m_Not(m_Specific(Op0)))) {
2480 Value *Not = Builder->CreateNot(A, A->getName()+".not");
2481 return BinaryOperator::CreateOr(Not, Op0);
2482 }
2483 }
2484
2485 // A | ~(A | B) -> A | ~B
2486 // A | ~(A ^ B) -> A | ~B
2487 if (match(Op1, m_Not(m_Value(A))))
2488 if (BinaryOperator *B = dyn_cast<BinaryOperator>(A))
2489 if ((Op0 == B->getOperand(0) || Op0 == B->getOperand(1)) &&
2490 Op1->hasOneUse() && (B->getOpcode() == Instruction::Or ||
2491 B->getOpcode() == Instruction::Xor)) {
2492 Value *NotOp = Op0 == B->getOperand(0) ? B->getOperand(1) :
2493 B->getOperand(0);
2494 Value *Not = Builder->CreateNot(NotOp, NotOp->getName()+".not");
2495 return BinaryOperator::CreateOr(Not, Op0);
2496 }
2497
2498 // (A & B) | ((~A) ^ B) -> (~A ^ B)
2499 if (match(Op0, m_And(m_Value(A), m_Value(B))) &&
2500 match(Op1, m_Xor(m_Not(m_Specific(A)), m_Specific(B))))
2501 return BinaryOperator::CreateXor(Builder->CreateNot(A), B);
2502
2503 // ((~A) ^ B) | (A & B) -> (~A ^ B)
2504 if (match(Op0, m_Xor(m_Not(m_Value(A)), m_Value(B))) &&
2505 match(Op1, m_And(m_Specific(A), m_Specific(B))))
2506 return BinaryOperator::CreateXor(Builder->CreateNot(A), B);
2507
2508 if (SwappedForXor)
2509 std::swap(Op0, Op1);
2510
2511 {
2512 ICmpInst *LHS = dyn_cast<ICmpInst>(Op0);
2513 ICmpInst *RHS = dyn_cast<ICmpInst>(Op1);
2514 if (LHS && RHS)
2515 if (Value *Res = FoldOrOfICmps(LHS, RHS, &I))
2516 return ReplaceInstUsesWith(I, Res);
2517
2518 // TODO: Make this recursive; it's a little tricky because an arbitrary
2519 // number of 'or' instructions might have to be created.
2520 Value *X, *Y;
2521 if (LHS && match(Op1, m_OneUse(m_Or(m_Value(X), m_Value(Y))))) {
2522 if (auto *Cmp = dyn_cast<ICmpInst>(X))
2523 if (Value *Res = FoldOrOfICmps(LHS, Cmp, &I))
2524 return ReplaceInstUsesWith(I, Builder->CreateOr(Res, Y));
2525 if (auto *Cmp = dyn_cast<ICmpInst>(Y))
2526 if (Value *Res = FoldOrOfICmps(LHS, Cmp, &I))
2527 return ReplaceInstUsesWith(I, Builder->CreateOr(Res, X));
2528 }
2529 if (RHS && match(Op0, m_OneUse(m_Or(m_Value(X), m_Value(Y))))) {
2530 if (auto *Cmp = dyn_cast<ICmpInst>(X))
2531 if (Value *Res = FoldOrOfICmps(Cmp, RHS, &I))
2532 return ReplaceInstUsesWith(I, Builder->CreateOr(Res, Y));
2533 if (auto *Cmp = dyn_cast<ICmpInst>(Y))
2534 if (Value *Res = FoldOrOfICmps(Cmp, RHS, &I))
2535 return ReplaceInstUsesWith(I, Builder->CreateOr(Res, X));
2536 }
2537 }
2538
2539 // (fcmp uno x, c) | (fcmp uno y, c) -> (fcmp uno x, y)
2540 if (FCmpInst *LHS = dyn_cast<FCmpInst>(I.getOperand(0)))
2541 if (FCmpInst *RHS = dyn_cast<FCmpInst>(I.getOperand(1)))
2542 if (Value *Res = FoldOrOfFCmps(LHS, RHS))
2543 return ReplaceInstUsesWith(I, Res);
2544
2545 // fold (or (cast A), (cast B)) -> (cast (or A, B))
2546 if (CastInst *Op0C = dyn_cast<CastInst>(Op0)) {
2547 CastInst *Op1C = dyn_cast<CastInst>(Op1);
2548 if (Op1C && Op0C->getOpcode() == Op1C->getOpcode()) {// same cast kind ?
