1 // Copyright (c) 2012 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4
5 #include "base/time/time.h"
6
7 #include <cmath>
8 #include <ios>
9 #include <limits>
10 #include <ostream>
11 #include <sstream>
12
13 #include "base/lazy_instance.h"
14 #include "base/logging.h"
15 #include "base/macros.h"
16 #include "base/strings/stringprintf.h"
17 #include "base/third_party/nspr/prtime.h"
18 #include "build/build_config.h"
19
20 namespace base {
21
22 // TimeDelta ------------------------------------------------------------------
23
24 // static
Max()25 TimeDelta TimeDelta::Max() {
26 return TimeDelta(std::numeric_limits<int64_t>::max());
27 }
28
InDays() const29 int TimeDelta::InDays() const {
30 if (is_max()) {
31 // Preserve max to prevent overflow.
32 return std::numeric_limits<int>::max();
33 }
34 return static_cast<int>(delta_ / Time::kMicrosecondsPerDay);
35 }
36
InHours() const37 int TimeDelta::InHours() const {
38 if (is_max()) {
39 // Preserve max to prevent overflow.
40 return std::numeric_limits<int>::max();
41 }
42 return static_cast<int>(delta_ / Time::kMicrosecondsPerHour);
43 }
44
InMinutes() const45 int TimeDelta::InMinutes() const {
46 if (is_max()) {
47 // Preserve max to prevent overflow.
48 return std::numeric_limits<int>::max();
49 }
50 return static_cast<int>(delta_ / Time::kMicrosecondsPerMinute);
51 }
52
InSecondsF() const53 double TimeDelta::InSecondsF() const {
54 if (is_max()) {
55 // Preserve max to prevent overflow.
56 return std::numeric_limits<double>::infinity();
57 }
58 return static_cast<double>(delta_) / Time::kMicrosecondsPerSecond;
59 }
60
InSeconds() const61 int64_t TimeDelta::InSeconds() const {
62 if (is_max()) {
63 // Preserve max to prevent overflow.
64 return std::numeric_limits<int64_t>::max();
65 }
66 return delta_ / Time::kMicrosecondsPerSecond;
67 }
68
InMillisecondsF() const69 double TimeDelta::InMillisecondsF() const {
70 if (is_max()) {
71 // Preserve max to prevent overflow.
72 return std::numeric_limits<double>::infinity();
73 }
74 return static_cast<double>(delta_) / Time::kMicrosecondsPerMillisecond;
75 }
76
InMilliseconds() const77 int64_t TimeDelta::InMilliseconds() const {
78 if (is_max()) {
79 // Preserve max to prevent overflow.
80 return std::numeric_limits<int64_t>::max();
81 }
82 return delta_ / Time::kMicrosecondsPerMillisecond;
83 }
84
InMillisecondsRoundedUp() const85 int64_t TimeDelta::InMillisecondsRoundedUp() const {
86 if (is_max()) {
87 // Preserve max to prevent overflow.
88 return std::numeric_limits<int64_t>::max();
89 }
90 return (delta_ + Time::kMicrosecondsPerMillisecond - 1) /
91 Time::kMicrosecondsPerMillisecond;
92 }
93
InMicroseconds() const94 int64_t TimeDelta::InMicroseconds() const {
95 if (is_max()) {
96 // Preserve max to prevent overflow.
97 return std::numeric_limits<int64_t>::max();
98 }
99 return delta_;
100 }
101
102 namespace time_internal {
103
SaturatedAdd(TimeDelta delta,int64_t value)104 int64_t SaturatedAdd(TimeDelta delta, int64_t value) {
105 CheckedNumeric<int64_t> rv(delta.delta_);
106 rv += value;
107 return FromCheckedNumeric(rv);
108 }
109
SaturatedSub(TimeDelta delta,int64_t value)110 int64_t SaturatedSub(TimeDelta delta, int64_t value) {
111 CheckedNumeric<int64_t> rv(delta.delta_);
112 rv -= value;
113 return FromCheckedNumeric(rv);
114 }
115
FromCheckedNumeric(const CheckedNumeric<int64_t> value)116 int64_t FromCheckedNumeric(const CheckedNumeric<int64_t> value) {
117 if (value.IsValid())
118 return value.ValueUnsafe();
119
120 // We could return max/min but we don't really expose what the maximum delta
121 // is. Instead, return max/(-max), which is something that clients can reason
122 // about.
123 // TODO(rvargas) crbug.com/332611: don't use internal values.
