1 //===------ RegAllocPBQP.cpp ---- PBQP Register Allocator -------*- C++ -*-===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains a Partitioned Boolean Quadratic Programming (PBQP) based
11 // register allocator for LLVM. This allocator works by constructing a PBQP
12 // problem representing the register allocation problem under consideration,
13 // solving this using a PBQP solver, and mapping the solution back to a
14 // register assignment. If any variables are selected for spilling then spill
15 // code is inserted and the process repeated.
16 //
17 // The PBQP solver (pbqp.c) provided for this allocator uses a heuristic tuned
18 // for register allocation. For more information on PBQP for register
19 // allocation, see the following papers:
20 //
21 // (1) Hames, L. and Scholz, B. 2006. Nearly optimal register allocation with
22 // PBQP. In Proceedings of the 7th Joint Modular Languages Conference
23 // (JMLC'06). LNCS, vol. 4228. Springer, New York, NY, USA. 346-361.
24 //
25 // (2) Scholz, B., Eckstein, E. 2002. Register allocation for irregular
26 // architectures. In Proceedings of the Joint Conference on Languages,
27 // Compilers and Tools for Embedded Systems (LCTES'02), ACM Press, New York,
28 // NY, USA, 139-148.
29 //
30 //===----------------------------------------------------------------------===//
31
32 #include "llvm/CodeGen/RegAllocPBQP.h"
33 #include "RegisterCoalescer.h"
34 #include "Spiller.h"
35 #include "llvm/Analysis/AliasAnalysis.h"
36 #include "llvm/CodeGen/CalcSpillWeights.h"
37 #include "llvm/CodeGen/LiveIntervalAnalysis.h"
38 #include "llvm/CodeGen/LiveRangeEdit.h"
39 #include "llvm/CodeGen/LiveStackAnalysis.h"
40 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
41 #include "llvm/CodeGen/MachineDominators.h"
42 #include "llvm/CodeGen/MachineFunctionPass.h"
43 #include "llvm/CodeGen/MachineLoopInfo.h"
44 #include "llvm/CodeGen/MachineRegisterInfo.h"
45 #include "llvm/CodeGen/RegAllocRegistry.h"
46 #include "llvm/CodeGen/VirtRegMap.h"
47 #include "llvm/IR/Module.h"
48 #include "llvm/Support/Debug.h"
49 #include "llvm/Support/FileSystem.h"
50 #include "llvm/Support/Printable.h"
51 #include "llvm/Support/raw_ostream.h"
52 #include "llvm/Target/TargetInstrInfo.h"
53 #include "llvm/Target/TargetSubtargetInfo.h"
54 #include <limits>
55 #include <memory>
56 #include <queue>
57 #include <set>
58 #include <sstream>
59 #include <vector>
60
61 using namespace llvm;
62
63 #define DEBUG_TYPE "regalloc"
64
65 static RegisterRegAlloc
66 RegisterPBQPRepAlloc("pbqp", "PBQP register allocator",
67 createDefaultPBQPRegisterAllocator);
68
69 static cl::opt<bool>
70 PBQPCoalescing("pbqp-coalescing",
71 cl::desc("Attempt coalescing during PBQP register allocation."),
72 cl::init(false), cl::Hidden);
73
74 #ifndef NDEBUG
75 static cl::opt<bool>
76 PBQPDumpGraphs("pbqp-dump-graphs",
77 cl::desc("Dump graphs for each function/round in the compilation unit."),
78 cl::init(false), cl::Hidden);
79 #endif
80
81 namespace {
82
83 ///
84 /// PBQP based allocators solve the register allocation problem by mapping
85 /// register allocation problems to Partitioned Boolean Quadratic
86 /// Programming problems.
87 class RegAllocPBQP : public MachineFunctionPass {
88 public:
89
90 static char ID;
91
92 /// Construct a PBQP register allocator.
RegAllocPBQP(char * cPassID=nullptr)93 RegAllocPBQP(char *cPassID = nullptr)
94 : MachineFunctionPass(ID), customPassID(cPassID) {
95 initializeSlotIndexesPass(*PassRegistry::getPassRegistry());
96 initializeLiveIntervalsPass(*PassRegistry::getPassRegistry());
97 initializeLiveStacksPass(*PassRegistry::getPassRegistry());
98 initializeVirtRegMapPass(*PassRegistry::getPassRegistry());
99 }
100
101 /// Return the pass name.
getPassName() const102 const char* getPassName() const override {
103 return "PBQP Register Allocator";
104 }
105
106 /// PBQP analysis usage.
107 void getAnalysisUsage(AnalysisUsage &au) const override;
108
109 /// Perform register allocation
110 bool runOnMachineFunction(MachineFunction &MF) override;
111
112 private:
113
114 typedef std::map<const LiveInterval*, unsigned> LI2NodeMap;
115 typedef std::vector<const LiveInterval*> Node2LIMap;
116 typedef std::vector<unsigned> AllowedSet;
117 typedef std::vector<AllowedSet> AllowedSetMap;
118 typedef std::pair<unsigned, unsigned> RegPair;
119 typedef std::map<RegPair, PBQP::PBQPNum> CoalesceMap;
120 typedef std::set<unsigned> RegSet;
121
122 char *customPassID;
123
124 RegSet VRegsToAlloc, EmptyIntervalVRegs;
125
126 /// \brief Finds the initial set of vreg intervals to allocate.