2549 Type *SrcTy = Op0C->getOperand(0)->getType();
2550 if (SrcTy == Op1C->getOperand(0)->getType() &&
2551 SrcTy->isIntOrIntVectorTy()) {
2552 Value *Op0COp = Op0C->getOperand(0), *Op1COp = Op1C->getOperand(0);
2553
2554 if ((!isa<ICmpInst>(Op0COp) || !isa<ICmpInst>(Op1COp)) &&
2555 // Only do this if the casts both really cause code to be
2556 // generated.
2557 ShouldOptimizeCast(Op0C->getOpcode(), Op0COp, I.getType()) &&
2558 ShouldOptimizeCast(Op1C->getOpcode(), Op1COp, I.getType())) {
2559 Value *NewOp = Builder->CreateOr(Op0COp, Op1COp, I.getName());
2560 return CastInst::Create(Op0C->getOpcode(), NewOp, I.getType());
2561 }
2562
2563 // If this is or(cast(icmp), cast(icmp)), try to fold this even if the
2564 // cast is otherwise not optimizable. This happens for vector sexts.
2565 if (ICmpInst *RHS = dyn_cast<ICmpInst>(Op1COp))
2566 if (ICmpInst *LHS = dyn_cast<ICmpInst>(Op0COp))
2567 if (Value *Res = FoldOrOfICmps(LHS, RHS, &I))
2568 return CastInst::Create(Op0C->getOpcode(), Res, I.getType());
2569
2570 // If this is or(cast(fcmp), cast(fcmp)), try to fold this even if the
2571 // cast is otherwise not optimizable. This happens for vector sexts.
2572 if (FCmpInst *RHS = dyn_cast<FCmpInst>(Op1COp))
2573 if (FCmpInst *LHS = dyn_cast<FCmpInst>(Op0COp))
2574 if (Value *Res = FoldOrOfFCmps(LHS, RHS))
2575 return CastInst::Create(Op0C->getOpcode(), Res, I.getType());
2576 }
2577 }
2578 }
2579
2580 // or(sext(A), B) -> A ? -1 : B where A is an i1
2581 // or(A, sext(B)) -> B ? -1 : A where B is an i1
2582 if (match(Op0, m_SExt(m_Value(A))) && A->getType()->isIntegerTy(1))
2583 return SelectInst::Create(A, ConstantInt::getSigned(I.getType(), -1), Op1);
2584 if (match(Op1, m_SExt(m_Value(A))) && A->getType()->isIntegerTy(1))
2585 return SelectInst::Create(A, ConstantInt::getSigned(I.getType(), -1), Op0);
2586
2587 // Note: If we've gotten to the point of visiting the outer OR, then the
2588 // inner one couldn't be simplified. If it was a constant, then it won't
2589 // be simplified by a later pass either, so we try swapping the inner/outer
2590 // ORs in the hopes that we'll be able to simplify it this way.
2591 // (X|C) | V --> (X|V) | C
2592 if (Op0->hasOneUse() && !isa<ConstantInt>(Op1) &&
2593 match(Op0, m_Or(m_Value(A), m_ConstantInt(C1)))) {
2594 Value *Inner = Builder->CreateOr(A, Op1);
2595 Inner->takeName(Op0);
2596 return BinaryOperator::CreateOr(Inner, C1);
2597 }
2598
2599 // Change (or (bool?A:B),(bool?C:D)) --> (bool?(or A,C):(or B,D))
2600 // Since this OR statement hasn't been optimized further yet, we hope
2601 // that this transformation will allow the new ORs to be optimized.
2602 {
2603 Value *X = nullptr, *Y = nullptr;
2604 if (Op0->hasOneUse() && Op1->hasOneUse() &&
2605 match(Op0, m_Select(m_Value(X), m_Value(A), m_Value(B))) &&
2606 match(Op1, m_Select(m_Value(Y), m_Value(C), m_Value(D))) && X == Y) {
2607 Value *orTrue = Builder->CreateOr(A, C);
2608 Value *orFalse = Builder->CreateOr(B, D);
2609 return SelectInst::Create(X, orTrue, orFalse);
2610 }
2611 }
2612
2613 return Changed ? &I : nullptr;
2614 }
2615
visitXor(BinaryOperator & I)2616 Instruction *InstCombiner::visitXor(BinaryOperator &I) {
2617 bool Changed = SimplifyAssociativeOrCommutative(I);
2618 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
2619
2620 if (Value *V = SimplifyVectorOp(I))
2621 return ReplaceInstUsesWith(I, V);
2622
2623 if (Value *V = SimplifyXorInst(Op0, Op1, DL, TLI, DT, AC))
2624 return ReplaceInstUsesWith(I, V);
2625
2626 // (A&B)^(A&C) -> A&(B^C) etc
2627 if (Value *V = SimplifyUsingDistributiveLaws(I))
2628 return ReplaceInstUsesWith(I, V);
2629
2630 // See if we can simplify any instructions used by the instruction whose sole
2631 // purpose is to compute bits we don't care about.
