1 /*
2  * Copyright (C) 2014 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 #include "nodes.h"
17 
18 #include <cfloat>
19 
20 #include "code_generator.h"
21 #include "common_dominator.h"
22 #include "ssa_builder.h"
23 #include "base/bit_vector-inl.h"
24 #include "base/bit_utils.h"
25 #include "base/stl_util.h"
26 #include "intrinsics.h"
27 #include "mirror/class-inl.h"
28 #include "scoped_thread_state_change.h"
29 
30 namespace art {
31 
32 // Enable floating-point static evaluation during constant folding
33 // only if all floating-point operations and constants evaluate in the
34 // range and precision of the type used (i.e., 32-bit float, 64-bit
35 // double).
36 static constexpr bool kEnableFloatingPointStaticEvaluation = (FLT_EVAL_METHOD == 0);
37 
InitializeInexactObjectRTI(StackHandleScopeCollection * handles)38 void HGraph::InitializeInexactObjectRTI(StackHandleScopeCollection* handles) {
39   ScopedObjectAccess soa(Thread::Current());
40   // Create the inexact Object reference type and store it in the HGraph.
41   ClassLinker* linker = Runtime::Current()->GetClassLinker();
42   inexact_object_rti_ = ReferenceTypeInfo::Create(
43       handles->NewHandle(linker->GetClassRoot(ClassLinker::kJavaLangObject)),
44       /* is_exact */ false);
45 }
46 
AddBlock(HBasicBlock * block)47 void HGraph::AddBlock(HBasicBlock* block) {
48   block->SetBlockId(blocks_.size());
49   blocks_.push_back(block);
50 }
51 
FindBackEdges(ArenaBitVector * visited)52 void HGraph::FindBackEdges(ArenaBitVector* visited) {
53   // "visited" must be empty on entry, it's an output argument for all visited (i.e. live) blocks.
54   DCHECK_EQ(visited->GetHighestBitSet(), -1);
55 
56   // Nodes that we're currently visiting, indexed by block id.
57   ArenaBitVector visiting(arena_, blocks_.size(), false, kArenaAllocGraphBuilder);
58   // Number of successors visited from a given node, indexed by block id.
59   ArenaVector<size_t> successors_visited(blocks_.size(),
60                                          0u,
61                                          arena_->Adapter(kArenaAllocGraphBuilder));
62   // Stack of nodes that we're currently visiting (same as marked in "visiting" above).
63   ArenaVector<HBasicBlock*> worklist(arena_->Adapter(kArenaAllocGraphBuilder));
64   constexpr size_t kDefaultWorklistSize = 8;
65   worklist.reserve(kDefaultWorklistSize);
66   visited->SetBit(entry_block_->GetBlockId());
67   visiting.SetBit(entry_block_->GetBlockId());
68   worklist.push_back(entry_block_);
69 
70   while (!worklist.empty()) {
71     HBasicBlock* current = worklist.back();
72     uint32_t current_id = current->GetBlockId();
73     if (successors_visited[current_id] == current->GetSuccessors().size()) {
74       visiting.ClearBit(current_id);
75       worklist.pop_back();
76     } else {
77       HBasicBlock* successor = current->GetSuccessors()[successors_visited[current_id]++];
78       uint32_t successor_id = successor->GetBlockId();
79       if (visiting.IsBitSet(successor_id)) {
80         DCHECK(ContainsElement(worklist, successor));
81         successor->AddBackEdge(current);
82       } else if (!visited->IsBitSet(successor_id)) {
83         visited->SetBit(successor_id);
84         visiting.SetBit(successor_id);
85         worklist.push_back(successor);
86       }
87     }
88   }
89 }
90 
RemoveEnvironmentUses(HInstruction * instruction)91 static void RemoveEnvironmentUses(HInstruction* instruction) {
92   for (HEnvironment* environment = instruction->GetEnvironment();
93        environment != nullptr;
94        environment = environment->GetParent()) {
95     for (size_t i = 0, e = environment->Size(); i < e; ++i) {
96       if (environment->GetInstructionAt(i) != nullptr) {
97         environment->RemoveAsUserOfInput(i);
98       }
99     }
100   }
101 }
102 
RemoveAsUser(HInstruction * instruction)103 static void RemoveAsUser(HInstruction* instruction) {
104   for (size_t i = 0; i < instruction->InputCount(); i++) {
105     instruction->RemoveAsUserOfInput(i);
106   }
107 
108   RemoveEnvironmentUses(instruction);
109 }
110 
RemoveInstructionsAsUsersFromDeadBlocks(const ArenaBitVector & visited) const111 void HGraph::RemoveInstructionsAsUsersFromDeadBlocks(const ArenaBitVector& visited) const {
112   for (size_t i = 0; i < blocks_.size(); ++i) {
113     if (!visited.IsBitSet(i)) {
114       HBasicBlock* block = blocks_[i];
115       if (block == nullptr) continue;
116       DCHECK(block->GetPhis().IsEmpty()) << "Phis are not inserted at this stage";
117       for (HInstructionIterator it(block->GetInstructions()); !it.Done(); it.Advance()) {
118         RemoveAsUser(it.Current());
119       }
120     }
121   }
122 }
123 
RemoveDeadBlocks(const ArenaBitVector & visited)124 void HGraph::RemoveDeadBlocks(const ArenaBitVector& visited) {
125   for (size_t i = 0; i < blocks_.size(); ++i) {
126     if (!visited.IsBitSet(i)) {
127       HBasicBlock* block = blocks_[i];
128       if (block == nullptr) continue;
129       // We only need to update the successor, which might be live.
130       for (HBasicBlock* successor : block->GetSuccessors()) {
131         successor->RemovePredecessor(block);
132       }
133       // Remove the block from the list of blocks, so that further analyses
134       // never see it.
135       blocks_[i] = nullptr;
136       if (block->IsExitBlock()) {
137         SetExitBlock(nullptr);
138       }
139       // Mark the block as removed. This is used by the HGraphBuilder to discard
140       // the block as a branch target.
141       block->SetGraph(nullptr);
142     }
143   }
144 }
145 
BuildDominatorTree()146 GraphAnalysisResult HGraph::BuildDominatorTree() {
147   ArenaBitVector visited(arena_, blocks_.size(), false, kArenaAllocGraphBuilder);
148 
149   // (1) Find the back edges in the graph doing a DFS traversal.