124 int64_t limit = std::numeric_limits<int64_t>::max();
125 if (value.validity() == internal::RANGE_UNDERFLOW)
126 limit = -limit;
127 return value.ValueOrDefault(limit);
128 }
129
130 } // namespace time_internal
131
operator <<(std::ostream & os,TimeDelta time_delta)132 std::ostream& operator<<(std::ostream& os, TimeDelta time_delta) {
133 return os << time_delta.InSecondsF() << "s";
134 }
135
136 // Time -----------------------------------------------------------------------
137
138 // static
Max()139 Time Time::Max() {
140 return Time(std::numeric_limits<int64_t>::max());
141 }
142
143 // static
FromTimeT(time_t tt)144 Time Time::FromTimeT(time_t tt) {
145 if (tt == 0)
146 return Time(); // Preserve 0 so we can tell it doesn't exist.
147 if (tt == std::numeric_limits<time_t>::max())
148 return Max();
149 return Time(kTimeTToMicrosecondsOffset) + TimeDelta::FromSeconds(tt);
150 }
151
ToTimeT() const152 time_t Time::ToTimeT() const {
153 if (is_null())
154 return 0; // Preserve 0 so we can tell it doesn't exist.
155 if (is_max()) {
156 // Preserve max without offset to prevent overflow.
157 return std::numeric_limits<time_t>::max();
158 }
159 if (std::numeric_limits<int64_t>::max() - kTimeTToMicrosecondsOffset <= us_) {
160 DLOG(WARNING) << "Overflow when converting base::Time with internal " <<
161 "value " << us_ << " to time_t.";
162 return std::numeric_limits<time_t>::max();
163 }
164 return (us_ - kTimeTToMicrosecondsOffset) / kMicrosecondsPerSecond;
165 }
166
167 // static
FromDoubleT(double dt)168 Time Time::FromDoubleT(double dt) {
169 if (dt == 0 || std::isnan(dt))
170 return Time(); // Preserve 0 so we can tell it doesn't exist.
171 return Time(kTimeTToMicrosecondsOffset) + TimeDelta::FromSecondsD(dt);
172 }
173
ToDoubleT() const174 double Time::ToDoubleT() const {
175 if (is_null())
176 return 0; // Preserve 0 so we can tell it doesn't exist.
177 if (is_max()) {
178 // Preserve max without offset to prevent overflow.
179 return std::numeric_limits<double>::infinity();
180 }
181 return (static_cast<double>(us_ - kTimeTToMicrosecondsOffset) /
182 static_cast<double>(kMicrosecondsPerSecond));
183 }
184
185 #if defined(OS_POSIX)
186 // static
FromTimeSpec(const timespec & ts)187 Time Time::FromTimeSpec(const timespec& ts) {
188 return FromDoubleT(ts.tv_sec +
189 static_cast<double>(ts.tv_nsec) /
190 base::Time::kNanosecondsPerSecond);
191 }
192 #endif
193
194 // static
FromJsTime(double ms_since_epoch)195 Time Time::FromJsTime(double ms_since_epoch) {
196 // The epoch is a valid time, so this constructor doesn't interpret
197 // 0 as the null time.
198 return Time(kTimeTToMicrosecondsOffset) +
199 TimeDelta::FromMillisecondsD(ms_since_epoch);
200 }
201
ToJsTime() const202 double Time::ToJsTime() const {
203 if (is_null()) {
204 // Preserve 0 so the invalid result doesn't depend on the platform.
205 return 0;
206 }
207 if (is_max()) {
208 // Preserve max without offset to prevent overflow.
209 return std::numeric_limits<double>::infinity();
210 }
211 return (static_cast<double>(us_ - kTimeTToMicrosecondsOffset) /
212 kMicrosecondsPerMillisecond);
213 }
214
ToJavaTime() const215 int64_t Time::ToJavaTime() const {
216 if (is_null()) {
217 // Preserve 0 so the invalid result doesn't depend on the platform.
218 return 0;
219 }
220 if (is_max()) {
221 // Preserve max without offset to prevent overflow.