2632 if (SimplifyDemandedInstructionBits(I))
2633 return &I;
2634
2635 if (Value *V = SimplifyBSwap(I))
2636 return ReplaceInstUsesWith(I, V);
2637
2638 // Is this a ~ operation?
2639 if (Value *NotOp = dyn_castNotVal(&I)) {
2640 if (BinaryOperator *Op0I = dyn_cast<BinaryOperator>(NotOp)) {
2641 if (Op0I->getOpcode() == Instruction::And ||
2642 Op0I->getOpcode() == Instruction::Or) {
2643 // ~(~X & Y) --> (X | ~Y) - De Morgan's Law
2644 // ~(~X | Y) === (X & ~Y) - De Morgan's Law
2645 if (dyn_castNotVal(Op0I->getOperand(1)))
2646 Op0I->swapOperands();
2647 if (Value *Op0NotVal = dyn_castNotVal(Op0I->getOperand(0))) {
2648 Value *NotY =
2649 Builder->CreateNot(Op0I->getOperand(1),
2650 Op0I->getOperand(1)->getName()+".not");
2651 if (Op0I->getOpcode() == Instruction::And)
2652 return BinaryOperator::CreateOr(Op0NotVal, NotY);
2653 return BinaryOperator::CreateAnd(Op0NotVal, NotY);
2654 }
2655
2656 // ~(X & Y) --> (~X | ~Y) - De Morgan's Law
2657 // ~(X | Y) === (~X & ~Y) - De Morgan's Law
2658 if (IsFreeToInvert(Op0I->getOperand(0),
2659 Op0I->getOperand(0)->hasOneUse()) &&
2660 IsFreeToInvert(Op0I->getOperand(1),
2661 Op0I->getOperand(1)->hasOneUse())) {
2662 Value *NotX =
2663 Builder->CreateNot(Op0I->getOperand(0), "notlhs");
2664 Value *NotY =
2665 Builder->CreateNot(Op0I->getOperand(1), "notrhs");
2666 if (Op0I->getOpcode() == Instruction::And)
2667 return BinaryOperator::CreateOr(NotX, NotY);
2668 return BinaryOperator::CreateAnd(NotX, NotY);
2669 }
2670
2671 } else if (Op0I->getOpcode() == Instruction::AShr) {
2672 // ~(~X >>s Y) --> (X >>s Y)
2673 if (Value *Op0NotVal = dyn_castNotVal(Op0I->getOperand(0)))
2674 return BinaryOperator::CreateAShr(Op0NotVal, Op0I->getOperand(1));
2675 }
2676 }
2677 }
2678
2679 if (Constant *RHS = dyn_cast<Constant>(Op1)) {
2680 if (RHS->isAllOnesValue() && Op0->hasOneUse())
2681 // xor (cmp A, B), true = not (cmp A, B) = !cmp A, B
2682 if (CmpInst *CI = dyn_cast<CmpInst>(Op0))
2683 return CmpInst::Create(CI->getOpcode(),
2684 CI->getInversePredicate(),
2685 CI->getOperand(0), CI->getOperand(1));
2686 }
2687
2688 if (ConstantInt *RHS = dyn_cast<ConstantInt>(Op1)) {
2689 // fold (xor(zext(cmp)), 1) and (xor(sext(cmp)), -1) to ext(!cmp).
