1 //===- InstCombineCompares.cpp --------------------------------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the visitICmp and visitFCmp functions.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "InstCombineInternal.h"
15 #include "llvm/ADT/APSInt.h"
16 #include "llvm/ADT/Statistic.h"
17 #include "llvm/Analysis/ConstantFolding.h"
18 #include "llvm/Analysis/InstructionSimplify.h"
19 #include "llvm/Analysis/MemoryBuiltins.h"
20 #include "llvm/IR/ConstantRange.h"
21 #include "llvm/IR/DataLayout.h"
22 #include "llvm/IR/GetElementPtrTypeIterator.h"
23 #include "llvm/IR/IntrinsicInst.h"
24 #include "llvm/IR/PatternMatch.h"
25 #include "llvm/Support/CommandLine.h"
26 #include "llvm/Support/Debug.h"
27 #include "llvm/Analysis/TargetLibraryInfo.h"
28
29 using namespace llvm;
30 using namespace PatternMatch;
31
32 #define DEBUG_TYPE "instcombine"
33
34 // How many times is a select replaced by one of its operands?
35 STATISTIC(NumSel, "Number of select opts");
36
37 // Initialization Routines
38
getOne(Constant * C)39 static ConstantInt *getOne(Constant *C) {
40 return ConstantInt::get(cast<IntegerType>(C->getType()), 1);
41 }
42
ExtractElement(Constant * V,Constant * Idx)43 static ConstantInt *ExtractElement(Constant *V, Constant *Idx) {
44 return cast<ConstantInt>(ConstantExpr::getExtractElement(V, Idx));
45 }
46
HasAddOverflow(ConstantInt * Result,ConstantInt * In1,ConstantInt * In2,bool IsSigned)47 static bool HasAddOverflow(ConstantInt *Result,
48 ConstantInt *In1, ConstantInt *In2,
49 bool IsSigned) {
50 if (!IsSigned)
51 return Result->getValue().ult(In1->getValue());
52
53 if (In2->isNegative())
54 return Result->getValue().sgt(In1->getValue());
55 return Result->getValue().slt(In1->getValue());
56 }
57
58 /// AddWithOverflow - Compute Result = In1+In2, returning true if the result
59 /// overflowed for this type.
AddWithOverflow(Constant * & Result,Constant * In1,Constant * In2,bool IsSigned=false)60 static bool AddWithOverflow(Constant *&Result, Constant *In1,
61 Constant *In2, bool IsSigned = false) {
62 Result = ConstantExpr::getAdd(In1, In2);
63
64 if (VectorType *VTy = dyn_cast<VectorType>(In1->getType())) {
65 for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
66 Constant *Idx = ConstantInt::get(Type::getInt32Ty(In1->getContext()), i);
67 if (HasAddOverflow(ExtractElement(Result, Idx),
68 ExtractElement(In1, Idx),
69 ExtractElement(In2, Idx),
70 IsSigned))
71 return true;
72 }
73 return false;
74 }
75
76 return HasAddOverflow(cast<ConstantInt>(Result),
77 cast<ConstantInt>(In1), cast<ConstantInt>(In2),
78 IsSigned);
79 }
80
HasSubOverflow(ConstantInt * Result,ConstantInt * In1,ConstantInt * In2,bool IsSigned)81 static bool HasSubOverflow(ConstantInt *Result,
82 ConstantInt *In1, ConstantInt *In2,
83 bool IsSigned) {
84 if (!IsSigned)
85 return Result->getValue().ugt(In1->getValue());
86
87 if (In2->isNegative())
88 return Result->getValue().slt(In1->getValue());
89
90 return Result->getValue().sgt(In1->getValue());
91 }
92
93 /// SubWithOverflow - Compute Result = In1-In2, returning true if the result
94 /// overflowed for this type.
SubWithOverflow(Constant * & Result,Constant * In1,Constant * In2,bool IsSigned=false)95 static bool SubWithOverflow(Constant *&Result, Constant *In1,
96 Constant *In2, bool IsSigned = false) {
97 Result = ConstantExpr::getSub(In1, In2);
98
99 if (VectorType *VTy = dyn_cast<VectorType>(In1->getType())) {
100 for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
101 Constant *Idx = ConstantInt::get(Type::getInt32Ty(In1->getContext()), i);
102 if (HasSubOverflow(ExtractElement(Result, Idx),
103 ExtractElement(In1, Idx),
104 ExtractElement(In2, Idx),
105 IsSigned))
106 return true;
107 }
108 return false;
109 }
110
111 return HasSubOverflow(cast<ConstantInt>(Result),
112 cast<ConstantInt>(In1), cast<ConstantInt>(In2),
113 IsSigned);
114 }
115
116 /// isSignBitCheck - Given an exploded icmp instruction, return true if the
117 /// comparison only checks the sign bit. If it only checks the sign bit, set
118 /// TrueIfSigned if the result of the comparison is true when the input value is
119 /// signed.
isSignBitCheck(ICmpInst::Predicate pred,ConstantInt * RHS,bool & TrueIfSigned)120 static bool isSignBitCheck(ICmpInst::Predicate pred, ConstantInt *RHS,
121 bool &TrueIfSigned) {
122 switch (pred) {
123 case ICmpInst::ICMP_SLT: // True if LHS s< 0
124 TrueIfSigned = true;
125 return RHS->isZero();
126 case ICmpInst::ICMP_SLE: // True if LHS s<= RHS and RHS == -1
127 TrueIfSigned = true;
128 return RHS->isAllOnesValue();
129 case ICmpInst::ICMP_SGT: // True if LHS s> -1
130 TrueIfSigned = false;
131 return RHS->isAllOnesValue();
132 case ICmpInst::ICMP_UGT:
133 // True if LHS u> RHS and RHS == high-bit-mask - 1
134 TrueIfSigned = true;
135 return RHS->isMaxValue(true);
136 case ICmpInst::ICMP_UGE:
137 // True if LHS u>= RHS and RHS == high-bit-mask (2^7, 2^15, 2^31, etc)
138 TrueIfSigned = true;
139 return RHS->getValue().isSignBit();
140 default:
141 return false;
142 }
143 }
144
145 /// Returns true if the exploded icmp can be expressed as a signed comparison
146 /// to zero and updates the predicate accordingly.
147 /// The signedness of the comparison is preserved.
isSignTest(ICmpInst::Predicate & pred,const ConstantInt * RHS)148 static bool isSignTest(ICmpInst::Predicate &pred, const ConstantInt *RHS) {
149 if (!ICmpInst::isSigned(pred))
150 return false;
151
152 if (RHS->isZero())
153 return ICmpInst::isRelational(pred);
154
155 if (RHS->isOne()) {
156 if (pred == ICmpInst::ICMP_SLT) {
157 pred = ICmpInst::ICMP_SLE;
158 return true;
159 }
160 } else if (RHS->isAllOnesValue()) {
161 if (pred == ICmpInst::ICMP_SGT) {
162 pred = ICmpInst::ICMP_SGE;
163 return true;
164 }
165 }
166
167 return false;
168 }
169
170 // isHighOnes - Return true if the constant is of the form 1+0+.
171 // This is the same as lowones(~X).
isHighOnes(const ConstantInt * CI)172 static bool isHighOnes(const ConstantInt *CI) {
173 return (~CI->getValue() + 1).isPowerOf2();
174 }
175
176 /// ComputeSignedMinMaxValuesFromKnownBits - Given a signed integer type and a
177 /// set of known zero and one bits, compute the maximum and minimum values that
178 /// could have the specified known zero and known one bits, returning them in
179 /// min/max.
ComputeSignedMinMaxValuesFromKnownBits(const APInt & KnownZero,const APInt & KnownOne,APInt & Min,APInt & Max)180 static void ComputeSignedMinMaxValuesFromKnownBits(const APInt& KnownZero,
181 const APInt& KnownOne,
182 APInt& Min, APInt& Max) {
183 assert(KnownZero.getBitWidth() == KnownOne.getBitWidth() &&
184 KnownZero.getBitWidth() == Min.getBitWidth() &&
185 KnownZero.getBitWidth() == Max.getBitWidth() &&
186 "KnownZero, KnownOne and Min, Max must have equal bitwidth.");
187 APInt UnknownBits = ~(KnownZero|KnownOne);
188
189 // The minimum value is when all unknown bits are zeros, EXCEPT for the sign
190 // bit if it is unknown.
191 Min = KnownOne;
192 Max = KnownOne|UnknownBits;
193
194 if (UnknownBits.isNegative()) { // Sign bit is unknown
195 Min.setBit(Min.getBitWidth()-1);
196 Max.clearBit(Max.getBitWidth()-1);
197 }
198 }
199
200 // ComputeUnsignedMinMaxValuesFromKnownBits - Given an unsigned integer type and
201 // a set of known zero and one bits, compute the maximum and minimum values that
202 // could have the specified known zero and known one bits, returning them in
203 // min/max.
ComputeUnsignedMinMaxValuesFromKnownBits(const APInt & KnownZero,const APInt & KnownOne,APInt & Min,APInt & Max)204 static void ComputeUnsignedMinMaxValuesFromKnownBits(const APInt &KnownZero,
205 const APInt &KnownOne,
206 APInt &Min, APInt &Max) {
207 assert(KnownZero.getBitWidth() == KnownOne.getBitWidth() &&
208 KnownZero.getBitWidth() == Min.getBitWidth() &&
209 KnownZero.getBitWidth() == Max.getBitWidth() &&
210 "Ty, KnownZero, KnownOne and Min, Max must have equal bitwidth.");
211 APInt UnknownBits = ~(KnownZero|KnownOne);
212
213 // The minimum value is when the unknown bits are all zeros.
214 Min = KnownOne;
215 // The maximum value is when the unknown bits are all ones.
216 Max = KnownOne|UnknownBits;
217 }
218
219 /// FoldCmpLoadFromIndexedGlobal - Called we see this pattern:
220 /// cmp pred (load (gep GV, ...)), cmpcst
221 /// where GV is a global variable with a constant initializer. Try to simplify
222 /// this into some simple computation that does not need the load. For example
223 /// we can optimize "icmp eq (load (gep "foo", 0, i)), 0" into "icmp eq i, 3".
224 ///
225 /// If AndCst is non-null, then the loaded value is masked with that constant
226 /// before doing the comparison. This handles cases like "A[i]&4 == 0".
227 Instruction *InstCombiner::
FoldCmpLoadFromIndexedGlobal(GetElementPtrInst * GEP,GlobalVariable * GV,CmpInst & ICI,ConstantInt * AndCst)228 FoldCmpLoadFromIndexedGlobal(GetElementPtrInst *GEP, GlobalVariable *GV,
229 CmpInst &ICI, ConstantInt *AndCst) {
230 Constant *Init = GV->getInitializer();
231 if (!isa<ConstantArray>(Init) && !isa<ConstantDataArray>(Init))
232 return nullptr;
233
234 uint64_t ArrayElementCount = Init->getType()->getArrayNumElements();
235 if (ArrayElementCount > 1024) return nullptr; // Don't blow up on huge arrays.
236
237 // There are many forms of this optimization we can handle, for now, just do
238 // the simple index into a single-dimensional array.
239 //
240 // Require: GEP GV, 0, i {{, constant indices}}
241 if (GEP->getNumOperands() < 3 ||
242 !isa<ConstantInt>(GEP->getOperand(1)) ||
243 !cast<ConstantInt>(GEP->getOperand(1))->isZero() ||
244 isa<Constant>(GEP->getOperand(2)))
245 return nullptr;
246
247 // Check that indices after the variable are constants and in-range for the
248 // type they index. Collect the indices. This is typically for arrays of
249 // structs.
250 SmallVector<unsigned, 4> LaterIndices;
251
252 Type *EltTy = Init->getType()->getArrayElementType();
253 for (unsigned i = 3, e = GEP->getNumOperands(); i != e; ++i) {
254 ConstantInt *Idx = dyn_cast<ConstantInt>(GEP->getOperand(i));
255 if (!Idx) return nullptr; // Variable index.
256
257 uint64_t IdxVal = Idx->getZExtValue();
258 if ((unsigned)IdxVal != IdxVal) return nullptr; // Too large array index.
259
260 if (StructType *STy = dyn_cast<StructType>(EltTy))
261 EltTy = STy->getElementType(IdxVal);
262 else if (ArrayType *ATy = dyn_cast<ArrayType>(EltTy)) {
263 if (IdxVal >= ATy->getNumElements()) return nullptr;
264 EltTy = ATy->getElementType();
265 } else {
266 return nullptr; // Unknown type.
267 }
268
269 LaterIndices.push_back(IdxVal);
270 }
271
272 enum { Overdefined = -3, Undefined = -2 };
273
274 // Variables for our state machines.
275
276 // FirstTrueElement/SecondTrueElement - Used to emit a comparison of the form
277 // "i == 47 | i == 87", where 47 is the first index the condition is true for,
278 // and 87 is the second (and last) index. FirstTrueElement is -2 when
279 // undefined, otherwise set to the first true element. SecondTrueElement is
280 // -2 when undefined, -3 when overdefined and >= 0 when that index is true.
281 int FirstTrueElement = Undefined, SecondTrueElement = Undefined;
282
283 // FirstFalseElement/SecondFalseElement - Used to emit a comparison of the
284 // form "i != 47 & i != 87". Same state transitions as for true elements.
285 int FirstFalseElement = Undefined, SecondFalseElement = Undefined;
286
287 /// TrueRangeEnd/FalseRangeEnd - In conjunction with First*Element, these
288 /// define a state machine that triggers for ranges of values that the index
289 /// is true or false for. This triggers on things like "abbbbc"[i] == 'b'.
290 /// This is -2 when undefined, -3 when overdefined, and otherwise the last
291 /// index in the range (inclusive). We use -2 for undefined here because we
292 /// use relative comparisons and don't want 0-1 to match -1.
293 int TrueRangeEnd = Undefined, FalseRangeEnd = Undefined;
294
295 // MagicBitvector - This is a magic bitvector where we set a bit if the
296 // comparison is true for element 'i'. If there are 64 elements or less in
297 // the array, this will fully represent all the comparison results.
298 uint64_t MagicBitvector = 0;
299
300 // Scan the array and see if one of our patterns matches.
301 Constant *CompareRHS = cast<Constant>(ICI.getOperand(1));
302 for (unsigned i = 0, e = ArrayElementCount; i != e; ++i) {
303 Constant *Elt = Init->getAggregateElement(i);
304 if (!Elt) return nullptr;
305
306 // If this is indexing an array of structures, get the structure element.
307 if (!LaterIndices.empty())
308 Elt = ConstantExpr::getExtractValue(Elt, LaterIndices);
309
310 // If the element is masked, handle it.
311 if (AndCst) Elt = ConstantExpr::getAnd(Elt, AndCst);
312
313 // Find out if the comparison would be true or false for the i'th element.
314 Constant *C = ConstantFoldCompareInstOperands(ICI.getPredicate(), Elt,
315 CompareRHS, DL, TLI);
316 // If the result is undef for this element, ignore it.
317 if (isa<UndefValue>(C)) {
318 // Extend range state machines to cover this element in case there is an
319 // undef in the middle of the range.
320 if (TrueRangeEnd == (int)i-1)
321 TrueRangeEnd = i;
322 if (FalseRangeEnd == (int)i-1)
323 FalseRangeEnd = i;
324 continue;
325 }
326
327 // If we can't compute the result for any of the elements, we have to give
328 // up evaluating the entire conditional.
329 if (!isa<ConstantInt>(C)) return nullptr;
330
331 // Otherwise, we know if the comparison is true or false for this element,
332 // update our state machines.
333 bool IsTrueForElt = !cast<ConstantInt>(C)->isZero();
334
335 // State machine for single/double/range index comparison.
336 if (IsTrueForElt) {
337 // Update the TrueElement state machine.
338 if (FirstTrueElement == Undefined)
339 FirstTrueElement = TrueRangeEnd = i; // First true element.
340 else {
341 // Update double-compare state machine.
342 if (SecondTrueElement == Undefined)
343 SecondTrueElement = i;
344 else
345 SecondTrueElement = Overdefined;
346
347 // Update range state machine.
348 if (TrueRangeEnd == (int)i-1)
349 TrueRangeEnd = i;
350 else
351 TrueRangeEnd = Overdefined;
352 }
353 } else {
354 // Update the FalseElement state machine.
355 if (FirstFalseElement == Undefined)
356 FirstFalseElement = FalseRangeEnd = i; // First false element.
357 else {
358 // Update double-compare state machine.
359 if (SecondFalseElement == Undefined)
360 SecondFalseElement = i;
361 else
362 SecondFalseElement = Overdefined;
363
364 // Update range state machine.
365 if (FalseRangeEnd == (int)i-1)
366 FalseRangeEnd = i;
367 else
368 FalseRangeEnd = Overdefined;
369 }
370 }
371
372 // If this element is in range, update our magic bitvector.
373 if (i < 64 && IsTrueForElt)
374 MagicBitvector |= 1ULL << i;
375
376 // If all of our states become overdefined, bail out early. Since the
377 // predicate is expensive, only check it every 8 elements. This is only
378 // really useful for really huge arrays.
379 if ((i & 8) == 0 && i >= 64 && SecondTrueElement == Overdefined &&
380 SecondFalseElement == Overdefined && TrueRangeEnd == Overdefined &&
381 FalseRangeEnd == Overdefined)
382 return nullptr;
383 }
384
385 // Now that we've scanned the entire array, emit our new comparison(s). We
386 // order the state machines in complexity of the generated code.
387 Value *Idx = GEP->getOperand(2);
388
389 // If the index is larger than the pointer size of the target, truncate the
390 // index down like the GEP would do implicitly. We don't have to do this for
391 // an inbounds GEP because the index can't be out of range.
392 if (!GEP->isInBounds()) {
393 Type *IntPtrTy = DL.getIntPtrType(GEP->getType());
394 unsigned PtrSize = IntPtrTy->getIntegerBitWidth();
395 if (Idx->getType()->getPrimitiveSizeInBits() > PtrSize)
396 Idx = Builder->CreateTrunc(Idx, IntPtrTy);
397 }
398
399 // If the comparison is only true for one or two elements, emit direct
400 // comparisons.
401 if (SecondTrueElement != Overdefined) {
402 // None true -> false.
403 if (FirstTrueElement == Undefined)
404 return ReplaceInstUsesWith(ICI, Builder->getFalse());
405
406 Value *FirstTrueIdx = ConstantInt::get(Idx->getType(), FirstTrueElement);
407
408 // True for one element -> 'i == 47'.
409 if (SecondTrueElement == Undefined)
410 return new ICmpInst(ICmpInst::ICMP_EQ, Idx, FirstTrueIdx);
411
412 // True for two elements -> 'i == 47 | i == 72'.
413 Value *C1 = Builder->CreateICmpEQ(Idx, FirstTrueIdx);
414 Value *SecondTrueIdx = ConstantInt::get(Idx->getType(), SecondTrueElement);
415 Value *C2 = Builder->CreateICmpEQ(Idx, SecondTrueIdx);
416 return BinaryOperator::CreateOr(C1, C2);
417 }
418
419 // If the comparison is only false for one or two elements, emit direct
420 // comparisons.
421 if (SecondFalseElement != Overdefined) {
422 // None false -> true.
423 if (FirstFalseElement == Undefined)
424 return ReplaceInstUsesWith(ICI, Builder->getTrue());
425
426 Value *FirstFalseIdx = ConstantInt::get(Idx->getType(), FirstFalseElement);
427
428 // False for one element -> 'i != 47'.
429 if (SecondFalseElement == Undefined)
430 return new ICmpInst(ICmpInst::ICMP_NE, Idx, FirstFalseIdx);
431
432 // False for two elements -> 'i != 47 & i != 72'.
433 Value *C1 = Builder->CreateICmpNE(Idx, FirstFalseIdx);
434 Value *SecondFalseIdx = ConstantInt::get(Idx->getType(),SecondFalseElement);
435 Value *C2 = Builder->CreateICmpNE(Idx, SecondFalseIdx);
436 return BinaryOperator::CreateAnd(C1, C2);
437 }
438
439 // If the comparison can be replaced with a range comparison for the elements
440 // where it is true, emit the range check.
441 if (TrueRangeEnd != Overdefined) {
442 assert(TrueRangeEnd != FirstTrueElement && "Should emit single compare");
443
444 // Generate (i-FirstTrue) <u (TrueRangeEnd-FirstTrue+1).
445 if (FirstTrueElement) {
446 Value *Offs = ConstantInt::get(Idx->getType(), -FirstTrueElement);
447 Idx = Builder->CreateAdd(Idx, Offs);
448 }
449
450 Value *End = ConstantInt::get(Idx->getType(),
451 TrueRangeEnd-FirstTrueElement+1);
452 return new ICmpInst(ICmpInst::ICMP_ULT, Idx, End);
453 }
454
455 // False range check.
456 if (FalseRangeEnd != Overdefined) {
457 assert(FalseRangeEnd != FirstFalseElement && "Should emit single compare");
458 // Generate (i-FirstFalse) >u (FalseRangeEnd-FirstFalse).
459 if (FirstFalseElement) {
460 Value *Offs = ConstantInt::get(Idx->getType(), -FirstFalseElement);
461 Idx = Builder->CreateAdd(Idx, Offs);
462 }
463
464 Value *End = ConstantInt::get(Idx->getType(),
465 FalseRangeEnd-FirstFalseElement);
466 return new ICmpInst(ICmpInst::ICMP_UGT, Idx, End);
467 }
468
469 // If a magic bitvector captures the entire comparison state
470 // of this load, replace it with computation that does:
471 // ((magic_cst >> i) & 1) != 0
472 {
473 Type *Ty = nullptr;
474
475 // Look for an appropriate type:
476 // - The type of Idx if the magic fits
477 // - The smallest fitting legal type if we have a DataLayout
478 // - Default to i32
479 if (ArrayElementCount <= Idx->getType()->getIntegerBitWidth())
480 Ty = Idx->getType();
481 else
482 Ty = DL.getSmallestLegalIntType(Init->getContext(), ArrayElementCount);
483
484 if (Ty) {
485 Value *V = Builder->CreateIntCast(Idx, Ty, false);
486 V = Builder->CreateLShr(ConstantInt::get(Ty, MagicBitvector), V);
487 V = Builder->CreateAnd(ConstantInt::get(Ty, 1), V);
488 return new ICmpInst(ICmpInst::ICMP_NE, V, ConstantInt::get(Ty, 0));
489 }
490 }
491
492 return nullptr;
493 }
494
495 /// EvaluateGEPOffsetExpression - Return a value that can be used to compare
496 /// the *offset* implied by a GEP to zero. For example, if we have &A[i], we
497 /// want to return 'i' for "icmp ne i, 0". Note that, in general, indices can
498 /// be complex, and scales are involved. The above expression would also be
499 /// legal to codegen as "icmp ne (i*4), 0" (assuming A is a pointer to i32).
500 /// This later form is less amenable to optimization though, and we are allowed
501 /// to generate the first by knowing that pointer arithmetic doesn't overflow.
502 ///
503 /// If we can't emit an optimized form for this expression, this returns null.
504 ///
EvaluateGEPOffsetExpression(User * GEP,InstCombiner & IC,const DataLayout & DL)505 static Value *EvaluateGEPOffsetExpression(User *GEP, InstCombiner &IC,
506 const DataLayout &DL) {
507 gep_type_iterator GTI = gep_type_begin(GEP);
508
509 // Check to see if this gep only has a single variable index. If so, and if
510 // any constant indices are a multiple of its scale, then we can compute this
511 // in terms of the scale of the variable index. For example, if the GEP
512 // implies an offset of "12 + i*4", then we can codegen this as "3 + i",
513 // because the expression will cross zero at the same point.
514 unsigned i, e = GEP->getNumOperands();
515 int64_t Offset = 0;
516 for (i = 1; i != e; ++i, ++GTI) {
517 if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) {
518 // Compute the aggregate offset of constant indices.
519 if (CI->isZero()) continue;
520
521 // Handle a struct index, which adds its field offset to the pointer.
522 if (StructType *STy = dyn_cast<StructType>(*GTI)) {
523 Offset += DL.getStructLayout(STy)->getElementOffset(CI->getZExtValue());
524 } else {
525 uint64_t Size = DL.getTypeAllocSize(GTI.getIndexedType());
526 Offset += Size*CI->getSExtValue();
527 }
528 } else {
529 // Found our variable index.
530 break;
531 }
532 }
533
534 // If there are no variable indices, we must have a constant offset, just
535 // evaluate it the general way.
536 if (i == e) return nullptr;
537
538 Value *VariableIdx = GEP->getOperand(i);
539 // Determine the scale factor of the variable element. For example, this is
540 // 4 if the variable index is into an array of i32.
541 uint64_t VariableScale = DL.getTypeAllocSize(GTI.getIndexedType());
542
543 // Verify that there are no other variable indices. If so, emit the hard way.
544 for (++i, ++GTI; i != e; ++i, ++GTI) {
545 ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i));
546 if (!CI) return nullptr;
547
548 // Compute the aggregate offset of constant indices.
549 if (CI->isZero()) continue;
550
551 // Handle a struct index, which adds its field offset to the pointer.
552 if (StructType *STy = dyn_cast<StructType>(*GTI)) {
553 Offset += DL.getStructLayout(STy)->getElementOffset(CI->getZExtValue());
554 } else {
555 uint64_t Size = DL.getTypeAllocSize(GTI.getIndexedType());
556 Offset += Size*CI->getSExtValue();
557 }
558 }
559
560 // Okay, we know we have a single variable index, which must be a
561 // pointer/array/vector index. If there is no offset, life is simple, return
562 // the index.
563 Type *IntPtrTy = DL.getIntPtrType(GEP->getOperand(0)->getType());
564 unsigned IntPtrWidth = IntPtrTy->getIntegerBitWidth();
565 if (Offset == 0) {
566 // Cast to intptrty in case a truncation occurs. If an extension is needed,
567 // we don't need to bother extending: the extension won't affect where the
568 // computation crosses zero.
569 if (VariableIdx->getType()->getPrimitiveSizeInBits() > IntPtrWidth) {
570 VariableIdx = IC.Builder->CreateTrunc(VariableIdx, IntPtrTy);
571 }
572 return VariableIdx;
573 }
574
575 // Otherwise, there is an index. The computation we will do will be modulo
576 // the pointer size, so get it.
577 uint64_t PtrSizeMask = ~0ULL >> (64-IntPtrWidth);
578
579 Offset &= PtrSizeMask;
580 VariableScale &= PtrSizeMask;
581
582 // To do this transformation, any constant index must be a multiple of the
583 // variable scale factor. For example, we can evaluate "12 + 4*i" as "3 + i",
584 // but we can't evaluate "10 + 3*i" in terms of i. Check that the offset is a
585 // multiple of the variable scale.