127 void findVRegIntervalsToAlloc(const MachineFunction &MF, LiveIntervals &LIS);
128
129 /// \brief Constructs an initial graph.
130 void initializeGraph(PBQPRAGraph &G, VirtRegMap &VRM, Spiller &VRegSpiller);
131
132 /// \brief Spill the given VReg.
133 void spillVReg(unsigned VReg, SmallVectorImpl<unsigned> &NewIntervals,
134 MachineFunction &MF, LiveIntervals &LIS, VirtRegMap &VRM,
135 Spiller &VRegSpiller);
136
137 /// \brief Given a solved PBQP problem maps this solution back to a register
138 /// assignment.
139 bool mapPBQPToRegAlloc(const PBQPRAGraph &G,
140 const PBQP::Solution &Solution,
141 VirtRegMap &VRM,
142 Spiller &VRegSpiller);
143
144 /// \brief Postprocessing before final spilling. Sets basic block "live in"
145 /// variables.
146 void finalizeAlloc(MachineFunction &MF, LiveIntervals &LIS,
147 VirtRegMap &VRM) const;
148
149 };
150
151 char RegAllocPBQP::ID = 0;
152
153 /// @brief Set spill costs for each node in the PBQP reg-alloc graph.
154 class SpillCosts : public PBQPRAConstraint {
155 public:
apply(PBQPRAGraph & G)156 void apply(PBQPRAGraph &G) override {
157 LiveIntervals &LIS = G.getMetadata().LIS;
158
159 // A minimum spill costs, so that register constraints can can be set
160 // without normalization in the [0.0:MinSpillCost( interval.
161 const PBQP::PBQPNum MinSpillCost = 10.0;
162
163 for (auto NId : G.nodeIds()) {
164 PBQP::PBQPNum SpillCost =
165 LIS.getInterval(G.getNodeMetadata(NId).getVReg()).weight;
166 if (SpillCost == 0.0)
167 SpillCost = std::numeric_limits<PBQP::PBQPNum>::min();
168 else
169 SpillCost += MinSpillCost;
170 PBQPRAGraph::RawVector NodeCosts(G.getNodeCosts(NId));
171 NodeCosts[PBQP::RegAlloc::getSpillOptionIdx()] = SpillCost;
172 G.setNodeCosts(NId, std::move(NodeCosts));
173 }
174 }
175 };
176
177 /// @brief Add interference edges between overlapping vregs.
178 class Interference : public PBQPRAConstraint {
179 private:
180
181 typedef const PBQP::RegAlloc::AllowedRegVector* AllowedRegVecPtr;
182 typedef std::pair<AllowedRegVecPtr, AllowedRegVecPtr> IKey;
183 typedef DenseMap<IKey, PBQPRAGraph::MatrixPtr> IMatrixCache;
184 typedef DenseSet<IKey> DisjointAllowedRegsCache;
185 typedef std::pair<PBQP::GraphBase::NodeId, PBQP::GraphBase::NodeId> IEdgeKey;
186 typedef DenseSet<IEdgeKey> IEdgeCache;
187
haveDisjointAllowedRegs(const PBQPRAGraph & G,PBQPRAGraph::NodeId NId,PBQPRAGraph::NodeId MId,const DisjointAllowedRegsCache & D) const188 bool haveDisjointAllowedRegs(const PBQPRAGraph &G, PBQPRAGraph::NodeId NId,
189 PBQPRAGraph::NodeId MId,
190 const DisjointAllowedRegsCache &D) const {
191 const auto *NRegs = &G.getNodeMetadata(NId).getAllowedRegs();
192 const auto *MRegs = &G.getNodeMetadata(MId).getAllowedRegs();
193
194 if (NRegs == MRegs)
195 return false;
196
197 if (NRegs < MRegs)
198 return D.count(IKey(NRegs, MRegs)) > 0;
199
200 return D.count(IKey(MRegs, NRegs)) > 0;
201 }
202
setDisjointAllowedRegs(const PBQPRAGraph & G,PBQPRAGraph::NodeId NId,PBQPRAGraph::NodeId MId,DisjointAllowedRegsCache & D)203 void setDisjointAllowedRegs(const PBQPRAGraph &G, PBQPRAGraph::NodeId NId,
204 PBQPRAGraph::NodeId MId,
205 DisjointAllowedRegsCache &D) {
206 const auto *NRegs = &G.getNodeMetadata(NId).getAllowedRegs();
207 const auto *MRegs = &G.getNodeMetadata(MId).getAllowedRegs();
208
209 assert(NRegs != MRegs && "AllowedRegs can not be disjoint with itself");
210
211 if (NRegs < MRegs)
212 D.insert(IKey(NRegs, MRegs));
213 else
214 D.insert(IKey(MRegs, NRegs));
215 }
216
217 // Holds (Interval, CurrentSegmentID, and NodeId). The first two are required
218 // for the fast interference graph construction algorithm. The last is there
219 // to save us from looking up node ids via the VRegToNode map in the graph
220 // metadata.
