1 /* 2 * Copyright 2015 The Android Open Source Project 3 * 4 * Licensed under the Apache License, Version 2.0 (the "License"); 5 * you may not use this file except in compliance with the License. 6 * You may obtain a copy of the License at 7 * 8 * http://www.apache.org/licenses/LICENSE-2.0 9 * 10 * Unless required by applicable law or agreed to in writing, software 11 * distributed under the License is distributed on an "AS IS" BASIS, 12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 13 * See the License for the specific language governing permissions and 14 * limitations under the License. 15 */ 16 17 package android.support.v4.graphics; 18 19 import android.graphics.Color; 20 import android.support.annotation.ColorInt; 21 import android.support.annotation.FloatRange; 22 import android.support.annotation.IntRange; 23 import android.support.annotation.NonNull; 24 import android.support.annotation.VisibleForTesting; 25 26 /** 27 * A set of color-related utility methods, building upon those available in {@code Color}. 28 */ 29 public final class ColorUtils { 30 31 private static final double XYZ_WHITE_REFERENCE_X = 95.047; 32 private static final double XYZ_WHITE_REFERENCE_Y = 100; 33 private static final double XYZ_WHITE_REFERENCE_Z = 108.883; 34 private static final double XYZ_EPSILON = 0.008856; 35 private static final double XYZ_KAPPA = 903.3; 36 37 private static final int MIN_ALPHA_SEARCH_MAX_ITERATIONS = 10; 38 private static final int MIN_ALPHA_SEARCH_PRECISION = 1; 39 40 private static final ThreadLocal<double[]> TEMP_ARRAY = new ThreadLocal<>(); 41 ColorUtils()42 private ColorUtils() {} 43 44 /** 45 * Composite two potentially translucent colors over each other and returns the result. 46 */ compositeColors(@olorInt int foreground, @ColorInt int background)47 public static int compositeColors(@ColorInt int foreground, @ColorInt int background) { 48 int bgAlpha = Color.alpha(background); 49 int fgAlpha = Color.alpha(foreground); 50 int a = compositeAlpha(fgAlpha, bgAlpha); 51 52 int r = compositeComponent(Color.red(foreground), fgAlpha, 53 Color.red(background), bgAlpha, a); 54 int g = compositeComponent(Color.green(foreground), fgAlpha, 55 Color.green(background), bgAlpha, a); 56 int b = compositeComponent(Color.blue(foreground), fgAlpha, 57 Color.blue(background), bgAlpha, a); 58 59 return Color.argb(a, r, g, b); 60 } 61 compositeAlpha(int foregroundAlpha, int backgroundAlpha)62 private static int compositeAlpha(int foregroundAlpha, int backgroundAlpha) { 63 return 0xFF - (((0xFF - backgroundAlpha) * (0xFF - foregroundAlpha)) / 0xFF); 64 } 65 compositeComponent(int fgC, int fgA, int bgC, int bgA, int a)66 private static int compositeComponent(int fgC, int fgA, int bgC, int bgA, int a) { 67 if (a == 0) return 0; 68 return ((0xFF * fgC * fgA) + (bgC * bgA * (0xFF - fgA))) / (a * 0xFF); 69 } 70 71 /** 72 * Returns the luminance of a color as a float between {@code 0.0} and {@code 1.0}. 73 * <p>Defined as the Y component in the XYZ representation of {@code color}.</p> 74 */ 75 @FloatRange(from = 0.0, to = 1.0) calculateLuminance(@olorInt int color)76 public static double calculateLuminance(@ColorInt int color) { 77 final double[] result = getTempDouble3Array(); 78 colorToXYZ(color, result); 79 // Luminance is the Y component 80 return result[1] / 100; 81 } 82 83 /** 84 * Returns the contrast ratio between {@code foreground} and {@code background}. 85 * {@code background} must be opaque. 