586 int64_t NewOffs = Offset / (int64_t)VariableScale;
587 if (Offset != NewOffs*(int64_t)VariableScale)
588 return nullptr;
589
590 // Okay, we can do this evaluation. Start by converting the index to intptr.
591 if (VariableIdx->getType() != IntPtrTy)
592 VariableIdx = IC.Builder->CreateIntCast(VariableIdx, IntPtrTy,
593 true /*Signed*/);
594 Constant *OffsetVal = ConstantInt::get(IntPtrTy, NewOffs);
595 return IC.Builder->CreateAdd(VariableIdx, OffsetVal, "offset");
596 }
597
598 /// FoldGEPICmp - Fold comparisons between a GEP instruction and something
599 /// else. At this point we know that the GEP is on the LHS of the comparison.
FoldGEPICmp(GEPOperator * GEPLHS,Value * RHS,ICmpInst::Predicate Cond,Instruction & I)600 Instruction *InstCombiner::FoldGEPICmp(GEPOperator *GEPLHS, Value *RHS,
601 ICmpInst::Predicate Cond,
602 Instruction &I) {
603 // Don't transform signed compares of GEPs into index compares. Even if the
604 // GEP is inbounds, the final add of the base pointer can have signed overflow
605 // and would change the result of the icmp.
606 // e.g. "&foo[0] <s &foo[1]" can't be folded to "true" because "foo" could be
607 // the maximum signed value for the pointer type.
608 if (ICmpInst::isSigned(Cond))
609 return nullptr;
610
611 // Look through bitcasts and addrspacecasts. We do not however want to remove
612 // 0 GEPs.
613 if (!isa<GetElementPtrInst>(RHS))
614 RHS = RHS->stripPointerCasts();
615
616 Value *PtrBase = GEPLHS->getOperand(0);
617 if (PtrBase == RHS && GEPLHS->isInBounds()) {
618 // ((gep Ptr, OFFSET) cmp Ptr) ---> (OFFSET cmp 0).
619 // This transformation (ignoring the base and scales) is valid because we
620 // know pointers can't overflow since the gep is inbounds. See if we can
621 // output an optimized form.
622 Value *Offset = EvaluateGEPOffsetExpression(GEPLHS, *this, DL);
623
624 // If not, synthesize the offset the hard way.
625 if (!Offset)
626 Offset = EmitGEPOffset(GEPLHS);
627 return new ICmpInst(ICmpInst::getSignedPredicate(Cond), Offset,
628 Constant::getNullValue(Offset->getType()));
629 } else if (GEPOperator *GEPRHS = dyn_cast<GEPOperator>(RHS)) {
630 // If the base pointers are different, but the indices are the same, just
631 // compare the base pointer.
632 if (PtrBase != GEPRHS->getOperand(0)) {
633 bool IndicesTheSame = GEPLHS->getNumOperands()==GEPRHS->getNumOperands();
634 IndicesTheSame &= GEPLHS->getOperand(0)->getType() ==
635 GEPRHS->getOperand(0)->getType();
636 if (IndicesTheSame)
637 for (unsigned i = 1, e = GEPLHS->getNumOperands(); i != e; ++i)
638 if (GEPLHS->getOperand(i) != GEPRHS->getOperand(i)) {
639 IndicesTheSame = false;
640 break;
641 }
642
643 // If all indices are the same, just compare the base pointers.
644 if (IndicesTheSame)
645 return new ICmpInst(Cond, GEPLHS->getOperand(0), GEPRHS->getOperand(0));
646
647 // If we're comparing GEPs with two base pointers that only differ in type
648 // and both GEPs have only constant indices or just one use, then fold
649 // the compare with the adjusted indices.
650 if (GEPLHS->isInBounds() && GEPRHS->isInBounds() &&
651 (GEPLHS->hasAllConstantIndices() || GEPLHS->hasOneUse()) &&
652 (GEPRHS->hasAllConstantIndices() || GEPRHS->hasOneUse()) &&
653 PtrBase->stripPointerCasts() ==
654 GEPRHS->getOperand(0)->stripPointerCasts()) {
655 Value *LOffset = EmitGEPOffset(GEPLHS);
656 Value *ROffset = EmitGEPOffset(GEPRHS);
657
658 // If we looked through an addrspacecast between different sized address
659 // spaces, the LHS and RHS pointers are different sized
660 // integers. Truncate to the smaller one.
661 Type *LHSIndexTy = LOffset->getType();
662 Type *RHSIndexTy = ROffset->getType();
663 if (LHSIndexTy != RHSIndexTy) {
664 if (LHSIndexTy->getPrimitiveSizeInBits() <
665 RHSIndexTy->getPrimitiveSizeInBits()) {
666 ROffset = Builder->CreateTrunc(ROffset, LHSIndexTy);
667 } else
668 LOffset = Builder->CreateTrunc(LOffset, RHSIndexTy);
669 }
670
671 Value *Cmp = Builder->CreateICmp(ICmpInst::getSignedPredicate(Cond),
672 LOffset, ROffset);
673 return ReplaceInstUsesWith(I, Cmp);
674 }
675
676 // Otherwise, the base pointers are different and the indices are
677 // different, bail out.
678 return nullptr;
679 }
680
681 // If one of the GEPs has all zero indices, recurse.
682 if (GEPLHS->hasAllZeroIndices())
683 return FoldGEPICmp(GEPRHS, GEPLHS->getOperand(0),
684 ICmpInst::getSwappedPredicate(Cond), I);
685
686 // If the other GEP has all zero indices, recurse.
687 if (GEPRHS->hasAllZeroIndices())
688 return FoldGEPICmp(GEPLHS, GEPRHS->getOperand(0), Cond, I);
689
690 bool GEPsInBounds = GEPLHS->isInBounds() && GEPRHS->isInBounds();
691 if (GEPLHS->getNumOperands() == GEPRHS->getNumOperands()) {
692 // If the GEPs only differ by one index, compare it.
693 unsigned NumDifferences = 0; // Keep track of # differences.
694 unsigned DiffOperand = 0; // The operand that differs.
695 for (unsigned i = 1, e = GEPRHS->getNumOperands(); i != e; ++i)
696 if (GEPLHS->getOperand(i) != GEPRHS->getOperand(i)) {
697 if (GEPLHS->getOperand(i)->getType()->getPrimitiveSizeInBits() !=
698 GEPRHS->getOperand(i)->getType()->getPrimitiveSizeInBits()) {
699 // Irreconcilable differences.
700 NumDifferences = 2;
701 break;
702 } else {
703 if (NumDifferences++) break;
704 DiffOperand = i;
705 }
706 }
707
708 if (NumDifferences == 0) // SAME GEP?
709 return ReplaceInstUsesWith(I, // No comparison is needed here.
710 Builder->getInt1(ICmpInst::isTrueWhenEqual(Cond)));
711
712 else if (NumDifferences == 1 && GEPsInBounds) {
713 Value *LHSV = GEPLHS->getOperand(DiffOperand);
714 Value *RHSV = GEPRHS->getOperand(DiffOperand);
715 // Make sure we do a signed comparison here.
716 return new ICmpInst(ICmpInst::getSignedPredicate(Cond), LHSV, RHSV);
717 }
718 }
719
720 // Only lower this if the icmp is the only user of the GEP or if we expect
721 // the result to fold to a constant!
722 if (GEPsInBounds && (isa<ConstantExpr>(GEPLHS) || GEPLHS->hasOneUse()) &&
723 (isa<ConstantExpr>(GEPRHS) || GEPRHS->hasOneUse())) {
724 // ((gep Ptr, OFFSET1) cmp (gep Ptr, OFFSET2) ---> (OFFSET1 cmp OFFSET2)
725 Value *L = EmitGEPOffset(GEPLHS);
726 Value *R = EmitGEPOffset(GEPRHS);
727 return new ICmpInst(ICmpInst::getSignedPredicate(Cond), L, R);
728 }
729 }
730 return nullptr;
731 }
732
FoldAllocaCmp(ICmpInst & ICI,AllocaInst * Alloca,Value * Other)733 Instruction *InstCombiner::FoldAllocaCmp(ICmpInst &ICI, AllocaInst *Alloca,
734 Value *Other) {
735 assert(ICI.isEquality() && "Cannot fold non-equality comparison.");
736
737 // It would be tempting to fold away comparisons between allocas and any
738 // pointer not based on that alloca (e.g. an argument). However, even
739 // though such pointers cannot alias, they can still compare equal.
740 //
741 // But LLVM doesn't specify where allocas get their memory, so if the alloca
742 // doesn't escape we can argue that it's impossible to guess its value, and we
743 // can therefore act as if any such guesses are wrong.
744 //
745 // The code below checks that the alloca doesn't escape, and that it's only
746 // used in a comparison once (the current instruction). The
747 // single-comparison-use condition ensures that we're trivially folding all
748 // comparisons against the alloca consistently, and avoids the risk of
749 // erroneously folding a comparison of the pointer with itself.
750
751 unsigned MaxIter = 32; // Break cycles and bound to constant-time.
752
753 SmallVector<Use *, 32> Worklist;
754 for (Use &U : Alloca->uses()) {
755 if (Worklist.size() >= MaxIter)
756 return nullptr;
757 Worklist.push_back(&U);
758 }
759
760 unsigned NumCmps = 0;
761 while (!Worklist.empty()) {
762 assert(Worklist.size() <= MaxIter);
763 Use *U = Worklist.pop_back_val();
764 Value *V = U->getUser();
765 --MaxIter;
766
767 if (isa<BitCastInst>(V) || isa<GetElementPtrInst>(V) || isa<PHINode>(V) ||
768 isa<SelectInst>(V)) {
769 // Track the uses.
770 } else if (isa<LoadInst>(V)) {
771 // Loading from the pointer doesn't escape it.
772 continue;
773 } else if (auto *SI = dyn_cast<StoreInst>(V)) {
774 // Storing *to* the pointer is fine, but storing the pointer escapes it.
775 if (SI->getValueOperand() == U->get())
776 return nullptr;
777 continue;
778 } else if (isa<ICmpInst>(V)) {
779 if (NumCmps++)
780 return nullptr; // Found more than one cmp.
781 continue;
782 } else if (auto *Intrin = dyn_cast<IntrinsicInst>(V)) {
783 switch (Intrin->getIntrinsicID()) {
784 // These intrinsics don't escape or compare the pointer. Memset is safe
785 // because we don't allow ptrtoint. Memcpy and memmove are safe because
786 // we don't allow stores, so src cannot point to V.
787 case Intrinsic::lifetime_start: case Intrinsic::lifetime_end:
788 case Intrinsic::dbg_declare: case Intrinsic::dbg_value:
789 case Intrinsic::memcpy: case Intrinsic::memmove: case Intrinsic::memset:
790 continue;
791 default:
792 return nullptr;
793 }
794 } else {
795 return nullptr;
796 }
797 for (Use &U : V->uses()) {
798 if (Worklist.size() >= MaxIter)
799 return nullptr;
800 Worklist.push_back(&U);
801 }
802 }
803
804 Type *CmpTy = CmpInst::makeCmpResultType(Other->getType());
805 return ReplaceInstUsesWith(
806 ICI,
807 ConstantInt::get(CmpTy, !CmpInst::isTrueWhenEqual(ICI.getPredicate())));
808 }
809
810 /// FoldICmpAddOpCst - Fold "icmp pred (X+CI), X".
FoldICmpAddOpCst(Instruction & ICI,Value * X,ConstantInt * CI,ICmpInst::Predicate Pred)811 Instruction *InstCombiner::FoldICmpAddOpCst(Instruction &ICI,
812 Value *X, ConstantInt *CI,
813 ICmpInst::Predicate Pred) {
814 // From this point on, we know that (X+C <= X) --> (X+C < X) because C != 0,
815 // so the values can never be equal. Similarly for all other "or equals"
816 // operators.
817
818 // (X+1) <u X --> X >u (MAXUINT-1) --> X == 255
819 // (X+2) <u X --> X >u (MAXUINT-2) --> X > 253
820 // (X+MAXUINT) <u X --> X >u (MAXUINT-MAXUINT) --> X != 0
821 if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) {
822 Value *R =
823 ConstantExpr::getSub(ConstantInt::getAllOnesValue(CI->getType()), CI);
824 return new ICmpInst(ICmpInst::ICMP_UGT, X, R);
825 }
826
827 // (X+1) >u X --> X <u (0-1) --> X != 255
828 // (X+2) >u X --> X <u (0-2) --> X <u 254
829 // (X+MAXUINT) >u X --> X <u (0-MAXUINT) --> X <u 1 --> X == 0
830 if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE)
831 return new ICmpInst(ICmpInst::ICMP_ULT, X, ConstantExpr::getNeg(CI));
832
833 unsigned BitWidth = CI->getType()->getPrimitiveSizeInBits();
834 ConstantInt *SMax = ConstantInt::get(X->getContext(),
835 APInt::getSignedMaxValue(BitWidth));
836
837 // (X+ 1) <s X --> X >s (MAXSINT-1) --> X == 127
838 // (X+ 2) <s X --> X >s (MAXSINT-2) --> X >s 125
839 // (X+MAXSINT) <s X --> X >s (MAXSINT-MAXSINT) --> X >s 0
840 // (X+MINSINT) <s X --> X >s (MAXSINT-MINSINT) --> X >s -1
841 // (X+ -2) <s X --> X >s (MAXSINT- -2) --> X >s 126
842 // (X+ -1) <s X --> X >s (MAXSINT- -1) --> X != 127
843 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE)
844 return new ICmpInst(ICmpInst::ICMP_SGT, X, ConstantExpr::getSub(SMax, CI));
845
846 // (X+ 1) >s X --> X <s (MAXSINT-(1-1)) --> X != 127
847 // (X+ 2) >s X --> X <s (MAXSINT-(2-1)) --> X <s 126
848 // (X+MAXSINT) >s X --> X <s (MAXSINT-(MAXSINT-1)) --> X <s 1
849 // (X+MINSINT) >s X --> X <s (MAXSINT-(MINSINT-1)) --> X <s -2
850 // (X+ -2) >s X --> X <s (MAXSINT-(-2-1)) --> X <s -126
851 // (X+ -1) >s X --> X <s (MAXSINT-(-1-1)) --> X == -128
852
853 assert(Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE);
854 Constant *C = Builder->getInt(CI->getValue()-1);
855 return new ICmpInst(ICmpInst::ICMP_SLT, X, ConstantExpr::getSub(SMax, C));
856 }
857
858 /// FoldICmpDivCst - Fold "icmp pred, ([su]div X, DivRHS), CmpRHS" where DivRHS
859 /// and CmpRHS are both known to be integer constants.
FoldICmpDivCst(ICmpInst & ICI,BinaryOperator * DivI,ConstantInt * DivRHS)860 Instruction *InstCombiner::FoldICmpDivCst(ICmpInst &ICI, BinaryOperator *DivI,
861 ConstantInt *DivRHS) {
862 ConstantInt *CmpRHS = cast<ConstantInt>(ICI.getOperand(1));
863 const APInt &CmpRHSV = CmpRHS->getValue();
864
865 // FIXME: If the operand types don't match the type of the divide
866 // then don't attempt this transform. The code below doesn't have the
867 // logic to deal with a signed divide and an unsigned compare (and
868 // vice versa). This is because (x /s C1) <s C2 produces different
869 // results than (x /s C1) <u C2 or (x /u C1) <s C2 or even
870 // (x /u C1) <u C2. Simply casting the operands and result won't
871 // work. :( The if statement below tests that condition and bails
872 // if it finds it.
873 bool DivIsSigned = DivI->getOpcode() == Instruction::SDiv;
874 if (!ICI.isEquality() && DivIsSigned != ICI.isSigned())
875 return nullptr;
876 if (DivRHS->isZero())
877 return nullptr; // The ProdOV computation fails on divide by zero.
878 if (DivIsSigned && DivRHS->isAllOnesValue())
879 return nullptr; // The overflow computation also screws up here
880 if (DivRHS->isOne()) {
881 // This eliminates some funny cases with INT_MIN.
882 ICI.setOperand(0, DivI->getOperand(0)); // X/1 == X.
883 return &ICI;
884 }
885
886 // Compute Prod = CI * DivRHS. We are essentially solving an equation
887 // of form X/C1=C2. We solve for X by multiplying C1 (DivRHS) and
888 // C2 (CI). By solving for X we can turn this into a range check
889 // instead of computing a divide.
890 Constant *Prod = ConstantExpr::getMul(CmpRHS, DivRHS);
891
892 // Determine if the product overflows by seeing if the product is
893 // not equal to the divide. Make sure we do the same kind of divide
894 // as in the LHS instruction that we're folding.
895 bool ProdOV = (DivIsSigned ? ConstantExpr::getSDiv(Prod, DivRHS) :
896 ConstantExpr::getUDiv(Prod, DivRHS)) != CmpRHS;
897
898 // Get the ICmp opcode
899 ICmpInst::Predicate Pred = ICI.getPredicate();
900
901 /// If the division is known to be exact, then there is no remainder from the
902 /// divide, so the covered range size is unit, otherwise it is the divisor.
903 ConstantInt *RangeSize = DivI->isExact() ? getOne(Prod) : DivRHS;
904
905 // Figure out the interval that is being checked. For example, a comparison
906 // like "X /u 5 == 0" is really checking that X is in the interval [0, 5).
907 // Compute this interval based on the constants involved and the signedness of
908 // the compare/divide. This computes a half-open interval, keeping track of
909 // whether either value in the interval overflows. After analysis each
910 // overflow variable is set to 0 if it's corresponding bound variable is valid
911 // -1 if overflowed off the bottom end, or +1 if overflowed off the top end.
912 int LoOverflow = 0, HiOverflow = 0;
913 Constant *LoBound = nullptr, *HiBound = nullptr;
914
915 if (!DivIsSigned) { // udiv
916 // e.g. X/5 op 3 --> [15, 20)
917 LoBound = Prod;
918 HiOverflow = LoOverflow = ProdOV;
919 if (!HiOverflow) {
920 // If this is not an exact divide, then many values in the range collapse
921 // to the same result value.
922 HiOverflow = AddWithOverflow(HiBound, LoBound, RangeSize, false);
923 }
924 } else if (DivRHS->getValue().isStrictlyPositive()) { // Divisor is > 0.
925 if (CmpRHSV == 0) { // (X / pos) op 0
926 // Can't overflow. e.g. X/2 op 0 --> [-1, 2)
927 LoBound = ConstantExpr::getNeg(SubOne(RangeSize));
928 HiBound = RangeSize;
929 } else if (CmpRHSV.isStrictlyPositive()) { // (X / pos) op pos
930 LoBound = Prod; // e.g. X/5 op 3 --> [15, 20)
931 HiOverflow = LoOverflow = ProdOV;
932 if (!HiOverflow)
933 HiOverflow = AddWithOverflow(HiBound, Prod, RangeSize, true);
934 } else { // (X / pos) op neg
935 // e.g. X/5 op -3 --> [-15-4, -15+1) --> [-19, -14)
936 HiBound = AddOne(Prod);
937 LoOverflow = HiOverflow = ProdOV ? -1 : 0;
938 if (!LoOverflow) {
939 ConstantInt *DivNeg =cast<ConstantInt>(ConstantExpr::getNeg(RangeSize));
940 LoOverflow = AddWithOverflow(LoBound, HiBound, DivNeg, true) ? -1 : 0;
941 }
942 }
943 } else if (DivRHS->isNegative()) { // Divisor is < 0.
944 if (DivI->isExact())
945 RangeSize = cast<ConstantInt>(ConstantExpr::getNeg(RangeSize));
946 if (CmpRHSV == 0) { // (X / neg) op 0
947 // e.g. X/-5 op 0 --> [-4, 5)
948 LoBound = AddOne(RangeSize);
949 HiBound = cast<ConstantInt>(ConstantExpr::getNeg(RangeSize));
950 if (HiBound == DivRHS) { // -INTMIN = INTMIN
951 HiOverflow = 1; // [INTMIN+1, overflow)
952 HiBound = nullptr; // e.g. X/INTMIN = 0 --> X > INTMIN
953 }
954 } else if (CmpRHSV.isStrictlyPositive()) { // (X / neg) op pos
955 // e.g. X/-5 op 3 --> [-19, -14)
956 HiBound = AddOne(Prod);
957 HiOverflow = LoOverflow = ProdOV ? -1 : 0;
958 if (!LoOverflow)
959 LoOverflow = AddWithOverflow(LoBound, HiBound, RangeSize, true) ? -1:0;
960 } else { // (X / neg) op neg
961 LoBound = Prod; // e.g. X/-5 op -3 --> [15, 20)
962 LoOverflow = HiOverflow = ProdOV;
963 if (!HiOverflow)
964 HiOverflow = SubWithOverflow(HiBound, Prod, RangeSize, true);
965 }
966
967 // Dividing by a negative swaps the condition. LT <-> GT
968 Pred = ICmpInst::getSwappedPredicate(Pred);
969 }
970
971 Value *X = DivI->getOperand(0);
972 switch (Pred) {
973 default: llvm_unreachable("Unhandled icmp opcode!");
974 case ICmpInst::ICMP_EQ:
975 if (LoOverflow && HiOverflow)
976 return ReplaceInstUsesWith(ICI, Builder->getFalse());
977 if (HiOverflow)
978 return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SGE :
979 ICmpInst::ICMP_UGE, X, LoBound);
980 if (LoOverflow)
981 return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SLT :
982 ICmpInst::ICMP_ULT, X, HiBound);
983 return ReplaceInstUsesWith(ICI, InsertRangeTest(X, LoBound, HiBound,
984 DivIsSigned, true));
985 case ICmpInst::ICMP_NE:
986 if (LoOverflow && HiOverflow)
987 return ReplaceInstUsesWith(ICI, Builder->getTrue());
988 if (HiOverflow)
989 return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SLT :
990 ICmpInst::ICMP_ULT, X, LoBound);
991 if (LoOverflow)
992 return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SGE :
993 ICmpInst::ICMP_UGE, X, HiBound);
994 return ReplaceInstUsesWith(ICI, InsertRangeTest(X, LoBound, HiBound,
995 DivIsSigned, false));
996 case ICmpInst::ICMP_ULT:
997 case ICmpInst::ICMP_SLT:
998 if (LoOverflow == +1) // Low bound is greater than input range.
999 return ReplaceInstUsesWith(ICI, Builder->getTrue());
1000 if (LoOverflow == -1) // Low bound is less than input range.
1001 return ReplaceInstUsesWith(ICI, Builder->getFalse());
1002 return new ICmpInst(Pred, X, LoBound);
1003 case ICmpInst::ICMP_UGT:
1004 case ICmpInst::ICMP_SGT:
1005 if (HiOverflow == +1) // High bound greater than input range.
1006 return ReplaceInstUsesWith(ICI, Builder->getFalse());
1007 if (HiOverflow == -1) // High bound less than input range.
1008 return ReplaceInstUsesWith(ICI, Builder->getTrue());
1009 if (Pred == ICmpInst::ICMP_UGT)
1010 return new ICmpInst(ICmpInst::ICMP_UGE, X, HiBound);
1011 return new ICmpInst(ICmpInst::ICMP_SGE, X, HiBound);
1012 }
1013 }
1014
1015 /// FoldICmpShrCst - Handle "icmp(([al]shr X, cst1), cst2)".
FoldICmpShrCst(ICmpInst & ICI,BinaryOperator * Shr,ConstantInt * ShAmt)1016 Instruction *InstCombiner::FoldICmpShrCst(ICmpInst &ICI, BinaryOperator *Shr,
1017 ConstantInt *ShAmt) {
1018 const APInt &CmpRHSV = cast<ConstantInt>(ICI.getOperand(1))->getValue();
1019
1020 // Check that the shift amount is in range. If not, don't perform
1021 // undefined shifts. When the shift is visited it will be
1022 // simplified.
1023 uint32_t TypeBits = CmpRHSV.getBitWidth();
1024 uint32_t ShAmtVal = (uint32_t)ShAmt->getLimitedValue(TypeBits);
1025 if (ShAmtVal >= TypeBits || ShAmtVal == 0)
1026 return nullptr;
1027
1028 if (!ICI.isEquality()) {
1029 // If we have an unsigned comparison and an ashr, we can't simplify this.
1030 // Similarly for signed comparisons with lshr.
1031 if (ICI.isSigned() != (Shr->getOpcode() == Instruction::AShr))
1032 return nullptr;
1033
1034 // Otherwise, all lshr and most exact ashr's are equivalent to a udiv/sdiv
1035 // by a power of 2. Since we already have logic to simplify these,
1036 // transform to div and then simplify the resultant comparison.
1037 if (Shr->getOpcode() == Instruction::AShr &&
1038 (!Shr->isExact() || ShAmtVal == TypeBits - 1))
1039 return nullptr;
1040
1041 // Revisit the shift (to delete it).
1042 Worklist.Add(Shr);
1043
1044 Constant *DivCst =
1045 ConstantInt::get(Shr->getType(), APInt::getOneBitSet(TypeBits, ShAmtVal));
1046
1047 Value *Tmp =
1048 Shr->getOpcode() == Instruction::AShr ?
1049 Builder->CreateSDiv(Shr->getOperand(0), DivCst, "", Shr->isExact()) :
1050 Builder->CreateUDiv(Shr->getOperand(0), DivCst, "", Shr->isExact());
1051
1052 ICI.setOperand(0, Tmp);
1053
1054 // If the builder folded the binop, just return it.
1055 BinaryOperator *TheDiv = dyn_cast<BinaryOperator>(Tmp);
1056 if (!TheDiv)
1057 return &ICI;
1058
1059 // Otherwise, fold this div/compare.
1060 assert(TheDiv->getOpcode() == Instruction::SDiv ||
1061 TheDiv->getOpcode() == Instruction::UDiv);
1062
1063 Instruction *Res = FoldICmpDivCst(ICI, TheDiv, cast<ConstantInt>(DivCst));
1064 assert(Res && "This div/cst should have folded!");
1065 return Res;
1066 }
1067
1068 // If we are comparing against bits always shifted out, the
1069 // comparison cannot succeed.
1070 APInt Comp = CmpRHSV << ShAmtVal;
1071 ConstantInt *ShiftedCmpRHS = Builder->getInt(Comp);
1072 if (Shr->getOpcode() == Instruction::LShr)
1073 Comp = Comp.lshr(ShAmtVal);
1074 else
1075 Comp = Comp.ashr(ShAmtVal);
1076
1077 if (Comp != CmpRHSV) { // Comparing against a bit that we know is zero.
1078 bool IsICMP_NE = ICI.getPredicate() == ICmpInst::ICMP_NE;
1079 Constant *Cst = Builder->getInt1(IsICMP_NE);
1080 return ReplaceInstUsesWith(ICI, Cst);
1081 }
1082
1083 // Otherwise, check to see if the bits shifted out are known to be zero.
1084 // If so, we can compare against the unshifted value:
1085 // (X & 4) >> 1 == 2 --> (X & 4) == 4.
