1 /*
2  * Copyright 2015 Google Inc.
3  *
4  * Use of this source code is governed by a BSD-style license that can be
5  * found in the LICENSE file.
6  */
7 
8 #include "SkOpts.h"
9 
10 #define SK_OPTS_NS sk_sse41
11 #include "SkBlurImageFilter_opts.h"
12 
13 #ifndef SK_SUPPORT_LEGACY_X86_BLITS
14 
15 namespace sk_sse41 {
16 
17 // An SSE register holding at most 64 bits of useful data in the low lanes.
18 struct m64i {
19     __m128i v;
m64isk_sse41::m64i20     /*implicit*/ m64i(__m128i v) : v(v) {}
operator __m128isk_sse41::m64i21     operator __m128i() const { return v; }
22 };
23 
24 // Load 4, 2, or 1 constant pixels or coverages (4x replicated).
next4(uint32_t val)25 static __m128i next4(uint32_t val) { return _mm_set1_epi32(val); }
next2(uint32_t val)26 static m64i    next2(uint32_t val) { return _mm_set1_epi32(val); }
next1(uint32_t val)27 static m64i    next1(uint32_t val) { return _mm_set1_epi32(val); }
28 
next4(uint8_t val)29 static __m128i next4(uint8_t val) { return _mm_set1_epi8(val); }
next2(uint8_t val)30 static m64i    next2(uint8_t val) { return _mm_set1_epi8(val); }
next1(uint8_t val)31 static m64i    next1(uint8_t val) { return _mm_set1_epi8(val); }
32 
33 // Load 4, 2, or 1 variable pixels or coverages (4x replicated),
34 // incrementing the pointer past what we read.
next4(const uint32_t * & ptr)35 static __m128i next4(const uint32_t*& ptr) {
36     auto r = _mm_loadu_si128((const __m128i*)ptr);
37     ptr += 4;
38     return r;
39 }
next2(const uint32_t * & ptr)40 static m64i next2(const uint32_t*& ptr) {
41     auto r = _mm_loadl_epi64((const __m128i*)ptr);
42     ptr += 2;
43     return r;
44 }
next1(const uint32_t * & ptr)45 static m64i next1(const uint32_t*& ptr) {
46     auto r = _mm_cvtsi32_si128(*ptr);
47     ptr += 1;
48     return r;
49 }
50 
51 // xyzw -> xxxx yyyy zzzz wwww
replicate_coverage(__m128i xyzw)52 static __m128i replicate_coverage(__m128i xyzw) {
53     const uint8_t mask[] = { 0,0,0,0, 1,1,1,1, 2,2,2,2, 3,3,3,3 };
54     return _mm_shuffle_epi8(xyzw, _mm_load_si128((const __m128i*)mask));
55 }
56 
next4(const uint8_t * & ptr)57 static __m128i next4(const uint8_t*& ptr) {
58     auto r = replicate_coverage(_mm_cvtsi32_si128(*(const uint32_t*)ptr));
59     ptr += 4;
60     return r;
61 }
next2(const uint8_t * & ptr)62 static m64i next2(const uint8_t*& ptr) {
63     auto r = replicate_coverage(_mm_cvtsi32_si128(*(const uint16_t*)ptr));
64     ptr += 2;
65     return r;
66 }
next1(const uint8_t * & ptr)67 static m64i next1(const uint8_t*& ptr) {
68     auto r = replicate_coverage(_mm_cvtsi32_si128(*ptr));
69     ptr += 1;
70     return r;
71 }
72 
73 // For i = 0...n, tgt = fn(dst,src,cov), where Dst,Src,and Cov can be constants or arrays.
74 template <typename Dst, typename Src, typename Cov, typename Fn>
loop(int n,uint32_t * t,const Dst dst,const Src src,const Cov cov,Fn && fn)75 static void loop(int n, uint32_t* t, const Dst dst, const Src src, const Cov cov, Fn&& fn) {
76     // We don't want to muck with the callers' pointers, so we make them const and copy here.
