1 // Copyright 2012 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4 
5 #include "src/crankshaft/hydrogen-instructions.h"
6 
7 #include "src/base/bits.h"
8 #include "src/base/safe_math.h"
9 #include "src/crankshaft/hydrogen-infer-representation.h"
10 #include "src/double.h"
11 #include "src/elements.h"
12 #include "src/factory.h"
13 
14 #if V8_TARGET_ARCH_IA32
15 #include "src/crankshaft/ia32/lithium-ia32.h"  // NOLINT
16 #elif V8_TARGET_ARCH_X64
17 #include "src/crankshaft/x64/lithium-x64.h"  // NOLINT
18 #elif V8_TARGET_ARCH_ARM64
19 #include "src/crankshaft/arm64/lithium-arm64.h"  // NOLINT
20 #elif V8_TARGET_ARCH_ARM
21 #include "src/crankshaft/arm/lithium-arm.h"  // NOLINT
22 #elif V8_TARGET_ARCH_PPC
23 #include "src/crankshaft/ppc/lithium-ppc.h"  // NOLINT
24 #elif V8_TARGET_ARCH_MIPS
25 #include "src/crankshaft/mips/lithium-mips.h"  // NOLINT
26 #elif V8_TARGET_ARCH_MIPS64
27 #include "src/crankshaft/mips64/lithium-mips64.h"  // NOLINT
28 #elif V8_TARGET_ARCH_X87
29 #include "src/crankshaft/x87/lithium-x87.h"  // NOLINT
30 #else
31 #error Unsupported target architecture.
32 #endif
33 
34 namespace v8 {
35 namespace internal {
36 
37 #define DEFINE_COMPILE(type)                                         \
38   LInstruction* H##type::CompileToLithium(LChunkBuilder* builder) {  \
39     return builder->Do##type(this);                                  \
40   }
HYDROGEN_CONCRETE_INSTRUCTION_LIST(DEFINE_COMPILE)41 HYDROGEN_CONCRETE_INSTRUCTION_LIST(DEFINE_COMPILE)
42 #undef DEFINE_COMPILE
43 
44 
45 Isolate* HValue::isolate() const {
46   DCHECK(block() != NULL);
47   return block()->isolate();
48 }
49 
50 
AssumeRepresentation(Representation r)51 void HValue::AssumeRepresentation(Representation r) {
52   if (CheckFlag(kFlexibleRepresentation)) {
53     ChangeRepresentation(r);
54     // The representation of the value is dictated by type feedback and
55     // will not be changed later.
56     ClearFlag(kFlexibleRepresentation);
57   }
58 }
59 
60 
InferRepresentation(HInferRepresentationPhase * h_infer)61 void HValue::InferRepresentation(HInferRepresentationPhase* h_infer) {
62   DCHECK(CheckFlag(kFlexibleRepresentation));
63   Representation new_rep = RepresentationFromInputs();
64   UpdateRepresentation(new_rep, h_infer, "inputs");
65   new_rep = RepresentationFromUses();
66   UpdateRepresentation(new_rep, h_infer, "uses");
67   if (representation().IsSmi() && HasNonSmiUse()) {
68     UpdateRepresentation(
69         Representation::Integer32(), h_infer, "use requirements");
70   }
71 }
72 
73 
RepresentationFromUses()74 Representation HValue::RepresentationFromUses() {
75   if (HasNoUses()) return Representation::None();
76   Representation result = Representation::None();
77 
78   for (HUseIterator it(uses()); !it.Done(); it.Advance()) {
79     HValue* use = it.value();
80     Representation rep = use->observed_input_representation(it.index());
81     result = result.generalize(rep);
82 
83     if (FLAG_trace_representation) {
84       PrintF("#%d %s is used by #%d %s as %s%s\n",
85              id(), Mnemonic(), use->id(), use->Mnemonic(), rep.Mnemonic(),
86              (use->CheckFlag(kTruncatingToInt32) ? "-trunc" : ""));
87     }
88   }
89   if (IsPhi()) {
90     result = result.generalize(
91         HPhi::cast(this)->representation_from_indirect_uses());
92   }
93 
94   // External representations are dealt with separately.
95   return result.IsExternal() ? Representation::None() : result;
96 }
97 
98 
UpdateRepresentation(Representation new_rep,HInferRepresentationPhase * h_infer,const char * reason)99 void HValue::UpdateRepresentation(Representation new_rep,
100                                   HInferRepresentationPhase* h_infer,
101                                   const char* reason) {
102   Representation r = representation();
103   if (new_rep.is_more_general_than(r)) {
104     if (CheckFlag(kCannotBeTagged) && new_rep.IsTagged()) return;
105     if (FLAG_trace_representation) {
106       PrintF("Changing #%d %s representation %s -> %s based on %s\n",
107              id(), Mnemonic(), r.Mnemonic(), new_rep.Mnemonic(), reason);
108     }
109     ChangeRepresentation(new_rep);
110     AddDependantsToWorklist(h_infer);
111   }
112 }
113 
114 
AddDependantsToWorklist(HInferRepresentationPhase * h_infer)115 void HValue::AddDependantsToWorklist(HInferRepresentationPhase* h_infer) {
116   for (HUseIterator it(uses()); !it.Done(); it.Advance()) {
117     h_infer->AddToWorklist(it.value());
118   }
119   for (int i = 0; i < OperandCount(); ++i) {
120     h_infer->AddToWorklist(OperandAt(i));
121   }
122 }
123 
124 
ConvertAndSetOverflow(Representation r,int64_t result,bool * overflow)125 static int32_t ConvertAndSetOverflow(Representation r,
126                                      int64_t result,
127                                      bool* overflow) {
128   if (r.IsSmi()) {
129     if (result > Smi::kMaxValue) {
130       *overflow = true;
131       return Smi::kMaxValue;
132     }
133     if (result < Smi::kMinValue) {
134       *overflow = true;
135       return Smi::kMinValue;
136     }
137   } else {
138     if (result > kMaxInt) {
139       *overflow = true;
140       return kMaxInt;
141     }
142     if (result < kMinInt) {
143       *overflow = true;
144       return kMinInt;
145     }
146   }
147   return static_cast<int32_t>(result);
148 }
149 
150 
AddWithoutOverflow(Representation r,int32_t a,int32_t b,bool * overflow)151 static int32_t AddWithoutOverflow(Representation r,
152                                   int32_t a,
153                                   int32_t b,
154                                   bool* overflow) {
155   int64_t result = static_cast<int64_t>(a) + static_cast<int64_t>(b);
156   return ConvertAndSetOverflow(r, result, overflow);
157 }
158 
159 
SubWithoutOverflow(Representation r,int32_t a,int32_t b,bool * overflow)160 static int32_t SubWithoutOverflow(Representation r,
161                                   int32_t a,
162                                   int32_t b,
163                                   bool* overflow) {
164   int64_t result = static_cast<int64_t>(a) - static_cast<int64_t>(b);
165   return ConvertAndSetOverflow(r, result, overflow);
166 }
167 
168 
MulWithoutOverflow(const Representation & r,int32_t a,int32_t b,bool * overflow)169 static int32_t MulWithoutOverflow(const Representation& r,
170                                   int32_t a,
171                                   int32_t b,
172                                   bool* overflow) {
173   int64_t result = static_cast<int64_t>(a) * static_cast<int64_t>(b);
174   return ConvertAndSetOverflow(r, result, overflow);
175 }
176 
177 
Mask() const178 int32_t Range::Mask() const {
179   if (lower_ == upper_) return lower_;
180   if (lower_ >= 0) {
181     int32_t res = 1;
182     while (res < upper_) {
183       res = (res << 1) | 1;
184     }
185     return res;
186   }
187   return 0xffffffff;
188 }
189 
190 
AddConstant(int32_t value)191 void Range::AddConstant(int32_t value) {
192   if (value == 0) return;
193   bool may_overflow = false;  // Overflow is ignored here.
194   Representation r = Representation::Integer32();
195   lower_ = AddWithoutOverflow(r, lower_, value, &may_overflow);
196   upper_ = AddWithoutOverflow(r, upper_, value, &may_overflow);
197 #ifdef DEBUG
198   Verify();
199 #endif
200 }
201 
202 
Intersect(Range * other)203 void Range::Intersect(Range* other) {
204   upper_ = Min(upper_, other->upper_);
205   lower_ = Max(lower_, other->lower_);
206   bool b = CanBeMinusZero() && other->CanBeMinusZero();
207   set_can_be_minus_zero(b);
208 }
209 
210 
Union(Range * other)211 void Range::Union(Range* other) {
212   upper_ = Max(upper_, other->upper_);
213   lower_ = Min(lower_, other->lower_);
214   bool b = CanBeMinusZero() || other->CanBeMinusZero();
215   set_can_be_minus_zero(b);
216 }
217 
218 
CombinedMax(Range * other)219 void Range::CombinedMax(Range* other) {
220   upper_ = Max(upper_, other->upper_);
221   lower_ = Max(lower_, other->lower_);
222   set_can_be_minus_zero(CanBeMinusZero() || other->CanBeMinusZero());
223 }
224 
225 
CombinedMin(Range * other)226 void Range::CombinedMin(Range* other) {
227   upper_ = Min(upper_, other->upper_);
228   lower_ = Min(lower_, other->lower_);
229   set_can_be_minus_zero(CanBeMinusZero() || other->CanBeMinusZero());
230 }
231 
232 
Sar(int32_t value)233 void Range::Sar(int32_t value) {
234   int32_t bits = value & 0x1F;
235   lower_ = lower_ >> bits;
236   upper_ = upper_ >> bits;
237   set_can_be_minus_zero(false);
238 }
239 
240 
Shl(int32_t value)241 void Range::Shl(int32_t value) {
242   int32_t bits = value & 0x1F;
243   int old_lower = lower_;
244   int old_upper = upper_;
245   lower_ = lower_ << bits;
246   upper_ = upper_ << bits;
247   if (old_lower != lower_ >> bits || old_upper != upper_ >> bits) {
248     upper_ = kMaxInt;
249     lower_ = kMinInt;
250   }
251   set_can_be_minus_zero(false);
252 }
253 
254 
AddAndCheckOverflow(const Representation & r,Range * other)255 bool Range::AddAndCheckOverflow(const Representation& r, Range* other) {
256   bool may_overflow = false;
257   lower_ = AddWithoutOverflow(r, lower_, other->lower(), &may_overflow);
258   upper_ = AddWithoutOverflow(r, upper_, other->upper(), &may_overflow);
259   KeepOrder();
260 #ifdef DEBUG
261   Verify();
262 #endif
263   return may_overflow;
264 }
265 
266 
SubAndCheckOverflow(const Representation & r,Range * other)267 bool Range::SubAndCheckOverflow(const Representation& r, Range* other) {
268   bool may_overflow = false;
269   lower_ = SubWithoutOverflow(r, lower_, other->upper(), &may_overflow);
270   upper_ = SubWithoutOverflow(r, upper_, other->lower(), &may_overflow);
271   KeepOrder();
272 #ifdef DEBUG
273   Verify();
274 #endif
275   return may_overflow;
276 }
277 
278 
KeepOrder()279 void Range::KeepOrder() {
280   if (lower_ > upper_) {
281     int32_t tmp = lower_;
282     lower_ = upper_;
283     upper_ = tmp;
284   }
285 }
286 
287 
288 #ifdef DEBUG
Verify() const289 void Range::Verify() const {
290   DCHECK(lower_ <= upper_);
291 }
292 #endif
293 
294 
MulAndCheckOverflow(const Representation & r,Range * other)295 bool Range::MulAndCheckOverflow(const Representation& r, Range* other) {
296   bool may_overflow = false;
297   int v1 = MulWithoutOverflow(r, lower_, other->lower(), &may_overflow);
298   int v2 = MulWithoutOverflow(r, lower_, other->upper(), &may_overflow);
299   int v3 = MulWithoutOverflow(r, upper_, other->lower(), &may_overflow);
300   int v4 = MulWithoutOverflow(r, upper_, other->upper(), &may_overflow);
301   lower_ = Min(Min(v1, v2), Min(v3, v4));
302   upper_ = Max(Max(v1, v2), Max(v3, v4));
303 #ifdef DEBUG
304   Verify();
305 #endif
306   return may_overflow;
307 }
308 
309 
IsDefinedAfter(HBasicBlock * other) const310 bool HValue::IsDefinedAfter(HBasicBlock* other) const {
311   return block()->block_id() > other->block_id();
312 }
313 
314 
tail()315 HUseListNode* HUseListNode::tail() {
316   // Skip and remove dead items in the use list.
317   while (tail_ != NULL && tail_->value()->CheckFlag(HValue::kIsDead)) {
318     tail_ = tail_->tail_;
319   }
320   return tail_;
321 }
322 
323 
CheckUsesForFlag(Flag f) const324 bool HValue::CheckUsesForFlag(Flag f) const {
325   for (HUseIterator it(uses()); !it.Done(); it.Advance()) {
326     if (it.value()->IsSimulate()) continue;
327     if (!it.value()->CheckFlag(f)) return false;
328   }
329   return true;
330 }
331 
332 
CheckUsesForFlag(Flag f,HValue ** value) const333 bool HValue::CheckUsesForFlag(Flag f, HValue** value) const {
334   for (HUseIterator it(uses()); !it.Done(); it.Advance()) {
335     if (it.value()->IsSimulate()) continue;
336     if (!it.value()->CheckFlag(f)) {
337       *value = it.value();
338       return false;
339     }
340   }
341   return true;
342 }
343 
344 
HasAtLeastOneUseWithFlagAndNoneWithout(Flag f) const345 bool HValue::HasAtLeastOneUseWithFlagAndNoneWithout(Flag f) const {
346   bool return_value = false;
347   for (HUseIterator it(uses()); !it.Done(); it.Advance()) {
348     if (it.value()->IsSimulate()) continue;
349     if (!it.value()->CheckFlag(f)) return false;
350     return_value = true;
351   }
352   return return_value;
353 }
354 
355 
HUseIterator(HUseListNode * head)356 HUseIterator::HUseIterator(HUseListNode* head) : next_(head) {
357   Advance();
358 }
359 
360 
Advance()361 void HUseIterator::Advance() {
362   current_ = next_;
363   if (current_ != NULL) {
364     next_ = current_->tail();
365     value_ = current_->value();
366     index_ = current_->index();
367   }
368 }
369 
370 
UseCount() const371 int HValue::UseCount() const {
372   int count = 0;
373   for (HUseIterator it(uses()); !it.Done(); it.Advance()) ++count;
374   return count;
375 }
376 
377 
RemoveUse(HValue * value,int index)378 HUseListNode* HValue::RemoveUse(HValue* value, int index) {
379   HUseListNode* previous = NULL;
380   HUseListNode* current = use_list_;
381   while (current != NULL) {
382     if (current->value() == value && current->index() == index) {
383       if (previous == NULL) {
384         use_list_ = current->tail();
385       } else {
386         previous->set_tail(current->tail());
387       }
388       break;
389     }
390 
391     previous = current;
392     current = current->tail();
393   }
394 
395 #ifdef DEBUG
396   // Do not reuse use list nodes in debug mode, zap them.
397   if (current != NULL) {
398     HUseListNode* temp =
399         new(block()->zone())
400         HUseListNode(current->value(), current->index(), NULL);
401     current->Zap();
402     current = temp;
403   }
404 #endif
405   return current;
406 }
407 
408 
Equals(HValue * other)409 bool HValue::Equals(HValue* other) {
410   if (other->opcode() != opcode()) return false;
411   if (!other->representation().Equals(representation())) return false;
412   if (!other->type_.Equals(type_)) return false;
413   if (other->flags() != flags()) return false;
414   if (OperandCount() != other->OperandCount()) return false;
415   for (int i = 0; i < OperandCount(); ++i) {
416     if (OperandAt(i)->id() != other->OperandAt(i)->id()) return false;
417   }
418   bool result = DataEquals(other);
419   DCHECK(!result || Hashcode() == other->Hashcode());
420   return result;
421 }
422 
423 
Hashcode()424 intptr_t HValue::Hashcode() {
425   intptr_t result = opcode();
426   int count = OperandCount();
427   for (int i = 0; i < count; ++i) {
428     result = result * 19 + OperandAt(i)->id() + (result >> 7);
429   }
430   return result;
431 }
432 
433 
Mnemonic() const434 const char* HValue::Mnemonic() const {
435   switch (opcode()) {
436 #define MAKE_CASE(type) case k##type: return #type;
437     HYDROGEN_CONCRETE_INSTRUCTION_LIST(MAKE_CASE)
438 #undef MAKE_CASE
439     case kPhi: return "Phi";
440     default: return "";
441   }
442 }
443 
444 
CanReplaceWithDummyUses()445 bool HValue::CanReplaceWithDummyUses() {
446   return FLAG_unreachable_code_elimination &&
447       !(block()->IsReachable() ||
448         IsBlockEntry() ||
449         IsControlInstruction() ||
450         IsArgumentsObject() ||
451         IsCapturedObject() ||
452         IsSimulate() ||
453         IsEnterInlined() ||
454         IsLeaveInlined());
455 }
456 
457 
IsInteger32Constant()458 bool HValue::IsInteger32Constant() {
459   return IsConstant() && HConstant::cast(this)->HasInteger32Value();
460 }
461 
462 
GetInteger32Constant()463 int32_t HValue::GetInteger32Constant() {
464   return HConstant::cast(this)->Integer32Value();
465 }
466 
467 
EqualsInteger32Constant(int32_t value)468 bool HValue::EqualsInteger32Constant(int32_t value) {
469   return IsInteger32Constant() && GetInteger32Constant() == value;
470 }
471 
472 
SetOperandAt(int index,HValue * value)473 void HValue::SetOperandAt(int index, HValue* value) {
474   RegisterUse(index, value);
475   InternalSetOperandAt(index, value);
476 }
477 
478 
DeleteAndReplaceWith(HValue * other)479 void HValue::DeleteAndReplaceWith(HValue* other) {
480   // We replace all uses first, so Delete can assert that there are none.
481   if (other != NULL) ReplaceAllUsesWith(other);
482   Kill();
483   DeleteFromGraph();
484 }
485 
486 
ReplaceAllUsesWith(HValue * other)487 void HValue::ReplaceAllUsesWith(HValue* other) {
488   while (use_list_ != NULL) {
489     HUseListNode* list_node = use_list_;
490     HValue* value = list_node->value();
491     DCHECK(!value->block()->IsStartBlock());
492     value->InternalSetOperandAt(list_node->index(), other);
493     use_list_ = list_node->tail();
494     list_node->set_tail(other->use_list_);
495     other->use_list_ = list_node;
496   }
497 }
498 
499 
Kill()500 void HValue::Kill() {
501   // Instead of going through the entire use list of each operand, we only
502   // check the first item in each use list and rely on the tail() method to
503   // skip dead items, removing them lazily next time we traverse the list.
504   SetFlag(kIsDead);
505   for (int i = 0; i < OperandCount(); ++i) {
506     HValue* operand = OperandAt(i);
507     if (operand == NULL) continue;
508     HUseListNode* first = operand->use_list_;
509     if (first != NULL && first->value()->CheckFlag(kIsDead)) {
510       operand->use_list_ = first->tail();
511     }
512   }
513 }
514 
515 
SetBlock(HBasicBlock * block)516 void HValue::SetBlock(HBasicBlock* block) {
517   DCHECK(block_ == NULL || block == NULL);
518   block_ = block;
519   if (id_ == kNoNumber && block != NULL) {
520     id_ = block->graph()->GetNextValueID(this);
521   }
522 }
523 
524 
operator <<(std::ostream & os,const HValue & v)525 std::ostream& operator<<(std::ostream& os, const HValue& v) {
526   return v.PrintTo(os);
527 }
528 
529 
operator <<(std::ostream & os,const TypeOf & t)530 std::ostream& operator<<(std::ostream& os, const TypeOf& t) {
531   if (t.value->representation().IsTagged() &&
532       !t.value->type().Equals(HType::Tagged()))
533     return os;
534   return os << " type:" << t.value->type();
535 }
536 
537 
operator <<(std::ostream & os,const ChangesOf & c)538 std::ostream& operator<<(std::ostream& os, const ChangesOf& c) {
539   GVNFlagSet changes_flags = c.value->ChangesFlags();
540   if (changes_flags.IsEmpty()) return os;
541   os << " changes[";
542   if (changes_flags == c.value->AllSideEffectsFlagSet()) {
543     os << "*";
544   } else {
545     bool add_comma = false;
546 #define PRINT_DO(Type)                   \
547   if (changes_flags.Contains(k##Type)) { \
548     if (add_comma) os << ",";            \
549     add_comma = true;                    \
550     os << #Type;                         \
551   }
552     GVN_TRACKED_FLAG_LIST(PRINT_DO);
553     GVN_UNTRACKED_FLAG_LIST(PRINT_DO);
554 #undef PRINT_DO
555   }
556   return os << "]";
557 }
558 
559 
HasMonomorphicJSObjectType()560 bool HValue::HasMonomorphicJSObjectType() {
561   return !GetMonomorphicJSObjectMap().is_null();
562 }
563 
564 
UpdateInferredType()565 bool HValue::UpdateInferredType() {
566   HType type = CalculateInferredType();
567   bool result = (!type.Equals(type_));
568   type_ = type;
569   return result;
570 }
571 
572 
RegisterUse(int index,HValue * new_value)573 void HValue::RegisterUse(int index, HValue* new_value) {
574   HValue* old_value = OperandAt(index);
575   if (old_value == new_value) return;
576 
577   HUseListNode* removed = NULL;
578   if (old_value != NULL) {
579     removed = old_value->RemoveUse(this, index);
580   }
581 
582   if (new_value != NULL) {
583     if (removed == NULL) {
584       new_value->use_list_ = new(new_value->block()->zone()) HUseListNode(
585           this, index, new_value->use_list_);
586     } else {
587       removed->set_tail(new_value->use_list_);
588       new_value->use_list_ = removed;
589     }
590   }
591 }
592 
593 
AddNewRange(Range * r,Zone * zone)594 void HValue::AddNewRange(Range* r, Zone* zone) {
595   if (!HasRange()) ComputeInitialRange(zone);
596   if (!HasRange()) range_ = new(zone) Range();
597   DCHECK(HasRange());
598   r->StackUpon(range_);
599   range_ = r;
600 }
601 
602 
RemoveLastAddedRange()603 void HValue::RemoveLastAddedRange() {
604   DCHECK(HasRange());
605   DCHECK(range_->next() != NULL);
606   range_ = range_->next();
607 }
608 
609 
ComputeInitialRange(Zone * zone)610 void HValue::ComputeInitialRange(Zone* zone) {
611   DCHECK(!HasRange());
612   range_ = InferRange(zone);
613   DCHECK(HasRange());
614 }
615 
616 
PrintTo(std::ostream & os) const617 std::ostream& HInstruction::PrintTo(std::ostream& os) const {  // NOLINT
618   os << Mnemonic() << " ";
619   PrintDataTo(os) << ChangesOf(this) << TypeOf(this);
620   if (CheckFlag(HValue::kHasNoObservableSideEffects)) os << " [noOSE]";
621   if (CheckFlag(HValue::kIsDead)) os << " [dead]";
622   return os;
623 }
624 
625 
PrintDataTo(std::ostream & os) const626 std::ostream& HInstruction::PrintDataTo(std::ostream& os) const {  // NOLINT
627   for (int i = 0; i < OperandCount(); ++i) {
628     if (i > 0) os << " ";
629     os << NameOf(OperandAt(i));
630   }
631   return os;
632 }
633 
634 
Unlink()635 void HInstruction::Unlink() {
636   DCHECK(IsLinked());
637   DCHECK(!IsControlInstruction());  // Must never move control instructions.
638   DCHECK(!IsBlockEntry());  // Doesn't make sense to delete these.
639   DCHECK(previous_ != NULL);
640   previous_->next_ = next_;
641   if (next_ == NULL) {
642     DCHECK(block()->last() == this);
643     block()->set_last(previous_);
644   } else {
645     next_->previous_ = previous_;
646   }
647   clear_block();
648 }
649 
650 
InsertBefore(HInstruction * next)651 void HInstruction::InsertBefore(HInstruction* next) {
652   DCHECK(!IsLinked());
653   DCHECK(!next->IsBlockEntry());
654   DCHECK(!IsControlInstruction());
655   DCHECK(!next->block()->IsStartBlock());
656   DCHECK(next->previous_ != NULL);
657   HInstruction* prev = next->previous();
658   prev->next_ = this;
659   next->previous_ = this;
660   next_ = next;
661   previous_ = prev;
662   SetBlock(next->block());
663   if (!has_position() && next->has_position()) {
664     set_position(next->position());
665   }
666 }
667 
668 
InsertAfter(HInstruction * previous)669 void HInstruction::InsertAfter(HInstruction* previous) {
670   DCHECK(!IsLinked());
671   DCHECK(!previous->IsControlInstruction());
672   DCHECK(!IsControlInstruction() || previous->next_ == NULL);
673   HBasicBlock* block = previous->block();
674   // Never insert anything except constants into the start block after finishing
675   // it.