1086 if (Shr->hasOneUse() && Shr->isExact())
1087 return new ICmpInst(ICI.getPredicate(), Shr->getOperand(0), ShiftedCmpRHS);
1088
1089 if (Shr->hasOneUse()) {
1090 // Otherwise strength reduce the shift into an and.
1091 APInt Val(APInt::getHighBitsSet(TypeBits, TypeBits - ShAmtVal));
1092 Constant *Mask = Builder->getInt(Val);
1093
1094 Value *And = Builder->CreateAnd(Shr->getOperand(0),
1095 Mask, Shr->getName()+".mask");
1096 return new ICmpInst(ICI.getPredicate(), And, ShiftedCmpRHS);
1097 }
1098 return nullptr;
1099 }
1100
1101 /// FoldICmpCstShrCst - Handle "(icmp eq/ne (ashr/lshr const2, A), const1)" ->
1102 /// (icmp eq/ne A, Log2(const2/const1)) ->
1103 /// (icmp eq/ne A, Log2(const2) - Log2(const1)).
FoldICmpCstShrCst(ICmpInst & I,Value * Op,Value * A,ConstantInt * CI1,ConstantInt * CI2)1104 Instruction *InstCombiner::FoldICmpCstShrCst(ICmpInst &I, Value *Op, Value *A,
1105 ConstantInt *CI1,
1106 ConstantInt *CI2) {
1107 assert(I.isEquality() && "Cannot fold icmp gt/lt");
1108
1109 auto getConstant = [&I, this](bool IsTrue) {
1110 if (I.getPredicate() == I.ICMP_NE)
1111 IsTrue = !IsTrue;
1112 return ReplaceInstUsesWith(I, ConstantInt::get(I.getType(), IsTrue));
1113 };
1114
1115 auto getICmp = [&I](CmpInst::Predicate Pred, Value *LHS, Value *RHS) {
1116 if (I.getPredicate() == I.ICMP_NE)
1117 Pred = CmpInst::getInversePredicate(Pred);
1118 return new ICmpInst(Pred, LHS, RHS);
1119 };
1120
1121 APInt AP1 = CI1->getValue();
1122 APInt AP2 = CI2->getValue();
1123
1124 // Don't bother doing any work for cases which InstSimplify handles.
1125 if (AP2 == 0)
1126 return nullptr;
1127 bool IsAShr = isa<AShrOperator>(Op);
1128 if (IsAShr) {
1129 if (AP2.isAllOnesValue())
1130 return nullptr;
1131 if (AP2.isNegative() != AP1.isNegative())
1132 return nullptr;
1133 if (AP2.sgt(AP1))
1134 return nullptr;
1135 }
1136
1137 if (!AP1)
1138 // 'A' must be large enough to shift out the highest set bit.
1139 return getICmp(I.ICMP_UGT, A,
1140 ConstantInt::get(A->getType(), AP2.logBase2()));
1141
1142 if (AP1 == AP2)
1143 return getICmp(I.ICMP_EQ, A, ConstantInt::getNullValue(A->getType()));
1144
1145 int Shift;
1146 if (IsAShr && AP1.isNegative())
1147 Shift = AP1.countLeadingOnes() - AP2.countLeadingOnes();
1148 else
1149 Shift = AP1.countLeadingZeros() - AP2.countLeadingZeros();
1150
1151 if (Shift > 0) {
1152 if (IsAShr && AP1 == AP2.ashr(Shift)) {
1153 // There are multiple solutions if we are comparing against -1 and the LHS
1154 // of the ashr is not a power of two.
1155 if (AP1.isAllOnesValue() && !AP2.isPowerOf2())
1156 return getICmp(I.ICMP_UGE, A, ConstantInt::get(A->getType(), Shift));
1157 return getICmp(I.ICMP_EQ, A, ConstantInt::get(A->getType(), Shift));
1158 } else if (AP1 == AP2.lshr(Shift)) {
1159 return getICmp(I.ICMP_EQ, A, ConstantInt::get(A->getType(), Shift));
1160 }
1161 }
1162 // Shifting const2 will never be equal to const1.
1163 return getConstant(false);
1164 }
1165
1166 /// FoldICmpCstShlCst - Handle "(icmp eq/ne (shl const2, A), const1)" ->
1167 /// (icmp eq/ne A, TrailingZeros(const1) - TrailingZeros(const2)).
FoldICmpCstShlCst(ICmpInst & I,Value * Op,Value * A,ConstantInt * CI1,ConstantInt * CI2)1168 Instruction *InstCombiner::FoldICmpCstShlCst(ICmpInst &I, Value *Op, Value *A,
1169 ConstantInt *CI1,
1170 ConstantInt *CI2) {
1171 assert(I.isEquality() && "Cannot fold icmp gt/lt");
1172
1173 auto getConstant = [&I, this](bool IsTrue) {
1174 if (I.getPredicate() == I.ICMP_NE)
1175 IsTrue = !IsTrue;
1176 return ReplaceInstUsesWith(I, ConstantInt::get(I.getType(), IsTrue));
1177 };
1178
1179 auto getICmp = [&I](CmpInst::Predicate Pred, Value *LHS, Value *RHS) {
1180 if (I.getPredicate() == I.ICMP_NE)
1181 Pred = CmpInst::getInversePredicate(Pred);
1182 return new ICmpInst(Pred, LHS, RHS);
1183 };
1184
1185 APInt AP1 = CI1->getValue();
1186 APInt AP2 = CI2->getValue();
1187
1188 // Don't bother doing any work for cases which InstSimplify handles.
1189 if (AP2 == 0)
1190 return nullptr;
1191
1192 unsigned AP2TrailingZeros = AP2.countTrailingZeros();
1193
1194 if (!AP1 && AP2TrailingZeros != 0)
1195 return getICmp(I.ICMP_UGE, A,
1196 ConstantInt::get(A->getType(), AP2.getBitWidth() - AP2TrailingZeros));
1197
1198 if (AP1 == AP2)
1199 return getICmp(I.ICMP_EQ, A, ConstantInt::getNullValue(A->getType()));
1200
1201 // Get the distance between the lowest bits that are set.
1202 int Shift = AP1.countTrailingZeros() - AP2TrailingZeros;
1203
1204 if (Shift > 0 && AP2.shl(Shift) == AP1)
1205 return getICmp(I.ICMP_EQ, A, ConstantInt::get(A->getType(), Shift));
1206
1207 // Shifting const2 will never be equal to const1.
1208 return getConstant(false);
1209 }
1210
1211 /// visitICmpInstWithInstAndIntCst - Handle "icmp (instr, intcst)".
1212 ///
visitICmpInstWithInstAndIntCst(ICmpInst & ICI,Instruction * LHSI,ConstantInt * RHS)1213 Instruction *InstCombiner::visitICmpInstWithInstAndIntCst(ICmpInst &ICI,
1214 Instruction *LHSI,
1215 ConstantInt *RHS) {
1216 const APInt &RHSV = RHS->getValue();
1217
1218 switch (LHSI->getOpcode()) {
1219 case Instruction::Trunc:
1220 if (RHS->isOne() && RHSV.getBitWidth() > 1) {
1221 // icmp slt trunc(signum(V)) 1 --> icmp slt V, 1
1222 Value *V = nullptr;
1223 if (ICI.getPredicate() == ICmpInst::ICMP_SLT &&
1224 match(LHSI->getOperand(0), m_Signum(m_Value(V))))
1225 return new ICmpInst(ICmpInst::ICMP_SLT, V,
1226 ConstantInt::get(V->getType(), 1));
1227 }
1228 if (ICI.isEquality() && LHSI->hasOneUse()) {
1229 // Simplify icmp eq (trunc x to i8), 42 -> icmp eq x, 42|highbits if all
1230 // of the high bits truncated out of x are known.
1231 unsigned DstBits = LHSI->getType()->getPrimitiveSizeInBits(),
1232 SrcBits = LHSI->getOperand(0)->getType()->getPrimitiveSizeInBits();
1233 APInt KnownZero(SrcBits, 0), KnownOne(SrcBits, 0);
1234 computeKnownBits(LHSI->getOperand(0), KnownZero, KnownOne, 0, &ICI);
1235
1236 // If all the high bits are known, we can do this xform.
1237 if ((KnownZero|KnownOne).countLeadingOnes() >= SrcBits-DstBits) {
1238 // Pull in the high bits from known-ones set.
1239 APInt NewRHS = RHS->getValue().zext(SrcBits);
1240 NewRHS |= KnownOne & APInt::getHighBitsSet(SrcBits, SrcBits-DstBits);
1241 return new ICmpInst(ICI.getPredicate(), LHSI->getOperand(0),
1242 Builder->getInt(NewRHS));
1243 }
1244 }
1245 break;
1246
1247 case Instruction::Xor: // (icmp pred (xor X, XorCst), CI)
1248 if (ConstantInt *XorCst = dyn_cast<ConstantInt>(LHSI->getOperand(1))) {
1249 // If this is a comparison that tests the signbit (X < 0) or (x > -1),
1250 // fold the xor.
1251 if ((ICI.getPredicate() == ICmpInst::ICMP_SLT && RHSV == 0) ||
1252 (ICI.getPredicate() == ICmpInst::ICMP_SGT && RHSV.isAllOnesValue())) {
1253 Value *CompareVal = LHSI->getOperand(0);
1254
1255 // If the sign bit of the XorCst is not set, there is no change to
1256 // the operation, just stop using the Xor.
1257 if (!XorCst->isNegative()) {
1258 ICI.setOperand(0, CompareVal);
1259 Worklist.Add(LHSI);
1260 return &ICI;
1261 }
1262
1263 // Was the old condition true if the operand is positive?
1264 bool isTrueIfPositive = ICI.getPredicate() == ICmpInst::ICMP_SGT;
1265
1266 // If so, the new one isn't.
1267 isTrueIfPositive ^= true;
1268
1269 if (isTrueIfPositive)
1270 return new ICmpInst(ICmpInst::ICMP_SGT, CompareVal,
1271 SubOne(RHS));
1272 else
1273 return new ICmpInst(ICmpInst::ICMP_SLT, CompareVal,
1274 AddOne(RHS));
1275 }
1276
1277 if (LHSI->hasOneUse()) {
1278 // (icmp u/s (xor A SignBit), C) -> (icmp s/u A, (xor C SignBit))
1279 if (!ICI.isEquality() && XorCst->getValue().isSignBit()) {
1280 const APInt &SignBit = XorCst->getValue();
1281 ICmpInst::Predicate Pred = ICI.isSigned()
1282 ? ICI.getUnsignedPredicate()
1283 : ICI.getSignedPredicate();
1284 return new ICmpInst(Pred, LHSI->getOperand(0),
1285 Builder->getInt(RHSV ^ SignBit));
1286 }
1287
1288 // (icmp u/s (xor A ~SignBit), C) -> (icmp s/u (xor C ~SignBit), A)
1289 if (!ICI.isEquality() && XorCst->isMaxValue(true)) {
1290 const APInt &NotSignBit = XorCst->getValue();
1291 ICmpInst::Predicate Pred = ICI.isSigned()
1292 ? ICI.getUnsignedPredicate()
1293 : ICI.getSignedPredicate();
1294 Pred = ICI.getSwappedPredicate(Pred);
1295 return new ICmpInst(Pred, LHSI->getOperand(0),
1296 Builder->getInt(RHSV ^ NotSignBit));
1297 }
1298 }
1299
1300 // (icmp ugt (xor X, C), ~C) -> (icmp ult X, C)
1301 // iff -C is a power of 2
1302 if (ICI.getPredicate() == ICmpInst::ICMP_UGT &&
1303 XorCst->getValue() == ~RHSV && (RHSV + 1).isPowerOf2())
1304 return new ICmpInst(ICmpInst::ICMP_ULT, LHSI->getOperand(0), XorCst);
1305
1306 // (icmp ult (xor X, C), -C) -> (icmp uge X, C)
1307 // iff -C is a power of 2
1308 if (ICI.getPredicate() == ICmpInst::ICMP_ULT &&
1309 XorCst->getValue() == -RHSV && RHSV.isPowerOf2())
1310 return new ICmpInst(ICmpInst::ICMP_UGE, LHSI->getOperand(0), XorCst);
1311 }
1312 break;
1313 case Instruction::And: // (icmp pred (and X, AndCst), RHS)
1314 if (LHSI->hasOneUse() && isa<ConstantInt>(LHSI->getOperand(1)) &&
1315 LHSI->getOperand(0)->hasOneUse()) {
1316 ConstantInt *AndCst = cast<ConstantInt>(LHSI->getOperand(1));
1317
1318 // If the LHS is an AND of a truncating cast, we can widen the
1319 // and/compare to be the input width without changing the value
1320 // produced, eliminating a cast.
1321 if (TruncInst *Cast = dyn_cast<TruncInst>(LHSI->getOperand(0))) {
1322 // We can do this transformation if either the AND constant does not
1323 // have its sign bit set or if it is an equality comparison.
1324 // Extending a relational comparison when we're checking the sign
1325 // bit would not work.
1326 if (ICI.isEquality() ||
1327 (!AndCst->isNegative() && RHSV.isNonNegative())) {
1328 Value *NewAnd =
1329 Builder->CreateAnd(Cast->getOperand(0),
1330 ConstantExpr::getZExt(AndCst, Cast->getSrcTy()));
1331 NewAnd->takeName(LHSI);
1332 return new ICmpInst(ICI.getPredicate(), NewAnd,
1333 ConstantExpr::getZExt(RHS, Cast->getSrcTy()));
1334 }
1335 }
1336
1337 // If the LHS is an AND of a zext, and we have an equality compare, we can
1338 // shrink the and/compare to the smaller type, eliminating the cast.
1339 if (ZExtInst *Cast = dyn_cast<ZExtInst>(LHSI->getOperand(0))) {
1340 IntegerType *Ty = cast<IntegerType>(Cast->getSrcTy());
1341 // Make sure we don't compare the upper bits, SimplifyDemandedBits
1342 // should fold the icmp to true/false in that case.
1343 if (ICI.isEquality() && RHSV.getActiveBits() <= Ty->getBitWidth()) {
1344 Value *NewAnd =
1345 Builder->CreateAnd(Cast->getOperand(0),
1346 ConstantExpr::getTrunc(AndCst, Ty));
1347 NewAnd->takeName(LHSI);
1348 return new ICmpInst(ICI.getPredicate(), NewAnd,
1349 ConstantExpr::getTrunc(RHS, Ty));
1350 }
1351 }
1352
1353 // If this is: (X >> C1) & C2 != C3 (where any shift and any compare
1354 // could exist), turn it into (X & (C2 << C1)) != (C3 << C1). This
1355 // happens a LOT in code produced by the C front-end, for bitfield
1356 // access.
1357 BinaryOperator *Shift = dyn_cast<BinaryOperator>(LHSI->getOperand(0));
1358 if (Shift && !Shift->isShift())
1359 Shift = nullptr;
1360
1361 ConstantInt *ShAmt;
1362 ShAmt = Shift ? dyn_cast<ConstantInt>(Shift->getOperand(1)) : nullptr;
1363
1364 // This seemingly simple opportunity to fold away a shift turns out to
1365 // be rather complicated. See PR17827
1366 // ( http://llvm.org/bugs/show_bug.cgi?id=17827 ) for details.
1367 if (ShAmt) {
1368 bool CanFold = false;
1369 unsigned ShiftOpcode = Shift->getOpcode();
1370 if (ShiftOpcode == Instruction::AShr) {
1371 // There may be some constraints that make this possible,
1372 // but nothing simple has been discovered yet.
1373 CanFold = false;
1374 } else if (ShiftOpcode == Instruction::Shl) {
1375 // For a left shift, we can fold if the comparison is not signed.
1376 // We can also fold a signed comparison if the mask value and
1377 // comparison value are not negative. These constraints may not be
1378 // obvious, but we can prove that they are correct using an SMT
1379 // solver.
1380 if (!ICI.isSigned() || (!AndCst->isNegative() && !RHS->isNegative()))
1381 CanFold = true;
1382 } else if (ShiftOpcode == Instruction::LShr) {
1383 // For a logical right shift, we can fold if the comparison is not
1384 // signed. We can also fold a signed comparison if the shifted mask
1385 // value and the shifted comparison value are not negative.
1386 // These constraints may not be obvious, but we can prove that they
1387 // are correct using an SMT solver.
1388 if (!ICI.isSigned())
1389 CanFold = true;
1390 else {
1391 ConstantInt *ShiftedAndCst =
1392 cast<ConstantInt>(ConstantExpr::getShl(AndCst, ShAmt));
1393 ConstantInt *ShiftedRHSCst =
1394 cast<ConstantInt>(ConstantExpr::getShl(RHS, ShAmt));
1395
1396 if (!ShiftedAndCst->isNegative() && !ShiftedRHSCst->isNegative())
1397 CanFold = true;
1398 }
1399 }
1400
1401 if (CanFold) {
1402 Constant *NewCst;
1403 if (ShiftOpcode == Instruction::Shl)
1404 NewCst = ConstantExpr::getLShr(RHS, ShAmt);
1405 else
1406 NewCst = ConstantExpr::getShl(RHS, ShAmt);
1407
1408 // Check to see if we are shifting out any of the bits being
1409 // compared.
1410 if (ConstantExpr::get(ShiftOpcode, NewCst, ShAmt) != RHS) {
1411 // If we shifted bits out, the fold is not going to work out.
1412 // As a special case, check to see if this means that the
1413 // result is always true or false now.
1414 if (ICI.getPredicate() == ICmpInst::ICMP_EQ)
1415 return ReplaceInstUsesWith(ICI, Builder->getFalse());
1416 if (ICI.getPredicate() == ICmpInst::ICMP_NE)
1417 return ReplaceInstUsesWith(ICI, Builder->getTrue());
1418 } else {
1419 ICI.setOperand(1, NewCst);
1420 Constant *NewAndCst;
1421 if (ShiftOpcode == Instruction::Shl)
1422 NewAndCst = ConstantExpr::getLShr(AndCst, ShAmt);
1423 else
1424 NewAndCst = ConstantExpr::getShl(AndCst, ShAmt);
1425 LHSI->setOperand(1, NewAndCst);
1426 LHSI->setOperand(0, Shift->getOperand(0));
1427 Worklist.Add(Shift); // Shift is dead.
1428 return &ICI;
1429 }
1430 }
1431 }
1432
1433 // Turn ((X >> Y) & C) == 0 into (X & (C << Y)) == 0. The later is
1434 // preferable because it allows the C<<Y expression to be hoisted out
1435 // of a loop if Y is invariant and X is not.
1436 if (Shift && Shift->hasOneUse() && RHSV == 0 &&
1437 ICI.isEquality() && !Shift->isArithmeticShift() &&
1438 !isa<Constant>(Shift->getOperand(0))) {
1439 // Compute C << Y.
1440 Value *NS;
1441 if (Shift->getOpcode() == Instruction::LShr) {
1442 NS = Builder->CreateShl(AndCst, Shift->getOperand(1));
1443 } else {
1444 // Insert a logical shift.
1445 NS = Builder->CreateLShr(AndCst, Shift->getOperand(1));
1446 }
1447
1448 // Compute X & (C << Y).
1449 Value *NewAnd =
1450 Builder->CreateAnd(Shift->getOperand(0), NS, LHSI->getName());
1451
1452 ICI.setOperand(0, NewAnd);
1453 return &ICI;
1454 }
1455
1456 // (icmp pred (and (or (lshr X, Y), X), 1), 0) -->
1457 // (icmp pred (and X, (or (shl 1, Y), 1), 0))
1458 //
1459 // iff pred isn't signed
1460 {
1461 Value *X, *Y, *LShr;
1462 if (!ICI.isSigned() && RHSV == 0) {
1463 if (match(LHSI->getOperand(1), m_One())) {
1464 Constant *One = cast<Constant>(LHSI->getOperand(1));
1465 Value *Or = LHSI->getOperand(0);
1466 if (match(Or, m_Or(m_Value(LShr), m_Value(X))) &&
1467 match(LShr, m_LShr(m_Specific(X), m_Value(Y)))) {
1468 unsigned UsesRemoved = 0;
1469 if (LHSI->hasOneUse())
1470 ++UsesRemoved;
1471 if (Or->hasOneUse())
1472 ++UsesRemoved;
1473 if (LShr->hasOneUse())
1474 ++UsesRemoved;
1475 Value *NewOr = nullptr;
1476 // Compute X & ((1 << Y) | 1)
1477 if (auto *C = dyn_cast<Constant>(Y)) {
1478 if (UsesRemoved >= 1)
1479 NewOr =
1480 ConstantExpr::getOr(ConstantExpr::getNUWShl(One, C), One);
1481 } else {
1482 if (UsesRemoved >= 3)
1483 NewOr = Builder->CreateOr(Builder->CreateShl(One, Y,
1484 LShr->getName(),
1485 /*HasNUW=*/true),
1486 One, Or->getName());
1487 }
1488 if (NewOr) {
1489 Value *NewAnd = Builder->CreateAnd(X, NewOr, LHSI->getName());
1490 ICI.setOperand(0, NewAnd);
1491 return &ICI;
1492 }
1493 }
1494 }
1495 }
1496 }
1497
1498 // Replace ((X & AndCst) > RHSV) with ((X & AndCst) != 0), if any
1499 // bit set in (X & AndCst) will produce a result greater than RHSV.
1500 if (ICI.getPredicate() == ICmpInst::ICMP_UGT) {
1501 unsigned NTZ = AndCst->getValue().countTrailingZeros();
1502 if ((NTZ < AndCst->getBitWidth()) &&
1503 APInt::getOneBitSet(AndCst->getBitWidth(), NTZ).ugt(RHSV))
1504 return new ICmpInst(ICmpInst::ICMP_NE, LHSI,
1505 Constant::getNullValue(RHS->getType()));
1506 }
1507 }
1508
1509 // Try to optimize things like "A[i]&42 == 0" to index computations.
1510 if (LoadInst *LI = dyn_cast<LoadInst>(LHSI->getOperand(0))) {
1511 if (GetElementPtrInst *GEP =
1512 dyn_cast<GetElementPtrInst>(LI->getOperand(0)))
1513 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)))
1514 if (GV->isConstant() && GV->hasDefinitiveInitializer() &&
1515 !LI->isVolatile() && isa<ConstantInt>(LHSI->getOperand(1))) {
1516 ConstantInt *C = cast<ConstantInt>(LHSI->getOperand(1));
1517 if (Instruction *Res = FoldCmpLoadFromIndexedGlobal(GEP, GV,ICI, C))
1518 return Res;
1519 }
1520 }
1521
1522 // X & -C == -C -> X > u ~C
1523 // X & -C != -C -> X <= u ~C
1524 // iff C is a power of 2
1525 if (ICI.isEquality() && RHS == LHSI->getOperand(1) && (-RHSV).isPowerOf2())
1526 return new ICmpInst(
1527 ICI.getPredicate() == ICmpInst::ICMP_EQ ? ICmpInst::ICMP_UGT
1528 : ICmpInst::ICMP_ULE,
1529 LHSI->getOperand(0), SubOne(RHS));
1530
1531 // (icmp eq (and %A, C), 0) -> (icmp sgt (trunc %A), -1)
1532 // iff C is a power of 2
1533 if (ICI.isEquality() && LHSI->hasOneUse() && match(RHS, m_Zero())) {
1534 if (auto *CI = dyn_cast<ConstantInt>(LHSI->getOperand(1))) {
1535 const APInt &AI = CI->getValue();
1536 int32_t ExactLogBase2 = AI.exactLogBase2();
1537 if (ExactLogBase2 != -1 && DL.isLegalInteger(ExactLogBase2 + 1)) {
1538 Type *NTy = IntegerType::get(ICI.getContext(), ExactLogBase2 + 1);
1539 Value *Trunc = Builder->CreateTrunc(LHSI->getOperand(0), NTy);
1540 return new ICmpInst(ICI.getPredicate() == ICmpInst::ICMP_EQ
1541 ? ICmpInst::ICMP_SGE
1542 : ICmpInst::ICMP_SLT,
1543 Trunc, Constant::getNullValue(NTy));
1544 }
1545 }
1546 }
1547 break;
1548
1549 case Instruction::Or: {
1550 if (RHS->isOne()) {
1551 // icmp slt signum(V) 1 --> icmp slt V, 1
1552 Value *V = nullptr;
1553 if (ICI.getPredicate() == ICmpInst::ICMP_SLT &&
1554 match(LHSI, m_Signum(m_Value(V))))
1555 return new ICmpInst(ICmpInst::ICMP_SLT, V,
1556 ConstantInt::get(V->getType(), 1));
1557 }
1558
1559 if (!ICI.isEquality() || !RHS->isNullValue() || !LHSI->hasOneUse())
1560 break;
1561 Value *P, *Q;
1562 if (match(LHSI, m_Or(m_PtrToInt(m_Value(P)), m_PtrToInt(m_Value(Q))))) {
1563 // Simplify icmp eq (or (ptrtoint P), (ptrtoint Q)), 0
1564 // -> and (icmp eq P, null), (icmp eq Q, null).
1565 Value *ICIP = Builder->CreateICmp(ICI.getPredicate(), P,
1566 Constant::getNullValue(P->getType()));
1567 Value *ICIQ = Builder->CreateICmp(ICI.getPredicate(), Q,
1568 Constant::getNullValue(Q->getType()));
1569 Instruction *Op;
1570 if (ICI.getPredicate() == ICmpInst::ICMP_EQ)
1571 Op = BinaryOperator::CreateAnd(ICIP, ICIQ);
1572 else
1573 Op = BinaryOperator::CreateOr(ICIP, ICIQ);
1574 return Op;
1575 }
1576 break;
1577 }
1578
1579 case Instruction::Mul: { // (icmp pred (mul X, Val), CI)
1580 ConstantInt *Val = dyn_cast<ConstantInt>(LHSI->getOperand(1));
1581 if (!Val) break;
1582
1583 // If this is a signed comparison to 0 and the mul is sign preserving,
1584 // use the mul LHS operand instead.
1585 ICmpInst::Predicate pred = ICI.getPredicate();
1586 if (isSignTest(pred, RHS) && !Val->isZero() &&
1587 cast<BinaryOperator>(LHSI)->hasNoSignedWrap())
1588 return new ICmpInst(Val->isNegative() ?
