1 //===--- CGCall.cpp - Encapsulate calling convention details --------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // These classes wrap the information about a call or function
11 // definition used to handle ABI compliancy.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "CGCall.h"
16 #include "ABIInfo.h"
17 #include "CGCXXABI.h"
18 #include "CGCleanup.h"
19 #include "CodeGenFunction.h"
20 #include "CodeGenModule.h"
21 #include "TargetInfo.h"
22 #include "clang/AST/Decl.h"
23 #include "clang/AST/DeclCXX.h"
24 #include "clang/AST/DeclObjC.h"
25 #include "clang/Basic/TargetBuiltins.h"
26 #include "clang/Basic/TargetInfo.h"
27 #include "clang/CodeGen/CGFunctionInfo.h"
28 #include "clang/Frontend/CodeGenOptions.h"
29 #include "llvm/ADT/StringExtras.h"
30 #include "llvm/IR/Attributes.h"
31 #include "llvm/IR/CallSite.h"
32 #include "llvm/IR/DataLayout.h"
33 #include "llvm/IR/InlineAsm.h"
34 #include "llvm/IR/Intrinsics.h"
35 #include "llvm/IR/IntrinsicInst.h"
36 #include "llvm/Transforms/Utils/Local.h"
37 using namespace clang;
38 using namespace CodeGen;
39 
40 /***/
41 
ClangCallConvToLLVMCallConv(CallingConv CC)42 static unsigned ClangCallConvToLLVMCallConv(CallingConv CC) {
43   switch (CC) {
44   default: return llvm::CallingConv::C;
45   case CC_X86StdCall: return llvm::CallingConv::X86_StdCall;
46   case CC_X86FastCall: return llvm::CallingConv::X86_FastCall;
47   case CC_X86ThisCall: return llvm::CallingConv::X86_ThisCall;
48   case CC_X86_64Win64: return llvm::CallingConv::X86_64_Win64;
49   case CC_X86_64SysV: return llvm::CallingConv::X86_64_SysV;
50   case CC_AAPCS: return llvm::CallingConv::ARM_AAPCS;
51   case CC_AAPCS_VFP: return llvm::CallingConv::ARM_AAPCS_VFP;
52   case CC_IntelOclBicc: return llvm::CallingConv::Intel_OCL_BI;
53   // TODO: Add support for __pascal to LLVM.
54   case CC_X86Pascal: return llvm::CallingConv::C;
55   // TODO: Add support for __vectorcall to LLVM.
56   case CC_X86VectorCall: return llvm::CallingConv::X86_VectorCall;
57   case CC_SpirFunction: return llvm::CallingConv::SPIR_FUNC;
58   case CC_SpirKernel: return llvm::CallingConv::SPIR_KERNEL;
59   }
60 }
61 
62 /// Derives the 'this' type for codegen purposes, i.e. ignoring method
63 /// qualification.
64 /// FIXME: address space qualification?
GetThisType(ASTContext & Context,const CXXRecordDecl * RD)65 static CanQualType GetThisType(ASTContext &Context, const CXXRecordDecl *RD) {
66   QualType RecTy = Context.getTagDeclType(RD)->getCanonicalTypeInternal();
67   return Context.getPointerType(CanQualType::CreateUnsafe(RecTy));
68 }
69 
70 /// Returns the canonical formal type of the given C++ method.
GetFormalType(const CXXMethodDecl * MD)71 static CanQual<FunctionProtoType> GetFormalType(const CXXMethodDecl *MD) {
72   return MD->getType()->getCanonicalTypeUnqualified()
73            .getAs<FunctionProtoType>();
74 }
75 
76 /// Returns the "extra-canonicalized" return type, which discards
77 /// qualifiers on the return type.  Codegen doesn't care about them,
78 /// and it makes ABI code a little easier to be able to assume that
79 /// all parameter and return types are top-level unqualified.
GetReturnType(QualType RetTy)80 static CanQualType GetReturnType(QualType RetTy) {
81   return RetTy->getCanonicalTypeUnqualified().getUnqualifiedType();
82 }
83 
84 /// Arrange the argument and result information for a value of the given
85 /// unprototyped freestanding function type.
86 const CGFunctionInfo &
arrangeFreeFunctionType(CanQual<FunctionNoProtoType> FTNP)87 CodeGenTypes::arrangeFreeFunctionType(CanQual<FunctionNoProtoType> FTNP) {
88   // When translating an unprototyped function type, always use a
89   // variadic type.
90   return arrangeLLVMFunctionInfo(FTNP->getReturnType().getUnqualifiedType(),
91                                  /*instanceMethod=*/false,
92                                  /*chainCall=*/false, None,
93                                  FTNP->getExtInfo(), RequiredArgs(0));
94 }
95 
96 /// Adds the formal paramaters in FPT to the given prefix. If any parameter in
97 /// FPT has pass_object_size attrs, then we'll add parameters for those, too.
appendParameterTypes(const CodeGenTypes & CGT,SmallVectorImpl<CanQualType> & prefix,const CanQual<FunctionProtoType> & FPT,const FunctionDecl * FD)98 static void appendParameterTypes(const CodeGenTypes &CGT,
99                                  SmallVectorImpl<CanQualType> &prefix,
100                                  const CanQual<FunctionProtoType> &FPT,
101                                  const FunctionDecl *FD) {
102   // Fast path: unknown target.
103   if (FD == nullptr) {
104     prefix.append(FPT->param_type_begin(), FPT->param_type_end());
105     return;
106   }
107 
108   // In the vast majority cases, we'll have precisely FPT->getNumParams()
109   // parameters; the only thing that can change this is the presence of
110   // pass_object_size. So, we preallocate for the common case.
111   prefix.reserve(prefix.size() + FPT->getNumParams());
112 
113   assert(FD->getNumParams() == FPT->getNumParams());
114   for (unsigned I = 0, E = FPT->getNumParams(); I != E; ++I) {
115     prefix.push_back(FPT->getParamType(I));
116     if (FD->getParamDecl(I)->hasAttr<PassObjectSizeAttr>())
117       prefix.push_back(CGT.getContext().getSizeType());
118   }
119 }
120 
121 /// Arrange the LLVM function layout for a value of the given function
122 /// type, on top of any implicit parameters already stored.
123 static const CGFunctionInfo &
arrangeLLVMFunctionInfo(CodeGenTypes & CGT,bool instanceMethod,SmallVectorImpl<CanQualType> & prefix,CanQual<FunctionProtoType> FTP,const FunctionDecl * FD)124 arrangeLLVMFunctionInfo(CodeGenTypes &CGT, bool instanceMethod,
125                         SmallVectorImpl<CanQualType> &prefix,
126                         CanQual<FunctionProtoType> FTP,
127                         const FunctionDecl *FD) {
128   RequiredArgs required = RequiredArgs::forPrototypePlus(FTP, prefix.size());
129   // FIXME: Kill copy.
130   appendParameterTypes(CGT, prefix, FTP, FD);
131   CanQualType resultType = FTP->getReturnType().getUnqualifiedType();
132   return CGT.arrangeLLVMFunctionInfo(resultType, instanceMethod,
133                                      /*chainCall=*/false, prefix,
134                                      FTP->getExtInfo(), required);
135 }
136 
137 /// Arrange the argument and result information for a value of the
138 /// given freestanding function type.
139 const CGFunctionInfo &
arrangeFreeFunctionType(CanQual<FunctionProtoType> FTP,const FunctionDecl * FD)140 CodeGenTypes::arrangeFreeFunctionType(CanQual<FunctionProtoType> FTP,
141                                       const FunctionDecl *FD) {
142   SmallVector<CanQualType, 16> argTypes;
143   return ::arrangeLLVMFunctionInfo(*this, /*instanceMethod=*/false, argTypes,
144                                    FTP, FD);
145 }
146 
getCallingConventionForDecl(const Decl * D,bool IsWindows)147 static CallingConv getCallingConventionForDecl(const Decl *D, bool IsWindows) {
148   // Set the appropriate calling convention for the Function.
149   if (D->hasAttr<StdCallAttr>())
150     return CC_X86StdCall;
151 
152   if (D->hasAttr<FastCallAttr>())
153     return CC_X86FastCall;
154 
155   if (D->hasAttr<ThisCallAttr>())
156     return CC_X86ThisCall;
157 
158   if (D->hasAttr<VectorCallAttr>())
159     return CC_X86VectorCall;
160 
161   if (D->hasAttr<PascalAttr>())
162     return CC_X86Pascal;
163 
164   if (PcsAttr *PCS = D->getAttr<PcsAttr>())
165     return (PCS->getPCS() == PcsAttr::AAPCS ? CC_AAPCS : CC_AAPCS_VFP);
166 
167   if (D->hasAttr<IntelOclBiccAttr>())
168     return CC_IntelOclBicc;
169 
170   if (D->hasAttr<MSABIAttr>())
171     return IsWindows ? CC_C : CC_X86_64Win64;
172 
173   if (D->hasAttr<SysVABIAttr>())
174     return IsWindows ? CC_X86_64SysV : CC_C;
175 
176   return CC_C;
177 }
178 
179 /// Arrange the argument and result information for a call to an
180 /// unknown C++ non-static member function of the given abstract type.
181 /// (Zero value of RD means we don't have any meaningful "this" argument type,
182 ///  so fall back to a generic pointer type).
183 /// The member function must be an ordinary function, i.e. not a
184 /// constructor or destructor.
185 const CGFunctionInfo &
arrangeCXXMethodType(const CXXRecordDecl * RD,const FunctionProtoType * FTP,const CXXMethodDecl * MD)186 CodeGenTypes::arrangeCXXMethodType(const CXXRecordDecl *RD,
187                                    const FunctionProtoType *FTP,
188                                    const CXXMethodDecl *MD) {
189   SmallVector<CanQualType, 16> argTypes;
190 
191   // Add the 'this' pointer.
192   if (RD)
193     argTypes.push_back(GetThisType(Context, RD));
194   else
195     argTypes.push_back(Context.VoidPtrTy);
196 
197   return ::arrangeLLVMFunctionInfo(
198       *this, true, argTypes,
199       FTP->getCanonicalTypeUnqualified().getAs<FunctionProtoType>(), MD);
200 }
201 
202 /// Arrange the argument and result information for a declaration or
203 /// definition of the given C++ non-static member function.  The
204 /// member function must be an ordinary function, i.e. not a
205 /// constructor or destructor.
206 const CGFunctionInfo &
arrangeCXXMethodDeclaration(const CXXMethodDecl * MD)207 CodeGenTypes::arrangeCXXMethodDeclaration(const CXXMethodDecl *MD) {
208   assert(!isa<CXXConstructorDecl>(MD) && "wrong method for constructors!");
209   assert(!isa<CXXDestructorDecl>(MD) && "wrong method for destructors!");
210 
211   CanQual<FunctionProtoType> prototype = GetFormalType(MD);
212 
213   if (MD->isInstance()) {
214     // The abstract case is perfectly fine.
215     const CXXRecordDecl *ThisType = TheCXXABI.getThisArgumentTypeForMethod(MD);
216     return arrangeCXXMethodType(ThisType, prototype.getTypePtr(), MD);
217   }
218 
219   return arrangeFreeFunctionType(prototype, MD);
220 }
221 
222 const CGFunctionInfo &
arrangeCXXStructorDeclaration(const CXXMethodDecl * MD,StructorType Type)223 CodeGenTypes::arrangeCXXStructorDeclaration(const CXXMethodDecl *MD,
224                                             StructorType Type) {
225 
226   SmallVector<CanQualType, 16> argTypes;
227   argTypes.push_back(GetThisType(Context, MD->getParent()));
228 
229   GlobalDecl GD;
230   if (auto *CD = dyn_cast<CXXConstructorDecl>(MD)) {
231     GD = GlobalDecl(CD, toCXXCtorType(Type));
232   } else {
233     auto *DD = dyn_cast<CXXDestructorDecl>(MD);
234     GD = GlobalDecl(DD, toCXXDtorType(Type));
235   }
236 
237   CanQual<FunctionProtoType> FTP = GetFormalType(MD);
238 
239   // Add the formal parameters.
240   appendParameterTypes(*this, argTypes, FTP, MD);
241 
242   TheCXXABI.buildStructorSignature(MD, Type, argTypes);
243 
244   RequiredArgs required =
245       (MD->isVariadic() ? RequiredArgs(argTypes.size()) : RequiredArgs::All);
246 
247   FunctionType::ExtInfo extInfo = FTP->getExtInfo();
248   CanQualType resultType = TheCXXABI.HasThisReturn(GD)
249                                ? argTypes.front()
250                                : TheCXXABI.hasMostDerivedReturn(GD)
251                                      ? CGM.getContext().VoidPtrTy
252                                      : Context.VoidTy;
253   return arrangeLLVMFunctionInfo(resultType, /*instanceMethod=*/true,
254                                  /*chainCall=*/false, argTypes, extInfo,
255                                  required);
256 }
257 
258 /// Arrange a call to a C++ method, passing the given arguments.
259 const CGFunctionInfo &
arrangeCXXConstructorCall(const CallArgList & args,const CXXConstructorDecl * D,CXXCtorType CtorKind,unsigned ExtraArgs)260 CodeGenTypes::arrangeCXXConstructorCall(const CallArgList &args,
261                                         const CXXConstructorDecl *D,
262                                         CXXCtorType CtorKind,
263                                         unsigned ExtraArgs) {
264   // FIXME: Kill copy.
265   SmallVector<CanQualType, 16> ArgTypes;
266   for (const auto &Arg : args)
267     ArgTypes.push_back(Context.getCanonicalParamType(Arg.Ty));
268 
269   CanQual<FunctionProtoType> FPT = GetFormalType(D);
270   RequiredArgs Required = RequiredArgs::forPrototypePlus(FPT, 1 + ExtraArgs);
271   GlobalDecl GD(D, CtorKind);
272   CanQualType ResultType = TheCXXABI.HasThisReturn(GD)
273                                ? ArgTypes.front()
274                                : TheCXXABI.hasMostDerivedReturn(GD)
275                                      ? CGM.getContext().VoidPtrTy
276                                      : Context.VoidTy;
277 
278   FunctionType::ExtInfo Info = FPT->getExtInfo();
279   return arrangeLLVMFunctionInfo(ResultType, /*instanceMethod=*/true,
280                                  /*chainCall=*/false, ArgTypes, Info,
281                                  Required);
282 }
283 
284 /// Arrange the argument and result information for the declaration or
285 /// definition of the given function.
286 const CGFunctionInfo &
arrangeFunctionDeclaration(const FunctionDecl * FD)287 CodeGenTypes::arrangeFunctionDeclaration(const FunctionDecl *FD) {
288   if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD))
289     if (MD->isInstance())
290       return arrangeCXXMethodDeclaration(MD);
291 
292   CanQualType FTy = FD->getType()->getCanonicalTypeUnqualified();
293 
294   assert(isa<FunctionType>(FTy));
295 
296   // When declaring a function without a prototype, always use a
297   // non-variadic type.
298   if (isa<FunctionNoProtoType>(FTy)) {
299     CanQual<FunctionNoProtoType> noProto = FTy.getAs<FunctionNoProtoType>();
300     return arrangeLLVMFunctionInfo(
301         noProto->getReturnType(), /*instanceMethod=*/false,
302         /*chainCall=*/false, None, noProto->getExtInfo(), RequiredArgs::All);
303   }
304 
305   assert(isa<FunctionProtoType>(FTy));
306   return arrangeFreeFunctionType(FTy.getAs<FunctionProtoType>(), FD);
307 }
308 
309 /// Arrange the argument and result information for the declaration or
310 /// definition of an Objective-C method.
311 const CGFunctionInfo &
arrangeObjCMethodDeclaration(const ObjCMethodDecl * MD)312 CodeGenTypes::arrangeObjCMethodDeclaration(const ObjCMethodDecl *MD) {
313   // It happens that this is the same as a call with no optional
314   // arguments, except also using the formal 'self' type.
315   return arrangeObjCMessageSendSignature(MD, MD->getSelfDecl()->getType());
316 }
317 
318 /// Arrange the argument and result information for the function type
319 /// through which to perform a send to the given Objective-C method,
320 /// using the given receiver type.  The receiver type is not always
321 /// the 'self' type of the method or even an Objective-C pointer type.
322 /// This is *not* the right method for actually performing such a
323 /// message send, due to the possibility of optional arguments.
324 const CGFunctionInfo &
arrangeObjCMessageSendSignature(const ObjCMethodDecl * MD,QualType receiverType)325 CodeGenTypes::arrangeObjCMessageSendSignature(const ObjCMethodDecl *MD,
326                                               QualType receiverType) {
327   SmallVector<CanQualType, 16> argTys;
328   argTys.push_back(Context.getCanonicalParamType(receiverType));
329   argTys.push_back(Context.getCanonicalParamType(Context.getObjCSelType()));
330   // FIXME: Kill copy?
331   for (const auto *I : MD->params()) {
332     argTys.push_back(Context.getCanonicalParamType(I->getType()));
333   }
334 
335   FunctionType::ExtInfo einfo;
336   bool IsWindows = getContext().getTargetInfo().getTriple().isOSWindows();
337   einfo = einfo.withCallingConv(getCallingConventionForDecl(MD, IsWindows));
338 
339   if (getContext().getLangOpts().ObjCAutoRefCount &&
340       MD->hasAttr<NSReturnsRetainedAttr>())
341     einfo = einfo.withProducesResult(true);
342 
343   RequiredArgs required =
344     (MD->isVariadic() ? RequiredArgs(argTys.size()) : RequiredArgs::All);
345 
346   return arrangeLLVMFunctionInfo(
347       GetReturnType(MD->getReturnType()), /*instanceMethod=*/false,
348       /*chainCall=*/false, argTys, einfo, required);
349 }
350 
351 const CGFunctionInfo &
arrangeGlobalDeclaration(GlobalDecl GD)352 CodeGenTypes::arrangeGlobalDeclaration(GlobalDecl GD) {
353   // FIXME: Do we need to handle ObjCMethodDecl?
354   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
355 
356   if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD))
357     return arrangeCXXStructorDeclaration(CD, getFromCtorType(GD.getCtorType()));
358 
359   if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(FD))
360     return arrangeCXXStructorDeclaration(DD, getFromDtorType(GD.getDtorType()));
361 
362   return arrangeFunctionDeclaration(FD);
363 }
364 
365 /// Arrange a thunk that takes 'this' as the first parameter followed by
366 /// varargs.  Return a void pointer, regardless of the actual return type.
367 /// The body of the thunk will end in a musttail call to a function of the
368 /// correct type, and the caller will bitcast the function to the correct
369 /// prototype.
370 const CGFunctionInfo &
arrangeMSMemberPointerThunk(const CXXMethodDecl * MD)371 CodeGenTypes::arrangeMSMemberPointerThunk(const CXXMethodDecl *MD) {
372   assert(MD->isVirtual() && "only virtual memptrs have thunks");
373   CanQual<FunctionProtoType> FTP = GetFormalType(MD);
374   CanQualType ArgTys[] = { GetThisType(Context, MD->getParent()) };
375   return arrangeLLVMFunctionInfo(Context.VoidTy, /*instanceMethod=*/false,
376                                  /*chainCall=*/false, ArgTys,
377                                  FTP->getExtInfo(), RequiredArgs(1));
378 }
379 
380 const CGFunctionInfo &
arrangeMSCtorClosure(const CXXConstructorDecl * CD,CXXCtorType CT)381 CodeGenTypes::arrangeMSCtorClosure(const CXXConstructorDecl *CD,
382                                    CXXCtorType CT) {
383   assert(CT == Ctor_CopyingClosure || CT == Ctor_DefaultClosure);
384 
385   CanQual<FunctionProtoType> FTP = GetFormalType(CD);
386   SmallVector<CanQualType, 2> ArgTys;
387   const CXXRecordDecl *RD = CD->getParent();
388   ArgTys.push_back(GetThisType(Context, RD));
389   if (CT == Ctor_CopyingClosure)
390     ArgTys.push_back(*FTP->param_type_begin());
391   if (RD->getNumVBases() > 0)
392     ArgTys.push_back(Context.IntTy);
393   CallingConv CC = Context.getDefaultCallingConvention(
394       /*IsVariadic=*/false, /*IsCXXMethod=*/true);
395   return arrangeLLVMFunctionInfo(Context.VoidTy, /*instanceMethod=*/true,
396                                  /*chainCall=*/false, ArgTys,
397                                  FunctionType::ExtInfo(CC), RequiredArgs::All);
398 }
399 
400 /// Arrange a call as unto a free function, except possibly with an
401 /// additional number of formal parameters considered required.
402 static const CGFunctionInfo &
arrangeFreeFunctionLikeCall(CodeGenTypes & CGT,CodeGenModule & CGM,const CallArgList & args,const FunctionType * fnType,unsigned numExtraRequiredArgs,bool chainCall)403 arrangeFreeFunctionLikeCall(CodeGenTypes &CGT,
404                             CodeGenModule &CGM,
405                             const CallArgList &args,
406                             const FunctionType *fnType,
407                             unsigned numExtraRequiredArgs,
408                             bool chainCall) {
409   assert(args.size() >= numExtraRequiredArgs);
410 
411   // In most cases, there are no optional arguments.
412   RequiredArgs required = RequiredArgs::All;
413 
414   // If we have a variadic prototype, the required arguments are the
415   // extra prefix plus the arguments in the prototype.
416   if (const FunctionProtoType *proto = dyn_cast<FunctionProtoType>(fnType)) {
417     if (proto->isVariadic())
418       required = RequiredArgs(proto->getNumParams() + numExtraRequiredArgs);
419 
420   // If we don't have a prototype at all, but we're supposed to
421   // explicitly use the variadic convention for unprototyped calls,
422   // treat all of the arguments as required but preserve the nominal
423   // possibility of variadics.
424   } else if (CGM.getTargetCodeGenInfo()
425                 .isNoProtoCallVariadic(args,
426                                        cast<FunctionNoProtoType>(fnType))) {
427     required = RequiredArgs(args.size());
428   }
429 
430   // FIXME: Kill copy.
431   SmallVector<CanQualType, 16> argTypes;
432   for (const auto &arg : args)
433     argTypes.push_back(CGT.getContext().getCanonicalParamType(arg.Ty));
434   return CGT.arrangeLLVMFunctionInfo(GetReturnType(fnType->getReturnType()),
435                                      /*instanceMethod=*/false, chainCall,
436                                      argTypes, fnType->getExtInfo(), required);
437 }
438 
439 /// Figure out the rules for calling a function with the given formal
440 /// type using the given arguments.  The arguments are necessary
441 /// because the function might be unprototyped, in which case it's
442 /// target-dependent in crazy ways.
443 const CGFunctionInfo &
arrangeFreeFunctionCall(const CallArgList & args,const FunctionType * fnType,bool chainCall)444 CodeGenTypes::arrangeFreeFunctionCall(const CallArgList &args,
445                                       const FunctionType *fnType,
446                                       bool chainCall) {
447   return arrangeFreeFunctionLikeCall(*this, CGM, args, fnType,
448                                      chainCall ? 1 : 0, chainCall);
449 }
450 
451 /// A block function call is essentially a free-function call with an
452 /// extra implicit argument.