676   if (block->IsStartBlock() && block->IsFinished() && !IsConstant()) {
677     DCHECK(block->end()->SecondSuccessor() == NULL);
678     InsertAfter(block->end()->FirstSuccessor()->first());
679     return;
680   }
681 
682   // If we're inserting after an instruction with side-effects that is
683   // followed by a simulate instruction, we need to insert after the
684   // simulate instruction instead.
685   HInstruction* next = previous->next_;
686   if (previous->HasObservableSideEffects() && next != NULL) {
687     DCHECK(next->IsSimulate());
688     previous = next;
689     next = previous->next_;
690   }
691 
692   previous_ = previous;
693   next_ = next;
694   SetBlock(block);
695   previous->next_ = this;
696   if (next != NULL) next->previous_ = this;
697   if (block->last() == previous) {
698     block->set_last(this);
699   }
700   if (!has_position() && previous->has_position()) {
701     set_position(previous->position());
702   }
703 }
704 
705 
Dominates(HInstruction * other)706 bool HInstruction::Dominates(HInstruction* other) {
707   if (block() != other->block()) {
708     return block()->Dominates(other->block());
709   }
710   // Both instructions are in the same basic block. This instruction
711   // should precede the other one in order to dominate it.
712   for (HInstruction* instr = next(); instr != NULL; instr = instr->next()) {
713     if (instr == other) {
714       return true;
715     }
716   }
717   return false;
718 }
719 
720 
721 #ifdef DEBUG
Verify()722 void HInstruction::Verify() {
723   // Verify that input operands are defined before use.
724   HBasicBlock* cur_block = block();
725   for (int i = 0; i < OperandCount(); ++i) {
726     HValue* other_operand = OperandAt(i);
727     if (other_operand == NULL) continue;
728     HBasicBlock* other_block = other_operand->block();
729     if (cur_block == other_block) {
730       if (!other_operand->IsPhi()) {
731         HInstruction* cur = this->previous();
732         while (cur != NULL) {
733           if (cur == other_operand) break;
734           cur = cur->previous();
735         }
736         // Must reach other operand in the same block!
737         DCHECK(cur == other_operand);
738       }
739     } else {
740       // If the following assert fires, you may have forgotten an
741       // AddInstruction.
742       DCHECK(other_block->Dominates(cur_block));
743     }
744   }
745 
746   // Verify that instructions that may have side-effects are followed
747   // by a simulate instruction.
748   if (HasObservableSideEffects() && !IsOsrEntry()) {
749     DCHECK(next()->IsSimulate());
750   }
751 
752   // Verify that instructions that can be eliminated by GVN have overridden
753   // HValue::DataEquals.  The default implementation is UNREACHABLE.  We
754   // don't actually care whether DataEquals returns true or false here.
755   if (CheckFlag(kUseGVN)) DataEquals(this);
756 
757   // Verify that all uses are in the graph.
758   for (HUseIterator use = uses(); !use.Done(); use.Advance()) {
759     if (use.value()->IsInstruction()) {
760       DCHECK(HInstruction::cast(use.value())->IsLinked());
761     }
762   }
763 }
764 #endif
765 
766 
CanDeoptimize()767 bool HInstruction::CanDeoptimize() {
768   // TODO(titzer): make this a virtual method?
769   switch (opcode()) {
770     case HValue::kAbnormalExit:
771     case HValue::kAccessArgumentsAt:
772     case HValue::kAllocate:
773     case HValue::kArgumentsElements:
774     case HValue::kArgumentsLength:
775     case HValue::kArgumentsObject:
776     case HValue::kBlockEntry:
777     case HValue::kBoundsCheckBaseIndexInformation:
778     case HValue::kCallFunction:
779     case HValue::kCallNewArray:
780     case HValue::kCallStub:
781     case HValue::kCapturedObject:
782     case HValue::kClassOfTestAndBranch:
783     case HValue::kCompareGeneric:
784     case HValue::kCompareHoleAndBranch:
785     case HValue::kCompareMap:
786     case HValue::kCompareMinusZeroAndBranch:
787     case HValue::kCompareNumericAndBranch:
788     case HValue::kCompareObjectEqAndBranch:
789     case HValue::kConstant:
790     case HValue::kConstructDouble:
791     case HValue::kContext:
792     case HValue::kDebugBreak:
793     case HValue::kDeclareGlobals:
794     case HValue::kDoubleBits:
795     case HValue::kDummyUse:
796     case HValue::kEnterInlined:
797     case HValue::kEnvironmentMarker:
798     case HValue::kForceRepresentation:
799     case HValue::kGetCachedArrayIndex:
800     case HValue::kGoto:
801     case HValue::kHasCachedArrayIndexAndBranch:
802     case HValue::kHasInstanceTypeAndBranch:
803     case HValue::kInnerAllocatedObject:
804     case HValue::kInstanceOf:
805     case HValue::kIsSmiAndBranch:
806     case HValue::kIsStringAndBranch:
807     case HValue::kIsUndetectableAndBranch:
808     case HValue::kLeaveInlined:
809     case HValue::kLoadFieldByIndex:
810     case HValue::kLoadGlobalGeneric:
811     case HValue::kLoadNamedField:
812     case HValue::kLoadNamedGeneric:
813     case HValue::kLoadRoot:
814     case HValue::kMapEnumLength:
815     case HValue::kMathMinMax:
816     case HValue::kParameter:
817     case HValue::kPhi:
818     case HValue::kPushArguments:
819     case HValue::kReturn:
820     case HValue::kSeqStringGetChar:
821     case HValue::kStoreCodeEntry:
822     case HValue::kStoreFrameContext:
823     case HValue::kStoreKeyed:
824     case HValue::kStoreNamedField:
825     case HValue::kStoreNamedGeneric:
826     case HValue::kStringCharCodeAt:
827     case HValue::kStringCharFromCode:
828     case HValue::kThisFunction:
829     case HValue::kTypeofIsAndBranch:
830     case HValue::kUnknownOSRValue:
831     case HValue::kUseConst:
832       return false;
833 
834     case HValue::kAdd:
835     case HValue::kAllocateBlockContext:
836     case HValue::kApplyArguments:
837     case HValue::kBitwise:
838     case HValue::kBoundsCheck:
839     case HValue::kBranch:
840     case HValue::kCallJSFunction:
841     case HValue::kCallRuntime:
842     case HValue::kCallWithDescriptor:
843     case HValue::kChange:
844     case HValue::kCheckArrayBufferNotNeutered:
845     case HValue::kCheckHeapObject:
846     case HValue::kCheckInstanceType:
847     case HValue::kCheckMapValue:
848     case HValue::kCheckMaps:
849     case HValue::kCheckSmi:
850     case HValue::kCheckValue:
851     case HValue::kClampToUint8:
852     case HValue::kDeoptimize:
853     case HValue::kDiv:
854     case HValue::kForInCacheArray:
855     case HValue::kForInPrepareMap:
856     case HValue::kHasInPrototypeChainAndBranch:
857     case HValue::kInvokeFunction:
858     case HValue::kLoadContextSlot:
859     case HValue::kLoadFunctionPrototype:
860     case HValue::kLoadKeyed:
861     case HValue::kLoadKeyedGeneric:
862     case HValue::kMathFloorOfDiv:
863     case HValue::kMaybeGrowElements:
864     case HValue::kMod:
865     case HValue::kMul:
866     case HValue::kOsrEntry:
867     case HValue::kPower:
868     case HValue::kPrologue:
869     case HValue::kRor:
870     case HValue::kSar:
871     case HValue::kSeqStringSetChar:
872     case HValue::kShl:
873     case HValue::kShr:
874     case HValue::kSimulate:
875     case HValue::kStackCheck:
876     case HValue::kStoreContextSlot:
877     case HValue::kStoreKeyedGeneric:
878     case HValue::kStringAdd:
879     case HValue::kStringCompareAndBranch:
880     case HValue::kSub:
881     case HValue::kToFastProperties:
882     case HValue::kTransitionElementsKind:
883     case HValue::kTrapAllocationMemento:
884     case HValue::kTypeof:
885     case HValue::kUnaryMathOperation:
886     case HValue::kWrapReceiver:
887       return true;
888   }
889   UNREACHABLE();
890   return true;
891 }
892 
893 
operator <<(std::ostream & os,const NameOf & v)894 std::ostream& operator<<(std::ostream& os, const NameOf& v) {
895   return os << v.value->representation().Mnemonic() << v.value->id();
896 }
897 
PrintDataTo(std::ostream & os) const898 std::ostream& HDummyUse::PrintDataTo(std::ostream& os) const {  // NOLINT
899   return os << NameOf(value());
900 }
901 
902 
PrintDataTo(std::ostream & os) const903 std::ostream& HEnvironmentMarker::PrintDataTo(
904     std::ostream& os) const {  // NOLINT
905   return os << (kind() == BIND ? "bind" : "lookup") << " var[" << index()
906             << "]";
907 }
908 
909 
PrintDataTo(std::ostream & os) const910 std::ostream& HUnaryCall::PrintDataTo(std::ostream& os) const {  // NOLINT
911   return os << NameOf(value()) << " #" << argument_count();
912 }
913 
914 
PrintDataTo(std::ostream & os) const915 std::ostream& HCallJSFunction::PrintDataTo(std::ostream& os) const {  // NOLINT
916   return os << NameOf(function()) << " #" << argument_count();
917 }
918 
919 
New(Isolate * isolate,Zone * zone,HValue * context,HValue * function,int argument_count)920 HCallJSFunction* HCallJSFunction::New(Isolate* isolate, Zone* zone,
921                                       HValue* context, HValue* function,
922                                       int argument_count) {
923   bool has_stack_check = false;
924   if (function->IsConstant()) {
925     HConstant* fun_const = HConstant::cast(function);
926     Handle<JSFunction> jsfun =
927         Handle<JSFunction>::cast(fun_const->handle(isolate));
928     has_stack_check = !jsfun.is_null() &&
929         (jsfun->code()->kind() == Code::FUNCTION ||
930          jsfun->code()->kind() == Code::OPTIMIZED_FUNCTION);
931   }
932 
933   return new (zone) HCallJSFunction(function, argument_count, has_stack_check);
934 }
935 
936 
PrintDataTo(std::ostream & os) const937 std::ostream& HBinaryCall::PrintDataTo(std::ostream& os) const {  // NOLINT
938   return os << NameOf(first()) << " " << NameOf(second()) << " #"
939             << argument_count();
940 }
941 
942 
PrintDataTo(std::ostream & os) const943 std::ostream& HCallFunction::PrintDataTo(std::ostream& os) const {  // NOLINT
944   os << NameOf(context()) << " " << NameOf(function());
945   if (HasVectorAndSlot()) {
946     os << " (type-feedback-vector icslot " << slot().ToInt() << ")";
947   }
948   os << " (convert mode" << convert_mode() << ")";
949   return os;
950 }
951 
952 
ApplyIndexChange()953 void HBoundsCheck::ApplyIndexChange() {
954   if (skip_check()) return;
955 
956   DecompositionResult decomposition;
957   bool index_is_decomposable = index()->TryDecompose(&decomposition);
958   if (index_is_decomposable) {
959     DCHECK(decomposition.base() == base());
960     if (decomposition.offset() == offset() &&
961         decomposition.scale() == scale()) return;
962   } else {
963     return;
964   }
965 
966   ReplaceAllUsesWith(index());
967 
968   HValue* current_index = decomposition.base();
969   int actual_offset = decomposition.offset() + offset();
970   int actual_scale = decomposition.scale() + scale();
971 
972   HGraph* graph = block()->graph();
973   Isolate* isolate = graph->isolate();
974   Zone* zone = graph->zone();
975   HValue* context = graph->GetInvalidContext();
976   if (actual_offset != 0) {
977     HConstant* add_offset =
978         HConstant::New(isolate, zone, context, actual_offset);
979     add_offset->InsertBefore(this);
980     HInstruction* add =
981         HAdd::New(isolate, zone, context, current_index, add_offset);
982     add->InsertBefore(this);
983     add->AssumeRepresentation(index()->representation());
984     add->ClearFlag(kCanOverflow);
985     current_index = add;
986   }
987 
988   if (actual_scale != 0) {
989     HConstant* sar_scale = HConstant::New(isolate, zone, context, actual_scale);
990     sar_scale->InsertBefore(this);
991     HInstruction* sar =
992         HSar::New(isolate, zone, context, current_index, sar_scale);
993     sar->InsertBefore(this);
994     sar->AssumeRepresentation(index()->representation());
995     current_index = sar;
996   }
997 
998   SetOperandAt(0, current_index);
999 
1000   base_ = NULL;
1001   offset_ = 0;
1002   scale_ = 0;
1003 }
1004 
1005 
PrintDataTo(std::ostream & os) const1006 std::ostream& HBoundsCheck::PrintDataTo(std::ostream& os) const {  // NOLINT
1007   os << NameOf(index()) << " " << NameOf(length());
1008   if (base() != NULL && (offset() != 0 || scale() != 0)) {
1009     os << " base: ((";
1010     if (base() != index()) {
1011       os << NameOf(index());
1012     } else {
1013       os << "index";
1014     }
1015     os << " + " << offset() << ") >> " << scale() << ")";
1016   }
1017   if (skip_check()) os << " [DISABLED]";
1018   return os;
1019 }
1020 
1021 
InferRepresentation(HInferRepresentationPhase * h_infer)1022 void HBoundsCheck::InferRepresentation(HInferRepresentationPhase* h_infer) {
1023   DCHECK(CheckFlag(kFlexibleRepresentation));
1024   HValue* actual_index = index()->ActualValue();
1025   HValue* actual_length = length()->ActualValue();
1026   Representation index_rep = actual_index->representation();
1027   Representation length_rep = actual_length->representation();
1028   if (index_rep.IsTagged() && actual_index->type().IsSmi()) {
1029     index_rep = Representation::Smi();
1030   }
1031   if (length_rep.IsTagged() && actual_length->type().IsSmi()) {
1032     length_rep = Representation::Smi();
1033   }
1034   Representation r = index_rep.generalize(length_rep);
1035   if (r.is_more_general_than(Representation::Integer32())) {
1036     r = Representation::Integer32();
1037   }
1038   UpdateRepresentation(r, h_infer, "boundscheck");
1039 }
1040 
1041 
InferRange(Zone * zone)1042 Range* HBoundsCheck::InferRange(Zone* zone) {
1043   Representation r = representation();
1044   if (r.IsSmiOrInteger32() && length()->HasRange()) {
1045     int upper = length()->range()->upper() - (allow_equality() ? 0 : 1);
1046     int lower = 0;
1047 
1048     Range* result = new(zone) Range(lower, upper);
1049     if (index()->HasRange()) {
1050       result->Intersect(index()->range());
1051     }
1052 
1053     // In case of Smi representation, clamp result to Smi::kMaxValue.
1054     if (r.IsSmi()) result->ClampToSmi();
1055     return result;
1056   }
1057   return HValue::InferRange(zone);
1058 }
1059 
1060 
PrintDataTo(std::ostream & os) const1061 std::ostream& HBoundsCheckBaseIndexInformation::PrintDataTo(
1062     std::ostream& os) const {  // NOLINT
1063   // TODO(svenpanne) This 2nd base_index() looks wrong...
1064   return os << "base: " << NameOf(base_index())
1065             << ", check: " << NameOf(base_index());
1066 }
1067 
1068 
PrintDataTo(std::ostream & os) const1069 std::ostream& HCallWithDescriptor::PrintDataTo(
1070     std::ostream& os) const {  // NOLINT
1071   for (int i = 0; i < OperandCount(); i++) {
1072     os << NameOf(OperandAt(i)) << " ";
1073   }
1074   return os << "#" << argument_count();
1075 }
1076 
1077 
PrintDataTo(std::ostream & os) const1078 std::ostream& HCallNewArray::PrintDataTo(std::ostream& os) const {  // NOLINT
1079   os << ElementsKindToString(elements_kind()) << " ";
1080   return HBinaryCall::PrintDataTo(os);
1081 }
1082 
1083 
PrintDataTo(std::ostream & os) const1084 std::ostream& HCallRuntime::PrintDataTo(std::ostream& os) const {  // NOLINT
1085   os << function()->name << " ";
1086   if (save_doubles() == kSaveFPRegs) os << "[save doubles] ";
1087   return os << "#" << argument_count();
1088 }
1089 
1090 
PrintDataTo(std::ostream & os) const1091 std::ostream& HClassOfTestAndBranch::PrintDataTo(
1092     std::ostream& os) const {  // NOLINT
1093   return os << "class_of_test(" << NameOf(value()) << ", \""
1094             << class_name()->ToCString().get() << "\")";
1095 }
1096 
1097 
PrintDataTo(std::ostream & os) const1098 std::ostream& HWrapReceiver::PrintDataTo(std::ostream& os) const {  // NOLINT
1099   return os << NameOf(receiver()) << " " << NameOf(function());
1100 }
1101 
1102 
PrintDataTo(std::ostream & os) const1103 std::ostream& HAccessArgumentsAt::PrintDataTo(
1104     std::ostream& os) const {  // NOLINT
1105   return os << NameOf(arguments()) << "[" << NameOf(index()) << "], length "
1106             << NameOf(length());
1107 }
1108 
1109 
PrintDataTo(std::ostream & os) const1110 std::ostream& HAllocateBlockContext::PrintDataTo(
1111     std::ostream& os) const {  // NOLINT
1112   return os << NameOf(context()) << " " << NameOf(function());
1113 }
1114 
1115 
PrintDataTo(std::ostream & os) const1116 std::ostream& HControlInstruction::PrintDataTo(
1117     std::ostream& os) const {  // NOLINT
1118   os << " goto (";
1119   bool first_block = true;
1120   for (HSuccessorIterator it(this); !it.Done(); it.Advance()) {
1121     if (!first_block) os << ", ";
1122     os << *it.Current();
1123     first_block = false;
1124   }
1125   return os << ")";
1126 }
1127 
1128 
PrintDataTo(std::ostream & os) const1129 std::ostream& HUnaryControlInstruction::PrintDataTo(
1130     std::ostream& os) const {  // NOLINT
1131   os << NameOf(value());
1132   return HControlInstruction::PrintDataTo(os);
1133 }
1134 
1135 
PrintDataTo(std::ostream & os) const1136 std::ostream& HReturn::PrintDataTo(std::ostream& os) const {  // NOLINT
1137   return os << NameOf(value()) << " (pop " << NameOf(parameter_count())
1138             << " values)";
1139 }
1140 
1141 
observed_input_representation(int index)1142 Representation HBranch::observed_input_representation(int index) {
1143   if (expected_input_types_.Contains(ToBooleanStub::NULL_TYPE) ||
1144       expected_input_types_.Contains(ToBooleanStub::SPEC_OBJECT) ||
1145       expected_input_types_.Contains(ToBooleanStub::STRING) ||
1146       expected_input_types_.Contains(ToBooleanStub::SYMBOL) ||
1147       expected_input_types_.Contains(ToBooleanStub::SIMD_VALUE)) {
1148     return Representation::Tagged();
1149   }
1150   if (expected_input_types_.Contains(ToBooleanStub::UNDEFINED)) {
1151     if (expected_input_types_.Contains(ToBooleanStub::HEAP_NUMBER)) {
1152       return Representation::Double();
1153     }
1154     return Representation::Tagged();
1155   }
1156   if (expected_input_types_.Contains(ToBooleanStub::HEAP_NUMBER)) {
1157     return Representation::Double();
1158   }
1159   if (expected_input_types_.Contains(ToBooleanStub::SMI)) {
1160     return Representation::Smi();
1161   }
1162   return Representation::None();
1163 }
1164 
1165 
KnownSuccessorBlock(HBasicBlock ** block)1166 bool HBranch::KnownSuccessorBlock(HBasicBlock** block) {
1167   HValue* value = this->value();
1168   if (value->EmitAtUses()) {
1169     DCHECK(value->IsConstant());
1170     DCHECK(!value->representation().IsDouble());
1171     *block = HConstant::cast(value)->BooleanValue()
1172         ? FirstSuccessor()
1173         : SecondSuccessor();
1174     return true;
1175   }
1176   *block = NULL;
1177   return false;
1178 }
1179 
1180 
PrintDataTo(std::ostream & os) const1181 std::ostream& HBranch::PrintDataTo(std::ostream& os) const {  // NOLINT
1182   return HUnaryControlInstruction::PrintDataTo(os) << " "
1183                                                    << expected_input_types();
1184 }
1185 
1186 
PrintDataTo(std::ostream & os) const1187 std::ostream& HCompareMap::PrintDataTo(std::ostream& os) const {  // NOLINT
1188   os << NameOf(value()) << " (" << *map().handle() << ")";
1189   HControlInstruction::PrintDataTo(os);
1190   if (known_successor_index() == 0) {
1191     os << " [true]";
1192   } else if (known_successor_index() == 1) {
1193     os << " [false]";
1194   }
1195   return os;
1196 }
1197 
1198 
OpName() const1199 const char* HUnaryMathOperation::OpName() const {
1200   switch (op()) {
1201     case kMathFloor:
1202       return "floor";
1203     case kMathFround:
1204       return "fround";
1205     case kMathRound:
1206       return "round";
1207     case kMathAbs:
1208       return "abs";
1209     case kMathLog:
1210       return "log";
1211     case kMathExp:
1212       return "exp";
1213     case kMathSqrt:
1214       return "sqrt";
1215     case kMathPowHalf:
1216       return "pow-half";
1217     case kMathClz32:
1218       return "clz32";
1219     default:
1220       UNREACHABLE();
1221       return NULL;
1222   }
1223 }
1224 
1225 
InferRange(Zone * zone)1226 Range* HUnaryMathOperation::InferRange(Zone* zone) {
1227   Representation r = representation();
1228   if (op() == kMathClz32) return new(zone) Range(0, 32);
1229   if (r.IsSmiOrInteger32() && value()->HasRange()) {
1230     if (op() == kMathAbs) {
1231       int upper = value()->range()->upper();
1232       int lower = value()->range()->lower();
1233       bool spans_zero = value()->range()->CanBeZero();
1234       // Math.abs(kMinInt) overflows its representation, on which the
1235       // instruction deopts. Hence clamp it to kMaxInt.
1236       int abs_upper = upper == kMinInt ? kMaxInt : abs(upper);
1237       int abs_lower = lower == kMinInt ? kMaxInt : abs(lower);
1238       Range* result =
1239           new(zone) Range(spans_zero ? 0 : Min(abs_lower, abs_upper),
1240                           Max(abs_lower, abs_upper));
1241       // In case of Smi representation, clamp Math.abs(Smi::kMinValue) to
1242       // Smi::kMaxValue.