86 * <p> 87 * Formula defined 88 * <a href="http://www.w3.org/TR/2008/REC-WCAG20-20081211/#contrast-ratiodef">here</a>. 89 */ calculateContrast(@olorInt int foreground, @ColorInt int background)90 public static double calculateContrast(@ColorInt int foreground, @ColorInt int background) { 91 if (Color.alpha(background) != 255) { 92 throw new IllegalArgumentException("background can not be translucent: #" 93 + Integer.toHexString(background)); 94 } 95 if (Color.alpha(foreground) < 255) { 96 // If the foreground is translucent, composite the foreground over the background 97 foreground = compositeColors(foreground, background); 98 } 99 100 final double luminance1 = calculateLuminance(foreground) + 0.05; 101 final double luminance2 = calculateLuminance(background) + 0.05; 102 103 // Now return the lighter luminance divided by the darker luminance 104 return Math.max(luminance1, luminance2) / Math.min(luminance1, luminance2); 105 } 106 107 /** 108 * Calculates the minimum alpha value which can be applied to {@code foreground} so that would 109 * have a contrast value of at least {@code minContrastRatio} when compared to 110 * {@code background}. 111 * 112 * @param foreground the foreground color 113 * @param background the opaque background color 114 * @param minContrastRatio the minimum contrast ratio 115 * @return the alpha value in the range 0-255, or -1 if no value could be calculated 116 */ calculateMinimumAlpha(@olorInt int foreground, @ColorInt int background, float minContrastRatio)117 public static int calculateMinimumAlpha(@ColorInt int foreground, @ColorInt int background, 118 float minContrastRatio) { 119 if (Color.alpha(background) != 255) { 120 throw new IllegalArgumentException("background can not be translucent: #" 121 + Integer.toHexString(background)); 122 } 123 124 // First lets check that a fully opaque foreground has sufficient contrast 125 int testForeground = setAlphaComponent(foreground, 255); 126 double testRatio = calculateContrast(testForeground, background); 127 if (testRatio < minContrastRatio) { 128 // Fully opaque foreground does not have sufficient contrast, return error 129 return -1; 130 } 131 132 // Binary search to find a value with the minimum value which provides sufficient contrast 133 int numIterations = 0; 134 int minAlpha = 0; 135 int maxAlpha = 255; 136 137 while (numIterations <= MIN_ALPHA_SEARCH_MAX_ITERATIONS && 138 (maxAlpha - minAlpha) > MIN_ALPHA_SEARCH_PRECISION) { 139 final int testAlpha = (minAlpha + maxAlpha) / 2; 140 141 testForeground = setAlphaComponent(foreground, testAlpha); 142 testRatio = calculateContrast(testForeground, background); 143 144 if (testRatio < minContrastRatio) { 145 minAlpha = testAlpha; 146 } else { 147 maxAlpha = testAlpha; 148 } 149 150 numIterations++; 151 } 152 153 // Conservatively return the max of the range of possible alphas, which is known to pass. 154 return maxAlpha; 155 } 156 157 /** 158 * Convert RGB components to HSL (hue-saturation-lightness). 159 * <ul> 160 * <li>outHsl[0] is Hue [0 .. 