453 const CGFunctionInfo &
arrangeBlockFunctionCall(const CallArgList & args,const FunctionType * fnType)454 CodeGenTypes::arrangeBlockFunctionCall(const CallArgList &args,
455                                        const FunctionType *fnType) {
456   return arrangeFreeFunctionLikeCall(*this, CGM, args, fnType, 1,
457                                      /*chainCall=*/false);
458 }
459 
460 const CGFunctionInfo &
arrangeFreeFunctionCall(QualType resultType,const CallArgList & args,FunctionType::ExtInfo info,RequiredArgs required)461 CodeGenTypes::arrangeFreeFunctionCall(QualType resultType,
462                                       const CallArgList &args,
463                                       FunctionType::ExtInfo info,
464                                       RequiredArgs required) {
465   // FIXME: Kill copy.
466   SmallVector<CanQualType, 16> argTypes;
467   for (const auto &Arg : args)
468     argTypes.push_back(Context.getCanonicalParamType(Arg.Ty));
469   return arrangeLLVMFunctionInfo(
470       GetReturnType(resultType), /*instanceMethod=*/false,
471       /*chainCall=*/false, argTypes, info, required);
472 }
473 
474 /// Arrange a call to a C++ method, passing the given arguments.
475 const CGFunctionInfo &
arrangeCXXMethodCall(const CallArgList & args,const FunctionProtoType * FPT,RequiredArgs required)476 CodeGenTypes::arrangeCXXMethodCall(const CallArgList &args,
477                                    const FunctionProtoType *FPT,
478                                    RequiredArgs required) {
479   // FIXME: Kill copy.
480   SmallVector<CanQualType, 16> argTypes;
481   for (const auto &Arg : args)
482     argTypes.push_back(Context.getCanonicalParamType(Arg.Ty));
483 
484   FunctionType::ExtInfo info = FPT->getExtInfo();
485   return arrangeLLVMFunctionInfo(
486       GetReturnType(FPT->getReturnType()), /*instanceMethod=*/true,
487       /*chainCall=*/false, argTypes, info, required);
488 }
489 
arrangeFreeFunctionDeclaration(QualType resultType,const FunctionArgList & args,const FunctionType::ExtInfo & info,bool isVariadic)490 const CGFunctionInfo &CodeGenTypes::arrangeFreeFunctionDeclaration(
491     QualType resultType, const FunctionArgList &args,
492     const FunctionType::ExtInfo &info, bool isVariadic) {
493   // FIXME: Kill copy.
494   SmallVector<CanQualType, 16> argTypes;
495   for (auto Arg : args)
496     argTypes.push_back(Context.getCanonicalParamType(Arg->getType()));
497 
498   RequiredArgs required =
499     (isVariadic ? RequiredArgs(args.size()) : RequiredArgs::All);
500   return arrangeLLVMFunctionInfo(
501       GetReturnType(resultType), /*instanceMethod=*/false,
502       /*chainCall=*/false, argTypes, info, required);
503 }
504 
arrangeNullaryFunction()505 const CGFunctionInfo &CodeGenTypes::arrangeNullaryFunction() {
506   return arrangeLLVMFunctionInfo(
507       getContext().VoidTy, /*instanceMethod=*/false, /*chainCall=*/false,
508       None, FunctionType::ExtInfo(), RequiredArgs::All);
509 }
510 
511 /// Arrange the argument and result information for an abstract value
512 /// of a given function type.  This is the method which all of the
513 /// above functions ultimately defer to.
514 const CGFunctionInfo &
arrangeLLVMFunctionInfo(CanQualType resultType,bool instanceMethod,bool chainCall,ArrayRef<CanQualType> argTypes,FunctionType::ExtInfo info,RequiredArgs required)515 CodeGenTypes::arrangeLLVMFunctionInfo(CanQualType resultType,
516                                       bool instanceMethod,
517                                       bool chainCall,
518                                       ArrayRef<CanQualType> argTypes,
519                                       FunctionType::ExtInfo info,
520                                       RequiredArgs required) {
521   assert(std::all_of(argTypes.begin(), argTypes.end(),
522                      std::mem_fun_ref(&CanQualType::isCanonicalAsParam)));
523 
524   unsigned CC = ClangCallConvToLLVMCallConv(info.getCC());
525 
526   // Lookup or create unique function info.
527   llvm::FoldingSetNodeID ID;
528   CGFunctionInfo::Profile(ID, instanceMethod, chainCall, info, required,
529                           resultType, argTypes);
530 
531   void *insertPos = nullptr;
532   CGFunctionInfo *FI = FunctionInfos.FindNodeOrInsertPos(ID, insertPos);
533   if (FI)
534     return *FI;
535 
536   // Construct the function info.  We co-allocate the ArgInfos.
537   FI = CGFunctionInfo::create(CC, instanceMethod, chainCall, info,
538                               resultType, argTypes, required);
539   FunctionInfos.InsertNode(FI, insertPos);
540 
541   bool inserted = FunctionsBeingProcessed.insert(FI).second;
542   (void)inserted;
543   assert(inserted && "Recursively being processed?");
544 
545   // Compute ABI information.
546   getABIInfo().computeInfo(*FI);
547 
548   // Loop over all of the computed argument and return value info.  If any of
549   // them are direct or extend without a specified coerce type, specify the
550   // default now.
551   ABIArgInfo &retInfo = FI->getReturnInfo();
552   if (retInfo.canHaveCoerceToType() && retInfo.getCoerceToType() == nullptr)
553     retInfo.setCoerceToType(ConvertType(FI->getReturnType()));
554 
555   for (auto &I : FI->arguments())
556     if (I.info.canHaveCoerceToType() && I.info.getCoerceToType() == nullptr)
557       I.info.setCoerceToType(ConvertType(I.type));
558 
559   bool erased = FunctionsBeingProcessed.erase(FI); (void)erased;
560   assert(erased && "Not in set?");
561 
562   return *FI;
563 }
564 
create(unsigned llvmCC,bool instanceMethod,bool chainCall,const FunctionType::ExtInfo & info,CanQualType resultType,ArrayRef<CanQualType> argTypes,RequiredArgs required)565 CGFunctionInfo *CGFunctionInfo::create(unsigned llvmCC,
566                                        bool instanceMethod,
567                                        bool chainCall,
568                                        const FunctionType::ExtInfo &info,
569                                        CanQualType resultType,
570                                        ArrayRef<CanQualType> argTypes,
571                                        RequiredArgs required) {
572   void *buffer = operator new(sizeof(CGFunctionInfo) +
573                               sizeof(ArgInfo) * (argTypes.size() + 1));
574   CGFunctionInfo *FI = new(buffer) CGFunctionInfo();
575   FI->CallingConvention = llvmCC;
576   FI->EffectiveCallingConvention = llvmCC;
577   FI->ASTCallingConvention = info.getCC();
578   FI->InstanceMethod = instanceMethod;
579   FI->ChainCall = chainCall;
580   FI->NoReturn = info.getNoReturn();
581   FI->ReturnsRetained = info.getProducesResult();
582   FI->Required = required;
583   FI->HasRegParm = info.getHasRegParm();
584   FI->RegParm = info.getRegParm();
585   FI->ArgStruct = nullptr;
586   FI->ArgStructAlign = 0;
587   FI->NumArgs = argTypes.size();
588   FI->getArgsBuffer()[0].type = resultType;
589   for (unsigned i = 0, e = argTypes.size(); i != e; ++i)
590     FI->getArgsBuffer()[i + 1].type = argTypes[i];
591   return FI;
592 }
593 
594 /***/
595 
596 namespace {
597 // ABIArgInfo::Expand implementation.
598 
599 // Specifies the way QualType passed as ABIArgInfo::Expand is expanded.
600 struct TypeExpansion {
601   enum TypeExpansionKind {
602     // Elements of constant arrays are expanded recursively.
603     TEK_ConstantArray,
604     // Record fields are expanded recursively (but if record is a union, only
605     // the field with the largest size is expanded).
606     TEK_Record,
607     // For complex types, real and imaginary parts are expanded recursively.
608     TEK_Complex,
609     // All other types are not expandable.
610     TEK_None
611   };
612 
613   const TypeExpansionKind Kind;
614 
TypeExpansion__anond5d483060111::TypeExpansion615   TypeExpansion(TypeExpansionKind K) : Kind(K) {}
~TypeExpansion__anond5d483060111::TypeExpansion616   virtual ~TypeExpansion() {}
617 };
618 
619 struct ConstantArrayExpansion : TypeExpansion {
620   QualType EltTy;
621   uint64_t NumElts;
622 
ConstantArrayExpansion__anond5d483060111::ConstantArrayExpansion623   ConstantArrayExpansion(QualType EltTy, uint64_t NumElts)
624       : TypeExpansion(TEK_ConstantArray), EltTy(EltTy), NumElts(NumElts) {}
classof__anond5d483060111::ConstantArrayExpansion625   static bool classof(const TypeExpansion *TE) {
626     return TE->Kind == TEK_ConstantArray;
627   }
628 };
629 
630 struct RecordExpansion : TypeExpansion {
631   SmallVector<const CXXBaseSpecifier *, 1> Bases;
632 
633   SmallVector<const FieldDecl *, 1> Fields;
634 
RecordExpansion__anond5d483060111::RecordExpansion635   RecordExpansion(SmallVector<const CXXBaseSpecifier *, 1> &&Bases,
636                   SmallVector<const FieldDecl *, 1> &&Fields)
637       : TypeExpansion(TEK_Record), Bases(Bases), Fields(Fields) {}
classof__anond5d483060111::RecordExpansion638   static bool classof(const TypeExpansion *TE) {
639     return TE->Kind == TEK_Record;
640   }
641 };
642 
643 struct ComplexExpansion : TypeExpansion {
644   QualType EltTy;
645 
ComplexExpansion__anond5d483060111::ComplexExpansion646   ComplexExpansion(QualType EltTy) : TypeExpansion(TEK_Complex), EltTy(EltTy) {}
classof__anond5d483060111::ComplexExpansion647   static bool classof(const TypeExpansion *TE) {
648     return TE->Kind == TEK_Complex;
649   }
650 };
651 
652 struct NoExpansion : TypeExpansion {
NoExpansion__anond5d483060111::NoExpansion653   NoExpansion() : TypeExpansion(TEK_None) {}
classof__anond5d483060111::NoExpansion654   static bool classof(const TypeExpansion *TE) {
655     return TE->Kind == TEK_None;
656   }
657 };
658 }  // namespace
659 
660 static std::unique_ptr<TypeExpansion>
getTypeExpansion(QualType Ty,const ASTContext & Context)661 getTypeExpansion(QualType Ty, const ASTContext &Context) {
662   if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) {
663     return llvm::make_unique<ConstantArrayExpansion>(
664         AT->getElementType(), AT->getSize().getZExtValue());
665   }
666   if (const RecordType *RT = Ty->getAs<RecordType>()) {
667     SmallVector<const CXXBaseSpecifier *, 1> Bases;
668     SmallVector<const FieldDecl *, 1> Fields;
669     const RecordDecl *RD = RT->getDecl();
670     assert(!RD->hasFlexibleArrayMember() &&
671            "Cannot expand structure with flexible array.");
672     if (RD->isUnion()) {
673       // Unions can be here only in degenerative cases - all the fields are same
674       // after flattening. Thus we have to use the "largest" field.
675       const FieldDecl *LargestFD = nullptr;
676       CharUnits UnionSize = CharUnits::Zero();
677 
678       for (const auto *FD : RD->fields()) {
679         // Skip zero length bitfields.
680         if (FD->isBitField() && FD->getBitWidthValue(Context) == 0)
681           continue;
682         assert(!FD->isBitField() &&
683                "Cannot expand structure with bit-field members.");
684         CharUnits FieldSize = Context.getTypeSizeInChars(FD->getType());
685         if (UnionSize < FieldSize) {
686           UnionSize = FieldSize;
687           LargestFD = FD;
688         }
689       }
690       if (LargestFD)
691         Fields.push_back(LargestFD);
692     } else {
693       if (const auto *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
694         assert(!CXXRD->isDynamicClass() &&
695                "cannot expand vtable pointers in dynamic classes");
696         for (const CXXBaseSpecifier &BS : CXXRD->bases())
697           Bases.push_back(&BS);
698       }
699 
700       for (const auto *FD : RD->fields()) {
701         // Skip zero length bitfields.
702         if (FD->isBitField() && FD->getBitWidthValue(Context) == 0)
703           continue;
704         assert(!FD->isBitField() &&
705                "Cannot expand structure with bit-field members.");
706         Fields.push_back(FD);
707       }
708     }
709     return llvm::make_unique<RecordExpansion>(std::move(Bases),
710                                               std::move(Fields));
711   }
712   if (const ComplexType *CT = Ty->getAs<ComplexType>()) {
713     return llvm::make_unique<ComplexExpansion>(CT->getElementType());
714   }
715   return llvm::make_unique<NoExpansion>();
716 }
717 
getExpansionSize(QualType Ty,const ASTContext & Context)718 static int getExpansionSize(QualType Ty, const ASTContext &Context) {
719   auto Exp = getTypeExpansion(Ty, Context);
720   if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) {
721     return CAExp->NumElts * getExpansionSize(CAExp->EltTy, Context);
722   }
723   if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) {
724     int Res = 0;
725     for (auto BS : RExp->Bases)
726       Res += getExpansionSize(BS->getType(), Context);
727     for (auto FD : RExp->Fields)
728       Res += getExpansionSize(FD->getType(), Context);
729     return Res;
730   }
731   if (isa<ComplexExpansion>(Exp.get()))
732     return 2;
733   assert(isa<NoExpansion>(Exp.get()));
734   return 1;
735 }
736 
737 void
getExpandedTypes(QualType Ty,SmallVectorImpl<llvm::Type * >::iterator & TI)738 CodeGenTypes::getExpandedTypes(QualType Ty,
739                                SmallVectorImpl<llvm::Type *>::iterator &TI) {
740   auto Exp = getTypeExpansion(Ty, Context);
741   if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) {
742     for (int i = 0, n = CAExp->NumElts; i < n; i++) {
743       getExpandedTypes(CAExp->EltTy, TI);
744     }
745   } else if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) {
746     for (auto BS : RExp->Bases)
747       getExpandedTypes(BS->getType(), TI);
748     for (auto FD : RExp->Fields)
749       getExpandedTypes(FD->getType(), TI);
750   } else if (auto CExp = dyn_cast<ComplexExpansion>(Exp.get())) {
751     llvm::Type *EltTy = ConvertType(CExp->EltTy);
752     *TI++ = EltTy;
753     *TI++ = EltTy;
754   } else {
755     assert(isa<NoExpansion>(Exp.get()));
756     *TI++ = ConvertType(Ty);
757   }
758 }
759 
forConstantArrayExpansion(CodeGenFunction & CGF,ConstantArrayExpansion * CAE,Address BaseAddr,llvm::function_ref<void (Address)> Fn)760 static void forConstantArrayExpansion(CodeGenFunction &CGF,
761                                       ConstantArrayExpansion *CAE,
762                                       Address BaseAddr,
763                                       llvm::function_ref<void(Address)> Fn) {
764   CharUnits EltSize = CGF.getContext().getTypeSizeInChars(CAE->EltTy);
765   CharUnits EltAlign =
766     BaseAddr.getAlignment().alignmentOfArrayElement(EltSize);
767 
768   for (int i = 0, n = CAE->NumElts; i < n; i++) {
769     llvm::Value *EltAddr =
770       CGF.Builder.CreateConstGEP2_32(nullptr, BaseAddr.getPointer(), 0, i);
771     Fn(Address(EltAddr, EltAlign));
772   }
773 }
774 
ExpandTypeFromArgs(QualType Ty,LValue LV,SmallVectorImpl<llvm::Argument * >::iterator & AI)775 void CodeGenFunction::ExpandTypeFromArgs(
776     QualType Ty, LValue LV, SmallVectorImpl<llvm::Argument *>::iterator &AI) {
777   assert(LV.isSimple() &&
778          "Unexpected non-simple lvalue during struct expansion.");
779 
780   auto Exp = getTypeExpansion(Ty, getContext());
781   if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) {
782     forConstantArrayExpansion(*this, CAExp, LV.getAddress(),
783                               [&](Address EltAddr) {
784       LValue LV = MakeAddrLValue(EltAddr, CAExp->EltTy);
785       ExpandTypeFromArgs(CAExp->EltTy, LV, AI);
786     });
787   } else if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) {
788     Address This = LV.getAddress();
789     for (const CXXBaseSpecifier *BS : RExp->Bases) {
790       // Perform a single step derived-to-base conversion.
791       Address Base =
792           GetAddressOfBaseClass(This, Ty->getAsCXXRecordDecl(), &BS, &BS + 1,
793                                 /*NullCheckValue=*/false, SourceLocation());
794       LValue SubLV = MakeAddrLValue(Base, BS->getType());
795 
796       // Recurse onto bases.
797       ExpandTypeFromArgs(BS->getType(), SubLV, AI);
798     }
799     for (auto FD : RExp->Fields) {
800       // FIXME: What are the right qualifiers here?
801       LValue SubLV = EmitLValueForField(LV, FD);
802       ExpandTypeFromArgs(FD->getType(), SubLV, AI);
803     }
804   } else if (isa<ComplexExpansion>(Exp.get())) {
805     auto realValue = *AI++;
806     auto imagValue = *AI++;
807     EmitStoreOfComplex(ComplexPairTy(realValue, imagValue), LV, /*init*/ true);
808   } else {
809     assert(isa<NoExpansion>(Exp.get()));
810     EmitStoreThroughLValue(RValue::get(*AI++), LV);
811   }
812 }
813 
ExpandTypeToArgs(QualType Ty,RValue RV,llvm::FunctionType * IRFuncTy,SmallVectorImpl<llvm::Value * > & IRCallArgs,unsigned & IRCallArgPos)814 void CodeGenFunction::ExpandTypeToArgs(
815     QualType Ty, RValue RV, llvm::FunctionType *IRFuncTy,
816     SmallVectorImpl<llvm::Value *> &IRCallArgs, unsigned &IRCallArgPos) {
817   auto Exp = getTypeExpansion(Ty, getContext());
818   if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) {
819     forConstantArrayExpansion(*this, CAExp, RV.getAggregateAddress(),
820                               [&](Address EltAddr) {
821       RValue EltRV =
822           convertTempToRValue(EltAddr, CAExp->EltTy, SourceLocation());
823       ExpandTypeToArgs(CAExp->EltTy, EltRV, IRFuncTy, IRCallArgs, IRCallArgPos);
824     });
825   } else if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) {
826     Address This = RV.getAggregateAddress();
827     for (const CXXBaseSpecifier *BS : RExp->Bases) {
828       // Perform a single step derived-to-base conversion.
829       Address Base =
830           GetAddressOfBaseClass(This, Ty->getAsCXXRecordDecl(), &BS, &BS + 1,
831                                 /*NullCheckValue=*/false, SourceLocation());
832       RValue BaseRV = RValue::getAggregate(Base);
833 
834       // Recurse onto bases.
835       ExpandTypeToArgs(BS->getType(), BaseRV, IRFuncTy, IRCallArgs,
836                        IRCallArgPos);
837     }
838 
839     LValue LV = MakeAddrLValue(This, Ty);
840     for (auto FD : RExp->Fields) {
841       RValue FldRV = EmitRValueForField(LV, FD, SourceLocation());
842       ExpandTypeToArgs(FD->getType(), FldRV, IRFuncTy, IRCallArgs,
843                        IRCallArgPos);
844     }
845   } else if (isa<ComplexExpansion>(Exp.get())) {
846     ComplexPairTy CV = RV.getComplexVal();
847     IRCallArgs[IRCallArgPos++] = CV.first;
848     IRCallArgs[IRCallArgPos++] = CV.second;
849   } else {
850     assert(isa<NoExpansion>(Exp.get()));
851     assert(RV.isScalar() &&
852            "Unexpected non-scalar rvalue during struct expansion.");
853 
854     // Insert a bitcast as needed.
855     llvm::Value *V = RV.getScalarVal();
856     if (IRCallArgPos < IRFuncTy->getNumParams() &&
857         V->getType() != IRFuncTy->getParamType(IRCallArgPos))
858       V = Builder.CreateBitCast(V, IRFuncTy->getParamType(IRCallArgPos));
859 
860     IRCallArgs[IRCallArgPos++] = V;
861   }
862 }
863 
864 /// Create a temporary allocation for the purposes of coercion.
CreateTempAllocaForCoercion(CodeGenFunction & CGF,llvm::Type * Ty,CharUnits MinAlign)865 static Address CreateTempAllocaForCoercion(CodeGenFunction &CGF, llvm::Type *Ty,
866                                            CharUnits MinAlign) {
867   // Don't use an alignment that's worse than what LLVM would prefer.
868   auto PrefAlign = CGF.CGM.getDataLayout().getPrefTypeAlignment(Ty);
869   CharUnits Align = std::max(MinAlign, CharUnits::fromQuantity(PrefAlign));
870 
871   return CGF.CreateTempAlloca(Ty, Align);
872 }
873 
874 /// EnterStructPointerForCoercedAccess - Given a struct pointer that we are
875 /// accessing some number of bytes out of it, try to gep into the struct to get
876 /// at its inner goodness.  Dive as deep as possible without entering an element
877 /// with an in-memory size smaller than DstSize.
878 static Address
EnterStructPointerForCoercedAccess(Address SrcPtr,llvm::StructType * SrcSTy,uint64_t DstSize,CodeGenFunction & CGF)879 EnterStructPointerForCoercedAccess(Address SrcPtr,
880                                    llvm::StructType *SrcSTy,
881                                    uint64_t DstSize, CodeGenFunction &CGF) {
882   // We can't dive into a zero-element struct.
883   if (SrcSTy->getNumElements() == 0) return SrcPtr;
884 
885   llvm::Type *FirstElt = SrcSTy->getElementType(0);
886 
887   // If the first elt is at least as large as what we're looking for, or if the
888   // first element is the same size as the whole struct, we can enter it. The
889   // comparison must be made on the store size and not the alloca size. Using
890   // the alloca size may overstate the size of the load.
891   uint64_t FirstEltSize =
892     CGF.CGM.getDataLayout().getTypeStoreSize(FirstElt);
893   if (FirstEltSize < DstSize &&
894       FirstEltSize < CGF.CGM.getDataLayout().getTypeStoreSize(SrcSTy))
895     return SrcPtr;
896 
897   // GEP into the first element.
898   SrcPtr = CGF.Builder.CreateStructGEP(SrcPtr, 0, CharUnits(), "coerce.dive");
899 
900   // If the first element is a struct, recurse.
901   llvm::Type *SrcTy = SrcPtr.getElementType();
902   if (llvm::StructType *SrcSTy = dyn_cast<llvm::StructType>(SrcTy))
903     return EnterStructPointerForCoercedAccess(SrcPtr, SrcSTy, DstSize, CGF);
904 
905   return SrcPtr;
906 }
907 
908 /// CoerceIntOrPtrToIntOrPtr - Convert a value Val to the specific Ty where both
909 /// are either integers or pointers.  This does a truncation of the value if it
910 /// is too large or a zero extension if it is too small.