1243       if (r.IsSmi()) result->ClampToSmi();
1244       return result;
1245     }
1246   }
1247   return HValue::InferRange(zone);
1248 }
1249 
1250 
PrintDataTo(std::ostream & os) const1251 std::ostream& HUnaryMathOperation::PrintDataTo(
1252     std::ostream& os) const {  // NOLINT
1253   return os << OpName() << " " << NameOf(value());
1254 }
1255 
1256 
PrintDataTo(std::ostream & os) const1257 std::ostream& HUnaryOperation::PrintDataTo(std::ostream& os) const {  // NOLINT
1258   return os << NameOf(value());
1259 }
1260 
1261 
PrintDataTo(std::ostream & os) const1262 std::ostream& HHasInstanceTypeAndBranch::PrintDataTo(
1263     std::ostream& os) const {  // NOLINT
1264   os << NameOf(value());
1265   switch (from_) {
1266     case FIRST_JS_RECEIVER_TYPE:
1267       if (to_ == LAST_TYPE) os << " spec_object";
1268       break;
1269     case JS_REGEXP_TYPE:
1270       if (to_ == JS_REGEXP_TYPE) os << " reg_exp";
1271       break;
1272     case JS_ARRAY_TYPE:
1273       if (to_ == JS_ARRAY_TYPE) os << " array";
1274       break;
1275     case JS_FUNCTION_TYPE:
1276       if (to_ == JS_FUNCTION_TYPE) os << " function";
1277       break;
1278     default:
1279       break;
1280   }
1281   return os;
1282 }
1283 
1284 
PrintDataTo(std::ostream & os) const1285 std::ostream& HTypeofIsAndBranch::PrintDataTo(
1286     std::ostream& os) const {  // NOLINT
1287   os << NameOf(value()) << " == " << type_literal()->ToCString().get();
1288   return HControlInstruction::PrintDataTo(os);
1289 }
1290 
1291 
1292 namespace {
1293 
TypeOfString(HConstant * constant,Isolate * isolate)1294 String* TypeOfString(HConstant* constant, Isolate* isolate) {
1295   Heap* heap = isolate->heap();
1296   if (constant->HasNumberValue()) return heap->number_string();
1297   if (constant->IsUndetectable()) return heap->undefined_string();
1298   if (constant->HasStringValue()) return heap->string_string();
1299   switch (constant->GetInstanceType()) {
1300     case ODDBALL_TYPE: {
1301       Unique<Object> unique = constant->GetUnique();
1302       if (unique.IsKnownGlobal(heap->true_value()) ||
1303           unique.IsKnownGlobal(heap->false_value())) {
1304         return heap->boolean_string();
1305       }
1306       if (unique.IsKnownGlobal(heap->null_value())) {
1307         return heap->object_string();
1308       }
1309       DCHECK(unique.IsKnownGlobal(heap->undefined_value()));
1310       return heap->undefined_string();
1311     }
1312     case SYMBOL_TYPE:
1313       return heap->symbol_string();
1314     case SIMD128_VALUE_TYPE: {
1315       Unique<Map> map = constant->ObjectMap();
1316 #define SIMD128_TYPE(TYPE, Type, type, lane_count, lane_type) \
1317   if (map.IsKnownGlobal(heap->type##_map())) {                \
1318     return heap->type##_string();                             \
1319   }
1320       SIMD128_TYPES(SIMD128_TYPE)
1321 #undef SIMD128_TYPE
1322       UNREACHABLE();
1323       return nullptr;
1324     }
1325     default:
1326       if (constant->IsCallable()) return heap->function_string();
1327       return heap->object_string();
1328   }
1329 }
1330 
1331 }  // namespace
1332 
1333 
KnownSuccessorBlock(HBasicBlock ** block)1334 bool HTypeofIsAndBranch::KnownSuccessorBlock(HBasicBlock** block) {
1335   if (FLAG_fold_constants && value()->IsConstant()) {
1336     HConstant* constant = HConstant::cast(value());
1337     String* type_string = TypeOfString(constant, isolate());
1338     bool same_type = type_literal_.IsKnownGlobal(type_string);
1339     *block = same_type ? FirstSuccessor() : SecondSuccessor();
1340     return true;
1341   } else if (value()->representation().IsSpecialization()) {
1342     bool number_type =
1343         type_literal_.IsKnownGlobal(isolate()->heap()->number_string());
1344     *block = number_type ? FirstSuccessor() : SecondSuccessor();
1345     return true;
1346   }
1347   *block = NULL;
1348   return false;
1349 }
1350 
1351 
PrintDataTo(std::ostream & os) const1352 std::ostream& HCheckMapValue::PrintDataTo(std::ostream& os) const {  // NOLINT
1353   return os << NameOf(value()) << " " << NameOf(map());
1354 }
1355 
1356 
Canonicalize()1357 HValue* HCheckMapValue::Canonicalize() {
1358   if (map()->IsConstant()) {
1359     HConstant* c_map = HConstant::cast(map());
1360     return HCheckMaps::CreateAndInsertAfter(
1361         block()->graph()->zone(), value(), c_map->MapValue(),
1362         c_map->HasStableMapValue(), this);
1363   }
1364   return this;
1365 }
1366 
1367 
PrintDataTo(std::ostream & os) const1368 std::ostream& HForInPrepareMap::PrintDataTo(std::ostream& os) const {  // NOLINT
1369   return os << NameOf(enumerable());
1370 }
1371 
1372 
PrintDataTo(std::ostream & os) const1373 std::ostream& HForInCacheArray::PrintDataTo(std::ostream& os) const {  // NOLINT
1374   return os << NameOf(enumerable()) << " " << NameOf(map()) << "[" << idx_
1375             << "]";
1376 }
1377 
1378 
PrintDataTo(std::ostream & os) const1379 std::ostream& HLoadFieldByIndex::PrintDataTo(
1380     std::ostream& os) const {  // NOLINT
1381   return os << NameOf(object()) << " " << NameOf(index());
1382 }
1383 
1384 
MatchLeftIsOnes(HValue * l,HValue * r,HValue ** negated)1385 static bool MatchLeftIsOnes(HValue* l, HValue* r, HValue** negated) {
1386   if (!l->EqualsInteger32Constant(~0)) return false;
1387   *negated = r;
1388   return true;
1389 }
1390 
1391 
MatchNegationViaXor(HValue * instr,HValue ** negated)1392 static bool MatchNegationViaXor(HValue* instr, HValue** negated) {
1393   if (!instr->IsBitwise()) return false;
1394   HBitwise* b = HBitwise::cast(instr);
1395   return (b->op() == Token::BIT_XOR) &&
1396       (MatchLeftIsOnes(b->left(), b->right(), negated) ||
1397        MatchLeftIsOnes(b->right(), b->left(), negated));
1398 }
1399 
1400 
MatchDoubleNegation(HValue * instr,HValue ** arg)1401 static bool MatchDoubleNegation(HValue* instr, HValue** arg) {
1402   HValue* negated;
1403   return MatchNegationViaXor(instr, &negated) &&
1404       MatchNegationViaXor(negated, arg);
1405 }
1406 
1407 
Canonicalize()1408 HValue* HBitwise::Canonicalize() {
1409   if (!representation().IsSmiOrInteger32()) return this;
1410   // If x is an int32, then x & -1 == x, x | 0 == x and x ^ 0 == x.
1411   int32_t nop_constant = (op() == Token::BIT_AND) ? -1 : 0;
1412   if (left()->EqualsInteger32Constant(nop_constant) &&
1413       !right()->CheckFlag(kUint32)) {
1414     return right();
1415   }
1416   if (right()->EqualsInteger32Constant(nop_constant) &&
1417       !left()->CheckFlag(kUint32)) {
1418     return left();
1419   }
1420   // Optimize double negation, a common pattern used for ToInt32(x).
1421   HValue* arg;
1422   if (MatchDoubleNegation(this, &arg) && !arg->CheckFlag(kUint32)) {
1423     return arg;
1424   }
1425   return this;
1426 }
1427 
1428 
1429 // static
New(Isolate * isolate,Zone * zone,HValue * context,HValue * left,HValue * right,Strength strength,ExternalAddType external_add_type)1430 HInstruction* HAdd::New(Isolate* isolate, Zone* zone, HValue* context,
1431                         HValue* left, HValue* right, Strength strength,
1432                         ExternalAddType external_add_type) {
1433   // For everything else, you should use the other factory method without
1434   // ExternalAddType.
1435   DCHECK_EQ(external_add_type, AddOfExternalAndTagged);
1436   return new (zone) HAdd(context, left, right, strength, external_add_type);
1437 }
1438 
1439 
RepresentationFromInputs()1440 Representation HAdd::RepresentationFromInputs() {
1441   Representation left_rep = left()->representation();
1442   if (left_rep.IsExternal()) {
1443     return Representation::External();
1444   }
1445   return HArithmeticBinaryOperation::RepresentationFromInputs();
1446 }
1447 
1448 
RequiredInputRepresentation(int index)1449 Representation HAdd::RequiredInputRepresentation(int index) {
1450   if (index == 2) {
1451     Representation left_rep = left()->representation();
1452     if (left_rep.IsExternal()) {
1453       if (external_add_type_ == AddOfExternalAndTagged) {
1454         return Representation::Tagged();
1455       } else {
1456         return Representation::Integer32();
1457       }
1458     }
1459   }
1460   return HArithmeticBinaryOperation::RequiredInputRepresentation(index);
1461 }
1462 
1463 
IsIdentityOperation(HValue * arg1,HValue * arg2,int32_t identity)1464 static bool IsIdentityOperation(HValue* arg1, HValue* arg2, int32_t identity) {
1465   return arg1->representation().IsSpecialization() &&
1466     arg2->EqualsInteger32Constant(identity);
1467 }
1468 
1469 
Canonicalize()1470 HValue* HAdd::Canonicalize() {
1471   // Adding 0 is an identity operation except in case of -0: -0 + 0 = +0
1472   if (IsIdentityOperation(left(), right(), 0) &&
1473       !left()->representation().IsDouble()) {  // Left could be -0.
1474     return left();
1475   }
1476   if (IsIdentityOperation(right(), left(), 0) &&
1477       !left()->representation().IsDouble()) {  // Right could be -0.
1478     return right();
1479   }
1480   return this;
1481 }
1482 
1483 
Canonicalize()1484 HValue* HSub::Canonicalize() {
1485   if (IsIdentityOperation(left(), right(), 0)) return left();
1486   return this;
1487 }
1488 
1489 
Canonicalize()1490 HValue* HMul::Canonicalize() {
1491   if (IsIdentityOperation(left(), right(), 1)) return left();
1492   if (IsIdentityOperation(right(), left(), 1)) return right();
1493   return this;
1494 }
1495 
1496 
MulMinusOne()1497 bool HMul::MulMinusOne() {
1498   if (left()->EqualsInteger32Constant(-1) ||
1499       right()->EqualsInteger32Constant(-1)) {
1500     return true;
1501   }
1502 
1503   return false;
1504 }
1505 
1506 
Canonicalize()1507 HValue* HMod::Canonicalize() {
1508   return this;
1509 }
1510 
1511 
Canonicalize()1512 HValue* HDiv::Canonicalize() {
1513   if (IsIdentityOperation(left(), right(), 1)) return left();
1514   return this;
1515 }
1516 
1517 
Canonicalize()1518 HValue* HChange::Canonicalize() {
1519   return (from().Equals(to())) ? value() : this;
1520 }
1521 
1522 
Canonicalize()1523 HValue* HWrapReceiver::Canonicalize() {
1524   if (HasNoUses()) return NULL;
1525   if (receiver()->type().IsJSReceiver()) {
1526     return receiver();
1527   }
1528   return this;
1529 }
1530 
1531 
PrintDataTo(std::ostream & os) const1532 std::ostream& HTypeof::PrintDataTo(std::ostream& os) const {  // NOLINT
1533   return os << NameOf(value());
1534 }
1535 
1536 
New(Isolate * isolate,Zone * zone,HValue * context,HValue * value,Representation representation)1537 HInstruction* HForceRepresentation::New(Isolate* isolate, Zone* zone,
1538                                         HValue* context, HValue* value,
1539                                         Representation representation) {
1540   if (FLAG_fold_constants && value->IsConstant()) {
1541     HConstant* c = HConstant::cast(value);
1542     c = c->CopyToRepresentation(representation, zone);
1543     if (c != NULL) return c;
1544   }
1545   return new(zone) HForceRepresentation(value, representation);
1546 }
1547 
1548 
PrintDataTo(std::ostream & os) const1549 std::ostream& HForceRepresentation::PrintDataTo(
1550     std::ostream& os) const {  // NOLINT
1551   return os << representation().Mnemonic() << " " << NameOf(value());
1552 }
1553 
1554 
PrintDataTo(std::ostream & os) const1555 std::ostream& HChange::PrintDataTo(std::ostream& os) const {  // NOLINT
1556   HUnaryOperation::PrintDataTo(os);
1557   os << " " << from().Mnemonic() << " to " << to().Mnemonic();
1558 
1559   if (CanTruncateToSmi()) os << " truncating-smi";
1560   if (CanTruncateToInt32()) os << " truncating-int32";
1561   if (CheckFlag(kBailoutOnMinusZero)) os << " -0?";
1562   if (CheckFlag(kAllowUndefinedAsNaN)) os << " allow-undefined-as-nan";
1563   return os;
1564 }
1565 
1566 
Canonicalize()1567 HValue* HUnaryMathOperation::Canonicalize() {
1568   if (op() == kMathRound || op() == kMathFloor) {
1569     HValue* val = value();
1570     if (val->IsChange()) val = HChange::cast(val)->value();
1571     if (val->representation().IsSmiOrInteger32()) {
1572       if (val->representation().Equals(representation())) return val;
1573       return Prepend(new(block()->zone()) HChange(
1574           val, representation(), false, false));
1575     }
1576   }
1577   if (op() == kMathFloor && value()->IsDiv() && value()->HasOneUse()) {
1578     HDiv* hdiv = HDiv::cast(value());
1579 
1580     HValue* left = hdiv->left();
1581     if (left->representation().IsInteger32() && !left->CheckFlag(kUint32)) {
1582       // A value with an integer representation does not need to be transformed.
1583     } else if (left->IsChange() && HChange::cast(left)->from().IsInteger32() &&
1584                !HChange::cast(left)->value()->CheckFlag(kUint32)) {
1585       // A change from an integer32 can be replaced by the integer32 value.
1586       left = HChange::cast(left)->value();
1587     } else if (hdiv->observed_input_representation(1).IsSmiOrInteger32()) {
1588       left = Prepend(new(block()->zone()) HChange(
1589           left, Representation::Integer32(), false, false));
1590     } else {
1591       return this;
1592     }
1593 
1594     HValue* right = hdiv->right();
1595     if (right->IsInteger32Constant()) {
1596       right = Prepend(HConstant::cast(right)->CopyToRepresentation(
1597           Representation::Integer32(), right->block()->zone()));
1598     } else if (right->representation().IsInteger32() &&
1599                !right->CheckFlag(kUint32)) {
1600       // A value with an integer representation does not need to be transformed.
1601     } else if (right->IsChange() &&
1602                HChange::cast(right)->from().IsInteger32() &&
1603                !HChange::cast(right)->value()->CheckFlag(kUint32)) {
1604       // A change from an integer32 can be replaced by the integer32 value.
1605       right = HChange::cast(right)->value();
1606     } else if (hdiv->observed_input_representation(2).IsSmiOrInteger32()) {
1607       right = Prepend(new(block()->zone()) HChange(
1608           right, Representation::Integer32(), false, false));
1609     } else {
1610       return this;
1611     }
1612 
1613     return Prepend(HMathFloorOfDiv::New(
1614         block()->graph()->isolate(), block()->zone(), context(), left, right));
1615   }
1616   return this;
1617 }
1618 
1619 
Canonicalize()1620 HValue* HCheckInstanceType::Canonicalize() {
1621   if ((check_ == IS_JS_RECEIVER && value()->type().IsJSReceiver()) ||
1622       (check_ == IS_JS_ARRAY && value()->type().IsJSArray()) ||
1623       (check_ == IS_STRING && value()->type().IsString())) {
1624     return value();
1625   }
1626 
1627   if (check_ == IS_INTERNALIZED_STRING && value()->IsConstant()) {
1628     if (HConstant::cast(value())->HasInternalizedStringValue()) {
1629       return value();
1630     }
1631   }
1632   return this;
1633 }
1634 
1635 
GetCheckInterval(InstanceType * first,InstanceType * last)1636 void HCheckInstanceType::GetCheckInterval(InstanceType* first,
1637                                           InstanceType* last) {
1638   DCHECK(is_interval_check());
1639   switch (check_) {
1640     case IS_JS_RECEIVER:
1641       *first = FIRST_JS_RECEIVER_TYPE;
1642       *last = LAST_JS_RECEIVER_TYPE;
1643       return;
1644     case IS_JS_ARRAY:
1645       *first = *last = JS_ARRAY_TYPE;
1646       return;
1647     case IS_JS_DATE:
1648       *first = *last = JS_DATE_TYPE;
1649       return;
1650     default:
1651       UNREACHABLE();
1652   }
1653 }
1654 
1655 
GetCheckMaskAndTag(uint8_t * mask,uint8_t * tag)1656 void HCheckInstanceType::GetCheckMaskAndTag(uint8_t* mask, uint8_t* tag) {
1657   DCHECK(!is_interval_check());
1658   switch (check_) {
1659     case IS_STRING:
1660       *mask = kIsNotStringMask;
1661       *tag = kStringTag;
1662       return;
1663     case IS_INTERNALIZED_STRING:
1664       *mask = kIsNotStringMask | kIsNotInternalizedMask;
1665       *tag = kInternalizedTag;
1666       return;
1667     default:
1668       UNREACHABLE();
1669   }
1670 }
1671 
1672 
PrintDataTo(std::ostream & os) const1673 std::ostream& HCheckMaps::PrintDataTo(std::ostream& os) const {  // NOLINT
1674   os << NameOf(value()) << " [" << *maps()->at(0).handle();
1675   for (int i = 1; i < maps()->size(); ++i) {
1676     os << "," << *maps()->at(i).handle();
1677   }
1678   os << "]";
1679   if (IsStabilityCheck()) os << "(stability-check)";
1680   return os;
1681 }
1682 
1683 
Canonicalize()1684 HValue* HCheckMaps::Canonicalize() {
1685   if (!IsStabilityCheck() && maps_are_stable() && value()->IsConstant()) {
1686     HConstant* c_value = HConstant::cast(value());
1687     if (c_value->HasObjectMap()) {
1688       for (int i = 0; i < maps()->size(); ++i) {
1689         if (c_value->ObjectMap() == maps()->at(i)) {
1690           if (maps()->size() > 1) {
1691             set_maps(new(block()->graph()->zone()) UniqueSet<Map>(
1692                     maps()->at(i), block()->graph()->zone()));
1693           }
1694           MarkAsStabilityCheck();
1695           break;
1696         }
1697       }
1698     }
1699   }
1700   return this;
1701 }
1702 
1703 
PrintDataTo(std::ostream & os) const1704 std::ostream& HCheckValue::PrintDataTo(std::ostream& os) const {  // NOLINT
1705   return os << NameOf(value()) << " " << Brief(*object().handle());
1706 }
1707 
1708 
Canonicalize()1709 HValue* HCheckValue::Canonicalize() {
1710   return (value()->IsConstant() &&
1711           HConstant::cast(value())->EqualsUnique(object_)) ? NULL : this;
1712 }
1713 
1714 
GetCheckName() const1715 const char* HCheckInstanceType::GetCheckName() const {
1716   switch (check_) {
1717     case IS_JS_RECEIVER: return "object";
1718     case IS_JS_ARRAY: return "array";
1719     case IS_JS_DATE:
1720       return "date";
1721     case IS_STRING: return "string";
1722     case IS_INTERNALIZED_STRING: return "internalized_string";
1723   }
1724   UNREACHABLE();
1725   return "";
1726 }
1727 
1728 
PrintDataTo(std::ostream & os) const1729 std::ostream& HCheckInstanceType::PrintDataTo(
1730     std::ostream& os) const {  // NOLINT
1731   os << GetCheckName() << " ";
1732   return HUnaryOperation::PrintDataTo(os);
1733 }
1734 
1735 
PrintDataTo(std::ostream & os) const1736 std::ostream& HCallStub::PrintDataTo(std::ostream& os) const {  // NOLINT
1737   os << CodeStub::MajorName(major_key_) << " ";
1738   return HUnaryCall::PrintDataTo(os);
1739 }
1740 
1741 
PrintDataTo(std::ostream & os) const1742 std::ostream& HUnknownOSRValue::PrintDataTo(std::ostream& os) const {  // NOLINT
1743   const char* type = "expression";
1744   if (environment_->is_local_index(index_)) type = "local";
1745   if (environment_->is_special_index(index_)) type = "special";
1746   if (environment_->is_parameter_index(index_)) type = "parameter";
1747   return os << type << " @ " << index_;
1748 }
1749 
1750 
PrintDataTo(std::ostream & os) const1751 std::ostream& HInstanceOf::PrintDataTo(std::ostream& os) const {  // NOLINT
1752   return os << NameOf(left()) << " " << NameOf(right()) << " "
1753             << NameOf(context());
1754 }
1755 
1756 
InferRange(Zone * zone)1757 Range* HValue::InferRange(Zone* zone) {
1758   Range* result;
1759   if (representation().IsSmi() || type().IsSmi()) {
1760     result = new(zone) Range(Smi::kMinValue, Smi::kMaxValue);
1761     result->set_can_be_minus_zero(false);
1762   } else {
1763     result = new(zone) Range();
1764     result->set_can_be_minus_zero(!CheckFlag(kAllUsesTruncatingToInt32));
1765     // TODO(jkummerow): The range cannot be minus zero when the upper type
1766     // bound is Integer32.
1767   }
1768   return result;
1769 }
1770 
1771 
InferRange(Zone * zone)1772 Range* HChange::InferRange(Zone* zone) {
1773   Range* input_range = value()->range();
1774   if (from().IsInteger32() && !value()->CheckFlag(HInstruction::kUint32) &&
1775       (to().IsSmi() ||
1776        (to().IsTagged() &&
1777         input_range != NULL &&
1778         input_range->IsInSmiRange()))) {
1779     set_type(HType::Smi());
1780     ClearChangesFlag(kNewSpacePromotion);
1781   }
1782   if (to().IsSmiOrTagged() &&
1783       input_range != NULL &&
1784       input_range->IsInSmiRange() &&
1785       (!SmiValuesAre32Bits() ||
1786        !value()->CheckFlag(HValue::kUint32) ||
1787        input_range->upper() != kMaxInt)) {
1788     // The Range class can't express upper bounds in the (kMaxInt, kMaxUint32]
1789     // interval, so we treat kMaxInt as a sentinel for this entire interval.
1790     ClearFlag(kCanOverflow);
1791   }
1792   Range* result = (input_range != NULL)
1793       ? input_range->Copy(zone)
1794       : HValue::InferRange(zone);
1795   result->set_can_be_minus_zero(!to().IsSmiOrInteger32() ||
1796                                 !(CheckFlag(kAllUsesTruncatingToInt32) ||
1797                                   CheckFlag(kAllUsesTruncatingToSmi)));
1798   if (to().IsSmi()) result->ClampToSmi();
1799   return result;
1800 }
1801 
1802 
InferRange(Zone * zone)1803 Range* HConstant::InferRange(Zone* zone) {
1804   if (HasInteger32Value()) {
1805     Range* result = new(zone) Range(int32_value_, int32_value_);
1806     result->set_can_be_minus_zero(false);
1807     return result;
1808   }
1809   return HValue::InferRange(zone);
1810 }
1811 
1812 
position() const1813 SourcePosition HPhi::position() const { return block()->first()->position(); }
1814 
1815 
InferRange(Zone * zone)1816 Range* HPhi::InferRange(Zone* zone) {
1817   Representation r = representation();
1818   if (r.IsSmiOrInteger32()) {
1819     if (block()->IsLoopHeader()) {
1820       Range* range = r.IsSmi()
1821           ? new(zone) Range(Smi::kMinValue, Smi::kMaxValue)
1822           : new(zone) Range(kMinInt, kMaxInt);
1823       return range;
1824     } else {
1825       Range* range = OperandAt(0)->range()->Copy(zone);
1826       for (int i = 1; i < OperandCount(); ++i) {
1827         range->Union(OperandAt(i)->range());
1828       }
1829       return range;
1830     }
1831   } else {
1832     return HValue::InferRange(zone);
1833   }
1834 }
1835 
1836 
InferRange(Zone * zone)1837 Range* HAdd::InferRange(Zone* zone) {
1838   Representation r = representation();
1839   if (r.IsSmiOrInteger32()) {
1840     Range* a = left()->range();
1841     Range* b = right()->range();
1842     Range* res = a->Copy(zone);
1843     if (!res->AddAndCheckOverflow(r, b) ||
1844         (r.IsInteger32() && CheckFlag(kAllUsesTruncatingToInt32)) ||
1845         (r.IsSmi() && CheckFlag(kAllUsesTruncatingToSmi))) {
1846       ClearFlag(kCanOverflow);
1847     }
1848     res->set_can_be_minus_zero(!CheckFlag(kAllUsesTruncatingToSmi) &&
1849                                !CheckFlag(kAllUsesTruncatingToInt32) &&
1850                                a->CanBeMinusZero() && b->CanBeMinusZero());
1851     return res;
1852   } else {
1853     return HValue::InferRange(zone);
1854   }
1855 }
1856 
1857 
InferRange(Zone * zone)1858 Range* HSub::InferRange(Zone* zone) {
1859   Representation r = representation();
1860   if (r.IsSmiOrInteger32()) {
1861     Range* a = left()->range();
1862     Range* b = right()->range();
1863     Range* res = a->Copy(zone);
1864     if (!res->SubAndCheckOverflow(r, b) ||
1865         (r.IsInteger32() && CheckFlag(kAllUsesTruncatingToInt32)) ||
1866         (r.IsSmi() && CheckFlag(kAllUsesTruncatingToSmi))) {
1867       ClearFlag(kCanOverflow);
1868     }
1869     res->set_can_be_minus_zero(!CheckFlag(kAllUsesTruncatingToSmi) &&
1870                                !CheckFlag(kAllUsesTruncatingToInt32) &&
1871                                a->CanBeMinusZero() && b->CanBeZero());
1872     return res;
1873   } else {
1874     return HValue::InferRange(zone);
1875   }
1876 }
1877 
1878 
InferRange(Zone * zone)1879 Range* HMul::InferRange(Zone* zone) {
1880   Representation r = representation();
1881   if (r.IsSmiOrInteger32()) {
1882     Range* a = left()->range();
1883     Range* b = right()->range();
1884     Range* res = a->Copy(zone);
1885     if (!res->MulAndCheckOverflow(r, b) ||
1886         (((r.IsInteger32() && CheckFlag(kAllUsesTruncatingToInt32)) ||
1887          (r.IsSmi() && CheckFlag(kAllUsesTruncatingToSmi))) &&
1888          MulMinusOne())) {
1889       // Truncated int multiplication is too precise and therefore not the
1890       // same as converting to Double and back.