1589 ICmpInst::getSwappedPredicate(pred) : pred,
1590 LHSI->getOperand(0),
1591 Constant::getNullValue(RHS->getType()));
1592
1593 break;
1594 }
1595
1596 case Instruction::Shl: { // (icmp pred (shl X, ShAmt), CI)
1597 uint32_t TypeBits = RHSV.getBitWidth();
1598 ConstantInt *ShAmt = dyn_cast<ConstantInt>(LHSI->getOperand(1));
1599 if (!ShAmt) {
1600 Value *X;
1601 // (1 << X) pred P2 -> X pred Log2(P2)
1602 if (match(LHSI, m_Shl(m_One(), m_Value(X)))) {
1603 bool RHSVIsPowerOf2 = RHSV.isPowerOf2();
1604 ICmpInst::Predicate Pred = ICI.getPredicate();
1605 if (ICI.isUnsigned()) {
1606 if (!RHSVIsPowerOf2) {
1607 // (1 << X) < 30 -> X <= 4
1608 // (1 << X) <= 30 -> X <= 4
1609 // (1 << X) >= 30 -> X > 4
1610 // (1 << X) > 30 -> X > 4
1611 if (Pred == ICmpInst::ICMP_ULT)
1612 Pred = ICmpInst::ICMP_ULE;
1613 else if (Pred == ICmpInst::ICMP_UGE)
1614 Pred = ICmpInst::ICMP_UGT;
1615 }
1616 unsigned RHSLog2 = RHSV.logBase2();
1617
1618 // (1 << X) >= 2147483648 -> X >= 31 -> X == 31
1619 // (1 << X) < 2147483648 -> X < 31 -> X != 31
1620 if (RHSLog2 == TypeBits-1) {
1621 if (Pred == ICmpInst::ICMP_UGE)
1622 Pred = ICmpInst::ICMP_EQ;
1623 else if (Pred == ICmpInst::ICMP_ULT)
1624 Pred = ICmpInst::ICMP_NE;
1625 }
1626
1627 return new ICmpInst(Pred, X,
1628 ConstantInt::get(RHS->getType(), RHSLog2));
1629 } else if (ICI.isSigned()) {
1630 if (RHSV.isAllOnesValue()) {
1631 // (1 << X) <= -1 -> X == 31
1632 if (Pred == ICmpInst::ICMP_SLE)
1633 return new ICmpInst(ICmpInst::ICMP_EQ, X,
1634 ConstantInt::get(RHS->getType(), TypeBits-1));
1635
1636 // (1 << X) > -1 -> X != 31
1637 if (Pred == ICmpInst::ICMP_SGT)
1638 return new ICmpInst(ICmpInst::ICMP_NE, X,
1639 ConstantInt::get(RHS->getType(), TypeBits-1));
1640 } else if (!RHSV) {
1641 // (1 << X) < 0 -> X == 31
1642 // (1 << X) <= 0 -> X == 31
1643 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE)
1644 return new ICmpInst(ICmpInst::ICMP_EQ, X,
1645 ConstantInt::get(RHS->getType(), TypeBits-1));
1646
1647 // (1 << X) >= 0 -> X != 31
1648 // (1 << X) > 0 -> X != 31
1649 if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE)
1650 return new ICmpInst(ICmpInst::ICMP_NE, X,
1651 ConstantInt::get(RHS->getType(), TypeBits-1));
1652 }
1653 } else if (ICI.isEquality()) {
1654 if (RHSVIsPowerOf2)
1655 return new ICmpInst(
1656 Pred, X, ConstantInt::get(RHS->getType(), RHSV.logBase2()));
1657 }
1658 }
1659 break;
1660 }
1661
1662 // Check that the shift amount is in range. If not, don't perform
1663 // undefined shifts. When the shift is visited it will be
1664 // simplified.
1665 if (ShAmt->uge(TypeBits))
1666 break;
1667
1668 if (ICI.isEquality()) {
1669 // If we are comparing against bits always shifted out, the
1670 // comparison cannot succeed.
1671 Constant *Comp =
1672 ConstantExpr::getShl(ConstantExpr::getLShr(RHS, ShAmt),
1673 ShAmt);
1674 if (Comp != RHS) {// Comparing against a bit that we know is zero.
1675 bool IsICMP_NE = ICI.getPredicate() == ICmpInst::ICMP_NE;
1676 Constant *Cst = Builder->getInt1(IsICMP_NE);
1677 return ReplaceInstUsesWith(ICI, Cst);
1678 }
1679
1680 // If the shift is NUW, then it is just shifting out zeros, no need for an
1681 // AND.
1682 if (cast<BinaryOperator>(LHSI)->hasNoUnsignedWrap())
1683 return new ICmpInst(ICI.getPredicate(), LHSI->getOperand(0),
1684 ConstantExpr::getLShr(RHS, ShAmt));
1685
1686 // If the shift is NSW and we compare to 0, then it is just shifting out
1687 // sign bits, no need for an AND either.
1688 if (cast<BinaryOperator>(LHSI)->hasNoSignedWrap() && RHSV == 0)
1689 return new ICmpInst(ICI.getPredicate(), LHSI->getOperand(0),
1690 ConstantExpr::getLShr(RHS, ShAmt));
1691
1692 if (LHSI->hasOneUse()) {
1693 // Otherwise strength reduce the shift into an and.
1694 uint32_t ShAmtVal = (uint32_t)ShAmt->getLimitedValue(TypeBits);
1695 Constant *Mask = Builder->getInt(APInt::getLowBitsSet(TypeBits,
1696 TypeBits - ShAmtVal));
1697
1698 Value *And =
1699 Builder->CreateAnd(LHSI->getOperand(0),Mask, LHSI->getName()+".mask");
1700 return new ICmpInst(ICI.getPredicate(), And,
1701 ConstantExpr::getLShr(RHS, ShAmt));
1702 }
1703 }
1704
1705 // If this is a signed comparison to 0 and the shift is sign preserving,
1706 // use the shift LHS operand instead.
1707 ICmpInst::Predicate pred = ICI.getPredicate();
1708 if (isSignTest(pred, RHS) &&
1709 cast<BinaryOperator>(LHSI)->hasNoSignedWrap())
1710 return new ICmpInst(pred,
1711 LHSI->getOperand(0),
1712 Constant::getNullValue(RHS->getType()));
1713
1714 // Otherwise, if this is a comparison of the sign bit, simplify to and/test.
1715 bool TrueIfSigned = false;
1716 if (LHSI->hasOneUse() &&
1717 isSignBitCheck(ICI.getPredicate(), RHS, TrueIfSigned)) {
1718 // (X << 31) <s 0 --> (X&1) != 0
1719 Constant *Mask = ConstantInt::get(LHSI->getOperand(0)->getType(),
1720 APInt::getOneBitSet(TypeBits,
1721 TypeBits-ShAmt->getZExtValue()-1));
1722 Value *And =
1723 Builder->CreateAnd(LHSI->getOperand(0), Mask, LHSI->getName()+".mask");
1724 return new ICmpInst(TrueIfSigned ? ICmpInst::ICMP_NE : ICmpInst::ICMP_EQ,
1725 And, Constant::getNullValue(And->getType()));
1726 }
1727
1728 // Transform (icmp pred iM (shl iM %v, N), CI)
1729 // -> (icmp pred i(M-N) (trunc %v iM to i(M-N)), (trunc (CI>>N))
1730 // Transform the shl to a trunc if (trunc (CI>>N)) has no loss and M-N.
1731 // This enables to get rid of the shift in favor of a trunc which can be
1732 // free on the target. It has the additional benefit of comparing to a
1733 // smaller constant, which will be target friendly.
1734 unsigned Amt = ShAmt->getLimitedValue(TypeBits-1);
1735 if (LHSI->hasOneUse() &&
1736 Amt != 0 && RHSV.countTrailingZeros() >= Amt) {
1737 Type *NTy = IntegerType::get(ICI.getContext(), TypeBits - Amt);
1738 Constant *NCI = ConstantExpr::getTrunc(
1739 ConstantExpr::getAShr(RHS,
1740 ConstantInt::get(RHS->getType(), Amt)),
1741 NTy);
1742 return new ICmpInst(ICI.getPredicate(),
1743 Builder->CreateTrunc(LHSI->getOperand(0), NTy),
1744 NCI);
1745 }
1746
1747 break;
1748 }
1749
1750 case Instruction::LShr: // (icmp pred (shr X, ShAmt), CI)
1751 case Instruction::AShr: {
1752 // Handle equality comparisons of shift-by-constant.
1753 BinaryOperator *BO = cast<BinaryOperator>(LHSI);
1754 if (ConstantInt *ShAmt = dyn_cast<ConstantInt>(LHSI->getOperand(1))) {
1755 if (Instruction *Res = FoldICmpShrCst(ICI, BO, ShAmt))
1756 return Res;
1757 }
1758
1759 // Handle exact shr's.
1760 if (ICI.isEquality() && BO->isExact() && BO->hasOneUse()) {
1761 if (RHSV.isMinValue())
1762 return new ICmpInst(ICI.getPredicate(), BO->getOperand(0), RHS);
1763 }
1764 break;
1765 }
1766
1767 case Instruction::SDiv:
1768 case Instruction::UDiv:
1769 // Fold: icmp pred ([us]div X, C1), C2 -> range test
1770 // Fold this div into the comparison, producing a range check.
1771 // Determine, based on the divide type, what the range is being
1772 // checked. If there is an overflow on the low or high side, remember
1773 // it, otherwise compute the range [low, hi) bounding the new value.
1774 // See: InsertRangeTest above for the kinds of replacements possible.
1775 if (ConstantInt *DivRHS = dyn_cast<ConstantInt>(LHSI->getOperand(1)))
1776 if (Instruction *R = FoldICmpDivCst(ICI, cast<BinaryOperator>(LHSI),
1777 DivRHS))
1778 return R;
1779 break;
1780
1781 case Instruction::Sub: {
1782 ConstantInt *LHSC = dyn_cast<ConstantInt>(LHSI->getOperand(0));
1783 if (!LHSC) break;
1784 const APInt &LHSV = LHSC->getValue();
1785
1786 // C1-X <u C2 -> (X|(C2-1)) == C1
1787 // iff C1 & (C2-1) == C2-1
1788 // C2 is a power of 2
1789 if (ICI.getPredicate() == ICmpInst::ICMP_ULT && LHSI->hasOneUse() &&
1790 RHSV.isPowerOf2() && (LHSV & (RHSV - 1)) == (RHSV - 1))
1791 return new ICmpInst(ICmpInst::ICMP_EQ,
1792 Builder->CreateOr(LHSI->getOperand(1), RHSV - 1),
1793 LHSC);
1794
1795 // C1-X >u C2 -> (X|C2) != C1
1796 // iff C1 & C2 == C2
1797 // C2+1 is a power of 2
1798 if (ICI.getPredicate() == ICmpInst::ICMP_UGT && LHSI->hasOneUse() &&
1799 (RHSV + 1).isPowerOf2() && (LHSV & RHSV) == RHSV)
1800 return new ICmpInst(ICmpInst::ICMP_NE,
1801 Builder->CreateOr(LHSI->getOperand(1), RHSV), LHSC);
1802 break;
1803 }
1804
1805 case Instruction::Add:
1806 // Fold: icmp pred (add X, C1), C2
1807 if (!ICI.isEquality()) {
1808 ConstantInt *LHSC = dyn_cast<ConstantInt>(LHSI->getOperand(1));
1809 if (!LHSC) break;
1810 const APInt &LHSV = LHSC->getValue();
1811
1812 ConstantRange CR = ICI.makeConstantRange(ICI.getPredicate(), RHSV)
1813 .subtract(LHSV);
1814
1815 if (ICI.isSigned()) {
1816 if (CR.getLower().isSignBit()) {
1817 return new ICmpInst(ICmpInst::ICMP_SLT, LHSI->getOperand(0),
1818 Builder->getInt(CR.getUpper()));
1819 } else if (CR.getUpper().isSignBit()) {
1820 return new ICmpInst(ICmpInst::ICMP_SGE, LHSI->getOperand(0),
1821 Builder->getInt(CR.getLower()));
1822 }
1823 } else {
1824 if (CR.getLower().isMinValue()) {
1825 return new ICmpInst(ICmpInst::ICMP_ULT, LHSI->getOperand(0),
1826 Builder->getInt(CR.getUpper()));
1827 } else if (CR.getUpper().isMinValue()) {
1828 return new ICmpInst(ICmpInst::ICMP_UGE, LHSI->getOperand(0),
1829 Builder->getInt(CR.getLower()));
1830 }
1831 }
1832
1833 // X-C1 <u C2 -> (X & -C2) == C1
1834 // iff C1 & (C2-1) == 0
1835 // C2 is a power of 2
1836 if (ICI.getPredicate() == ICmpInst::ICMP_ULT && LHSI->hasOneUse() &&
1837 RHSV.isPowerOf2() && (LHSV & (RHSV - 1)) == 0)
1838 return new ICmpInst(ICmpInst::ICMP_EQ,
1839 Builder->CreateAnd(LHSI->getOperand(0), -RHSV),
1840 ConstantExpr::getNeg(LHSC));
1841
1842 // X-C1 >u C2 -> (X & ~C2) != C1
1843 // iff C1 & C2 == 0
1844 // C2+1 is a power of 2
1845 if (ICI.getPredicate() == ICmpInst::ICMP_UGT && LHSI->hasOneUse() &&
1846 (RHSV + 1).isPowerOf2() && (LHSV & RHSV) == 0)
1847 return new ICmpInst(ICmpInst::ICMP_NE,
1848 Builder->CreateAnd(LHSI->getOperand(0), ~RHSV),
1849 ConstantExpr::getNeg(LHSC));
1850 }
1851 break;
1852 }
1853
1854 // Simplify icmp_eq and icmp_ne instructions with integer constant RHS.
1855 if (ICI.isEquality()) {
1856 bool isICMP_NE = ICI.getPredicate() == ICmpInst::ICMP_NE;
1857
1858 // If the first operand is (add|sub|and|or|xor|rem) with a constant, and
1859 // the second operand is a constant, simplify a bit.
1860 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(LHSI)) {
1861 switch (BO->getOpcode()) {
1862 case Instruction::SRem:
1863 // If we have a signed (X % (2^c)) == 0, turn it into an unsigned one.
1864 if (RHSV == 0 && isa<ConstantInt>(BO->getOperand(1)) &&BO->hasOneUse()){
1865 const APInt &V = cast<ConstantInt>(BO->getOperand(1))->getValue();
1866 if (V.sgt(1) && V.isPowerOf2()) {
1867 Value *NewRem =
1868 Builder->CreateURem(BO->getOperand(0), BO->getOperand(1),
1869 BO->getName());
1870 return new ICmpInst(ICI.getPredicate(), NewRem,
1871 Constant::getNullValue(BO->getType()));
1872 }
1873 }
1874 break;
1875 case Instruction::Add:
1876 // Replace ((add A, B) != C) with (A != C-B) if B & C are constants.
1877 if (ConstantInt *BOp1C = dyn_cast<ConstantInt>(BO->getOperand(1))) {
1878 if (BO->hasOneUse())
1879 return new ICmpInst(ICI.getPredicate(), BO->getOperand(0),
1880 ConstantExpr::getSub(RHS, BOp1C));
1881 } else if (RHSV == 0) {
1882 // Replace ((add A, B) != 0) with (A != -B) if A or B is
1883 // efficiently invertible, or if the add has just this one use.
1884 Value *BOp0 = BO->getOperand(0), *BOp1 = BO->getOperand(1);
1885
1886 if (Value *NegVal = dyn_castNegVal(BOp1))
1887 return new ICmpInst(ICI.getPredicate(), BOp0, NegVal);
1888 if (Value *NegVal = dyn_castNegVal(BOp0))
1889 return new ICmpInst(ICI.getPredicate(), NegVal, BOp1);
1890 if (BO->hasOneUse()) {
1891 Value *Neg = Builder->CreateNeg(BOp1);
1892 Neg->takeName(BO);
1893 return new ICmpInst(ICI.getPredicate(), BOp0, Neg);
1894 }
1895 }
1896 break;
1897 case Instruction::Xor:
1898 // For the xor case, we can xor two constants together, eliminating
1899 // the explicit xor.
1900 if (Constant *BOC = dyn_cast<Constant>(BO->getOperand(1))) {
1901 return new ICmpInst(ICI.getPredicate(), BO->getOperand(0),
1902 ConstantExpr::getXor(RHS, BOC));
1903 } else if (RHSV == 0) {
1904 // Replace ((xor A, B) != 0) with (A != B)
1905 return new ICmpInst(ICI.getPredicate(), BO->getOperand(0),
1906 BO->getOperand(1));
1907 }
1908 break;
1909 case Instruction::Sub:
1910 // Replace ((sub A, B) != C) with (B != A-C) if A & C are constants.
1911 if (ConstantInt *BOp0C = dyn_cast<ConstantInt>(BO->getOperand(0))) {
1912 if (BO->hasOneUse())
1913 return new ICmpInst(ICI.getPredicate(), BO->getOperand(1),
1914 ConstantExpr::getSub(BOp0C, RHS));
1915 } else if (RHSV == 0) {
1916 // Replace ((sub A, B) != 0) with (A != B)
1917 return new ICmpInst(ICI.getPredicate(), BO->getOperand(0),
1918 BO->getOperand(1));
1919 }
1920 break;
1921 case Instruction::Or:
1922 // If bits are being or'd in that are not present in the constant we
1923 // are comparing against, then the comparison could never succeed!
1924 if (ConstantInt *BOC = dyn_cast<ConstantInt>(BO->getOperand(1))) {
1925 Constant *NotCI = ConstantExpr::getNot(RHS);
1926 if (!ConstantExpr::getAnd(BOC, NotCI)->isNullValue())
1927 return ReplaceInstUsesWith(ICI, Builder->getInt1(isICMP_NE));
1928 }
1929 break;
1930
1931 case Instruction::And:
1932 if (ConstantInt *BOC = dyn_cast<ConstantInt>(BO->getOperand(1))) {
1933 // If bits are being compared against that are and'd out, then the
1934 // comparison can never succeed!
1935 if ((RHSV & ~BOC->getValue()) != 0)
1936 return ReplaceInstUsesWith(ICI, Builder->getInt1(isICMP_NE));
1937
1938 // If we have ((X & C) == C), turn it into ((X & C) != 0).
1939 if (RHS == BOC && RHSV.isPowerOf2())
1940 return new ICmpInst(isICMP_NE ? ICmpInst::ICMP_EQ :
1941 ICmpInst::ICMP_NE, LHSI,
1942 Constant::getNullValue(RHS->getType()));
1943
1944 // Don't perform the following transforms if the AND has multiple uses
1945 if (!BO->hasOneUse())
1946 break;
1947
1948 // Replace (and X, (1 << size(X)-1) != 0) with x s< 0
1949 if (BOC->getValue().isSignBit()) {
1950 Value *X = BO->getOperand(0);
1951 Constant *Zero = Constant::getNullValue(X->getType());
1952 ICmpInst::Predicate pred = isICMP_NE ?
1953 ICmpInst::ICMP_SLT : ICmpInst::ICMP_SGE;
1954 return new ICmpInst(pred, X, Zero);
1955 }
1956
1957 // ((X & ~7) == 0) --> X < 8
1958 if (RHSV == 0 && isHighOnes(BOC)) {
1959 Value *X = BO->getOperand(0);
1960 Constant *NegX = ConstantExpr::getNeg(BOC);
1961 ICmpInst::Predicate pred = isICMP_NE ?
1962 ICmpInst::ICMP_UGE : ICmpInst::ICMP_ULT;
1963 return new ICmpInst(pred, X, NegX);
1964 }
1965 }
1966 break;
1967 case Instruction::Mul:
1968 if (RHSV == 0 && BO->hasNoSignedWrap()) {
1969 if (ConstantInt *BOC = dyn_cast<ConstantInt>(BO->getOperand(1))) {
1970 // The trivial case (mul X, 0) is handled by InstSimplify
1971 // General case : (mul X, C) != 0 iff X != 0
1972 // (mul X, C) == 0 iff X == 0
1973 if (!BOC->isZero())
1974 return new ICmpInst(ICI.getPredicate(), BO->getOperand(0),
1975 Constant::getNullValue(RHS->getType()));
1976 }
1977 }
1978 break;
1979 default: break;
1980 }
1981 } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(LHSI)) {
1982 // Handle icmp {eq|ne} <intrinsic>, intcst.
1983 switch (II->getIntrinsicID()) {
1984 case Intrinsic::bswap:
1985 Worklist.Add(II);
1986 ICI.setOperand(0, II->getArgOperand(0));
1987 ICI.setOperand(1, Builder->getInt(RHSV.byteSwap()));
1988 return &ICI;
1989 case Intrinsic::ctlz:
1990 case Intrinsic::cttz:
1991 // ctz(A) == bitwidth(a) -> A == 0 and likewise for !=
1992 if (RHSV == RHS->getType()->getBitWidth()) {
1993 Worklist.Add(II);
1994 ICI.setOperand(0, II->getArgOperand(0));
1995 ICI.setOperand(1, ConstantInt::get(RHS->getType(), 0));
1996 return &ICI;
1997 }
1998 break;
1999 case Intrinsic::ctpop:
2000 // popcount(A) == 0 -> A == 0 and likewise for !=
2001 if (RHS->isZero()) {
2002 Worklist.Add(II);
2003 ICI.setOperand(0, II->getArgOperand(0));
2004 ICI.setOperand(1, RHS);
2005 return &ICI;
2006 }
2007 break;
2008 default:
2009 break;
2010 }
2011 }
2012 }
2013 return nullptr;
2014 }
2015
2016 /// visitICmpInstWithCastAndCast - Handle icmp (cast x to y), (cast/cst).
2017 /// We only handle extending casts so far.
2018 ///
visitICmpInstWithCastAndCast(ICmpInst & ICI)2019 Instruction *InstCombiner::visitICmpInstWithCastAndCast(ICmpInst &ICI) {
2020 const CastInst *LHSCI = cast<CastInst>(ICI.getOperand(0));
2021 Value *LHSCIOp = LHSCI->getOperand(0);
2022 Type *SrcTy = LHSCIOp->getType();
2023 Type *DestTy = LHSCI->getType();
2024 Value *RHSCIOp;
2025
2026 // Turn icmp (ptrtoint x), (ptrtoint/c) into a compare of the input if the
2027 // integer type is the same size as the pointer type.
2028 if (LHSCI->getOpcode() == Instruction::PtrToInt &&
2029 DL.getPointerTypeSizeInBits(SrcTy) == DestTy->getIntegerBitWidth()) {
2030 Value *RHSOp = nullptr;
2031 if (PtrToIntOperator *RHSC = dyn_cast<PtrToIntOperator>(ICI.getOperand(1))) {
2032 Value *RHSCIOp = RHSC->getOperand(0);
2033 if (RHSCIOp->getType()->getPointerAddressSpace() ==
2034 LHSCIOp->getType()->getPointerAddressSpace()) {
2035 RHSOp = RHSC->getOperand(0);
2036 // If the pointer types don't match, insert a bitcast.
2037 if (LHSCIOp->getType() != RHSOp->getType())
2038 RHSOp = Builder->CreateBitCast(RHSOp, LHSCIOp->getType());
2039 }
2040 } else if (Constant *RHSC = dyn_cast<Constant>(ICI.getOperand(1)))
2041 RHSOp = ConstantExpr::getIntToPtr(RHSC, SrcTy);
2042
2043 if (RHSOp)
2044 return new ICmpInst(ICI.getPredicate(), LHSCIOp, RHSOp);
2045 }
2046
2047 // The code below only handles extension cast instructions, so far.
2048 // Enforce this.
2049 if (LHSCI->getOpcode() != Instruction::ZExt &&
2050 LHSCI->getOpcode() != Instruction::SExt)
2051 return nullptr;
2052
2053 bool isSignedExt = LHSCI->getOpcode() == Instruction::SExt;
2054 bool isSignedCmp = ICI.isSigned();
2055
2056 if (CastInst *CI = dyn_cast<CastInst>(ICI.getOperand(1))) {
2057 // Not an extension from the same type?
2058 RHSCIOp = CI->getOperand(0);
2059 if (RHSCIOp->getType() != LHSCIOp->getType())
2060 return nullptr;
2061
2062 // If the signedness of the two casts doesn't agree (i.e. one is a sext
2063 // and the other is a zext), then we can't handle this.
2064 if (CI->getOpcode() != LHSCI->getOpcode())
2065 return nullptr;
2066
2067 // Deal with equality cases early.
2068 if (ICI.isEquality())
2069 return new ICmpInst(ICI.getPredicate(), LHSCIOp, RHSCIOp);
2070
2071 // A signed comparison of sign extended values simplifies into a
2072 // signed comparison.
2073 if (isSignedCmp && isSignedExt)
2074 return new ICmpInst(ICI.getPredicate(), LHSCIOp, RHSCIOp);
2075
2076 // The other three cases all fold into an unsigned comparison.
2077 return new ICmpInst(ICI.getUnsignedPredicate(), LHSCIOp, RHSCIOp);
2078 }
2079
2080 // If we aren't dealing with a constant on the RHS, exit early
2081 ConstantInt *CI = dyn_cast<ConstantInt>(ICI.getOperand(1));
2082 if (!CI)
2083 return nullptr;
2084
2085 // Compute the constant that would happen if we truncated to SrcTy then
2086 // reextended to DestTy.
2087 Constant *Res1 = ConstantExpr::getTrunc(CI, SrcTy);
2088 Constant *Res2 = ConstantExpr::getCast(LHSCI->getOpcode(),
2089 Res1, DestTy);
2090
2091 // If the re-extended constant didn't change...
2092 if (Res2 == CI) {
2093 // Deal with equality cases early.
2094 if (ICI.isEquality())
2095 return new ICmpInst(ICI.getPredicate(), LHSCIOp, Res1);
2096
2097 // A signed comparison of sign extended values simplifies into a
2098 // signed comparison.
2099 if (isSignedExt && isSignedCmp)
2100 return new ICmpInst(ICI.getPredicate(), LHSCIOp, Res1);
2101
2102 // The other three cases all fold into an unsigned comparison.
2103 return new ICmpInst(ICI.getUnsignedPredicate(), LHSCIOp, Res1);
2104 }
2105
2106 // The re-extended constant changed so the constant cannot be represented
2107 // in the shorter type. Consequently, we cannot emit a simple comparison.
2108 // All the cases that fold to true or false will have already been handled
2109 // by SimplifyICmpInst, so only deal with the tricky case.
2110
2111 if (isSignedCmp || !isSignedExt)
2112 return nullptr;
2113
2114 // Evaluate the comparison for LT (we invert for GT below). LE and GE cases
2115 // should have been folded away previously and not enter in here.
2116
2117 // We're performing an unsigned comp with a sign extended value.
2118 // This is true if the input is >= 0. [aka >s -1]
2119 Constant *NegOne = Constant::getAllOnesValue(SrcTy);
2120 Value *Result = Builder->CreateICmpSGT(LHSCIOp, NegOne, ICI.getName());
2121
2122 // Finally, return the value computed.
2123 if (ICI.getPredicate() == ICmpInst::ICMP_ULT)
2124 return ReplaceInstUsesWith(ICI, Result);
2125
2126 assert(ICI.getPredicate() == ICmpInst::ICMP_UGT && "ICmp should be folded!");
2127 return BinaryOperator::CreateNot(Result);
2128 }
2129
2130 /// ProcessUGT_ADDCST_ADD - The caller has matched a pattern of the form:
2131 /// I = icmp ugt (add (add A, B), CI2), CI1
2132 /// If this is of the form:
2133 /// sum = a + b
2134 /// if (sum+128 >u 255)
2135 /// Then replace it with llvm.sadd.with.overflow.i8.