150   FindBackEdges(&visited);
151 
152   // (2) Remove instructions and phis from blocks not visited during
153   //     the initial DFS as users from other instructions, so that
154   //     users can be safely removed before uses later.
155   RemoveInstructionsAsUsersFromDeadBlocks(visited);
156 
157   // (3) Remove blocks not visited during the initial DFS.
158   //     Step (5) requires dead blocks to be removed from the
159   //     predecessors list of live blocks.
160   RemoveDeadBlocks(visited);
161 
162   // (4) Simplify the CFG now, so that we don't need to recompute
163   //     dominators and the reverse post order.
164   SimplifyCFG();
165 
166   // (5) Compute the dominance information and the reverse post order.
167   ComputeDominanceInformation();
168 
169   // (6) Analyze loops discovered through back edge analysis, and
170   //     set the loop information on each block.
171   GraphAnalysisResult result = AnalyzeLoops();
172   if (result != kAnalysisSuccess) {
173     return result;
174   }
175 
176   // (7) Precompute per-block try membership before entering the SSA builder,
177   //     which needs the information to build catch block phis from values of
178   //     locals at throwing instructions inside try blocks.
179   ComputeTryBlockInformation();
180 
181   return kAnalysisSuccess;
182 }
183 
ClearDominanceInformation()184 void HGraph::ClearDominanceInformation() {
185   for (HReversePostOrderIterator it(*this); !it.Done(); it.Advance()) {
186     it.Current()->ClearDominanceInformation();
187   }
188   reverse_post_order_.clear();
189 }
190 
ClearLoopInformation()191 void HGraph::ClearLoopInformation() {
192   SetHasIrreducibleLoops(false);
193   for (HReversePostOrderIterator it(*this); !it.Done(); it.Advance()) {
194     it.Current()->SetLoopInformation(nullptr);
195   }
196 }
197 
ClearDominanceInformation()198 void HBasicBlock::ClearDominanceInformation() {
199   dominated_blocks_.clear();
200   dominator_ = nullptr;
201 }
202 
GetFirstInstructionDisregardMoves() const203 HInstruction* HBasicBlock::GetFirstInstructionDisregardMoves() const {
204   HInstruction* instruction = GetFirstInstruction();
205   while (instruction->IsParallelMove()) {
206     instruction = instruction->GetNext();
207   }
208   return instruction;
209 }
210 
UpdateDominatorOfSuccessor(HBasicBlock * block,HBasicBlock * successor)211 static bool UpdateDominatorOfSuccessor(HBasicBlock* block, HBasicBlock* successor) {
212   DCHECK(ContainsElement(block->GetSuccessors(), successor));
213 
214   HBasicBlock* old_dominator = successor->GetDominator();
215   HBasicBlock* new_dominator =
216       (old_dominator == nullptr) ? block
217                                  : CommonDominator::ForPair(old_dominator, block);
218 
219   if (old_dominator == new_dominator) {
220     return false;
221   } else {
222     successor->SetDominator(new_dominator);
223     return true;
224   }
225 }
226 
ComputeDominanceInformation()227 void HGraph::ComputeDominanceInformation() {
228   DCHECK(reverse_post_order_.empty());
229   reverse_post_order_.reserve(blocks_.size());
230   reverse_post_order_.push_back(entry_block_);
231 
232   // Number of visits of a given node, indexed by block id.
233   ArenaVector<size_t> visits(blocks_.size(), 0u, arena_->Adapter(kArenaAllocGraphBuilder));
234   // Number of successors visited from a given node, indexed by block id.
235   ArenaVector<size_t> successors_visited(blocks_.size(),
236                                          0u,
237                                          arena_->Adapter(kArenaAllocGraphBuilder));
238   // Nodes for which we need to visit successors.
239   ArenaVector<HBasicBlock*> worklist(arena_->Adapter(kArenaAllocGraphBuilder));
240   constexpr size_t kDefaultWorklistSize = 8;
241   worklist.reserve(kDefaultWorklistSize);
242   worklist.push_back(entry_block_);
243 
244   while (!worklist.empty()) {
245     HBasicBlock* current = worklist.back();
246     uint32_t current_id = current->GetBlockId();
247     if (successors_visited[current_id] == current->GetSuccessors().size()) {
248       worklist.pop_back();
249     } else {
250       HBasicBlock* successor = current->GetSuccessors()[successors_visited[current_id]++];
251       UpdateDominatorOfSuccessor(current, successor);
252 
253       // Once all the forward edges have been visited, we know the immediate
254       // dominator of the block. We can then start visiting its successors.
255       if (++visits[successor->GetBlockId()] ==
256           successor->GetPredecessors().size() - successor->NumberOfBackEdges()) {
257         reverse_post_order_.push_back(successor);
258         worklist.push_back(successor);
259       }
260     }
261   }
262 
263   // Check if the graph has back edges not dominated by their respective headers.
264   // If so, we need to update the dominators of those headers and recursively of
265   // their successors. We do that with a fix-point iteration over all blocks.
266   // The algorithm is guaranteed to terminate because it loops only if the sum
267   // of all dominator chains has decreased in the current iteration.
268   bool must_run_fix_point = false;
269   for (HBasicBlock* block : blocks_) {
270     if (block != nullptr &&
271         block->IsLoopHeader() &&
272         block->GetLoopInformation()->HasBackEdgeNotDominatedByHeader()) {
273       must_run_fix_point = true;
274       break;
275     }
276   }
277   if (must_run_fix_point) {
278     bool update_occurred = true;
279     while (update_occurred) {
280       update_occurred = false;
281       for (HReversePostOrderIterator it(*this); !it.Done(); it.Advance()) {
282         HBasicBlock* block = it.Current();
283         for (HBasicBlock* successor : block->GetSuccessors()) {
284           update_occurred |= UpdateDominatorOfSuccessor(block, successor);
285         }
286       }
287     }
288   }
289 
290   // Make sure that there are no remaining blocks whose dominator information
291   // needs to be updated.
292   if (kIsDebugBuild) {
293     for (HReversePostOrderIterator it(*this); !it.Done(); it.Advance()) {
294       HBasicBlock* block = it.Current();
295       for (HBasicBlock* successor : block->GetSuccessors()) {
296         DCHECK(!UpdateDominatorOfSuccessor(block, successor));
297       }
298     }
299   }
300 
301   // Populate `dominated_blocks_` information after computing all dominators.