1891       // Handle truncated integer multiplication by -1 special.
1892       ClearFlag(kCanOverflow);
1893     }
1894     res->set_can_be_minus_zero(!CheckFlag(kAllUsesTruncatingToSmi) &&
1895                                !CheckFlag(kAllUsesTruncatingToInt32) &&
1896                                ((a->CanBeZero() && b->CanBeNegative()) ||
1897                                 (a->CanBeNegative() && b->CanBeZero())));
1898     return res;
1899   } else {
1900     return HValue::InferRange(zone);
1901   }
1902 }
1903 
1904 
InferRange(Zone * zone)1905 Range* HDiv::InferRange(Zone* zone) {
1906   if (representation().IsInteger32()) {
1907     Range* a = left()->range();
1908     Range* b = right()->range();
1909     Range* result = new(zone) Range();
1910     result->set_can_be_minus_zero(!CheckFlag(kAllUsesTruncatingToInt32) &&
1911                                   (a->CanBeMinusZero() ||
1912                                    (a->CanBeZero() && b->CanBeNegative())));
1913     if (!a->Includes(kMinInt) || !b->Includes(-1)) {
1914       ClearFlag(kCanOverflow);
1915     }
1916 
1917     if (!b->CanBeZero()) {
1918       ClearFlag(kCanBeDivByZero);
1919     }
1920     return result;
1921   } else {
1922     return HValue::InferRange(zone);
1923   }
1924 }
1925 
1926 
InferRange(Zone * zone)1927 Range* HMathFloorOfDiv::InferRange(Zone* zone) {
1928   if (representation().IsInteger32()) {
1929     Range* a = left()->range();
1930     Range* b = right()->range();
1931     Range* result = new(zone) Range();
1932     result->set_can_be_minus_zero(!CheckFlag(kAllUsesTruncatingToInt32) &&
1933                                   (a->CanBeMinusZero() ||
1934                                    (a->CanBeZero() && b->CanBeNegative())));
1935     if (!a->Includes(kMinInt)) {
1936       ClearFlag(kLeftCanBeMinInt);
1937     }
1938 
1939     if (!a->CanBeNegative()) {
1940       ClearFlag(HValue::kLeftCanBeNegative);
1941     }
1942 
1943     if (!a->CanBePositive()) {
1944       ClearFlag(HValue::kLeftCanBePositive);
1945     }
1946 
1947     if (!a->Includes(kMinInt) || !b->Includes(-1)) {
1948       ClearFlag(kCanOverflow);
1949     }
1950 
1951     if (!b->CanBeZero()) {
1952       ClearFlag(kCanBeDivByZero);
1953     }
1954     return result;
1955   } else {
1956     return HValue::InferRange(zone);
1957   }
1958 }
1959 
1960 
1961 // Returns the absolute value of its argument minus one, avoiding undefined
1962 // behavior at kMinInt.
AbsMinus1(int32_t a)1963 static int32_t AbsMinus1(int32_t a) { return a < 0 ? -(a + 1) : (a - 1); }
1964 
1965 
InferRange(Zone * zone)1966 Range* HMod::InferRange(Zone* zone) {
1967   if (representation().IsInteger32()) {
1968     Range* a = left()->range();
1969     Range* b = right()->range();
1970 
1971     // The magnitude of the modulus is bounded by the right operand.
1972     int32_t positive_bound = Max(AbsMinus1(b->lower()), AbsMinus1(b->upper()));
1973 
1974     // The result of the modulo operation has the sign of its left operand.
1975     bool left_can_be_negative = a->CanBeMinusZero() || a->CanBeNegative();
1976     Range* result = new(zone) Range(left_can_be_negative ? -positive_bound : 0,
1977                                     a->CanBePositive() ? positive_bound : 0);
1978 
1979     result->set_can_be_minus_zero(!CheckFlag(kAllUsesTruncatingToInt32) &&
1980                                   left_can_be_negative);
1981 
1982     if (!a->CanBeNegative()) {
1983       ClearFlag(HValue::kLeftCanBeNegative);
1984     }
1985 
1986     if (!a->Includes(kMinInt) || !b->Includes(-1)) {
1987       ClearFlag(HValue::kCanOverflow);
1988     }
1989 
1990     if (!b->CanBeZero()) {
1991       ClearFlag(HValue::kCanBeDivByZero);
1992     }
1993     return result;
1994   } else {
1995     return HValue::InferRange(zone);
1996   }
1997 }
1998 
1999 
ExaminePhi(HPhi * phi)2000 InductionVariableData* InductionVariableData::ExaminePhi(HPhi* phi) {
2001   if (phi->block()->loop_information() == NULL) return NULL;
2002   if (phi->OperandCount() != 2) return NULL;
2003   int32_t candidate_increment;
2004 
2005   candidate_increment = ComputeIncrement(phi, phi->OperandAt(0));
2006   if (candidate_increment != 0) {
2007     return new(phi->block()->graph()->zone())
2008         InductionVariableData(phi, phi->OperandAt(1), candidate_increment);
2009   }
2010 
2011   candidate_increment = ComputeIncrement(phi, phi->OperandAt(1));
2012   if (candidate_increment != 0) {
2013     return new(phi->block()->graph()->zone())
2014         InductionVariableData(phi, phi->OperandAt(0), candidate_increment);
2015   }
2016 
2017   return NULL;
2018 }
2019 
2020 
2021 /*
2022  * This function tries to match the following patterns (and all the relevant
2023  * variants related to |, & and + being commutative):
2024  * base | constant_or_mask
2025  * base & constant_and_mask
2026  * (base + constant_offset) & constant_and_mask
2027  * (base - constant_offset) & constant_and_mask
2028  */
DecomposeBitwise(HValue * value,BitwiseDecompositionResult * result)2029 void InductionVariableData::DecomposeBitwise(
2030     HValue* value,
2031     BitwiseDecompositionResult* result) {
2032   HValue* base = IgnoreOsrValue(value);
2033   result->base = value;
2034 
2035   if (!base->representation().IsInteger32()) return;
2036 
2037   if (base->IsBitwise()) {
2038     bool allow_offset = false;
2039     int32_t mask = 0;
2040 
2041     HBitwise* bitwise = HBitwise::cast(base);
2042     if (bitwise->right()->IsInteger32Constant()) {
2043       mask = bitwise->right()->GetInteger32Constant();
2044       base = bitwise->left();
2045     } else if (bitwise->left()->IsInteger32Constant()) {
2046       mask = bitwise->left()->GetInteger32Constant();
2047       base = bitwise->right();
2048     } else {
2049       return;
2050     }
2051     if (bitwise->op() == Token::BIT_AND) {
2052       result->and_mask = mask;
2053       allow_offset = true;
2054     } else if (bitwise->op() == Token::BIT_OR) {
2055       result->or_mask = mask;
2056     } else {
2057       return;
2058     }
2059 
2060     result->context = bitwise->context();
2061 
2062     if (allow_offset) {
2063       if (base->IsAdd()) {
2064         HAdd* add = HAdd::cast(base);
2065         if (add->right()->IsInteger32Constant()) {
2066           base = add->left();
2067         } else if (add->left()->IsInteger32Constant()) {
2068           base = add->right();
2069         }
2070       } else if (base->IsSub()) {
2071         HSub* sub = HSub::cast(base);
2072         if (sub->right()->IsInteger32Constant()) {
2073           base = sub->left();
2074         }
2075       }
2076     }
2077 
2078     result->base = base;
2079   }
2080 }
2081 
2082 
AddCheck(HBoundsCheck * check,int32_t upper_limit)2083 void InductionVariableData::AddCheck(HBoundsCheck* check,
2084                                      int32_t upper_limit) {
2085   DCHECK(limit_validity() != NULL);
2086   if (limit_validity() != check->block() &&
2087       !limit_validity()->Dominates(check->block())) return;
2088   if (!phi()->block()->current_loop()->IsNestedInThisLoop(
2089       check->block()->current_loop())) return;
2090 
2091   ChecksRelatedToLength* length_checks = checks();
2092   while (length_checks != NULL) {
2093     if (length_checks->length() == check->length()) break;
2094     length_checks = length_checks->next();
2095   }
2096   if (length_checks == NULL) {
2097     length_checks = new(check->block()->zone())
2098         ChecksRelatedToLength(check->length(), checks());
2099     checks_ = length_checks;
2100   }
2101 
2102   length_checks->AddCheck(check, upper_limit);
2103 }
2104 
2105 
CloseCurrentBlock()2106 void InductionVariableData::ChecksRelatedToLength::CloseCurrentBlock() {
2107   if (checks() != NULL) {
2108     InductionVariableCheck* c = checks();
2109     HBasicBlock* current_block = c->check()->block();
2110     while (c != NULL && c->check()->block() == current_block) {
2111       c->set_upper_limit(current_upper_limit_);
2112       c = c->next();
2113     }
2114   }
2115 }
2116 
2117 
UseNewIndexInCurrentBlock(Token::Value token,int32_t mask,HValue * index_base,HValue * context)2118 void InductionVariableData::ChecksRelatedToLength::UseNewIndexInCurrentBlock(
2119     Token::Value token,
2120     int32_t mask,
2121     HValue* index_base,
2122     HValue* context) {
2123   DCHECK(first_check_in_block() != NULL);
2124   HValue* previous_index = first_check_in_block()->index();
2125   DCHECK(context != NULL);
2126 
2127   Zone* zone = index_base->block()->graph()->zone();
2128   Isolate* isolate = index_base->block()->graph()->isolate();
2129   set_added_constant(HConstant::New(isolate, zone, context, mask));
2130   if (added_index() != NULL) {
2131     added_constant()->InsertBefore(added_index());
2132   } else {
2133     added_constant()->InsertBefore(first_check_in_block());
2134   }
2135 
2136   if (added_index() == NULL) {
2137     first_check_in_block()->ReplaceAllUsesWith(first_check_in_block()->index());
2138     HInstruction* new_index = HBitwise::New(isolate, zone, context, token,
2139                                             index_base, added_constant());
2140     DCHECK(new_index->IsBitwise());
2141     new_index->ClearAllSideEffects();
2142     new_index->AssumeRepresentation(Representation::Integer32());
2143     set_added_index(HBitwise::cast(new_index));
2144     added_index()->InsertBefore(first_check_in_block());
2145   }
2146   DCHECK(added_index()->op() == token);
2147 
2148   added_index()->SetOperandAt(1, index_base);
2149   added_index()->SetOperandAt(2, added_constant());
2150   first_check_in_block()->SetOperandAt(0, added_index());
2151   if (previous_index->HasNoUses()) {
2152     previous_index->DeleteAndReplaceWith(NULL);
2153   }
2154 }
2155 
AddCheck(HBoundsCheck * check,int32_t upper_limit)2156 void InductionVariableData::ChecksRelatedToLength::AddCheck(
2157     HBoundsCheck* check,
2158     int32_t upper_limit) {
2159   BitwiseDecompositionResult decomposition;
2160   InductionVariableData::DecomposeBitwise(check->index(), &decomposition);
2161 
2162   if (first_check_in_block() == NULL ||
2163       first_check_in_block()->block() != check->block()) {
2164     CloseCurrentBlock();
2165 
2166     first_check_in_block_ = check;
2167     set_added_index(NULL);
2168     set_added_constant(NULL);
2169     current_and_mask_in_block_ = decomposition.and_mask;
2170     current_or_mask_in_block_ = decomposition.or_mask;
2171     current_upper_limit_ = upper_limit;
2172 
2173     InductionVariableCheck* new_check = new(check->block()->graph()->zone())
2174         InductionVariableCheck(check, checks_, upper_limit);
2175     checks_ = new_check;
2176     return;
2177   }
2178 
2179   if (upper_limit > current_upper_limit()) {
2180     current_upper_limit_ = upper_limit;
2181   }
2182 
2183   if (decomposition.and_mask != 0 &&
2184       current_or_mask_in_block() == 0) {
2185     if (current_and_mask_in_block() == 0 ||
2186         decomposition.and_mask > current_and_mask_in_block()) {
2187       UseNewIndexInCurrentBlock(Token::BIT_AND,
2188                                 decomposition.and_mask,
2189                                 decomposition.base,
2190                                 decomposition.context);
2191       current_and_mask_in_block_ = decomposition.and_mask;
2192     }
2193     check->set_skip_check();
2194   }
2195   if (current_and_mask_in_block() == 0) {
2196     if (decomposition.or_mask > current_or_mask_in_block()) {
2197       UseNewIndexInCurrentBlock(Token::BIT_OR,
2198                                 decomposition.or_mask,
2199                                 decomposition.base,
2200                                 decomposition.context);
2201       current_or_mask_in_block_ = decomposition.or_mask;
2202     }
2203     check->set_skip_check();
2204   }
2205 
2206   if (!check->skip_check()) {
2207     InductionVariableCheck* new_check = new(check->block()->graph()->zone())
2208         InductionVariableCheck(check, checks_, upper_limit);
2209     checks_ = new_check;
2210   }
2211 }
2212 
2213 
2214 /*
2215  * This method detects if phi is an induction variable, with phi_operand as
2216  * its "incremented" value (the other operand would be the "base" value).
2217  *
2218  * It cheks is phi_operand has the form "phi + constant".
2219  * If yes, the constant is the increment that the induction variable gets at
2220  * every loop iteration.
2221  * Otherwise it returns 0.
2222  */
ComputeIncrement(HPhi * phi,HValue * phi_operand)2223 int32_t InductionVariableData::ComputeIncrement(HPhi* phi,
2224                                                 HValue* phi_operand) {
2225   if (!phi_operand->representation().IsSmiOrInteger32()) return 0;
2226 
2227   if (phi_operand->IsAdd()) {
2228     HAdd* operation = HAdd::cast(phi_operand);
2229     if (operation->left() == phi &&
2230         operation->right()->IsInteger32Constant()) {
2231       return operation->right()->GetInteger32Constant();
2232     } else if (operation->right() == phi &&
2233                operation->left()->IsInteger32Constant()) {
2234       return operation->left()->GetInteger32Constant();
2235     }
2236   } else if (phi_operand->IsSub()) {
2237     HSub* operation = HSub::cast(phi_operand);
2238     if (operation->left() == phi &&
2239         operation->right()->IsInteger32Constant()) {
2240       int constant = operation->right()->GetInteger32Constant();
2241       if (constant == kMinInt) return 0;
2242       return -constant;
2243     }
2244   }
2245 
2246   return 0;
2247 }
2248 
2249 
2250 /*
2251  * Swaps the information in "update" with the one contained in "this".
2252  * The swapping is important because this method is used while doing a
2253  * dominator tree traversal, and "update" will retain the old data that
2254  * will be restored while backtracking.
2255  */
UpdateAdditionalLimit(InductionVariableLimitUpdate * update)2256 void InductionVariableData::UpdateAdditionalLimit(
2257     InductionVariableLimitUpdate* update) {
2258   DCHECK(update->updated_variable == this);
2259   if (update->limit_is_upper) {
2260     swap(&additional_upper_limit_, &update->limit);
2261     swap(&additional_upper_limit_is_included_, &update->limit_is_included);
2262   } else {
2263     swap(&additional_lower_limit_, &update->limit);
2264     swap(&additional_lower_limit_is_included_, &update->limit_is_included);
2265   }
2266 }
2267 
2268 
ComputeUpperLimit(int32_t and_mask,int32_t or_mask)2269 int32_t InductionVariableData::ComputeUpperLimit(int32_t and_mask,
2270                                                  int32_t or_mask) {
2271   // Should be Smi::kMaxValue but it must fit 32 bits; lower is safe anyway.
2272   const int32_t MAX_LIMIT = 1 << 30;
2273 
2274   int32_t result = MAX_LIMIT;
2275 
2276   if (limit() != NULL &&
2277       limit()->IsInteger32Constant()) {
2278     int32_t limit_value = limit()->GetInteger32Constant();
2279     if (!limit_included()) {
2280       limit_value--;
2281     }
2282     if (limit_value < result) result = limit_value;
2283   }
2284 
2285   if (additional_upper_limit() != NULL &&
2286       additional_upper_limit()->IsInteger32Constant()) {
2287     int32_t limit_value = additional_upper_limit()->GetInteger32Constant();
2288     if (!additional_upper_limit_is_included()) {
2289       limit_value--;
2290     }
2291     if (limit_value < result) result = limit_value;
2292   }
2293 
2294   if (and_mask > 0 && and_mask < MAX_LIMIT) {
2295     if (and_mask < result) result = and_mask;
2296     return result;
2297   }
2298 
2299   // Add the effect of the or_mask.
2300   result |= or_mask;
2301 
2302   return result >= MAX_LIMIT ? kNoLimit : result;
2303 }
2304 
2305 
IgnoreOsrValue(HValue * v)2306 HValue* InductionVariableData::IgnoreOsrValue(HValue* v) {
2307   if (!v->IsPhi()) return v;
2308   HPhi* phi = HPhi::cast(v);
2309   if (phi->OperandCount() != 2) return v;
2310   if (phi->OperandAt(0)->block()->is_osr_entry()) {
2311     return phi->OperandAt(1);
2312   } else if (phi->OperandAt(1)->block()->is_osr_entry()) {
2313     return phi->OperandAt(0);
2314   } else {
2315     return v;
2316   }
2317 }
2318 
2319 
GetInductionVariableData(HValue * v)2320 InductionVariableData* InductionVariableData::GetInductionVariableData(
2321     HValue* v) {
2322   v = IgnoreOsrValue(v);
2323   if (v->IsPhi()) {
2324     return HPhi::cast(v)->induction_variable_data();
2325   }
2326   return NULL;
2327 }
2328 
2329 
2330 /*
2331  * Check if a conditional branch to "current_branch" with token "token" is
2332  * the branch that keeps the induction loop running (and, conversely, will
2333  * terminate it if the "other_branch" is taken).
2334  *
2335  * Three conditions must be met:
2336  * - "current_branch" must be in the induction loop.
2337  * - "other_branch" must be out of the induction loop.
2338  * - "token" and the induction increment must be "compatible": the token should
2339  *   be a condition that keeps the execution inside the loop until the limit is
2340  *   reached.
2341  */
CheckIfBranchIsLoopGuard(Token::Value token,HBasicBlock * current_branch,HBasicBlock * other_branch)2342 bool InductionVariableData::CheckIfBranchIsLoopGuard(
2343     Token::Value token,
2344     HBasicBlock* current_branch,
2345     HBasicBlock* other_branch) {
2346   if (!phi()->block()->current_loop()->IsNestedInThisLoop(
2347       current_branch->current_loop())) {
2348     return false;
2349   }
2350 
2351   if (phi()->block()->current_loop()->IsNestedInThisLoop(
2352       other_branch->current_loop())) {
2353     return false;
2354   }
2355 
2356   if (increment() > 0 && (token == Token::LT || token == Token::LTE)) {
2357     return true;
2358   }
2359   if (increment() < 0 && (token == Token::GT || token == Token::GTE)) {
2360     return true;
2361   }
2362   if (Token::IsInequalityOp(token) && (increment() == 1 || increment() == -1)) {
2363     return true;
2364   }
2365 
2366   return false;
2367 }
2368 
2369 
ComputeLimitFromPredecessorBlock(HBasicBlock * block,LimitFromPredecessorBlock * result)2370 void InductionVariableData::ComputeLimitFromPredecessorBlock(
2371     HBasicBlock* block,
2372     LimitFromPredecessorBlock* result) {
2373   if (block->predecessors()->length() != 1) return;
2374   HBasicBlock* predecessor = block->predecessors()->at(0);
2375   HInstruction* end = predecessor->last();
2376 
2377   if (!end->IsCompareNumericAndBranch()) return;
2378   HCompareNumericAndBranch* branch = HCompareNumericAndBranch::cast(end);
2379 
2380   Token::Value token = branch->token();
2381   if (!Token::IsArithmeticCompareOp(token)) return;
2382 
2383   HBasicBlock* other_target;
2384   if (block == branch->SuccessorAt(0)) {
2385     other_target = branch->SuccessorAt(1);
2386   } else {
2387     other_target = branch->SuccessorAt(0);
2388     token = Token::NegateCompareOp(token);
2389     DCHECK(block == branch->SuccessorAt(1));
2390   }
2391 
2392   InductionVariableData* data;
2393 
2394   data = GetInductionVariableData(branch->left());
2395   HValue* limit = branch->right();
2396   if (data == NULL) {
2397     data = GetInductionVariableData(branch->right());
2398     token = Token::ReverseCompareOp(token);
2399     limit = branch->left();
2400   }
2401 
2402   if (data != NULL) {
2403     result->variable = data;
2404     result->token = token;
2405     result->limit = limit;
2406     result->other_target = other_target;
2407   }
2408 }
2409 
2410 
2411 /*
2412  * Compute the limit that is imposed on an induction variable when entering
2413  * "block" (if any).
2414  * If the limit is the "proper" induction limit (the one that makes the loop
2415  * terminate when the induction variable reaches it) it is stored directly in
2416  * the induction variable data.
2417  * Otherwise the limit is written in "additional_limit" and the method
2418  * returns true.
2419  */
ComputeInductionVariableLimit(HBasicBlock * block,InductionVariableLimitUpdate * additional_limit)2420 bool InductionVariableData::ComputeInductionVariableLimit(
2421     HBasicBlock* block,
2422     InductionVariableLimitUpdate* additional_limit) {
2423   LimitFromPredecessorBlock limit;
2424   ComputeLimitFromPredecessorBlock(block, &limit);
2425   if (!limit.LimitIsValid()) return false;
2426 
2427   if (limit.variable->CheckIfBranchIsLoopGuard(limit.token,
2428                                                block,
2429                                                limit.other_target)) {
2430     limit.variable->limit_ = limit.limit;
2431     limit.variable->limit_included_ = limit.LimitIsIncluded();
2432     limit.variable->limit_validity_ = block;
2433     limit.variable->induction_exit_block_ = block->predecessors()->at(0);
2434     limit.variable->induction_exit_target_ = limit.other_target;
2435     return false;
2436   } else {
2437     additional_limit->updated_variable = limit.variable;
2438     additional_limit->limit = limit.limit;
2439     additional_limit->limit_is_upper = limit.LimitIsUpper();
2440     additional_limit->limit_is_included = limit.LimitIsIncluded();
2441     return true;
2442   }
2443 }
2444 
2445 
InferRange(Zone * zone)2446 Range* HMathMinMax::InferRange(Zone* zone) {
2447   if (representation().IsSmiOrInteger32()) {
2448     Range* a = left()->range();
2449     Range* b = right()->range();
2450     Range* res = a->Copy(zone);
2451     if (operation_ == kMathMax) {
2452       res->CombinedMax(b);
2453     } else {
2454       DCHECK(operation_ == kMathMin);
2455       res->CombinedMin(b);
2456     }
2457     return res;
2458   } else {
2459     return HValue::InferRange(zone);
2460   }
2461 }
2462 
2463 
AddInput(HValue * value)2464 void HPushArguments::AddInput(HValue* value) {
2465   inputs_.Add(NULL, value->block()->zone());
2466   SetOperandAt(OperandCount() - 1, value);
2467 }
2468 
2469 
PrintTo(std::ostream & os) const2470 std::ostream& HPhi::PrintTo(std::ostream& os) const {  // NOLINT
2471   os << "[";
2472   for (int i = 0; i < OperandCount(); ++i) {
2473     os << " " << NameOf(OperandAt(i)) << " ";
2474   }
2475   return os << " uses" << UseCount()
2476             << representation_from_indirect_uses().Mnemonic() << " "
2477             << TypeOf(this) << "]";
2478 }
2479 
2480 
AddInput(HValue * value)2481 void HPhi::AddInput(HValue* value) {
2482   inputs_.Add(NULL, value->block()->zone());
2483   SetOperandAt(OperandCount() - 1, value);
2484   // Mark phis that may have 'arguments' directly or indirectly as an operand.