2136 ///
ProcessUGT_ADDCST_ADD(ICmpInst & I,Value * A,Value * B,ConstantInt * CI2,ConstantInt * CI1,InstCombiner & IC)2137 static Instruction *ProcessUGT_ADDCST_ADD(ICmpInst &I, Value *A, Value *B,
2138 ConstantInt *CI2, ConstantInt *CI1,
2139 InstCombiner &IC) {
2140 // The transformation we're trying to do here is to transform this into an
2141 // llvm.sadd.with.overflow. To do this, we have to replace the original add
2142 // with a narrower add, and discard the add-with-constant that is part of the
2143 // range check (if we can't eliminate it, this isn't profitable).
2144
2145 // In order to eliminate the add-with-constant, the compare can be its only
2146 // use.
2147 Instruction *AddWithCst = cast<Instruction>(I.getOperand(0));
2148 if (!AddWithCst->hasOneUse()) return nullptr;
2149
2150 // If CI2 is 2^7, 2^15, 2^31, then it might be an sadd.with.overflow.
2151 if (!CI2->getValue().isPowerOf2()) return nullptr;
2152 unsigned NewWidth = CI2->getValue().countTrailingZeros();
2153 if (NewWidth != 7 && NewWidth != 15 && NewWidth != 31) return nullptr;
2154
2155 // The width of the new add formed is 1 more than the bias.
2156 ++NewWidth;
2157
2158 // Check to see that CI1 is an all-ones value with NewWidth bits.
2159 if (CI1->getBitWidth() == NewWidth ||
2160 CI1->getValue() != APInt::getLowBitsSet(CI1->getBitWidth(), NewWidth))
2161 return nullptr;
2162
2163 // This is only really a signed overflow check if the inputs have been
2164 // sign-extended; check for that condition. For example, if CI2 is 2^31 and
2165 // the operands of the add are 64 bits wide, we need at least 33 sign bits.
2166 unsigned NeededSignBits = CI1->getBitWidth() - NewWidth + 1;
2167 if (IC.ComputeNumSignBits(A, 0, &I) < NeededSignBits ||
2168 IC.ComputeNumSignBits(B, 0, &I) < NeededSignBits)
2169 return nullptr;
2170
2171 // In order to replace the original add with a narrower
2172 // llvm.sadd.with.overflow, the only uses allowed are the add-with-constant
2173 // and truncates that discard the high bits of the add. Verify that this is
2174 // the case.
2175 Instruction *OrigAdd = cast<Instruction>(AddWithCst->getOperand(0));
2176 for (User *U : OrigAdd->users()) {
2177 if (U == AddWithCst) continue;
2178
2179 // Only accept truncates for now. We would really like a nice recursive
2180 // predicate like SimplifyDemandedBits, but which goes downwards the use-def
2181 // chain to see which bits of a value are actually demanded. If the
2182 // original add had another add which was then immediately truncated, we
2183 // could still do the transformation.
2184 TruncInst *TI = dyn_cast<TruncInst>(U);
2185 if (!TI || TI->getType()->getPrimitiveSizeInBits() > NewWidth)
2186 return nullptr;
2187 }
2188
2189 // If the pattern matches, truncate the inputs to the narrower type and
2190 // use the sadd_with_overflow intrinsic to efficiently compute both the
2191 // result and the overflow bit.
2192 Type *NewType = IntegerType::get(OrigAdd->getContext(), NewWidth);
2193 Value *F = Intrinsic::getDeclaration(I.getModule(),
2194 Intrinsic::sadd_with_overflow, NewType);
2195
2196 InstCombiner::BuilderTy *Builder = IC.Builder;
2197
2198 // Put the new code above the original add, in case there are any uses of the
2199 // add between the add and the compare.
2200 Builder->SetInsertPoint(OrigAdd);
2201
2202 Value *TruncA = Builder->CreateTrunc(A, NewType, A->getName()+".trunc");
2203 Value *TruncB = Builder->CreateTrunc(B, NewType, B->getName()+".trunc");
2204 CallInst *Call = Builder->CreateCall(F, {TruncA, TruncB}, "sadd");
2205 Value *Add = Builder->CreateExtractValue(Call, 0, "sadd.result");
2206 Value *ZExt = Builder->CreateZExt(Add, OrigAdd->getType());
2207
2208 // The inner add was the result of the narrow add, zero extended to the
2209 // wider type. Replace it with the result computed by the intrinsic.
2210 IC.ReplaceInstUsesWith(*OrigAdd, ZExt);
2211
2212 // The original icmp gets replaced with the overflow value.
2213 return ExtractValueInst::Create(Call, 1, "sadd.overflow");
2214 }
2215
OptimizeOverflowCheck(OverflowCheckFlavor OCF,Value * LHS,Value * RHS,Instruction & OrigI,Value * & Result,Constant * & Overflow)2216 bool InstCombiner::OptimizeOverflowCheck(OverflowCheckFlavor OCF, Value *LHS,
2217 Value *RHS, Instruction &OrigI,
2218 Value *&Result, Constant *&Overflow) {
2219 if (OrigI.isCommutative() && isa<Constant>(LHS) && !isa<Constant>(RHS))
2220 std::swap(LHS, RHS);
2221
2222 auto SetResult = [&](Value *OpResult, Constant *OverflowVal, bool ReuseName) {
2223 Result = OpResult;
2224 Overflow = OverflowVal;
2225 if (ReuseName)
2226 Result->takeName(&OrigI);
2227 return true;
2228 };
2229
2230 // If the overflow check was an add followed by a compare, the insertion point
2231 // may be pointing to the compare. We want to insert the new instructions
2232 // before the add in case there are uses of the add between the add and the
2233 // compare.
2234 Builder->SetInsertPoint(&OrigI);
2235
2236 switch (OCF) {
2237 case OCF_INVALID:
2238 llvm_unreachable("bad overflow check kind!");
2239
2240 case OCF_UNSIGNED_ADD: {
2241 OverflowResult OR = computeOverflowForUnsignedAdd(LHS, RHS, &OrigI);
2242 if (OR == OverflowResult::NeverOverflows)
2243 return SetResult(Builder->CreateNUWAdd(LHS, RHS), Builder->getFalse(),
2244 true);
2245
2246 if (OR == OverflowResult::AlwaysOverflows)
2247 return SetResult(Builder->CreateAdd(LHS, RHS), Builder->getTrue(), true);
2248 }
2249 // FALL THROUGH uadd into sadd
2250 case OCF_SIGNED_ADD: {
2251 // X + 0 -> {X, false}
2252 if (match(RHS, m_Zero()))
2253 return SetResult(LHS, Builder->getFalse(), false);
2254
2255 // We can strength reduce this signed add into a regular add if we can prove
2256 // that it will never overflow.
2257 if (OCF == OCF_SIGNED_ADD)
2258 if (WillNotOverflowSignedAdd(LHS, RHS, OrigI))
2259 return SetResult(Builder->CreateNSWAdd(LHS, RHS), Builder->getFalse(),
2260 true);
2261 break;
2262 }
2263
2264 case OCF_UNSIGNED_SUB:
2265 case OCF_SIGNED_SUB: {
2266 // X - 0 -> {X, false}
2267 if (match(RHS, m_Zero()))
2268 return SetResult(LHS, Builder->getFalse(), false);
2269
2270 if (OCF == OCF_SIGNED_SUB) {
2271 if (WillNotOverflowSignedSub(LHS, RHS, OrigI))
2272 return SetResult(Builder->CreateNSWSub(LHS, RHS), Builder->getFalse(),
2273 true);
2274 } else {
2275 if (WillNotOverflowUnsignedSub(LHS, RHS, OrigI))
2276 return SetResult(Builder->CreateNUWSub(LHS, RHS), Builder->getFalse(),
2277 true);
2278 }
2279 break;
2280 }
2281
2282 case OCF_UNSIGNED_MUL: {
2283 OverflowResult OR = computeOverflowForUnsignedMul(LHS, RHS, &OrigI);
2284 if (OR == OverflowResult::NeverOverflows)
2285 return SetResult(Builder->CreateNUWMul(LHS, RHS), Builder->getFalse(),
2286 true);
2287 if (OR == OverflowResult::AlwaysOverflows)
2288 return SetResult(Builder->CreateMul(LHS, RHS), Builder->getTrue(), true);
2289 } // FALL THROUGH
2290 case OCF_SIGNED_MUL:
2291 // X * undef -> undef
2292 if (isa<UndefValue>(RHS))
2293 return SetResult(RHS, UndefValue::get(Builder->getInt1Ty()), false);
2294
2295 // X * 0 -> {0, false}
2296 if (match(RHS, m_Zero()))
2297 return SetResult(RHS, Builder->getFalse(), false);
2298
2299 // X * 1 -> {X, false}
2300 if (match(RHS, m_One()))
2301 return SetResult(LHS, Builder->getFalse(), false);
2302
2303 if (OCF == OCF_SIGNED_MUL)
2304 if (WillNotOverflowSignedMul(LHS, RHS, OrigI))
2305 return SetResult(Builder->CreateNSWMul(LHS, RHS), Builder->getFalse(),
2306 true);
2307 break;
2308 }
2309
2310 return false;
2311 }
2312
2313 /// \brief Recognize and process idiom involving test for multiplication
2314 /// overflow.
2315 ///
2316 /// The caller has matched a pattern of the form:
2317 /// I = cmp u (mul(zext A, zext B), V
2318 /// The function checks if this is a test for overflow and if so replaces
2319 /// multiplication with call to 'mul.with.overflow' intrinsic.
2320 ///
2321 /// \param I Compare instruction.
2322 /// \param MulVal Result of 'mult' instruction. It is one of the arguments of
2323 /// the compare instruction. Must be of integer type.
2324 /// \param OtherVal The other argument of compare instruction.
2325 /// \returns Instruction which must replace the compare instruction, NULL if no
2326 /// replacement required.
ProcessUMulZExtIdiom(ICmpInst & I,Value * MulVal,Value * OtherVal,InstCombiner & IC)2327 static Instruction *ProcessUMulZExtIdiom(ICmpInst &I, Value *MulVal,
2328 Value *OtherVal, InstCombiner &IC) {
2329 // Don't bother doing this transformation for pointers, don't do it for
2330 // vectors.
2331 if (!isa<IntegerType>(MulVal->getType()))
2332 return nullptr;
2333
2334 assert(I.getOperand(0) == MulVal || I.getOperand(1) == MulVal);
2335 assert(I.getOperand(0) == OtherVal || I.getOperand(1) == OtherVal);
2336 auto *MulInstr = dyn_cast<Instruction>(MulVal);
2337 if (!MulInstr)
2338 return nullptr;
2339 assert(MulInstr->getOpcode() == Instruction::Mul);
2340
2341 auto *LHS = cast<ZExtOperator>(MulInstr->getOperand(0)),
2342 *RHS = cast<ZExtOperator>(MulInstr->getOperand(1));
2343 assert(LHS->getOpcode() == Instruction::ZExt);
2344 assert(RHS->getOpcode() == Instruction::ZExt);
2345 Value *A = LHS->getOperand(0), *B = RHS->getOperand(0);
2346
2347 // Calculate type and width of the result produced by mul.with.overflow.
2348 Type *TyA = A->getType(), *TyB = B->getType();
2349 unsigned WidthA = TyA->getPrimitiveSizeInBits(),
2350 WidthB = TyB->getPrimitiveSizeInBits();
2351 unsigned MulWidth;
2352 Type *MulType;
2353 if (WidthB > WidthA) {
2354 MulWidth = WidthB;
2355 MulType = TyB;
2356 } else {
2357 MulWidth = WidthA;
2358 MulType = TyA;
2359 }
2360
2361 // In order to replace the original mul with a narrower mul.with.overflow,
2362 // all uses must ignore upper bits of the product. The number of used low
2363 // bits must be not greater than the width of mul.with.overflow.
2364 if (MulVal->hasNUsesOrMore(2))
2365 for (User *U : MulVal->users()) {
2366 if (U == &I)
2367 continue;
2368 if (TruncInst *TI = dyn_cast<TruncInst>(U)) {
2369 // Check if truncation ignores bits above MulWidth.
2370 unsigned TruncWidth = TI->getType()->getPrimitiveSizeInBits();
2371 if (TruncWidth > MulWidth)
2372 return nullptr;
2373 } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U)) {
2374 // Check if AND ignores bits above MulWidth.
2375 if (BO->getOpcode() != Instruction::And)
2376 return nullptr;
2377 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->getOperand(1))) {
2378 const APInt &CVal = CI->getValue();
2379 if (CVal.getBitWidth() - CVal.countLeadingZeros() > MulWidth)
2380 return nullptr;
2381 }
2382 } else {
2383 // Other uses prohibit this transformation.
2384 return nullptr;
2385 }
2386 }
2387
2388 // Recognize patterns
2389 switch (I.getPredicate()) {
2390 case ICmpInst::ICMP_EQ:
2391 case ICmpInst::ICMP_NE:
2392 // Recognize pattern:
2393 // mulval = mul(zext A, zext B)
2394 // cmp eq/neq mulval, zext trunc mulval
2395 if (ZExtInst *Zext = dyn_cast<ZExtInst>(OtherVal))
2396 if (Zext->hasOneUse()) {
2397 Value *ZextArg = Zext->getOperand(0);
2398 if (TruncInst *Trunc = dyn_cast<TruncInst>(ZextArg))
2399 if (Trunc->getType()->getPrimitiveSizeInBits() == MulWidth)
2400 break; //Recognized
2401 }
2402
2403 // Recognize pattern:
2404 // mulval = mul(zext A, zext B)
2405 // cmp eq/neq mulval, and(mulval, mask), mask selects low MulWidth bits.
2406 ConstantInt *CI;
2407 Value *ValToMask;
2408 if (match(OtherVal, m_And(m_Value(ValToMask), m_ConstantInt(CI)))) {
2409 if (ValToMask != MulVal)
2410 return nullptr;
2411 const APInt &CVal = CI->getValue() + 1;
2412 if (CVal.isPowerOf2()) {
2413 unsigned MaskWidth = CVal.logBase2();
2414 if (MaskWidth == MulWidth)
2415 break; // Recognized
2416 }
2417 }
2418 return nullptr;
2419
2420 case ICmpInst::ICMP_UGT:
2421 // Recognize pattern:
2422 // mulval = mul(zext A, zext B)
2423 // cmp ugt mulval, max
2424 if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) {
2425 APInt MaxVal = APInt::getMaxValue(MulWidth);
2426 MaxVal = MaxVal.zext(CI->getBitWidth());
2427 if (MaxVal.eq(CI->getValue()))
2428 break; // Recognized
2429 }
2430 return nullptr;
2431
2432 case ICmpInst::ICMP_UGE:
2433 // Recognize pattern:
2434 // mulval = mul(zext A, zext B)
2435 // cmp uge mulval, max+1
2436 if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) {
2437 APInt MaxVal = APInt::getOneBitSet(CI->getBitWidth(), MulWidth);
2438 if (MaxVal.eq(CI->getValue()))
2439 break; // Recognized
2440 }
2441 return nullptr;
2442
2443 case ICmpInst::ICMP_ULE:
2444 // Recognize pattern:
2445 // mulval = mul(zext A, zext B)
2446 // cmp ule mulval, max
2447 if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) {
2448 APInt MaxVal = APInt::getMaxValue(MulWidth);
2449 MaxVal = MaxVal.zext(CI->getBitWidth());
2450 if (MaxVal.eq(CI->getValue()))
2451 break; // Recognized
2452 }
2453 return nullptr;
2454
2455 case ICmpInst::ICMP_ULT:
2456 // Recognize pattern:
2457 // mulval = mul(zext A, zext B)
2458 // cmp ule mulval, max + 1
2459 if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) {
2460 APInt MaxVal = APInt::getOneBitSet(CI->getBitWidth(), MulWidth);
2461 if (MaxVal.eq(CI->getValue()))
2462 break; // Recognized
2463 }
2464 return nullptr;
2465
2466 default:
2467 return nullptr;
2468 }
2469
2470 InstCombiner::BuilderTy *Builder = IC.Builder;
2471 Builder->SetInsertPoint(MulInstr);
2472
2473 // Replace: mul(zext A, zext B) --> mul.with.overflow(A, B)
2474 Value *MulA = A, *MulB = B;
2475 if (WidthA < MulWidth)
2476 MulA = Builder->CreateZExt(A, MulType);
2477 if (WidthB < MulWidth)
2478 MulB = Builder->CreateZExt(B, MulType);
2479 Value *F = Intrinsic::getDeclaration(I.getModule(),
2480 Intrinsic::umul_with_overflow, MulType);
2481 CallInst *Call = Builder->CreateCall(F, {MulA, MulB}, "umul");
2482 IC.Worklist.Add(MulInstr);
2483
2484 // If there are uses of mul result other than the comparison, we know that
2485 // they are truncation or binary AND. Change them to use result of
2486 // mul.with.overflow and adjust properly mask/size.
2487 if (MulVal->hasNUsesOrMore(2)) {
2488 Value *Mul = Builder->CreateExtractValue(Call, 0, "umul.value");
2489 for (User *U : MulVal->users()) {
2490 if (U == &I || U == OtherVal)
2491 continue;
2492 if (TruncInst *TI = dyn_cast<TruncInst>(U)) {
2493 if (TI->getType()->getPrimitiveSizeInBits() == MulWidth)
2494 IC.ReplaceInstUsesWith(*TI, Mul);
2495 else
2496 TI->setOperand(0, Mul);
2497 } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U)) {
2498 assert(BO->getOpcode() == Instruction::And);
2499 // Replace (mul & mask) --> zext (mul.with.overflow & short_mask)
2500 ConstantInt *CI = cast<ConstantInt>(BO->getOperand(1));
2501 APInt ShortMask = CI->getValue().trunc(MulWidth);
2502 Value *ShortAnd = Builder->CreateAnd(Mul, ShortMask);
2503 Instruction *Zext =
2504 cast<Instruction>(Builder->CreateZExt(ShortAnd, BO->getType()));
2505 IC.Worklist.Add(Zext);
2506 IC.ReplaceInstUsesWith(*BO, Zext);
2507 } else {
2508 llvm_unreachable("Unexpected Binary operation");
2509 }
2510 IC.Worklist.Add(cast<Instruction>(U));
2511 }
2512 }
2513 if (isa<Instruction>(OtherVal))
2514 IC.Worklist.Add(cast<Instruction>(OtherVal));
2515
2516 // The original icmp gets replaced with the overflow value, maybe inverted
2517 // depending on predicate.
2518 bool Inverse = false;
2519 switch (I.getPredicate()) {
2520 case ICmpInst::ICMP_NE:
2521 break;
2522 case ICmpInst::ICMP_EQ:
2523 Inverse = true;
2524 break;
2525 case ICmpInst::ICMP_UGT:
2526 case ICmpInst::ICMP_UGE:
2527 if (I.getOperand(0) == MulVal)
2528 break;
2529 Inverse = true;
2530 break;
2531 case ICmpInst::ICMP_ULT:
2532 case ICmpInst::ICMP_ULE:
2533 if (I.getOperand(1) == MulVal)
2534 break;
2535 Inverse = true;
2536 break;
2537 default:
2538 llvm_unreachable("Unexpected predicate");
2539 }
2540 if (Inverse) {
2541 Value *Res = Builder->CreateExtractValue(Call, 1);
2542 return BinaryOperator::CreateNot(Res);
2543 }
2544
2545 return ExtractValueInst::Create(Call, 1);
2546 }
2547
2548 // DemandedBitsLHSMask - When performing a comparison against a constant,
2549 // it is possible that not all the bits in the LHS are demanded. This helper
2550 // method computes the mask that IS demanded.
DemandedBitsLHSMask(ICmpInst & I,unsigned BitWidth,bool isSignCheck)2551 static APInt DemandedBitsLHSMask(ICmpInst &I,
2552 unsigned BitWidth, bool isSignCheck) {
2553 if (isSignCheck)
2554 return APInt::getSignBit(BitWidth);
2555
2556 ConstantInt *CI = dyn_cast<ConstantInt>(I.getOperand(1));
2557 if (!CI) return APInt::getAllOnesValue(BitWidth);
2558 const APInt &RHS = CI->getValue();
2559
2560 switch (I.getPredicate()) {
2561 // For a UGT comparison, we don't care about any bits that
2562 // correspond to the trailing ones of the comparand. The value of these
2563 // bits doesn't impact the outcome of the comparison, because any value
2564 // greater than the RHS must differ in a bit higher than these due to carry.
2565 case ICmpInst::ICMP_UGT: {
2566 unsigned trailingOnes = RHS.countTrailingOnes();
2567 APInt lowBitsSet = APInt::getLowBitsSet(BitWidth, trailingOnes);
2568 return ~lowBitsSet;
2569 }
2570
2571 // Similarly, for a ULT comparison, we don't care about the trailing zeros.
2572 // Any value less than the RHS must differ in a higher bit because of carries.
2573 case ICmpInst::ICMP_ULT: {
2574 unsigned trailingZeros = RHS.countTrailingZeros();
2575 APInt lowBitsSet = APInt::getLowBitsSet(BitWidth, trailingZeros);
2576 return ~lowBitsSet;
2577 }
2578
2579 default:
2580 return APInt::getAllOnesValue(BitWidth);
2581 }
2582 }
2583
2584 /// \brief Check if the order of \p Op0 and \p Op1 as operand in an ICmpInst
2585 /// should be swapped.
2586 /// The decision is based on how many times these two operands are reused
2587 /// as subtract operands and their positions in those instructions.
2588 /// The rational is that several architectures use the same instruction for
2589 /// both subtract and cmp, thus it is better if the order of those operands
2590 /// match.
2591 /// \return true if Op0 and Op1 should be swapped.
swapMayExposeCSEOpportunities(const Value * Op0,const Value * Op1)2592 static bool swapMayExposeCSEOpportunities(const Value * Op0,
2593 const Value * Op1) {
2594 // Filter out pointer value as those cannot appears directly in subtract.
2595 // FIXME: we may want to go through inttoptrs or bitcasts.
2596 if (Op0->getType()->isPointerTy())
2597 return false;
2598 // Count every uses of both Op0 and Op1 in a subtract.
2599 // Each time Op0 is the first operand, count -1: swapping is bad, the
2600 // subtract has already the same layout as the compare.
2601 // Each time Op0 is the second operand, count +1: swapping is good, the
2602 // subtract has a different layout as the compare.
2603 // At the end, if the benefit is greater than 0, Op0 should come second to
2604 // expose more CSE opportunities.
2605 int GlobalSwapBenefits = 0;
2606 for (const User *U : Op0->users()) {
2607 const BinaryOperator *BinOp = dyn_cast<BinaryOperator>(U);
2608 if (!BinOp || BinOp->getOpcode() != Instruction::Sub)
2609 continue;
2610 // If Op0 is the first argument, this is not beneficial to swap the
2611 // arguments.
2612 int LocalSwapBenefits = -1;
2613 unsigned Op1Idx = 1;
2614 if (BinOp->getOperand(Op1Idx) == Op0) {
2615 Op1Idx = 0;
2616 LocalSwapBenefits = 1;
2617 }
2618 if (BinOp->getOperand(Op1Idx) != Op1)
2619 continue;
2620 GlobalSwapBenefits += LocalSwapBenefits;
2621 }
2622 return GlobalSwapBenefits > 0;
2623 }
2624
2625 /// \brief Check that one use is in the same block as the definition and all
2626 /// other uses are in blocks dominated by a given block
2627 ///
2628 /// \param DI Definition
2629 /// \param UI Use
2630 /// \param DB Block that must dominate all uses of \p DI outside
2631 /// the parent block
2632 /// \return true when \p UI is the only use of \p DI in the parent block
2633 /// and all other uses of \p DI are in blocks dominated by \p DB.
2634 ///
dominatesAllUses(const Instruction * DI,const Instruction * UI,const BasicBlock * DB) const2635 bool InstCombiner::dominatesAllUses(const Instruction *DI,
2636 const Instruction *UI,
2637 const BasicBlock *DB) const {
2638 assert(DI && UI && "Instruction not defined\n");
2639 // ignore incomplete definitions
2640 if (!DI->getParent())
2641 return false;
2642 // DI and UI must be in the same block
2643 if (DI->getParent() != UI->getParent())
2644 return false;
2645 // Protect from self-referencing blocks
2646 if (DI->getParent() == DB)
2647 return false;
2648 // DominatorTree available?
2649 if (!DT)
2650 return false;
2651 for (const User *U : DI->users()) {
2652 auto *Usr = cast<Instruction>(U);
2653 if (Usr != UI && !DT->dominates(DB, Usr->getParent()))
2654 return false;
2655 }
2656 return true;
2657 }
2658
2659 ///
2660 /// true when the instruction sequence within a block is select-cmp-br.
2661 ///
isChainSelectCmpBranch(const SelectInst * SI)2662 static bool isChainSelectCmpBranch(const SelectInst *SI) {
2663 const BasicBlock *BB = SI->getParent();
2664 if (!BB)
2665 return false;
2666 auto *BI = dyn_cast_or_null<BranchInst>(BB->getTerminator());
2667 if (!BI || BI->getNumSuccessors() != 2)
2668 return false;
2669 auto *IC = dyn_cast<ICmpInst>(BI->getCondition());
2670 if (!IC || (IC->getOperand(0) != SI && IC->getOperand(1) != SI))
2671 return false;
2672 return true;
2673 }
2674
2675 ///
2676 /// \brief True when a select result is replaced by one of its operands
2677 /// in select-icmp sequence. This will eventually result in the elimination
2678 /// of the select.
2679 ///
2680 /// \param SI Select instruction
2681 /// \param Icmp Compare instruction
2682 /// \param SIOpd Operand that replaces the select
2683 ///
2684 /// Notes:
2685 /// - The replacement is global and requires dominator information
2686 /// - The caller is responsible for the actual replacement
2687 ///
2688 /// Example:
2689 ///
2690 /// entry:
2691 /// %4 = select i1 %3, %C* %0, %C* null
2692 /// %5 = icmp eq %C* %4, null
2693 /// br i1 %5, label %9, label %7
2694 /// ...
2695 /// ; <label>:7 ; preds = %entry
2696 /// %8 = getelementptr inbounds %C* %4, i64 0, i32 0
2697 /// ...
2698 ///
2699 /// can be transformed to
2700 ///
2701 /// %5 = icmp eq %C* %0, null
2702 /// %6 = select i1 %3, i1 %5, i1 true
2703 /// br i1 %6, label %9, label %7
2704 /// ...
2705 /// ; <label>:7 ; preds = %entry
2706 /// %8 = getelementptr inbounds %C* %0, i64 0, i32 0 // replace by %0!