360)</li> 161 * <li>outHsl[1] is Saturation [0...1]</li> 162 * <li>outHsl[2] is Lightness [0...1]</li> 163 * </ul> 164 * 165 * @param r red component value [0..255] 166 * @param g green component value [0..255] 167 * @param b blue component value [0..255] 168 * @param outHsl 3-element array which holds the resulting HSL components 169 */ RGBToHSL(@ntRangefrom = 0x0, to = 0xFF) int r, @IntRange(from = 0x0, to = 0xFF) int g, @IntRange(from = 0x0, to = 0xFF) int b, @NonNull float[] outHsl)170 public static void RGBToHSL(@IntRange(from = 0x0, to = 0xFF) int r, 171 @IntRange(from = 0x0, to = 0xFF) int g, @IntRange(from = 0x0, to = 0xFF) int b, 172 @NonNull float[] outHsl) { 173 final float rf = r / 255f; 174 final float gf = g / 255f; 175 final float bf = b / 255f; 176 177 final float max = Math.max(rf, Math.max(gf, bf)); 178 final float min = Math.min(rf, Math.min(gf, bf)); 179 final float deltaMaxMin = max - min; 180 181 float h, s; 182 float l = (max + min) / 2f; 183 184 if (max == min) { 185 // Monochromatic 186 h = s = 0f; 187 } else { 188 if (max == rf) { 189 h = ((gf - bf) / deltaMaxMin) % 6f; 190 } else if (max == gf) { 191 h = ((bf - rf) / deltaMaxMin) + 2f; 192 } else { 193 h = ((rf - gf) / deltaMaxMin) + 4f; 194 } 195 196 s = deltaMaxMin / (1f - Math.abs(2f * l - 1f)); 197 } 198 199 h = (h * 60f) % 360f; 200 if (h < 0) { 201 h += 360f; 202 } 203 204 outHsl[0] = constrain(h, 0f, 360f); 205 outHsl[1] = constrain(s, 0f, 1f); 206 outHsl[2] = constrain(l, 0f, 1f); 207 } 208 209 /** 210 * Convert the ARGB color to its HSL (hue-saturation-lightness) components. 211 * <ul> 212 * <li>outHsl[0] is Hue [0 .. 360)</li> 213 * <li>outHsl[1] is Saturation [0...1]</li> 214 * <li>outHsl[2] is Lightness [0...1]</li> 215 * </ul> 216 * 217 * @param color the ARGB color to convert. The alpha component is ignored 218 * @param outHsl 3-element array which holds the resulting HSL components 219 */ colorToHSL(@olorInt int color, @NonNull float[] outHsl)220 public static void colorToHSL(@ColorInt int color, @NonNull float[] outHsl) { 221 RGBToHSL(Color.red(color), Color.green(color), Color.blue(color), outHsl); 222 } 223 224 /** 225 * Convert HSL (hue-saturation-lightness) components to a RGB color. 226 * <ul> 227 * <li>hsl[0] is Hue [0 .. 360)</li> 228 * <li>hsl[1] is Saturation [0...1]</li> 229 * <li>hsl[2] is Lightness [0...1]</li> 230 * </ul> 231 * If hsv values are out of range, they are pinned. 232 * 233 * @param hsl 3-element array which holds the input HSL components 234 * @return the resulting RGB color 235 */ 236 @ColorInt HSLToColor(@onNull float[] hsl)237 public static int HSLToColor(@NonNull float[] hsl) { 238 final float h = hsl[0]; 239 final float s = hsl[1]; 240 final float l = hsl[2]; 241 242 final float c = (1f - Math.abs(2 * l - 1f)) * s; 243 final float m = l - 0.5f * c; 244 final float x = c * (1f - Math.abs((h / 60f % 2f) - 1f)); 245 246 final int hueSegment = (int) h / 60; 247 248 int r = 0, g = 0, b = 0; 249 250 switch (hueSegment) { 251 case 0: 252 r = Math.round(255 * (c + m)); 253 g = Math.round(255 * (x + m)); 254 b = Math.round(255 * m); 255 break; 256 case 1: 257 r = Math.round(255 * (x + m)); 258 g = Math.round(255 * (c + m)); 259 b = Math.round(255 * m); 260 break; 261 case 2: 262 r = Math.round(255 * m); 263 g = Math.round(255 * (c + m)); 264 b = Math.round(255 * (x + m)); 265 break; 266 case 3: 267 r = Math.round(255 * m); 268 g = Math.round(255 * (x + m)); 269 b = Math.round(255 * (c + m)); 270 break; 271 case 4: 272 r = Math.round(255 * (x + m)); 273 g = Math.round(255 * m); 274 b = Math.round(255 * (c + m)); 275 break; 276 case 5: 277 case 6: 278 r = Math.round(255 * (c + m)); 279 g = Math.round(255 * m); 280 b = Math.round(255 * (x + m)); 281 break; 282 } 283 284 r = constrain(r, 0, 255); 285 g = constrain(g, 0, 255); 286 b = constrain(b, 0, 255); 287 288 return Color.rgb(r, g, b); 289 } 290 291 /** 292 * Set the alpha component of {@code color} to be {@code alpha}. 