302   // The potential presence of irreducible loops requires to do it after.
303   for (HReversePostOrderIterator it(*this); !it.Done(); it.Advance()) {
304     HBasicBlock* block = it.Current();
305     if (!block->IsEntryBlock()) {
306       block->GetDominator()->AddDominatedBlock(block);
307     }
308   }
309 }
310 
SplitEdge(HBasicBlock * block,HBasicBlock * successor)311 HBasicBlock* HGraph::SplitEdge(HBasicBlock* block, HBasicBlock* successor) {
312   HBasicBlock* new_block = new (arena_) HBasicBlock(this, successor->GetDexPc());
313   AddBlock(new_block);
314   // Use `InsertBetween` to ensure the predecessor index and successor index of
315   // `block` and `successor` are preserved.
316   new_block->InsertBetween(block, successor);
317   return new_block;
318 }
319 
SplitCriticalEdge(HBasicBlock * block,HBasicBlock * successor)320 void HGraph::SplitCriticalEdge(HBasicBlock* block, HBasicBlock* successor) {
321   // Insert a new node between `block` and `successor` to split the
322   // critical edge.
323   HBasicBlock* new_block = SplitEdge(block, successor);
324   new_block->AddInstruction(new (arena_) HGoto(successor->GetDexPc()));
325   if (successor->IsLoopHeader()) {
326     // If we split at a back edge boundary, make the new block the back edge.
327     HLoopInformation* info = successor->GetLoopInformation();
328     if (info->IsBackEdge(*block)) {
329       info->RemoveBackEdge(block);
330       info->AddBackEdge(new_block);
331     }
332   }
333 }
334 
SimplifyLoop(HBasicBlock * header)335 void HGraph::SimplifyLoop(HBasicBlock* header) {
336   HLoopInformation* info = header->GetLoopInformation();
337 
338   // Make sure the loop has only one pre header. This simplifies SSA building by having
339   // to just look at the pre header to know which locals are initialized at entry of the
340   // loop. Also, don't allow the entry block to be a pre header: this simplifies inlining
341   // this graph.
342   size_t number_of_incomings = header->GetPredecessors().size() - info->NumberOfBackEdges();
343   if (number_of_incomings != 1 || (GetEntryBlock()->GetSingleSuccessor() == header)) {
344     HBasicBlock* pre_header = new (arena_) HBasicBlock(this, header->GetDexPc());
345     AddBlock(pre_header);
346     pre_header->AddInstruction(new (arena_) HGoto(header->GetDexPc()));
347 
348     for (size_t pred = 0; pred < header->GetPredecessors().size(); ++pred) {
349       HBasicBlock* predecessor = header->GetPredecessors()[pred];
350       if (!info->IsBackEdge(*predecessor)) {
351         predecessor->ReplaceSuccessor(header, pre_header);
352         pred--;
353       }
354     }
355     pre_header->AddSuccessor(header);
356   }
357 
358   // Make sure the first predecessor of a loop header is the incoming block.
359   if (info->IsBackEdge(*header->GetPredecessors()[0])) {
360     HBasicBlock* to_swap = header->GetPredecessors()[0];
361     for (size_t pred = 1, e = header->GetPredecessors().size(); pred < e; ++pred) {
362       HBasicBlock* predecessor = header->GetPredecessors()[pred];
363       if (!info->IsBackEdge(*predecessor)) {
364         header->predecessors_[pred] = to_swap;
365         header->predecessors_[0] = predecessor;
366         break;
367       }
368     }
369   }
370 
371   HInstruction* first_instruction = header->GetFirstInstruction();
372   if (first_instruction != nullptr && first_instruction->IsSuspendCheck()) {
373     // Called from DeadBlockElimination. Update SuspendCheck pointer.
374     info->SetSuspendCheck(first_instruction->AsSuspendCheck());
375   }
376 }
377 
ComputeTryBlockInformation()378 void HGraph::ComputeTryBlockInformation() {
379   // Iterate in reverse post order to propagate try membership information from
380   // predecessors to their successors.
381   for (HReversePostOrderIterator it(*this); !it.Done(); it.Advance()) {
382     HBasicBlock* block = it.Current();
383     if (block->IsEntryBlock() || block->IsCatchBlock()) {
384       // Catch blocks after simplification have only exceptional predecessors
385       // and hence are never in tries.
386       continue;
387     }
388 
389     // Infer try membership from the first predecessor. Having simplified loops,
390     // the first predecessor can never be a back edge and therefore it must have
391     // been visited already and had its try membership set.
392     HBasicBlock* first_predecessor = block->GetPredecessors()[0];
393     DCHECK(!block->IsLoopHeader() || !block->GetLoopInformation()->IsBackEdge(*first_predecessor));
394     const HTryBoundary* try_entry = first_predecessor->ComputeTryEntryOfSuccessors();
395     if (try_entry != nullptr &&
396         (block->GetTryCatchInformation() == nullptr ||
397          try_entry != &block->GetTryCatchInformation()->GetTryEntry())) {
398       // We are either setting try block membership for the first time or it
399       // has changed.
400       block->SetTryCatchInformation(new (arena_) TryCatchInformation(*try_entry));
401     }
402   }
403 }
404 
SimplifyCFG()405 void HGraph::SimplifyCFG() {
406 // Simplify the CFG for future analysis, and code generation:
407   // (1): Split critical edges.
408   // (2): Simplify loops by having only one preheader.
409   // NOTE: We're appending new blocks inside the loop, so we need to use index because iterators
410   // can be invalidated. We remember the initial size to avoid iterating over the new blocks.
411   for (size_t block_id = 0u, end = blocks_.size(); block_id != end; ++block_id) {
412     HBasicBlock* block = blocks_[block_id];
413     if (block == nullptr) continue;
414     if (block->GetSuccessors().size() > 1) {
415       // Only split normal-flow edges. We cannot split exceptional edges as they
416       // are synthesized (approximate real control flow), and we do not need to
417       // anyway. Moves that would be inserted there are performed by the runtime.
418       ArrayRef<HBasicBlock* const> normal_successors = block->GetNormalSuccessors();
419       for (size_t j = 0, e = normal_successors.size(); j < e; ++j) {
420         HBasicBlock* successor = normal_successors[j];
421         DCHECK(!successor->IsCatchBlock());
422         if (successor == exit_block_) {
423           // (Throw/Return/ReturnVoid)->TryBoundary->Exit. Special case which we
424           // do not want to split because Goto->Exit is not allowed.