911 ///
912 /// This behaves as if the value were coerced through memory, so on big-endian
913 /// targets the high bits are preserved in a truncation, while little-endian
914 /// targets preserve the low bits.
CoerceIntOrPtrToIntOrPtr(llvm::Value * Val,llvm::Type * Ty,CodeGenFunction & CGF)915 static llvm::Value *CoerceIntOrPtrToIntOrPtr(llvm::Value *Val,
916                                              llvm::Type *Ty,
917                                              CodeGenFunction &CGF) {
918   if (Val->getType() == Ty)
919     return Val;
920 
921   if (isa<llvm::PointerType>(Val->getType())) {
922     // If this is Pointer->Pointer avoid conversion to and from int.
923     if (isa<llvm::PointerType>(Ty))
924       return CGF.Builder.CreateBitCast(Val, Ty, "coerce.val");
925 
926     // Convert the pointer to an integer so we can play with its width.
927     Val = CGF.Builder.CreatePtrToInt(Val, CGF.IntPtrTy, "coerce.val.pi");
928   }
929 
930   llvm::Type *DestIntTy = Ty;
931   if (isa<llvm::PointerType>(DestIntTy))
932     DestIntTy = CGF.IntPtrTy;
933 
934   if (Val->getType() != DestIntTy) {
935     const llvm::DataLayout &DL = CGF.CGM.getDataLayout();
936     if (DL.isBigEndian()) {
937       // Preserve the high bits on big-endian targets.
938       // That is what memory coercion does.
939       uint64_t SrcSize = DL.getTypeSizeInBits(Val->getType());
940       uint64_t DstSize = DL.getTypeSizeInBits(DestIntTy);
941 
942       if (SrcSize > DstSize) {
943         Val = CGF.Builder.CreateLShr(Val, SrcSize - DstSize, "coerce.highbits");
944         Val = CGF.Builder.CreateTrunc(Val, DestIntTy, "coerce.val.ii");
945       } else {
946         Val = CGF.Builder.CreateZExt(Val, DestIntTy, "coerce.val.ii");
947         Val = CGF.Builder.CreateShl(Val, DstSize - SrcSize, "coerce.highbits");
948       }
949     } else {
950       // Little-endian targets preserve the low bits. No shifts required.
951       Val = CGF.Builder.CreateIntCast(Val, DestIntTy, false, "coerce.val.ii");
952     }
953   }
954 
955   if (isa<llvm::PointerType>(Ty))
956     Val = CGF.Builder.CreateIntToPtr(Val, Ty, "coerce.val.ip");
957   return Val;
958 }
959 
960 
961 
962 /// CreateCoercedLoad - Create a load from \arg SrcPtr interpreted as
963 /// a pointer to an object of type \arg Ty, known to be aligned to
964 /// \arg SrcAlign bytes.
965 ///
966 /// This safely handles the case when the src type is smaller than the
967 /// destination type; in this situation the values of bits which not
968 /// present in the src are undefined.
CreateCoercedLoad(Address Src,llvm::Type * Ty,CodeGenFunction & CGF)969 static llvm::Value *CreateCoercedLoad(Address Src, llvm::Type *Ty,
970                                       CodeGenFunction &CGF) {
971   llvm::Type *SrcTy = Src.getElementType();
972 
973   // If SrcTy and Ty are the same, just do a load.
974   if (SrcTy == Ty)
975     return CGF.Builder.CreateLoad(Src);
976 
977   uint64_t DstSize = CGF.CGM.getDataLayout().getTypeAllocSize(Ty);
978 
979   if (llvm::StructType *SrcSTy = dyn_cast<llvm::StructType>(SrcTy)) {
980     Src = EnterStructPointerForCoercedAccess(Src, SrcSTy, DstSize, CGF);
981     SrcTy = Src.getType()->getElementType();
982   }
983 
984   uint64_t SrcSize = CGF.CGM.getDataLayout().getTypeAllocSize(SrcTy);
985 
986   // If the source and destination are integer or pointer types, just do an
987   // extension or truncation to the desired type.
988   if ((isa<llvm::IntegerType>(Ty) || isa<llvm::PointerType>(Ty)) &&
989       (isa<llvm::IntegerType>(SrcTy) || isa<llvm::PointerType>(SrcTy))) {
990     llvm::Value *Load = CGF.Builder.CreateLoad(Src);
991     return CoerceIntOrPtrToIntOrPtr(Load, Ty, CGF);
992   }
993 
994   // If load is legal, just bitcast the src pointer.
995   if (SrcSize >= DstSize) {
996     // Generally SrcSize is never greater than DstSize, since this means we are
997     // losing bits. However, this can happen in cases where the structure has
998     // additional padding, for example due to a user specified alignment.
999     //
1000     // FIXME: Assert that we aren't truncating non-padding bits when have access
1001     // to that information.
1002     Src = CGF.Builder.CreateBitCast(Src, llvm::PointerType::getUnqual(Ty));
1003     return CGF.Builder.CreateLoad(Src);
1004   }
1005 
1006   // Otherwise do coercion through memory. This is stupid, but simple.
1007   Address Tmp = CreateTempAllocaForCoercion(CGF, Ty, Src.getAlignment());
1008   Address Casted = CGF.Builder.CreateBitCast(Tmp, CGF.Int8PtrTy);
1009   Address SrcCasted = CGF.Builder.CreateBitCast(Src, CGF.Int8PtrTy);
1010   CGF.Builder.CreateMemCpy(Casted, SrcCasted,
1011       llvm::ConstantInt::get(CGF.IntPtrTy, SrcSize),
1012       false);
1013   return CGF.Builder.CreateLoad(Tmp);
1014 }
1015 
1016 // Function to store a first-class aggregate into memory.  We prefer to
1017 // store the elements rather than the aggregate to be more friendly to
1018 // fast-isel.
1019 // FIXME: Do we need to recurse here?
BuildAggStore(CodeGenFunction & CGF,llvm::Value * Val,Address Dest,bool DestIsVolatile)1020 static void BuildAggStore(CodeGenFunction &CGF, llvm::Value *Val,
1021                           Address Dest, bool DestIsVolatile) {
1022   // Prefer scalar stores to first-class aggregate stores.
1023   if (llvm::StructType *STy =
1024         dyn_cast<llvm::StructType>(Val->getType())) {
1025     const llvm::StructLayout *Layout =
1026       CGF.CGM.getDataLayout().getStructLayout(STy);
1027 
1028     for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
1029       auto EltOffset = CharUnits::fromQuantity(Layout->getElementOffset(i));
1030       Address EltPtr = CGF.Builder.CreateStructGEP(Dest, i, EltOffset);
1031       llvm::Value *Elt = CGF.Builder.CreateExtractValue(Val, i);
1032       CGF.Builder.CreateStore(Elt, EltPtr, DestIsVolatile);
1033     }
1034   } else {
1035     CGF.Builder.CreateStore(Val, Dest, DestIsVolatile);
1036   }
1037 }
1038 
1039 /// CreateCoercedStore - Create a store to \arg DstPtr from \arg Src,
1040 /// where the source and destination may have different types.  The
1041 /// destination is known to be aligned to \arg DstAlign bytes.
1042 ///
1043 /// This safely handles the case when the src type is larger than the
1044 /// destination type; the upper bits of the src will be lost.
CreateCoercedStore(llvm::Value * Src,Address Dst,bool DstIsVolatile,CodeGenFunction & CGF)1045 static void CreateCoercedStore(llvm::Value *Src,
1046                                Address Dst,
1047                                bool DstIsVolatile,
1048                                CodeGenFunction &CGF) {
1049   llvm::Type *SrcTy = Src->getType();
1050   llvm::Type *DstTy = Dst.getType()->getElementType();
1051   if (SrcTy == DstTy) {
1052     CGF.Builder.CreateStore(Src, Dst, DstIsVolatile);
1053     return;
1054   }
1055 
1056   uint64_t SrcSize = CGF.CGM.getDataLayout().getTypeAllocSize(SrcTy);
1057 
1058   if (llvm::StructType *DstSTy = dyn_cast<llvm::StructType>(DstTy)) {
1059     Dst = EnterStructPointerForCoercedAccess(Dst, DstSTy, SrcSize, CGF);
1060     DstTy = Dst.getType()->getElementType();
1061   }
1062 
1063   // If the source and destination are integer or pointer types, just do an
1064   // extension or truncation to the desired type.
1065   if ((isa<llvm::IntegerType>(SrcTy) || isa<llvm::PointerType>(SrcTy)) &&
1066       (isa<llvm::IntegerType>(DstTy) || isa<llvm::PointerType>(DstTy))) {
1067     Src = CoerceIntOrPtrToIntOrPtr(Src, DstTy, CGF);
1068     CGF.Builder.CreateStore(Src, Dst, DstIsVolatile);
1069     return;
1070   }
1071 
1072   uint64_t DstSize = CGF.CGM.getDataLayout().getTypeAllocSize(DstTy);
1073 
1074   // If store is legal, just bitcast the src pointer.
1075   if (SrcSize <= DstSize) {
1076     Dst = CGF.Builder.CreateBitCast(Dst, llvm::PointerType::getUnqual(SrcTy));
1077     BuildAggStore(CGF, Src, Dst, DstIsVolatile);
1078   } else {
1079     // Otherwise do coercion through memory. This is stupid, but
1080     // simple.
1081 
1082     // Generally SrcSize is never greater than DstSize, since this means we are
1083     // losing bits. However, this can happen in cases where the structure has
1084     // additional padding, for example due to a user specified alignment.
1085     //
1086     // FIXME: Assert that we aren't truncating non-padding bits when have access
1087     // to that information.
1088     Address Tmp = CreateTempAllocaForCoercion(CGF, SrcTy, Dst.getAlignment());
1089     CGF.Builder.CreateStore(Src, Tmp);
1090     Address Casted = CGF.Builder.CreateBitCast(Tmp, CGF.Int8PtrTy);
1091     Address DstCasted = CGF.Builder.CreateBitCast(Dst, CGF.Int8PtrTy);
1092     CGF.Builder.CreateMemCpy(DstCasted, Casted,
1093         llvm::ConstantInt::get(CGF.IntPtrTy, DstSize),
1094         false);
1095   }
1096 }
1097 
emitAddressAtOffset(CodeGenFunction & CGF,Address addr,const ABIArgInfo & info)1098 static Address emitAddressAtOffset(CodeGenFunction &CGF, Address addr,
1099                                    const ABIArgInfo &info) {
1100   if (unsigned offset = info.getDirectOffset()) {
1101     addr = CGF.Builder.CreateElementBitCast(addr, CGF.Int8Ty);
1102     addr = CGF.Builder.CreateConstInBoundsByteGEP(addr,
1103                                              CharUnits::fromQuantity(offset));
1104     addr = CGF.Builder.CreateElementBitCast(addr, info.getCoerceToType());
1105   }
1106   return addr;
1107 }
1108 
1109 namespace {
1110 
1111 /// Encapsulates information about the way function arguments from
1112 /// CGFunctionInfo should be passed to actual LLVM IR function.
1113 class ClangToLLVMArgMapping {
1114   static const unsigned InvalidIndex = ~0U;
1115   unsigned InallocaArgNo;
1116   unsigned SRetArgNo;
1117   unsigned TotalIRArgs;
1118 
1119   /// Arguments of LLVM IR function corresponding to single Clang argument.
1120   struct IRArgs {
1121     unsigned PaddingArgIndex;
1122     // Argument is expanded to IR arguments at positions
1123     // [FirstArgIndex, FirstArgIndex + NumberOfArgs).
1124     unsigned FirstArgIndex;
1125     unsigned NumberOfArgs;
1126 
IRArgs__anond5d483060411::ClangToLLVMArgMapping::IRArgs1127     IRArgs()
1128         : PaddingArgIndex(InvalidIndex), FirstArgIndex(InvalidIndex),
1129           NumberOfArgs(0) {}
1130   };
1131 
1132   SmallVector<IRArgs, 8> ArgInfo;
1133 
1134 public:
ClangToLLVMArgMapping(const ASTContext & Context,const CGFunctionInfo & FI,bool OnlyRequiredArgs=false)1135   ClangToLLVMArgMapping(const ASTContext &Context, const CGFunctionInfo &FI,
1136                         bool OnlyRequiredArgs = false)
1137       : InallocaArgNo(InvalidIndex), SRetArgNo(InvalidIndex), TotalIRArgs(0),
1138         ArgInfo(OnlyRequiredArgs ? FI.getNumRequiredArgs() : FI.arg_size()) {
1139     construct(Context, FI, OnlyRequiredArgs);
1140   }
1141 
hasInallocaArg() const1142   bool hasInallocaArg() const { return InallocaArgNo != InvalidIndex; }
getInallocaArgNo() const1143   unsigned getInallocaArgNo() const {
1144     assert(hasInallocaArg());
1145     return InallocaArgNo;
1146   }
1147 
hasSRetArg() const1148   bool hasSRetArg() const { return SRetArgNo != InvalidIndex; }
getSRetArgNo() const1149   unsigned getSRetArgNo() const {
1150     assert(hasSRetArg());
1151     return SRetArgNo;
1152   }
1153 
totalIRArgs() const1154   unsigned totalIRArgs() const { return TotalIRArgs; }
1155 
hasPaddingArg(unsigned ArgNo) const1156   bool hasPaddingArg(unsigned ArgNo) const {
1157     assert(ArgNo < ArgInfo.size());
1158     return ArgInfo[ArgNo].PaddingArgIndex != InvalidIndex;
1159   }
getPaddingArgNo(unsigned ArgNo) const1160   unsigned getPaddingArgNo(unsigned ArgNo) const {
1161     assert(hasPaddingArg(ArgNo));
1162     return ArgInfo[ArgNo].PaddingArgIndex;
1163   }
1164 
1165   /// Returns index of first IR argument corresponding to ArgNo, and their
1166   /// quantity.
getIRArgs(unsigned ArgNo) const1167   std::pair<unsigned, unsigned> getIRArgs(unsigned ArgNo) const {
1168     assert(ArgNo < ArgInfo.size());
1169     return std::make_pair(ArgInfo[ArgNo].FirstArgIndex,
1170                           ArgInfo[ArgNo].NumberOfArgs);
1171   }
1172 
1173 private:
1174   void construct(const ASTContext &Context, const CGFunctionInfo &FI,
1175                  bool OnlyRequiredArgs);
1176 };
1177 
construct(const ASTContext & Context,const CGFunctionInfo & FI,bool OnlyRequiredArgs)1178 void ClangToLLVMArgMapping::construct(const ASTContext &Context,
1179                                       const CGFunctionInfo &FI,
1180                                       bool OnlyRequiredArgs) {
1181   unsigned IRArgNo = 0;
1182   bool SwapThisWithSRet = false;
1183   const ABIArgInfo &RetAI = FI.getReturnInfo();
1184 
1185   if (RetAI.getKind() == ABIArgInfo::Indirect) {
1186     SwapThisWithSRet = RetAI.isSRetAfterThis();
1187     SRetArgNo = SwapThisWithSRet ? 1 : IRArgNo++;
1188   }
1189 
1190   unsigned ArgNo = 0;
1191   unsigned NumArgs = OnlyRequiredArgs ? FI.getNumRequiredArgs() : FI.arg_size();
1192   for (CGFunctionInfo::const_arg_iterator I = FI.arg_begin(); ArgNo < NumArgs;
1193        ++I, ++ArgNo) {
1194     assert(I != FI.arg_end());
1195     QualType ArgType = I->type;
1196     const ABIArgInfo &AI = I->info;
1197     // Collect data about IR arguments corresponding to Clang argument ArgNo.
1198     auto &IRArgs = ArgInfo[ArgNo];
1199 
1200     if (AI.getPaddingType())
1201       IRArgs.PaddingArgIndex = IRArgNo++;
1202 
1203     switch (AI.getKind()) {
1204     case ABIArgInfo::Extend:
1205     case ABIArgInfo::Direct: {
1206       // FIXME: handle sseregparm someday...
1207       llvm::StructType *STy = dyn_cast<llvm::StructType>(AI.getCoerceToType());
1208       if (AI.isDirect() && AI.getCanBeFlattened() && STy) {
1209         IRArgs.NumberOfArgs = STy->getNumElements();
1210       } else {
1211         IRArgs.NumberOfArgs = 1;
1212       }
1213       break;
1214     }
1215     case ABIArgInfo::Indirect:
1216       IRArgs.NumberOfArgs = 1;
1217       break;
1218     case ABIArgInfo::Ignore:
1219     case ABIArgInfo::InAlloca:
1220       // ignore and inalloca doesn't have matching LLVM parameters.
1221       IRArgs.NumberOfArgs = 0;
1222       break;
1223     case ABIArgInfo::Expand: {
1224       IRArgs.NumberOfArgs = getExpansionSize(ArgType, Context);
1225       break;
1226     }
1227     }
1228 
1229     if (IRArgs.NumberOfArgs > 0) {
1230       IRArgs.FirstArgIndex = IRArgNo;
1231       IRArgNo += IRArgs.NumberOfArgs;
1232     }
1233 
1234     // Skip over the sret parameter when it comes second.  We already handled it
1235     // above.
1236     if (IRArgNo == 1 && SwapThisWithSRet)
1237       IRArgNo++;
1238   }
1239   assert(ArgNo == ArgInfo.size());
1240 
1241   if (FI.usesInAlloca())
1242     InallocaArgNo = IRArgNo++;
1243 
1244   TotalIRArgs = IRArgNo;
1245 }
1246 }  // namespace
1247 
1248 /***/
1249 
ReturnTypeUsesSRet(const CGFunctionInfo & FI)1250 bool CodeGenModule::ReturnTypeUsesSRet(const CGFunctionInfo &FI) {
1251   return FI.getReturnInfo().isIndirect();
1252 }
1253 
ReturnSlotInterferesWithArgs(const CGFunctionInfo & FI)1254 bool CodeGenModule::ReturnSlotInterferesWithArgs(const CGFunctionInfo &FI) {
1255   return ReturnTypeUsesSRet(FI) &&
1256          getTargetCodeGenInfo().doesReturnSlotInterfereWithArgs();
1257 }
1258 
ReturnTypeUsesFPRet(QualType ResultType)1259 bool CodeGenModule::ReturnTypeUsesFPRet(QualType ResultType) {
1260   if (const BuiltinType *BT = ResultType->getAs<BuiltinType>()) {
1261     switch (BT->getKind()) {
1262     default:
1263       return false;
1264     case BuiltinType::Float:
1265       return getTarget().useObjCFPRetForRealType(TargetInfo::Float);
1266     case BuiltinType::Double:
1267       return getTarget().useObjCFPRetForRealType(TargetInfo::Double);
1268     case BuiltinType::LongDouble:
1269       return getTarget().useObjCFPRetForRealType(TargetInfo::LongDouble);
1270     }
1271   }
1272 
1273   return false;
1274 }
1275 
ReturnTypeUsesFP2Ret(QualType ResultType)1276 bool CodeGenModule::ReturnTypeUsesFP2Ret(QualType ResultType) {
1277   if (const ComplexType *CT = ResultType->getAs<ComplexType>()) {
1278     if (const BuiltinType *BT = CT->getElementType()->getAs<BuiltinType>()) {
1279       if (BT->getKind() == BuiltinType::LongDouble)
1280         return getTarget().useObjCFP2RetForComplexLongDouble();
1281     }
1282   }
1283 
1284   return false;
1285 }
1286 
GetFunctionType(GlobalDecl GD)1287 llvm::FunctionType *CodeGenTypes::GetFunctionType(GlobalDecl GD) {
1288   const CGFunctionInfo &FI = arrangeGlobalDeclaration(GD);
1289   return GetFunctionType(FI);
1290 }
1291 
1292 llvm::FunctionType *
GetFunctionType(const CGFunctionInfo & FI)1293 CodeGenTypes::GetFunctionType(const CGFunctionInfo &FI) {
1294 
1295   bool Inserted = FunctionsBeingProcessed.insert(&FI).second;
1296   (void)Inserted;
1297   assert(Inserted && "Recursively being processed?");
1298 
1299   llvm::Type *resultType = nullptr;
1300   const ABIArgInfo &retAI = FI.getReturnInfo();
1301   switch (retAI.getKind()) {
1302   case ABIArgInfo::Expand:
1303     llvm_unreachable("Invalid ABI kind for return argument");
1304 
1305   case ABIArgInfo::Extend:
1306   case ABIArgInfo::Direct:
1307     resultType = retAI.getCoerceToType();
1308     break;
1309 
1310   case ABIArgInfo::InAlloca:
1311     if (retAI.getInAllocaSRet()) {
1312       // sret things on win32 aren't void, they return the sret pointer.
1313       QualType ret = FI.getReturnType();
1314       llvm::Type *ty = ConvertType(ret);
1315       unsigned addressSpace = Context.getTargetAddressSpace(ret);
1316       resultType = llvm::PointerType::get(ty, addressSpace);
1317     } else {
1318       resultType = llvm::Type::getVoidTy(getLLVMContext());
1319     }
1320     break;
1321 
1322   case ABIArgInfo::Indirect:
1323   case ABIArgInfo::Ignore:
1324     resultType = llvm::Type::getVoidTy(getLLVMContext());
1325     break;
1326   }
1327 
1328   ClangToLLVMArgMapping IRFunctionArgs(getContext(), FI, true);
1329   SmallVector<llvm::Type*, 8> ArgTypes(IRFunctionArgs.totalIRArgs());
1330 
1331   // Add type for sret argument.
1332   if (IRFunctionArgs.hasSRetArg()) {
1333     QualType Ret = FI.getReturnType();
1334     llvm::Type *Ty = ConvertType(Ret);
1335     unsigned AddressSpace = Context.getTargetAddressSpace(Ret);
1336     ArgTypes[IRFunctionArgs.getSRetArgNo()] =
1337         llvm::PointerType::get(Ty, AddressSpace);
1338   }
1339 
1340   // Add type for inalloca argument.
1341   if (IRFunctionArgs.hasInallocaArg()) {
1342     auto ArgStruct = FI.getArgStruct();
1343     assert(ArgStruct);
1344     ArgTypes[IRFunctionArgs.getInallocaArgNo()] = ArgStruct->getPointerTo();
1345   }
1346 
1347   // Add in all of the required arguments.
1348   unsigned ArgNo = 0;
1349   CGFunctionInfo::const_arg_iterator it = FI.arg_begin(),
1350                                      ie = it + FI.getNumRequiredArgs();
1351   for (; it != ie; ++it, ++ArgNo) {
1352     const ABIArgInfo &ArgInfo = it->info;
1353 
1354     // Insert a padding type to ensure proper alignment.
1355     if (IRFunctionArgs.hasPaddingArg(ArgNo))
1356       ArgTypes[IRFunctionArgs.getPaddingArgNo(ArgNo)] =
1357           ArgInfo.getPaddingType();
1358 
1359     unsigned FirstIRArg, NumIRArgs;
1360     std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo);
1361 
1362     switch (ArgInfo.getKind()) {
1363     case ABIArgInfo::Ignore:
1364     case ABIArgInfo::InAlloca:
1365       assert(NumIRArgs == 0);
1366       break;
1367 
1368     case ABIArgInfo::Indirect: {
1369       assert(NumIRArgs == 1);
1370       // indirect arguments are always on the stack, which is addr space #0.