2485   if (!CheckFlag(kIsArguments) && value->CheckFlag(kIsArguments)) {
2486     SetFlag(kIsArguments);
2487   }
2488 }
2489 
2490 
HasRealUses()2491 bool HPhi::HasRealUses() {
2492   for (HUseIterator it(uses()); !it.Done(); it.Advance()) {
2493     if (!it.value()->IsPhi()) return true;
2494   }
2495   return false;
2496 }
2497 
2498 
GetRedundantReplacement()2499 HValue* HPhi::GetRedundantReplacement() {
2500   HValue* candidate = NULL;
2501   int count = OperandCount();
2502   int position = 0;
2503   while (position < count && candidate == NULL) {
2504     HValue* current = OperandAt(position++);
2505     if (current != this) candidate = current;
2506   }
2507   while (position < count) {
2508     HValue* current = OperandAt(position++);
2509     if (current != this && current != candidate) return NULL;
2510   }
2511   DCHECK(candidate != this);
2512   return candidate;
2513 }
2514 
2515 
DeleteFromGraph()2516 void HPhi::DeleteFromGraph() {
2517   DCHECK(block() != NULL);
2518   block()->RemovePhi(this);
2519   DCHECK(block() == NULL);
2520 }
2521 
2522 
InitRealUses(int phi_id)2523 void HPhi::InitRealUses(int phi_id) {
2524   // Initialize real uses.
2525   phi_id_ = phi_id;
2526   // Compute a conservative approximation of truncating uses before inferring
2527   // representations. The proper, exact computation will be done later, when
2528   // inserting representation changes.
2529   SetFlag(kTruncatingToSmi);
2530   SetFlag(kTruncatingToInt32);
2531   for (HUseIterator it(uses()); !it.Done(); it.Advance()) {
2532     HValue* value = it.value();
2533     if (!value->IsPhi()) {
2534       Representation rep = value->observed_input_representation(it.index());
2535       representation_from_non_phi_uses_ =
2536           representation_from_non_phi_uses().generalize(rep);
2537       if (rep.IsSmi() || rep.IsInteger32() || rep.IsDouble()) {
2538         has_type_feedback_from_uses_ = true;
2539       }
2540 
2541       if (FLAG_trace_representation) {
2542         PrintF("#%d Phi is used by real #%d %s as %s\n",
2543                id(), value->id(), value->Mnemonic(), rep.Mnemonic());
2544       }
2545       if (!value->IsSimulate()) {
2546         if (!value->CheckFlag(kTruncatingToSmi)) {
2547           ClearFlag(kTruncatingToSmi);
2548         }
2549         if (!value->CheckFlag(kTruncatingToInt32)) {
2550           ClearFlag(kTruncatingToInt32);
2551         }
2552       }
2553     }
2554   }
2555 }
2556 
2557 
AddNonPhiUsesFrom(HPhi * other)2558 void HPhi::AddNonPhiUsesFrom(HPhi* other) {
2559   if (FLAG_trace_representation) {
2560     PrintF(
2561         "generalizing use representation '%s' of #%d Phi "
2562         "with uses of #%d Phi '%s'\n",
2563         representation_from_indirect_uses().Mnemonic(), id(), other->id(),
2564         other->representation_from_non_phi_uses().Mnemonic());
2565   }
2566 
2567   representation_from_indirect_uses_ =
2568       representation_from_indirect_uses().generalize(
2569           other->representation_from_non_phi_uses());
2570 }
2571 
2572 
MergeWith(ZoneList<HSimulate * > * list)2573 void HSimulate::MergeWith(ZoneList<HSimulate*>* list) {
2574   while (!list->is_empty()) {
2575     HSimulate* from = list->RemoveLast();
2576     ZoneList<HValue*>* from_values = &from->values_;
2577     for (int i = 0; i < from_values->length(); ++i) {
2578       if (from->HasAssignedIndexAt(i)) {
2579         int index = from->GetAssignedIndexAt(i);
2580         if (HasValueForIndex(index)) continue;
2581         AddAssignedValue(index, from_values->at(i));
2582       } else {
2583         if (pop_count_ > 0) {
2584           pop_count_--;
2585         } else {
2586           AddPushedValue(from_values->at(i));
2587         }
2588       }
2589     }
2590     pop_count_ += from->pop_count_;
2591     from->DeleteAndReplaceWith(NULL);
2592   }
2593 }
2594 
2595 
PrintDataTo(std::ostream & os) const2596 std::ostream& HSimulate::PrintDataTo(std::ostream& os) const {  // NOLINT
2597   os << "id=" << ast_id().ToInt();
2598   if (pop_count_ > 0) os << " pop " << pop_count_;
2599   if (values_.length() > 0) {
2600     if (pop_count_ > 0) os << " /";
2601     for (int i = values_.length() - 1; i >= 0; --i) {
2602       if (HasAssignedIndexAt(i)) {
2603         os << " var[" << GetAssignedIndexAt(i) << "] = ";
2604       } else {
2605         os << " push ";
2606       }
2607       os << NameOf(values_[i]);
2608       if (i > 0) os << ",";
2609     }
2610   }
2611   return os;
2612 }
2613 
2614 
ReplayEnvironment(HEnvironment * env)2615 void HSimulate::ReplayEnvironment(HEnvironment* env) {
2616   if (is_done_with_replay()) return;
2617   DCHECK(env != NULL);
2618   env->set_ast_id(ast_id());
2619   env->Drop(pop_count());
2620   for (int i = values()->length() - 1; i >= 0; --i) {
2621     HValue* value = values()->at(i);
2622     if (HasAssignedIndexAt(i)) {
2623       env->Bind(GetAssignedIndexAt(i), value);
2624     } else {
2625       env->Push(value);
2626     }
2627   }
2628   set_done_with_replay();
2629 }
2630 
2631 
ReplayEnvironmentNested(const ZoneList<HValue * > * values,HCapturedObject * other)2632 static void ReplayEnvironmentNested(const ZoneList<HValue*>* values,
2633                                     HCapturedObject* other) {
2634   for (int i = 0; i < values->length(); ++i) {
2635     HValue* value = values->at(i);
2636     if (value->IsCapturedObject()) {
2637       if (HCapturedObject::cast(value)->capture_id() == other->capture_id()) {
2638         values->at(i) = other;
2639       } else {
2640         ReplayEnvironmentNested(HCapturedObject::cast(value)->values(), other);
2641       }
2642     }
2643   }
2644 }
2645 
2646 
2647 // Replay captured objects by replacing all captured objects with the
2648 // same capture id in the current and all outer environments.
ReplayEnvironment(HEnvironment * env)2649 void HCapturedObject::ReplayEnvironment(HEnvironment* env) {
2650   DCHECK(env != NULL);
2651   while (env != NULL) {
2652     ReplayEnvironmentNested(env->values(), this);
2653     env = env->outer();
2654   }
2655 }
2656 
2657 
PrintDataTo(std::ostream & os) const2658 std::ostream& HCapturedObject::PrintDataTo(std::ostream& os) const {  // NOLINT
2659   os << "#" << capture_id() << " ";
2660   return HDematerializedObject::PrintDataTo(os);
2661 }
2662 
2663 
RegisterReturnTarget(HBasicBlock * return_target,Zone * zone)2664 void HEnterInlined::RegisterReturnTarget(HBasicBlock* return_target,
2665                                          Zone* zone) {
2666   DCHECK(return_target->IsInlineReturnTarget());
2667   return_targets_.Add(return_target, zone);
2668 }
2669 
2670 
PrintDataTo(std::ostream & os) const2671 std::ostream& HEnterInlined::PrintDataTo(std::ostream& os) const {  // NOLINT
2672   return os << function()->debug_name()->ToCString().get();
2673 }
2674 
2675 
IsInteger32(double value)2676 static bool IsInteger32(double value) {
2677   if (value >= std::numeric_limits<int32_t>::min() &&
2678       value <= std::numeric_limits<int32_t>::max()) {
2679     double roundtrip_value = static_cast<double>(static_cast<int32_t>(value));
2680     return bit_cast<int64_t>(roundtrip_value) == bit_cast<int64_t>(value);
2681   }
2682   return false;
2683 }
2684 
2685 
HConstant(Special special)2686 HConstant::HConstant(Special special)
2687     : HTemplateInstruction<0>(HType::TaggedNumber()),
2688       object_(Handle<Object>::null()),
2689       object_map_(Handle<Map>::null()),
2690       bit_field_(HasDoubleValueField::encode(true) |
2691                  InstanceTypeField::encode(kUnknownInstanceType)),
2692       int32_value_(0) {
2693   DCHECK_EQ(kHoleNaN, special);
2694   std::memcpy(&double_value_, &kHoleNanInt64, sizeof(double_value_));
2695   Initialize(Representation::Double());
2696 }
2697 
2698 
HConstant(Handle<Object> object,Representation r)2699 HConstant::HConstant(Handle<Object> object, Representation r)
2700     : HTemplateInstruction<0>(HType::FromValue(object)),
2701       object_(Unique<Object>::CreateUninitialized(object)),
2702       object_map_(Handle<Map>::null()),
2703       bit_field_(
2704           HasStableMapValueField::encode(false) |
2705           HasSmiValueField::encode(false) | HasInt32ValueField::encode(false) |
2706           HasDoubleValueField::encode(false) |
2707           HasExternalReferenceValueField::encode(false) |
2708           IsNotInNewSpaceField::encode(true) |
2709           BooleanValueField::encode(object->BooleanValue()) |
2710           IsUndetectableField::encode(false) | IsCallableField::encode(false) |
2711           InstanceTypeField::encode(kUnknownInstanceType)) {
2712   if (object->IsHeapObject()) {
2713     Handle<HeapObject> heap_object = Handle<HeapObject>::cast(object);
2714     Isolate* isolate = heap_object->GetIsolate();
2715     Handle<Map> map(heap_object->map(), isolate);
2716     bit_field_ = IsNotInNewSpaceField::update(
2717         bit_field_, !isolate->heap()->InNewSpace(*object));
2718     bit_field_ = InstanceTypeField::update(bit_field_, map->instance_type());
2719     bit_field_ =
2720         IsUndetectableField::update(bit_field_, map->is_undetectable());
2721     bit_field_ = IsCallableField::update(bit_field_, map->is_callable());
2722     if (map->is_stable()) object_map_ = Unique<Map>::CreateImmovable(map);
2723     bit_field_ = HasStableMapValueField::update(
2724         bit_field_,
2725         HasMapValue() && Handle<Map>::cast(heap_object)->is_stable());
2726   }
2727   if (object->IsNumber()) {
2728     double n = object->Number();
2729     bool has_int32_value = IsInteger32(n);
2730     bit_field_ = HasInt32ValueField::update(bit_field_, has_int32_value);
2731     int32_value_ = DoubleToInt32(n);
2732     bit_field_ = HasSmiValueField::update(
2733         bit_field_, has_int32_value && Smi::IsValid(int32_value_));
2734     double_value_ = n;
2735     bit_field_ = HasDoubleValueField::update(bit_field_, true);
2736     // TODO(titzer): if this heap number is new space, tenure a new one.
2737   }
2738 
2739   Initialize(r);
2740 }
2741 
2742 
HConstant(Unique<Object> object,Unique<Map> object_map,bool has_stable_map_value,Representation r,HType type,bool is_not_in_new_space,bool boolean_value,bool is_undetectable,InstanceType instance_type)2743 HConstant::HConstant(Unique<Object> object, Unique<Map> object_map,
2744                      bool has_stable_map_value, Representation r, HType type,
2745                      bool is_not_in_new_space, bool boolean_value,
2746                      bool is_undetectable, InstanceType instance_type)
2747     : HTemplateInstruction<0>(type),
2748       object_(object),
2749       object_map_(object_map),
2750       bit_field_(HasStableMapValueField::encode(has_stable_map_value) |
2751                  HasSmiValueField::encode(false) |
2752                  HasInt32ValueField::encode(false) |
2753                  HasDoubleValueField::encode(false) |
2754                  HasExternalReferenceValueField::encode(false) |
2755                  IsNotInNewSpaceField::encode(is_not_in_new_space) |
2756                  BooleanValueField::encode(boolean_value) |
2757                  IsUndetectableField::encode(is_undetectable) |
2758                  InstanceTypeField::encode(instance_type)) {
2759   DCHECK(!object.handle().is_null());
2760   DCHECK(!type.IsTaggedNumber() || type.IsNone());
2761   Initialize(r);
2762 }
2763 
2764 
HConstant(int32_t integer_value,Representation r,bool is_not_in_new_space,Unique<Object> object)2765 HConstant::HConstant(int32_t integer_value, Representation r,
2766                      bool is_not_in_new_space, Unique<Object> object)
2767     : object_(object),
2768       object_map_(Handle<Map>::null()),
2769       bit_field_(HasStableMapValueField::encode(false) |
2770                  HasSmiValueField::encode(Smi::IsValid(integer_value)) |
2771                  HasInt32ValueField::encode(true) |
2772                  HasDoubleValueField::encode(true) |
2773                  HasExternalReferenceValueField::encode(false) |
2774                  IsNotInNewSpaceField::encode(is_not_in_new_space) |
2775                  BooleanValueField::encode(integer_value != 0) |
2776                  IsUndetectableField::encode(false) |
2777                  InstanceTypeField::encode(kUnknownInstanceType)),
2778       int32_value_(integer_value),
2779       double_value_(FastI2D(integer_value)) {
2780   // It's possible to create a constant with a value in Smi-range but stored
2781   // in a (pre-existing) HeapNumber. See crbug.com/349878.
2782   bool could_be_heapobject = r.IsTagged() && !object.handle().is_null();
2783   bool is_smi = HasSmiValue() && !could_be_heapobject;
2784   set_type(is_smi ? HType::Smi() : HType::TaggedNumber());
2785   Initialize(r);
2786 }
2787 
2788 
HConstant(double double_value,Representation r,bool is_not_in_new_space,Unique<Object> object)2789 HConstant::HConstant(double double_value, Representation r,
2790                      bool is_not_in_new_space, Unique<Object> object)
2791     : object_(object),
2792       object_map_(Handle<Map>::null()),
2793       bit_field_(HasStableMapValueField::encode(false) |
2794                  HasInt32ValueField::encode(IsInteger32(double_value)) |
2795                  HasDoubleValueField::encode(true) |
2796                  HasExternalReferenceValueField::encode(false) |
2797                  IsNotInNewSpaceField::encode(is_not_in_new_space) |
2798                  BooleanValueField::encode(double_value != 0 &&
2799                                            !std::isnan(double_value)) |
2800                  IsUndetectableField::encode(false) |
2801                  InstanceTypeField::encode(kUnknownInstanceType)),
2802       int32_value_(DoubleToInt32(double_value)),
2803       double_value_(double_value) {
2804   bit_field_ = HasSmiValueField::update(
2805       bit_field_, HasInteger32Value() && Smi::IsValid(int32_value_));
2806   // It's possible to create a constant with a value in Smi-range but stored
2807   // in a (pre-existing) HeapNumber. See crbug.com/349878.
2808   bool could_be_heapobject = r.IsTagged() && !object.handle().is_null();
2809   bool is_smi = HasSmiValue() && !could_be_heapobject;
2810   set_type(is_smi ? HType::Smi() : HType::TaggedNumber());
2811   Initialize(r);
2812 }
2813 
2814 
HConstant(ExternalReference reference)2815 HConstant::HConstant(ExternalReference reference)
2816     : HTemplateInstruction<0>(HType::Any()),
2817       object_(Unique<Object>(Handle<Object>::null())),
2818       object_map_(Handle<Map>::null()),
2819       bit_field_(
2820           HasStableMapValueField::encode(false) |
2821           HasSmiValueField::encode(false) | HasInt32ValueField::encode(false) |
2822           HasDoubleValueField::encode(false) |
2823           HasExternalReferenceValueField::encode(true) |
2824           IsNotInNewSpaceField::encode(true) | BooleanValueField::encode(true) |
2825           IsUndetectableField::encode(false) |
2826           InstanceTypeField::encode(kUnknownInstanceType)),
2827       external_reference_value_(reference) {
2828   Initialize(Representation::External());
2829 }
2830 
2831 
Initialize(Representation r)2832 void HConstant::Initialize(Representation r) {
2833   if (r.IsNone()) {
2834     if (HasSmiValue() && SmiValuesAre31Bits()) {
2835       r = Representation::Smi();
2836     } else if (HasInteger32Value()) {
2837       r = Representation::Integer32();
2838     } else if (HasDoubleValue()) {
2839       r = Representation::Double();
2840     } else if (HasExternalReferenceValue()) {
2841       r = Representation::External();
2842     } else {
2843       Handle<Object> object = object_.handle();
2844       if (object->IsJSObject()) {
2845         // Try to eagerly migrate JSObjects that have deprecated maps.
2846         Handle<JSObject> js_object = Handle<JSObject>::cast(object);
2847         if (js_object->map()->is_deprecated()) {
2848           JSObject::TryMigrateInstance(js_object);
2849         }
2850       }
2851       r = Representation::Tagged();
2852     }
2853   }
2854   if (r.IsSmi()) {
2855     // If we have an existing handle, zap it, because it might be a heap
2856     // number which we must not re-use when copying this HConstant to
2857     // Tagged representation later, because having Smi representation now
2858     // could cause heap object checks not to get emitted.
2859     object_ = Unique<Object>(Handle<Object>::null());
2860   }
2861   if (r.IsSmiOrInteger32() && object_.handle().is_null()) {
2862     // If it's not a heap object, it can't be in new space.
2863     bit_field_ = IsNotInNewSpaceField::update(bit_field_, true);
2864   }
2865   set_representation(r);
2866   SetFlag(kUseGVN);
2867 }
2868 
2869 
ImmortalImmovable() const2870 bool HConstant::ImmortalImmovable() const {
2871   if (HasInteger32Value()) {
2872     return false;
2873   }
2874   if (HasDoubleValue()) {
2875     if (IsSpecialDouble()) {
2876       return true;
2877     }
2878     return false;
2879   }
2880   if (HasExternalReferenceValue()) {
2881     return false;
2882   }
2883 
2884   DCHECK(!object_.handle().is_null());
2885   Heap* heap = isolate()->heap();
2886   DCHECK(!object_.IsKnownGlobal(heap->minus_zero_value()));
2887   DCHECK(!object_.IsKnownGlobal(heap->nan_value()));
2888   return
2889 #define IMMORTAL_IMMOVABLE_ROOT(name) \
2890   object_.IsKnownGlobal(heap->root(Heap::k##name##RootIndex)) ||
2891       IMMORTAL_IMMOVABLE_ROOT_LIST(IMMORTAL_IMMOVABLE_ROOT)
2892 #undef IMMORTAL_IMMOVABLE_ROOT
2893 #define INTERNALIZED_STRING(name, value) \
2894       object_.IsKnownGlobal(heap->name()) ||
2895       INTERNALIZED_STRING_LIST(INTERNALIZED_STRING)
2896 #undef INTERNALIZED_STRING
2897 #define STRING_TYPE(NAME, size, name, Name) \
2898       object_.IsKnownGlobal(heap->name##_map()) ||
2899       STRING_TYPE_LIST(STRING_TYPE)
2900 #undef STRING_TYPE
2901       false;
2902 }
2903 
2904 
EmitAtUses()2905 bool HConstant::EmitAtUses() {
2906   DCHECK(IsLinked());
2907   if (block()->graph()->has_osr() &&
2908       block()->graph()->IsStandardConstant(this)) {
2909     // TODO(titzer): this seems like a hack that should be fixed by custom OSR.
2910     return true;
2911   }
2912   if (HasNoUses()) return true;
2913   if (IsCell()) return false;
2914   if (representation().IsDouble()) return false;
2915   if (representation().IsExternal()) return false;
2916   return true;
2917 }
2918 
2919 
CopyToRepresentation(Representation r,Zone * zone) const2920 HConstant* HConstant::CopyToRepresentation(Representation r, Zone* zone) const {
2921   if (r.IsSmi() && !HasSmiValue()) return NULL;
2922   if (r.IsInteger32() && !HasInteger32Value()) return NULL;
2923   if (r.IsDouble() && !HasDoubleValue()) return NULL;
2924   if (r.IsExternal() && !HasExternalReferenceValue()) return NULL;
2925   if (HasInteger32Value()) {
2926     return new (zone) HConstant(int32_value_, r, NotInNewSpace(), object_);
2927   }
2928   if (HasDoubleValue()) {
2929     return new (zone) HConstant(double_value_, r, NotInNewSpace(), object_);
2930   }
2931   if (HasExternalReferenceValue()) {
2932     return new(zone) HConstant(external_reference_value_);
2933   }
2934   DCHECK(!object_.handle().is_null());
2935   return new (zone) HConstant(object_, object_map_, HasStableMapValue(), r,
2936                               type_, NotInNewSpace(), BooleanValue(),
2937                               IsUndetectable(), GetInstanceType());
2938 }
2939 
2940 
CopyToTruncatedInt32(Zone * zone)2941 Maybe<HConstant*> HConstant::CopyToTruncatedInt32(Zone* zone) {
2942   HConstant* res = NULL;
2943   if (HasInteger32Value()) {
2944     res = new (zone) HConstant(int32_value_, Representation::Integer32(),
2945                                NotInNewSpace(), object_);
2946   } else if (HasDoubleValue()) {
2947     res = new (zone)
2948         HConstant(DoubleToInt32(double_value_), Representation::Integer32(),
2949                   NotInNewSpace(), object_);
2950   }
2951   return res != NULL ? Just(res) : Nothing<HConstant*>();
2952 }
2953 
2954 
CopyToTruncatedNumber(Isolate * isolate,Zone * zone)2955 Maybe<HConstant*> HConstant::CopyToTruncatedNumber(Isolate* isolate,
2956                                                    Zone* zone) {
2957   HConstant* res = NULL;
2958   Handle<Object> handle = this->handle(isolate);
2959   if (handle->IsBoolean()) {
2960     res = handle->BooleanValue() ?
2961       new(zone) HConstant(1) : new(zone) HConstant(0);
2962   } else if (handle->IsUndefined()) {
2963     res = new (zone) HConstant(std::numeric_limits<double>::quiet_NaN());
2964   } else if (handle->IsNull()) {
2965     res = new(zone) HConstant(0);
2966   }
2967   return res != NULL ? Just(res) : Nothing<HConstant*>();
2968 }
2969 
2970 
PrintDataTo(std::ostream & os) const2971 std::ostream& HConstant::PrintDataTo(std::ostream& os) const {  // NOLINT
2972   if (HasInteger32Value()) {
2973     os << int32_value_ << " ";
2974   } else if (HasDoubleValue()) {
2975     os << double_value_ << " ";
2976   } else if (HasExternalReferenceValue()) {
2977     os << reinterpret_cast<void*>(external_reference_value_.address()) << " ";
2978   } else {
2979     // The handle() method is silently and lazily mutating the object.
2980     Handle<Object> h = const_cast<HConstant*>(this)->handle(isolate());
2981     os << Brief(*h) << " ";
2982     if (HasStableMapValue()) os << "[stable-map] ";
2983     if (HasObjectMap()) os << "[map " << *ObjectMap().handle() << "] ";
2984   }
2985   if (!NotInNewSpace()) os << "[new space] ";
2986   return os;
2987 }
2988 
2989 
PrintDataTo(std::ostream & os) const2990 std::ostream& HBinaryOperation::PrintDataTo(std::ostream& os) const {  // NOLINT
2991   os << NameOf(left()) << " " << NameOf(right());
2992   if (CheckFlag(kCanOverflow)) os << " !";
2993   if (CheckFlag(kBailoutOnMinusZero)) os << " -0?";
2994   return os;
2995 }
2996 
2997 
InferRepresentation(HInferRepresentationPhase * h_infer)2998 void HBinaryOperation::InferRepresentation(HInferRepresentationPhase* h_infer) {
2999   DCHECK(CheckFlag(kFlexibleRepresentation));
3000   Representation new_rep = RepresentationFromInputs();
3001   UpdateRepresentation(new_rep, h_infer, "inputs");
3002 
3003   if (representation().IsSmi() && HasNonSmiUse()) {
3004     UpdateRepresentation(
3005         Representation::Integer32(), h_infer, "use requirements");
3006   }
3007 
3008   if (observed_output_representation_.IsNone()) {
3009     new_rep = RepresentationFromUses();
3010     UpdateRepresentation(new_rep, h_infer, "uses");
3011   } else {
3012     new_rep = RepresentationFromOutput();
3013     UpdateRepresentation(new_rep, h_infer, "output");
3014   }
3015 }
3016 
3017 
RepresentationFromInputs()3018 Representation HBinaryOperation::RepresentationFromInputs() {
3019   // Determine the worst case of observed input representations and
3020   // the currently assumed output representation.
3021   Representation rep = representation();
3022   for (int i = 1; i <= 2; ++i) {
3023     rep = rep.generalize(observed_input_representation(i));
3024   }
3025   // If any of the actual input representation is more general than what we
3026   // have so far but not Tagged, use that representation instead.
3027   Representation left_rep = left()->representation();
3028   Representation right_rep = right()->representation();
3029   if (!left_rep.IsTagged()) rep = rep.generalize(left_rep);
3030   if (!right_rep.IsTagged()) rep = rep.generalize(right_rep);
3031 
3032   return rep;
3033 }
3034 
3035 
IgnoreObservedOutputRepresentation(Representation current_rep)3036 bool HBinaryOperation::IgnoreObservedOutputRepresentation(
3037     Representation current_rep) {
3038   return ((current_rep.IsInteger32() && CheckUsesForFlag(kTruncatingToInt32)) ||
3039           (current_rep.IsSmi() && CheckUsesForFlag(kTruncatingToSmi))) &&
3040          // Mul in Integer32 mode would be too precise.