222 return std::numeric_limits<int64_t>::max();
223 }
224 return ((us_ - kTimeTToMicrosecondsOffset) /
225 kMicrosecondsPerMillisecond);
226 }
227
228 // static
UnixEpoch()229 Time Time::UnixEpoch() {
230 Time time;
231 time.us_ = kTimeTToMicrosecondsOffset;
232 return time;
233 }
234
LocalMidnight() const235 Time Time::LocalMidnight() const {
236 Exploded exploded;
237 LocalExplode(&exploded);
238 exploded.hour = 0;
239 exploded.minute = 0;
240 exploded.second = 0;
241 exploded.millisecond = 0;
242 return FromLocalExploded(exploded);
243 }
244
245 // static
FromStringInternal(const char * time_string,bool is_local,Time * parsed_time)246 bool Time::FromStringInternal(const char* time_string,
247 bool is_local,
248 Time* parsed_time) {
249 DCHECK((time_string != NULL) && (parsed_time != NULL));
250
251 if (time_string[0] == '\0')
252 return false;
253
254 PRTime result_time = 0;
255 PRStatus result = PR_ParseTimeString(time_string,
256 is_local ? PR_FALSE : PR_TRUE,
257 &result_time);
258 if (PR_SUCCESS != result)
259 return false;
260
261 result_time += kTimeTToMicrosecondsOffset;
262 *parsed_time = Time(result_time);
263 return true;
264 }
265
operator <<(std::ostream & os,Time time)266 std::ostream& operator<<(std::ostream& os, Time time) {
267 Time::Exploded exploded;
268 time.UTCExplode(&exploded);
269 // Use StringPrintf because iostreams formatting is painful.
270 return os << StringPrintf("%04d-%02d-%02d %02d:%02d:%02d.%03d UTC",
271 exploded.year,
272 exploded.month,
273 exploded.day_of_month,
274 exploded.hour,
275 exploded.minute,
276 exploded.second,
277 exploded.millisecond);
278 }
279
280 // Local helper class to hold the conversion from Time to TickTime at the
281 // time of the Unix epoch.
282 class UnixEpochSingleton {
283 public:
UnixEpochSingleton()284 UnixEpochSingleton()
285 : unix_epoch_(TimeTicks::Now() - (Time::Now() - Time::UnixEpoch())) {}
286
unix_epoch() const287 TimeTicks unix_epoch() const { return unix_epoch_; }
288
289 private:
290 const TimeTicks unix_epoch_;
291
292 DISALLOW_COPY_AND_ASSIGN(UnixEpochSingleton);
293 };
294
295 static LazyInstance<UnixEpochSingleton>::Leaky
296 leaky_unix_epoch_singleton_instance = LAZY_INSTANCE_INITIALIZER;
297
298 // Static
UnixEpoch()299 TimeTicks TimeTicks::UnixEpoch() {
300 return leaky_unix_epoch_singleton_instance.Get().unix_epoch();
301 }
302
SnappedToNextTick(TimeTicks tick_phase,TimeDelta tick_interval) const303 TimeTicks TimeTicks::SnappedToNextTick(TimeTicks tick_phase,
304 TimeDelta tick_interval) const {
305 // |interval_offset| is the offset from |this| to the next multiple of
306 // |tick_interval| after |tick_phase|, possibly negative if in the past.
307 TimeDelta interval_offset = (tick_phase - *this) % tick_interval;
308 // If |this| is exactly on the interval (i.e. offset==0), don't adjust.
309 // Otherwise, if |tick_phase| was in the past, adjust forward to the next
310 // tick after |this|.
311 if (!interval_offset.is_zero() && tick_phase < *this)
312 interval_offset += tick_interval;
313 return *this + interval_offset;
314 }
315
operator <<(std::ostream & os,TimeTicks time_ticks)316 std::ostream& operator<<(std::ostream& os, TimeTicks time_ticks) {
317 // This function formats a TimeTicks object as "bogo-microseconds".
318 // The origin and granularity of the count are platform-specific, and may very
319 // from run to run. Although bogo-microseconds usually roughly correspond to
320 // real microseconds, the only real guarantee is that the number never goes
321 // down during a single run.
322 const TimeDelta as_time_delta = time_ticks - TimeTicks();
323 return os << as_time_delta.InMicroseconds() << " bogo-microseconds";
324 }
325
operator <<(std::ostream & os,ThreadTicks thread_ticks)326 std::ostream& operator<<(std::ostream& os, ThreadTicks thread_ticks) {
327 const TimeDelta as_time_delta = thread_ticks - ThreadTicks();
328 return os << as_time_delta.InMicroseconds() << " bogo-thread-microseconds";
329 }
330
331 // Time::Exploded -------------------------------------------------------------
332
is_in_range(int value,int lo,int hi)333 inline bool is_in_range(int value, int lo, int hi) {
334 return lo <= value && value <= hi;
335 }
336
HasValidValues() const337 bool Time::Exploded::HasValidValues() const {
338 return is_in_range(month, 1, 12) &&
339 is_in_range(day_of_week, 0, 6) &&
340 is_in_range(day_of_month, 1, 31) &&
341 is_in_range(hour, 0, 23) &&
342 is_in_range(minute, 0, 59) &&
343 is_in_range(second, 0, 60) &&
344 is_in_range(millisecond, 0, 999);
345 }
346
347 } // namespace base
348