425           DCHECK(block->IsSingleTryBoundary());
426         } else if (successor->GetPredecessors().size() > 1) {
427           SplitCriticalEdge(block, successor);
428           // SplitCriticalEdge could have invalidated the `normal_successors`
429           // ArrayRef. We must re-acquire it.
430           normal_successors = block->GetNormalSuccessors();
431           DCHECK_EQ(normal_successors[j]->GetSingleSuccessor(), successor);
432           DCHECK_EQ(e, normal_successors.size());
433         }
434       }
435     }
436     if (block->IsLoopHeader()) {
437       SimplifyLoop(block);
438     } else if (!block->IsEntryBlock() &&
439                block->GetFirstInstruction() != nullptr &&
440                block->GetFirstInstruction()->IsSuspendCheck()) {
441       // We are being called by the dead code elimiation pass, and what used to be
442       // a loop got dismantled. Just remove the suspend check.
443       block->RemoveInstruction(block->GetFirstInstruction());
444     }
445   }
446 }
447 
AnalyzeLoops() const448 GraphAnalysisResult HGraph::AnalyzeLoops() const {
449   // We iterate post order to ensure we visit inner loops before outer loops.
450   // `PopulateRecursive` needs this guarantee to know whether a natural loop
451   // contains an irreducible loop.
452   for (HPostOrderIterator it(*this); !it.Done(); it.Advance()) {
453     HBasicBlock* block = it.Current();
454     if (block->IsLoopHeader()) {
455       if (block->IsCatchBlock()) {
456         // TODO: Dealing with exceptional back edges could be tricky because
457         //       they only approximate the real control flow. Bail out for now.
458         return kAnalysisFailThrowCatchLoop;
459       }
460       block->GetLoopInformation()->Populate();
461     }
462   }
463   return kAnalysisSuccess;
464 }
465 
Dump(std::ostream & os)466 void HLoopInformation::Dump(std::ostream& os) {
467   os << "header: " << header_->GetBlockId() << std::endl;
468   os << "pre header: " << GetPreHeader()->GetBlockId() << std::endl;
469   for (HBasicBlock* block : back_edges_) {
470     os << "back edge: " << block->GetBlockId() << std::endl;
471   }
472   for (HBasicBlock* block : header_->GetPredecessors()) {
473     os << "predecessor: " << block->GetBlockId() << std::endl;
474   }
475   for (uint32_t idx : blocks_.Indexes()) {
476     os << "  in loop: " << idx << std::endl;
477   }
478 }
479 
InsertConstant(HConstant * constant)480 void HGraph::InsertConstant(HConstant* constant) {
481   // New constants are inserted before the SuspendCheck at the bottom of the
482   // entry block. Note that this method can be called from the graph builder and
483   // the entry block therefore may not end with SuspendCheck->Goto yet.
484   HInstruction* insert_before = nullptr;
485 
486   HInstruction* gota = entry_block_->GetLastInstruction();
487   if (gota != nullptr && gota->IsGoto()) {
488     HInstruction* suspend_check = gota->GetPrevious();
489     if (suspend_check != nullptr && suspend_check->IsSuspendCheck()) {
490       insert_before = suspend_check;
491     } else {
492       insert_before = gota;
493     }
494   }
495 
496   if (insert_before == nullptr) {
497     entry_block_->AddInstruction(constant);
498   } else {
499     entry_block_->InsertInstructionBefore(constant, insert_before);
500   }
501 }
502 
GetNullConstant(uint32_t dex_pc)503 HNullConstant* HGraph::GetNullConstant(uint32_t dex_pc) {
504   // For simplicity, don't bother reviving the cached null constant if it is
505   // not null and not in a block. Otherwise, we need to clear the instruction
506   // id and/or any invariants the graph is assuming when adding new instructions.
507   if ((cached_null_constant_ == nullptr) || (cached_null_constant_->GetBlock() == nullptr)) {
508     cached_null_constant_ = new (arena_) HNullConstant(dex_pc);
509     cached_null_constant_->SetReferenceTypeInfo(inexact_object_rti_);
510     InsertConstant(cached_null_constant_);
511   }
512   if (kIsDebugBuild) {
513     ScopedObjectAccess soa(Thread::Current());
514     DCHECK(cached_null_constant_->GetReferenceTypeInfo().IsValid());
515   }
516   return cached_null_constant_;
517 }
518 
GetCurrentMethod()519 HCurrentMethod* HGraph::GetCurrentMethod() {
520   // For simplicity, don't bother reviving the cached current method if it is
521   // not null and not in a block. Otherwise, we need to clear the instruction
522   // id and/or any invariants the graph is assuming when adding new instructions.