3041          (!this->IsMul() || HMul::cast(this)->MulMinusOne());
3042 }
3043 
3044 
RepresentationFromOutput()3045 Representation HBinaryOperation::RepresentationFromOutput() {
3046   Representation rep = representation();
3047   // Consider observed output representation, but ignore it if it's Double,
3048   // this instruction is not a division, and all its uses are truncating
3049   // to Integer32.
3050   if (observed_output_representation_.is_more_general_than(rep) &&
3051       !IgnoreObservedOutputRepresentation(rep)) {
3052     return observed_output_representation_;
3053   }
3054   return Representation::None();
3055 }
3056 
3057 
AssumeRepresentation(Representation r)3058 void HBinaryOperation::AssumeRepresentation(Representation r) {
3059   set_observed_input_representation(1, r);
3060   set_observed_input_representation(2, r);
3061   HValue::AssumeRepresentation(r);
3062 }
3063 
3064 
InferRepresentation(HInferRepresentationPhase * h_infer)3065 void HMathMinMax::InferRepresentation(HInferRepresentationPhase* h_infer) {
3066   DCHECK(CheckFlag(kFlexibleRepresentation));
3067   Representation new_rep = RepresentationFromInputs();
3068   UpdateRepresentation(new_rep, h_infer, "inputs");
3069   // Do not care about uses.
3070 }
3071 
3072 
InferRange(Zone * zone)3073 Range* HBitwise::InferRange(Zone* zone) {
3074   if (op() == Token::BIT_XOR) {
3075     if (left()->HasRange() && right()->HasRange()) {
3076       // The maximum value has the high bit, and all bits below, set:
3077       // (1 << high) - 1.
3078       // If the range can be negative, the minimum int is a negative number with
3079       // the high bit, and all bits below, unset:
3080       // -(1 << high).
3081       // If it cannot be negative, conservatively choose 0 as minimum int.
3082       int64_t left_upper = left()->range()->upper();
3083       int64_t left_lower = left()->range()->lower();
3084       int64_t right_upper = right()->range()->upper();
3085       int64_t right_lower = right()->range()->lower();
3086 
3087       if (left_upper < 0) left_upper = ~left_upper;
3088       if (left_lower < 0) left_lower = ~left_lower;
3089       if (right_upper < 0) right_upper = ~right_upper;
3090       if (right_lower < 0) right_lower = ~right_lower;
3091 
3092       int high = MostSignificantBit(
3093           static_cast<uint32_t>(
3094               left_upper | left_lower | right_upper | right_lower));
3095 
3096       int64_t limit = 1;
3097       limit <<= high;
3098       int32_t min = (left()->range()->CanBeNegative() ||
3099                      right()->range()->CanBeNegative())
3100                     ? static_cast<int32_t>(-limit) : 0;
3101       return new(zone) Range(min, static_cast<int32_t>(limit - 1));
3102     }
3103     Range* result = HValue::InferRange(zone);
3104     result->set_can_be_minus_zero(false);
3105     return result;
3106   }
3107   const int32_t kDefaultMask = static_cast<int32_t>(0xffffffff);
3108   int32_t left_mask = (left()->range() != NULL)
3109       ? left()->range()->Mask()
3110       : kDefaultMask;
3111   int32_t right_mask = (right()->range() != NULL)
3112       ? right()->range()->Mask()
3113       : kDefaultMask;
3114   int32_t result_mask = (op() == Token::BIT_AND)
3115       ? left_mask & right_mask
3116       : left_mask | right_mask;
3117   if (result_mask >= 0) return new(zone) Range(0, result_mask);
3118 
3119   Range* result = HValue::InferRange(zone);
3120   result->set_can_be_minus_zero(false);
3121   return result;
3122 }
3123 
3124 
InferRange(Zone * zone)3125 Range* HSar::InferRange(Zone* zone) {
3126   if (right()->IsConstant()) {
3127     HConstant* c = HConstant::cast(right());
3128     if (c->HasInteger32Value()) {
3129       Range* result = (left()->range() != NULL)
3130           ? left()->range()->Copy(zone)
3131           : new(zone) Range();
3132       result->Sar(c->Integer32Value());
3133       return result;
3134     }
3135   }
3136   return HValue::InferRange(zone);
3137 }
3138 
3139 
InferRange(Zone * zone)3140 Range* HShr::InferRange(Zone* zone) {
3141   if (right()->IsConstant()) {
3142     HConstant* c = HConstant::cast(right());
3143     if (c->HasInteger32Value()) {
3144       int shift_count = c->Integer32Value() & 0x1f;
3145       if (left()->range()->CanBeNegative()) {
3146         // Only compute bounds if the result always fits into an int32.
3147         return (shift_count >= 1)
3148             ? new(zone) Range(0,
3149                               static_cast<uint32_t>(0xffffffff) >> shift_count)
3150             : new(zone) Range();
3151       } else {
3152         // For positive inputs we can use the >> operator.
3153         Range* result = (left()->range() != NULL)
3154             ? left()->range()->Copy(zone)
3155             : new(zone) Range();
3156         result->Sar(c->Integer32Value());
3157         return result;
3158       }
3159     }
3160   }
3161   return HValue::InferRange(zone);
3162 }
3163 
3164 
InferRange(Zone * zone)3165 Range* HShl::InferRange(Zone* zone) {
3166   if (right()->IsConstant()) {
3167     HConstant* c = HConstant::cast(right());
3168     if (c->HasInteger32Value()) {
3169       Range* result = (left()->range() != NULL)
3170           ? left()->range()->Copy(zone)
3171           : new(zone) Range();
3172       result->Shl(c->Integer32Value());
3173       return result;
3174     }
3175   }
3176   return HValue::InferRange(zone);
3177 }
3178 
3179 
InferRange(Zone * zone)3180 Range* HLoadNamedField::InferRange(Zone* zone) {
3181   if (access().representation().IsInteger8()) {
3182     return new(zone) Range(kMinInt8, kMaxInt8);
3183   }
3184   if (access().representation().IsUInteger8()) {
3185     return new(zone) Range(kMinUInt8, kMaxUInt8);
3186   }
3187   if (access().representation().IsInteger16()) {
3188     return new(zone) Range(kMinInt16, kMaxInt16);
3189   }
3190   if (access().representation().IsUInteger16()) {
3191     return new(zone) Range(kMinUInt16, kMaxUInt16);
3192   }
3193   if (access().IsStringLength()) {
3194     return new(zone) Range(0, String::kMaxLength);
3195   }
3196   return HValue::InferRange(zone);
3197 }
3198 
3199 
InferRange(Zone * zone)3200 Range* HLoadKeyed::InferRange(Zone* zone) {
3201   switch (elements_kind()) {
3202     case INT8_ELEMENTS:
3203       return new(zone) Range(kMinInt8, kMaxInt8);
3204     case UINT8_ELEMENTS:
3205     case UINT8_CLAMPED_ELEMENTS:
3206       return new(zone) Range(kMinUInt8, kMaxUInt8);
3207     case INT16_ELEMENTS:
3208       return new(zone) Range(kMinInt16, kMaxInt16);
3209     case UINT16_ELEMENTS:
3210       return new(zone) Range(kMinUInt16, kMaxUInt16);
3211     default:
3212       return HValue::InferRange(zone);
3213   }
3214 }
3215 
3216 
PrintDataTo(std::ostream & os) const3217 std::ostream& HCompareGeneric::PrintDataTo(std::ostream& os) const {  // NOLINT
3218   os << Token::Name(token()) << " ";
3219   return HBinaryOperation::PrintDataTo(os);
3220 }
3221 
3222 
PrintDataTo(std::ostream & os) const3223 std::ostream& HStringCompareAndBranch::PrintDataTo(
3224     std::ostream& os) const {  // NOLINT
3225   os << Token::Name(token()) << " ";
3226   return HControlInstruction::PrintDataTo(os);
3227 }
3228 
3229 
PrintDataTo(std::ostream & os) const3230 std::ostream& HCompareNumericAndBranch::PrintDataTo(
3231     std::ostream& os) const {  // NOLINT
3232   os << Token::Name(token()) << " " << NameOf(left()) << " " << NameOf(right());
3233   return HControlInstruction::PrintDataTo(os);
3234 }
3235 
3236 
PrintDataTo(std::ostream & os) const3237 std::ostream& HCompareObjectEqAndBranch::PrintDataTo(
3238     std::ostream& os) const {  // NOLINT
3239   os << NameOf(left()) << " " << NameOf(right());
3240   return HControlInstruction::PrintDataTo(os);
3241 }
3242 
3243 
KnownSuccessorBlock(HBasicBlock ** block)3244 bool HCompareObjectEqAndBranch::KnownSuccessorBlock(HBasicBlock** block) {
3245   if (known_successor_index() != kNoKnownSuccessorIndex) {
3246     *block = SuccessorAt(known_successor_index());
3247     return true;
3248   }
3249   if (FLAG_fold_constants && left()->IsConstant() && right()->IsConstant()) {
3250     *block = HConstant::cast(left())->DataEquals(HConstant::cast(right()))
3251         ? FirstSuccessor() : SecondSuccessor();
3252     return true;
3253   }
3254   *block = NULL;
3255   return false;
3256 }
3257 
3258 
KnownSuccessorBlock(HBasicBlock ** block)3259 bool HIsStringAndBranch::KnownSuccessorBlock(HBasicBlock** block) {
3260   if (known_successor_index() != kNoKnownSuccessorIndex) {
3261     *block = SuccessorAt(known_successor_index());
3262     return true;
3263   }
3264   if (FLAG_fold_constants && value()->IsConstant()) {
3265     *block = HConstant::cast(value())->HasStringValue()
3266         ? FirstSuccessor() : SecondSuccessor();
3267     return true;
3268   }
3269   if (value()->type().IsString()) {
3270     *block = FirstSuccessor();
3271     return true;
3272   }
3273   if (value()->type().IsSmi() ||
3274       value()->type().IsNull() ||
3275       value()->type().IsBoolean() ||
3276       value()->type().IsUndefined() ||
3277       value()->type().IsJSReceiver()) {
3278     *block = SecondSuccessor();
3279     return true;
3280   }
3281   *block = NULL;
3282   return false;
3283 }
3284 
3285 
KnownSuccessorBlock(HBasicBlock ** block)3286 bool HIsUndetectableAndBranch::KnownSuccessorBlock(HBasicBlock** block) {
3287   if (FLAG_fold_constants && value()->IsConstant()) {
3288     *block = HConstant::cast(value())->IsUndetectable()
3289         ? FirstSuccessor() : SecondSuccessor();
3290     return true;
3291   }
3292   *block = NULL;
3293   return false;
3294 }
3295 
3296 
KnownSuccessorBlock(HBasicBlock ** block)3297 bool HHasInstanceTypeAndBranch::KnownSuccessorBlock(HBasicBlock** block) {
3298   if (FLAG_fold_constants && value()->IsConstant()) {
3299     InstanceType type = HConstant::cast(value())->GetInstanceType();
3300     *block = (from_ <= type) && (type <= to_)
3301         ? FirstSuccessor() : SecondSuccessor();
3302     return true;
3303   }
3304   *block = NULL;
3305   return false;
3306 }
3307 
3308 
InferRepresentation(HInferRepresentationPhase * h_infer)3309 void HCompareHoleAndBranch::InferRepresentation(
3310     HInferRepresentationPhase* h_infer) {
3311   ChangeRepresentation(value()->representation());
3312 }
3313 
3314 
KnownSuccessorBlock(HBasicBlock ** block)3315 bool HCompareNumericAndBranch::KnownSuccessorBlock(HBasicBlock** block) {
3316   if (left() == right() &&
3317       left()->representation().IsSmiOrInteger32()) {
3318     *block = (token() == Token::EQ ||
3319               token() == Token::EQ_STRICT ||
3320               token() == Token::LTE ||
3321               token() == Token::GTE)
3322         ? FirstSuccessor() : SecondSuccessor();
3323     return true;
3324   }
3325   *block = NULL;
3326   return false;
3327 }
3328 
3329 
KnownSuccessorBlock(HBasicBlock ** block)3330 bool HCompareMinusZeroAndBranch::KnownSuccessorBlock(HBasicBlock** block) {
3331   if (FLAG_fold_constants && value()->IsConstant()) {
3332     HConstant* constant = HConstant::cast(value());
3333     if (constant->HasDoubleValue()) {
3334       *block = IsMinusZero(constant->DoubleValue())
3335           ? FirstSuccessor() : SecondSuccessor();
3336       return true;
3337     }
3338   }
3339   if (value()->representation().IsSmiOrInteger32()) {
3340     // A Smi or Integer32 cannot contain minus zero.
3341     *block = SecondSuccessor();
3342     return true;
3343   }
3344   *block = NULL;
3345   return false;
3346 }
3347 
3348 
InferRepresentation(HInferRepresentationPhase * h_infer)3349 void HCompareMinusZeroAndBranch::InferRepresentation(
3350     HInferRepresentationPhase* h_infer) {
3351   ChangeRepresentation(value()->representation());
3352 }
3353 
3354 
PrintDataTo(std::ostream & os) const3355 std::ostream& HGoto::PrintDataTo(std::ostream& os) const {  // NOLINT
3356   return os << *SuccessorAt(0);
3357 }
3358 
3359 
InferRepresentation(HInferRepresentationPhase * h_infer)3360 void HCompareNumericAndBranch::InferRepresentation(
3361     HInferRepresentationPhase* h_infer) {
3362   Representation left_rep = left()->representation();
3363   Representation right_rep = right()->representation();
3364   Representation observed_left = observed_input_representation(0);
3365   Representation observed_right = observed_input_representation(1);
3366 
3367   Representation rep = Representation::None();
3368   rep = rep.generalize(observed_left);
3369   rep = rep.generalize(observed_right);
3370   if (rep.IsNone() || rep.IsSmiOrInteger32()) {
3371     if (!left_rep.IsTagged()) rep = rep.generalize(left_rep);
3372     if (!right_rep.IsTagged()) rep = rep.generalize(right_rep);
3373   } else {
3374     rep = Representation::Double();
3375   }
3376 
3377   if (rep.IsDouble()) {
3378     // According to the ES5 spec (11.9.3, 11.8.5), Equality comparisons (==, ===
3379     // and !=) have special handling of undefined, e.g. undefined == undefined
3380     // is 'true'. Relational comparisons have a different semantic, first
3381     // calling ToPrimitive() on their arguments.  The standard Crankshaft
3382     // tagged-to-double conversion to ensure the HCompareNumericAndBranch's
3383     // inputs are doubles caused 'undefined' to be converted to NaN. That's
3384     // compatible out-of-the box with ordered relational comparisons (<, >, <=,
3385     // >=). However, for equality comparisons (and for 'in' and 'instanceof'),
3386     // it is not consistent with the spec. For example, it would cause undefined
3387     // == undefined (should be true) to be evaluated as NaN == NaN
3388     // (false). Therefore, any comparisons other than ordered relational
3389     // comparisons must cause a deopt when one of their arguments is undefined.
3390     // See also v8:1434
3391     if (Token::IsOrderedRelationalCompareOp(token_) && !is_strong(strength())) {
3392       SetFlag(kAllowUndefinedAsNaN);
3393     }
3394   }
3395   ChangeRepresentation(rep);
3396 }
3397 
3398 
PrintDataTo(std::ostream & os) const3399 std::ostream& HParameter::PrintDataTo(std::ostream& os) const {  // NOLINT
3400   return os << index();
3401 }
3402 
3403 
PrintDataTo(std::ostream & os) const3404 std::ostream& HLoadNamedField::PrintDataTo(std::ostream& os) const {  // NOLINT
3405   os << NameOf(object()) << access_;
3406 
3407   if (maps() != NULL) {
3408     os << " [" << *maps()->at(0).handle();
3409     for (int i = 1; i < maps()->size(); ++i) {
3410       os << "," << *maps()->at(i).handle();
3411     }
3412     os << "]";
3413   }
3414 
3415   if (HasDependency()) os << " " << NameOf(dependency());
3416   return os;
3417 }
3418 
3419 
PrintDataTo(std::ostream & os) const3420 std::ostream& HLoadNamedGeneric::PrintDataTo(
3421     std::ostream& os) const {  // NOLINT
3422   Handle<String> n = Handle<String>::cast(name());
3423   return os << NameOf(object()) << "." << n->ToCString().get();
3424 }
3425 
3426 
PrintDataTo(std::ostream & os) const3427 std::ostream& HLoadKeyed::PrintDataTo(std::ostream& os) const {  // NOLINT
3428   if (!is_fixed_typed_array()) {
3429     os << NameOf(elements());
3430   } else {
3431     DCHECK(elements_kind() >= FIRST_FIXED_TYPED_ARRAY_ELEMENTS_KIND &&
3432            elements_kind() <= LAST_FIXED_TYPED_ARRAY_ELEMENTS_KIND);
3433     os << NameOf(elements()) << "." << ElementsKindToString(elements_kind());
3434   }
3435 
3436   os << "[" << NameOf(key());
3437   if (IsDehoisted()) os << " + " << base_offset();
3438   os << "]";
3439 
3440   if (HasDependency()) os << " " << NameOf(dependency());
3441   if (RequiresHoleCheck()) os << " check_hole";
3442   return os;
3443 }
3444 
3445 
TryIncreaseBaseOffset(uint32_t increase_by_value)3446 bool HLoadKeyed::TryIncreaseBaseOffset(uint32_t increase_by_value) {
3447   // The base offset is usually simply the size of the array header, except
3448   // with dehoisting adds an addition offset due to a array index key
3449   // manipulation, in which case it becomes (array header size +
3450   // constant-offset-from-key * kPointerSize)
3451   uint32_t base_offset = BaseOffsetField::decode(bit_field_);
3452   v8::base::internal::CheckedNumeric<uint32_t> addition_result = base_offset;
3453   addition_result += increase_by_value;
3454   if (!addition_result.IsValid()) return false;
3455   base_offset = addition_result.ValueOrDie();
3456   if (!BaseOffsetField::is_valid(base_offset)) return false;
3457   bit_field_ = BaseOffsetField::update(bit_field_, base_offset);
3458   return true;
3459 }
3460 
3461 
UsesMustHandleHole() const3462 bool HLoadKeyed::UsesMustHandleHole() const {
3463   if (IsFastPackedElementsKind(elements_kind())) {
3464     return false;
3465   }
3466 
3467   if (IsFixedTypedArrayElementsKind(elements_kind())) {
3468     return false;
3469   }
3470 
3471   if (hole_mode() == ALLOW_RETURN_HOLE) {
3472     if (IsFastDoubleElementsKind(elements_kind())) {
3473       return AllUsesCanTreatHoleAsNaN();
3474     }
3475     return true;
3476   }
3477 
3478   if (IsFastDoubleElementsKind(elements_kind())) {
3479     return false;
3480   }
3481 
3482   // Holes are only returned as tagged values.
3483   if (!representation().IsTagged()) {
3484     return false;
3485   }
3486 
3487   for (HUseIterator it(uses()); !it.Done(); it.Advance()) {
3488     HValue* use = it.value();
3489     if (!use->IsChange()) return false;
3490   }
3491 
3492   return true;
3493 }
3494 
3495 
AllUsesCanTreatHoleAsNaN() const3496 bool HLoadKeyed::AllUsesCanTreatHoleAsNaN() const {
3497   return IsFastDoubleElementsKind(elements_kind()) &&
3498       CheckUsesForFlag(HValue::kAllowUndefinedAsNaN);
3499 }
3500 
3501 
RequiresHoleCheck() const3502 bool HLoadKeyed::RequiresHoleCheck() const {
3503   if (IsFastPackedElementsKind(elements_kind())) {
3504     return false;
3505   }
3506 
3507   if (IsFixedTypedArrayElementsKind(elements_kind())) {
3508     return false;
3509   }
3510 
3511   if (hole_mode() == CONVERT_HOLE_TO_UNDEFINED) {
3512     return false;
3513   }
3514 
3515   return !UsesMustHandleHole();
3516 }
3517 
3518 
PrintDataTo(std::ostream & os) const3519 std::ostream& HLoadKeyedGeneric::PrintDataTo(
3520     std::ostream& os) const {  // NOLINT
3521   return os << NameOf(object()) << "[" << NameOf(key()) << "]";
3522 }
3523 
3524 
Canonicalize()3525 HValue* HLoadKeyedGeneric::Canonicalize() {
3526   // Recognize generic keyed loads that use property name generated
3527   // by for-in statement as a key and rewrite them into fast property load
3528   // by index.
3529   if (key()->IsLoadKeyed()) {
3530     HLoadKeyed* key_load = HLoadKeyed::cast(key());
3531     if (key_load->elements()->IsForInCacheArray()) {
3532       HForInCacheArray* names_cache =
3533           HForInCacheArray::cast(key_load->elements());
3534 
3535       if (names_cache->enumerable() == object()) {
3536         HForInCacheArray* index_cache =
3537             names_cache->index_cache();
3538         HCheckMapValue* map_check = HCheckMapValue::New(
3539             block()->graph()->isolate(), block()->graph()->zone(),
3540             block()->graph()->GetInvalidContext(), object(),
3541             names_cache->map());
3542         HInstruction* index = HLoadKeyed::New(
3543             block()->graph()->isolate(), block()->graph()->zone(),
3544             block()->graph()->GetInvalidContext(), index_cache, key_load->key(),
3545             key_load->key(), nullptr, key_load->elements_kind());
3546         map_check->InsertBefore(this);
3547         index->InsertBefore(this);
3548         return Prepend(new(block()->zone()) HLoadFieldByIndex(
3549             object(), index));
3550       }
3551     }
3552   }
3553 
3554   return this;
3555 }
3556 
3557 
PrintDataTo(std::ostream & os) const3558 std::ostream& HStoreNamedGeneric::PrintDataTo(
3559     std::ostream& os) const {  // NOLINT
3560   Handle<String> n = Handle<String>::cast(name());
3561   return os << NameOf(object()) << "." << n->ToCString().get() << " = "
3562             << NameOf(value());
3563 }
3564 
3565 
PrintDataTo(std::ostream & os) const3566 std::ostream& HStoreNamedField::PrintDataTo(std::ostream& os) const {  // NOLINT
3567   os << NameOf(object()) << access_ << " = " << NameOf(value());
3568   if (NeedsWriteBarrier()) os << " (write-barrier)";
3569   if (has_transition()) os << " (transition map " << *transition_map() << ")";
3570   return os;
3571 }
3572 
3573 
PrintDataTo(std::ostream & os) const3574 std::ostream& HStoreKeyed::PrintDataTo(std::ostream& os) const {  // NOLINT
3575   if (!is_fixed_typed_array()) {
3576     os << NameOf(elements());
3577   } else {
3578     DCHECK(elements_kind() >= FIRST_FIXED_TYPED_ARRAY_ELEMENTS_KIND &&
3579            elements_kind() <= LAST_FIXED_TYPED_ARRAY_ELEMENTS_KIND);
3580     os << NameOf(elements()) << "." << ElementsKindToString(elements_kind());
3581   }
3582 
3583   os << "[" << NameOf(key());
3584   if (IsDehoisted()) os << " + " << base_offset();
3585   return os << "] = " << NameOf(value());
3586 }
3587 
3588 
PrintDataTo(std::ostream & os) const3589 std::ostream& HStoreKeyedGeneric::PrintDataTo(
3590     std::ostream& os) const {  // NOLINT
3591   return os << NameOf(object()) << "[" << NameOf(key())
3592             << "] = " << NameOf(value());
3593 }
3594 
3595 
PrintDataTo(std::ostream & os) const3596 std::ostream& HTransitionElementsKind::PrintDataTo(
3597     std::ostream& os) const {  // NOLINT
3598   os << NameOf(object());
3599   ElementsKind from_kind = original_map().handle()->elements_kind();
3600   ElementsKind to_kind = transitioned_map().handle()->elements_kind();
3601   os << " " << *original_map().handle() << " ["
3602      << ElementsAccessor::ForKind(from_kind)->name() << "] -> "
3603      << *transitioned_map().handle() << " ["
3604      << ElementsAccessor::ForKind(to_kind)->name() << "]";
3605   if (IsSimpleMapChangeTransition(from_kind, to_kind)) os << " (simple)";
3606   return os;
3607 }
3608 
3609 
PrintDataTo(std::ostream & os) const3610 std::ostream& HLoadGlobalGeneric::PrintDataTo(
3611     std::ostream& os) const {  // NOLINT
3612   return os << name()->ToCString().get() << " ";
3613 }
3614 
3615 
PrintDataTo(std::ostream & os) const3616 std::ostream& HInnerAllocatedObject::PrintDataTo(
3617     std::ostream& os) const {  // NOLINT
3618   os << NameOf(base_object()) << " offset ";
3619   return offset()->PrintTo(os);
3620 }
3621 
3622 
PrintDataTo(std::ostream & os) const3623 std::ostream& HLoadContextSlot::PrintDataTo(std::ostream& os) const {  // NOLINT
3624   return os << NameOf(value()) << "[" << slot_index() << "]";
3625 }
3626 
3627 
PrintDataTo(std::ostream & os) const3628 std::ostream& HStoreContextSlot::PrintDataTo(
3629     std::ostream& os) const {  // NOLINT
3630   return os << NameOf(context()) << "[" << slot_index()
3631             << "] = " << NameOf(value());
3632 }
3633 
3634 
3635 // Implementation of type inference and type conversions. Calculates
3636 // the inferred type of this instruction based on the input operands.