221 typedef std::tuple<LiveInterval*, size_t, PBQP::GraphBase::NodeId>
222 IntervalInfo;
223
getStartPoint(const IntervalInfo & I)224 static SlotIndex getStartPoint(const IntervalInfo &I) {
225 return std::get<0>(I)->segments[std::get<1>(I)].start;
226 }
227
getEndPoint(const IntervalInfo & I)228 static SlotIndex getEndPoint(const IntervalInfo &I) {
229 return std::get<0>(I)->segments[std::get<1>(I)].end;
230 }
231
getNodeId(const IntervalInfo & I)232 static PBQP::GraphBase::NodeId getNodeId(const IntervalInfo &I) {
233 return std::get<2>(I);
234 }
235
lowestStartPoint(const IntervalInfo & I1,const IntervalInfo & I2)236 static bool lowestStartPoint(const IntervalInfo &I1,
237 const IntervalInfo &I2) {
238 // Condition reversed because priority queue has the *highest* element at
239 // the front, rather than the lowest.
240 return getStartPoint(I1) > getStartPoint(I2);
241 }
242
lowestEndPoint(const IntervalInfo & I1,const IntervalInfo & I2)243 static bool lowestEndPoint(const IntervalInfo &I1,
244 const IntervalInfo &I2) {
245 SlotIndex E1 = getEndPoint(I1);
246 SlotIndex E2 = getEndPoint(I2);
247
248 if (E1 < E2)
249 return true;
250
251 if (E1 > E2)
252 return false;
253
254 // If two intervals end at the same point, we need a way to break the tie or
255 // the set will assume they're actually equal and refuse to insert a
256 // "duplicate". Just compare the vregs - fast and guaranteed unique.
257 return std::get<0>(I1)->reg < std::get<0>(I2)->reg;
258 }
259
isAtLastSegment(const IntervalInfo & I)260 static bool isAtLastSegment(const IntervalInfo &I) {
261 return std::get<1>(I) == std::get<0>(I)->size() - 1;
262 }
263
nextSegment(const IntervalInfo & I)264 static IntervalInfo nextSegment(const IntervalInfo &I) {
265 return std::make_tuple(std::get<0>(I), std::get<1>(I) + 1, std::get<2>(I));
266 }
267
268 public:
269
apply(PBQPRAGraph & G)270 void apply(PBQPRAGraph &G) override {
271 // The following is loosely based on the linear scan algorithm introduced in
272 // "Linear Scan Register Allocation" by Poletto and Sarkar. This version
273 // isn't linear, because the size of the active set isn't bound by the
274 // number of registers, but rather the size of the largest clique in the
275 // graph. Still, we expect this to be better than N^2.
276 LiveIntervals &LIS = G.getMetadata().LIS;
277
278 // Interferenc matrices are incredibly regular - they're only a function of
279 // the allowed sets, so we cache them to avoid the overhead of constructing
280 // and uniquing them.
281 IMatrixCache C;
282
283 // Finding an edge is expensive in the worst case (O(max_clique(G))). So
284 // cache locally edges we have already seen.
285 IEdgeCache EC;
286
287 // Cache known disjoint allowed registers pairs
288 DisjointAllowedRegsCache D;
289
290 typedef std::set<IntervalInfo, decltype(&lowestEndPoint)> IntervalSet;
291 typedef std::priority_queue<IntervalInfo, std::vector<IntervalInfo>,
292 decltype(&lowestStartPoint)> IntervalQueue;
293 IntervalSet Active(lowestEndPoint);
294 IntervalQueue Inactive(lowestStartPoint);
295
296 // Start by building the inactive set.
297 for (auto NId : G.nodeIds()) {
298 unsigned VReg = G.getNodeMetadata(NId).getVReg();
299 LiveInterval &LI = LIS.getInterval(VReg);
300 assert(!LI.empty() && "PBQP graph contains node for empty interval");
301 Inactive.push(std::make_tuple(&LI, 0, NId));
302 }
303
304 while (!Inactive.empty()) {
305 // Tentatively grab the "next" interval - this choice may be overriden
306 // below.
307 IntervalInfo Cur = Inactive.top();
308
309 // Retire any active intervals that end before Cur starts.
310 IntervalSet::iterator RetireItr = Active.begin();
311 while (RetireItr != Active.end() &&
312 (getEndPoint(*RetireItr) <= getStartPoint(Cur))) {
313 // If this interval has subsequent segments, add the next one to the
314 // inactive list.
315 if (!isAtLastSegment(*RetireItr))
316 Inactive.push(nextSegment(*RetireItr));
317
318 ++RetireItr;
319 }
320 Active.erase(Active.begin(), RetireItr);
321
322 // One of the newly retired segments may actually start before the
323 // Cur segment, so re-grab the front of the inactive list.
324 Cur = Inactive.top();
325 Inactive.pop();
326
327 // At this point we know that Cur overlaps all active intervals. Add the
328 // interference edges.
329 PBQP::GraphBase::NodeId NId = getNodeId(Cur);
330 for (const auto &A : Active) {
331 PBQP::GraphBase::NodeId MId = getNodeId(A);
332
333 // Do not add an edge when the nodes' allowed registers do not
334 // intersect: there is obviously no interference.
335 if (haveDisjointAllowedRegs(G, NId, MId, D))
336 continue;
337
338 // Check that we haven't already added this edge
339 IEdgeKey EK(std::min(NId, MId), std::max(NId, MId));
340 if (EC.count(EK))
341 continue;
342
343 // This is a new edge - add it to the graph.