293 */ 294 @ColorInt setAlphaComponent(@olorInt int color, @IntRange(from = 0x0, to = 0xFF) int alpha)295 public static int setAlphaComponent(@ColorInt int color, 296 @IntRange(from = 0x0, to = 0xFF) int alpha) { 297 if (alpha < 0 || alpha > 255) { 298 throw new IllegalArgumentException("alpha must be between 0 and 255."); 299 } 300 return (color & 0x00ffffff) | (alpha << 24); 301 } 302 303 /** 304 * Convert the ARGB color to its CIE Lab representative components. 305 * 306 * @param color the ARGB color to convert. The alpha component is ignored 307 * @param outLab 3-element array which holds the resulting LAB components 308 */ colorToLAB(@olorInt int color, @NonNull double[] outLab)309 public static void colorToLAB(@ColorInt int color, @NonNull double[] outLab) { 310 RGBToLAB(Color.red(color), Color.green(color), Color.blue(color), outLab); 311 } 312 313 /** 314 * Convert RGB components to its CIE Lab representative components. 315 * 316 * <ul> 317 * <li>outLab[0] is L [0 ...1)</li> 318 * <li>outLab[1] is a [-128...127)</li> 319 * <li>outLab[2] is b [-128...127)</li> 320 * </ul> 321 * 322 * @param r red component value [0..255] 323 * @param g green component value [0..255] 324 * @param b blue component value [0..255] 325 * @param outLab 3-element array which holds the resulting LAB components 326 */ RGBToLAB(@ntRangefrom = 0x0, to = 0xFF) int r, @IntRange(from = 0x0, to = 0xFF) int g, @IntRange(from = 0x0, to = 0xFF) int b, @NonNull double[] outLab)327 public static void RGBToLAB(@IntRange(from = 0x0, to = 0xFF) int r, 328 @IntRange(from = 0x0, to = 0xFF) int g, @IntRange(from = 0x0, to = 0xFF) int b, 329 @NonNull double[] outLab) { 330 // First we convert RGB to XYZ 331 RGBToXYZ(r, g, b, outLab); 332 // outLab now contains XYZ 333 XYZToLAB(outLab[0], outLab[1], outLab[2], outLab); 334 // outLab now contains LAB representation 335 } 336 337 /** 338 * Convert the ARGB color to it's CIE XYZ representative components. 339 * 340 * <p>The resulting XYZ representation will use the D65 illuminant and the CIE 341 * 2° Standard Observer (1931).</p> 342 * 343 * <ul> 344 * <li>outXyz[0] is X [0 ...95.047)</li> 345 * <li>outXyz[1] is Y [0...100)</li> 346 * <li>outXyz[2] is Z [0...108.883)</li> 347 * </ul> 348 * 349 * @param color the ARGB color to convert. The alpha component is ignored 350 * @param outXyz 3-element array which holds the resulting LAB components 351 */ colorToXYZ(@olorInt int color, @NonNull double[] outXyz)352 public static void colorToXYZ(@ColorInt int color, @NonNull double[] outXyz) { 353 RGBToXYZ(Color.red(color), Color.green(color), Color.blue(color), outXyz); 354 } 355 356 /** 357 * Convert RGB components to it's CIE XYZ representative components. 358 * 359 * <p>The resulting XYZ representation will use the D65 illuminant and the CIE 360 * 2° Standard Observer (1931).</p> 361 * 362 * <ul> 363 * <li>outXyz[0] is X [0 ...95.047)</li> 364 * <li>outXyz[1] is Y [0...100)</li> 365 * <li>outXyz[2] is Z [0...108.883)</li> 366 * </ul> 367 * 368 * @param r red component value [0..255] 369 * @param g green component value [0..255] 370 * @param b blue component value [0..255] 371 * @param outXyz 3-element array which holds the resulting XYZ components 372 */ RGBToXYZ(@ntRangefrom = 0x0, to = 0xFF) int r, @IntRange(from = 0x0, to = 0xFF) int g, @IntRange(from = 0x0, to = 0xFF) int b, @NonNull double[] outXyz)373 public static void RGBToXYZ(@IntRange(from = 0x0, to = 0xFF) int r, 374 @IntRange(from = 0x0, to = 0xFF) int g, @IntRange(from = 