77     Dst d = dst;
78     Src s = src;
79     Cov c = cov;
80 
81     // Writing this as a single while-loop helps hoist loop invariants from fn.
82     while (n) {
83         if (n >= 4) {
84             _mm_storeu_si128((__m128i*)t, fn(next4(d), next4(s), next4(c)));
85             t += 4;
86             n -= 4;
87             continue;
88         }
89         if (n & 2) {
90             _mm_storel_epi64((__m128i*)t, fn(next2(d), next2(s), next2(c)));
91             t += 2;
92         }
93         if (n & 1) {
94             *t = _mm_cvtsi128_si32(fn(next1(d), next1(s), next1(c)));
95         }
96         return;
97     }
98 }
99 
100 //                                             packed
101 // ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ //
102 //                                            unpacked
103 
104 // Everything on the packed side of the squiggly line deals with densely packed 8-bit data,
105 // e.g. [BGRA bgra ... ] for pixels or [ CCCC cccc ... ] for coverage.
106 //
107 // Everything on the unpacked side of the squiggly line deals with unpacked 8-bit data,
108 // e.g [B_G_ R_A_ b_g_ r_a_ ] for pixels or [ C_C_ C_C_ c_c_ c_c_ c_c_ ] for coverage,
109 // where _ is a zero byte.
110 //
111 // Adapt<Fn> / adapt(fn) allow the two sides to interoperate,
112 // by unpacking arguments, calling fn, then packing the results.
113 //
114 // This lets us write most of our code in terms of unpacked inputs (considerably simpler)
115 // and all the packing and unpacking is handled automatically.
116 
117 template <typename Fn>
118 struct Adapt {
119     Fn fn;
120 
operator ()sk_sse41::Adapt121     __m128i operator()(__m128i d, __m128i s, __m128i c) {
122         auto lo = [](__m128i x) { return _mm_unpacklo_epi8(x, _mm_setzero_si128()); };
123         auto hi = [](__m128i x) { return _mm_unpackhi_epi8(x, _mm_setzero_si128()); };
124         return _mm_packus_epi16(fn(lo(d), lo(s), lo(c)),
125                                 fn(hi(d), hi(s), hi(c)));
126     }
127 
operator ()sk_sse41::Adapt128     m64i operator()(const m64i& d, const m64i& s, const m64i& c) {
129         auto lo = [](__m128i x) { return _mm_unpacklo_epi8(x, _mm_setzero_si128()); };
130         auto r = fn(lo(d), lo(s), lo(c));
131         return _mm_packus_epi16(r, r);
132     }
133 };
134 
135 template <typename Fn>
adapt(Fn && fn)136 static Adapt<Fn> adapt(Fn&& fn) { return { fn }; }
137 
138 // These helpers all work exclusively with unpacked 8-bit values,
139 // except div255() with is 16-bit -> unpacked 8-bit, and mul255() which is the reverse.
140 
141 // Divide by 255 with rounding.
142 // (x+127)/255 == ((x+128)*257)>>16.
143 // Sometimes we can be more efficient by breaking this into two parts.
div255_part1(__m128i x)144 static __m128i div255_part1(__m128i x) { return _mm_add_epi16(x, _mm_set1_epi16(128)); }
div255_part2(__m128i x)145 static __m128i div255_part2(__m128i x) { return _mm_mulhi_epu16(x, _mm_set1_epi16(257)); }
div255(__m128i x)146 static __m128i div255(__m128i x) { return div255_part2(div255_part1(x)); }
147 
148 // (x*y+127)/255, a byte multiply.
scale(__m128i x,__m128i y)149 static __m128i scale(__m128i x, __m128i y) { return div255(_mm_mullo_epi16(x, y)); }
150 
151 // (255 * x).
mul255(__m128i x)152 static __m128i mul255(__m128i x) { return _mm_sub_epi16(_mm_slli_epi16(x, 8), x); }
153 
154 // (255 - x).
inv(__m128i x)155 static __m128i inv(__m128i x) { return _mm_xor_si128(_mm_set1_epi16(0x00ff), x); }
156 
157 // ARGB argb -> AAAA aaaa
alphas(__m128i px)158 static __m128i alphas(__m128i px) {
159     const int a = 2 * (SK_A32_SHIFT/8);  // SK_A32_SHIFT is typically 24, so this is typically 6.