344 if (!createInterferenceEdge(G, NId, MId, C))
345 setDisjointAllowedRegs(G, NId, MId, D);
346 else
347 EC.insert(EK);
348 }
349
350 // Finally, add Cur to the Active set.
351 Active.insert(Cur);
352 }
353 }
354
355 private:
356
357 // Create an Interference edge and add it to the graph, unless it is
358 // a null matrix, meaning the nodes' allowed registers do not have any
359 // interference. This case occurs frequently between integer and floating
360 // point registers for example.
361 // return true iff both nodes interferes.
createInterferenceEdge(PBQPRAGraph & G,PBQPRAGraph::NodeId NId,PBQPRAGraph::NodeId MId,IMatrixCache & C)362 bool createInterferenceEdge(PBQPRAGraph &G,
363 PBQPRAGraph::NodeId NId, PBQPRAGraph::NodeId MId,
364 IMatrixCache &C) {
365
366 const TargetRegisterInfo &TRI =
367 *G.getMetadata().MF.getSubtarget().getRegisterInfo();
368 const auto &NRegs = G.getNodeMetadata(NId).getAllowedRegs();
369 const auto &MRegs = G.getNodeMetadata(MId).getAllowedRegs();
370
371 // Try looking the edge costs up in the IMatrixCache first.
372 IKey K(&NRegs, &MRegs);
373 IMatrixCache::iterator I = C.find(K);
374 if (I != C.end()) {
375 G.addEdgeBypassingCostAllocator(NId, MId, I->second);
376 return true;
377 }
378
379 PBQPRAGraph::RawMatrix M(NRegs.size() + 1, MRegs.size() + 1, 0);
380 bool NodesInterfere = false;
381 for (unsigned I = 0; I != NRegs.size(); ++I) {
382 unsigned PRegN = NRegs[I];
383 for (unsigned J = 0; J != MRegs.size(); ++J) {
384 unsigned PRegM = MRegs[J];
385 if (TRI.regsOverlap(PRegN, PRegM)) {
386 M[I + 1][J + 1] = std::numeric_limits<PBQP::PBQPNum>::infinity();
387 NodesInterfere = true;
388 }
389 }
390 }
391
392 if (!NodesInterfere)
393 return false;
394
395 PBQPRAGraph::EdgeId EId = G.addEdge(NId, MId, std::move(M));
396 C[K] = G.getEdgeCostsPtr(EId);
397
398 return true;
399 }
400 };
401
402
403 class Coalescing : public PBQPRAConstraint {
404 public:
apply(PBQPRAGraph & G)405 void apply(PBQPRAGraph &G) override {
406 MachineFunction &MF = G.getMetadata().MF;
407 MachineBlockFrequencyInfo &MBFI = G.getMetadata().MBFI;
408 CoalescerPair CP(*MF.getSubtarget().getRegisterInfo());
409
410 // Scan the machine function and add a coalescing cost whenever CoalescerPair
411 // gives the Ok.
412 for (const auto &MBB : MF) {
413 for (const auto &MI : MBB) {
414
415 // Skip not-coalescable or already coalesced copies.
416 if (!CP.setRegisters(&MI) || CP.getSrcReg() == CP.getDstReg())
417 continue;
418
419 unsigned DstReg = CP.getDstReg();
420 unsigned SrcReg = CP.getSrcReg();
421
422 const float Scale = 1.0f / MBFI.getEntryFreq();
423 PBQP::PBQPNum CBenefit = MBFI.getBlockFreq(&MBB).getFrequency() * Scale;
424
425 if (CP.isPhys()) {
426 if (!MF.getRegInfo().isAllocatable(DstReg))
427 continue;
428
429 PBQPRAGraph::NodeId NId = G.getMetadata().getNodeIdForVReg(SrcReg);
430
431 const PBQPRAGraph::NodeMetadata::AllowedRegVector &Allowed =
432 G.getNodeMetadata(NId).getAllowedRegs();
433
434 unsigned PRegOpt = 0;
435 while (PRegOpt < Allowed.size() && Allowed[PRegOpt] != DstReg)
436 ++PRegOpt;
437
438 if (PRegOpt < Allowed.size()) {
439 PBQPRAGraph::RawVector NewCosts(G.getNodeCosts(NId));
440 NewCosts[PRegOpt + 1] -= CBenefit;
441 G.setNodeCosts(NId, std::move(NewCosts));
442 }
443 } else {
444 PBQPRAGraph::NodeId N1Id = G.getMetadata().getNodeIdForVReg(DstReg);
445 PBQPRAGraph::NodeId N2Id = G.getMetadata().getNodeIdForVReg(SrcReg);
446 const PBQPRAGraph::NodeMetadata::AllowedRegVector *Allowed1 =