1371       llvm::Type *LTy = ConvertTypeForMem(it->type);
1372       ArgTypes[FirstIRArg] = LTy->getPointerTo();
1373       break;
1374     }
1375 
1376     case ABIArgInfo::Extend:
1377     case ABIArgInfo::Direct: {
1378       // Fast-isel and the optimizer generally like scalar values better than
1379       // FCAs, so we flatten them if this is safe to do for this argument.
1380       llvm::Type *argType = ArgInfo.getCoerceToType();
1381       llvm::StructType *st = dyn_cast<llvm::StructType>(argType);
1382       if (st && ArgInfo.isDirect() && ArgInfo.getCanBeFlattened()) {
1383         assert(NumIRArgs == st->getNumElements());
1384         for (unsigned i = 0, e = st->getNumElements(); i != e; ++i)
1385           ArgTypes[FirstIRArg + i] = st->getElementType(i);
1386       } else {
1387         assert(NumIRArgs == 1);
1388         ArgTypes[FirstIRArg] = argType;
1389       }
1390       break;
1391     }
1392 
1393     case ABIArgInfo::Expand:
1394       auto ArgTypesIter = ArgTypes.begin() + FirstIRArg;
1395       getExpandedTypes(it->type, ArgTypesIter);
1396       assert(ArgTypesIter == ArgTypes.begin() + FirstIRArg + NumIRArgs);
1397       break;
1398     }
1399   }
1400 
1401   bool Erased = FunctionsBeingProcessed.erase(&FI); (void)Erased;
1402   assert(Erased && "Not in set?");
1403 
1404   return llvm::FunctionType::get(resultType, ArgTypes, FI.isVariadic());
1405 }
1406 
GetFunctionTypeForVTable(GlobalDecl GD)1407 llvm::Type *CodeGenTypes::GetFunctionTypeForVTable(GlobalDecl GD) {
1408   const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl());
1409   const FunctionProtoType *FPT = MD->getType()->getAs<FunctionProtoType>();
1410 
1411   if (!isFuncTypeConvertible(FPT))
1412     return llvm::StructType::get(getLLVMContext());
1413 
1414   const CGFunctionInfo *Info;
1415   if (isa<CXXDestructorDecl>(MD))
1416     Info =
1417         &arrangeCXXStructorDeclaration(MD, getFromDtorType(GD.getDtorType()));
1418   else
1419     Info = &arrangeCXXMethodDeclaration(MD);
1420   return GetFunctionType(*Info);
1421 }
1422 
AddAttributesFromFunctionProtoType(ASTContext & Ctx,llvm::AttrBuilder & FuncAttrs,const FunctionProtoType * FPT)1423 static void AddAttributesFromFunctionProtoType(ASTContext &Ctx,
1424                                                llvm::AttrBuilder &FuncAttrs,
1425                                                const FunctionProtoType *FPT) {
1426   if (!FPT)
1427     return;
1428 
1429   if (!isUnresolvedExceptionSpec(FPT->getExceptionSpecType()) &&
1430       FPT->isNothrow(Ctx))
1431     FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
1432 }
1433 
ConstructAttributeList(const CGFunctionInfo & FI,CGCalleeInfo CalleeInfo,AttributeListType & PAL,unsigned & CallingConv,bool AttrOnCallSite)1434 void CodeGenModule::ConstructAttributeList(const CGFunctionInfo &FI,
1435                                            CGCalleeInfo CalleeInfo,
1436                                            AttributeListType &PAL,
1437                                            unsigned &CallingConv,
1438                                            bool AttrOnCallSite) {
1439   llvm::AttrBuilder FuncAttrs;
1440   llvm::AttrBuilder RetAttrs;
1441   bool HasOptnone = false;
1442 
1443   CallingConv = FI.getEffectiveCallingConvention();
1444 
1445   if (FI.isNoReturn())
1446     FuncAttrs.addAttribute(llvm::Attribute::NoReturn);
1447 
1448   // If we have information about the function prototype, we can learn
1449   // attributes form there.
1450   AddAttributesFromFunctionProtoType(getContext(), FuncAttrs,
1451                                      CalleeInfo.getCalleeFunctionProtoType());
1452 
1453   const Decl *TargetDecl = CalleeInfo.getCalleeDecl();
1454 
1455   // FIXME: handle sseregparm someday...
1456   if (TargetDecl) {
1457     if (TargetDecl->hasAttr<ReturnsTwiceAttr>())
1458       FuncAttrs.addAttribute(llvm::Attribute::ReturnsTwice);
1459     if (TargetDecl->hasAttr<NoThrowAttr>())
1460       FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
1461     if (TargetDecl->hasAttr<NoReturnAttr>())
1462       FuncAttrs.addAttribute(llvm::Attribute::NoReturn);
1463     if (TargetDecl->hasAttr<NoDuplicateAttr>())
1464       FuncAttrs.addAttribute(llvm::Attribute::NoDuplicate);
1465 
1466     if (const FunctionDecl *Fn = dyn_cast<FunctionDecl>(TargetDecl)) {
1467       AddAttributesFromFunctionProtoType(
1468           getContext(), FuncAttrs, Fn->getType()->getAs<FunctionProtoType>());
1469       // Don't use [[noreturn]] or _Noreturn for a call to a virtual function.
1470       // These attributes are not inherited by overloads.
1471       const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Fn);
1472       if (Fn->isNoReturn() && !(AttrOnCallSite && MD && MD->isVirtual()))
1473         FuncAttrs.addAttribute(llvm::Attribute::NoReturn);
1474     }
1475 
1476     // 'const', 'pure' and 'noalias' attributed functions are also nounwind.
1477     if (TargetDecl->hasAttr<ConstAttr>()) {
1478       FuncAttrs.addAttribute(llvm::Attribute::ReadNone);
1479       FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
1480     } else if (TargetDecl->hasAttr<PureAttr>()) {
1481       FuncAttrs.addAttribute(llvm::Attribute::ReadOnly);
1482       FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
1483     } else if (TargetDecl->hasAttr<NoAliasAttr>()) {
1484       FuncAttrs.addAttribute(llvm::Attribute::ArgMemOnly);
1485       FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
1486     }
1487     if (TargetDecl->hasAttr<RestrictAttr>())
1488       RetAttrs.addAttribute(llvm::Attribute::NoAlias);
1489     if (TargetDecl->hasAttr<ReturnsNonNullAttr>())
1490       RetAttrs.addAttribute(llvm::Attribute::NonNull);
1491 
1492     HasOptnone = TargetDecl->hasAttr<OptimizeNoneAttr>();
1493   }
1494 
1495   // OptimizeNoneAttr takes precedence over -Os or -Oz. No warning needed.
1496   if (!HasOptnone) {
1497     if (CodeGenOpts.OptimizeSize)
1498       FuncAttrs.addAttribute(llvm::Attribute::OptimizeForSize);
1499     if (CodeGenOpts.OptimizeSize == 2)
1500       FuncAttrs.addAttribute(llvm::Attribute::MinSize);
1501   }
1502 
1503   if (CodeGenOpts.DisableRedZone)
1504     FuncAttrs.addAttribute(llvm::Attribute::NoRedZone);
1505   if (CodeGenOpts.NoImplicitFloat)
1506     FuncAttrs.addAttribute(llvm::Attribute::NoImplicitFloat);
1507   if (CodeGenOpts.EnableSegmentedStacks &&
1508       !(TargetDecl && TargetDecl->hasAttr<NoSplitStackAttr>()))
1509     FuncAttrs.addAttribute("split-stack");
1510 
1511   if (AttrOnCallSite) {
1512     // Attributes that should go on the call site only.
1513     if (!CodeGenOpts.SimplifyLibCalls)
1514       FuncAttrs.addAttribute(llvm::Attribute::NoBuiltin);
1515     if (!CodeGenOpts.TrapFuncName.empty())
1516       FuncAttrs.addAttribute("trap-func-name", CodeGenOpts.TrapFuncName);
1517   } else {
1518     // Attributes that should go on the function, but not the call site.
1519     if (!CodeGenOpts.DisableFPElim) {
1520       FuncAttrs.addAttribute("no-frame-pointer-elim", "false");
1521     } else if (CodeGenOpts.OmitLeafFramePointer) {
1522       FuncAttrs.addAttribute("no-frame-pointer-elim", "false");
1523       FuncAttrs.addAttribute("no-frame-pointer-elim-non-leaf");
1524     } else {
1525       FuncAttrs.addAttribute("no-frame-pointer-elim", "true");
1526       FuncAttrs.addAttribute("no-frame-pointer-elim-non-leaf");
1527     }
1528 
1529     bool DisableTailCalls =
1530         CodeGenOpts.DisableTailCalls ||
1531         (TargetDecl && TargetDecl->hasAttr<DisableTailCallsAttr>());
1532     FuncAttrs.addAttribute("disable-tail-calls",
1533                            llvm::toStringRef(DisableTailCalls));
1534 
1535     FuncAttrs.addAttribute("less-precise-fpmad",
1536                            llvm::toStringRef(CodeGenOpts.LessPreciseFPMAD));
1537     FuncAttrs.addAttribute("no-infs-fp-math",
1538                            llvm::toStringRef(CodeGenOpts.NoInfsFPMath));
1539     FuncAttrs.addAttribute("no-nans-fp-math",
1540                            llvm::toStringRef(CodeGenOpts.NoNaNsFPMath));
1541     FuncAttrs.addAttribute("unsafe-fp-math",
1542                            llvm::toStringRef(CodeGenOpts.UnsafeFPMath));
1543     FuncAttrs.addAttribute("use-soft-float",
1544                            llvm::toStringRef(CodeGenOpts.SoftFloat));
1545     FuncAttrs.addAttribute("stack-protector-buffer-size",
1546                            llvm::utostr(CodeGenOpts.SSPBufferSize));
1547 
1548     if (CodeGenOpts.StackRealignment)
1549       FuncAttrs.addAttribute("stackrealign");
1550 
1551     // Add target-cpu and target-features attributes to functions. If
1552     // we have a decl for the function and it has a target attribute then
1553     // parse that and add it to the feature set.
1554     StringRef TargetCPU = getTarget().getTargetOpts().CPU;
1555     const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(TargetDecl);
1556     if (FD && FD->hasAttr<TargetAttr>()) {
1557       llvm::StringMap<bool> FeatureMap;
1558       getFunctionFeatureMap(FeatureMap, FD);
1559 
1560       // Produce the canonical string for this set of features.
1561       std::vector<std::string> Features;
1562       for (llvm::StringMap<bool>::const_iterator it = FeatureMap.begin(),
1563                                                  ie = FeatureMap.end();
1564            it != ie; ++it)
1565         Features.push_back((it->second ? "+" : "-") + it->first().str());
1566 
1567       // Now add the target-cpu and target-features to the function.
1568       // While we populated the feature map above, we still need to
1569       // get and parse the target attribute so we can get the cpu for
1570       // the function.
1571       const auto *TD = FD->getAttr<TargetAttr>();
1572       TargetAttr::ParsedTargetAttr ParsedAttr = TD->parse();
1573       if (ParsedAttr.second != "")
1574         TargetCPU = ParsedAttr.second;
1575       if (TargetCPU != "")
1576         FuncAttrs.addAttribute("target-cpu", TargetCPU);
1577       if (!Features.empty()) {
1578         std::sort(Features.begin(), Features.end());
1579         FuncAttrs.addAttribute(
1580             "target-features",
1581             llvm::join(Features.begin(), Features.end(), ","));
1582       }
1583     } else {
1584       // Otherwise just add the existing target cpu and target features to the
1585       // function.
1586       std::vector<std::string> &Features = getTarget().getTargetOpts().Features;
1587       if (TargetCPU != "")
1588         FuncAttrs.addAttribute("target-cpu", TargetCPU);
1589       if (!Features.empty()) {
1590         std::sort(Features.begin(), Features.end());
1591         FuncAttrs.addAttribute(
1592             "target-features",
1593             llvm::join(Features.begin(), Features.end(), ","));
1594       }
1595     }
1596   }
1597 
1598   ClangToLLVMArgMapping IRFunctionArgs(getContext(), FI);
1599 
1600   QualType RetTy = FI.getReturnType();
1601   const ABIArgInfo &RetAI = FI.getReturnInfo();
1602   switch (RetAI.getKind()) {
1603   case ABIArgInfo::Extend:
1604     if (RetTy->hasSignedIntegerRepresentation())
1605       RetAttrs.addAttribute(llvm::Attribute::SExt);
1606     else if (RetTy->hasUnsignedIntegerRepresentation())
1607       RetAttrs.addAttribute(llvm::Attribute::ZExt);
1608     // FALL THROUGH
1609   case ABIArgInfo::Direct:
1610     if (RetAI.getInReg())
1611       RetAttrs.addAttribute(llvm::Attribute::InReg);
1612     break;
1613   case ABIArgInfo::Ignore:
1614     break;
1615 
1616   case ABIArgInfo::InAlloca:
1617   case ABIArgInfo::Indirect: {
1618     // inalloca and sret disable readnone and readonly
1619     FuncAttrs.removeAttribute(llvm::Attribute::ReadOnly)
1620       .removeAttribute(llvm::Attribute::ReadNone);
1621     break;
1622   }
1623 
1624   case ABIArgInfo::Expand:
1625     llvm_unreachable("Invalid ABI kind for return argument");
1626   }
1627 
1628   if (const auto *RefTy = RetTy->getAs<ReferenceType>()) {
1629     QualType PTy = RefTy->getPointeeType();
1630     if (!PTy->isIncompleteType() && PTy->isConstantSizeType())
1631       RetAttrs.addDereferenceableAttr(getContext().getTypeSizeInChars(PTy)
1632                                         .getQuantity());
1633     else if (getContext().getTargetAddressSpace(PTy) == 0)
1634       RetAttrs.addAttribute(llvm::Attribute::NonNull);
1635   }
1636 
1637   // Attach return attributes.
1638   if (RetAttrs.hasAttributes()) {
1639     PAL.push_back(llvm::AttributeSet::get(
1640         getLLVMContext(), llvm::AttributeSet::ReturnIndex, RetAttrs));
1641   }
1642 
1643   // Attach attributes to sret.
1644   if (IRFunctionArgs.hasSRetArg()) {
1645     llvm::AttrBuilder SRETAttrs;
1646     SRETAttrs.addAttribute(llvm::Attribute::StructRet);
1647     if (RetAI.getInReg())
1648       SRETAttrs.addAttribute(llvm::Attribute::InReg);
1649     PAL.push_back(llvm::AttributeSet::get(
1650         getLLVMContext(), IRFunctionArgs.getSRetArgNo() + 1, SRETAttrs));
1651   }
1652 
1653   // Attach attributes to inalloca argument.
1654   if (IRFunctionArgs.hasInallocaArg()) {
1655     llvm::AttrBuilder Attrs;
1656     Attrs.addAttribute(llvm::Attribute::InAlloca);
1657     PAL.push_back(llvm::AttributeSet::get(
1658         getLLVMContext(), IRFunctionArgs.getInallocaArgNo() + 1, Attrs));
1659   }
1660 
1661   unsigned ArgNo = 0;
1662   for (CGFunctionInfo::const_arg_iterator I = FI.arg_begin(),
1663                                           E = FI.arg_end();
1664        I != E; ++I, ++ArgNo) {
1665     QualType ParamType = I->type;
1666     const ABIArgInfo &AI = I->info;
1667     llvm::AttrBuilder Attrs;
1668 
1669     // Add attribute for padding argument, if necessary.
1670     if (IRFunctionArgs.hasPaddingArg(ArgNo)) {
1671       if (AI.getPaddingInReg())
1672         PAL.push_back(llvm::AttributeSet::get(
1673             getLLVMContext(), IRFunctionArgs.getPaddingArgNo(ArgNo) + 1,
1674             llvm::Attribute::InReg));
1675     }
1676 
1677     // 'restrict' -> 'noalias' is done in EmitFunctionProlog when we
1678     // have the corresponding parameter variable.  It doesn't make
1679     // sense to do it here because parameters are so messed up.
1680     switch (AI.getKind()) {
1681     case ABIArgInfo::Extend:
1682       if (ParamType->isSignedIntegerOrEnumerationType())
1683         Attrs.addAttribute(llvm::Attribute::SExt);
1684       else if (ParamType->isUnsignedIntegerOrEnumerationType()) {
1685         if (getTypes().getABIInfo().shouldSignExtUnsignedType(ParamType))
1686           Attrs.addAttribute(llvm::Attribute::SExt);
1687         else
1688           Attrs.addAttribute(llvm::Attribute::ZExt);
1689       }
1690       // FALL THROUGH
1691     case ABIArgInfo::Direct:
1692       if (ArgNo == 0 && FI.isChainCall())
1693         Attrs.addAttribute(llvm::Attribute::Nest);
1694       else if (AI.getInReg())
1695         Attrs.addAttribute(llvm::Attribute::InReg);
1696       break;
1697 
1698     case ABIArgInfo::Indirect: {
1699       if (AI.getInReg())
1700         Attrs.addAttribute(llvm::Attribute::InReg);
1701 
1702       if (AI.getIndirectByVal())
1703         Attrs.addAttribute(llvm::Attribute::ByVal);
1704 
1705       CharUnits Align = AI.getIndirectAlign();
1706 
1707       // In a byval argument, it is important that the required
1708       // alignment of the type is honored, as LLVM might be creating a
1709       // *new* stack object, and needs to know what alignment to give
1710       // it. (Sometimes it can deduce a sensible alignment on its own,
1711       // but not if clang decides it must emit a packed struct, or the
1712       // user specifies increased alignment requirements.)
1713       //
1714       // This is different from indirect *not* byval, where the object
1715       // exists already, and the align attribute is purely
1716       // informative.
1717       assert(!Align.isZero());
1718 
1719       // For now, only add this when we have a byval argument.
1720       // TODO: be less lazy about updating test cases.
1721       if (AI.getIndirectByVal())
1722         Attrs.addAlignmentAttr(Align.getQuantity());
1723 
1724       // byval disables readnone and readonly.
1725       FuncAttrs.removeAttribute(llvm::Attribute::ReadOnly)
1726         .removeAttribute(llvm::Attribute::ReadNone);
1727       break;
1728     }
1729     case ABIArgInfo::Ignore:
1730     case ABIArgInfo::Expand:
1731       continue;
1732 
1733     case ABIArgInfo::InAlloca:
1734       // inalloca disables readnone and readonly.
1735       FuncAttrs.removeAttribute(llvm::Attribute::ReadOnly)
1736           .removeAttribute(llvm::Attribute::ReadNone);
1737       continue;
1738     }
1739 
1740     if (const auto *RefTy = ParamType->getAs<ReferenceType>()) {
1741       QualType PTy = RefTy->getPointeeType();
1742       if (!PTy->isIncompleteType() && PTy->isConstantSizeType())
1743         Attrs.addDereferenceableAttr(getContext().getTypeSizeInChars(PTy)
1744                                        .getQuantity());
1745       else if (getContext().getTargetAddressSpace(PTy) == 0)
1746         Attrs.addAttribute(llvm::Attribute::NonNull);
1747     }
1748 
1749     if (Attrs.hasAttributes()) {
1750       unsigned FirstIRArg, NumIRArgs;
1751       std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo);
1752       for (unsigned i = 0; i < NumIRArgs; i++)
1753         PAL.push_back(llvm::AttributeSet::get(getLLVMContext(),
1754                                               FirstIRArg + i + 1, Attrs));
1755     }
1756   }
1757   assert(ArgNo == FI.arg_size());
1758 
1759   if (FuncAttrs.hasAttributes())
1760     PAL.push_back(llvm::
1761                   AttributeSet::get(getLLVMContext(),
1762                                     llvm::AttributeSet::FunctionIndex,
1763                                     FuncAttrs));
1764 }
1765 
1766 /// An argument came in as a promoted argument; demote it back to its
1767 /// declared type.
emitArgumentDemotion(CodeGenFunction & CGF,const VarDecl * var,llvm::Value * value)1768 static llvm::Value *emitArgumentDemotion(CodeGenFunction &CGF,
1769                                          const VarDecl *var,
1770                                          llvm::Value *value) {
1771   llvm::Type *varType = CGF.ConvertType(var->getType());
1772 
1773   // This can happen with promotions that actually don't change the
1774   // underlying type, like the enum promotions.
1775   if (value->getType() == varType) return value;
1776 
1777   assert((varType->isIntegerTy() || varType->isFloatingPointTy())
1778          && "unexpected promotion type");
1779 
1780   if (isa<llvm::IntegerType>(varType))
1781     return CGF.Builder.CreateTrunc(value, varType, "arg.unpromote");
1782 
1783   return CGF.Builder.CreateFPCast(value, varType, "arg.unpromote");
1784 }
1785 
1786 /// Returns the attribute (either parameter attribute, or function
1787 /// attribute), which declares argument ArgNo to be non-null.
getNonNullAttr(const Decl * FD,const ParmVarDecl * PVD,QualType ArgType,unsigned ArgNo)1788 static const NonNullAttr *getNonNullAttr(const Decl *FD, const ParmVarDecl *PVD,
1789                                          QualType ArgType, unsigned ArgNo) {
1790   // FIXME: __attribute__((nonnull)) can also be applied to:
1791   //   - references to pointers, where the pointee is known to be
1792   //     nonnull (apparently a Clang extension)
1793   //   - transparent unions containing pointers
1794   // In the former case, LLVM IR cannot represent the constraint. In
1795   // the latter case, we have no guarantee that the transparent union
1796   // is in fact passed as a pointer.
1797   if (!ArgType->isAnyPointerType() && !ArgType->isBlockPointerType())
1798     return nullptr;
1799   // First, check attribute on parameter itself.
1800   if (PVD) {
1801     if (auto ParmNNAttr = PVD->getAttr<NonNullAttr>())
1802       return ParmNNAttr;
1803   }
1804   // Check function attributes.
1805   if (!FD)
1806     return nullptr;
1807   for (const auto *NNAttr : FD->specific_attrs<NonNullAttr>()) {
1808     if (NNAttr->isNonNull(ArgNo))
1809       return NNAttr;
1810   }
1811   return nullptr;
1812 }
1813 
EmitFunctionProlog(const CGFunctionInfo & FI,llvm::Function * Fn,const FunctionArgList & Args)1814 void CodeGenFunction::EmitFunctionProlog(const CGFunctionInfo &FI,
1815                                          llvm::Function *Fn,
1816                                          const FunctionArgList &Args) {
1817   if (CurCodeDecl && CurCodeDecl->hasAttr<NakedAttr>())
1818     // Naked functions don't have prologues.
1819     return;
1820 
1821   // If this is an implicit-return-zero function, go ahead and
1822   // initialize the return value.  TODO: it might be nice to have
1823   // a more general mechanism for this that didn't require synthesized
1824   // return statements.