0x0, to = 0xFF) int b, 375 @NonNull double[] outXyz) { 376 if (outXyz.length != 3) { 377 throw new IllegalArgumentException("outXyz must have a length of 3."); 378 } 379 380 double sr = r / 255.0; 381 sr = sr < 0.04045 ? sr / 12.92 : Math.pow((sr + 0.055) / 1.055, 2.4); 382 double sg = g / 255.0; 383 sg = sg < 0.04045 ? sg / 12.92 : Math.pow((sg + 0.055) / 1.055, 2.4); 384 double sb = b / 255.0; 385 sb = sb < 0.04045 ? sb / 12.92 : Math.pow((sb + 0.055) / 1.055, 2.4); 386 387 outXyz[0] = 100 * (sr * 0.4124 + sg * 0.3576 + sb * 0.1805); 388 outXyz[1] = 100 * (sr * 0.2126 + sg * 0.7152 + sb * 0.0722); 389 outXyz[2] = 100 * (sr * 0.0193 + sg * 0.1192 + sb * 0.9505); 390 } 391 392 /** 393 * Converts a color from CIE XYZ to CIE Lab representation. 394 * 395 * <p>This method expects the XYZ representation to use the D65 illuminant and the CIE 396 * 2° Standard Observer (1931).</p> 397 * 398 * <ul> 399 * <li>outLab[0] is L [0 ...1)</li> 400 * <li>outLab[1] is a [-128...127)</li> 401 * <li>outLab[2] is b [-128...127)</li> 402 * </ul> 403 * 404 * @param x X component value [0...95.047) 405 * @param y Y component value [0...100) 406 * @param z Z component value [0...108.883) 407 * @param outLab 3-element array which holds the resulting Lab components 408 */ 409 public static void XYZToLAB(@FloatRange(from = 0f, to = XYZ_WHITE_REFERENCE_X) double x, 410 @FloatRange(from = 0f, to = XYZ_WHITE_REFERENCE_Y) double y, 411 @FloatRange(from = 0f, to = XYZ_WHITE_REFERENCE_Z) double z, 412 @NonNull double[] outLab) { 413 if (outLab.length != 3) { 414 throw new IllegalArgumentException("outLab must have a length of 3."); 415 } 416 x = pivotXyzComponent(x / XYZ_WHITE_REFERENCE_X); 417 y = pivotXyzComponent(y / XYZ_WHITE_REFERENCE_Y); 418 z = pivotXyzComponent(z / XYZ_WHITE_REFERENCE_Z); 419 outLab[0] = Math.max(0, 116 * y - 16); 420 outLab[1] = 500 * (x - y); 421 outLab[2] = 200 * (y - z); 422 } 423 424 /** 425 * Converts a color from CIE Lab to CIE XYZ representation. 426 * 427 * <p>The resulting XYZ representation will use the D65 illuminant and the CIE 428 * 2° Standard Observer (1931).</p> 429 * 430 * <ul> 431 * <li>outXyz[0] is X [0 ...95.047)</li> 432 * <li>outXyz[1] is Y [0...100)</li> 433 * <li>outXyz[2] is Z [0...108.883)</li> 434 * </ul> 435 * 436 * @param l L component value [0...100) 437 * @param a A component value [-128...127) 438 * @param b B component value [-128...127) 439 * @param outXyz 3-element array which holds the resulting XYZ components 440 */ 441 public static void LABToXYZ(@FloatRange(from = 0f, to = 100) final double l, 442 @FloatRange(from = -128, to = 127) final double a, 443 @FloatRange(from = -128, to = 127) final double b, 444 @NonNull double[] outXyz) { 445 final double fy = (l + 16) / 116; 446 final double fx = a / 500 + fy; 447 final double fz = fy - b / 200; 448 449 double tmp = Math.pow(fx, 3); 450 final double xr = tmp > XYZ_EPSILON ? tmp : (116 * fx - 16) / XYZ_KAPPA; 451 final double yr = l > XYZ_KAPPA * XYZ_EPSILON ? Math.pow(fy, 3) : l / XYZ_KAPPA; 452 453 tmp = Math.pow(fz, 3); 454 final double zr = tmp > XYZ_EPSILON ? tmp : (116 * fz - 16) / XYZ_KAPPA; 455 456 outXyz[0] = xr * XYZ_WHITE_REFERENCE_X; 457 outXyz[1] = yr * XYZ_WHITE_REFERENCE_Y; 458 outXyz[2] = zr * XYZ_WHITE_REFERENCE_Z; 459 } 460 461 /** 462 * Converts a color from CIE XYZ to its RGB representation. 463 * 464 * <p>This method expects the XYZ representation to use the D65 illuminant and the CIE 465 * 2° Standard Observer (1931).