523   if ((cached_current_method_ == nullptr) || (cached_current_method_->GetBlock() == nullptr)) {
524     cached_current_method_ = new (arena_) HCurrentMethod(
525         Is64BitInstructionSet(instruction_set_) ? Primitive::kPrimLong : Primitive::kPrimInt,
526         entry_block_->GetDexPc());
527     if (entry_block_->GetFirstInstruction() == nullptr) {
528       entry_block_->AddInstruction(cached_current_method_);
529     } else {
530       entry_block_->InsertInstructionBefore(
531           cached_current_method_, entry_block_->GetFirstInstruction());
532     }
533   }
534   return cached_current_method_;
535 }
536 
GetConstant(Primitive::Type type,int64_t value,uint32_t dex_pc)537 HConstant* HGraph::GetConstant(Primitive::Type type, int64_t value, uint32_t dex_pc) {
538   switch (type) {
539     case Primitive::Type::kPrimBoolean:
540       DCHECK(IsUint<1>(value));
541       FALLTHROUGH_INTENDED;
542     case Primitive::Type::kPrimByte:
543     case Primitive::Type::kPrimChar:
544     case Primitive::Type::kPrimShort:
545     case Primitive::Type::kPrimInt:
546       DCHECK(IsInt(Primitive::ComponentSize(type) * kBitsPerByte, value));
547       return GetIntConstant(static_cast<int32_t>(value), dex_pc);
548 
549     case Primitive::Type::kPrimLong:
550       return GetLongConstant(value, dex_pc);
551 
552     default:
553       LOG(FATAL) << "Unsupported constant type";
554       UNREACHABLE();
555   }
556 }
557 
CacheFloatConstant(HFloatConstant * constant)558 void HGraph::CacheFloatConstant(HFloatConstant* constant) {
559   int32_t value = bit_cast<int32_t, float>(constant->GetValue());
560   DCHECK(cached_float_constants_.find(value) == cached_float_constants_.end());
561   cached_float_constants_.Overwrite(value, constant);
562 }
563 
CacheDoubleConstant(HDoubleConstant * constant)564 void HGraph::CacheDoubleConstant(HDoubleConstant* constant) {
565   int64_t value = bit_cast<int64_t, double>(constant->GetValue());
566   DCHECK(cached_double_constants_.find(value) == cached_double_constants_.end());
567   cached_double_constants_.Overwrite(value, constant);
568 }
569 
Add(HBasicBlock * block)570 void HLoopInformation::Add(HBasicBlock* block) {
571   blocks_.SetBit(block->GetBlockId());
572 }
573 
Remove(HBasicBlock * block)574 void HLoopInformation::Remove(HBasicBlock* block) {
575   blocks_.ClearBit(block->GetBlockId());
576 }
577 
PopulateRecursive(HBasicBlock * block)578 void HLoopInformation::PopulateRecursive(HBasicBlock* block) {
579   if (blocks_.IsBitSet(block->GetBlockId())) {
580     return;
581   }
582 
583   blocks_.SetBit(block->GetBlockId());
584   block->SetInLoop(this);
585   if (block->IsLoopHeader()) {
586     // We're visiting loops in post-order, so inner loops must have been
587     // populated already.
588     DCHECK(block->GetLoopInformation()->IsPopulated());
589     if (block->GetLoopInformation()->IsIrreducible()) {
590       contains_irreducible_loop_ = true;
591     }
592   }
593   for (HBasicBlock* predecessor : block->GetPredecessors()) {
594     PopulateRecursive(predecessor);
595   }
596 }
597 
PopulateIrreducibleRecursive(HBasicBlock * block,ArenaBitVector * finalized)598 void HLoopInformation::PopulateIrreducibleRecursive(HBasicBlock* block, ArenaBitVector* finalized) {
599   size_t block_id = block->GetBlockId();
600 
601   // If `block` is in `finalized`, we know its membership in the loop has been
602   // decided and it does not need to be revisited.
603   if (finalized->IsBitSet(block_id)) {
604     return;
605   }
606 
607   bool is_finalized = false;
608   if (block->IsLoopHeader()) {
609     // If we hit a loop header in an irreducible loop, we first check if the
610     // pre header of that loop belongs to the currently analyzed loop. If it does,
611     // then we visit the back edges.
612     // Note that we cannot use GetPreHeader, as the loop may have not been populated
613     // yet.
614     HBasicBlock* pre_header = block->GetPredecessors()[0];
615     PopulateIrreducibleRecursive(pre_header, finalized);
616     if (blocks_.IsBitSet(pre_header->GetBlockId())) {
617       block->SetInLoop(this);
618       blocks_.SetBit(block_id);
619       finalized->SetBit(block_id);
620       is_finalized = true;
621 
622       HLoopInformation* info = block->GetLoopInformation();
623       for (HBasicBlock* back_edge : info->GetBackEdges()) {
624         PopulateIrreducibleRecursive(back_edge, finalized);
625       }
626     }
627   } else {
628     // Visit all predecessors. If one predecessor is part of the loop, this
629     // block is also part of this loop.
630     for (HBasicBlock* predecessor : block->GetPredecessors()) {
631       PopulateIrreducibleRecursive(predecessor, finalized);
632       if (!is_finalized && blocks_.IsBitSet(predecessor->GetBlockId())) {
633         block->SetInLoop(this);
634         blocks_.SetBit(block_id);
635         finalized->SetBit(block_id);
636         is_finalized = true;
637       }
638     }
639   }
640 
641   // All predecessors have been recursively visited. Mark finalized if not marked yet.
642   if (!is_finalized) {
643     finalized->SetBit(block_id);
644   }
645 }
646 
Populate()647 void HLoopInformation::Populate() {
648   DCHECK_EQ(blocks_.NumSetBits(), 0u) << "Loop information has already been populated";
649   // Populate this loop: starting with the back edge, recursively add predecessors
650   // that are not already part of that loop. Set the header as part of the loop
651   // to end the recursion.
652   // This is a recursive implementation of the algorithm described in
653   // "Advanced Compiler Design & Implementation" (Muchnick) p192.
654   HGraph* graph = header_->GetGraph();
655   blocks_.SetBit(header_->GetBlockId());
656   header_->SetInLoop(this);
657 
658   bool is_irreducible_loop = HasBackEdgeNotDominatedByHeader();
659 
660   if (is_irreducible_loop) {
661     ArenaBitVector visited(graph->GetArena(),
662                            graph->GetBlocks().size(),
663                            /* expandable */ false,
664                            kArenaAllocGraphBuilder);
665     // Stop marking blocks at the loop header.
666     visited.SetBit(header_->GetBlockId());
667 
668     for (HBasicBlock* back_edge : GetBackEdges()) {
669       PopulateIrreducibleRecursive(back_edge, &visited);
670     }
671   } else {
672     for (HBasicBlock* back_edge : GetBackEdges()) {
673       PopulateRecursive(back_edge);
674     }
675   }
676 
677   if (!is_irreducible_loop && graph->IsCompilingOsr()) {
678     // When compiling in OSR mode, all loops in the compiled method may be entered
679     // from the interpreter. We treat this OSR entry point just like an extra entry
680     // to an irreducible loop, so we need to mark the method's loops as irreducible.
681     // This does not apply to inlined loops which do not act as OSR entry points.
682     if (suspend_check_ == nullptr) {
683       // Just building the graph in OSR mode, this loop is not inlined. We never build an
684       // inner graph in OSR mode as we can do OSR transition only from the outer method.
685       is_irreducible_loop = true;
686     } else {
687       // Look at the suspend check's environment to determine if the loop was inlined.