1825   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurCodeDecl)) {
1826     if (FD->hasImplicitReturnZero()) {
1827       QualType RetTy = FD->getReturnType().getUnqualifiedType();
1828       llvm::Type* LLVMTy = CGM.getTypes().ConvertType(RetTy);
1829       llvm::Constant* Zero = llvm::Constant::getNullValue(LLVMTy);
1830       Builder.CreateStore(Zero, ReturnValue);
1831     }
1832   }
1833 
1834   // FIXME: We no longer need the types from FunctionArgList; lift up and
1835   // simplify.
1836 
1837   ClangToLLVMArgMapping IRFunctionArgs(CGM.getContext(), FI);
1838   // Flattened function arguments.
1839   SmallVector<llvm::Argument *, 16> FnArgs;
1840   FnArgs.reserve(IRFunctionArgs.totalIRArgs());
1841   for (auto &Arg : Fn->args()) {
1842     FnArgs.push_back(&Arg);
1843   }
1844   assert(FnArgs.size() == IRFunctionArgs.totalIRArgs());
1845 
1846   // If we're using inalloca, all the memory arguments are GEPs off of the last
1847   // parameter, which is a pointer to the complete memory area.
1848   Address ArgStruct = Address::invalid();
1849   const llvm::StructLayout *ArgStructLayout = nullptr;
1850   if (IRFunctionArgs.hasInallocaArg()) {
1851     ArgStructLayout = CGM.getDataLayout().getStructLayout(FI.getArgStruct());
1852     ArgStruct = Address(FnArgs[IRFunctionArgs.getInallocaArgNo()],
1853                         FI.getArgStructAlignment());
1854 
1855     assert(ArgStruct.getType() == FI.getArgStruct()->getPointerTo());
1856   }
1857 
1858   // Name the struct return parameter.
1859   if (IRFunctionArgs.hasSRetArg()) {
1860     auto AI = FnArgs[IRFunctionArgs.getSRetArgNo()];
1861     AI->setName("agg.result");
1862     AI->addAttr(llvm::AttributeSet::get(getLLVMContext(), AI->getArgNo() + 1,
1863                                         llvm::Attribute::NoAlias));
1864   }
1865 
1866   // Track if we received the parameter as a pointer (indirect, byval, or
1867   // inalloca).  If already have a pointer, EmitParmDecl doesn't need to copy it
1868   // into a local alloca for us.
1869   SmallVector<ParamValue, 16> ArgVals;
1870   ArgVals.reserve(Args.size());
1871 
1872   // Create a pointer value for every parameter declaration.  This usually
1873   // entails copying one or more LLVM IR arguments into an alloca.  Don't push
1874   // any cleanups or do anything that might unwind.  We do that separately, so
1875   // we can push the cleanups in the correct order for the ABI.
1876   assert(FI.arg_size() == Args.size() &&
1877          "Mismatch between function signature & arguments.");
1878   unsigned ArgNo = 0;
1879   CGFunctionInfo::const_arg_iterator info_it = FI.arg_begin();
1880   for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end();
1881        i != e; ++i, ++info_it, ++ArgNo) {
1882     const VarDecl *Arg = *i;
1883     QualType Ty = info_it->type;
1884     const ABIArgInfo &ArgI = info_it->info;
1885 
1886     bool isPromoted =
1887       isa<ParmVarDecl>(Arg) && cast<ParmVarDecl>(Arg)->isKNRPromoted();
1888 
1889     unsigned FirstIRArg, NumIRArgs;
1890     std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo);
1891 
1892     switch (ArgI.getKind()) {
1893     case ABIArgInfo::InAlloca: {
1894       assert(NumIRArgs == 0);
1895       auto FieldIndex = ArgI.getInAllocaFieldIndex();
1896       CharUnits FieldOffset =
1897         CharUnits::fromQuantity(ArgStructLayout->getElementOffset(FieldIndex));
1898       Address V = Builder.CreateStructGEP(ArgStruct, FieldIndex, FieldOffset,
1899                                           Arg->getName());
1900       ArgVals.push_back(ParamValue::forIndirect(V));
1901       break;
1902     }
1903 
1904     case ABIArgInfo::Indirect: {
1905       assert(NumIRArgs == 1);
1906       Address ParamAddr = Address(FnArgs[FirstIRArg], ArgI.getIndirectAlign());
1907 
1908       if (!hasScalarEvaluationKind(Ty)) {
1909         // Aggregates and complex variables are accessed by reference.  All we
1910         // need to do is realign the value, if requested.
1911         Address V = ParamAddr;
1912         if (ArgI.getIndirectRealign()) {
1913           Address AlignedTemp = CreateMemTemp(Ty, "coerce");
1914 
1915           // Copy from the incoming argument pointer to the temporary with the
1916           // appropriate alignment.
1917           //
1918           // FIXME: We should have a common utility for generating an aggregate
1919           // copy.
1920           CharUnits Size = getContext().getTypeSizeInChars(Ty);
1921           auto SizeVal = llvm::ConstantInt::get(IntPtrTy, Size.getQuantity());
1922           Address Dst = Builder.CreateBitCast(AlignedTemp, Int8PtrTy);
1923           Address Src = Builder.CreateBitCast(ParamAddr, Int8PtrTy);
1924           Builder.CreateMemCpy(Dst, Src, SizeVal, false);
1925           V = AlignedTemp;
1926         }
1927         ArgVals.push_back(ParamValue::forIndirect(V));
1928       } else {
1929         // Load scalar value from indirect argument.
1930         llvm::Value *V =
1931           EmitLoadOfScalar(ParamAddr, false, Ty, Arg->getLocStart());
1932 
1933         if (isPromoted)
1934           V = emitArgumentDemotion(*this, Arg, V);
1935         ArgVals.push_back(ParamValue::forDirect(V));
1936       }
1937       break;
1938     }
1939 
1940     case ABIArgInfo::Extend:
1941     case ABIArgInfo::Direct: {
1942 
1943       // If we have the trivial case, handle it with no muss and fuss.
1944       if (!isa<llvm::StructType>(ArgI.getCoerceToType()) &&
1945           ArgI.getCoerceToType() == ConvertType(Ty) &&
1946           ArgI.getDirectOffset() == 0) {
1947         assert(NumIRArgs == 1);
1948         auto AI = FnArgs[FirstIRArg];
1949         llvm::Value *V = AI;
1950 
1951         if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(Arg)) {
1952           if (getNonNullAttr(CurCodeDecl, PVD, PVD->getType(),
1953                              PVD->getFunctionScopeIndex()))
1954             AI->addAttr(llvm::AttributeSet::get(getLLVMContext(),
1955                                                 AI->getArgNo() + 1,
1956                                                 llvm::Attribute::NonNull));
1957 
1958           QualType OTy = PVD->getOriginalType();
1959           if (const auto *ArrTy =
1960               getContext().getAsConstantArrayType(OTy)) {
1961             // A C99 array parameter declaration with the static keyword also
1962             // indicates dereferenceability, and if the size is constant we can
1963             // use the dereferenceable attribute (which requires the size in
1964             // bytes).
1965             if (ArrTy->getSizeModifier() == ArrayType::Static) {
1966               QualType ETy = ArrTy->getElementType();
1967               uint64_t ArrSize = ArrTy->getSize().getZExtValue();
1968               if (!ETy->isIncompleteType() && ETy->isConstantSizeType() &&
1969                   ArrSize) {
1970                 llvm::AttrBuilder Attrs;
1971                 Attrs.addDereferenceableAttr(
1972                   getContext().getTypeSizeInChars(ETy).getQuantity()*ArrSize);
1973                 AI->addAttr(llvm::AttributeSet::get(getLLVMContext(),
1974                                                     AI->getArgNo() + 1, Attrs));
1975               } else if (getContext().getTargetAddressSpace(ETy) == 0) {
1976                 AI->addAttr(llvm::AttributeSet::get(getLLVMContext(),
1977                                                     AI->getArgNo() + 1,
1978                                                     llvm::Attribute::NonNull));
1979               }
1980             }
1981           } else if (const auto *ArrTy =
1982                      getContext().getAsVariableArrayType(OTy)) {
1983             // For C99 VLAs with the static keyword, we don't know the size so
1984             // we can't use the dereferenceable attribute, but in addrspace(0)
1985             // we know that it must be nonnull.
1986             if (ArrTy->getSizeModifier() == VariableArrayType::Static &&
1987                 !getContext().getTargetAddressSpace(ArrTy->getElementType()))
1988               AI->addAttr(llvm::AttributeSet::get(getLLVMContext(),
1989                                                   AI->getArgNo() + 1,
1990                                                   llvm::Attribute::NonNull));
1991           }
1992 
1993           const auto *AVAttr = PVD->getAttr<AlignValueAttr>();
1994           if (!AVAttr)
1995             if (const auto *TOTy = dyn_cast<TypedefType>(OTy))
1996               AVAttr = TOTy->getDecl()->getAttr<AlignValueAttr>();
1997           if (AVAttr) {
1998             llvm::Value *AlignmentValue =
1999               EmitScalarExpr(AVAttr->getAlignment());
2000             llvm::ConstantInt *AlignmentCI =
2001               cast<llvm::ConstantInt>(AlignmentValue);
2002             unsigned Alignment =
2003               std::min((unsigned) AlignmentCI->getZExtValue(),
2004                        +llvm::Value::MaximumAlignment);
2005 
2006             llvm::AttrBuilder Attrs;
2007             Attrs.addAlignmentAttr(Alignment);
2008             AI->addAttr(llvm::AttributeSet::get(getLLVMContext(),
2009                                                 AI->getArgNo() + 1, Attrs));
2010           }
2011         }
2012 
2013         if (Arg->getType().isRestrictQualified())
2014           AI->addAttr(llvm::AttributeSet::get(getLLVMContext(),
2015                                               AI->getArgNo() + 1,
2016                                               llvm::Attribute::NoAlias));
2017 
2018         // Ensure the argument is the correct type.
2019         if (V->getType() != ArgI.getCoerceToType())
2020           V = Builder.CreateBitCast(V, ArgI.getCoerceToType());
2021 
2022         if (isPromoted)
2023           V = emitArgumentDemotion(*this, Arg, V);
2024 
2025         if (const CXXMethodDecl *MD =
2026             dyn_cast_or_null<CXXMethodDecl>(CurCodeDecl)) {
2027           if (MD->isVirtual() && Arg == CXXABIThisDecl)
2028             V = CGM.getCXXABI().
2029                 adjustThisParameterInVirtualFunctionPrologue(*this, CurGD, V);
2030         }
2031 
2032         // Because of merging of function types from multiple decls it is
2033         // possible for the type of an argument to not match the corresponding
2034         // type in the function type. Since we are codegening the callee
2035         // in here, add a cast to the argument type.
2036         llvm::Type *LTy = ConvertType(Arg->getType());
2037         if (V->getType() != LTy)
2038           V = Builder.CreateBitCast(V, LTy);
2039 
2040         ArgVals.push_back(ParamValue::forDirect(V));
2041         break;
2042       }
2043 
2044       Address Alloca = CreateMemTemp(Ty, getContext().getDeclAlign(Arg),
2045                                      Arg->getName());
2046 
2047       // Pointer to store into.
2048       Address Ptr = emitAddressAtOffset(*this, Alloca, ArgI);
2049 
2050       // Fast-isel and the optimizer generally like scalar values better than
2051       // FCAs, so we flatten them if this is safe to do for this argument.
2052       llvm::StructType *STy = dyn_cast<llvm::StructType>(ArgI.getCoerceToType());
2053       if (ArgI.isDirect() && ArgI.getCanBeFlattened() && STy &&
2054           STy->getNumElements() > 1) {
2055         auto SrcLayout = CGM.getDataLayout().getStructLayout(STy);
2056         uint64_t SrcSize = CGM.getDataLayout().getTypeAllocSize(STy);
2057         llvm::Type *DstTy = Ptr.getElementType();
2058         uint64_t DstSize = CGM.getDataLayout().getTypeAllocSize(DstTy);
2059 
2060         Address AddrToStoreInto = Address::invalid();
2061         if (SrcSize <= DstSize) {
2062           AddrToStoreInto =
2063             Builder.CreateBitCast(Ptr, llvm::PointerType::getUnqual(STy));
2064         } else {
2065           AddrToStoreInto =
2066             CreateTempAlloca(STy, Alloca.getAlignment(), "coerce");
2067         }
2068 
2069         assert(STy->getNumElements() == NumIRArgs);
2070         for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
2071           auto AI = FnArgs[FirstIRArg + i];
2072           AI->setName(Arg->getName() + ".coerce" + Twine(i));
2073           auto Offset = CharUnits::fromQuantity(SrcLayout->getElementOffset(i));
2074           Address EltPtr =
2075             Builder.CreateStructGEP(AddrToStoreInto, i, Offset);
2076           Builder.CreateStore(AI, EltPtr);
2077         }
2078 
2079         if (SrcSize > DstSize) {
2080           Builder.CreateMemCpy(Ptr, AddrToStoreInto, DstSize);
2081         }
2082 
2083       } else {
2084         // Simple case, just do a coerced store of the argument into the alloca.
2085         assert(NumIRArgs == 1);
2086         auto AI = FnArgs[FirstIRArg];
2087         AI->setName(Arg->getName() + ".coerce");
2088         CreateCoercedStore(AI, Ptr, /*DestIsVolatile=*/false, *this);
2089       }
2090 
2091       // Match to what EmitParmDecl is expecting for this type.
2092       if (CodeGenFunction::hasScalarEvaluationKind(Ty)) {
2093         llvm::Value *V =
2094           EmitLoadOfScalar(Alloca, false, Ty, Arg->getLocStart());
2095         if (isPromoted)
2096           V = emitArgumentDemotion(*this, Arg, V);
2097         ArgVals.push_back(ParamValue::forDirect(V));
2098       } else {
2099         ArgVals.push_back(ParamValue::forIndirect(Alloca));
2100       }
2101       break;
2102     }
2103 
2104     case ABIArgInfo::Expand: {
2105       // If this structure was expanded into multiple arguments then
2106       // we need to create a temporary and reconstruct it from the
2107       // arguments.
2108       Address Alloca = CreateMemTemp(Ty, getContext().getDeclAlign(Arg));
2109       LValue LV = MakeAddrLValue(Alloca, Ty);
2110       ArgVals.push_back(ParamValue::forIndirect(Alloca));
2111 
2112       auto FnArgIter = FnArgs.begin() + FirstIRArg;
2113       ExpandTypeFromArgs(Ty, LV, FnArgIter);
2114       assert(FnArgIter == FnArgs.begin() + FirstIRArg + NumIRArgs);
2115       for (unsigned i = 0, e = NumIRArgs; i != e; ++i) {
2116         auto AI = FnArgs[FirstIRArg + i];
2117         AI->setName(Arg->getName() + "." + Twine(i));
2118       }
2119       break;
2120     }
2121 
2122     case ABIArgInfo::Ignore:
2123       assert(NumIRArgs == 0);
2124       // Initialize the local variable appropriately.
2125       if (!hasScalarEvaluationKind(Ty)) {
2126         ArgVals.push_back(ParamValue::forIndirect(CreateMemTemp(Ty)));
2127       } else {
2128         llvm::Value *U = llvm::UndefValue::get(ConvertType(Arg->getType()));
2129         ArgVals.push_back(ParamValue::forDirect(U));
2130       }
2131       break;
2132     }
2133   }
2134 
2135   if (getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee()) {
2136     for (int I = Args.size() - 1; I >= 0; --I)
2137       EmitParmDecl(*Args[I], ArgVals[I], I + 1);
2138   } else {
2139     for (unsigned I = 0, E = Args.size(); I != E; ++I)
2140       EmitParmDecl(*Args[I], ArgVals[I], I + 1);
2141   }
2142 }
2143 
eraseUnusedBitCasts(llvm::Instruction * insn)2144 static void eraseUnusedBitCasts(llvm::Instruction *insn) {
2145   while (insn->use_empty()) {
2146     llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(insn);
2147     if (!bitcast) return;
2148 
2149     // This is "safe" because we would have used a ConstantExpr otherwise.
2150     insn = cast<llvm::Instruction>(bitcast->getOperand(0));
2151     bitcast->eraseFromParent();
2152   }
2153 }
2154 
2155 /// Try to emit a fused autorelease of a return result.
tryEmitFusedAutoreleaseOfResult(CodeGenFunction & CGF,llvm::Value * result)2156 static llvm::Value *tryEmitFusedAutoreleaseOfResult(CodeGenFunction &CGF,
2157                                                     llvm::Value *result) {
2158   // We must be immediately followed the cast.
2159   llvm::BasicBlock *BB = CGF.Builder.GetInsertBlock();
2160   if (BB->empty()) return nullptr;
2161   if (&BB->back() != result) return nullptr;
2162 
2163   llvm::Type *resultType = result->getType();
2164 
2165   // result is in a BasicBlock and is therefore an Instruction.
2166   llvm::Instruction *generator = cast<llvm::Instruction>(result);
2167 
2168   SmallVector<llvm::Instruction*,4> insnsToKill;
2169 
2170   // Look for:
2171   //  %generator = bitcast %type1* %generator2 to %type2*
2172   while (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(generator)) {
2173     // We would have emitted this as a constant if the operand weren't
2174     // an Instruction.
2175     generator = cast<llvm::Instruction>(bitcast->getOperand(0));
2176 
2177     // Require the generator to be immediately followed by the cast.
2178     if (generator->getNextNode() != bitcast)
2179       return nullptr;
2180 
2181     insnsToKill.push_back(bitcast);
2182   }
2183 
2184   // Look for:
2185   //   %generator = call i8* @objc_retain(i8* %originalResult)
2186   // or
2187   //   %generator = call i8* @objc_retainAutoreleasedReturnValue(i8* %originalResult)
2188   llvm::CallInst *call = dyn_cast<llvm::CallInst>(generator);
2189   if (!call) return nullptr;
2190 
2191   bool doRetainAutorelease;
2192 
2193   if (call->getCalledValue() == CGF.CGM.getObjCEntrypoints().objc_retain) {
2194     doRetainAutorelease = true;
2195   } else if (call->getCalledValue() == CGF.CGM.getObjCEntrypoints()
2196                                           .objc_retainAutoreleasedReturnValue) {
2197     doRetainAutorelease = false;
2198 
2199     // If we emitted an assembly marker for this call (and the
2200     // ARCEntrypoints field should have been set if so), go looking
2201     // for that call.  If we can't find it, we can't do this
2202     // optimization.  But it should always be the immediately previous
2203     // instruction, unless we needed bitcasts around the call.
2204     if (CGF.CGM.getObjCEntrypoints().retainAutoreleasedReturnValueMarker) {
2205       llvm::Instruction *prev = call->getPrevNode();
2206       assert(prev);
2207       if (isa<llvm::BitCastInst>(prev)) {
2208         prev = prev->getPrevNode();
2209         assert(prev);
2210       }
2211       assert(isa<llvm::CallInst>(prev));
2212       assert(cast<llvm::CallInst>(prev)->getCalledValue() ==
2213                CGF.CGM.getObjCEntrypoints().retainAutoreleasedReturnValueMarker);
2214       insnsToKill.push_back(prev);
2215     }
2216   } else {
2217     return nullptr;
2218   }
2219 
2220   result = call->getArgOperand(0);
2221   insnsToKill.push_back(call);
2222 
2223   // Keep killing bitcasts, for sanity.  Note that we no longer care
2224   // about precise ordering as long as there's exactly one use.
2225   while (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(result)) {
2226     if (!bitcast->hasOneUse()) break;
2227     insnsToKill.push_back(bitcast);
2228     result = bitcast->getOperand(0);
2229   }
2230 
2231   // Delete all the unnecessary instructions, from latest to earliest.
2232   for (SmallVectorImpl<llvm::Instruction*>::iterator
2233          i = insnsToKill.begin(), e = insnsToKill.end(); i != e; ++i)
2234     (*i)->eraseFromParent();
2235 
2236   // Do the fused retain/autorelease if we were asked to.
2237   if (doRetainAutorelease)
2238     result = CGF.EmitARCRetainAutoreleaseReturnValue(result);
2239 
2240   // Cast back to the result type.
2241   return CGF.Builder.CreateBitCast(result, resultType);
2242 }
2243 
2244 /// If this is a +1 of the value of an immutable 'self', remove it.
tryRemoveRetainOfSelf(CodeGenFunction & CGF,llvm::Value * result)2245 static llvm::Value *tryRemoveRetainOfSelf(CodeGenFunction &CGF,
2246                                           llvm::Value *result) {
2247   // This is only applicable to a method with an immutable 'self'.
2248   const ObjCMethodDecl *method =
2249     dyn_cast_or_null<ObjCMethodDecl>(CGF.CurCodeDecl);
2250   if (!method) return nullptr;
2251   const VarDecl *self = method->getSelfDecl();
2252   if (!self->getType().isConstQualified()) return nullptr;
2253 
2254   // Look for a retain call.
2255   llvm::CallInst *retainCall =
2256     dyn_cast<llvm::CallInst>(result->stripPointerCasts());
2257   if (!retainCall ||
2258       retainCall->getCalledValue() != CGF.CGM.getObjCEntrypoints().objc_retain)
2259     return nullptr;
2260 
2261   // Look for an ordinary load of 'self'.
2262   llvm::Value *retainedValue = retainCall->getArgOperand(0);
2263   llvm::LoadInst *load =
2264     dyn_cast<llvm::LoadInst>(retainedValue->stripPointerCasts());
2265   if (!load || load->isAtomic() || load->isVolatile() ||
2266       load->getPointerOperand() != CGF.GetAddrOfLocalVar(self).getPointer())
2267     return nullptr;
2268 
2269   // Okay!  Burn it all down.  This relies for correctness on the
2270   // assumption that the retain is emitted as part of the return and
2271   // that thereafter everything is used "linearly".
2272   llvm::Type *resultType = result->getType();
2273   eraseUnusedBitCasts(cast<llvm::Instruction>(result));
2274   assert(retainCall->use_empty());
2275   retainCall->eraseFromParent();
2276   eraseUnusedBitCasts(cast<llvm::Instruction>(retainedValue));
2277 
2278   return CGF.Builder.CreateBitCast(load, resultType);
2279 }
2280 
2281 /// Emit an ARC autorelease of the result of a function.
2282 ///
2283 /// \return the value to actually return from the function
emitAutoreleaseOfResult(CodeGenFunction & CGF,llvm::Value * result)2284 static llvm::Value *emitAutoreleaseOfResult(CodeGenFunction &CGF,
2285                                             llvm::Value *result) {
2286   // If we're returning 'self', kill the initial retain.  This is a
2287   // heuristic attempt to "encourage correctness" in the really unfortunate
2288   // case where we have a return of self during a dealloc and we desperately
2289   // need to avoid the possible autorelease.
2290   if (llvm::Value *self = tryRemoveRetainOfSelf(CGF, result))
2291     return self;
2292 
2293   // At -O0, try to emit a fused retain/autorelease.
2294   if (CGF.shouldUseFusedARCCalls())
2295     if (llvm::Value *fused = tryEmitFusedAutoreleaseOfResult(CGF, result))
2296       return fused;
2297 
2298   return CGF.EmitARCAutoreleaseReturnValue(result);
2299 }
2300 
2301 /// Heuristically search for a dominating store to the return-value slot.
findDominatingStoreToReturnValue(CodeGenFunction & CGF)2302 static llvm::StoreInst *findDominatingStoreToReturnValue(CodeGenFunction &CGF) {
2303   // Check if a User is a store which pointerOperand is the ReturnValue.