</p> 466 * 467 * @param x X component value [0...95.047) 468 * @param y Y component value [0...100) 469 * @param z Z component value [0...108.883) 470 * @return int containing the RGB representation 471 */ 472 @ColorInt XYZToColor(@loatRangefrom = 0f, to = XYZ_WHITE_REFERENCE_X) double x, @FloatRange(from = 0f, to = XYZ_WHITE_REFERENCE_Y) double y, @FloatRange(from = 0f, to = XYZ_WHITE_REFERENCE_Z) double z)473 public static int XYZToColor(@FloatRange(from = 0f, to = XYZ_WHITE_REFERENCE_X) double x, 474 @FloatRange(from = 0f, to = XYZ_WHITE_REFERENCE_Y) double y, 475 @FloatRange(from = 0f, to = XYZ_WHITE_REFERENCE_Z) double z) { 476 double r = (x * 3.2406 + y * -1.5372 + z * -0.4986) / 100; 477 double g = (x * -0.9689 + y * 1.8758 + z * 0.0415) / 100; 478 double b = (x * 0.0557 + y * -0.2040 + z * 1.0570) / 100; 479 480 r = r > 0.0031308 ? 1.055 * Math.pow(r, 1 / 2.4) - 0.055 : 12.92 * r; 481 g = g > 0.0031308 ? 1.055 * Math.pow(g, 1 / 2.4) - 0.055 : 12.92 * g; 482 b = b > 0.0031308 ? 1.055 * Math.pow(b, 1 / 2.4) - 0.055 : 12.92 * b; 483 484 return Color.rgb( 485 constrain((int) Math.round(r * 255), 0, 255), 486 constrain((int) Math.round(g * 255), 0, 255), 487 constrain((int) Math.round(b * 255), 0, 255)); 488 } 489 490 /** 491 * Converts a color from CIE Lab to its RGB representation. 492 * 493 * @param l L component value [0...100] 494 * @param a A component value [-128...127] 495 * @param b B component value [-128...127] 496 * @return int containing the RGB representation 497 */ 498 @ColorInt LABToColor(@loatRangefrom = 0f, to = 100) final double l, @FloatRange(from = -128, to = 127) final double a, @FloatRange(from = -128, to = 127) final double b)499 public static int LABToColor(@FloatRange(from = 0f, to = 100) final double l, 500 @FloatRange(from = -128, to = 127) final double a, 501 @FloatRange(from = -128, to = 127) final double b) { 502 final double[] result = getTempDouble3Array(); 503 LABToXYZ(l, a, b, result); 504 return XYZToColor(result[0], result[1], result[2]); 505 } 506 507 /** 508 * Returns the euclidean distance between two LAB colors. 509 */ distanceEuclidean(@onNull double[] labX, @NonNull double[] labY)510 public static double distanceEuclidean(@NonNull double[] labX, @NonNull double[] labY) { 511 return Math.sqrt(Math.pow(labX[0] - labY[0], 2) 512 + Math.pow(labX[1] - labY[1], 2) 513 + Math.pow(labX[2] - labY[2], 2)); 514 } 515 constrain(float amount, float low, float high)516 private static float constrain(float amount, float low, float high) { 517 return amount < low ? low : (amount > high ? high : amount); 518 } 519 constrain(int amount, int low, int high)520 private static int constrain(int amount, int low, int high) { 521 return amount < low ? low : (amount > high ? high : amount); 522 } 523 pivotXyzComponent(double component)524 private static double pivotXyzComponent(double component) { 525 return component > XYZ_EPSILON 526 ? Math.pow(component, 1 / 3.0) 527 : (XYZ_KAPPA * component + 16) / 116; 528 } 529 530 /** 531 * Blend between two ARGB colors using the given ratio. 532 * 533 * <p>A blend ratio of 0.0 will result in {@code color1}, 0.5 will give an even blend, 534 * 1.0 will result in {@code color2}.