447 &G.getNodeMetadata(N1Id).getAllowedRegs();
448 const PBQPRAGraph::NodeMetadata::AllowedRegVector *Allowed2 =
449 &G.getNodeMetadata(N2Id).getAllowedRegs();
450
451 PBQPRAGraph::EdgeId EId = G.findEdge(N1Id, N2Id);
452 if (EId == G.invalidEdgeId()) {
453 PBQPRAGraph::RawMatrix Costs(Allowed1->size() + 1,
454 Allowed2->size() + 1, 0);
455 addVirtRegCoalesce(Costs, *Allowed1, *Allowed2, CBenefit);
456 G.addEdge(N1Id, N2Id, std::move(Costs));
457 } else {
458 if (G.getEdgeNode1Id(EId) == N2Id) {
459 std::swap(N1Id, N2Id);
460 std::swap(Allowed1, Allowed2);
461 }
462 PBQPRAGraph::RawMatrix Costs(G.getEdgeCosts(EId));
463 addVirtRegCoalesce(Costs, *Allowed1, *Allowed2, CBenefit);
464 G.updateEdgeCosts(EId, std::move(Costs));
465 }
466 }
467 }
468 }
469 }
470
471 private:
472
addVirtRegCoalesce(PBQPRAGraph::RawMatrix & CostMat,const PBQPRAGraph::NodeMetadata::AllowedRegVector & Allowed1,const PBQPRAGraph::NodeMetadata::AllowedRegVector & Allowed2,PBQP::PBQPNum Benefit)473 void addVirtRegCoalesce(
474 PBQPRAGraph::RawMatrix &CostMat,
475 const PBQPRAGraph::NodeMetadata::AllowedRegVector &Allowed1,
476 const PBQPRAGraph::NodeMetadata::AllowedRegVector &Allowed2,
477 PBQP::PBQPNum Benefit) {
478 assert(CostMat.getRows() == Allowed1.size() + 1 && "Size mismatch.");
479 assert(CostMat.getCols() == Allowed2.size() + 1 && "Size mismatch.");
480 for (unsigned I = 0; I != Allowed1.size(); ++I) {
481 unsigned PReg1 = Allowed1[I];
482 for (unsigned J = 0; J != Allowed2.size(); ++J) {
483 unsigned PReg2 = Allowed2[J];
484 if (PReg1 == PReg2)
485 CostMat[I + 1][J + 1] -= Benefit;
486 }
487 }
488 }
489
490 };
491
492 } // End anonymous namespace.
493
494 // Out-of-line destructor/anchor for PBQPRAConstraint.
~PBQPRAConstraint()495 PBQPRAConstraint::~PBQPRAConstraint() {}
anchor()496 void PBQPRAConstraint::anchor() {}
anchor()497 void PBQPRAConstraintList::anchor() {}
498
getAnalysisUsage(AnalysisUsage & au) const499 void RegAllocPBQP::getAnalysisUsage(AnalysisUsage &au) const {
500 au.setPreservesCFG();
501 au.addRequired<AAResultsWrapperPass>();
502 au.addPreserved<AAResultsWrapperPass>();
503 au.addRequired<SlotIndexes>();
504 au.addPreserved<SlotIndexes>();
505 au.addRequired<LiveIntervals>();
506 au.addPreserved<LiveIntervals>();
507 //au.addRequiredID(SplitCriticalEdgesID);
508 if (customPassID)
509 au.addRequiredID(*customPassID);
510 au.addRequired<LiveStacks>();
511 au.addPreserved<LiveStacks>();
512 au.addRequired<MachineBlockFrequencyInfo>();
513 au.addPreserved<MachineBlockFrequencyInfo>();
514 au.addRequired<MachineLoopInfo>();
515 au.addPreserved<MachineLoopInfo>();
516 au.addRequired<MachineDominatorTree>();
517 au.addPreserved<MachineDominatorTree>();
518 au.addRequired<VirtRegMap>();
519 au.addPreserved<VirtRegMap>();
520 MachineFunctionPass::getAnalysisUsage(au);
521 }
522
findVRegIntervalsToAlloc(const MachineFunction & MF,LiveIntervals & LIS)523 void RegAllocPBQP::findVRegIntervalsToAlloc(const MachineFunction &MF,
524 LiveIntervals &LIS) {
525 const MachineRegisterInfo &MRI = MF.getRegInfo();
526
527 // Iterate over all live ranges.
528 for (unsigned I = 0, E = MRI.getNumVirtRegs(); I != E; ++I) {
529 unsigned Reg = TargetRegisterInfo::index2VirtReg(I);
530 if (MRI.reg_nodbg_empty(Reg))
531 continue;
532 LiveInterval &LI = LIS.getInterval(Reg);
533
534 // If this live interval is non-empty we will use pbqp to allocate it.
535 // Empty intervals we allocate in a simple post-processing stage in
536 // finalizeAlloc.