2304   // We are looking for stores to the ReturnValue, not for stores of the
2305   // ReturnValue to some other location.
2306   auto GetStoreIfValid = [&CGF](llvm::User *U) -> llvm::StoreInst * {
2307     auto *SI = dyn_cast<llvm::StoreInst>(U);
2308     if (!SI || SI->getPointerOperand() != CGF.ReturnValue.getPointer())
2309       return nullptr;
2310     // These aren't actually possible for non-coerced returns, and we
2311     // only care about non-coerced returns on this code path.
2312     assert(!SI->isAtomic() && !SI->isVolatile());
2313     return SI;
2314   };
2315   // If there are multiple uses of the return-value slot, just check
2316   // for something immediately preceding the IP.  Sometimes this can
2317   // happen with how we generate implicit-returns; it can also happen
2318   // with noreturn cleanups.
2319   if (!CGF.ReturnValue.getPointer()->hasOneUse()) {
2320     llvm::BasicBlock *IP = CGF.Builder.GetInsertBlock();
2321     if (IP->empty()) return nullptr;
2322     llvm::Instruction *I = &IP->back();
2323 
2324     // Skip lifetime markers
2325     for (llvm::BasicBlock::reverse_iterator II = IP->rbegin(),
2326                                             IE = IP->rend();
2327          II != IE; ++II) {
2328       if (llvm::IntrinsicInst *Intrinsic =
2329               dyn_cast<llvm::IntrinsicInst>(&*II)) {
2330         if (Intrinsic->getIntrinsicID() == llvm::Intrinsic::lifetime_end) {
2331           const llvm::Value *CastAddr = Intrinsic->getArgOperand(1);
2332           ++II;
2333           if (II == IE)
2334             break;
2335           if (isa<llvm::BitCastInst>(&*II) && (CastAddr == &*II))
2336             continue;
2337         }
2338       }
2339       I = &*II;
2340       break;
2341     }
2342 
2343     return GetStoreIfValid(I);
2344   }
2345 
2346   llvm::StoreInst *store =
2347       GetStoreIfValid(CGF.ReturnValue.getPointer()->user_back());
2348   if (!store) return nullptr;
2349 
2350   // Now do a first-and-dirty dominance check: just walk up the
2351   // single-predecessors chain from the current insertion point.
2352   llvm::BasicBlock *StoreBB = store->getParent();
2353   llvm::BasicBlock *IP = CGF.Builder.GetInsertBlock();
2354   while (IP != StoreBB) {
2355     if (!(IP = IP->getSinglePredecessor()))
2356       return nullptr;
2357   }
2358 
2359   // Okay, the store's basic block dominates the insertion point; we
2360   // can do our thing.
2361   return store;
2362 }
2363 
EmitFunctionEpilog(const CGFunctionInfo & FI,bool EmitRetDbgLoc,SourceLocation EndLoc)2364 void CodeGenFunction::EmitFunctionEpilog(const CGFunctionInfo &FI,
2365                                          bool EmitRetDbgLoc,
2366                                          SourceLocation EndLoc) {
2367   if (CurCodeDecl && CurCodeDecl->hasAttr<NakedAttr>()) {
2368     // Naked functions don't have epilogues.
2369     Builder.CreateUnreachable();
2370     return;
2371   }
2372 
2373   // Functions with no result always return void.
2374   if (!ReturnValue.isValid()) {
2375     Builder.CreateRetVoid();
2376     return;
2377   }
2378 
2379   llvm::DebugLoc RetDbgLoc;
2380   llvm::Value *RV = nullptr;
2381   QualType RetTy = FI.getReturnType();
2382   const ABIArgInfo &RetAI = FI.getReturnInfo();
2383 
2384   switch (RetAI.getKind()) {
2385   case ABIArgInfo::InAlloca:
2386     // Aggregrates get evaluated directly into the destination.  Sometimes we
2387     // need to return the sret value in a register, though.
2388     assert(hasAggregateEvaluationKind(RetTy));
2389     if (RetAI.getInAllocaSRet()) {
2390       llvm::Function::arg_iterator EI = CurFn->arg_end();
2391       --EI;
2392       llvm::Value *ArgStruct = &*EI;
2393       llvm::Value *SRet = Builder.CreateStructGEP(
2394           nullptr, ArgStruct, RetAI.getInAllocaFieldIndex());
2395       RV = Builder.CreateAlignedLoad(SRet, getPointerAlign(), "sret");
2396     }
2397     break;
2398 
2399   case ABIArgInfo::Indirect: {
2400     auto AI = CurFn->arg_begin();
2401     if (RetAI.isSRetAfterThis())
2402       ++AI;
2403     switch (getEvaluationKind(RetTy)) {
2404     case TEK_Complex: {
2405       ComplexPairTy RT =
2406         EmitLoadOfComplex(MakeAddrLValue(ReturnValue, RetTy), EndLoc);
2407       EmitStoreOfComplex(RT, MakeNaturalAlignAddrLValue(&*AI, RetTy),
2408                          /*isInit*/ true);
2409       break;
2410     }
2411     case TEK_Aggregate:
2412       // Do nothing; aggregrates get evaluated directly into the destination.
2413       break;
2414     case TEK_Scalar:
2415       EmitStoreOfScalar(Builder.CreateLoad(ReturnValue),
2416                         MakeNaturalAlignAddrLValue(&*AI, RetTy),
2417                         /*isInit*/ true);
2418       break;
2419     }
2420     break;
2421   }
2422 
2423   case ABIArgInfo::Extend:
2424   case ABIArgInfo::Direct:
2425     if (RetAI.getCoerceToType() == ConvertType(RetTy) &&
2426         RetAI.getDirectOffset() == 0) {
2427       // The internal return value temp always will have pointer-to-return-type
2428       // type, just do a load.
2429 
2430       // If there is a dominating store to ReturnValue, we can elide
2431       // the load, zap the store, and usually zap the alloca.
2432       if (llvm::StoreInst *SI =
2433               findDominatingStoreToReturnValue(*this)) {
2434         // Reuse the debug location from the store unless there is
2435         // cleanup code to be emitted between the store and return
2436         // instruction.
2437         if (EmitRetDbgLoc && !AutoreleaseResult)
2438           RetDbgLoc = SI->getDebugLoc();
2439         // Get the stored value and nuke the now-dead store.
2440         RV = SI->getValueOperand();
2441         SI->eraseFromParent();
2442 
2443         // If that was the only use of the return value, nuke it as well now.
2444         auto returnValueInst = ReturnValue.getPointer();
2445         if (returnValueInst->use_empty()) {
2446           if (auto alloca = dyn_cast<llvm::AllocaInst>(returnValueInst)) {
2447             alloca->eraseFromParent();
2448             ReturnValue = Address::invalid();
2449           }
2450         }
2451 
2452       // Otherwise, we have to do a simple load.
2453       } else {
2454         RV = Builder.CreateLoad(ReturnValue);
2455       }
2456     } else {
2457       // If the value is offset in memory, apply the offset now.
2458       Address V = emitAddressAtOffset(*this, ReturnValue, RetAI);
2459 
2460       RV = CreateCoercedLoad(V, RetAI.getCoerceToType(), *this);
2461     }
2462 
2463     // In ARC, end functions that return a retainable type with a call
2464     // to objc_autoreleaseReturnValue.
2465     if (AutoreleaseResult) {
2466       assert(getLangOpts().ObjCAutoRefCount &&
2467              !FI.isReturnsRetained() &&
2468              RetTy->isObjCRetainableType());
2469       RV = emitAutoreleaseOfResult(*this, RV);
2470     }
2471 
2472     break;
2473 
2474   case ABIArgInfo::Ignore:
2475     break;
2476 
2477   case ABIArgInfo::Expand:
2478     llvm_unreachable("Invalid ABI kind for return argument");
2479   }
2480 
2481   llvm::Instruction *Ret;
2482   if (RV) {
2483     if (CurCodeDecl && SanOpts.has(SanitizerKind::ReturnsNonnullAttribute)) {
2484       if (auto RetNNAttr = CurCodeDecl->getAttr<ReturnsNonNullAttr>()) {
2485         SanitizerScope SanScope(this);
2486         llvm::Value *Cond = Builder.CreateICmpNE(
2487             RV, llvm::Constant::getNullValue(RV->getType()));
2488         llvm::Constant *StaticData[] = {
2489             EmitCheckSourceLocation(EndLoc),
2490             EmitCheckSourceLocation(RetNNAttr->getLocation()),
2491         };
2492         EmitCheck(std::make_pair(Cond, SanitizerKind::ReturnsNonnullAttribute),
2493                   "nonnull_return", StaticData, None);
2494       }
2495     }
2496     Ret = Builder.CreateRet(RV);
2497   } else {
2498     Ret = Builder.CreateRetVoid();
2499   }
2500 
2501   if (RetDbgLoc)
2502     Ret->setDebugLoc(std::move(RetDbgLoc));
2503 }
2504 
isInAllocaArgument(CGCXXABI & ABI,QualType type)2505 static bool isInAllocaArgument(CGCXXABI &ABI, QualType type) {
2506   const CXXRecordDecl *RD = type->getAsCXXRecordDecl();
2507   return RD && ABI.getRecordArgABI(RD) == CGCXXABI::RAA_DirectInMemory;
2508 }
2509 
createPlaceholderSlot(CodeGenFunction & CGF,QualType Ty)2510 static AggValueSlot createPlaceholderSlot(CodeGenFunction &CGF,
2511                                           QualType Ty) {
2512   // FIXME: Generate IR in one pass, rather than going back and fixing up these
2513   // placeholders.
2514   llvm::Type *IRTy = CGF.ConvertTypeForMem(Ty);
2515   llvm::Value *Placeholder =
2516     llvm::UndefValue::get(IRTy->getPointerTo()->getPointerTo());
2517   Placeholder = CGF.Builder.CreateDefaultAlignedLoad(Placeholder);
2518 
2519   // FIXME: When we generate this IR in one pass, we shouldn't need
2520   // this win32-specific alignment hack.
2521   CharUnits Align = CharUnits::fromQuantity(4);
2522 
2523   return AggValueSlot::forAddr(Address(Placeholder, Align),
2524                                Ty.getQualifiers(),
2525                                AggValueSlot::IsNotDestructed,
2526                                AggValueSlot::DoesNotNeedGCBarriers,
2527                                AggValueSlot::IsNotAliased);
2528 }
2529 
EmitDelegateCallArg(CallArgList & args,const VarDecl * param,SourceLocation loc)2530 void CodeGenFunction::EmitDelegateCallArg(CallArgList &args,
2531                                           const VarDecl *param,
2532                                           SourceLocation loc) {
2533   // StartFunction converted the ABI-lowered parameter(s) into a
2534   // local alloca.  We need to turn that into an r-value suitable
2535   // for EmitCall.
2536   Address local = GetAddrOfLocalVar(param);
2537 
2538   QualType type = param->getType();
2539 
2540   // For the most part, we just need to load the alloca, except:
2541   // 1) aggregate r-values are actually pointers to temporaries, and
2542   // 2) references to non-scalars are pointers directly to the aggregate.
2543   // I don't know why references to scalars are different here.
2544   if (const ReferenceType *ref = type->getAs<ReferenceType>()) {
2545     if (!hasScalarEvaluationKind(ref->getPointeeType()))
2546       return args.add(RValue::getAggregate(local), type);
2547 
2548     // Locals which are references to scalars are represented
2549     // with allocas holding the pointer.
2550     return args.add(RValue::get(Builder.CreateLoad(local)), type);
2551   }
2552 
2553   assert(!isInAllocaArgument(CGM.getCXXABI(), type) &&
2554          "cannot emit delegate call arguments for inalloca arguments!");
2555 
2556   args.add(convertTempToRValue(local, type, loc), type);
2557 }
2558 
isProvablyNull(llvm::Value * addr)2559 static bool isProvablyNull(llvm::Value *addr) {
2560   return isa<llvm::ConstantPointerNull>(addr);
2561 }
2562 
isProvablyNonNull(llvm::Value * addr)2563 static bool isProvablyNonNull(llvm::Value *addr) {
2564   return isa<llvm::AllocaInst>(addr);
2565 }
2566 
2567 /// Emit the actual writing-back of a writeback.
emitWriteback(CodeGenFunction & CGF,const CallArgList::Writeback & writeback)2568 static void emitWriteback(CodeGenFunction &CGF,
2569                           const CallArgList::Writeback &writeback) {
2570   const LValue &srcLV = writeback.Source;
2571   Address srcAddr = srcLV.getAddress();
2572   assert(!isProvablyNull(srcAddr.getPointer()) &&
2573          "shouldn't have writeback for provably null argument");
2574 
2575   llvm::BasicBlock *contBB = nullptr;
2576 
2577   // If the argument wasn't provably non-null, we need to null check
2578   // before doing the store.
2579   bool provablyNonNull = isProvablyNonNull(srcAddr.getPointer());
2580   if (!provablyNonNull) {
2581     llvm::BasicBlock *writebackBB = CGF.createBasicBlock("icr.writeback");
2582     contBB = CGF.createBasicBlock("icr.done");
2583 
2584     llvm::Value *isNull =
2585       CGF.Builder.CreateIsNull(srcAddr.getPointer(), "icr.isnull");
2586     CGF.Builder.CreateCondBr(isNull, contBB, writebackBB);
2587     CGF.EmitBlock(writebackBB);
2588   }
2589 
2590   // Load the value to writeback.
2591   llvm::Value *value = CGF.Builder.CreateLoad(writeback.Temporary);
2592 
2593   // Cast it back, in case we're writing an id to a Foo* or something.
2594   value = CGF.Builder.CreateBitCast(value, srcAddr.getElementType(),
2595                                     "icr.writeback-cast");
2596 
2597   // Perform the writeback.
2598 
2599   // If we have a "to use" value, it's something we need to emit a use
2600   // of.  This has to be carefully threaded in: if it's done after the
2601   // release it's potentially undefined behavior (and the optimizer
2602   // will ignore it), and if it happens before the retain then the
2603   // optimizer could move the release there.
2604   if (writeback.ToUse) {
2605     assert(srcLV.getObjCLifetime() == Qualifiers::OCL_Strong);
2606 
2607     // Retain the new value.  No need to block-copy here:  the block's
2608     // being passed up the stack.
2609     value = CGF.EmitARCRetainNonBlock(value);
2610 
2611     // Emit the intrinsic use here.
2612     CGF.EmitARCIntrinsicUse(writeback.ToUse);
2613 
2614     // Load the old value (primitively).
2615     llvm::Value *oldValue = CGF.EmitLoadOfScalar(srcLV, SourceLocation());
2616 
2617     // Put the new value in place (primitively).
2618     CGF.EmitStoreOfScalar(value, srcLV, /*init*/ false);
2619 
2620     // Release the old value.
2621     CGF.EmitARCRelease(oldValue, srcLV.isARCPreciseLifetime());
2622 
2623   // Otherwise, we can just do a normal lvalue store.
2624   } else {
2625     CGF.EmitStoreThroughLValue(RValue::get(value), srcLV);
2626   }
2627 
2628   // Jump to the continuation block.
2629   if (!provablyNonNull)
2630     CGF.EmitBlock(contBB);
2631 }
2632 
emitWritebacks(CodeGenFunction & CGF,const CallArgList & args)2633 static void emitWritebacks(CodeGenFunction &CGF,
2634                            const CallArgList &args) {
2635   for (const auto &I : args.writebacks())
2636     emitWriteback(CGF, I);
2637 }
2638 
deactivateArgCleanupsBeforeCall(CodeGenFunction & CGF,const CallArgList & CallArgs)2639 static void deactivateArgCleanupsBeforeCall(CodeGenFunction &CGF,
2640                                             const CallArgList &CallArgs) {
2641   assert(CGF.getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee());
2642   ArrayRef<CallArgList::CallArgCleanup> Cleanups =
2643     CallArgs.getCleanupsToDeactivate();
2644   // Iterate in reverse to increase the likelihood of popping the cleanup.
2645   for (const auto &I : llvm::reverse(Cleanups)) {
2646     CGF.DeactivateCleanupBlock(I.Cleanup, I.IsActiveIP);
2647     I.IsActiveIP->eraseFromParent();
2648   }
2649 }
2650 
maybeGetUnaryAddrOfOperand(const Expr * E)2651 static const Expr *maybeGetUnaryAddrOfOperand(const Expr *E) {
2652   if (const UnaryOperator *uop = dyn_cast<UnaryOperator>(E->IgnoreParens()))
2653     if (uop->getOpcode() == UO_AddrOf)
2654       return uop->getSubExpr();
2655   return nullptr;
2656 }
2657 
2658 /// Emit an argument that's being passed call-by-writeback.  That is,
2659 /// we are passing the address of an __autoreleased temporary; it
2660 /// might be copy-initialized with the current value of the given
2661 /// address, but it will definitely be copied out of after the call.
emitWritebackArg(CodeGenFunction & CGF,CallArgList & args,const ObjCIndirectCopyRestoreExpr * CRE)2662 static void emitWritebackArg(CodeGenFunction &CGF, CallArgList &args,
2663                              const ObjCIndirectCopyRestoreExpr *CRE) {
2664   LValue srcLV;
2665 
2666   // Make an optimistic effort to emit the address as an l-value.
2667   // This can fail if the argument expression is more complicated.
2668   if (const Expr *lvExpr = maybeGetUnaryAddrOfOperand(CRE->getSubExpr())) {
2669     srcLV = CGF.EmitLValue(lvExpr);
2670 
2671   // Otherwise, just emit it as a scalar.
2672   } else {
2673     Address srcAddr = CGF.EmitPointerWithAlignment(CRE->getSubExpr());
2674 
2675     QualType srcAddrType =
2676       CRE->getSubExpr()->getType()->castAs<PointerType>()->getPointeeType();
2677     srcLV = CGF.MakeAddrLValue(srcAddr, srcAddrType);
2678   }
2679   Address srcAddr = srcLV.getAddress();
2680 
2681   // The dest and src types don't necessarily match in LLVM terms
2682   // because of the crazy ObjC compatibility rules.
2683 
2684   llvm::PointerType *destType =
2685     cast<llvm::PointerType>(CGF.ConvertType(CRE->getType()));
2686 
2687   // If the address is a constant null, just pass the appropriate null.
2688   if (isProvablyNull(srcAddr.getPointer())) {
2689     args.add(RValue::get(llvm::ConstantPointerNull::get(destType)),
2690              CRE->getType());
2691     return;
2692   }
2693 
2694   // Create the temporary.
2695   Address temp = CGF.CreateTempAlloca(destType->getElementType(),
2696                                       CGF.getPointerAlign(),
2697                                       "icr.temp");
2698   // Loading an l-value can introduce a cleanup if the l-value is __weak,
2699   // and that cleanup will be conditional if we can't prove that the l-value
2700   // isn't null, so we need to register a dominating point so that the cleanups
2701   // system will make valid IR.
2702   CodeGenFunction::ConditionalEvaluation condEval(CGF);
2703 
2704   // Zero-initialize it if we're not doing a copy-initialization.
2705   bool shouldCopy = CRE->shouldCopy();
2706   if (!shouldCopy) {
2707     llvm::Value *null =
2708       llvm::ConstantPointerNull::get(
2709         cast<llvm::PointerType>(destType->getElementType()));
2710     CGF.Builder.CreateStore(null, temp);
2711   }
2712 
2713   llvm::BasicBlock *contBB = nullptr;
2714   llvm::BasicBlock *originBB = nullptr;
2715 
2716   // If the address is *not* known to be non-null, we need to switch.
2717   llvm::Value *finalArgument;
2718 
2719   bool provablyNonNull = isProvablyNonNull(srcAddr.getPointer());
2720   if (provablyNonNull) {
2721     finalArgument = temp.getPointer();
2722   } else {
2723     llvm::Value *isNull =
2724       CGF.Builder.CreateIsNull(srcAddr.getPointer(), "icr.isnull");
2725 
2726     finalArgument = CGF.Builder.CreateSelect(isNull,
2727                                    llvm::ConstantPointerNull::get(destType),
2728                                              temp.getPointer(), "icr.argument");
2729 
2730     // If we need to copy, then the load has to be conditional, which
2731     // means we need control flow.
2732     if (shouldCopy) {
2733       originBB = CGF.Builder.GetInsertBlock();
2734       contBB = CGF.createBasicBlock("icr.cont");
2735       llvm::BasicBlock *copyBB = CGF.createBasicBlock("icr.copy");
2736       CGF.Builder.CreateCondBr(isNull, contBB, copyBB);
2737       CGF.EmitBlock(copyBB);
2738       condEval.begin(CGF);
2739     }
2740   }
2741 
2742   llvm::Value *valueToUse = nullptr;
2743 
2744   // Perform a copy if necessary.
2745   if (shouldCopy) {
2746     RValue srcRV = CGF.EmitLoadOfLValue(srcLV, SourceLocation());
2747     assert(srcRV.isScalar());
2748 
2749     llvm::Value *src = srcRV.getScalarVal();
2750     src = CGF.Builder.CreateBitCast(src, destType->getElementType(),
2751                                     "icr.cast");
2752 
2753     // Use an ordinary store, not a store-to-lvalue.
2754     CGF.Builder.CreateStore(src, temp);
2755 
2756     // If optimization is enabled, and the value was held in a
2757     // __strong variable, we need to tell the optimizer that this
2758     // value has to stay alive until we're doing the store back.
2759     // This is because the temporary is effectively unretained,
2760     // and so otherwise we can violate the high-level semantics.
2761     if (CGF.CGM.getCodeGenOpts().OptimizationLevel != 0 &&
2762         srcLV.getObjCLifetime() == Qualifiers::OCL_Strong) {
2763       valueToUse = src;
2764     }
2765   }
2766 
2767   // Finish the control flow if we needed it.
2768   if (shouldCopy && !provablyNonNull) {
2769     llvm::BasicBlock *copyBB = CGF.Builder.GetInsertBlock();
2770     CGF.EmitBlock(contBB);
2771 
2772     // Make a phi for the value to intrinsically use.
2773     if (valueToUse) {
2774       llvm::PHINode *phiToUse = CGF.Builder.CreatePHI(valueToUse->getType(), 2,
2775                                                       "icr.to-use");
2776       phiToUse->addIncoming(valueToUse, copyBB);
2777       phiToUse->addIncoming(llvm::UndefValue::get(valueToUse->getType()),
2778                             originBB);
2779       valueToUse = phiToUse;
2780     }
2781 
2782     condEval.end(CGF);
2783   }
2784 
2785   args.addWriteback(srcLV, temp, valueToUse);
2786   args.add(RValue::get(finalArgument), CRE->getType());
2787 }
2788 
allocateArgumentMemory(CodeGenFunction & CGF)2789 void CallArgList::allocateArgumentMemory(CodeGenFunction &CGF) {
2790   assert(!StackBase && !StackCleanup.isValid());
2791 
2792   // Save the stack.