2690 if (CastInst *Op0C = dyn_cast<CastInst>(Op0)) {
2691 if (CmpInst *CI = dyn_cast<CmpInst>(Op0C->getOperand(0))) {
2692 if (CI->hasOneUse() && Op0C->hasOneUse()) {
2693 Instruction::CastOps Opcode = Op0C->getOpcode();
2694 if ((Opcode == Instruction::ZExt || Opcode == Instruction::SExt) &&
2695 (RHS == ConstantExpr::getCast(Opcode, Builder->getTrue(),
2696 Op0C->getDestTy()))) {
2697 CI->setPredicate(CI->getInversePredicate());
2698 return CastInst::Create(Opcode, CI, Op0C->getType());
2699 }
2700 }
2701 }
2702 }
2703
2704 if (BinaryOperator *Op0I = dyn_cast<BinaryOperator>(Op0)) {
2705 // ~(c-X) == X-c-1 == X+(-c-1)
2706 if (Op0I->getOpcode() == Instruction::Sub && RHS->isAllOnesValue())
2707 if (Constant *Op0I0C = dyn_cast<Constant>(Op0I->getOperand(0))) {
2708 Constant *NegOp0I0C = ConstantExpr::getNeg(Op0I0C);
2709 Constant *ConstantRHS = ConstantExpr::getSub(NegOp0I0C,
2710 ConstantInt::get(I.getType(), 1));
2711 return BinaryOperator::CreateAdd(Op0I->getOperand(1), ConstantRHS);
2712 }
2713
2714 if (ConstantInt *Op0CI = dyn_cast<ConstantInt>(Op0I->getOperand(1))) {
2715 if (Op0I->getOpcode() == Instruction::Add) {
2716 // ~(X-c) --> (-c-1)-X
2717 if (RHS->isAllOnesValue()) {
2718 Constant *NegOp0CI = ConstantExpr::getNeg(Op0CI);
2719 return BinaryOperator::CreateSub(
2720 ConstantExpr::getSub(NegOp0CI,
2721 ConstantInt::get(I.getType(), 1)),
2722 Op0I->getOperand(0));
2723 } else if (RHS->getValue().isSignBit()) {
2724 // (X + C) ^ signbit -> (X + C + signbit)
2725 Constant *C = Builder->getInt(RHS->getValue() + Op0CI->getValue());
2726 return BinaryOperator::CreateAdd(Op0I->getOperand(0), C);
2727
2728 }
2729 } else if (Op0I->getOpcode() == Instruction::Or) {
2730 // (X|C1)^C2 -> X^(C1|C2) iff X&~C1 == 0
2731 if (MaskedValueIsZero(Op0I->getOperand(0), Op0CI->getValue(),
2732 0, &I)) {
2733 Constant *NewRHS = ConstantExpr::getOr(Op0CI, RHS);
2734 // Anything in both C1 and C2 is known to be zero, remove it from
2735 // NewRHS.
2736 Constant *CommonBits = ConstantExpr::getAnd(Op0CI, RHS);
2737 NewRHS = ConstantExpr::getAnd(NewRHS,
2738 ConstantExpr::getNot(CommonBits));
2739 Worklist.Add(Op0I);
2740 I.setOperand(0, Op0I->getOperand(0));
2741 I.setOperand(1, NewRHS);
2742 return &I;
2743 }
2744 } else if (Op0I->getOpcode() == Instruction::LShr) {
2745 // ((X^C1) >> C2) ^ C3 -> (X>>C2) ^ ((C1>>C2)^C3)
2746 // E1 = "X ^ C1"
2747 BinaryOperator *E1;
2748 ConstantInt *C1;
2749 if (Op0I->hasOneUse() &&
2750 (E1 = dyn_cast<BinaryOperator>(Op0I->getOperand(0))) &&
2751 E1->getOpcode() == Instruction::Xor &&
2752 (C1 = dyn_cast<ConstantInt>(E1->getOperand(1)))) {
2753 // fold (C1 >> C2) ^ C3
2754 ConstantInt *C2 = Op0CI, *C3 = RHS;
2755 APInt FoldConst = C1->getValue().lshr(C2->getValue());
2756 FoldConst ^= C3->getValue();
2757 // Prepare the two operands.
2758 Value *Opnd0 = Builder->CreateLShr(E1->getOperand(0), C2);
2759 Opnd0->takeName(Op0I);
2760 cast<Instruction>(Opnd0)->setDebugLoc(I.getDebugLoc());
2761 Value *FoldVal = ConstantInt::get(Opnd0->getType(), FoldConst);
2762
2763 return BinaryOperator::CreateXor(Opnd0, FoldVal);
2764 }
2765 }
2766 }
2767 }
2768
2769 // Try to fold constant and into select arguments.