537 if (!LI.empty()) {
538 VRegsToAlloc.insert(LI.reg);
539 } else {
540 EmptyIntervalVRegs.insert(LI.reg);
541 }
542 }
543 }
544
isACalleeSavedRegister(unsigned reg,const TargetRegisterInfo & TRI,const MachineFunction & MF)545 static bool isACalleeSavedRegister(unsigned reg, const TargetRegisterInfo &TRI,
546 const MachineFunction &MF) {
547 const MCPhysReg *CSR = TRI.getCalleeSavedRegs(&MF);
548 for (unsigned i = 0; CSR[i] != 0; ++i)
549 if (TRI.regsOverlap(reg, CSR[i]))
550 return true;
551 return false;
552 }
553
initializeGraph(PBQPRAGraph & G,VirtRegMap & VRM,Spiller & VRegSpiller)554 void RegAllocPBQP::initializeGraph(PBQPRAGraph &G, VirtRegMap &VRM,
555 Spiller &VRegSpiller) {
556 MachineFunction &MF = G.getMetadata().MF;
557
558 LiveIntervals &LIS = G.getMetadata().LIS;
559 const MachineRegisterInfo &MRI = G.getMetadata().MF.getRegInfo();
560 const TargetRegisterInfo &TRI =
561 *G.getMetadata().MF.getSubtarget().getRegisterInfo();
562
563 std::vector<unsigned> Worklist(VRegsToAlloc.begin(), VRegsToAlloc.end());
564
565 while (!Worklist.empty()) {
566 unsigned VReg = Worklist.back();
567 Worklist.pop_back();
568
569 const TargetRegisterClass *TRC = MRI.getRegClass(VReg);
570 LiveInterval &VRegLI = LIS.getInterval(VReg);
571
572 // Record any overlaps with regmask operands.
573 BitVector RegMaskOverlaps;
574 LIS.checkRegMaskInterference(VRegLI, RegMaskOverlaps);
575
576 // Compute an initial allowed set for the current vreg.
577 std::vector<unsigned> VRegAllowed;
578 ArrayRef<MCPhysReg> RawPRegOrder = TRC->getRawAllocationOrder(MF);
579 for (unsigned I = 0; I != RawPRegOrder.size(); ++I) {
580 unsigned PReg = RawPRegOrder[I];
581 if (MRI.isReserved(PReg))
582 continue;
583
584 // vregLI crosses a regmask operand that clobbers preg.
585 if (!RegMaskOverlaps.empty() && !RegMaskOverlaps.test(PReg))
586 continue;
587
588 // vregLI overlaps fixed regunit interference.
589 bool Interference = false;
590 for (MCRegUnitIterator Units(PReg, &TRI); Units.isValid(); ++Units) {
591 if (VRegLI.overlaps(LIS.getRegUnit(*Units))) {
592 Interference = true;
593 break;
594 }
595 }
596 if (Interference)
597 continue;
598
599 // preg is usable for this virtual register.
600 VRegAllowed.push_back(PReg);
601 }
602
603 // Check for vregs that have no allowed registers. These should be
604 // pre-spilled and the new vregs added to the worklist.
605 if (VRegAllowed.empty()) {
606 SmallVector<unsigned, 8> NewVRegs;
607 spillVReg(VReg, NewVRegs, MF, LIS, VRM, VRegSpiller);
608 Worklist.insert(Worklist.end(), NewVRegs.begin(), NewVRegs.end());
609 continue;
610 }
611
612 PBQPRAGraph::RawVector NodeCosts(VRegAllowed.size() + 1, 0);
613
614 // Tweak cost of callee saved registers, as using then force spilling and
615 // restoring them. This would only happen in the prologue / epilogue though.
616 for (unsigned i = 0; i != VRegAllowed.size(); ++i)
617 if (isACalleeSavedRegister(VRegAllowed[i], TRI, MF))
618 NodeCosts[1 + i] += 1.0;
619
620 PBQPRAGraph::NodeId NId = G.addNode(std::move(NodeCosts));
621 G.getNodeMetadata(NId).setVReg(VReg);
622 G.getNodeMetadata(NId).setAllowedRegs(
623 G.getMetadata().getAllowedRegs(std::move(VRegAllowed)));
624 G.getMetadata().setNodeIdForVReg(VReg, NId);
625 }
626 }
627
spillVReg(unsigned VReg,SmallVectorImpl<unsigned> & NewIntervals,MachineFunction & MF,LiveIntervals & LIS,VirtRegMap & VRM,Spiller & VRegSpiller)628 void RegAllocPBQP::spillVReg(unsigned VReg,
629 SmallVectorImpl<unsigned> &NewIntervals,
630 MachineFunction &MF, LiveIntervals &LIS,
631 VirtRegMap &VRM, Spiller &VRegSpiller) {
632
633 VRegsToAlloc.erase(VReg);
634 LiveRangeEdit LRE(&LIS.getInterval(VReg), NewIntervals, MF, LIS, &VRM);
635 VRegSpiller.spill(LRE);
636
637 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
638 (void)TRI;
639 DEBUG(dbgs() << "VREG " << PrintReg(VReg, &TRI) << " -> SPILLED (Cost: "
640 << LRE.getParent().weight << ", New vregs: ");
641
642 // Copy any newly inserted live intervals into the list of regs to
643 // allocate.
644 for (LiveRangeEdit::iterator I = LRE.begin(), E = LRE.end();
645 I != E; ++I) {
646 const LiveInterval &LI = LIS.getInterval(*I);
647 assert(!LI.empty() && "Empty spill range.");
648 DEBUG(dbgs() << PrintReg(LI.reg, &TRI) << " ");
649 VRegsToAlloc.insert(LI.reg);
650 }
651
652 DEBUG(dbgs() << ")\n");
653 }
654
mapPBQPToRegAlloc(const PBQPRAGraph & G,const PBQP::Solution & Solution,VirtRegMap & VRM,Spiller & VRegSpiller)655 bool RegAllocPBQP::mapPBQPToRegAlloc(const PBQPRAGraph &G,
656 const PBQP::Solution &Solution,
657 VirtRegMap &VRM,
658 Spiller &VRegSpiller) {
659 MachineFunction &MF = G.getMetadata().MF;
660 LiveIntervals &LIS = G.getMetadata().LIS;
661 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
662 (void)TRI;
663
664 // Set to true if we have any spills
665 bool AnotherRoundNeeded = false;
666
667 // Clear the existing allocation.