2793   llvm::Function *F = CGF.CGM.getIntrinsic(llvm::Intrinsic::stacksave);
2794   StackBase = CGF.Builder.CreateCall(F, {}, "inalloca.save");
2795 }
2796 
freeArgumentMemory(CodeGenFunction & CGF) const2797 void CallArgList::freeArgumentMemory(CodeGenFunction &CGF) const {
2798   if (StackBase) {
2799     // Restore the stack after the call.
2800     llvm::Value *F = CGF.CGM.getIntrinsic(llvm::Intrinsic::stackrestore);
2801     CGF.Builder.CreateCall(F, StackBase);
2802   }
2803 }
2804 
EmitNonNullArgCheck(RValue RV,QualType ArgType,SourceLocation ArgLoc,const FunctionDecl * FD,unsigned ParmNum)2805 void CodeGenFunction::EmitNonNullArgCheck(RValue RV, QualType ArgType,
2806                                           SourceLocation ArgLoc,
2807                                           const FunctionDecl *FD,
2808                                           unsigned ParmNum) {
2809   if (!SanOpts.has(SanitizerKind::NonnullAttribute) || !FD)
2810     return;
2811   auto PVD = ParmNum < FD->getNumParams() ? FD->getParamDecl(ParmNum) : nullptr;
2812   unsigned ArgNo = PVD ? PVD->getFunctionScopeIndex() : ParmNum;
2813   auto NNAttr = getNonNullAttr(FD, PVD, ArgType, ArgNo);
2814   if (!NNAttr)
2815     return;
2816   SanitizerScope SanScope(this);
2817   assert(RV.isScalar());
2818   llvm::Value *V = RV.getScalarVal();
2819   llvm::Value *Cond =
2820       Builder.CreateICmpNE(V, llvm::Constant::getNullValue(V->getType()));
2821   llvm::Constant *StaticData[] = {
2822       EmitCheckSourceLocation(ArgLoc),
2823       EmitCheckSourceLocation(NNAttr->getLocation()),
2824       llvm::ConstantInt::get(Int32Ty, ArgNo + 1),
2825   };
2826   EmitCheck(std::make_pair(Cond, SanitizerKind::NonnullAttribute),
2827                 "nonnull_arg", StaticData, None);
2828 }
2829 
EmitCallArgs(CallArgList & Args,ArrayRef<QualType> ArgTypes,llvm::iterator_range<CallExpr::const_arg_iterator> ArgRange,const FunctionDecl * CalleeDecl,unsigned ParamsToSkip)2830 void CodeGenFunction::EmitCallArgs(
2831     CallArgList &Args, ArrayRef<QualType> ArgTypes,
2832     llvm::iterator_range<CallExpr::const_arg_iterator> ArgRange,
2833     const FunctionDecl *CalleeDecl, unsigned ParamsToSkip) {
2834   assert((int)ArgTypes.size() == (ArgRange.end() - ArgRange.begin()));
2835 
2836   auto MaybeEmitImplicitObjectSize = [&](unsigned I, const Expr *Arg) {
2837     if (CalleeDecl == nullptr || I >= CalleeDecl->getNumParams())
2838       return;
2839     auto *PS = CalleeDecl->getParamDecl(I)->getAttr<PassObjectSizeAttr>();
2840     if (PS == nullptr)
2841       return;
2842 
2843     const auto &Context = getContext();
2844     auto SizeTy = Context.getSizeType();
2845     auto T = Builder.getIntNTy(Context.getTypeSize(SizeTy));
2846     llvm::Value *V = evaluateOrEmitBuiltinObjectSize(Arg, PS->getType(), T);
2847     Args.add(RValue::get(V), SizeTy);
2848   };
2849 
2850   // We *have* to evaluate arguments from right to left in the MS C++ ABI,
2851   // because arguments are destroyed left to right in the callee.
2852   if (CGM.getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee()) {
2853     // Insert a stack save if we're going to need any inalloca args.
2854     bool HasInAllocaArgs = false;
2855     for (ArrayRef<QualType>::iterator I = ArgTypes.begin(), E = ArgTypes.end();
2856          I != E && !HasInAllocaArgs; ++I)
2857       HasInAllocaArgs = isInAllocaArgument(CGM.getCXXABI(), *I);
2858     if (HasInAllocaArgs) {
2859       assert(getTarget().getTriple().getArch() == llvm::Triple::x86);
2860       Args.allocateArgumentMemory(*this);
2861     }
2862 
2863     // Evaluate each argument.
2864     size_t CallArgsStart = Args.size();
2865     for (int I = ArgTypes.size() - 1; I >= 0; --I) {
2866       CallExpr::const_arg_iterator Arg = ArgRange.begin() + I;
2867       EmitCallArg(Args, *Arg, ArgTypes[I]);
2868       EmitNonNullArgCheck(Args.back().RV, ArgTypes[I], (*Arg)->getExprLoc(),
2869                           CalleeDecl, ParamsToSkip + I);
2870       MaybeEmitImplicitObjectSize(I, *Arg);
2871     }
2872 
2873     // Un-reverse the arguments we just evaluated so they match up with the LLVM
2874     // IR function.
2875     std::reverse(Args.begin() + CallArgsStart, Args.end());
2876     return;
2877   }
2878 
2879   for (unsigned I = 0, E = ArgTypes.size(); I != E; ++I) {
2880     CallExpr::const_arg_iterator Arg = ArgRange.begin() + I;
2881     assert(Arg != ArgRange.end());
2882     EmitCallArg(Args, *Arg, ArgTypes[I]);
2883     EmitNonNullArgCheck(Args.back().RV, ArgTypes[I], (*Arg)->getExprLoc(),
2884                         CalleeDecl, ParamsToSkip + I);
2885     MaybeEmitImplicitObjectSize(I, *Arg);
2886   }
2887 }
2888 
2889 namespace {
2890 
2891 struct DestroyUnpassedArg final : EHScopeStack::Cleanup {
DestroyUnpassedArg__anond5d483060711::DestroyUnpassedArg2892   DestroyUnpassedArg(Address Addr, QualType Ty)
2893       : Addr(Addr), Ty(Ty) {}
2894 
2895   Address Addr;
2896   QualType Ty;
2897 
Emit__anond5d483060711::DestroyUnpassedArg2898   void Emit(CodeGenFunction &CGF, Flags flags) override {
2899     const CXXDestructorDecl *Dtor = Ty->getAsCXXRecordDecl()->getDestructor();
2900     assert(!Dtor->isTrivial());
2901     CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete, /*for vbase*/ false,
2902                               /*Delegating=*/false, Addr);
2903   }
2904 };
2905 
2906 struct DisableDebugLocationUpdates {
2907   CodeGenFunction &CGF;
2908   bool disabledDebugInfo;
DisableDebugLocationUpdates__anond5d483060711::DisableDebugLocationUpdates2909   DisableDebugLocationUpdates(CodeGenFunction &CGF, const Expr *E) : CGF(CGF) {
2910     if ((disabledDebugInfo = isa<CXXDefaultArgExpr>(E) && CGF.getDebugInfo()))
2911       CGF.disableDebugInfo();
2912   }
~DisableDebugLocationUpdates__anond5d483060711::DisableDebugLocationUpdates2913   ~DisableDebugLocationUpdates() {
2914     if (disabledDebugInfo)
2915       CGF.enableDebugInfo();
2916   }
2917 };
2918 
2919 } // end anonymous namespace
2920 
EmitCallArg(CallArgList & args,const Expr * E,QualType type)2921 void CodeGenFunction::EmitCallArg(CallArgList &args, const Expr *E,
2922                                   QualType type) {
2923   DisableDebugLocationUpdates Dis(*this, E);
2924   if (const ObjCIndirectCopyRestoreExpr *CRE
2925         = dyn_cast<ObjCIndirectCopyRestoreExpr>(E)) {
2926     assert(getLangOpts().ObjCAutoRefCount);
2927     assert(getContext().hasSameType(E->getType(), type));
2928     return emitWritebackArg(*this, args, CRE);
2929   }
2930 
2931   assert(type->isReferenceType() == E->isGLValue() &&
2932          "reference binding to unmaterialized r-value!");
2933 
2934   if (E->isGLValue()) {
2935     assert(E->getObjectKind() == OK_Ordinary);
2936     return args.add(EmitReferenceBindingToExpr(E), type);
2937   }
2938 
2939   bool HasAggregateEvalKind = hasAggregateEvaluationKind(type);
2940 
2941   // In the Microsoft C++ ABI, aggregate arguments are destructed by the callee.
2942   // However, we still have to push an EH-only cleanup in case we unwind before
2943   // we make it to the call.
2944   if (HasAggregateEvalKind &&
2945       CGM.getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee()) {
2946     // If we're using inalloca, use the argument memory.  Otherwise, use a
2947     // temporary.
2948     AggValueSlot Slot;
2949     if (args.isUsingInAlloca())
2950       Slot = createPlaceholderSlot(*this, type);
2951     else
2952       Slot = CreateAggTemp(type, "agg.tmp");
2953 
2954     const CXXRecordDecl *RD = type->getAsCXXRecordDecl();
2955     bool DestroyedInCallee =
2956         RD && RD->hasNonTrivialDestructor() &&
2957         CGM.getCXXABI().getRecordArgABI(RD) != CGCXXABI::RAA_Default;
2958     if (DestroyedInCallee)
2959       Slot.setExternallyDestructed();
2960 
2961     EmitAggExpr(E, Slot);
2962     RValue RV = Slot.asRValue();
2963     args.add(RV, type);
2964 
2965     if (DestroyedInCallee) {
2966       // Create a no-op GEP between the placeholder and the cleanup so we can
2967       // RAUW it successfully.  It also serves as a marker of the first
2968       // instruction where the cleanup is active.
2969       pushFullExprCleanup<DestroyUnpassedArg>(EHCleanup, Slot.getAddress(),
2970                                               type);
2971       // This unreachable is a temporary marker which will be removed later.
2972       llvm::Instruction *IsActive = Builder.CreateUnreachable();
2973       args.addArgCleanupDeactivation(EHStack.getInnermostEHScope(), IsActive);
2974     }
2975     return;
2976   }
2977 
2978   if (HasAggregateEvalKind && isa<ImplicitCastExpr>(E) &&
2979       cast<CastExpr>(E)->getCastKind() == CK_LValueToRValue) {
2980     LValue L = EmitLValue(cast<CastExpr>(E)->getSubExpr());
2981     assert(L.isSimple());
2982     if (L.getAlignment() >= getContext().getTypeAlignInChars(type)) {
2983       args.add(L.asAggregateRValue(), type, /*NeedsCopy*/true);
2984     } else {
2985       // We can't represent a misaligned lvalue in the CallArgList, so copy
2986       // to an aligned temporary now.
2987       Address tmp = CreateMemTemp(type);
2988       EmitAggregateCopy(tmp, L.getAddress(), type, L.isVolatile());
2989       args.add(RValue::getAggregate(tmp), type);
2990     }
2991     return;
2992   }
2993 
2994   args.add(EmitAnyExprToTemp(E), type);
2995 }
2996 
getVarArgType(const Expr * Arg)2997 QualType CodeGenFunction::getVarArgType(const Expr *Arg) {
2998   // System headers on Windows define NULL to 0 instead of 0LL on Win64. MSVC
2999   // implicitly widens null pointer constants that are arguments to varargs
3000   // functions to pointer-sized ints.
3001   if (!getTarget().getTriple().isOSWindows())
3002     return Arg->getType();
3003 
3004   if (Arg->getType()->isIntegerType() &&
3005       getContext().getTypeSize(Arg->getType()) <
3006           getContext().getTargetInfo().getPointerWidth(0) &&
3007       Arg->isNullPointerConstant(getContext(),
3008                                  Expr::NPC_ValueDependentIsNotNull)) {
3009     return getContext().getIntPtrType();
3010   }
3011 
3012   return Arg->getType();
3013 }
3014 
3015 // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC
3016 // optimizer it can aggressively ignore unwind edges.
3017 void
AddObjCARCExceptionMetadata(llvm::Instruction * Inst)3018 CodeGenFunction::AddObjCARCExceptionMetadata(llvm::Instruction *Inst) {
3019   if (CGM.getCodeGenOpts().OptimizationLevel != 0 &&
3020       !CGM.getCodeGenOpts().ObjCAutoRefCountExceptions)
3021     Inst->setMetadata("clang.arc.no_objc_arc_exceptions",
3022                       CGM.getNoObjCARCExceptionsMetadata());
3023 }
3024 
3025 /// Emits a call to the given no-arguments nounwind runtime function.
3026 llvm::CallInst *
EmitNounwindRuntimeCall(llvm::Value * callee,const llvm::Twine & name)3027 CodeGenFunction::EmitNounwindRuntimeCall(llvm::Value *callee,
3028                                          const llvm::Twine &name) {
3029   return EmitNounwindRuntimeCall(callee, None, name);
3030 }
3031 
3032 /// Emits a call to the given nounwind runtime function.
3033 llvm::CallInst *
EmitNounwindRuntimeCall(llvm::Value * callee,ArrayRef<llvm::Value * > args,const llvm::Twine & name)3034 CodeGenFunction::EmitNounwindRuntimeCall(llvm::Value *callee,
3035                                          ArrayRef<llvm::Value*> args,
3036                                          const llvm::Twine &name) {
3037   llvm::CallInst *call = EmitRuntimeCall(callee, args, name);
3038   call->setDoesNotThrow();
3039   return call;
3040 }
3041 
3042 /// Emits a simple call (never an invoke) to the given no-arguments
3043 /// runtime function.
3044 llvm::CallInst *
EmitRuntimeCall(llvm::Value * callee,const llvm::Twine & name)3045 CodeGenFunction::EmitRuntimeCall(llvm::Value *callee,
3046                                  const llvm::Twine &name) {
3047   return EmitRuntimeCall(callee, None, name);
3048 }
3049 
3050 /// Emits a simple call (never an invoke) to the given runtime
3051 /// function.
3052 llvm::CallInst *
EmitRuntimeCall(llvm::Value * callee,ArrayRef<llvm::Value * > args,const llvm::Twine & name)3053 CodeGenFunction::EmitRuntimeCall(llvm::Value *callee,
3054                                  ArrayRef<llvm::Value*> args,
3055                                  const llvm::Twine &name) {
3056   llvm::CallInst *call = Builder.CreateCall(callee, args, name);
3057   call->setCallingConv(getRuntimeCC());
3058   return call;
3059 }
3060 
3061 // Calls which may throw must have operand bundles indicating which funclet
3062 // they are nested within.
3063 static void
getBundlesForFunclet(llvm::Value * Callee,llvm::Instruction * CurrentFuncletPad,SmallVectorImpl<llvm::OperandBundleDef> & BundleList)3064 getBundlesForFunclet(llvm::Value *Callee,
3065                      llvm::Instruction *CurrentFuncletPad,
3066                      SmallVectorImpl<llvm::OperandBundleDef> &BundleList) {
3067   // There is no need for a funclet operand bundle if we aren't inside a funclet.
3068   if (!CurrentFuncletPad)
3069     return;
3070 
3071   // Skip intrinsics which cannot throw.
3072   auto *CalleeFn = dyn_cast<llvm::Function>(Callee->stripPointerCasts());
3073   if (CalleeFn && CalleeFn->isIntrinsic() && CalleeFn->doesNotThrow())
3074     return;
3075 
3076   BundleList.emplace_back("funclet", CurrentFuncletPad);
3077 }
3078 
3079 /// Emits a call or invoke to the given noreturn runtime function.
EmitNoreturnRuntimeCallOrInvoke(llvm::Value * callee,ArrayRef<llvm::Value * > args)3080 void CodeGenFunction::EmitNoreturnRuntimeCallOrInvoke(llvm::Value *callee,
3081                                                ArrayRef<llvm::Value*> args) {
3082   SmallVector<llvm::OperandBundleDef, 1> BundleList;
3083   getBundlesForFunclet(callee, CurrentFuncletPad, BundleList);
3084 
3085   if (getInvokeDest()) {
3086     llvm::InvokeInst *invoke =
3087       Builder.CreateInvoke(callee,
3088                            getUnreachableBlock(),
3089                            getInvokeDest(),
3090                            args,
3091                            BundleList);
3092     invoke->setDoesNotReturn();
3093     invoke->setCallingConv(getRuntimeCC());
3094   } else {
3095     llvm::CallInst *call = Builder.CreateCall(callee, args, BundleList);
3096     call->setDoesNotReturn();
3097     call->setCallingConv(getRuntimeCC());
3098     Builder.CreateUnreachable();
3099   }
3100 }
3101 
3102 /// Emits a call or invoke instruction to the given nullary runtime
3103 /// function.
3104 llvm::CallSite
EmitRuntimeCallOrInvoke(llvm::Value * callee,const Twine & name)3105 CodeGenFunction::EmitRuntimeCallOrInvoke(llvm::Value *callee,
3106                                          const Twine &name) {
3107   return EmitRuntimeCallOrInvoke(callee, None, name);
3108 }
3109 
3110 /// Emits a call or invoke instruction to the given runtime function.
3111 llvm::CallSite
EmitRuntimeCallOrInvoke(llvm::Value * callee,ArrayRef<llvm::Value * > args,const Twine & name)3112 CodeGenFunction::EmitRuntimeCallOrInvoke(llvm::Value *callee,
3113                                          ArrayRef<llvm::Value*> args,
3114                                          const Twine &name) {
3115   llvm::CallSite callSite = EmitCallOrInvoke(callee, args, name);
3116   callSite.setCallingConv(getRuntimeCC());
3117   return callSite;
3118 }
3119 
3120 /// Emits a call or invoke instruction to the given function, depending
3121 /// on the current state of the EH stack.
3122 llvm::CallSite
EmitCallOrInvoke(llvm::Value * Callee,ArrayRef<llvm::Value * > Args,const Twine & Name)3123 CodeGenFunction::EmitCallOrInvoke(llvm::Value *Callee,
3124                                   ArrayRef<llvm::Value *> Args,
3125                                   const Twine &Name) {
3126   llvm::BasicBlock *InvokeDest = getInvokeDest();
3127 
3128   llvm::Instruction *Inst;
3129   if (!InvokeDest)
3130     Inst = Builder.CreateCall(Callee, Args, Name);
3131   else {
3132     llvm::BasicBlock *ContBB = createBasicBlock("invoke.cont");
3133     Inst = Builder.CreateInvoke(Callee, ContBB, InvokeDest, Args, Name);
3134     EmitBlock(ContBB);
3135   }
3136 
3137   // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC
3138   // optimizer it can aggressively ignore unwind edges.
3139   if (CGM.getLangOpts().ObjCAutoRefCount)
3140     AddObjCARCExceptionMetadata(Inst);
3141 
3142   return llvm::CallSite(Inst);
3143 }
3144 
3145 /// \brief Store a non-aggregate value to an address to initialize it.  For
3146 /// initialization, a non-atomic store will be used.
EmitInitStoreOfNonAggregate(CodeGenFunction & CGF,RValue Src,LValue Dst)3147 static void EmitInitStoreOfNonAggregate(CodeGenFunction &CGF, RValue Src,
3148                                         LValue Dst) {
3149   if (Src.isScalar())
3150     CGF.EmitStoreOfScalar(Src.getScalarVal(), Dst, /*init=*/true);
3151   else
3152     CGF.EmitStoreOfComplex(Src.getComplexVal(), Dst, /*init=*/true);
3153 }
3154 
deferPlaceholderReplacement(llvm::Instruction * Old,llvm::Value * New)3155 void CodeGenFunction::deferPlaceholderReplacement(llvm::Instruction *Old,
3156                                                   llvm::Value *New) {
3157   DeferredReplacements.push_back(std::make_pair(Old, New));
3158 }
3159 
EmitCall(const CGFunctionInfo & CallInfo,llvm::Value * Callee,ReturnValueSlot ReturnValue,const CallArgList & CallArgs,CGCalleeInfo CalleeInfo,llvm::Instruction ** callOrInvoke)3160 RValue CodeGenFunction::EmitCall(const CGFunctionInfo &CallInfo,
3161                                  llvm::Value *Callee,
3162                                  ReturnValueSlot ReturnValue,
3163                                  const CallArgList &CallArgs,
3164                                  CGCalleeInfo CalleeInfo,
3165                                  llvm::Instruction **callOrInvoke) {
3166   // FIXME: We no longer need the types from CallArgs; lift up and simplify.
3167 
3168   // Handle struct-return functions by passing a pointer to the
3169   // location that we would like to return into.
3170   QualType RetTy = CallInfo.getReturnType();
3171   const ABIArgInfo &RetAI = CallInfo.getReturnInfo();
3172 
3173   llvm::FunctionType *IRFuncTy =
3174     cast<llvm::FunctionType>(
3175                   cast<llvm::PointerType>(Callee->getType())->getElementType());
3176 
3177   // If we're using inalloca, insert the allocation after the stack save.
3178   // FIXME: Do this earlier rather than hacking it in here!
3179   Address ArgMemory = Address::invalid();
3180   const llvm::StructLayout *ArgMemoryLayout = nullptr;
3181   if (llvm::StructType *ArgStruct = CallInfo.getArgStruct()) {
3182     ArgMemoryLayout = CGM.getDataLayout().getStructLayout(ArgStruct);
3183     llvm::Instruction *IP = CallArgs.getStackBase();
3184     llvm::AllocaInst *AI;
3185     if (IP) {
3186       IP = IP->getNextNode();
3187       AI = new llvm::AllocaInst(ArgStruct, "argmem", IP);
3188     } else {
3189       AI = CreateTempAlloca(ArgStruct, "argmem");
3190     }
3191     auto Align = CallInfo.getArgStructAlignment();
3192     AI->setAlignment(Align.getQuantity());
3193     AI->setUsedWithInAlloca(true);
3194     assert(AI->isUsedWithInAlloca() && !AI->isStaticAlloca());
3195     ArgMemory = Address(AI, Align);
3196   }
3197 
3198   // Helper function to drill into the inalloca allocation.
3199   auto createInAllocaStructGEP = [&](unsigned FieldIndex) -> Address {
3200     auto FieldOffset =
3201       CharUnits::fromQuantity(ArgMemoryLayout->getElementOffset(FieldIndex));
3202     return Builder.CreateStructGEP(ArgMemory, FieldIndex, FieldOffset);
3203   };
3204 
3205   ClangToLLVMArgMapping IRFunctionArgs(CGM.getContext(), CallInfo);
3206   SmallVector<llvm::Value *, 16> IRCallArgs(IRFunctionArgs.totalIRArgs());
3207 
3208   // If the call returns a temporary with struct return, create a temporary
3209   // alloca to hold the result, unless one is given to us.