3637 
CalculateInferredType()3638 HType HValue::CalculateInferredType() {
3639   return type_;
3640 }
3641 
3642 
CalculateInferredType()3643 HType HPhi::CalculateInferredType() {
3644   if (OperandCount() == 0) return HType::Tagged();
3645   HType result = OperandAt(0)->type();
3646   for (int i = 1; i < OperandCount(); ++i) {
3647     HType current = OperandAt(i)->type();
3648     result = result.Combine(current);
3649   }
3650   return result;
3651 }
3652 
3653 
CalculateInferredType()3654 HType HChange::CalculateInferredType() {
3655   if (from().IsDouble() && to().IsTagged()) return HType::HeapNumber();
3656   return type();
3657 }
3658 
3659 
RepresentationFromInputs()3660 Representation HUnaryMathOperation::RepresentationFromInputs() {
3661   if (SupportsFlexibleFloorAndRound() &&
3662       (op_ == kMathFloor || op_ == kMathRound)) {
3663     // Floor and Round always take a double input. The integral result can be
3664     // used as an integer or a double. Infer the representation from the uses.
3665     return Representation::None();
3666   }
3667   Representation rep = representation();
3668   // If any of the actual input representation is more general than what we
3669   // have so far but not Tagged, use that representation instead.
3670   Representation input_rep = value()->representation();
3671   if (!input_rep.IsTagged()) {
3672     rep = rep.generalize(input_rep);
3673   }
3674   return rep;
3675 }
3676 
3677 
HandleSideEffectDominator(GVNFlag side_effect,HValue * dominator)3678 bool HAllocate::HandleSideEffectDominator(GVNFlag side_effect,
3679                                           HValue* dominator) {
3680   DCHECK(side_effect == kNewSpacePromotion);
3681   Zone* zone = block()->zone();
3682   Isolate* isolate = block()->isolate();
3683   if (!FLAG_use_allocation_folding) return false;
3684 
3685   // Try to fold allocations together with their dominating allocations.
3686   if (!dominator->IsAllocate()) {
3687     if (FLAG_trace_allocation_folding) {
3688       PrintF("#%d (%s) cannot fold into #%d (%s)\n",
3689           id(), Mnemonic(), dominator->id(), dominator->Mnemonic());
3690     }
3691     return false;
3692   }
3693 
3694   // Check whether we are folding within the same block for local folding.
3695   if (FLAG_use_local_allocation_folding && dominator->block() != block()) {
3696     if (FLAG_trace_allocation_folding) {
3697       PrintF("#%d (%s) cannot fold into #%d (%s), crosses basic blocks\n",
3698           id(), Mnemonic(), dominator->id(), dominator->Mnemonic());
3699     }
3700     return false;
3701   }
3702 
3703   HAllocate* dominator_allocate = HAllocate::cast(dominator);
3704   HValue* dominator_size = dominator_allocate->size();
3705   HValue* current_size = size();
3706 
3707   // TODO(hpayer): Add support for non-constant allocation in dominator.
3708   if (!dominator_size->IsInteger32Constant()) {
3709     if (FLAG_trace_allocation_folding) {
3710       PrintF("#%d (%s) cannot fold into #%d (%s), "
3711              "dynamic allocation size in dominator\n",
3712           id(), Mnemonic(), dominator->id(), dominator->Mnemonic());
3713     }
3714     return false;
3715   }
3716 
3717 
3718   if (!IsFoldable(dominator_allocate)) {
3719     if (FLAG_trace_allocation_folding) {
3720       PrintF("#%d (%s) cannot fold into #%d (%s), different spaces\n", id(),
3721              Mnemonic(), dominator->id(), dominator->Mnemonic());
3722     }
3723     return false;
3724   }
3725 
3726   if (!has_size_upper_bound()) {
3727     if (FLAG_trace_allocation_folding) {
3728       PrintF("#%d (%s) cannot fold into #%d (%s), "
3729              "can't estimate total allocation size\n",
3730           id(), Mnemonic(), dominator->id(), dominator->Mnemonic());
3731     }
3732     return false;
3733   }
3734 
3735   if (!current_size->IsInteger32Constant()) {
3736     // If it's not constant then it is a size_in_bytes calculation graph
3737     // like this: (const_header_size + const_element_size * size).
3738     DCHECK(current_size->IsInstruction());
3739 
3740     HInstruction* current_instr = HInstruction::cast(current_size);
3741     if (!current_instr->Dominates(dominator_allocate)) {
3742       if (FLAG_trace_allocation_folding) {
3743         PrintF("#%d (%s) cannot fold into #%d (%s), dynamic size "
3744                "value does not dominate target allocation\n",
3745             id(), Mnemonic(), dominator_allocate->id(),
3746             dominator_allocate->Mnemonic());
3747       }
3748       return false;
3749     }
3750   }
3751 
3752   DCHECK(
3753       (IsNewSpaceAllocation() && dominator_allocate->IsNewSpaceAllocation()) ||
3754       (IsOldSpaceAllocation() && dominator_allocate->IsOldSpaceAllocation()));
3755 
3756   // First update the size of the dominator allocate instruction.
3757   dominator_size = dominator_allocate->size();
3758   int32_t original_object_size =
3759       HConstant::cast(dominator_size)->GetInteger32Constant();
3760   int32_t dominator_size_constant = original_object_size;
3761 
3762   if (MustAllocateDoubleAligned()) {
3763     if ((dominator_size_constant & kDoubleAlignmentMask) != 0) {
3764       dominator_size_constant += kDoubleSize / 2;
3765     }
3766   }
3767 
3768   int32_t current_size_max_value = size_upper_bound()->GetInteger32Constant();
3769   int32_t new_dominator_size = dominator_size_constant + current_size_max_value;
3770 
3771   // Since we clear the first word after folded memory, we cannot use the
3772   // whole Page::kMaxRegularHeapObjectSize memory.
3773   if (new_dominator_size > Page::kMaxRegularHeapObjectSize - kPointerSize) {
3774     if (FLAG_trace_allocation_folding) {
3775       PrintF("#%d (%s) cannot fold into #%d (%s) due to size: %d\n",
3776           id(), Mnemonic(), dominator_allocate->id(),
3777           dominator_allocate->Mnemonic(), new_dominator_size);
3778     }
3779     return false;
3780   }
3781 
3782   HInstruction* new_dominator_size_value;
3783 
3784   if (current_size->IsInteger32Constant()) {
3785     new_dominator_size_value = HConstant::CreateAndInsertBefore(
3786         isolate, zone, context(), new_dominator_size, Representation::None(),
3787         dominator_allocate);
3788   } else {
3789     HValue* new_dominator_size_constant = HConstant::CreateAndInsertBefore(
3790         isolate, zone, context(), dominator_size_constant,
3791         Representation::Integer32(), dominator_allocate);
3792 
3793     // Add old and new size together and insert.
3794     current_size->ChangeRepresentation(Representation::Integer32());
3795 
3796     new_dominator_size_value = HAdd::New(
3797         isolate, zone, context(), new_dominator_size_constant, current_size);
3798     new_dominator_size_value->ClearFlag(HValue::kCanOverflow);
3799     new_dominator_size_value->ChangeRepresentation(Representation::Integer32());
3800 
3801     new_dominator_size_value->InsertBefore(dominator_allocate);
3802   }
3803 
3804   dominator_allocate->UpdateSize(new_dominator_size_value);
3805 
3806   if (MustAllocateDoubleAligned()) {
3807     if (!dominator_allocate->MustAllocateDoubleAligned()) {
3808       dominator_allocate->MakeDoubleAligned();
3809     }
3810   }
3811 
3812   bool keep_new_space_iterable = FLAG_log_gc || FLAG_heap_stats;
3813 #ifdef VERIFY_HEAP
3814   keep_new_space_iterable = keep_new_space_iterable || FLAG_verify_heap;
3815 #endif
3816 
3817   if (keep_new_space_iterable && dominator_allocate->IsNewSpaceAllocation()) {
3818     dominator_allocate->MakePrefillWithFiller();
3819   } else {
3820     // TODO(hpayer): This is a short-term hack to make allocation mementos
3821     // work again in new space.
3822     dominator_allocate->ClearNextMapWord(original_object_size);
3823   }
3824 
3825   dominator_allocate->UpdateClearNextMapWord(MustClearNextMapWord());
3826 
3827   // After that replace the dominated allocate instruction.
3828   HInstruction* inner_offset = HConstant::CreateAndInsertBefore(
3829       isolate, zone, context(), dominator_size_constant, Representation::None(),
3830       this);
3831 
3832   HInstruction* dominated_allocate_instr = HInnerAllocatedObject::New(
3833       isolate, zone, context(), dominator_allocate, inner_offset, type());
3834   dominated_allocate_instr->InsertBefore(this);
3835   DeleteAndReplaceWith(dominated_allocate_instr);
3836   if (FLAG_trace_allocation_folding) {
3837     PrintF("#%d (%s) folded into #%d (%s)\n",
3838         id(), Mnemonic(), dominator_allocate->id(),
3839         dominator_allocate->Mnemonic());
3840   }
3841   return true;
3842 }
3843 
3844 
UpdateFreeSpaceFiller(int32_t free_space_size)3845 void HAllocate::UpdateFreeSpaceFiller(int32_t free_space_size) {
3846   DCHECK(filler_free_space_size_ != NULL);
3847   Zone* zone = block()->zone();
3848   // We must explicitly force Smi representation here because on x64 we
3849   // would otherwise automatically choose int32, but the actual store
3850   // requires a Smi-tagged value.
3851   HConstant* new_free_space_size = HConstant::CreateAndInsertBefore(
3852       block()->isolate(), zone, context(),
3853       filler_free_space_size_->value()->GetInteger32Constant() +
3854           free_space_size,
3855       Representation::Smi(), filler_free_space_size_);
3856   filler_free_space_size_->UpdateValue(new_free_space_size);
3857 }
3858 
3859 
CreateFreeSpaceFiller(int32_t free_space_size)3860 void HAllocate::CreateFreeSpaceFiller(int32_t free_space_size) {
3861   DCHECK(filler_free_space_size_ == NULL);
3862   Isolate* isolate = block()->isolate();
3863   Zone* zone = block()->zone();
3864   HInstruction* free_space_instr =
3865       HInnerAllocatedObject::New(isolate, zone, context(), dominating_allocate_,
3866                                  dominating_allocate_->size(), type());
3867   free_space_instr->InsertBefore(this);
3868   HConstant* filler_map = HConstant::CreateAndInsertAfter(
3869       zone, Unique<Map>::CreateImmovable(isolate->factory()->free_space_map()),
3870       true, free_space_instr);
3871   HInstruction* store_map =
3872       HStoreNamedField::New(isolate, zone, context(), free_space_instr,
3873                             HObjectAccess::ForMap(), filler_map);
3874   store_map->SetFlag(HValue::kHasNoObservableSideEffects);
3875   store_map->InsertAfter(filler_map);
3876 
3877   // We must explicitly force Smi representation here because on x64 we
3878   // would otherwise automatically choose int32, but the actual store
3879   // requires a Smi-tagged value.
3880   HConstant* filler_size =
3881       HConstant::CreateAndInsertAfter(isolate, zone, context(), free_space_size,
3882                                       Representation::Smi(), store_map);
3883   // Must force Smi representation for x64 (see comment above).
3884   HObjectAccess access = HObjectAccess::ForMapAndOffset(
3885       isolate->factory()->free_space_map(), FreeSpace::kSizeOffset,
3886       Representation::Smi());
3887   HStoreNamedField* store_size = HStoreNamedField::New(
3888       isolate, zone, context(), free_space_instr, access, filler_size);
3889   store_size->SetFlag(HValue::kHasNoObservableSideEffects);
3890   store_size->InsertAfter(filler_size);
3891   filler_free_space_size_ = store_size;
3892 }
3893 
3894 
ClearNextMapWord(int offset)3895 void HAllocate::ClearNextMapWord(int offset) {
3896   if (MustClearNextMapWord()) {
3897     Zone* zone = block()->zone();
3898     HObjectAccess access =
3899         HObjectAccess::ForObservableJSObjectOffset(offset);
3900     HStoreNamedField* clear_next_map =
3901         HStoreNamedField::New(block()->isolate(), zone, context(), this, access,
3902                               block()->graph()->GetConstant0());
3903     clear_next_map->ClearAllSideEffects();
3904     clear_next_map->InsertAfter(this);
3905   }
3906 }
3907 
3908 
PrintDataTo(std::ostream & os) const3909 std::ostream& HAllocate::PrintDataTo(std::ostream& os) const {  // NOLINT
3910   os << NameOf(size()) << " (";
3911   if (IsNewSpaceAllocation()) os << "N";
3912   if (IsOldSpaceAllocation()) os << "P";
3913   if (MustAllocateDoubleAligned()) os << "A";
3914   if (MustPrefillWithFiller()) os << "F";
3915   return os << ")";
3916 }
3917 
3918 
TryIncreaseBaseOffset(uint32_t increase_by_value)3919 bool HStoreKeyed::TryIncreaseBaseOffset(uint32_t increase_by_value) {
3920   // The base offset is usually simply the size of the array header, except
3921   // with dehoisting adds an addition offset due to a array index key
3922   // manipulation, in which case it becomes (array header size +
3923   // constant-offset-from-key * kPointerSize)
3924   v8::base::internal::CheckedNumeric<uint32_t> addition_result = base_offset_;
3925   addition_result += increase_by_value;
3926   if (!addition_result.IsValid()) return false;
3927   base_offset_ = addition_result.ValueOrDie();
3928   return true;
3929 }
3930 
3931 
NeedsCanonicalization()3932 bool HStoreKeyed::NeedsCanonicalization() {
3933   switch (value()->opcode()) {
3934     case kLoadKeyed: {
3935       ElementsKind load_kind = HLoadKeyed::cast(value())->elements_kind();
3936       return IsFixedFloatElementsKind(load_kind);
3937     }
3938     case kChange: {
3939       Representation from = HChange::cast(value())->from();
3940       return from.IsTagged() || from.IsHeapObject();
3941     }
3942     case kLoadNamedField:
3943     case kPhi: {
3944       // Better safe than sorry...
3945       return true;
3946     }
3947     default:
3948       return false;
3949   }
3950 }
3951 
3952 
3953 #define H_CONSTANT_INT(val) \
3954   HConstant::New(isolate, zone, context, static_cast<int32_t>(val))
3955 #define H_CONSTANT_DOUBLE(val) \
3956   HConstant::New(isolate, zone, context, static_cast<double>(val))
3957 
3958 #define DEFINE_NEW_H_SIMPLE_ARITHMETIC_INSTR(HInstr, op)                      \
3959   HInstruction* HInstr::New(Isolate* isolate, Zone* zone, HValue* context,    \
3960                             HValue* left, HValue* right, Strength strength) { \
3961     if (FLAG_fold_constants && left->IsConstant() && right->IsConstant()) {   \
3962       HConstant* c_left = HConstant::cast(left);                              \
3963       HConstant* c_right = HConstant::cast(right);                            \
3964       if ((c_left->HasNumberValue() && c_right->HasNumberValue())) {          \
3965         double double_res = c_left->DoubleValue() op c_right->DoubleValue();  \
3966         if (IsInt32Double(double_res)) {                                      \
3967           return H_CONSTANT_INT(double_res);                                  \
3968         }                                                                     \
3969         return H_CONSTANT_DOUBLE(double_res);                                 \
3970       }                                                                       \
3971     }                                                                         \
3972     return new (zone) HInstr(context, left, right, strength);                 \
3973   }
3974 
3975 
3976 DEFINE_NEW_H_SIMPLE_ARITHMETIC_INSTR(HAdd, +)
3977 DEFINE_NEW_H_SIMPLE_ARITHMETIC_INSTR(HMul, *)
3978 DEFINE_NEW_H_SIMPLE_ARITHMETIC_INSTR(HSub, -)
3979 
3980 #undef DEFINE_NEW_H_SIMPLE_ARITHMETIC_INSTR
3981 
3982 
New(Isolate * isolate,Zone * zone,HValue * context,HValue * left,HValue * right,PretenureFlag pretenure_flag,StringAddFlags flags,Handle<AllocationSite> allocation_site)3983 HInstruction* HStringAdd::New(Isolate* isolate, Zone* zone, HValue* context,
3984                               HValue* left, HValue* right,
3985                               PretenureFlag pretenure_flag,
3986                               StringAddFlags flags,
3987                               Handle<AllocationSite> allocation_site) {
3988   if (FLAG_fold_constants && left->IsConstant() && right->IsConstant()) {
3989     HConstant* c_right = HConstant::cast(right);
3990     HConstant* c_left = HConstant::cast(left);
3991     if (c_left->HasStringValue() && c_right->HasStringValue()) {
3992       Handle<String> left_string = c_left->StringValue();
3993       Handle<String> right_string = c_right->StringValue();
3994       // Prevent possible exception by invalid string length.
3995       if (left_string->length() + right_string->length() < String::kMaxLength) {
3996         MaybeHandle<String> concat = isolate->factory()->NewConsString(
3997             c_left->StringValue(), c_right->StringValue());
3998         return HConstant::New(isolate, zone, context, concat.ToHandleChecked());
3999       }
4000     }
4001   }
4002   return new (zone)
4003       HStringAdd(context, left, right, pretenure_flag, flags, allocation_site);
4004 }
4005 
4006 
PrintDataTo(std::ostream & os) const4007 std::ostream& HStringAdd::PrintDataTo(std::ostream& os) const {  // NOLINT
4008   if ((flags() & STRING_ADD_CHECK_BOTH) == STRING_ADD_CHECK_BOTH) {
4009     os << "_CheckBoth";
4010   } else if ((flags() & STRING_ADD_CHECK_BOTH) == STRING_ADD_CHECK_LEFT) {
4011     os << "_CheckLeft";
4012   } else if ((flags() & STRING_ADD_CHECK_BOTH) == STRING_ADD_CHECK_RIGHT) {
4013     os << "_CheckRight";
4014   }
4015   HBinaryOperation::PrintDataTo(os);
4016   os << " (";
4017   if (pretenure_flag() == NOT_TENURED)
4018     os << "N";
4019   else if (pretenure_flag() == TENURED)
4020     os << "D";
4021   return os << ")";
4022 }
4023 
4024 
New(Isolate * isolate,Zone * zone,HValue * context,HValue * char_code)4025 HInstruction* HStringCharFromCode::New(Isolate* isolate, Zone* zone,
4026                                        HValue* context, HValue* char_code) {
4027   if (FLAG_fold_constants && char_code->IsConstant()) {
4028     HConstant* c_code = HConstant::cast(char_code);
4029     if (c_code->HasNumberValue()) {
4030       if (std::isfinite(c_code->DoubleValue())) {
4031         uint32_t code = c_code->NumberValueAsInteger32() & 0xffff;
4032         return HConstant::New(
4033             isolate, zone, context,
4034             isolate->factory()->LookupSingleCharacterStringFromCode(code));
4035       }
4036       return HConstant::New(isolate, zone, context,
4037                             isolate->factory()->empty_string());
4038     }
4039   }
4040   return new(zone) HStringCharFromCode(context, char_code);
4041 }
4042 
4043 
New(Isolate * isolate,Zone * zone,HValue * context,HValue * value,BuiltinFunctionId op)4044 HInstruction* HUnaryMathOperation::New(Isolate* isolate, Zone* zone,
4045                                        HValue* context, HValue* value,
4046                                        BuiltinFunctionId op) {
4047   do {
4048     if (!FLAG_fold_constants) break;
4049     if (!value->IsConstant()) break;
4050     HConstant* constant = HConstant::cast(value);
4051     if (!constant->HasNumberValue()) break;
4052     double d = constant->DoubleValue();
4053     if (std::isnan(d)) {  // NaN poisons everything.
4054       return H_CONSTANT_DOUBLE(std::numeric_limits<double>::quiet_NaN());
4055     }
4056     if (std::isinf(d)) {  // +Infinity and -Infinity.
4057       switch (op) {
4058         case kMathExp:
4059           return H_CONSTANT_DOUBLE((d > 0.0) ? d : 0.0);
4060         case kMathLog:
4061         case kMathSqrt:
4062           return H_CONSTANT_DOUBLE(
4063               (d > 0.0) ? d : std::numeric_limits<double>::quiet_NaN());
4064         case kMathPowHalf:
4065         case kMathAbs:
4066           return H_CONSTANT_DOUBLE((d > 0.0) ? d : -d);
4067         case kMathRound:
4068         case kMathFround:
4069         case kMathFloor:
4070           return H_CONSTANT_DOUBLE(d);
4071         case kMathClz32:
4072           return H_CONSTANT_INT(32);
4073         default:
4074           UNREACHABLE();
4075           break;
4076       }
4077     }
4078     switch (op) {
4079       case kMathExp:
4080         lazily_initialize_fast_exp(isolate);
4081         return H_CONSTANT_DOUBLE(fast_exp(d, isolate));
4082       case kMathLog:
4083         return H_CONSTANT_DOUBLE(std::log(d));
4084       case kMathSqrt:
4085         lazily_initialize_fast_sqrt(isolate);
4086         return H_CONSTANT_DOUBLE(fast_sqrt(d, isolate));
4087       case kMathPowHalf:
4088         return H_CONSTANT_DOUBLE(power_double_double(d, 0.5));
4089       case kMathAbs:
4090         return H_CONSTANT_DOUBLE((d >= 0.0) ? d + 0.0 : -d);
4091       case kMathRound:
4092         // -0.5 .. -0.0 round to -0.0.
4093         if ((d >= -0.5 && Double(d).Sign() < 0)) return H_CONSTANT_DOUBLE(-0.0);
4094         // Doubles are represented as Significant * 2 ^ Exponent. If the
4095         // Exponent is not negative, the double value is already an integer.
4096         if (Double(d).Exponent() >= 0) return H_CONSTANT_DOUBLE(d);
4097         return H_CONSTANT_DOUBLE(Floor(d + 0.5));
4098       case kMathFround:
4099         return H_CONSTANT_DOUBLE(static_cast<double>(static_cast<float>(d)));
4100       case kMathFloor:
4101         return H_CONSTANT_DOUBLE(Floor(d));
4102       case kMathClz32: {
4103         uint32_t i = DoubleToUint32(d);
4104         return H_CONSTANT_INT(base::bits::CountLeadingZeros32(i));
4105       }
4106       default:
4107         UNREACHABLE();
4108         break;
4109     }
4110   } while (false);
4111   return new(zone) HUnaryMathOperation(context, value, op);
4112 }
4113 
4114 
RepresentationFromUses()4115 Representation HUnaryMathOperation::RepresentationFromUses() {
4116   if (op_ != kMathFloor && op_ != kMathRound) {
4117     return HValue::RepresentationFromUses();
4118   }
4119 
4120   // The instruction can have an int32 or double output. Prefer a double
4121   // representation if there are double uses.
4122   bool use_double = false;
4123 
4124   for (HUseIterator it(uses()); !it.Done(); it.Advance()) {
4125     HValue* use = it.value();
4126     int use_index = it.index();
4127     Representation rep_observed = use->observed_input_representation(use_index);
4128     Representation rep_required = use->RequiredInputRepresentation(use_index);
4129     use_double |= (rep_observed.IsDouble() || rep_required.IsDouble());
4130     if (use_double && !FLAG_trace_representation) {
4131       // Having seen one double is enough.