668 VRM.clearAllVirt();
669
670 // Iterate over the nodes mapping the PBQP solution to a register
671 // assignment.
672 for (auto NId : G.nodeIds()) {
673 unsigned VReg = G.getNodeMetadata(NId).getVReg();
674 unsigned AllocOption = Solution.getSelection(NId);
675
676 if (AllocOption != PBQP::RegAlloc::getSpillOptionIdx()) {
677 unsigned PReg = G.getNodeMetadata(NId).getAllowedRegs()[AllocOption - 1];
678 DEBUG(dbgs() << "VREG " << PrintReg(VReg, &TRI) << " -> "
679 << TRI.getName(PReg) << "\n");
680 assert(PReg != 0 && "Invalid preg selected.");
681 VRM.assignVirt2Phys(VReg, PReg);
682 } else {
683 // Spill VReg. If this introduces new intervals we'll need another round
684 // of allocation.
685 SmallVector<unsigned, 8> NewVRegs;
686 spillVReg(VReg, NewVRegs, MF, LIS, VRM, VRegSpiller);
687 AnotherRoundNeeded |= !NewVRegs.empty();
688 }
689 }
690
691 return !AnotherRoundNeeded;
692 }
693
finalizeAlloc(MachineFunction & MF,LiveIntervals & LIS,VirtRegMap & VRM) const694 void RegAllocPBQP::finalizeAlloc(MachineFunction &MF,
695 LiveIntervals &LIS,
696 VirtRegMap &VRM) const {
697 MachineRegisterInfo &MRI = MF.getRegInfo();
698
699 // First allocate registers for the empty intervals.
700 for (RegSet::const_iterator
701 I = EmptyIntervalVRegs.begin(), E = EmptyIntervalVRegs.end();
702 I != E; ++I) {
703 LiveInterval &LI = LIS.getInterval(*I);
704
705 unsigned PReg = MRI.getSimpleHint(LI.reg);
706
707 if (PReg == 0) {
708 const TargetRegisterClass &RC = *MRI.getRegClass(LI.reg);
709 PReg = RC.getRawAllocationOrder(MF).front();
710 }
711
712 VRM.assignVirt2Phys(LI.reg, PReg);
713 }
714 }
715
normalizePBQPSpillWeight(float UseDefFreq,unsigned Size,unsigned NumInstr)716 static inline float normalizePBQPSpillWeight(float UseDefFreq, unsigned Size,
717 unsigned NumInstr) {
718 // All intervals have a spill weight that is mostly proportional to the number
719 // of uses, with uses in loops having a bigger weight.
720 return NumInstr * normalizeSpillWeight(UseDefFreq, Size, 1);
721 }
722
runOnMachineFunction(MachineFunction & MF)723 bool RegAllocPBQP::runOnMachineFunction(MachineFunction &MF) {
724 LiveIntervals &LIS = getAnalysis<LiveIntervals>();
725 MachineBlockFrequencyInfo &MBFI =
726 getAnalysis<MachineBlockFrequencyInfo>();
727
728 VirtRegMap &VRM = getAnalysis<VirtRegMap>();
729
730 calculateSpillWeightsAndHints(LIS, MF, &VRM, getAnalysis<MachineLoopInfo>(),
731 MBFI, normalizePBQPSpillWeight);
732
733 std::unique_ptr<Spiller> VRegSpiller(createInlineSpiller(*this, MF, VRM));
734
735 MF.getRegInfo().freezeReservedRegs(MF);
736
737 DEBUG(dbgs() << "PBQP Register Allocating for " << MF.getName() << "\n");
738
739 // Allocator main loop:
740 //
741 // * Map current regalloc problem to a PBQP problem
742 // * Solve the PBQP problem
743 // * Map the solution back to a register allocation
744 // * Spill if necessary
745 //
746 // This process is continued till no more spills are generated.
747
748 // Find the vreg intervals in need of allocation.
749 findVRegIntervalsToAlloc(MF, LIS);
750
751 #ifndef NDEBUG
752 const Function &F = *MF.getFunction();
753 std::string FullyQualifiedName =
754 F.getParent()->getModuleIdentifier() + "." + F.getName().str();
755 #endif
756
757 // If there are non-empty intervals allocate them using pbqp.