3210   Address SRetPtr = Address::invalid();
3211   size_t UnusedReturnSize = 0;
3212   if (RetAI.isIndirect() || RetAI.isInAlloca()) {
3213     if (!ReturnValue.isNull()) {
3214       SRetPtr = ReturnValue.getValue();
3215     } else {
3216       SRetPtr = CreateMemTemp(RetTy);
3217       if (HaveInsertPoint() && ReturnValue.isUnused()) {
3218         uint64_t size =
3219             CGM.getDataLayout().getTypeAllocSize(ConvertTypeForMem(RetTy));
3220         if (EmitLifetimeStart(size, SRetPtr.getPointer()))
3221           UnusedReturnSize = size;
3222       }
3223     }
3224     if (IRFunctionArgs.hasSRetArg()) {
3225       IRCallArgs[IRFunctionArgs.getSRetArgNo()] = SRetPtr.getPointer();
3226     } else {
3227       Address Addr = createInAllocaStructGEP(RetAI.getInAllocaFieldIndex());
3228       Builder.CreateStore(SRetPtr.getPointer(), Addr);
3229     }
3230   }
3231 
3232   assert(CallInfo.arg_size() == CallArgs.size() &&
3233          "Mismatch between function signature & arguments.");
3234   unsigned ArgNo = 0;
3235   CGFunctionInfo::const_arg_iterator info_it = CallInfo.arg_begin();
3236   for (CallArgList::const_iterator I = CallArgs.begin(), E = CallArgs.end();
3237        I != E; ++I, ++info_it, ++ArgNo) {
3238     const ABIArgInfo &ArgInfo = info_it->info;
3239     RValue RV = I->RV;
3240 
3241     // Insert a padding argument to ensure proper alignment.
3242     if (IRFunctionArgs.hasPaddingArg(ArgNo))
3243       IRCallArgs[IRFunctionArgs.getPaddingArgNo(ArgNo)] =
3244           llvm::UndefValue::get(ArgInfo.getPaddingType());
3245 
3246     unsigned FirstIRArg, NumIRArgs;
3247     std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo);
3248 
3249     switch (ArgInfo.getKind()) {
3250     case ABIArgInfo::InAlloca: {
3251       assert(NumIRArgs == 0);
3252       assert(getTarget().getTriple().getArch() == llvm::Triple::x86);
3253       if (RV.isAggregate()) {
3254         // Replace the placeholder with the appropriate argument slot GEP.
3255         llvm::Instruction *Placeholder =
3256             cast<llvm::Instruction>(RV.getAggregatePointer());
3257         CGBuilderTy::InsertPoint IP = Builder.saveIP();
3258         Builder.SetInsertPoint(Placeholder);
3259         Address Addr = createInAllocaStructGEP(ArgInfo.getInAllocaFieldIndex());
3260         Builder.restoreIP(IP);
3261         deferPlaceholderReplacement(Placeholder, Addr.getPointer());
3262       } else {
3263         // Store the RValue into the argument struct.
3264         Address Addr = createInAllocaStructGEP(ArgInfo.getInAllocaFieldIndex());
3265         unsigned AS = Addr.getType()->getPointerAddressSpace();
3266         llvm::Type *MemType = ConvertTypeForMem(I->Ty)->getPointerTo(AS);
3267         // There are some cases where a trivial bitcast is not avoidable.  The
3268         // definition of a type later in a translation unit may change it's type
3269         // from {}* to (%struct.foo*)*.
3270         if (Addr.getType() != MemType)
3271           Addr = Builder.CreateBitCast(Addr, MemType);
3272         LValue argLV = MakeAddrLValue(Addr, I->Ty);
3273         EmitInitStoreOfNonAggregate(*this, RV, argLV);
3274       }
3275       break;
3276     }
3277 
3278     case ABIArgInfo::Indirect: {
3279       assert(NumIRArgs == 1);
3280       if (RV.isScalar() || RV.isComplex()) {
3281         // Make a temporary alloca to pass the argument.
3282         Address Addr = CreateMemTemp(I->Ty, ArgInfo.getIndirectAlign());
3283         IRCallArgs[FirstIRArg] = Addr.getPointer();
3284 
3285         LValue argLV = MakeAddrLValue(Addr, I->Ty);
3286         EmitInitStoreOfNonAggregate(*this, RV, argLV);
3287       } else {
3288         // We want to avoid creating an unnecessary temporary+copy here;
3289         // however, we need one in three cases:
3290         // 1. If the argument is not byval, and we are required to copy the
3291         //    source.  (This case doesn't occur on any common architecture.)
3292         // 2. If the argument is byval, RV is not sufficiently aligned, and
3293         //    we cannot force it to be sufficiently aligned.
3294         // 3. If the argument is byval, but RV is located in an address space
3295         //    different than that of the argument (0).
3296         Address Addr = RV.getAggregateAddress();
3297         CharUnits Align = ArgInfo.getIndirectAlign();
3298         const llvm::DataLayout *TD = &CGM.getDataLayout();
3299         const unsigned RVAddrSpace = Addr.getType()->getAddressSpace();
3300         const unsigned ArgAddrSpace =
3301             (FirstIRArg < IRFuncTy->getNumParams()
3302                  ? IRFuncTy->getParamType(FirstIRArg)->getPointerAddressSpace()
3303                  : 0);
3304         if ((!ArgInfo.getIndirectByVal() && I->NeedsCopy) ||
3305             (ArgInfo.getIndirectByVal() && Addr.getAlignment() < Align &&
3306              llvm::getOrEnforceKnownAlignment(Addr.getPointer(),
3307                                               Align.getQuantity(), *TD)
3308                < Align.getQuantity()) ||
3309             (ArgInfo.getIndirectByVal() && (RVAddrSpace != ArgAddrSpace))) {
3310           // Create an aligned temporary, and copy to it.
3311           Address AI = CreateMemTemp(I->Ty, ArgInfo.getIndirectAlign());
3312           IRCallArgs[FirstIRArg] = AI.getPointer();
3313           EmitAggregateCopy(AI, Addr, I->Ty, RV.isVolatileQualified());
3314         } else {
3315           // Skip the extra memcpy call.
3316           IRCallArgs[FirstIRArg] = Addr.getPointer();
3317         }
3318       }
3319       break;
3320     }
3321 
3322     case ABIArgInfo::Ignore:
3323       assert(NumIRArgs == 0);
3324       break;
3325 
3326     case ABIArgInfo::Extend:
3327     case ABIArgInfo::Direct: {
3328       if (!isa<llvm::StructType>(ArgInfo.getCoerceToType()) &&
3329           ArgInfo.getCoerceToType() == ConvertType(info_it->type) &&
3330           ArgInfo.getDirectOffset() == 0) {
3331         assert(NumIRArgs == 1);
3332         llvm::Value *V;
3333         if (RV.isScalar())
3334           V = RV.getScalarVal();
3335         else
3336           V = Builder.CreateLoad(RV.getAggregateAddress());
3337 
3338         // We might have to widen integers, but we should never truncate.
3339         if (ArgInfo.getCoerceToType() != V->getType() &&
3340             V->getType()->isIntegerTy())
3341           V = Builder.CreateZExt(V, ArgInfo.getCoerceToType());
3342 
3343         // If the argument doesn't match, perform a bitcast to coerce it.  This
3344         // can happen due to trivial type mismatches.
3345         if (FirstIRArg < IRFuncTy->getNumParams() &&
3346             V->getType() != IRFuncTy->getParamType(FirstIRArg))
3347           V = Builder.CreateBitCast(V, IRFuncTy->getParamType(FirstIRArg));
3348         IRCallArgs[FirstIRArg] = V;
3349         break;
3350       }
3351 
3352       // FIXME: Avoid the conversion through memory if possible.
3353       Address Src = Address::invalid();
3354       if (RV.isScalar() || RV.isComplex()) {
3355         Src = CreateMemTemp(I->Ty, "coerce");
3356         LValue SrcLV = MakeAddrLValue(Src, I->Ty);
3357         EmitInitStoreOfNonAggregate(*this, RV, SrcLV);
3358       } else {
3359         Src = RV.getAggregateAddress();
3360       }
3361 
3362       // If the value is offset in memory, apply the offset now.
3363       Src = emitAddressAtOffset(*this, Src, ArgInfo);
3364 
3365       // Fast-isel and the optimizer generally like scalar values better than
3366       // FCAs, so we flatten them if this is safe to do for this argument.
3367       llvm::StructType *STy =
3368             dyn_cast<llvm::StructType>(ArgInfo.getCoerceToType());
3369       if (STy && ArgInfo.isDirect() && ArgInfo.getCanBeFlattened()) {
3370         llvm::Type *SrcTy = Src.getType()->getElementType();
3371         uint64_t SrcSize = CGM.getDataLayout().getTypeAllocSize(SrcTy);
3372         uint64_t DstSize = CGM.getDataLayout().getTypeAllocSize(STy);
3373 
3374         // If the source type is smaller than the destination type of the
3375         // coerce-to logic, copy the source value into a temp alloca the size
3376         // of the destination type to allow loading all of it. The bits past
3377         // the source value are left undef.
3378         if (SrcSize < DstSize) {
3379           Address TempAlloca
3380             = CreateTempAlloca(STy, Src.getAlignment(),
3381                                Src.getName() + ".coerce");
3382           Builder.CreateMemCpy(TempAlloca, Src, SrcSize);
3383           Src = TempAlloca;
3384         } else {
3385           Src = Builder.CreateBitCast(Src, llvm::PointerType::getUnqual(STy));
3386         }
3387 
3388         auto SrcLayout = CGM.getDataLayout().getStructLayout(STy);
3389         assert(NumIRArgs == STy->getNumElements());
3390         for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
3391           auto Offset = CharUnits::fromQuantity(SrcLayout->getElementOffset(i));
3392           Address EltPtr = Builder.CreateStructGEP(Src, i, Offset);
3393           llvm::Value *LI = Builder.CreateLoad(EltPtr);
3394           IRCallArgs[FirstIRArg + i] = LI;
3395         }
3396       } else {
3397         // In the simple case, just pass the coerced loaded value.
3398         assert(NumIRArgs == 1);
3399         IRCallArgs[FirstIRArg] =
3400           CreateCoercedLoad(Src, ArgInfo.getCoerceToType(), *this);
3401       }
3402 
3403       break;
3404     }
3405 
3406     case ABIArgInfo::Expand:
3407       unsigned IRArgPos = FirstIRArg;
3408       ExpandTypeToArgs(I->Ty, RV, IRFuncTy, IRCallArgs, IRArgPos);
3409       assert(IRArgPos == FirstIRArg + NumIRArgs);
3410       break;
3411     }
3412   }
3413 
3414   if (ArgMemory.isValid()) {
3415     llvm::Value *Arg = ArgMemory.getPointer();
3416     if (CallInfo.isVariadic()) {
3417       // When passing non-POD arguments by value to variadic functions, we will
3418       // end up with a variadic prototype and an inalloca call site.  In such
3419       // cases, we can't do any parameter mismatch checks.  Give up and bitcast
3420       // the callee.
3421       unsigned CalleeAS =
3422           cast<llvm::PointerType>(Callee->getType())->getAddressSpace();
3423       Callee = Builder.CreateBitCast(
3424           Callee, getTypes().GetFunctionType(CallInfo)->getPointerTo(CalleeAS));
3425     } else {
3426       llvm::Type *LastParamTy =
3427           IRFuncTy->getParamType(IRFuncTy->getNumParams() - 1);
3428       if (Arg->getType() != LastParamTy) {
3429 #ifndef NDEBUG
3430         // Assert that these structs have equivalent element types.
3431         llvm::StructType *FullTy = CallInfo.getArgStruct();
3432         llvm::StructType *DeclaredTy = cast<llvm::StructType>(
3433             cast<llvm::PointerType>(LastParamTy)->getElementType());
3434         assert(DeclaredTy->getNumElements() == FullTy->getNumElements());
3435         for (llvm::StructType::element_iterator DI = DeclaredTy->element_begin(),
3436                                                 DE = DeclaredTy->element_end(),
3437                                                 FI = FullTy->element_begin();
3438              DI != DE; ++DI, ++FI)
3439           assert(*DI == *FI);
3440 #endif
3441         Arg = Builder.CreateBitCast(Arg, LastParamTy);
3442       }
3443     }
3444     assert(IRFunctionArgs.hasInallocaArg());
3445     IRCallArgs[IRFunctionArgs.getInallocaArgNo()] = Arg;
3446   }
3447 
3448   if (!CallArgs.getCleanupsToDeactivate().empty())
3449     deactivateArgCleanupsBeforeCall(*this, CallArgs);
3450 
3451   // If the callee is a bitcast of a function to a varargs pointer to function
3452   // type, check to see if we can remove the bitcast.  This handles some cases
3453   // with unprototyped functions.
3454   if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Callee))
3455     if (llvm::Function *CalleeF = dyn_cast<llvm::Function>(CE->getOperand(0))) {
3456       llvm::PointerType *CurPT=cast<llvm::PointerType>(Callee->getType());
3457       llvm::FunctionType *CurFT =
3458         cast<llvm::FunctionType>(CurPT->getElementType());
3459       llvm::FunctionType *ActualFT = CalleeF->getFunctionType();
3460 
3461       if (CE->getOpcode() == llvm::Instruction::BitCast &&
3462           ActualFT->getReturnType() == CurFT->getReturnType() &&
3463           ActualFT->getNumParams() == CurFT->getNumParams() &&
3464           ActualFT->getNumParams() == IRCallArgs.size() &&
3465           (CurFT->isVarArg() || !ActualFT->isVarArg())) {
3466         bool ArgsMatch = true;
3467         for (unsigned i = 0, e = ActualFT->getNumParams(); i != e; ++i)
3468           if (ActualFT->getParamType(i) != CurFT->getParamType(i)) {
3469             ArgsMatch = false;
3470             break;
3471           }
3472 
3473         // Strip the cast if we can get away with it.  This is a nice cleanup,
3474         // but also allows us to inline the function at -O0 if it is marked
3475         // always_inline.
3476         if (ArgsMatch)
3477           Callee = CalleeF;
3478       }
3479     }
3480 
3481   assert(IRCallArgs.size() == IRFuncTy->getNumParams() || IRFuncTy->isVarArg());
3482   for (unsigned i = 0; i < IRCallArgs.size(); ++i) {
3483     // Inalloca argument can have different type.
3484     if (IRFunctionArgs.hasInallocaArg() &&
3485         i == IRFunctionArgs.getInallocaArgNo())
3486       continue;
3487     if (i < IRFuncTy->getNumParams())
3488       assert(IRCallArgs[i]->getType() == IRFuncTy->getParamType(i));
3489   }
3490 
3491   unsigned CallingConv;
3492   CodeGen::AttributeListType AttributeList;
3493   CGM.ConstructAttributeList(CallInfo, CalleeInfo, AttributeList, CallingConv,
3494                              true);
3495   llvm::AttributeSet Attrs = llvm::AttributeSet::get(getLLVMContext(),
3496                                                      AttributeList);
3497 
3498   bool CannotThrow;
3499   if (currentFunctionUsesSEHTry()) {
3500     // SEH cares about asynchronous exceptions, everything can "throw."
3501     CannotThrow = false;
3502   } else if (isCleanupPadScope() &&
3503              EHPersonality::get(*this).isMSVCXXPersonality()) {
3504     // The MSVC++ personality will implicitly terminate the program if an
3505     // exception is thrown.  An unwind edge cannot be reached.
3506     CannotThrow = true;
3507   } else {
3508     // Otherwise, nowunind callsites will never throw.
3509     CannotThrow = Attrs.hasAttribute(llvm::AttributeSet::FunctionIndex,
3510                                      llvm::Attribute::NoUnwind);
3511   }
3512   llvm::BasicBlock *InvokeDest = CannotThrow ? nullptr : getInvokeDest();
3513 
3514   SmallVector<llvm::OperandBundleDef, 1> BundleList;
3515   getBundlesForFunclet(Callee, CurrentFuncletPad, BundleList);
3516 
3517   llvm::CallSite CS;
3518   if (!InvokeDest) {
3519     CS = Builder.CreateCall(Callee, IRCallArgs, BundleList);
3520   } else {
3521     llvm::BasicBlock *Cont = createBasicBlock("invoke.cont");
3522     CS = Builder.CreateInvoke(Callee, Cont, InvokeDest, IRCallArgs,
3523                               BundleList);
3524     EmitBlock(Cont);
3525   }
3526   if (callOrInvoke)
3527     *callOrInvoke = CS.getInstruction();
3528 
3529   if (CurCodeDecl && CurCodeDecl->hasAttr<FlattenAttr>() &&
3530       !CS.hasFnAttr(llvm::Attribute::NoInline))
3531     Attrs =
3532         Attrs.addAttribute(getLLVMContext(), llvm::AttributeSet::FunctionIndex,
3533                            llvm::Attribute::AlwaysInline);
3534 
3535   // Disable inlining inside SEH __try blocks.
3536   if (isSEHTryScope())
3537     Attrs =
3538         Attrs.addAttribute(getLLVMContext(), llvm::AttributeSet::FunctionIndex,
3539                            llvm::Attribute::NoInline);
3540 
3541   CS.setAttributes(Attrs);
3542   CS.setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
3543 
3544   // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC
3545   // optimizer it can aggressively ignore unwind edges.
3546   if (CGM.getLangOpts().ObjCAutoRefCount)
3547     AddObjCARCExceptionMetadata(CS.getInstruction());
3548 
3549   // If the call doesn't return, finish the basic block and clear the
3550   // insertion point; this allows the rest of IRgen to discard
3551   // unreachable code.
3552   if (CS.doesNotReturn()) {
3553     if (UnusedReturnSize)
3554       EmitLifetimeEnd(llvm::ConstantInt::get(Int64Ty, UnusedReturnSize),
3555                       SRetPtr.getPointer());
3556 
3557     Builder.CreateUnreachable();
3558     Builder.ClearInsertionPoint();
3559 
3560     // FIXME: For now, emit a dummy basic block because expr emitters in
3561     // generally are not ready to handle emitting expressions at unreachable
3562     // points.
3563     EnsureInsertPoint();
3564 
3565     // Return a reasonable RValue.
3566     return GetUndefRValue(RetTy);
3567   }
3568 
3569   llvm::Instruction *CI = CS.getInstruction();
3570   if (Builder.isNamePreserving() && !CI->getType()->isVoidTy())
3571     CI->setName("call");
3572 
3573   // Emit any writebacks immediately.  Arguably this should happen
3574   // after any return-value munging.
3575   if (CallArgs.hasWritebacks())
3576     emitWritebacks(*this, CallArgs);
3577 
3578   // The stack cleanup for inalloca arguments has to run out of the normal
3579   // lexical order, so deactivate it and run it manually here.
3580   CallArgs.freeArgumentMemory(*this);
3581 
3582   if (llvm::CallInst *Call = dyn_cast<llvm::CallInst>(CI)) {
3583     const Decl *TargetDecl = CalleeInfo.getCalleeDecl();
3584     if (TargetDecl && TargetDecl->hasAttr<NotTailCalledAttr>())
3585       Call->setTailCallKind(llvm::CallInst::TCK_NoTail);
3586   }
3587 
3588   RValue Ret = [&] {
3589     switch (RetAI.getKind()) {
3590     case ABIArgInfo::InAlloca:
3591     case ABIArgInfo::Indirect: {
3592       RValue ret = convertTempToRValue(SRetPtr, RetTy, SourceLocation());
3593       if (UnusedReturnSize)
3594         EmitLifetimeEnd(llvm::ConstantInt::get(Int64Ty, UnusedReturnSize),
3595                         SRetPtr.getPointer());
3596       return ret;
3597     }
3598 
3599     case ABIArgInfo::Ignore:
3600       // If we are ignoring an argument that had a result, make sure to
3601       // construct the appropriate return value for our caller.
3602       return GetUndefRValue(RetTy);
3603 
3604     case ABIArgInfo::Extend:
3605     case ABIArgInfo::Direct: {
3606       llvm::Type *RetIRTy = ConvertType(RetTy);
3607       if (RetAI.getCoerceToType() == RetIRTy && RetAI.getDirectOffset() == 0) {
3608         switch (getEvaluationKind(RetTy)) {
3609         case TEK_Complex: {
3610           llvm::Value *Real = Builder.CreateExtractValue(CI, 0);
3611           llvm::Value *Imag = Builder.CreateExtractValue(CI, 1);
3612           return RValue::getComplex(std::make_pair(Real, Imag));
3613         }
3614         case TEK_Aggregate: {
3615           Address DestPtr = ReturnValue.getValue();
3616           bool DestIsVolatile = ReturnValue.isVolatile();
3617 
3618           if (!DestPtr.isValid()) {
3619             DestPtr = CreateMemTemp(RetTy, "agg.tmp");
3620             DestIsVolatile = false;
3621           }
3622           BuildAggStore(*this, CI, DestPtr, DestIsVolatile);
3623           return RValue::getAggregate(DestPtr);
3624         }
3625         case TEK_Scalar: {
3626           // If the argument doesn't match, perform a bitcast to coerce it.  This
3627           // can happen due to trivial type mismatches.
3628           llvm::Value *V = CI;
3629           if (V->getType() != RetIRTy)
3630             V = Builder.CreateBitCast(V, RetIRTy);
3631           return RValue::get(V);
3632         }
3633         }
3634         llvm_unreachable("bad evaluation kind");
3635       }
3636 
3637       Address DestPtr = ReturnValue.getValue();
3638       bool DestIsVolatile = ReturnValue.isVolatile();
3639 
3640       if (!DestPtr.isValid()) {
3641         DestPtr = CreateMemTemp(RetTy, "coerce");
3642         DestIsVolatile = false;
3643       }
3644 
3645       // If the value is offset in memory, apply the offset now.
3646       Address StorePtr = emitAddressAtOffset(*this, DestPtr, RetAI);
3647       CreateCoercedStore(CI, StorePtr, DestIsVolatile, *this);
3648 
3649       return convertTempToRValue(DestPtr, RetTy, SourceLocation());
3650     }
3651 
3652     case ABIArgInfo::Expand:
3653       llvm_unreachable("Invalid ABI kind for return argument");
3654     }
3655 
3656     llvm_unreachable("Unhandled ABIArgInfo::Kind");
3657   } ();
3658 
3659   const Decl *TargetDecl = CalleeInfo.getCalleeDecl();
3660 
3661   if (Ret.isScalar() && TargetDecl) {
3662     if (const auto *AA = TargetDecl->getAttr<AssumeAlignedAttr>()) {
3663       llvm::Value *OffsetValue = nullptr;
3664       if (const auto *Offset = AA->getOffset())
3665         OffsetValue = EmitScalarExpr(Offset);
3666 
3667       llvm::Value *Alignment = EmitScalarExpr(AA->getAlignment());
3668       llvm::ConstantInt *AlignmentCI = cast<llvm::ConstantInt>(Alignment);
3669       EmitAlignmentAssumption(Ret.getScalarVal(), AlignmentCI->getZExtValue(),
3670                               OffsetValue);
3671     }
3672   }
3673 
3674   return Ret;
3675 }
3676 
3677 /* VarArg handling */
3678 
EmitVAArg(VAArgExpr * VE,Address & VAListAddr)3679 Address CodeGenFunction::EmitVAArg(VAArgExpr *VE, Address &VAListAddr) {
3680   VAListAddr = VE->isMicrosoftABI()
3681                  ? EmitMSVAListRef(VE->getSubExpr())
3682                  : EmitVAListRef(VE->getSubExpr());
3683   QualType Ty = VE->getType();
3684   if (VE->isMicrosoftABI())
3685     return CGM.getTypes().getABIInfo().EmitMSVAArg(*this, VAListAddr, Ty);
3686   return CGM.getTypes().getABIInfo().EmitVAArg(*this, VAListAddr, Ty);
3687 }
3688