688       DCHECK(suspend_check_->HasEnvironment());
689       if (!suspend_check_->GetEnvironment()->IsFromInlinedInvoke()) {
690         is_irreducible_loop = true;
691       }
692     }
693   }
694   if (is_irreducible_loop) {
695     irreducible_ = true;
696     contains_irreducible_loop_ = true;
697     graph->SetHasIrreducibleLoops(true);
698   }
699 }
700 
GetPreHeader() const701 HBasicBlock* HLoopInformation::GetPreHeader() const {
702   HBasicBlock* block = header_->GetPredecessors()[0];
703   DCHECK(irreducible_ || (block == header_->GetDominator()));
704   return block;
705 }
706 
Contains(const HBasicBlock & block) const707 bool HLoopInformation::Contains(const HBasicBlock& block) const {
708   return blocks_.IsBitSet(block.GetBlockId());
709 }
710 
IsIn(const HLoopInformation & other) const711 bool HLoopInformation::IsIn(const HLoopInformation& other) const {
712   return other.blocks_.IsBitSet(header_->GetBlockId());
713 }
714 
IsDefinedOutOfTheLoop(HInstruction * instruction) const715 bool HLoopInformation::IsDefinedOutOfTheLoop(HInstruction* instruction) const {
716   return !blocks_.IsBitSet(instruction->GetBlock()->GetBlockId());
717 }
718 
GetLifetimeEnd() const719 size_t HLoopInformation::GetLifetimeEnd() const {
720   size_t last_position = 0;
721   for (HBasicBlock* back_edge : GetBackEdges()) {
722     last_position = std::max(back_edge->GetLifetimeEnd(), last_position);
723   }
724   return last_position;
725 }
726 
HasBackEdgeNotDominatedByHeader() const727 bool HLoopInformation::HasBackEdgeNotDominatedByHeader() const {
728   for (HBasicBlock* back_edge : GetBackEdges()) {
729     DCHECK(back_edge->GetDominator() != nullptr);
730     if (!header_->Dominates(back_edge)) {
731       return true;
732     }
733   }
734   return false;
735 }
736 
DominatesAllBackEdges(HBasicBlock * block)737 bool HLoopInformation::DominatesAllBackEdges(HBasicBlock* block) {
738   for (HBasicBlock* back_edge : GetBackEdges()) {
739     if (!block->Dominates(back_edge)) {
740       return false;
741     }
742   }
743   return true;
744 }
745 
Dominates(HBasicBlock * other) const746 bool HBasicBlock::Dominates(HBasicBlock* other) const {
747   // Walk up the dominator tree from `other`, to find out if `this`
748   // is an ancestor.
749   HBasicBlock* current = other;
750   while (current != nullptr) {
751     if (current == this) {
752       return true;
753     }
754     current = current->GetDominator();
755   }
756   return false;
757 }
758 
UpdateInputsUsers(HInstruction * instruction)759 static void UpdateInputsUsers(HInstruction* instruction) {
760   for (size_t i = 0, e = instruction->InputCount(); i < e; ++i) {
761     instruction->InputAt(i)->AddUseAt(instruction, i);
762   }
763   // Environment should be created later.
764   DCHECK(!instruction->HasEnvironment());
765 }
766 
ReplaceAndRemoveInstructionWith(HInstruction * initial,HInstruction * replacement)767 void HBasicBlock::ReplaceAndRemoveInstructionWith(HInstruction* initial,
768                                                   HInstruction* replacement) {
769   DCHECK(initial->GetBlock() == this);
770   if (initial->IsControlFlow()) {
771     // We can only replace a control flow instruction with another control flow instruction.
772     DCHECK(replacement->IsControlFlow());
773     DCHECK_EQ(replacement->GetId(), -1);
774     DCHECK_EQ(replacement->GetType(), Primitive::kPrimVoid);
775     DCHECK_EQ(initial->GetBlock(), this);
776     DCHECK_EQ(initial->GetType(), Primitive::kPrimVoid);
777     DCHECK(initial->GetUses().empty());
778     DCHECK(initial->GetEnvUses().empty());
779     replacement->SetBlock(this);
780     replacement->SetId(GetGraph()->GetNextInstructionId());
781     instructions_.InsertInstructionBefore(replacement, initial);
782     UpdateInputsUsers(replacement);
783   } else {
784     InsertInstructionBefore(replacement, initial);
785     initial->ReplaceWith(replacement);
786   }
787   RemoveInstruction(initial);
788 }
789 
MoveInstructionBefore(HInstruction * insn,HInstruction * cursor)790 void HBasicBlock::MoveInstructionBefore(HInstruction* insn, HInstruction* cursor) {
791   DCHECK(!cursor->IsPhi());
792   DCHECK(!insn->IsPhi());
793   DCHECK(!insn->IsControlFlow());
794   DCHECK(insn->CanBeMoved());
795   DCHECK(!insn->HasSideEffects());
796 
797   HBasicBlock* from_block = insn->GetBlock();
798   HBasicBlock* to_block = cursor->GetBlock();
799   DCHECK(from_block != to_block);
800 
801   from_block->RemoveInstruction(insn, /* ensure_safety */ false);
802   insn->SetBlock(to_block);
803   to_block->instructions_.InsertInstructionBefore(insn, cursor);
804 }
805 
Add(HInstructionList * instruction_list,HBasicBlock * block,HInstruction * instruction)806 static void Add(HInstructionList* instruction_list,
807                 HBasicBlock* block,
808                 HInstruction* instruction) {
809   DCHECK(instruction->GetBlock() == nullptr);
810   DCHECK_EQ(instruction->GetId(), -1);