2707 ///
2708 /// Similar when the first operand of the select is a constant or/and
2709 /// the compare is for not equal rather than equal.
2710 ///
2711 /// NOTE: The function is only called when the select and compare constants
2712 /// are equal, the optimization can work only for EQ predicates. This is not a
2713 /// major restriction since a NE compare should be 'normalized' to an equal
2714 /// compare, which usually happens in the combiner and test case
2715 /// select-cmp-br.ll
2716 /// checks for it.
replacedSelectWithOperand(SelectInst * SI,const ICmpInst * Icmp,const unsigned SIOpd)2717 bool InstCombiner::replacedSelectWithOperand(SelectInst *SI,
2718 const ICmpInst *Icmp,
2719 const unsigned SIOpd) {
2720 assert((SIOpd == 1 || SIOpd == 2) && "Invalid select operand!");
2721 if (isChainSelectCmpBranch(SI) && Icmp->getPredicate() == ICmpInst::ICMP_EQ) {
2722 BasicBlock *Succ = SI->getParent()->getTerminator()->getSuccessor(1);
2723 // The check for the unique predecessor is not the best that can be
2724 // done. But it protects efficiently against cases like when SI's
2725 // home block has two successors, Succ and Succ1, and Succ1 predecessor
2726 // of Succ. Then SI can't be replaced by SIOpd because the use that gets
2727 // replaced can be reached on either path. So the uniqueness check
2728 // guarantees that the path all uses of SI (outside SI's parent) are on
2729 // is disjoint from all other paths out of SI. But that information
2730 // is more expensive to compute, and the trade-off here is in favor
2731 // of compile-time.
2732 if (Succ->getUniquePredecessor() && dominatesAllUses(SI, Icmp, Succ)) {
2733 NumSel++;
2734 SI->replaceUsesOutsideBlock(SI->getOperand(SIOpd), SI->getParent());
2735 return true;
2736 }
2737 }
2738 return false;
2739 }
2740
visitICmpInst(ICmpInst & I)2741 Instruction *InstCombiner::visitICmpInst(ICmpInst &I) {
2742 bool Changed = false;
2743 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
2744 unsigned Op0Cplxity = getComplexity(Op0);
2745 unsigned Op1Cplxity = getComplexity(Op1);
2746
2747 /// Orders the operands of the compare so that they are listed from most
2748 /// complex to least complex. This puts constants before unary operators,
2749 /// before binary operators.
2750 if (Op0Cplxity < Op1Cplxity ||
2751 (Op0Cplxity == Op1Cplxity &&
2752 swapMayExposeCSEOpportunities(Op0, Op1))) {
2753 I.swapOperands();
2754 std::swap(Op0, Op1);
2755 Changed = true;
2756 }
2757
2758 if (Value *V =
2759 SimplifyICmpInst(I.getPredicate(), Op0, Op1, DL, TLI, DT, AC, &I))
2760 return ReplaceInstUsesWith(I, V);
2761
2762 // comparing -val or val with non-zero is the same as just comparing val
2763 // ie, abs(val) != 0 -> val != 0
2764 if (I.getPredicate() == ICmpInst::ICMP_NE && match(Op1, m_Zero()))
2765 {
2766 Value *Cond, *SelectTrue, *SelectFalse;
2767 if (match(Op0, m_Select(m_Value(Cond), m_Value(SelectTrue),
2768 m_Value(SelectFalse)))) {
2769 if (Value *V = dyn_castNegVal(SelectTrue)) {
2770 if (V == SelectFalse)
2771 return CmpInst::Create(Instruction::ICmp, I.getPredicate(), V, Op1);
2772 }
2773 else if (Value *V = dyn_castNegVal(SelectFalse)) {
2774 if (V == SelectTrue)
2775 return CmpInst::Create(Instruction::ICmp, I.getPredicate(), V, Op1);
2776 }
2777 }
2778 }
2779
2780 Type *Ty = Op0->getType();
2781
2782 // icmp's with boolean values can always be turned into bitwise operations
2783 if (Ty->isIntegerTy(1)) {
2784 switch (I.getPredicate()) {
2785 default: llvm_unreachable("Invalid icmp instruction!");
2786 case ICmpInst::ICMP_EQ: { // icmp eq i1 A, B -> ~(A^B)
2787 Value *Xor = Builder->CreateXor(Op0, Op1, I.getName()+"tmp");
2788 return BinaryOperator::CreateNot(Xor);
2789 }
2790 case ICmpInst::ICMP_NE: // icmp eq i1 A, B -> A^B
2791 return BinaryOperator::CreateXor(Op0, Op1);
2792
2793 case ICmpInst::ICMP_UGT:
2794 std::swap(Op0, Op1); // Change icmp ugt -> icmp ult
2795 // FALL THROUGH
2796 case ICmpInst::ICMP_ULT:{ // icmp ult i1 A, B -> ~A & B
2797 Value *Not = Builder->CreateNot(Op0, I.getName()+"tmp");
2798 return BinaryOperator::CreateAnd(Not, Op1);
2799 }
2800 case ICmpInst::ICMP_SGT:
2801 std::swap(Op0, Op1); // Change icmp sgt -> icmp slt
2802 // FALL THROUGH
2803 case ICmpInst::ICMP_SLT: { // icmp slt i1 A, B -> A & ~B
2804 Value *Not = Builder->CreateNot(Op1, I.getName()+"tmp");
2805 return BinaryOperator::CreateAnd(Not, Op0);
2806 }
2807 case ICmpInst::ICMP_UGE:
2808 std::swap(Op0, Op1); // Change icmp uge -> icmp ule
2809 // FALL THROUGH
2810 case ICmpInst::ICMP_ULE: { // icmp ule i1 A, B -> ~A | B
2811 Value *Not = Builder->CreateNot(Op0, I.getName()+"tmp");
2812 return BinaryOperator::CreateOr(Not, Op1);
2813 }
2814 case ICmpInst::ICMP_SGE:
2815 std::swap(Op0, Op1); // Change icmp sge -> icmp sle
2816 // FALL THROUGH
2817 case ICmpInst::ICMP_SLE: { // icmp sle i1 A, B -> A | ~B
2818 Value *Not = Builder->CreateNot(Op1, I.getName()+"tmp");
2819 return BinaryOperator::CreateOr(Not, Op0);
2820 }
2821 }
2822 }
2823
2824 unsigned BitWidth = 0;
2825 if (Ty->isIntOrIntVectorTy())
2826 BitWidth = Ty->getScalarSizeInBits();
2827 else // Get pointer size.
2828 BitWidth = DL.getTypeSizeInBits(Ty->getScalarType());
2829
2830 bool isSignBit = false;
2831
2832 // See if we are doing a comparison with a constant.
2833 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
2834 Value *A = nullptr, *B = nullptr;
2835
2836 // Match the following pattern, which is a common idiom when writing
2837 // overflow-safe integer arithmetic function. The source performs an
2838 // addition in wider type, and explicitly checks for overflow using
2839 // comparisons against INT_MIN and INT_MAX. Simplify this by using the
2840 // sadd_with_overflow intrinsic.
2841 //
2842 // TODO: This could probably be generalized to handle other overflow-safe
2843 // operations if we worked out the formulas to compute the appropriate
2844 // magic constants.
2845 //
2846 // sum = a + b
2847 // if (sum+128 >u 255) ... -> llvm.sadd.with.overflow.i8
2848 {
2849 ConstantInt *CI2; // I = icmp ugt (add (add A, B), CI2), CI
2850 if (I.getPredicate() == ICmpInst::ICMP_UGT &&
2851 match(Op0, m_Add(m_Add(m_Value(A), m_Value(B)), m_ConstantInt(CI2))))
2852 if (Instruction *Res = ProcessUGT_ADDCST_ADD(I, A, B, CI2, CI, *this))
2853 return Res;
2854 }
2855
2856 // The following transforms are only 'worth it' if the only user of the
2857 // subtraction is the icmp.
2858 if (Op0->hasOneUse()) {
2859 // (icmp ne/eq (sub A B) 0) -> (icmp ne/eq A, B)
2860 if (I.isEquality() && CI->isZero() &&
2861 match(Op0, m_Sub(m_Value(A), m_Value(B))))
2862 return new ICmpInst(I.getPredicate(), A, B);
2863
2864 // (icmp sgt (sub nsw A B), -1) -> (icmp sge A, B)
2865 if (I.getPredicate() == ICmpInst::ICMP_SGT && CI->isAllOnesValue() &&
2866 match(Op0, m_NSWSub(m_Value(A), m_Value(B))))
2867 return new ICmpInst(ICmpInst::ICMP_SGE, A, B);
2868
2869 // (icmp sgt (sub nsw A B), 0) -> (icmp sgt A, B)
2870 if (I.getPredicate() == ICmpInst::ICMP_SGT && CI->isZero() &&
2871 match(Op0, m_NSWSub(m_Value(A), m_Value(B))))
2872 return new ICmpInst(ICmpInst::ICMP_SGT, A, B);
2873
2874 // (icmp slt (sub nsw A B), 0) -> (icmp slt A, B)
2875 if (I.getPredicate() == ICmpInst::ICMP_SLT && CI->isZero() &&
2876 match(Op0, m_NSWSub(m_Value(A), m_Value(B))))
2877 return new ICmpInst(ICmpInst::ICMP_SLT, A, B);
2878
2879 // (icmp slt (sub nsw A B), 1) -> (icmp sle A, B)
2880 if (I.getPredicate() == ICmpInst::ICMP_SLT && CI->isOne() &&
2881 match(Op0, m_NSWSub(m_Value(A), m_Value(B))))
2882 return new ICmpInst(ICmpInst::ICMP_SLE, A, B);
2883 }
2884
2885 // If we have an icmp le or icmp ge instruction, turn it into the
2886 // appropriate icmp lt or icmp gt instruction. This allows us to rely on
2887 // them being folded in the code below. The SimplifyICmpInst code has
2888 // already handled the edge cases for us, so we just assert on them.
2889 switch (I.getPredicate()) {
2890 default: break;
2891 case ICmpInst::ICMP_ULE:
2892 assert(!CI->isMaxValue(false)); // A <=u MAX -> TRUE
2893 return new ICmpInst(ICmpInst::ICMP_ULT, Op0,
2894 Builder->getInt(CI->getValue()+1));
2895 case ICmpInst::ICMP_SLE:
2896 assert(!CI->isMaxValue(true)); // A <=s MAX -> TRUE
2897 return new ICmpInst(ICmpInst::ICMP_SLT, Op0,
2898 Builder->getInt(CI->getValue()+1));
2899 case ICmpInst::ICMP_UGE:
2900 assert(!CI->isMinValue(false)); // A >=u MIN -> TRUE
2901 return new ICmpInst(ICmpInst::ICMP_UGT, Op0,
2902 Builder->getInt(CI->getValue()-1));
2903 case ICmpInst::ICMP_SGE:
2904 assert(!CI->isMinValue(true)); // A >=s MIN -> TRUE
2905 return new ICmpInst(ICmpInst::ICMP_SGT, Op0,
2906 Builder->getInt(CI->getValue()-1));
2907 }
2908
2909 if (I.isEquality()) {
2910 ConstantInt *CI2;
2911 if (match(Op0, m_AShr(m_ConstantInt(CI2), m_Value(A))) ||
2912 match(Op0, m_LShr(m_ConstantInt(CI2), m_Value(A)))) {
2913 // (icmp eq/ne (ashr/lshr const2, A), const1)
2914 if (Instruction *Inst = FoldICmpCstShrCst(I, Op0, A, CI, CI2))
2915 return Inst;
2916 }
2917 if (match(Op0, m_Shl(m_ConstantInt(CI2), m_Value(A)))) {
2918 // (icmp eq/ne (shl const2, A), const1)
2919 if (Instruction *Inst = FoldICmpCstShlCst(I, Op0, A, CI, CI2))
2920 return Inst;
2921 }
2922 }
2923
2924 // If this comparison is a normal comparison, it demands all
2925 // bits, if it is a sign bit comparison, it only demands the sign bit.
2926 bool UnusedBit;
2927 isSignBit = isSignBitCheck(I.getPredicate(), CI, UnusedBit);
2928 }
2929
2930 // See if we can fold the comparison based on range information we can get
2931 // by checking whether bits are known to be zero or one in the input.
2932 if (BitWidth != 0) {
2933 APInt Op0KnownZero(BitWidth, 0), Op0KnownOne(BitWidth, 0);
2934 APInt Op1KnownZero(BitWidth, 0), Op1KnownOne(BitWidth, 0);
2935
2936 if (SimplifyDemandedBits(I.getOperandUse(0),
2937 DemandedBitsLHSMask(I, BitWidth, isSignBit),
2938 Op0KnownZero, Op0KnownOne, 0))
2939 return &I;
2940 if (SimplifyDemandedBits(I.getOperandUse(1),
2941 APInt::getAllOnesValue(BitWidth), Op1KnownZero,
2942 Op1KnownOne, 0))
2943 return &I;
2944
2945 // Given the known and unknown bits, compute a range that the LHS could be
2946 // in. Compute the Min, Max and RHS values based on the known bits. For the
2947 // EQ and NE we use unsigned values.
2948 APInt Op0Min(BitWidth, 0), Op0Max(BitWidth, 0);
2949 APInt Op1Min(BitWidth, 0), Op1Max(BitWidth, 0);
2950 if (I.isSigned()) {
2951 ComputeSignedMinMaxValuesFromKnownBits(Op0KnownZero, Op0KnownOne,
2952 Op0Min, Op0Max);
2953 ComputeSignedMinMaxValuesFromKnownBits(Op1KnownZero, Op1KnownOne,
2954 Op1Min, Op1Max);
2955 } else {
2956 ComputeUnsignedMinMaxValuesFromKnownBits(Op0KnownZero, Op0KnownOne,
2957 Op0Min, Op0Max);
2958 ComputeUnsignedMinMaxValuesFromKnownBits(Op1KnownZero, Op1KnownOne,
2959 Op1Min, Op1Max);
2960 }
2961
2962 // If Min and Max are known to be the same, then SimplifyDemandedBits
2963 // figured out that the LHS is a constant. Just constant fold this now so
2964 // that code below can assume that Min != Max.
2965 if (!isa<Constant>(Op0) && Op0Min == Op0Max)
2966 return new ICmpInst(I.getPredicate(),
2967 ConstantInt::get(Op0->getType(), Op0Min), Op1);
2968 if (!isa<Constant>(Op1) && Op1Min == Op1Max)
2969 return new ICmpInst(I.getPredicate(), Op0,
2970 ConstantInt::get(Op1->getType(), Op1Min));
2971
2972 // Based on the range information we know about the LHS, see if we can
2973 // simplify this comparison. For example, (x&4) < 8 is always true.
2974 switch (I.getPredicate()) {
2975 default: llvm_unreachable("Unknown icmp opcode!");
2976 case ICmpInst::ICMP_EQ: {
2977 if (Op0Max.ult(Op1Min) || Op0Min.ugt(Op1Max))
2978 return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
2979
2980 // If all bits are known zero except for one, then we know at most one
2981 // bit is set. If the comparison is against zero, then this is a check
2982 // to see if *that* bit is set.
2983 APInt Op0KnownZeroInverted = ~Op0KnownZero;
2984 if (~Op1KnownZero == 0) {
2985 // If the LHS is an AND with the same constant, look through it.
2986 Value *LHS = nullptr;
2987 ConstantInt *LHSC = nullptr;
2988 if (!match(Op0, m_And(m_Value(LHS), m_ConstantInt(LHSC))) ||
2989 LHSC->getValue() != Op0KnownZeroInverted)
2990 LHS = Op0;
2991
2992 // If the LHS is 1 << x, and we know the result is a power of 2 like 8,
2993 // then turn "((1 << x)&8) == 0" into "x != 3".
2994 // or turn "((1 << x)&7) == 0" into "x > 2".
2995 Value *X = nullptr;
2996 if (match(LHS, m_Shl(m_One(), m_Value(X)))) {
2997 APInt ValToCheck = Op0KnownZeroInverted;
2998 if (ValToCheck.isPowerOf2()) {
2999 unsigned CmpVal = ValToCheck.countTrailingZeros();
3000 return new ICmpInst(ICmpInst::ICMP_NE, X,
3001 ConstantInt::get(X->getType(), CmpVal));
3002 } else if ((++ValToCheck).isPowerOf2()) {
3003 unsigned CmpVal = ValToCheck.countTrailingZeros() - 1;
3004 return new ICmpInst(ICmpInst::ICMP_UGT, X,
3005 ConstantInt::get(X->getType(), CmpVal));
3006 }
3007 }
3008
3009 // If the LHS is 8 >>u x, and we know the result is a power of 2 like 1,
3010 // then turn "((8 >>u x)&1) == 0" into "x != 3".
3011 const APInt *CI;
3012 if (Op0KnownZeroInverted == 1 &&
3013 match(LHS, m_LShr(m_Power2(CI), m_Value(X))))
3014 return new ICmpInst(ICmpInst::ICMP_NE, X,
3015 ConstantInt::get(X->getType(),
3016 CI->countTrailingZeros()));
3017 }
3018 break;
3019 }
3020 case ICmpInst::ICMP_NE: {
3021 if (Op0Max.ult(Op1Min) || Op0Min.ugt(Op1Max))
3022 return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
3023
3024 // If all bits are known zero except for one, then we know at most one
3025 // bit is set. If the comparison is against zero, then this is a check
3026 // to see if *that* bit is set.
3027 APInt Op0KnownZeroInverted = ~Op0KnownZero;
3028 if (~Op1KnownZero == 0) {
3029 // If the LHS is an AND with the same constant, look through it.
3030 Value *LHS = nullptr;
3031 ConstantInt *LHSC = nullptr;
3032 if (!match(Op0, m_And(m_Value(LHS), m_ConstantInt(LHSC))) ||
3033 LHSC->getValue() != Op0KnownZeroInverted)
3034 LHS = Op0;
3035
3036 // If the LHS is 1 << x, and we know the result is a power of 2 like 8,
3037 // then turn "((1 << x)&8) != 0" into "x == 3".
3038 // or turn "((1 << x)&7) != 0" into "x < 3".
3039 Value *X = nullptr;
3040 if (match(LHS, m_Shl(m_One(), m_Value(X)))) {
3041 APInt ValToCheck = Op0KnownZeroInverted;
3042 if (ValToCheck.isPowerOf2()) {
3043 unsigned CmpVal = ValToCheck.countTrailingZeros();
3044 return new ICmpInst(ICmpInst::ICMP_EQ, X,
3045 ConstantInt::get(X->getType(), CmpVal));
3046 } else if ((++ValToCheck).isPowerOf2()) {
3047 unsigned CmpVal = ValToCheck.countTrailingZeros();
3048 return new ICmpInst(ICmpInst::ICMP_ULT, X,
3049 ConstantInt::get(X->getType(), CmpVal));
3050 }
3051 }
3052
3053 // If the LHS is 8 >>u x, and we know the result is a power of 2 like 1,
3054 // then turn "((8 >>u x)&1) != 0" into "x == 3".
3055 const APInt *CI;
3056 if (Op0KnownZeroInverted == 1 &&
3057 match(LHS, m_LShr(m_Power2(CI), m_Value(X))))
3058 return new ICmpInst(ICmpInst::ICMP_EQ, X,
3059 ConstantInt::get(X->getType(),
3060 CI->countTrailingZeros()));
3061 }
3062 break;
3063 }
3064 case ICmpInst::ICMP_ULT:
3065 if (Op0Max.ult(Op1Min)) // A <u B -> true if max(A) < min(B)
3066 return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
3067 if (Op0Min.uge(Op1Max)) // A <u B -> false if min(A) >= max(B)
3068 return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
3069 if (Op1Min == Op0Max) // A <u B -> A != B if max(A) == min(B)
3070 return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
3071 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
3072 if (Op1Max == Op0Min+1) // A <u C -> A == C-1 if min(A)+1 == C
3073 return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
3074 Builder->getInt(CI->getValue()-1));
3075
3076 // (x <u 2147483648) -> (x >s -1) -> true if sign bit clear
3077 if (CI->isMinValue(true))
3078 return new ICmpInst(ICmpInst::ICMP_SGT, Op0,
3079 Constant::getAllOnesValue(Op0->getType()));
3080 }
3081 break;
3082 case ICmpInst::ICMP_UGT:
3083 if (Op0Min.ugt(Op1Max)) // A >u B -> true if min(A) > max(B)
3084 return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
3085 if (Op0Max.ule(Op1Min)) // A >u B -> false if max(A) <= max(B)
3086 return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
3087
3088 if (Op1Max == Op0Min) // A >u B -> A != B if min(A) == max(B)
3089 return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
3090 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
3091 if (Op1Min == Op0Max-1) // A >u C -> A == C+1 if max(a)-1 == C
3092 return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
3093 Builder->getInt(CI->getValue()+1));
3094
3095 // (x >u 2147483647) -> (x <s 0) -> true if sign bit set
3096 if (CI->isMaxValue(true))
3097 return new ICmpInst(ICmpInst::ICMP_SLT, Op0,
3098 Constant::getNullValue(Op0->getType()));
3099 }
3100 break;
3101 case ICmpInst::ICMP_SLT:
3102 if (Op0Max.slt(Op1Min)) // A <s B -> true if max(A) < min(C)
3103 return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
3104 if (Op0Min.sge(Op1Max)) // A <s B -> false if min(A) >= max(C)
3105 return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
3106 if (Op1Min == Op0Max) // A <s B -> A != B if max(A) == min(B)
3107 return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
3108 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
3109 if (Op1Max == Op0Min+1) // A <s C -> A == C-1 if min(A)+1 == C
3110 return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
3111 Builder->getInt(CI->getValue()-1));
3112 }
3113 break;
3114 case ICmpInst::ICMP_SGT:
3115 if (Op0Min.sgt(Op1Max)) // A >s B -> true if min(A) > max(B)
3116 return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
3117 if (Op0Max.sle(Op1Min)) // A >s B -> false if max(A) <= min(B)
3118 return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
3119
3120 if (Op1Max == Op0Min) // A >s B -> A != B if min(A) == max(B)
3121 return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
3122 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
3123 if (Op1Min == Op0Max-1) // A >s C -> A == C+1 if max(A)-1 == C
3124 return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
3125 Builder->getInt(CI->getValue()+1));
3126 }
3127 break;
3128 case ICmpInst::ICMP_SGE:
3129 assert(!isa<ConstantInt>(Op1) && "ICMP_SGE with ConstantInt not folded!");
3130 if (Op0Min.sge(Op1Max)) // A >=s B -> true if min(A) >= max(B)
3131 return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
3132 if (Op0Max.slt(Op1Min)) // A >=s B -> false if max(A) < min(B)
3133 return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
3134 break;
3135 case ICmpInst::ICMP_SLE:
3136 assert(!isa<ConstantInt>(Op1) && "ICMP_SLE with ConstantInt not folded!");
3137 if (Op0Max.sle(Op1Min)) // A <=s B -> true if max(A) <= min(B)
3138 return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
3139 if (Op0Min.sgt(Op1Max)) // A <=s B -> false if min(A) > max(B)
3140 return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
3141 break;
3142 case ICmpInst::ICMP_UGE:
3143 assert(!isa<ConstantInt>(Op1) && "ICMP_UGE with ConstantInt not folded!");
3144 if (Op0Min.uge(Op1Max)) // A >=u B -> true if min(A) >= max(B)
3145 return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
3146 if (Op0Max.ult(Op1Min)) // A >=u B -> false if max(A) < min(B)
3147 return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
3148 break;
3149 case ICmpInst::ICMP_ULE:
3150 assert(!isa<ConstantInt>(Op1) && "ICMP_ULE with ConstantInt not folded!");
3151 if (Op0Max.ule(Op1Min)) // A <=u B -> true if max(A) <= min(B)
3152 return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
3153 if (Op0Min.ugt(Op1Max)) // A <=u B -> false if min(A) > max(B)
3154 return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
3155 break;
3156 }
3157
3158 // Turn a signed comparison into an unsigned one if both operands
3159 // are known to have the same sign.
3160 if (I.isSigned() &&
3161 ((Op0KnownZero.isNegative() && Op1KnownZero.isNegative()) ||
3162 (Op0KnownOne.isNegative() && Op1KnownOne.isNegative())))
3163 return new ICmpInst(I.getUnsignedPredicate(), Op0, Op1);
3164 }
3165
3166 // Test if the ICmpInst instruction is used exclusively by a select as
3167 // part of a minimum or maximum operation. If so, refrain from doing
3168 // any other folding. This helps out other analyses which understand
3169 // non-obfuscated minimum and maximum idioms, such as ScalarEvolution
3170 // and CodeGen. And in this case, at least one of the comparison
3171 // operands has at least one user besides the compare (the select),
3172 // which would often largely negate the benefit of folding anyway.
3173 if (I.hasOneUse())
3174 if (SelectInst *SI = dyn_cast<SelectInst>(*I.user_begin()))
3175 if ((SI->getOperand(1) == Op0 && SI->getOperand(2) == Op1) ||
3176 (SI->getOperand(2) == Op0 && SI->getOperand(1) == Op1))
3177 return nullptr;
3178
3179 // See if we are doing a comparison between a constant and an instruction that
3180 // can be folded into the comparison.
3181 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
3182 // Since the RHS is a ConstantInt (CI), if the left hand side is an
3183 // instruction, see if that instruction also has constants so that the
3184 // instruction can be folded into the icmp
3185 if (Instruction *LHSI = dyn_cast<Instruction>(Op0))
3186 if (Instruction *Res = visitICmpInstWithInstAndIntCst(I, LHSI, CI))
3187 return Res;
3188 }
3189
3190 // Handle icmp with constant (but not simple integer constant) RHS
3191 if (Constant *RHSC = dyn_cast<Constant>(Op1)) {
3192 if (Instruction *LHSI = dyn_cast<Instruction>(Op0))
3193 switch (LHSI->getOpcode()) {
3194 case Instruction::GetElementPtr:
3195 // icmp pred GEP (P, int 0, int 0, int 0), null -> icmp pred P, null
3196 if (RHSC->isNullValue() &&
3197 cast<GetElementPtrInst>(LHSI)->hasAllZeroIndices())
3198 return new ICmpInst(I.getPredicate(), LHSI->getOperand(0),
3199 Constant::getNullValue(LHSI->getOperand(0)->getType()));
3200 break;
3201 case Instruction::PHI:
3202 // Only fold icmp into the PHI if the phi and icmp are in the same
3203 // block. If in the same block, we're encouraging jump threading. If
3204 // not, we are just pessimizing the code by making an i1 phi.
3205 if (LHSI->getParent() == I.getParent())
3206 if (Instruction *NV = FoldOpIntoPhi(I))
3207 return NV;
3208 break;
3209 case Instruction::Select: {
3210 // If either operand of the select is a constant, we can fold the
3211 // comparison into the select arms, which will cause one to be
3212 // constant folded and the select turned into a bitwise or.