758 if (!VRegsToAlloc.empty()) {
759
760 const TargetSubtargetInfo &Subtarget = MF.getSubtarget();
761 std::unique_ptr<PBQPRAConstraintList> ConstraintsRoot =
762 llvm::make_unique<PBQPRAConstraintList>();
763 ConstraintsRoot->addConstraint(llvm::make_unique<SpillCosts>());
764 ConstraintsRoot->addConstraint(llvm::make_unique<Interference>());
765 if (PBQPCoalescing)
766 ConstraintsRoot->addConstraint(llvm::make_unique<Coalescing>());
767 ConstraintsRoot->addConstraint(Subtarget.getCustomPBQPConstraints());
768
769 bool PBQPAllocComplete = false;
770 unsigned Round = 0;
771
772 while (!PBQPAllocComplete) {
773 DEBUG(dbgs() << " PBQP Regalloc round " << Round << ":\n");
774
775 PBQPRAGraph G(PBQPRAGraph::GraphMetadata(MF, LIS, MBFI));
776 initializeGraph(G, VRM, *VRegSpiller);
777 ConstraintsRoot->apply(G);
778
779 #ifndef NDEBUG
780 if (PBQPDumpGraphs) {
781 std::ostringstream RS;
782 RS << Round;
783 std::string GraphFileName = FullyQualifiedName + "." + RS.str() +
784 ".pbqpgraph";
785 std::error_code EC;
786 raw_fd_ostream OS(GraphFileName, EC, sys::fs::F_Text);
787 DEBUG(dbgs() << "Dumping graph for round " << Round << " to \""
788 << GraphFileName << "\"\n");
789 G.dump(OS);
790 }
791 #endif
792
793 PBQP::Solution Solution = PBQP::RegAlloc::solve(G);
794 PBQPAllocComplete = mapPBQPToRegAlloc(G, Solution, VRM, *VRegSpiller);
795 ++Round;
796 }
797 }
798
799 // Finalise allocation, allocate empty ranges.
800 finalizeAlloc(MF, LIS, VRM);
801 VRegsToAlloc.clear();
802 EmptyIntervalVRegs.clear();
803
804 DEBUG(dbgs() << "Post alloc VirtRegMap:\n" << VRM << "\n");
805
806 return true;
807 }
808
809 /// Create Printable object for node and register info.
PrintNodeInfo(PBQP::RegAlloc::PBQPRAGraph::NodeId NId,const PBQP::RegAlloc::PBQPRAGraph & G)810 static Printable PrintNodeInfo(PBQP::RegAlloc::PBQPRAGraph::NodeId NId,
811 const PBQP::RegAlloc::PBQPRAGraph &G) {
812 return Printable([NId, &G](raw_ostream &OS) {
813 const MachineRegisterInfo &MRI = G.getMetadata().MF.getRegInfo();
814 const TargetRegisterInfo *TRI = MRI.getTargetRegisterInfo();
815 unsigned VReg = G.getNodeMetadata(NId).getVReg();
816 const char *RegClassName = TRI->getRegClassName(MRI.getRegClass(VReg));
817 OS << NId << " (" << RegClassName << ':' << PrintReg(VReg, TRI) << ')';
818 });
819 }
820
dump(raw_ostream & OS) const821 void PBQP::RegAlloc::PBQPRAGraph::dump(raw_ostream &OS) const {
822 for (auto NId : nodeIds()) {
823 const Vector &Costs = getNodeCosts(NId);
824 assert(Costs.getLength() != 0 && "Empty vector in graph.");
825 OS << PrintNodeInfo(NId, *this) << ": " << Costs << '\n';
826 }
827 OS << '\n';
828
829 for (auto EId : edgeIds()) {
830 NodeId N1Id = getEdgeNode1Id(EId);
831 NodeId N2Id = getEdgeNode2Id(EId);
832 assert(N1Id != N2Id && "PBQP graphs should not have self-edges.");
833 const Matrix &M = getEdgeCosts(EId);
834 assert(M.getRows() != 0 && "No rows in matrix.");
835 assert(M.getCols() != 0 && "No cols in matrix.");
836 OS << PrintNodeInfo(N1Id, *this) << ' ' << M.getRows() << " rows / ";
837 OS << PrintNodeInfo(N2Id, *this) << ' ' << M.getCols() << " cols:\n";
838 OS << M << '\n';
839 }
840 }
841
dump() const842 void PBQP::RegAlloc::PBQPRAGraph::dump() const { dump(dbgs()); }
843
printDot(raw_ostream & OS) const844 void PBQP::RegAlloc::PBQPRAGraph::printDot(raw_ostream &OS) const {
845 OS << "graph {\n";
846 for (auto NId : nodeIds()) {
847 OS << " node" << NId << " [ label=\""
848 << PrintNodeInfo(NId, *this) << "\\n"
849 << getNodeCosts(NId) << "\" ]\n";
850 }
851
852 OS << " edge [ len=" << nodeIds().size() << " ]\n";
853 for (auto EId : edgeIds()) {
854 OS << " node" << getEdgeNode1Id(EId)
855 << " -- node" << getEdgeNode2Id(EId)
856 << " [ label=\"";
857 const Matrix &EdgeCosts = getEdgeCosts(EId);
858 for (unsigned i = 0; i < EdgeCosts.getRows(); ++i) {
859 OS << EdgeCosts.getRowAsVector(i) << "\\n";
860 }
861 OS << "\" ]\n";
862 }
863 OS << "}\n";
864 }
865
createPBQPRegisterAllocator(char * customPassID)866 FunctionPass *llvm::createPBQPRegisterAllocator(char *customPassID) {
867 return new RegAllocPBQP(customPassID);
868 }
869
createDefaultPBQPRegisterAllocator()870 FunctionPass* llvm::createDefaultPBQPRegisterAllocator() {
871 return createPBQPRegisterAllocator();
872 }
873
874 #undef DEBUG_TYPE
875