811   instruction->SetBlock(block);
812   instruction->SetId(block->GetGraph()->GetNextInstructionId());
813   UpdateInputsUsers(instruction);
814   instruction_list->AddInstruction(instruction);
815 }
816 
AddInstruction(HInstruction * instruction)817 void HBasicBlock::AddInstruction(HInstruction* instruction) {
818   Add(&instructions_, this, instruction);
819 }
820 
AddPhi(HPhi * phi)821 void HBasicBlock::AddPhi(HPhi* phi) {
822   Add(&phis_, this, phi);
823 }
824 
InsertInstructionBefore(HInstruction * instruction,HInstruction * cursor)825 void HBasicBlock::InsertInstructionBefore(HInstruction* instruction, HInstruction* cursor) {
826   DCHECK(!cursor->IsPhi());
827   DCHECK(!instruction->IsPhi());
828   DCHECK_EQ(instruction->GetId(), -1);
829   DCHECK_NE(cursor->GetId(), -1);
830   DCHECK_EQ(cursor->GetBlock(), this);
831   DCHECK(!instruction->IsControlFlow());
832   instruction->SetBlock(this);
833   instruction->SetId(GetGraph()->GetNextInstructionId());
834   UpdateInputsUsers(instruction);
835   instructions_.InsertInstructionBefore(instruction, cursor);
836 }
837 
InsertInstructionAfter(HInstruction * instruction,HInstruction * cursor)838 void HBasicBlock::InsertInstructionAfter(HInstruction* instruction, HInstruction* cursor) {
839   DCHECK(!cursor->IsPhi());
840   DCHECK(!instruction->IsPhi());
841   DCHECK_EQ(instruction->GetId(), -1);
842   DCHECK_NE(cursor->GetId(), -1);
843   DCHECK_EQ(cursor->GetBlock(), this);
844   DCHECK(!instruction->IsControlFlow());
845   DCHECK(!cursor->IsControlFlow());
846   instruction->SetBlock(this);
847   instruction->SetId(GetGraph()->GetNextInstructionId());
848   UpdateInputsUsers(instruction);
849   instructions_.InsertInstructionAfter(instruction, cursor);
850 }
851 
InsertPhiAfter(HPhi * phi,HPhi * cursor)852 void HBasicBlock::InsertPhiAfter(HPhi* phi, HPhi* cursor) {
853   DCHECK_EQ(phi->GetId(), -1);
854   DCHECK_NE(cursor->GetId(), -1);
855   DCHECK_EQ(cursor->GetBlock(), this);
856   phi->SetBlock(this);
857   phi->SetId(GetGraph()->GetNextInstructionId());
858   UpdateInputsUsers(phi);
859   phis_.InsertInstructionAfter(phi, cursor);
860 }
861 
Remove(HInstructionList * instruction_list,HBasicBlock * block,HInstruction * instruction,bool ensure_safety)862 static void Remove(HInstructionList* instruction_list,
863                    HBasicBlock* block,
864                    HInstruction* instruction,
865                    bool ensure_safety) {
866   DCHECK_EQ(block, instruction->GetBlock());
867   instruction->SetBlock(nullptr);
868   instruction_list->RemoveInstruction(instruction);
869   if (ensure_safety) {
870     DCHECK(instruction->GetUses().empty());
871     DCHECK(instruction->GetEnvUses().empty());
872     RemoveAsUser(instruction);
873   }
874 }
875 
RemoveInstruction(HInstruction * instruction,bool ensure_safety)876 void HBasicBlock::RemoveInstruction(HInstruction* instruction, bool ensure_safety) {
877   DCHECK(!instruction->IsPhi());
878   Remove(&instructions_, this, instruction, ensure_safety);
879 }
880 
RemovePhi(HPhi * phi,bool ensure_safety)881 void HBasicBlock::RemovePhi(HPhi* phi, bool ensure_safety) {
882   Remove(&phis_, this, phi, ensure_safety);
883 }
884 
RemoveInstructionOrPhi(HInstruction * instruction,bool ensure_safety)885 void HBasicBlock::RemoveInstructionOrPhi(HInstruction* instruction, bool ensure_safety) {
886   if (instruction->IsPhi()) {
887     RemovePhi(instruction->AsPhi(), ensure_safety);
888   } else {
889     RemoveInstruction(instruction, ensure_safety);
890   }
891 }
892 
CopyFrom(const ArenaVector<HInstruction * > & locals)893 void HEnvironment::CopyFrom(const ArenaVector<HInstruction*>& locals) {
894   for (size_t i = 0; i < locals.size(); i++) {
895     HInstruction* instruction = locals[i];
896     SetRawEnvAt(i, instruction);
897     if (instruction != nullptr) {
898       instruction->AddEnvUseAt(this, i);
899     }
900   }
901 }
902 
CopyFrom(HEnvironment * env)903 void HEnvironment::CopyFrom(HEnvironment* env) {
904   for (size_t i = 0; i < env->Size(); i++) {
905     HInstruction* instruction = env->GetInstructionAt(i);
906     SetRawEnvAt(i, instruction);
907     if (instruction != nullptr) {
908       instruction->AddEnvUseAt(this, i);
909     }
910   }
911 }
912 
CopyFromWithLoopPhiAdjustment(HEnvironment * env,HBasicBlock * loop_header)913 void HEnvironment::CopyFromWithLoopPhiAdjustment(HEnvironment* env,
914                                                  HBasicBlock* loop_header) {
915   DCHECK(loop_header->IsLoopHeader());
916   for (size_t i = 0; i < env->Size(); i++) {
917     HInstruction* instruction = env->GetInstructionAt(i);
918     SetRawEnvAt(i, instruction);
919     if (instruction == nullptr) {
920       continue;
921     }
922     if (instruction->IsLoopHeaderPhi() && (instruction->GetBlock() == loop_header)) {
923       // At the end of the loop pre-header, the corresponding value for instruction
924       // is the first input of the phi.