3213 Value *Op1 = nullptr, *Op2 = nullptr;
3214 ConstantInt *CI = nullptr;
3215 if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(1))) {
3216 Op1 = ConstantExpr::getICmp(I.getPredicate(), C, RHSC);
3217 CI = dyn_cast<ConstantInt>(Op1);
3218 }
3219 if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(2))) {
3220 Op2 = ConstantExpr::getICmp(I.getPredicate(), C, RHSC);
3221 CI = dyn_cast<ConstantInt>(Op2);
3222 }
3223
3224 // We only want to perform this transformation if it will not lead to
3225 // additional code. This is true if either both sides of the select
3226 // fold to a constant (in which case the icmp is replaced with a select
3227 // which will usually simplify) or this is the only user of the
3228 // select (in which case we are trading a select+icmp for a simpler
3229 // select+icmp) or all uses of the select can be replaced based on
3230 // dominance information ("Global cases").
3231 bool Transform = false;
3232 if (Op1 && Op2)
3233 Transform = true;
3234 else if (Op1 || Op2) {
3235 // Local case
3236 if (LHSI->hasOneUse())
3237 Transform = true;
3238 // Global cases
3239 else if (CI && !CI->isZero())
3240 // When Op1 is constant try replacing select with second operand.
3241 // Otherwise Op2 is constant and try replacing select with first
3242 // operand.
3243 Transform = replacedSelectWithOperand(cast<SelectInst>(LHSI), &I,
3244 Op1 ? 2 : 1);
3245 }
3246 if (Transform) {
3247 if (!Op1)
3248 Op1 = Builder->CreateICmp(I.getPredicate(), LHSI->getOperand(1),
3249 RHSC, I.getName());
3250 if (!Op2)
3251 Op2 = Builder->CreateICmp(I.getPredicate(), LHSI->getOperand(2),
3252 RHSC, I.getName());
3253 return SelectInst::Create(LHSI->getOperand(0), Op1, Op2);
3254 }
3255 break;
3256 }
3257 case Instruction::IntToPtr:
3258 // icmp pred inttoptr(X), null -> icmp pred X, 0
3259 if (RHSC->isNullValue() &&
3260 DL.getIntPtrType(RHSC->getType()) == LHSI->getOperand(0)->getType())
3261 return new ICmpInst(I.getPredicate(), LHSI->getOperand(0),
3262 Constant::getNullValue(LHSI->getOperand(0)->getType()));
3263 break;
3264
3265 case Instruction::Load:
3266 // Try to optimize things like "A[i] > 4" to index computations.
3267 if (GetElementPtrInst *GEP =
3268 dyn_cast<GetElementPtrInst>(LHSI->getOperand(0))) {
3269 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)))
3270 if (GV->isConstant() && GV->hasDefinitiveInitializer() &&
3271 !cast<LoadInst>(LHSI)->isVolatile())
3272 if (Instruction *Res = FoldCmpLoadFromIndexedGlobal(GEP, GV, I))
3273 return Res;
3274 }
3275 break;
3276 }
3277 }
3278
3279 // If we can optimize a 'icmp GEP, P' or 'icmp P, GEP', do so now.
3280 if (GEPOperator *GEP = dyn_cast<GEPOperator>(Op0))
3281 if (Instruction *NI = FoldGEPICmp(GEP, Op1, I.getPredicate(), I))
3282 return NI;
3283 if (GEPOperator *GEP = dyn_cast<GEPOperator>(Op1))
3284 if (Instruction *NI = FoldGEPICmp(GEP, Op0,
3285 ICmpInst::getSwappedPredicate(I.getPredicate()), I))
3286 return NI;
3287
3288 // Try to optimize equality comparisons against alloca-based pointers.
3289 if (Op0->getType()->isPointerTy() && I.isEquality()) {
3290 assert(Op1->getType()->isPointerTy() && "Comparing pointer with non-pointer?");
3291 if (auto *Alloca = dyn_cast<AllocaInst>(GetUnderlyingObject(Op0, DL)))
3292 if (Instruction *New = FoldAllocaCmp(I, Alloca, Op1))
3293 return New;
3294 if (auto *Alloca = dyn_cast<AllocaInst>(GetUnderlyingObject(Op1, DL)))
3295 if (Instruction *New = FoldAllocaCmp(I, Alloca, Op0))
3296 return New;
3297 }
3298
3299 // Test to see if the operands of the icmp are casted versions of other
3300 // values. If the ptr->ptr cast can be stripped off both arguments, we do so
3301 // now.
3302 if (BitCastInst *CI = dyn_cast<BitCastInst>(Op0)) {
3303 if (Op0->getType()->isPointerTy() &&
3304 (isa<Constant>(Op1) || isa<BitCastInst>(Op1))) {
3305 // We keep moving the cast from the left operand over to the right
3306 // operand, where it can often be eliminated completely.
3307 Op0 = CI->getOperand(0);
3308
3309 // If operand #1 is a bitcast instruction, it must also be a ptr->ptr cast
3310 // so eliminate it as well.
3311 if (BitCastInst *CI2 = dyn_cast<BitCastInst>(Op1))
3312 Op1 = CI2->getOperand(0);
3313
3314 // If Op1 is a constant, we can fold the cast into the constant.
3315 if (Op0->getType() != Op1->getType()) {
3316 if (Constant *Op1C = dyn_cast<Constant>(Op1)) {
3317 Op1 = ConstantExpr::getBitCast(Op1C, Op0->getType());
3318 } else {
3319 // Otherwise, cast the RHS right before the icmp
3320 Op1 = Builder->CreateBitCast(Op1, Op0->getType());
3321 }
3322 }
3323 return new ICmpInst(I.getPredicate(), Op0, Op1);
3324 }
3325 }
3326
3327 if (isa<CastInst>(Op0)) {
3328 // Handle the special case of: icmp (cast bool to X), <cst>
3329 // This comes up when you have code like
3330 // int X = A < B;
3331 // if (X) ...
3332 // For generality, we handle any zero-extension of any operand comparison
3333 // with a constant or another cast from the same type.
3334 if (isa<Constant>(Op1) || isa<CastInst>(Op1))
3335 if (Instruction *R = visitICmpInstWithCastAndCast(I))
3336 return R;
3337 }
3338
3339 // Special logic for binary operators.
3340 BinaryOperator *BO0 = dyn_cast<BinaryOperator>(Op0);
3341 BinaryOperator *BO1 = dyn_cast<BinaryOperator>(Op1);
3342 if (BO0 || BO1) {
3343 CmpInst::Predicate Pred = I.getPredicate();
3344 bool NoOp0WrapProblem = false, NoOp1WrapProblem = false;
3345 if (BO0 && isa<OverflowingBinaryOperator>(BO0))
3346 NoOp0WrapProblem = ICmpInst::isEquality(Pred) ||
3347 (CmpInst::isUnsigned(Pred) && BO0->hasNoUnsignedWrap()) ||
3348 (CmpInst::isSigned(Pred) && BO0->hasNoSignedWrap());
3349 if (BO1 && isa<OverflowingBinaryOperator>(BO1))
3350 NoOp1WrapProblem = ICmpInst::isEquality(Pred) ||
3351 (CmpInst::isUnsigned(Pred) && BO1->hasNoUnsignedWrap()) ||
3352 (CmpInst::isSigned(Pred) && BO1->hasNoSignedWrap());
3353
3354 // Analyze the case when either Op0 or Op1 is an add instruction.
3355 // Op0 = A + B (or A and B are null); Op1 = C + D (or C and D are null).
3356 Value *A = nullptr, *B = nullptr, *C = nullptr, *D = nullptr;
3357 if (BO0 && BO0->getOpcode() == Instruction::Add)
3358 A = BO0->getOperand(0), B = BO0->getOperand(1);
3359 if (BO1 && BO1->getOpcode() == Instruction::Add)
3360 C = BO1->getOperand(0), D = BO1->getOperand(1);
3361
3362 // icmp (X+cst) < 0 --> X < -cst
3363 if (NoOp0WrapProblem && ICmpInst::isSigned(Pred) && match(Op1, m_Zero()))
3364 if (ConstantInt *RHSC = dyn_cast_or_null<ConstantInt>(B))
3365 if (!RHSC->isMinValue(/*isSigned=*/true))
3366 return new ICmpInst(Pred, A, ConstantExpr::getNeg(RHSC));
3367
3368 // icmp (X+Y), X -> icmp Y, 0 for equalities or if there is no overflow.
3369 if ((A == Op1 || B == Op1) && NoOp0WrapProblem)
3370 return new ICmpInst(Pred, A == Op1 ? B : A,
3371 Constant::getNullValue(Op1->getType()));
3372
3373 // icmp X, (X+Y) -> icmp 0, Y for equalities or if there is no overflow.
3374 if ((C == Op0 || D == Op0) && NoOp1WrapProblem)
3375 return new ICmpInst(Pred, Constant::getNullValue(Op0->getType()),
3376 C == Op0 ? D : C);
3377
3378 // icmp (X+Y), (X+Z) -> icmp Y, Z for equalities or if there is no overflow.
3379 if (A && C && (A == C || A == D || B == C || B == D) &&
3380 NoOp0WrapProblem && NoOp1WrapProblem &&
3381 // Try not to increase register pressure.
3382 BO0->hasOneUse() && BO1->hasOneUse()) {
3383 // Determine Y and Z in the form icmp (X+Y), (X+Z).
3384 Value *Y, *Z;
3385 if (A == C) {
3386 // C + B == C + D -> B == D
3387 Y = B;
3388 Z = D;
3389 } else if (A == D) {
3390 // D + B == C + D -> B == C
3391 Y = B;
3392 Z = C;
3393 } else if (B == C) {
3394 // A + C == C + D -> A == D
3395 Y = A;
3396 Z = D;
3397 } else {
3398 assert(B == D);
3399 // A + D == C + D -> A == C
3400 Y = A;
3401 Z = C;
3402 }
3403 return new ICmpInst(Pred, Y, Z);
3404 }
3405
3406 // icmp slt (X + -1), Y -> icmp sle X, Y
3407 if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SLT &&
3408 match(B, m_AllOnes()))
3409 return new ICmpInst(CmpInst::ICMP_SLE, A, Op1);
3410
3411 // icmp sge (X + -1), Y -> icmp sgt X, Y
3412 if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SGE &&
3413 match(B, m_AllOnes()))
3414 return new ICmpInst(CmpInst::ICMP_SGT, A, Op1);
3415
3416 // icmp sle (X + 1), Y -> icmp slt X, Y
3417 if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SLE &&
3418 match(B, m_One()))
3419 return new ICmpInst(CmpInst::ICMP_SLT, A, Op1);
3420
3421 // icmp sgt (X + 1), Y -> icmp sge X, Y
3422 if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SGT &&
3423 match(B, m_One()))
3424 return new ICmpInst(CmpInst::ICMP_SGE, A, Op1);
3425
3426 // icmp sgt X, (Y + -1) -> icmp sge X, Y
3427 if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SGT &&
3428 match(D, m_AllOnes()))
3429 return new ICmpInst(CmpInst::ICMP_SGE, Op0, C);
3430
3431 // icmp sle X, (Y + -1) -> icmp slt X, Y
3432 if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SLE &&
3433 match(D, m_AllOnes()))
3434 return new ICmpInst(CmpInst::ICMP_SLT, Op0, C);
3435
3436 // icmp sge X, (Y + 1) -> icmp sgt X, Y
3437 if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SGE &&
3438 match(D, m_One()))
3439 return new ICmpInst(CmpInst::ICMP_SGT, Op0, C);
3440
3441 // icmp slt X, (Y + 1) -> icmp sle X, Y
3442 if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SLT &&
3443 match(D, m_One()))
3444 return new ICmpInst(CmpInst::ICMP_SLE, Op0, C);
3445
3446 // if C1 has greater magnitude than C2:
3447 // icmp (X + C1), (Y + C2) -> icmp (X + C3), Y
3448 // s.t. C3 = C1 - C2
3449 //
3450 // if C2 has greater magnitude than C1:
3451 // icmp (X + C1), (Y + C2) -> icmp X, (Y + C3)
3452 // s.t. C3 = C2 - C1
3453 if (A && C && NoOp0WrapProblem && NoOp1WrapProblem &&
3454 (BO0->hasOneUse() || BO1->hasOneUse()) && !I.isUnsigned())
3455 if (ConstantInt *C1 = dyn_cast<ConstantInt>(B))
3456 if (ConstantInt *C2 = dyn_cast<ConstantInt>(D)) {
3457 const APInt &AP1 = C1->getValue();
3458 const APInt &AP2 = C2->getValue();
3459 if (AP1.isNegative() == AP2.isNegative()) {
3460 APInt AP1Abs = C1->getValue().abs();
3461 APInt AP2Abs = C2->getValue().abs();
3462 if (AP1Abs.uge(AP2Abs)) {
3463 ConstantInt *C3 = Builder->getInt(AP1 - AP2);
3464 Value *NewAdd = Builder->CreateNSWAdd(A, C3);
3465 return new ICmpInst(Pred, NewAdd, C);
3466 } else {
3467 ConstantInt *C3 = Builder->getInt(AP2 - AP1);
3468 Value *NewAdd = Builder->CreateNSWAdd(C, C3);
3469 return new ICmpInst(Pred, A, NewAdd);
3470 }
3471 }
3472 }
3473
3474
3475 // Analyze the case when either Op0 or Op1 is a sub instruction.
3476 // Op0 = A - B (or A and B are null); Op1 = C - D (or C and D are null).
3477 A = nullptr; B = nullptr; C = nullptr; D = nullptr;
3478 if (BO0 && BO0->getOpcode() == Instruction::Sub)
3479 A = BO0->getOperand(0), B = BO0->getOperand(1);
3480 if (BO1 && BO1->getOpcode() == Instruction::Sub)
3481 C = BO1->getOperand(0), D = BO1->getOperand(1);
3482
3483 // icmp (X-Y), X -> icmp 0, Y for equalities or if there is no overflow.
3484 if (A == Op1 && NoOp0WrapProblem)
3485 return new ICmpInst(Pred, Constant::getNullValue(Op1->getType()), B);
3486
3487 // icmp X, (X-Y) -> icmp Y, 0 for equalities or if there is no overflow.
3488 if (C == Op0 && NoOp1WrapProblem)
3489 return new ICmpInst(Pred, D, Constant::getNullValue(Op0->getType()));
3490
3491 // icmp (Y-X), (Z-X) -> icmp Y, Z for equalities or if there is no overflow.
3492 if (B && D && B == D && NoOp0WrapProblem && NoOp1WrapProblem &&
3493 // Try not to increase register pressure.
3494 BO0->hasOneUse() && BO1->hasOneUse())
3495 return new ICmpInst(Pred, A, C);
3496
3497 // icmp (X-Y), (X-Z) -> icmp Z, Y for equalities or if there is no overflow.
3498 if (A && C && A == C && NoOp0WrapProblem && NoOp1WrapProblem &&
3499 // Try not to increase register pressure.
3500 BO0->hasOneUse() && BO1->hasOneUse())
3501 return new ICmpInst(Pred, D, B);
3502
3503 // icmp (0-X) < cst --> x > -cst
3504 if (NoOp0WrapProblem && ICmpInst::isSigned(Pred)) {
3505 Value *X;
3506 if (match(BO0, m_Neg(m_Value(X))))
3507 if (ConstantInt *RHSC = dyn_cast<ConstantInt>(Op1))
3508 if (!RHSC->isMinValue(/*isSigned=*/true))
3509 return new ICmpInst(I.getSwappedPredicate(), X,
3510 ConstantExpr::getNeg(RHSC));
3511 }
3512
3513 BinaryOperator *SRem = nullptr;
3514 // icmp (srem X, Y), Y
3515 if (BO0 && BO0->getOpcode() == Instruction::SRem &&
3516 Op1 == BO0->getOperand(1))
3517 SRem = BO0;
3518 // icmp Y, (srem X, Y)
3519 else if (BO1 && BO1->getOpcode() == Instruction::SRem &&
3520 Op0 == BO1->getOperand(1))
3521 SRem = BO1;
3522 if (SRem) {
3523 // We don't check hasOneUse to avoid increasing register pressure because
3524 // the value we use is the same value this instruction was already using.
3525 switch (SRem == BO0 ? ICmpInst::getSwappedPredicate(Pred) : Pred) {
3526 default: break;
3527 case ICmpInst::ICMP_EQ:
3528 return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
3529 case ICmpInst::ICMP_NE:
3530 return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
3531 case ICmpInst::ICMP_SGT:
3532 case ICmpInst::ICMP_SGE:
3533 return new ICmpInst(ICmpInst::ICMP_SGT, SRem->getOperand(1),
3534 Constant::getAllOnesValue(SRem->getType()));
3535 case ICmpInst::ICMP_SLT:
3536 case ICmpInst::ICMP_SLE:
3537 return new ICmpInst(ICmpInst::ICMP_SLT, SRem->getOperand(1),
3538 Constant::getNullValue(SRem->getType()));
3539 }
3540 }
3541
3542 if (BO0 && BO1 && BO0->getOpcode() == BO1->getOpcode() &&
3543 BO0->hasOneUse() && BO1->hasOneUse() &&
3544 BO0->getOperand(1) == BO1->getOperand(1)) {
3545 switch (BO0->getOpcode()) {
3546 default: break;
3547 case Instruction::Add:
3548 case Instruction::Sub:
3549 case Instruction::Xor:
3550 if (I.isEquality()) // a+x icmp eq/ne b+x --> a icmp b
3551 return new ICmpInst(I.getPredicate(), BO0->getOperand(0),
3552 BO1->getOperand(0));
3553 // icmp u/s (a ^ signbit), (b ^ signbit) --> icmp s/u a, b
3554 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO0->getOperand(1))) {
3555 if (CI->getValue().isSignBit()) {
3556 ICmpInst::Predicate Pred = I.isSigned()
3557 ? I.getUnsignedPredicate()
3558 : I.getSignedPredicate();
3559 return new ICmpInst(Pred, BO0->getOperand(0),
3560 BO1->getOperand(0));
3561 }
3562
3563 if (CI->isMaxValue(true)) {
3564 ICmpInst::Predicate Pred = I.isSigned()
3565 ? I.getUnsignedPredicate()
3566 : I.getSignedPredicate();
3567 Pred = I.getSwappedPredicate(Pred);
3568 return new ICmpInst(Pred, BO0->getOperand(0),
3569 BO1->getOperand(0));
3570 }
3571 }
3572 break;
3573 case Instruction::Mul:
3574 if (!I.isEquality())
3575 break;
3576
3577 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO0->getOperand(1))) {
3578 // a * Cst icmp eq/ne b * Cst --> a & Mask icmp b & Mask
3579 // Mask = -1 >> count-trailing-zeros(Cst).
3580 if (!CI->isZero() && !CI->isOne()) {
3581 const APInt &AP = CI->getValue();
3582 ConstantInt *Mask = ConstantInt::get(I.getContext(),
3583 APInt::getLowBitsSet(AP.getBitWidth(),
3584 AP.getBitWidth() -
3585 AP.countTrailingZeros()));
3586 Value *And1 = Builder->CreateAnd(BO0->getOperand(0), Mask);
3587 Value *And2 = Builder->CreateAnd(BO1->getOperand(0), Mask);
3588 return new ICmpInst(I.getPredicate(), And1, And2);
3589 }
3590 }
3591 break;
3592 case Instruction::UDiv:
3593 case Instruction::LShr:
3594 if (I.isSigned())
3595 break;
3596 // fall-through
3597 case Instruction::SDiv:
3598 case Instruction::AShr:
3599 if (!BO0->isExact() || !BO1->isExact())
3600 break;
3601 return new ICmpInst(I.getPredicate(), BO0->getOperand(0),
3602 BO1->getOperand(0));
3603 case Instruction::Shl: {
3604 bool NUW = BO0->hasNoUnsignedWrap() && BO1->hasNoUnsignedWrap();
3605 bool NSW = BO0->hasNoSignedWrap() && BO1->hasNoSignedWrap();
3606 if (!NUW && !NSW)
3607 break;
3608 if (!NSW && I.isSigned())
3609 break;
3610 return new ICmpInst(I.getPredicate(), BO0->getOperand(0),
3611 BO1->getOperand(0));
3612 }
3613 }
3614 }
3615
3616 if (BO0) {
3617 // Transform A & (L - 1) `ult` L --> L != 0
3618 auto LSubOne = m_Add(m_Specific(Op1), m_AllOnes());
3619 auto BitwiseAnd =
3620 m_CombineOr(m_And(m_Value(), LSubOne), m_And(LSubOne, m_Value()));
3621
3622 if (match(BO0, BitwiseAnd) && I.getPredicate() == ICmpInst::ICMP_ULT) {
3623 auto *Zero = Constant::getNullValue(BO0->getType());
3624 return new ICmpInst(ICmpInst::ICMP_NE, Op1, Zero);
3625 }
3626 }
3627 }
3628
3629 { Value *A, *B;
3630 // Transform (A & ~B) == 0 --> (A & B) != 0
3631 // and (A & ~B) != 0 --> (A & B) == 0
3632 // if A is a power of 2.
3633 if (match(Op0, m_And(m_Value(A), m_Not(m_Value(B)))) &&
3634 match(Op1, m_Zero()) &&
3635 isKnownToBeAPowerOfTwo(A, DL, false, 0, AC, &I, DT) && I.isEquality())
3636 return new ICmpInst(I.getInversePredicate(),
3637 Builder->CreateAnd(A, B),
3638 Op1);
3639
3640 // ~x < ~y --> y < x
3641 // ~x < cst --> ~cst < x
3642 if (match(Op0, m_Not(m_Value(A)))) {
3643 if (match(Op1, m_Not(m_Value(B))))
3644 return new ICmpInst(I.getPredicate(), B, A);
3645 if (ConstantInt *RHSC = dyn_cast<ConstantInt>(Op1))
3646 return new ICmpInst(I.getPredicate(), ConstantExpr::getNot(RHSC), A);
3647 }
3648
3649 Instruction *AddI = nullptr;
3650 if (match(&I, m_UAddWithOverflow(m_Value(A), m_Value(B),
3651 m_Instruction(AddI))) &&
3652 isa<IntegerType>(A->getType())) {
3653 Value *Result;
3654 Constant *Overflow;
3655 if (OptimizeOverflowCheck(OCF_UNSIGNED_ADD, A, B, *AddI, Result,
3656 Overflow)) {
3657 ReplaceInstUsesWith(*AddI, Result);
3658 return ReplaceInstUsesWith(I, Overflow);
3659 }
3660 }
3661
3662 // (zext a) * (zext b) --> llvm.umul.with.overflow.
3663 if (match(Op0, m_Mul(m_ZExt(m_Value(A)), m_ZExt(m_Value(B))))) {
3664 if (Instruction *R = ProcessUMulZExtIdiom(I, Op0, Op1, *this))
3665 return R;
3666 }
3667 if (match(Op1, m_Mul(m_ZExt(m_Value(A)), m_ZExt(m_Value(B))))) {
3668 if (Instruction *R = ProcessUMulZExtIdiom(I, Op1, Op0, *this))
3669 return R;
3670 }
3671 }
3672
3673 if (I.isEquality()) {
3674 Value *A, *B, *C, *D;
3675
3676 if (match(Op0, m_Xor(m_Value(A), m_Value(B)))) {
3677 if (A == Op1 || B == Op1) { // (A^B) == A -> B == 0
3678 Value *OtherVal = A == Op1 ? B : A;
3679 return new ICmpInst(I.getPredicate(), OtherVal,
3680 Constant::getNullValue(A->getType()));
3681 }
3682
3683 if (match(Op1, m_Xor(m_Value(C), m_Value(D)))) {
3684 // A^c1 == C^c2 --> A == C^(c1^c2)
3685 ConstantInt *C1, *C2;
3686 if (match(B, m_ConstantInt(C1)) &&
3687 match(D, m_ConstantInt(C2)) && Op1->hasOneUse()) {
3688 Constant *NC = Builder->getInt(C1->getValue() ^ C2->getValue());
3689 Value *Xor = Builder->CreateXor(C, NC);
3690 return new ICmpInst(I.getPredicate(), A, Xor);
3691 }
3692
3693 // A^B == A^D -> B == D
3694 if (A == C) return new ICmpInst(I.getPredicate(), B, D);
3695 if (A == D) return new ICmpInst(I.getPredicate(), B, C);
3696 if (B == C) return new ICmpInst(I.getPredicate(), A, D);
3697 if (B == D) return new ICmpInst(I.getPredicate(), A, C);
3698 }
3699 }
3700
3701 if (match(Op1, m_Xor(m_Value(A), m_Value(B))) &&
3702 (A == Op0 || B == Op0)) {
3703 // A == (A^B) -> B == 0
3704 Value *OtherVal = A == Op0 ? B : A;
3705 return new ICmpInst(I.getPredicate(), OtherVal,
3706 Constant::getNullValue(A->getType()));
3707 }
3708
3709 // (X&Z) == (Y&Z) -> (X^Y) & Z == 0
3710 if (match(Op0, m_OneUse(m_And(m_Value(A), m_Value(B)))) &&
3711 match(Op1, m_OneUse(m_And(m_Value(C), m_Value(D))))) {
3712 Value *X = nullptr, *Y = nullptr, *Z = nullptr;
3713
3714 if (A == C) {
3715 X = B; Y = D; Z = A;
3716 } else if (A == D) {
3717 X = B; Y = C; Z = A;
3718 } else if (B == C) {
3719 X = A; Y = D; Z = B;
3720 } else if (B == D) {
3721 X = A; Y = C; Z = B;
3722 }
3723
3724 if (X) { // Build (X^Y) & Z
3725 Op1 = Builder->CreateXor(X, Y);
3726 Op1 = Builder->CreateAnd(Op1, Z);
3727 I.setOperand(0, Op1);
3728 I.setOperand(1, Constant::getNullValue(Op1->getType()));
3729 return &I;
3730 }
3731 }
3732
3733 // Transform (zext A) == (B & (1<<X)-1) --> A == (trunc B)
3734 // and (B & (1<<X)-1) == (zext A) --> A == (trunc B)
3735 ConstantInt *Cst1;
3736 if ((Op0->hasOneUse() &&
3737 match(Op0, m_ZExt(m_Value(A))) &&
3738 match(Op1, m_And(m_Value(B), m_ConstantInt(Cst1)))) ||
3739 (Op1->hasOneUse() &&
3740 match(Op0, m_And(m_Value(B), m_ConstantInt(Cst1))) &&
3741 match(Op1, m_ZExt(m_Value(A))))) {
3742 APInt Pow2 = Cst1->getValue() + 1;
3743 if (Pow2.isPowerOf2() && isa<IntegerType>(A->getType()) &&
3744 Pow2.logBase2() == cast<IntegerType>(A->getType())->getBitWidth())
3745 return new ICmpInst(I.getPredicate(), A,
3746 Builder->CreateTrunc(B, A->getType()));
3747 }
3748
3749 // (A >> C) == (B >> C) --> (A^B) u< (1 << C)
3750 // For lshr and ashr pairs.