2770 if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
2771 if (Instruction *R = FoldOpIntoSelect(I, SI))
2772 return R;
2773 if (isa<PHINode>(Op0))
2774 if (Instruction *NV = FoldOpIntoPhi(I))
2775 return NV;
2776 }
2777
2778 BinaryOperator *Op1I = dyn_cast<BinaryOperator>(Op1);
2779 if (Op1I) {
2780 Value *A, *B;
2781 if (match(Op1I, m_Or(m_Value(A), m_Value(B)))) {
2782 if (A == Op0) { // B^(B|A) == (A|B)^B
2783 Op1I->swapOperands();
2784 I.swapOperands();
2785 std::swap(Op0, Op1);
2786 } else if (B == Op0) { // B^(A|B) == (A|B)^B
2787 I.swapOperands(); // Simplified below.
2788 std::swap(Op0, Op1);
2789 }
2790 } else if (match(Op1I, m_And(m_Value(A), m_Value(B))) &&
2791 Op1I->hasOneUse()){
2792 if (A == Op0) { // A^(A&B) -> A^(B&A)
2793 Op1I->swapOperands();
2794 std::swap(A, B);
2795 }
2796 if (B == Op0) { // A^(B&A) -> (B&A)^A
2797 I.swapOperands(); // Simplified below.
2798 std::swap(Op0, Op1);
2799 }
2800 }
2801 }
2802
2803 BinaryOperator *Op0I = dyn_cast<BinaryOperator>(Op0);
2804 if (Op0I) {
2805 Value *A, *B;
2806 if (match(Op0I, m_Or(m_Value(A), m_Value(B))) &&
2807 Op0I->hasOneUse()) {
2808 if (A == Op1) // (B|A)^B == (A|B)^B
2809 std::swap(A, B);
2810 if (B == Op1) // (A|B)^B == A & ~B
2811 return BinaryOperator::CreateAnd(A, Builder->CreateNot(Op1));
2812 } else if (match(Op0I, m_And(m_Value(A), m_Value(B))) &&
2813 Op0I->hasOneUse()){
2814 if (A == Op1) // (A&B)^A -> (B&A)^A
2815 std::swap(A, B);
2816 if (B == Op1 && // (B&A)^A == ~B & A
2817 !isa<ConstantInt>(Op1)) { // Canonical form is (B&C)^C
2818 return BinaryOperator::CreateAnd(Builder->CreateNot(A), Op1);
2819 }
2820 }
2821 }
2822
2823 if (Op0I && Op1I) {
2824 Value *A, *B, *C, *D;
2825 // (A & B)^(A | B) -> A ^ B
2826 if (match(Op0I, m_And(m_Value(A), m_Value(B))) &&
2827 match(Op1I, m_Or(m_Value(C), m_Value(D)))) {
2828 if ((A == C && B == D) || (A == D && B == C))
2829 return BinaryOperator::CreateXor(A, B);
2830 }
2831 // (A | B)^(A & B) -> A ^ B
2832 if (match(Op0I, m_Or(m_Value(A), m_Value(B))) &&
2833 match(Op1I, m_And(m_Value(C), m_Value(D)))) {
2834 if ((A == C && B == D) || (A == D && B == C))
2835 return BinaryOperator::CreateXor(A, B);
2836 }
2837 // (A | ~B) ^ (~A | B) -> A ^ B
2838 if (match(Op0I, m_Or(m_Value(A), m_Not(m_Value(B)))) &&
2839 match(Op1I, m_Or(m_Not(m_Specific(A)), m_Specific(B)))) {
2840 return BinaryOperator::CreateXor(A, B);
2841 }
2842 // (~A | B) ^ (A | ~B) -> A ^ B
2843 if (match(Op0I, m_Or(m_Not(m_Value(A)), m_Value(B))) &&
2844 match(Op1I, m_Or(m_Specific(A), m_Not(m_Specific(B))))) {
2845 return BinaryOperator::CreateXor(A, B);
2846 }
2847 // (A & ~B) ^ (~A & B) -> A ^ B
2848 if (match(Op0I, m_And(m_Value(A), m_Not(m_Value(B)))) &&
2849 match(Op1I, m_And(m_Not(m_Specific(A)), m_Specific(B)))) {
2850 return BinaryOperator::CreateXor(A, B);
2851 }
2852 // (~A & B) ^ (A & ~B) -> A ^ B
2853 if (match(Op0I, m_And(m_Not(m_Value(A)), m_Value(B))) &&
2854 match(Op1I, m_And(m_Specific(A), m_Not(m_Specific(B))))) {
2855 return BinaryOperator::CreateXor(A, B);