4132       break;
4133     }
4134     if (FLAG_trace_representation) {
4135       if (!rep_required.IsDouble() || rep_observed.IsDouble()) {
4136         PrintF("#%d %s is used by #%d %s as %s%s\n",
4137                id(), Mnemonic(), use->id(),
4138                use->Mnemonic(), rep_observed.Mnemonic(),
4139                (use->CheckFlag(kTruncatingToInt32) ? "-trunc" : ""));
4140       } else {
4141         PrintF("#%d %s is required by #%d %s as %s%s\n",
4142                id(), Mnemonic(), use->id(),
4143                use->Mnemonic(), rep_required.Mnemonic(),
4144                (use->CheckFlag(kTruncatingToInt32) ? "-trunc" : ""));
4145       }
4146     }
4147   }
4148   return use_double ? Representation::Double() : Representation::Integer32();
4149 }
4150 
4151 
New(Isolate * isolate,Zone * zone,HValue * context,HValue * left,HValue * right)4152 HInstruction* HPower::New(Isolate* isolate, Zone* zone, HValue* context,
4153                           HValue* left, HValue* right) {
4154   if (FLAG_fold_constants && left->IsConstant() && right->IsConstant()) {
4155     HConstant* c_left = HConstant::cast(left);
4156     HConstant* c_right = HConstant::cast(right);
4157     if (c_left->HasNumberValue() && c_right->HasNumberValue()) {
4158       double result =
4159           power_helper(isolate, c_left->DoubleValue(), c_right->DoubleValue());
4160       return H_CONSTANT_DOUBLE(std::isnan(result)
4161                                    ? std::numeric_limits<double>::quiet_NaN()
4162                                    : result);
4163     }
4164   }
4165   return new(zone) HPower(left, right);
4166 }
4167 
4168 
New(Isolate * isolate,Zone * zone,HValue * context,HValue * left,HValue * right,Operation op)4169 HInstruction* HMathMinMax::New(Isolate* isolate, Zone* zone, HValue* context,
4170                                HValue* left, HValue* right, Operation op) {
4171   if (FLAG_fold_constants && left->IsConstant() && right->IsConstant()) {
4172     HConstant* c_left = HConstant::cast(left);
4173     HConstant* c_right = HConstant::cast(right);
4174     if (c_left->HasNumberValue() && c_right->HasNumberValue()) {
4175       double d_left = c_left->DoubleValue();
4176       double d_right = c_right->DoubleValue();
4177       if (op == kMathMin) {
4178         if (d_left > d_right) return H_CONSTANT_DOUBLE(d_right);
4179         if (d_left < d_right) return H_CONSTANT_DOUBLE(d_left);
4180         if (d_left == d_right) {
4181           // Handle +0 and -0.
4182           return H_CONSTANT_DOUBLE((Double(d_left).Sign() == -1) ? d_left
4183                                                                  : d_right);
4184         }
4185       } else {
4186         if (d_left < d_right) return H_CONSTANT_DOUBLE(d_right);
4187         if (d_left > d_right) return H_CONSTANT_DOUBLE(d_left);
4188         if (d_left == d_right) {
4189           // Handle +0 and -0.
4190           return H_CONSTANT_DOUBLE((Double(d_left).Sign() == -1) ? d_right
4191                                                                  : d_left);
4192         }
4193       }
4194       // All comparisons failed, must be NaN.
4195       return H_CONSTANT_DOUBLE(std::numeric_limits<double>::quiet_NaN());
4196     }
4197   }
4198   return new(zone) HMathMinMax(context, left, right, op);
4199 }
4200 
4201 
New(Isolate * isolate,Zone * zone,HValue * context,HValue * left,HValue * right,Strength strength)4202 HInstruction* HMod::New(Isolate* isolate, Zone* zone, HValue* context,
4203                         HValue* left, HValue* right, Strength strength) {
4204   if (FLAG_fold_constants && left->IsConstant() && right->IsConstant()) {
4205     HConstant* c_left = HConstant::cast(left);
4206     HConstant* c_right = HConstant::cast(right);
4207     if (c_left->HasInteger32Value() && c_right->HasInteger32Value()) {
4208       int32_t dividend = c_left->Integer32Value();
4209       int32_t divisor = c_right->Integer32Value();
4210       if (dividend == kMinInt && divisor == -1) {
4211         return H_CONSTANT_DOUBLE(-0.0);
4212       }
4213       if (divisor != 0) {
4214         int32_t res = dividend % divisor;
4215         if ((res == 0) && (dividend < 0)) {
4216           return H_CONSTANT_DOUBLE(-0.0);
4217         }
4218         return H_CONSTANT_INT(res);
4219       }
4220     }
4221   }
4222   return new (zone) HMod(context, left, right, strength);
4223 }
4224 
4225 
New(Isolate * isolate,Zone * zone,HValue * context,HValue * left,HValue * right,Strength strength)4226 HInstruction* HDiv::New(Isolate* isolate, Zone* zone, HValue* context,
4227                         HValue* left, HValue* right, Strength strength) {
4228   // If left and right are constant values, try to return a constant value.
4229   if (FLAG_fold_constants && left->IsConstant() && right->IsConstant()) {
4230     HConstant* c_left = HConstant::cast(left);
4231     HConstant* c_right = HConstant::cast(right);
4232     if ((c_left->HasNumberValue() && c_right->HasNumberValue())) {
4233       if (c_right->DoubleValue() != 0) {
4234         double double_res = c_left->DoubleValue() / c_right->DoubleValue();
4235         if (IsInt32Double(double_res)) {
4236           return H_CONSTANT_INT(double_res);
4237         }
4238         return H_CONSTANT_DOUBLE(double_res);
4239       } else {
4240         int sign = Double(c_left->DoubleValue()).Sign() *
4241                    Double(c_right->DoubleValue()).Sign();  // Right could be -0.
4242         return H_CONSTANT_DOUBLE(sign * V8_INFINITY);
4243       }
4244     }
4245   }
4246   return new (zone) HDiv(context, left, right, strength);
4247 }
4248 
4249 
New(Isolate * isolate,Zone * zone,HValue * context,Token::Value op,HValue * left,HValue * right,Strength strength)4250 HInstruction* HBitwise::New(Isolate* isolate, Zone* zone, HValue* context,
4251                             Token::Value op, HValue* left, HValue* right,
4252                             Strength strength) {
4253   if (FLAG_fold_constants && left->IsConstant() && right->IsConstant()) {
4254     HConstant* c_left = HConstant::cast(left);
4255     HConstant* c_right = HConstant::cast(right);
4256     if ((c_left->HasNumberValue() && c_right->HasNumberValue())) {
4257       int32_t result;
4258       int32_t v_left = c_left->NumberValueAsInteger32();
4259       int32_t v_right = c_right->NumberValueAsInteger32();
4260       switch (op) {
4261         case Token::BIT_XOR:
4262           result = v_left ^ v_right;
4263           break;
4264         case Token::BIT_AND:
4265           result = v_left & v_right;
4266           break;
4267         case Token::BIT_OR:
4268           result = v_left | v_right;
4269           break;
4270         default:
4271           result = 0;  // Please the compiler.
4272           UNREACHABLE();
4273       }
4274       return H_CONSTANT_INT(result);
4275     }
4276   }
4277   return new (zone) HBitwise(context, op, left, right, strength);
4278 }
4279 
4280 
4281 #define DEFINE_NEW_H_BITWISE_INSTR(HInstr, result)                            \
4282   HInstruction* HInstr::New(Isolate* isolate, Zone* zone, HValue* context,    \
4283                             HValue* left, HValue* right, Strength strength) { \
4284     if (FLAG_fold_constants && left->IsConstant() && right->IsConstant()) {   \
4285       HConstant* c_left = HConstant::cast(left);                              \
4286       HConstant* c_right = HConstant::cast(right);                            \
4287       if ((c_left->HasNumberValue() && c_right->HasNumberValue())) {          \
4288         return H_CONSTANT_INT(result);                                        \
4289       }                                                                       \
4290     }                                                                         \
4291     return new (zone) HInstr(context, left, right, strength);                 \
4292   }
4293 
4294 
4295 DEFINE_NEW_H_BITWISE_INSTR(HSar,
4296 c_left->NumberValueAsInteger32() >> (c_right->NumberValueAsInteger32() & 0x1f))
4297 DEFINE_NEW_H_BITWISE_INSTR(HShl,
4298 c_left->NumberValueAsInteger32() << (c_right->NumberValueAsInteger32() & 0x1f))
4299 
4300 #undef DEFINE_NEW_H_BITWISE_INSTR
4301 
4302 
New(Isolate * isolate,Zone * zone,HValue * context,HValue * left,HValue * right,Strength strength)4303 HInstruction* HShr::New(Isolate* isolate, Zone* zone, HValue* context,
4304                         HValue* left, HValue* right, Strength strength) {
4305   if (FLAG_fold_constants && left->IsConstant() && right->IsConstant()) {
4306     HConstant* c_left = HConstant::cast(left);
4307     HConstant* c_right = HConstant::cast(right);
4308     if ((c_left->HasNumberValue() && c_right->HasNumberValue())) {
4309       int32_t left_val = c_left->NumberValueAsInteger32();
4310       int32_t right_val = c_right->NumberValueAsInteger32() & 0x1f;
4311       if ((right_val == 0) && (left_val < 0)) {
4312         return H_CONSTANT_DOUBLE(static_cast<uint32_t>(left_val));
4313       }
4314       return H_CONSTANT_INT(static_cast<uint32_t>(left_val) >> right_val);
4315     }
4316   }
4317   return new (zone) HShr(context, left, right, strength);
4318 }
4319 
4320 
New(Isolate * isolate,Zone * zone,HValue * context,String::Encoding encoding,HValue * string,HValue * index)4321 HInstruction* HSeqStringGetChar::New(Isolate* isolate, Zone* zone,
4322                                      HValue* context, String::Encoding encoding,
4323                                      HValue* string, HValue* index) {
4324   if (FLAG_fold_constants && string->IsConstant() && index->IsConstant()) {
4325     HConstant* c_string = HConstant::cast(string);
4326     HConstant* c_index = HConstant::cast(index);
4327     if (c_string->HasStringValue() && c_index->HasInteger32Value()) {
4328       Handle<String> s = c_string->StringValue();
4329       int32_t i = c_index->Integer32Value();
4330       DCHECK_LE(0, i);
4331       DCHECK_LT(i, s->length());
4332       return H_CONSTANT_INT(s->Get(i));
4333     }
4334   }
4335   return new(zone) HSeqStringGetChar(encoding, string, index);
4336 }
4337 
4338 
4339 #undef H_CONSTANT_INT
4340 #undef H_CONSTANT_DOUBLE
4341 
4342 
PrintDataTo(std::ostream & os) const4343 std::ostream& HBitwise::PrintDataTo(std::ostream& os) const {  // NOLINT
4344   os << Token::Name(op_) << " ";
4345   return HBitwiseBinaryOperation::PrintDataTo(os);
4346 }
4347 
4348 
SimplifyConstantInputs()4349 void HPhi::SimplifyConstantInputs() {
4350   // Convert constant inputs to integers when all uses are truncating.
4351   // This must happen before representation inference takes place.
4352   if (!CheckUsesForFlag(kTruncatingToInt32)) return;
4353   for (int i = 0; i < OperandCount(); ++i) {
4354     if (!OperandAt(i)->IsConstant()) return;
4355   }
4356   HGraph* graph = block()->graph();
4357   for (int i = 0; i < OperandCount(); ++i) {
4358     HConstant* operand = HConstant::cast(OperandAt(i));
4359     if (operand->HasInteger32Value()) {
4360       continue;
4361     } else if (operand->HasDoubleValue()) {
4362       HConstant* integer_input = HConstant::New(
4363           graph->isolate(), graph->zone(), graph->GetInvalidContext(),
4364           DoubleToInt32(operand->DoubleValue()));
4365       integer_input->InsertAfter(operand);
4366       SetOperandAt(i, integer_input);
4367     } else if (operand->HasBooleanValue()) {
4368       SetOperandAt(i, operand->BooleanValue() ? graph->GetConstant1()
4369                                               : graph->GetConstant0());
4370     } else if (operand->ImmortalImmovable()) {
4371       SetOperandAt(i, graph->GetConstant0());
4372     }
4373   }
4374   // Overwrite observed input representations because they are likely Tagged.
4375   for (HUseIterator it(uses()); !it.Done(); it.Advance()) {
4376     HValue* use = it.value();
4377     if (use->IsBinaryOperation()) {
4378       HBinaryOperation::cast(use)->set_observed_input_representation(
4379           it.index(), Representation::Smi());
4380     }
4381   }
4382 }
4383 
4384 
InferRepresentation(HInferRepresentationPhase * h_infer)4385 void HPhi::InferRepresentation(HInferRepresentationPhase* h_infer) {
4386   DCHECK(CheckFlag(kFlexibleRepresentation));
4387   Representation new_rep = RepresentationFromUses();
4388   UpdateRepresentation(new_rep, h_infer, "uses");
4389   new_rep = RepresentationFromInputs();
4390   UpdateRepresentation(new_rep, h_infer, "inputs");
4391   new_rep = RepresentationFromUseRequirements();
4392   UpdateRepresentation(new_rep, h_infer, "use requirements");
4393 }
4394 
4395 
RepresentationFromInputs()4396 Representation HPhi::RepresentationFromInputs() {
4397   Representation r = representation();
4398   for (int i = 0; i < OperandCount(); ++i) {
4399     // Ignore conservative Tagged assumption of parameters if we have
4400     // reason to believe that it's too conservative.
4401     if (has_type_feedback_from_uses() && OperandAt(i)->IsParameter()) {
4402       continue;
4403     }
4404 
4405     r = r.generalize(OperandAt(i)->KnownOptimalRepresentation());
4406   }
4407   return r;
4408 }
4409 
4410 
4411 // Returns a representation if all uses agree on the same representation.
4412 // Integer32 is also returned when some uses are Smi but others are Integer32.
RepresentationFromUseRequirements()4413 Representation HValue::RepresentationFromUseRequirements() {
4414   Representation rep = Representation::None();
4415   for (HUseIterator it(uses()); !it.Done(); it.Advance()) {
4416     // Ignore the use requirement from never run code
4417     if (it.value()->block()->IsUnreachable()) continue;
4418 
4419     // We check for observed_input_representation elsewhere.
4420     Representation use_rep =
4421         it.value()->RequiredInputRepresentation(it.index());
4422     if (rep.IsNone()) {
4423       rep = use_rep;
4424       continue;
4425     }
4426     if (use_rep.IsNone() || rep.Equals(use_rep)) continue;
4427     if (rep.generalize(use_rep).IsInteger32()) {
4428       rep = Representation::Integer32();
4429       continue;
4430     }
4431     return Representation::None();
4432   }
4433   return rep;
4434 }
4435 
4436 
HasNonSmiUse()4437 bool HValue::HasNonSmiUse() {
4438   for (HUseIterator it(uses()); !it.Done(); it.Advance()) {
4439     // We check for observed_input_representation elsewhere.
4440     Representation use_rep =
4441         it.value()->RequiredInputRepresentation(it.index());
4442     if (!use_rep.IsNone() &&
4443         !use_rep.IsSmi() &&
4444         !use_rep.IsTagged()) {
4445       return true;
4446     }
4447   }
4448   return false;
4449 }
4450 
4451 
4452 // Node-specific verification code is only included in debug mode.
4453 #ifdef DEBUG
4454 
Verify()4455 void HPhi::Verify() {
4456   DCHECK(OperandCount() == block()->predecessors()->length());
4457   for (int i = 0; i < OperandCount(); ++i) {
4458     HValue* value = OperandAt(i);
4459     HBasicBlock* defining_block = value->block();
4460     HBasicBlock* predecessor_block = block()->predecessors()->at(i);
4461     DCHECK(defining_block == predecessor_block ||
4462            defining_block->Dominates(predecessor_block));
4463   }
4464 }
4465 
4466 
Verify()4467 void HSimulate::Verify() {
4468   HInstruction::Verify();
4469   DCHECK(HasAstId() || next()->IsEnterInlined());
4470 }
4471 
4472 
Verify()4473 void HCheckHeapObject::Verify() {
4474   HInstruction::Verify();
4475   DCHECK(HasNoUses());
4476 }
4477 
4478 
Verify()4479 void HCheckValue::Verify() {
4480   HInstruction::Verify();
4481   DCHECK(HasNoUses());
4482 }
4483 
4484 #endif
4485 
4486 
ForFixedArrayHeader(int offset)4487 HObjectAccess HObjectAccess::ForFixedArrayHeader(int offset) {
4488   DCHECK(offset >= 0);
4489   DCHECK(offset < FixedArray::kHeaderSize);
4490   if (offset == FixedArray::kLengthOffset) return ForFixedArrayLength();
4491   return HObjectAccess(kInobject, offset);
4492 }
4493 
4494 
ForMapAndOffset(Handle<Map> map,int offset,Representation representation)4495 HObjectAccess HObjectAccess::ForMapAndOffset(Handle<Map> map, int offset,
4496     Representation representation) {
4497   DCHECK(offset >= 0);
4498   Portion portion = kInobject;
4499 
4500   if (offset == JSObject::kElementsOffset) {
4501     portion = kElementsPointer;
4502   } else if (offset == JSObject::kMapOffset) {
4503     portion = kMaps;
4504   }
4505   bool existing_inobject_property = true;
4506   if (!map.is_null()) {
4507     existing_inobject_property = (offset <
4508         map->instance_size() - map->unused_property_fields() * kPointerSize);
4509   }
4510   return HObjectAccess(portion, offset, representation, Handle<String>::null(),
4511                        false, existing_inobject_property);
4512 }
4513 
4514 
ForAllocationSiteOffset(int offset)4515 HObjectAccess HObjectAccess::ForAllocationSiteOffset(int offset) {
4516   switch (offset) {
4517     case AllocationSite::kTransitionInfoOffset:
4518       return HObjectAccess(kInobject, offset, Representation::Tagged());
4519     case AllocationSite::kNestedSiteOffset:
4520       return HObjectAccess(kInobject, offset, Representation::Tagged());
4521     case AllocationSite::kPretenureDataOffset:
4522       return HObjectAccess(kInobject, offset, Representation::Smi());
4523     case AllocationSite::kPretenureCreateCountOffset:
4524       return HObjectAccess(kInobject, offset, Representation::Smi());
4525     case AllocationSite::kDependentCodeOffset:
4526       return HObjectAccess(kInobject, offset, Representation::Tagged());
4527     case AllocationSite::kWeakNextOffset:
4528       return HObjectAccess(kInobject, offset, Representation::Tagged());
4529     default:
4530       UNREACHABLE();
4531   }
4532   return HObjectAccess(kInobject, offset);
4533 }
4534 
4535 
ForContextSlot(int index)4536 HObjectAccess HObjectAccess::ForContextSlot(int index) {
4537   DCHECK(index >= 0);
4538   Portion portion = kInobject;
4539   int offset = Context::kHeaderSize + index * kPointerSize;
4540   DCHECK_EQ(offset, Context::SlotOffset(index) + kHeapObjectTag);
4541   return HObjectAccess(portion, offset, Representation::Tagged());
4542 }
4543 
4544 
ForScriptContext(int index)4545 HObjectAccess HObjectAccess::ForScriptContext(int index) {
4546   DCHECK(index >= 0);
4547   Portion portion = kInobject;
4548   int offset = ScriptContextTable::GetContextOffset(index);
4549   return HObjectAccess(portion, offset, Representation::Tagged());
4550 }
4551 
4552 
ForJSArrayOffset(int offset)4553 HObjectAccess HObjectAccess::ForJSArrayOffset(int offset) {
4554   DCHECK(offset >= 0);
4555   Portion portion = kInobject;
4556 
4557   if (offset == JSObject::kElementsOffset) {
4558     portion = kElementsPointer;
4559   } else if (offset == JSArray::kLengthOffset) {
4560     portion = kArrayLengths;
4561   } else if (offset == JSObject::kMapOffset) {
4562     portion = kMaps;
4563   }
4564   return HObjectAccess(portion, offset);
4565 }
4566 
4567 
ForBackingStoreOffset(int offset,Representation representation)4568 HObjectAccess HObjectAccess::ForBackingStoreOffset(int offset,
4569     Representation representation) {
4570   DCHECK(offset >= 0);
4571   return HObjectAccess(kBackingStore, offset, representation,
4572                        Handle<String>::null(), false, false);
4573 }
4574 
4575 
ForField(Handle<Map> map,int index,Representation representation,Handle<Name> name)4576 HObjectAccess HObjectAccess::ForField(Handle<Map> map, int index,
4577                                       Representation representation,
4578                                       Handle<Name> name) {
4579   if (index < 0) {
4580     // Negative property indices are in-object properties, indexed
4581     // from the end of the fixed part of the object.
4582     int offset = (index * kPointerSize) + map->instance_size();
4583     return HObjectAccess(kInobject, offset, representation, name, false, true);
4584   } else {
4585     // Non-negative property indices are in the properties array.
4586     int offset = (index * kPointerSize) + FixedArray::kHeaderSize;
4587     return HObjectAccess(kBackingStore, offset, representation, name,
4588                          false, false);
4589   }
4590 }
4591 
4592 
SetGVNFlags(HValue * instr,PropertyAccessType access_type)4593 void HObjectAccess::SetGVNFlags(HValue *instr, PropertyAccessType access_type) {
4594   // set the appropriate GVN flags for a given load or store instruction
4595   if (access_type == STORE) {
4596     // track dominating allocations in order to eliminate write barriers
4597     instr->SetDependsOnFlag(::v8::internal::kNewSpacePromotion);
4598     instr->SetFlag(HValue::kTrackSideEffectDominators);
4599   } else {
4600     // try to GVN loads, but don't hoist above map changes
4601     instr->SetFlag(HValue::kUseGVN);
4602     instr->SetDependsOnFlag(::v8::internal::kMaps);
4603   }
4604 
4605   switch (portion()) {
4606     case kArrayLengths:
4607       if (access_type == STORE) {
4608         instr->SetChangesFlag(::v8::internal::kArrayLengths);
4609       } else {
4610         instr->SetDependsOnFlag(::v8::internal::kArrayLengths);
4611       }
4612       break;
4613     case kStringLengths:
4614       if (access_type == STORE) {
4615         instr->SetChangesFlag(::v8::internal::kStringLengths);
4616       } else {
4617         instr->SetDependsOnFlag(::v8::internal::kStringLengths);
4618       }
4619       break;
4620     case kInobject:
4621       if (access_type == STORE) {
4622         instr->SetChangesFlag(::v8::internal::kInobjectFields);
4623       } else {
4624         instr->SetDependsOnFlag(::v8::internal::kInobjectFields);
4625       }
4626       break;
4627     case kDouble:
4628       if (access_type == STORE) {
4629         instr->SetChangesFlag(::v8::internal::kDoubleFields);
4630       } else {
4631         instr->SetDependsOnFlag(::v8::internal::kDoubleFields);
4632       }
4633       break;
4634     case kBackingStore:
4635       if (access_type == STORE) {
4636         instr->SetChangesFlag(::v8::internal::kBackingStoreFields);
4637       } else {
4638         instr->SetDependsOnFlag(::v8::internal::kBackingStoreFields);
4639       }
4640       break;
4641     case kElementsPointer:
4642       if (access_type == STORE) {
4643         instr->SetChangesFlag(::v8::internal::kElementsPointer);
4644       } else {
4645         instr->SetDependsOnFlag(::v8::internal::kElementsPointer);
4646       }
4647       break;
4648     case kMaps:
4649       if (access_type == STORE) {
4650         instr->SetChangesFlag(::v8::internal::kMaps);
4651       } else {
4652         instr->SetDependsOnFlag(::v8::internal::kMaps);
4653       }
4654       break;
4655     case kExternalMemory:
4656       if (access_type == STORE) {
4657         instr->SetChangesFlag(::v8::internal::kExternalMemory);
4658       } else {
4659         instr->SetDependsOnFlag(::v8::internal::kExternalMemory);
4660       }
4661       break;
4662   }
4663 }
4664 
4665 
operator <<(std::ostream & os,const HObjectAccess & access)4666 std::ostream& operator<<(std::ostream& os, const HObjectAccess& access) {
4667   os << ".";
4668 
4669   switch (access.portion()) {
4670     case HObjectAccess::kArrayLengths:
4671     case HObjectAccess::kStringLengths:
4672       os << "%length";
4673       break;
4674     case HObjectAccess::kElementsPointer:
4675       os << "%elements";
4676       break;
4677     case HObjectAccess::kMaps:
4678       os << "%map";
4679       break;
4680     case HObjectAccess::kDouble:  // fall through
4681     case HObjectAccess::kInobject:
4682       if (!access.name().is_null() && access.name()->IsString()) {
4683         os << Handle<String>::cast(access.name())->ToCString().get();
4684       }
4685       os << "[in-object]";
4686       break;
4687     case HObjectAccess::kBackingStore:
4688       if (!access.name().is_null() && access.name()->IsString()) {
4689         os << Handle<String>::cast(access.name())->ToCString().get();
4690       }
4691       os << "[backing-store]";
4692       break;
4693     case HObjectAccess::kExternalMemory:
4694       os << "[external-memory]";
4695       break;
4696   }
4697 
4698   return os << "@" << access.offset();
4699 }
4700 
4701 }  // namespace internal
4702 }  // namespace v8
4703