3751 if ((match(Op0, m_OneUse(m_LShr(m_Value(A), m_ConstantInt(Cst1)))) &&
3752 match(Op1, m_OneUse(m_LShr(m_Value(B), m_Specific(Cst1))))) ||
3753 (match(Op0, m_OneUse(m_AShr(m_Value(A), m_ConstantInt(Cst1)))) &&
3754 match(Op1, m_OneUse(m_AShr(m_Value(B), m_Specific(Cst1)))))) {
3755 unsigned TypeBits = Cst1->getBitWidth();
3756 unsigned ShAmt = (unsigned)Cst1->getLimitedValue(TypeBits);
3757 if (ShAmt < TypeBits && ShAmt != 0) {
3758 ICmpInst::Predicate Pred = I.getPredicate() == ICmpInst::ICMP_NE
3759 ? ICmpInst::ICMP_UGE
3760 : ICmpInst::ICMP_ULT;
3761 Value *Xor = Builder->CreateXor(A, B, I.getName() + ".unshifted");
3762 APInt CmpVal = APInt::getOneBitSet(TypeBits, ShAmt);
3763 return new ICmpInst(Pred, Xor, Builder->getInt(CmpVal));
3764 }
3765 }
3766
3767 // (A << C) == (B << C) --> ((A^B) & (~0U >> C)) == 0
3768 if (match(Op0, m_OneUse(m_Shl(m_Value(A), m_ConstantInt(Cst1)))) &&
3769 match(Op1, m_OneUse(m_Shl(m_Value(B), m_Specific(Cst1))))) {
3770 unsigned TypeBits = Cst1->getBitWidth();
3771 unsigned ShAmt = (unsigned)Cst1->getLimitedValue(TypeBits);
3772 if (ShAmt < TypeBits && ShAmt != 0) {
3773 Value *Xor = Builder->CreateXor(A, B, I.getName() + ".unshifted");
3774 APInt AndVal = APInt::getLowBitsSet(TypeBits, TypeBits - ShAmt);
3775 Value *And = Builder->CreateAnd(Xor, Builder->getInt(AndVal),
3776 I.getName() + ".mask");
3777 return new ICmpInst(I.getPredicate(), And,
3778 Constant::getNullValue(Cst1->getType()));
3779 }
3780 }
3781
3782 // Transform "icmp eq (trunc (lshr(X, cst1)), cst" to
3783 // "icmp (and X, mask), cst"
3784 uint64_t ShAmt = 0;
3785 if (Op0->hasOneUse() &&
3786 match(Op0, m_Trunc(m_OneUse(m_LShr(m_Value(A),
3787 m_ConstantInt(ShAmt))))) &&
3788 match(Op1, m_ConstantInt(Cst1)) &&
3789 // Only do this when A has multiple uses. This is most important to do
3790 // when it exposes other optimizations.
3791 !A->hasOneUse()) {
3792 unsigned ASize =cast<IntegerType>(A->getType())->getPrimitiveSizeInBits();
3793
3794 if (ShAmt < ASize) {
3795 APInt MaskV =
3796 APInt::getLowBitsSet(ASize, Op0->getType()->getPrimitiveSizeInBits());
3797 MaskV <<= ShAmt;
3798
3799 APInt CmpV = Cst1->getValue().zext(ASize);
3800 CmpV <<= ShAmt;
3801
3802 Value *Mask = Builder->CreateAnd(A, Builder->getInt(MaskV));
3803 return new ICmpInst(I.getPredicate(), Mask, Builder->getInt(CmpV));
3804 }
3805 }
3806 }
3807
3808 // The 'cmpxchg' instruction returns an aggregate containing the old value and
3809 // an i1 which indicates whether or not we successfully did the swap.
3810 //
3811 // Replace comparisons between the old value and the expected value with the
3812 // indicator that 'cmpxchg' returns.
3813 //
3814 // N.B. This transform is only valid when the 'cmpxchg' is not permitted to
3815 // spuriously fail. In those cases, the old value may equal the expected
3816 // value but it is possible for the swap to not occur.
3817 if (I.getPredicate() == ICmpInst::ICMP_EQ)
3818 if (auto *EVI = dyn_cast<ExtractValueInst>(Op0))
3819 if (auto *ACXI = dyn_cast<AtomicCmpXchgInst>(EVI->getAggregateOperand()))
3820 if (EVI->getIndices()[0] == 0 && ACXI->getCompareOperand() == Op1 &&
3821 !ACXI->isWeak())
3822 return ExtractValueInst::Create(ACXI, 1);
3823
3824 {
3825 Value *X; ConstantInt *Cst;
3826 // icmp X+Cst, X
3827 if (match(Op0, m_Add(m_Value(X), m_ConstantInt(Cst))) && Op1 == X)
3828 return FoldICmpAddOpCst(I, X, Cst, I.getPredicate());
3829
3830 // icmp X, X+Cst
3831 if (match(Op1, m_Add(m_Value(X), m_ConstantInt(Cst))) && Op0 == X)
3832 return FoldICmpAddOpCst(I, X, Cst, I.getSwappedPredicate());
3833 }
3834 return Changed ? &I : nullptr;
3835 }
3836
3837 /// FoldFCmp_IntToFP_Cst - Fold fcmp ([us]itofp x, cst) if possible.
FoldFCmp_IntToFP_Cst(FCmpInst & I,Instruction * LHSI,Constant * RHSC)3838 Instruction *InstCombiner::FoldFCmp_IntToFP_Cst(FCmpInst &I,
3839 Instruction *LHSI,
3840 Constant *RHSC) {
3841 if (!isa<ConstantFP>(RHSC)) return nullptr;
3842 const APFloat &RHS = cast<ConstantFP>(RHSC)->getValueAPF();
3843
3844 // Get the width of the mantissa. We don't want to hack on conversions that
3845 // might lose information from the integer, e.g. "i64 -> float"
3846 int MantissaWidth = LHSI->getType()->getFPMantissaWidth();
3847 if (MantissaWidth == -1) return nullptr; // Unknown.
3848
3849 IntegerType *IntTy = cast<IntegerType>(LHSI->getOperand(0)->getType());
3850
3851 bool LHSUnsigned = isa<UIToFPInst>(LHSI);
3852
3853 if (I.isEquality()) {
3854 FCmpInst::Predicate P = I.getPredicate();
3855 bool IsExact = false;
3856 APSInt RHSCvt(IntTy->getBitWidth(), LHSUnsigned);
3857 RHS.convertToInteger(RHSCvt, APFloat::rmNearestTiesToEven, &IsExact);
3858
3859 // If the floating point constant isn't an integer value, we know if we will
3860 // ever compare equal / not equal to it.
3861 if (!IsExact) {
3862 // TODO: Can never be -0.0 and other non-representable values
3863 APFloat RHSRoundInt(RHS);
3864 RHSRoundInt.roundToIntegral(APFloat::rmNearestTiesToEven);
3865 if (RHS.compare(RHSRoundInt) != APFloat::cmpEqual) {
3866 if (P == FCmpInst::FCMP_OEQ || P == FCmpInst::FCMP_UEQ)
3867 return ReplaceInstUsesWith(I, Builder->getFalse());
3868
3869 assert(P == FCmpInst::FCMP_ONE || P == FCmpInst::FCMP_UNE);
3870 return ReplaceInstUsesWith(I, Builder->getTrue());
3871 }
3872 }
3873
3874 // TODO: If the constant is exactly representable, is it always OK to do
3875 // equality compares as integer?
3876 }
3877
3878 // Check to see that the input is converted from an integer type that is small
3879 // enough that preserves all bits. TODO: check here for "known" sign bits.
3880 // This would allow us to handle (fptosi (x >>s 62) to float) if x is i64 f.e.
3881 unsigned InputSize = IntTy->getScalarSizeInBits();
3882
3883 // Following test does NOT adjust InputSize downwards for signed inputs,
3884 // because the most negative value still requires all the mantissa bits
3885 // to distinguish it from one less than that value.
3886 if ((int)InputSize > MantissaWidth) {
3887 // Conversion would lose accuracy. Check if loss can impact comparison.
3888 int Exp = ilogb(RHS);
3889 if (Exp == APFloat::IEK_Inf) {
3890 int MaxExponent = ilogb(APFloat::getLargest(RHS.getSemantics()));
3891 if (MaxExponent < (int)InputSize - !LHSUnsigned)
3892 // Conversion could create infinity.
3893 return nullptr;
3894 } else {
3895 // Note that if RHS is zero or NaN, then Exp is negative
3896 // and first condition is trivially false.
3897 if (MantissaWidth <= Exp && Exp <= (int)InputSize - !LHSUnsigned)
3898 // Conversion could affect comparison.
3899 return nullptr;
3900 }
3901 }
3902
3903 // Otherwise, we can potentially simplify the comparison. We know that it
3904 // will always come through as an integer value and we know the constant is
3905 // not a NAN (it would have been previously simplified).
3906 assert(!RHS.isNaN() && "NaN comparison not already folded!");
3907
3908 ICmpInst::Predicate Pred;
3909 switch (I.getPredicate()) {
3910 default: llvm_unreachable("Unexpected predicate!");
3911 case FCmpInst::FCMP_UEQ:
3912 case FCmpInst::FCMP_OEQ:
3913 Pred = ICmpInst::ICMP_EQ;
3914 break;
3915 case FCmpInst::FCMP_UGT:
3916 case FCmpInst::FCMP_OGT:
3917 Pred = LHSUnsigned ? ICmpInst::ICMP_UGT : ICmpInst::ICMP_SGT;
3918 break;
3919 case FCmpInst::FCMP_UGE:
3920 case FCmpInst::FCMP_OGE:
3921 Pred = LHSUnsigned ? ICmpInst::ICMP_UGE : ICmpInst::ICMP_SGE;
3922 break;
3923 case FCmpInst::FCMP_ULT:
3924 case FCmpInst::FCMP_OLT:
3925 Pred = LHSUnsigned ? ICmpInst::ICMP_ULT : ICmpInst::ICMP_SLT;
3926 break;
3927 case FCmpInst::FCMP_ULE:
3928 case FCmpInst::FCMP_OLE:
3929 Pred = LHSUnsigned ? ICmpInst::ICMP_ULE : ICmpInst::ICMP_SLE;
3930 break;
3931 case FCmpInst::FCMP_UNE:
3932 case FCmpInst::FCMP_ONE:
3933 Pred = ICmpInst::ICMP_NE;
3934 break;
3935 case FCmpInst::FCMP_ORD:
3936 return ReplaceInstUsesWith(I, Builder->getTrue());
3937 case FCmpInst::FCMP_UNO:
3938 return ReplaceInstUsesWith(I, Builder->getFalse());
3939 }
3940
3941 // Now we know that the APFloat is a normal number, zero or inf.
3942
3943 // See if the FP constant is too large for the integer. For example,
3944 // comparing an i8 to 300.0.
3945 unsigned IntWidth = IntTy->getScalarSizeInBits();
3946
3947 if (!LHSUnsigned) {
3948 // If the RHS value is > SignedMax, fold the comparison. This handles +INF
3949 // and large values.
3950 APFloat SMax(RHS.getSemantics());
3951 SMax.convertFromAPInt(APInt::getSignedMaxValue(IntWidth), true,
3952 APFloat::rmNearestTiesToEven);
3953 if (SMax.compare(RHS) == APFloat::cmpLessThan) { // smax < 13123.0
3954 if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_SLT ||
3955 Pred == ICmpInst::ICMP_SLE)
3956 return ReplaceInstUsesWith(I, Builder->getTrue());
3957 return ReplaceInstUsesWith(I, Builder->getFalse());
3958 }
3959 } else {
3960 // If the RHS value is > UnsignedMax, fold the comparison. This handles
3961 // +INF and large values.
3962 APFloat UMax(RHS.getSemantics());
3963 UMax.convertFromAPInt(APInt::getMaxValue(IntWidth), false,
3964 APFloat::rmNearestTiesToEven);
3965 if (UMax.compare(RHS) == APFloat::cmpLessThan) { // umax < 13123.0
3966 if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_ULT ||
3967 Pred == ICmpInst::ICMP_ULE)
3968 return ReplaceInstUsesWith(I, Builder->getTrue());
3969 return ReplaceInstUsesWith(I, Builder->getFalse());
3970 }
3971 }
3972
3973 if (!LHSUnsigned) {
3974 // See if the RHS value is < SignedMin.
3975 APFloat SMin(RHS.getSemantics());
3976 SMin.convertFromAPInt(APInt::getSignedMinValue(IntWidth), true,
3977 APFloat::rmNearestTiesToEven);
3978 if (SMin.compare(RHS) == APFloat::cmpGreaterThan) { // smin > 12312.0
3979 if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_SGT ||
3980 Pred == ICmpInst::ICMP_SGE)
3981 return ReplaceInstUsesWith(I, Builder->getTrue());
3982 return ReplaceInstUsesWith(I, Builder->getFalse());
3983 }
3984 } else {
3985 // See if the RHS value is < UnsignedMin.
3986 APFloat SMin(RHS.getSemantics());
3987 SMin.convertFromAPInt(APInt::getMinValue(IntWidth), true,
3988 APFloat::rmNearestTiesToEven);
3989 if (SMin.compare(RHS) == APFloat::cmpGreaterThan) { // umin > 12312.0
3990 if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_UGT ||
3991 Pred == ICmpInst::ICMP_UGE)
3992 return ReplaceInstUsesWith(I, Builder->getTrue());
3993 return ReplaceInstUsesWith(I, Builder->getFalse());
3994 }
3995 }
3996
3997 // Okay, now we know that the FP constant fits in the range [SMIN, SMAX] or
3998 // [0, UMAX], but it may still be fractional. See if it is fractional by
3999 // casting the FP value to the integer value and back, checking for equality.
4000 // Don't do this for zero, because -0.0 is not fractional.
4001 Constant *RHSInt = LHSUnsigned
4002 ? ConstantExpr::getFPToUI(RHSC, IntTy)
4003 : ConstantExpr::getFPToSI(RHSC, IntTy);
4004 if (!RHS.isZero()) {
4005 bool Equal = LHSUnsigned
4006 ? ConstantExpr::getUIToFP(RHSInt, RHSC->getType()) == RHSC
4007 : ConstantExpr::getSIToFP(RHSInt, RHSC->getType()) == RHSC;
4008 if (!Equal) {
4009 // If we had a comparison against a fractional value, we have to adjust
4010 // the compare predicate and sometimes the value. RHSC is rounded towards
4011 // zero at this point.
4012 switch (Pred) {
4013 default: llvm_unreachable("Unexpected integer comparison!");
4014 case ICmpInst::ICMP_NE: // (float)int != 4.4 --> true
4015 return ReplaceInstUsesWith(I, Builder->getTrue());
4016 case ICmpInst::ICMP_EQ: // (float)int == 4.4 --> false
4017 return ReplaceInstUsesWith(I, Builder->getFalse());
4018 case ICmpInst::ICMP_ULE:
4019 // (float)int <= 4.4 --> int <= 4
4020 // (float)int <= -4.4 --> false
4021 if (RHS.isNegative())
4022 return ReplaceInstUsesWith(I, Builder->getFalse());
4023 break;
4024 case ICmpInst::ICMP_SLE:
4025 // (float)int <= 4.4 --> int <= 4
4026 // (float)int <= -4.4 --> int < -4
4027 if (RHS.isNegative())
4028 Pred = ICmpInst::ICMP_SLT;
4029 break;
4030 case ICmpInst::ICMP_ULT:
4031 // (float)int < -4.4 --> false
4032 // (float)int < 4.4 --> int <= 4
4033 if (RHS.isNegative())
4034 return ReplaceInstUsesWith(I, Builder->getFalse());
4035 Pred = ICmpInst::ICMP_ULE;
4036 break;
4037 case ICmpInst::ICMP_SLT:
4038 // (float)int < -4.4 --> int < -4
4039 // (float)int < 4.4 --> int <= 4
4040 if (!RHS.isNegative())
4041 Pred = ICmpInst::ICMP_SLE;
4042 break;
4043 case ICmpInst::ICMP_UGT:
4044 // (float)int > 4.4 --> int > 4
4045 // (float)int > -4.4 --> true
4046 if (RHS.isNegative())
4047 return ReplaceInstUsesWith(I, Builder->getTrue());
4048 break;
4049 case ICmpInst::ICMP_SGT:
4050 // (float)int > 4.4 --> int > 4
4051 // (float)int > -4.4 --> int >= -4
4052 if (RHS.isNegative())
4053 Pred = ICmpInst::ICMP_SGE;
4054 break;
4055 case ICmpInst::ICMP_UGE:
4056 // (float)int >= -4.4 --> true
4057 // (float)int >= 4.4 --> int > 4
4058 if (RHS.isNegative())
4059 return ReplaceInstUsesWith(I, Builder->getTrue());
4060 Pred = ICmpInst::ICMP_UGT;
4061 break;
4062 case ICmpInst::ICMP_SGE:
4063 // (float)int >= -4.4 --> int >= -4
4064 // (float)int >= 4.4 --> int > 4
4065 if (!RHS.isNegative())
4066 Pred = ICmpInst::ICMP_SGT;
4067 break;
4068 }
4069 }
4070 }
4071
4072 // Lower this FP comparison into an appropriate integer version of the
4073 // comparison.
4074 return new ICmpInst(Pred, LHSI->getOperand(0), RHSInt);
4075 }
4076
visitFCmpInst(FCmpInst & I)4077 Instruction *InstCombiner::visitFCmpInst(FCmpInst &I) {
4078 bool Changed = false;
4079
4080 /// Orders the operands of the compare so that they are listed from most
4081 /// complex to least complex. This puts constants before unary operators,
4082 /// before binary operators.
4083 if (getComplexity(I.getOperand(0)) < getComplexity(I.getOperand(1))) {
4084 I.swapOperands();
4085 Changed = true;
4086 }
4087
4088 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
4089
4090 if (Value *V = SimplifyFCmpInst(I.getPredicate(), Op0, Op1,
4091 I.getFastMathFlags(), DL, TLI, DT, AC, &I))
4092 return ReplaceInstUsesWith(I, V);
4093
4094 // Simplify 'fcmp pred X, X'
4095 if (Op0 == Op1) {
4096 switch (I.getPredicate()) {
4097 default: llvm_unreachable("Unknown predicate!");
4098 case FCmpInst::FCMP_UNO: // True if unordered: isnan(X) | isnan(Y)
4099 case FCmpInst::FCMP_ULT: // True if unordered or less than
4100 case FCmpInst::FCMP_UGT: // True if unordered or greater than
4101 case FCmpInst::FCMP_UNE: // True if unordered or not equal
4102 // Canonicalize these to be 'fcmp uno %X, 0.0'.
4103 I.setPredicate(FCmpInst::FCMP_UNO);
4104 I.setOperand(1, Constant::getNullValue(Op0->getType()));
4105 return &I;
4106
4107 case FCmpInst::FCMP_ORD: // True if ordered (no nans)
4108 case FCmpInst::FCMP_OEQ: // True if ordered and equal
4109 case FCmpInst::FCMP_OGE: // True if ordered and greater than or equal
4110 case FCmpInst::FCMP_OLE: // True if ordered and less than or equal
4111 // Canonicalize these to be 'fcmp ord %X, 0.0'.
4112 I.setPredicate(FCmpInst::FCMP_ORD);
4113 I.setOperand(1, Constant::getNullValue(Op0->getType()));
4114 return &I;
4115 }
4116 }
4117
4118 // Test if the FCmpInst instruction is used exclusively by a select as
4119 // part of a minimum or maximum operation. If so, refrain from doing
4120 // any other folding. This helps out other analyses which understand
4121 // non-obfuscated minimum and maximum idioms, such as ScalarEvolution
4122 // and CodeGen. And in this case, at least one of the comparison
4123 // operands has at least one user besides the compare (the select),
4124 // which would often largely negate the benefit of folding anyway.
4125 if (I.hasOneUse())
4126 if (SelectInst *SI = dyn_cast<SelectInst>(*I.user_begin()))
4127 if ((SI->getOperand(1) == Op0 && SI->getOperand(2) == Op1) ||
4128 (SI->getOperand(2) == Op0 && SI->getOperand(1) == Op1))
4129 return nullptr;
4130
4131 // Handle fcmp with constant RHS
4132 if (Constant *RHSC = dyn_cast<Constant>(Op1)) {
4133 if (Instruction *LHSI = dyn_cast<Instruction>(Op0))
4134 switch (LHSI->getOpcode()) {
4135 case Instruction::FPExt: {
4136 // fcmp (fpext x), C -> fcmp x, (fptrunc C) if fptrunc is lossless
4137 FPExtInst *LHSExt = cast<FPExtInst>(LHSI);
4138 ConstantFP *RHSF = dyn_cast<ConstantFP>(RHSC);
4139 if (!RHSF)
4140 break;
4141
4142 const fltSemantics *Sem;
4143 // FIXME: This shouldn't be here.
4144 if (LHSExt->getSrcTy()->isHalfTy())
4145 Sem = &APFloat::IEEEhalf;
4146 else if (LHSExt->getSrcTy()->isFloatTy())
4147 Sem = &APFloat::IEEEsingle;
4148 else if (LHSExt->getSrcTy()->isDoubleTy())
4149 Sem = &APFloat::IEEEdouble;
4150 else if (LHSExt->getSrcTy()->isFP128Ty())
4151 Sem = &APFloat::IEEEquad;
4152 else if (LHSExt->getSrcTy()->isX86_FP80Ty())
4153 Sem = &APFloat::x87DoubleExtended;
4154 else if (LHSExt->getSrcTy()->isPPC_FP128Ty())
4155 Sem = &APFloat::PPCDoubleDouble;
4156 else
4157 break;
4158
4159 bool Lossy;
4160 APFloat F = RHSF->getValueAPF();
4161 F.convert(*Sem, APFloat::rmNearestTiesToEven, &Lossy);
4162
4163 // Avoid lossy conversions and denormals. Zero is a special case
4164 // that's OK to convert.
4165 APFloat Fabs = F;
4166 Fabs.clearSign();
4167 if (!Lossy &&
4168 ((Fabs.compare(APFloat::getSmallestNormalized(*Sem)) !=
4169 APFloat::cmpLessThan) || Fabs.isZero()))
4170
4171 return new FCmpInst(I.getPredicate(), LHSExt->getOperand(0),
4172 ConstantFP::get(RHSC->getContext(), F));
4173 break;
4174 }
4175 case Instruction::PHI:
4176 // Only fold fcmp into the PHI if the phi and fcmp are in the same
4177 // block. If in the same block, we're encouraging jump threading. If
4178 // not, we are just pessimizing the code by making an i1 phi.
4179 if (LHSI->getParent() == I.getParent())
4180 if (Instruction *NV = FoldOpIntoPhi(I))
4181 return NV;
4182 break;
4183 case Instruction::SIToFP:
4184 case Instruction::UIToFP:
4185 if (Instruction *NV = FoldFCmp_IntToFP_Cst(I, LHSI, RHSC))
4186 return NV;
4187 break;
4188 case Instruction::FSub: {
4189 // fcmp pred (fneg x), C -> fcmp swap(pred) x, -C
4190 Value *Op;
4191 if (match(LHSI, m_FNeg(m_Value(Op))))
4192 return new FCmpInst(I.getSwappedPredicate(), Op,
4193 ConstantExpr::getFNeg(RHSC));
4194 break;
4195 }
4196 case Instruction::Load:
4197 if (GetElementPtrInst *GEP =
4198 dyn_cast<GetElementPtrInst>(LHSI->getOperand(0))) {
4199 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)))
4200 if (GV->isConstant() && GV->hasDefinitiveInitializer() &&
4201 !cast<LoadInst>(LHSI)->isVolatile())
4202 if (Instruction *Res = FoldCmpLoadFromIndexedGlobal(GEP, GV, I))
4203 return Res;
4204 }
4205 break;
4206 case Instruction::Call: {
4207 if (!RHSC->isNullValue())
4208 break;
4209
4210 CallInst *CI = cast<CallInst>(LHSI);
4211 const Function *F = CI->getCalledFunction();
4212 if (!F)
4213 break;
4214
4215 // Various optimization for fabs compared with zero.
4216 LibFunc::Func Func;
4217 if (F->getIntrinsicID() == Intrinsic::fabs ||
4218 (TLI->getLibFunc(F->getName(), Func) && TLI->has(Func) &&
4219 (Func == LibFunc::fabs || Func == LibFunc::fabsf ||
4220 Func == LibFunc::fabsl))) {
4221 switch (I.getPredicate()) {
4222 default:
4223 break;
4224 // fabs(x) < 0 --> false
4225 case FCmpInst::FCMP_OLT:
4226 return ReplaceInstUsesWith(I, Builder->getFalse());
4227 // fabs(x) > 0 --> x != 0
4228 case FCmpInst::FCMP_OGT:
4229 return new FCmpInst(FCmpInst::FCMP_ONE, CI->getArgOperand(0), RHSC);
4230 // fabs(x) <= 0 --> x == 0
4231 case FCmpInst::FCMP_OLE:
4232 return new FCmpInst(FCmpInst::FCMP_OEQ, CI->getArgOperand(0), RHSC);
4233 // fabs(x) >= 0 --> !isnan(x)
4234 case FCmpInst::FCMP_OGE:
4235 return new FCmpInst(FCmpInst::FCMP_ORD, CI->getArgOperand(0), RHSC);
4236 // fabs(x) == 0 --> x == 0
4237 // fabs(x) != 0 --> x != 0
4238 case FCmpInst::FCMP_OEQ:
4239 case FCmpInst::FCMP_UEQ:
4240 case FCmpInst::FCMP_ONE:
4241 case FCmpInst::FCMP_UNE:
4242 return new FCmpInst(I.getPredicate(), CI->getArgOperand(0), RHSC);
4243 }
4244 }
4245 }
4246 }
4247 }
4248
4249 // fcmp pred (fneg x), (fneg y) -> fcmp swap(pred) x, y
4250 Value *X, *Y;
4251 if (match(Op0, m_FNeg(m_Value(X))) && match(Op1, m_FNeg(m_Value(Y))))
4252 return new FCmpInst(I.getSwappedPredicate(), X, Y);
4253
4254 // fcmp (fpext x), (fpext y) -> fcmp x, y
4255 if (FPExtInst *LHSExt = dyn_cast<FPExtInst>(Op0))
4256 if (FPExtInst *RHSExt = dyn_cast<FPExtInst>(Op1))
4257 if (LHSExt->getSrcTy() == RHSExt->getSrcTy())
4258 return new FCmpInst(I.getPredicate(), LHSExt->getOperand(0),
4259 RHSExt->getOperand(0));
4260
4261 return Changed ? &I : nullptr;
4262 }
4263