2856 }
2857 // (A ^ C)^(A | B) -> ((~A) & B) ^ C
2858 if (match(Op0I, m_Xor(m_Value(D), m_Value(C))) &&
2859 match(Op1I, m_Or(m_Value(A), m_Value(B)))) {
2860 if (D == A)
2861 return BinaryOperator::CreateXor(
2862 Builder->CreateAnd(Builder->CreateNot(A), B), C);
2863 if (D == B)
2864 return BinaryOperator::CreateXor(
2865 Builder->CreateAnd(Builder->CreateNot(B), A), C);
2866 }
2867 // (A | B)^(A ^ C) -> ((~A) & B) ^ C
2868 if (match(Op0I, m_Or(m_Value(A), m_Value(B))) &&
2869 match(Op1I, m_Xor(m_Value(D), m_Value(C)))) {
2870 if (D == A)
2871 return BinaryOperator::CreateXor(
2872 Builder->CreateAnd(Builder->CreateNot(A), B), C);
2873 if (D == B)
2874 return BinaryOperator::CreateXor(
2875 Builder->CreateAnd(Builder->CreateNot(B), A), C);
2876 }
2877 // (A & B) ^ (A ^ B) -> (A | B)
2878 if (match(Op0I, m_And(m_Value(A), m_Value(B))) &&
2879 match(Op1I, m_Xor(m_Specific(A), m_Specific(B))))
2880 return BinaryOperator::CreateOr(A, B);
2881 // (A ^ B) ^ (A & B) -> (A | B)
2882 if (match(Op0I, m_Xor(m_Value(A), m_Value(B))) &&
2883 match(Op1I, m_And(m_Specific(A), m_Specific(B))))
2884 return BinaryOperator::CreateOr(A, B);
2885 }
2886
2887 Value *A = nullptr, *B = nullptr;
2888 // (A & ~B) ^ (~A) -> ~(A & B)
2889 if (match(Op0, m_And(m_Value(A), m_Not(m_Value(B)))) &&
2890 match(Op1, m_Not(m_Specific(A))))
2891 return BinaryOperator::CreateNot(Builder->CreateAnd(A, B));
2892
2893 // (icmp1 A, B) ^ (icmp2 A, B) --> (icmp3 A, B)
2894 if (ICmpInst *RHS = dyn_cast<ICmpInst>(I.getOperand(1)))
2895 if (ICmpInst *LHS = dyn_cast<ICmpInst>(I.getOperand(0)))
2896 if (PredicatesFoldable(LHS->getPredicate(), RHS->getPredicate())) {
2897 if (LHS->getOperand(0) == RHS->getOperand(1) &&
2898 LHS->getOperand(1) == RHS->getOperand(0))
2899 LHS->swapOperands();
2900 if (LHS->getOperand(0) == RHS->getOperand(0) &&
2901 LHS->getOperand(1) == RHS->getOperand(1)) {
2902 Value *Op0 = LHS->getOperand(0), *Op1 = LHS->getOperand(1);
2903 unsigned Code = getICmpCode(LHS) ^ getICmpCode(RHS);
2904 bool isSigned = LHS->isSigned() || RHS->isSigned();
2905 return ReplaceInstUsesWith(I,
2906 getNewICmpValue(isSigned, Code, Op0, Op1,
2907 Builder));
2908 }
2909 }
2910
2911 // fold (xor (cast A), (cast B)) -> (cast (xor A, B))
2912 if (CastInst *Op0C = dyn_cast<CastInst>(Op0)) {
2913 if (CastInst *Op1C = dyn_cast<CastInst>(Op1))
2914 if (Op0C->getOpcode() == Op1C->getOpcode()) { // same cast kind?
2915 Type *SrcTy = Op0C->getOperand(0)->getType();
2916 if (SrcTy == Op1C->getOperand(0)->getType() && SrcTy->isIntegerTy() &&
2917 // Only do this if the casts both really cause code to be generated.
2918 ShouldOptimizeCast(Op0C->getOpcode(), Op0C->getOperand(0),
2919 I.getType()) &&
2920 ShouldOptimizeCast(Op1C->getOpcode(), Op1C->getOperand(0),
2921 I.getType())) {
2922 Value *NewOp = Builder->CreateXor(Op0C->getOperand(0),
2923 Op1C->getOperand(0), I.getName());
2924 return CastInst::Create(Op0C->getOpcode(), NewOp, I.getType());
2925 }
2926 }
2927 }
2928
2929 return Changed ? &I : nullptr;
2930 }
2931