160     const int _ = ~0;
161     return _mm_shuffle_epi8(px, _mm_setr_epi8(a+0,_,a+0,_,a+0,_,a+0,_, a+8,_,a+8,_,a+8,_,a+8,_));
162 }
163 
164 // SrcOver, with a constant source and full coverage.
blit_row_color32(SkPMColor * tgt,const SkPMColor * dst,int n,SkPMColor src)165 static void blit_row_color32(SkPMColor* tgt, const SkPMColor* dst, int n, SkPMColor src) {
166     // We want to calculate s + (d * inv(alphas(s)) + 127)/255.
167     // We'd generally do that div255 as s + ((d * inv(alphas(s)) + 128)*257)>>16.
168 
169     // But we can go one step further to ((s*255 + 128 + d*inv(alphas(s)))*257)>>16.
170     // This lets us hoist (s*255+128) and inv(alphas(s)) out of the loop.
171     __m128i s = _mm_unpacklo_epi8(_mm_set1_epi32(src), _mm_setzero_si128()),
172             s_255_128 = div255_part1(mul255(s)),
173             A = inv(alphas(s));
174 
175     const uint8_t cov = 0xff;
176     loop(n, tgt, dst, src, cov, adapt([=](__m128i d, __m128i, __m128i) {
177         return div255_part2(_mm_add_epi16(s_255_128, _mm_mullo_epi16(d, A)));
178     }));
179 }
180 
181 // SrcOver, with a constant source and variable coverage.
182 // If the source is opaque, SrcOver becomes Src.
blit_mask_d32_a8(SkPMColor * dst,size_t dstRB,const SkAlpha * cov,size_t covRB,SkColor color,int w,int h)183 static void blit_mask_d32_a8(SkPMColor* dst,     size_t dstRB,
184                              const SkAlpha* cov, size_t covRB,
185                              SkColor color, int w, int h) {
186     if (SkColorGetA(color) == 0xFF) {
187         const SkPMColor src = SkSwizzle_BGRA_to_PMColor(color);
188         while (h --> 0) {
189             loop(w, dst, (const SkPMColor*)dst, src, cov,
190                     adapt([](__m128i d, __m128i s, __m128i c) {
191                 // Src blend mode: a simple lerp from d to s by c.
192                 // TODO: try a pmaddubsw version?
193                 return div255(_mm_add_epi16(_mm_mullo_epi16(inv(c),d),
194                                             _mm_mullo_epi16(    c ,s)));
195             }));
196             dst += dstRB / sizeof(*dst);
197             cov += covRB / sizeof(*cov);
198         }
199     } else {
200         const SkPMColor src = SkPreMultiplyColor(color);
201         while (h --> 0) {
202             loop(w, dst, (const SkPMColor*)dst, src, cov,
203                     adapt([](__m128i d, __m128i s, __m128i c) {
204                 // SrcOver blend mode, with coverage folded into source alpha.
205                 __m128i sc = scale(s,c),
206                         AC = inv(alphas(sc));
207                 return _mm_add_epi16(sc, scale(d,AC));
208             }));
209             dst += dstRB / sizeof(*dst);
210             cov += covRB / sizeof(*cov);
211         }
212     }
213 }
214 
215 }  // namespace sk_sse41
216 
217 #endif
218 
219 namespace SkOpts {
Init_sse41()220     void Init_sse41() {
221         box_blur_xx = sk_sse41::box_blur_xx;
222         box_blur_xy = sk_sse41::box_blur_xy;
223         box_blur_yx = sk_sse41::box_blur_yx;
224 
225     #ifndef SK_SUPPORT_LEGACY_X86_BLITS
226         blit_row_color32 = sk_sse41::blit_row_color32;
227         blit_mask_d32_a8 = sk_sse41::blit_mask_d32_a8;
228     #endif
229     }
230 }
231