</p> 535 * 536 * @param color1 the first ARGB color 537 * @param color2 the second ARGB color 538 * @param ratio the blend ratio of {@code color1} to {@code color2} 539 */ 540 @ColorInt blendARGB(@olorInt int color1, @ColorInt int color2, @FloatRange(from = 0.0, to = 1.0) float ratio)541 public static int blendARGB(@ColorInt int color1, @ColorInt int color2, 542 @FloatRange(from = 0.0, to = 1.0) float ratio) { 543 final float inverseRatio = 1 - ratio; 544 float a = Color.alpha(color1) * inverseRatio + Color.alpha(color2) * ratio; 545 float r = Color.red(color1) * inverseRatio + Color.red(color2) * ratio; 546 float g = Color.green(color1) * inverseRatio + Color.green(color2) * ratio; 547 float b = Color.blue(color1) * inverseRatio + Color.blue(color2) * ratio; 548 return Color.argb((int) a, (int) r, (int) g, (int) b); 549 } 550 551 /** 552 * Blend between {@code hsl1} and {@code hsl2} using the given ratio. This will interpolate 553 * the hue using the shortest angle. 554 * 555 * <p>A blend ratio of 0.0 will result in {@code hsl1}, 0.5 will give an even blend, 556 * 1.0 will result in {@code hsl2}.</p> 557 * 558 * @param hsl1 3-element array which holds the first HSL color 559 * @param hsl2 3-element array which holds the second HSL color 560 * @param ratio the blend ratio of {@code hsl1} to {@code hsl2} 561 * @param outResult 3-element array which holds the resulting HSL components 562 */ blendHSL(@onNull float[] hsl1, @NonNull float[] hsl2, @FloatRange(from = 0.0, to = 1.0) float ratio, @NonNull float[] outResult)563 public static void blendHSL(@NonNull float[] hsl1, @NonNull float[] hsl2, 564 @FloatRange(from = 0.0, to = 1.0) float ratio, @NonNull float[] outResult) { 565 if (outResult.length != 3) { 566 throw new IllegalArgumentException("result must have a length of 3."); 567 } 568 final float inverseRatio = 1 - ratio; 569 // Since hue is circular we will need to interpolate carefully 570 outResult[0] = circularInterpolate(hsl1[0], hsl2[0], ratio); 571 outResult[1] = hsl1[1] * inverseRatio + hsl2[1] * ratio; 572 outResult[2] = hsl1[2] * inverseRatio + hsl2[2] * ratio; 573 } 574 575 /** 576 * Blend between two CIE-LAB colors using the given ratio. 577 * 578 * <p>A blend ratio of 0.0 will result in {@code lab1}, 0.5 will give an even blend, 579 * 1.0 will result in {@code lab2}.</p> 580 * 581 * @param lab1 3-element array which holds the first LAB color 582 * @param lab2 3-element array which holds the second LAB color 583 * @param ratio the blend ratio of {@code lab1} to {@code lab2} 584 * @param outResult 3-element array which holds the resulting LAB components 585 */ blendLAB(@onNull double[] lab1, @NonNull double[] lab2, @FloatRange(from = 0.0, to = 1.0) double ratio, @NonNull double[] outResult)586 public static void blendLAB(@NonNull double[] lab1, @NonNull double[] lab2, 587 @FloatRange(from = 0.0, to = 1.0) double ratio, @NonNull double[] outResult) { 588 if (outResult.length != 3) { 589 throw new IllegalArgumentException("outResult must have a length of 3."); 590 } 591 final double inverseRatio = 1 - ratio; 592 outResult[0] = lab1[0] * inverseRatio + lab2[0] * ratio; 593 outResult[1] = lab1[1] * inverseRatio + lab2[1] * ratio; 594 outResult[2] = lab1[2] * inverseRatio + lab2[2] * ratio; 595 } 596 597 @VisibleForTesting circularInterpolate(float a, float b, float f)598 static float circularInterpolate(float a, float b, float f) { 599 if (Math.abs(b - a) > 180) { 600 if (b > a) { 601 a += 360; 602 } else { 603 b += 360; 604 } 605 } 606 return (a + ((b - a) * f)) % 360; 607 } 608 getTempDouble3Array()609 private static double[] getTempDouble3Array() { 610 double[] result = TEMP_ARRAY.get(); 611 if (result == null) { 612 result = new double[3]; 613 TEMP_ARRAY.set(result); 614 } 615 return result; 616 } 617 618 } 619