925       HInstruction* initial = instruction->AsPhi()->InputAt(0);
926       SetRawEnvAt(i, initial);
927       initial->AddEnvUseAt(this, i);
928     } else {
929       instruction->AddEnvUseAt(this, i);
930     }
931   }
932 }
933 
RemoveAsUserOfInput(size_t index) const934 void HEnvironment::RemoveAsUserOfInput(size_t index) const {
935   const HUserRecord<HEnvironment*>& env_use = vregs_[index];
936   HInstruction* user = env_use.GetInstruction();
937   auto before_env_use_node = env_use.GetBeforeUseNode();
938   user->env_uses_.erase_after(before_env_use_node);
939   user->FixUpUserRecordsAfterEnvUseRemoval(before_env_use_node);
940 }
941 
GetKind() const942 HInstruction::InstructionKind HInstruction::GetKind() const {
943   return GetKindInternal();
944 }
945 
GetNextDisregardingMoves() const946 HInstruction* HInstruction::GetNextDisregardingMoves() const {
947   HInstruction* next = GetNext();
948   while (next != nullptr && next->IsParallelMove()) {
949     next = next->GetNext();
950   }
951   return next;
952 }
953 
GetPreviousDisregardingMoves() const954 HInstruction* HInstruction::GetPreviousDisregardingMoves() const {
955   HInstruction* previous = GetPrevious();
956   while (previous != nullptr && previous->IsParallelMove()) {
957     previous = previous->GetPrevious();
958   }
959   return previous;
960 }
961 
AddInstruction(HInstruction * instruction)962 void HInstructionList::AddInstruction(HInstruction* instruction) {
963   if (first_instruction_ == nullptr) {
964     DCHECK(last_instruction_ == nullptr);
965     first_instruction_ = last_instruction_ = instruction;
966   } else {
967     last_instruction_->next_ = instruction;
968     instruction->previous_ = last_instruction_;
969     last_instruction_ = instruction;
970   }
971 }
972 
InsertInstructionBefore(HInstruction * instruction,HInstruction * cursor)973 void HInstructionList::InsertInstructionBefore(HInstruction* instruction, HInstruction* cursor) {
974   DCHECK(Contains(cursor));
975   if (cursor == first_instruction_) {
976     cursor->previous_ = instruction;
977     instruction->next_ = cursor;
978     first_instruction_ = instruction;
979   } else {
980     instruction->previous_ = cursor->previous_;
981     instruction->next_ = cursor;
982     cursor->previous_ = instruction;
983     instruction->previous_->next_ = instruction;
984   }
985 }
986 
InsertInstructionAfter(HInstruction * instruction,HInstruction * cursor)987 void HInstructionList::InsertInstructionAfter(HInstruction* instruction, HInstruction* cursor) {
988   DCHECK(Contains(cursor));
989   if (cursor == last_instruction_) {
990     cursor->next_ = instruction;
991     instruction->previous_ = cursor;
992     last_instruction_ = instruction;
993   } else {
994     instruction->next_ = cursor->next_;
995     instruction->previous_ = cursor;
996     cursor->next_ = instruction;
997     instruction->next_->previous_ = instruction;
998   }
999 }
1000 
RemoveInstruction(HInstruction * instruction)1001 void HInstructionList::RemoveInstruction(HInstruction* instruction) {
1002   if (instruction->previous_ != nullptr) {
1003     instruction->previous_->next_ = instruction->next_;
1004   }
1005   if (instruction->next_ != nullptr) {
1006     instruction->next_->previous_ = instruction->previous_;
1007   }
1008   if (instruction == first_instruction_) {
1009     first_instruction_ = instruction->next_;
1010   }
1011   if (instruction == last_instruction_) {
1012     last_instruction_ = instruction->previous_;
1013   }
1014 }
1015 
Contains(HInstruction * instruction) const1016 bool HInstructionList::Contains(HInstruction* instruction) const {
1017   for (HInstructionIterator it(*this); !it.Done(); it.Advance()) {
1018     if (it.Current() == instruction) {
1019       return true;
1020     }
1021   }
1022   return false;
1023 }
1024 
FoundBefore(const HInstruction * instruction1,const HInstruction * instruction2) const1025 bool HInstructionList::FoundBefore(const HInstruction* instruction1,
1026                                    const HInstruction* instruction2) const {
1027   DCHECK_EQ(instruction1->GetBlock(), instruction2->GetBlock());
1028   for (HInstructionIterator it(*this); !it.Done(); it.Advance()) {
1029     if (it.Current() == instruction1) {
1030       return true;
1031     }
1032     if (it.Current() == instruction2) {
1033       return false;
1034     }
1035   }
1036   LOG(FATAL) << "Did not find an order between two instructions of the same block.";
1037   return true;
1038 }
1039 
StrictlyDominates(HInstruction * other_instruction) const1040 bool HInstruction::StrictlyDominates(HInstruction* other_instruction) const {
1041   if (other_instruction == this) {
1042     // An instruction does not strictly dominate itself.
1043     return false;
1044   }
1045   HBasicBlock* block = GetBlock();
1046   HBasicBlock* other_block = other_instruction->GetBlock();
1047   if (block != other_block) {
1048     return GetBlock()->Dominates(other_instruction->GetBlock());
1049   } else {
1050     // If both instructions are in the same block, ensure this
1051     // instruction comes before `other_instruction`.
1052     if (IsPhi()) {
1053       if (!other_instruction->IsPhi()) {
1054         // Phis appear before non phi-instructions so this instruction
1055         // dominates `other_instruction`.
1056         return true;
1057       } else {
1058         // There is no order among phis.
1059         LOG(FATAL) << "There is no dominance between phis of a same block.";
1060         return false;
1061       }
1062     } else {
1063       // `this` is not a phi.
1064       if (other_instruction->IsPhi()) {
1065         // Phis appear before non phi-instructions so this instruction
1066         // does not dominate `other_instruction`.
1067         return false;
1068       } else {
1069         // Check whether this instruction comes before
1070         // `other_instruction` in the instruction list.
1071         return block->GetInstructions().FoundBefore(this, other_instruction);
1072       }
1073     }
1074   }
1075 }
1076 
RemoveEnvironment()1077 void HInstruction::RemoveEnvironment() {
1078   RemoveEnvironmentUses(this);
1079   environment_ = nullptr;
1080 }
1081 
ReplaceWith(HInstruction * other)1082 void HInstruction::ReplaceWith(HInstruction* other) {
1083   DCHECK(other != nullptr);
1084   // Note: fixup_end remains valid across splice_after().
1085   auto fixup_end = other->uses_.empty() ? other->uses_.begin() : ++other->uses_.begin();
1086   other->uses_.splice_after(other->uses_.before_begin(), uses_);
1087   other->FixUpUserRecordsAfterUseInsertion(fixup_end);
1088 
1089   // Note: env_fixup_end remains valid across splice_after().
1090   auto env_fixup_end =
1091       other->env_uses_.empty() ? other->env_uses_.begin() : ++other->env_uses_.begin();
1092   other->env_uses_.splice_after(other->env_uses_.before_begin(), env_uses_);
1093   other->FixUpUserRecordsAfterEnvUseInsertion(env_fixup_end);
1094 
1095   DCHECK(uses_.empty());
1096   DCHECK(env_uses_.empty());
1097 }
1098 
ReplaceInput(HInstruction * replacement,size_t index)1099 void HInstruction::ReplaceInput(HInstruction* replacement, size_t index) {
1100   HUserRecord<HInstruction*> input_use = InputRecordAt(index);
1101   if (input_use.GetInstruction() == replacement) {
1102     // Nothing to do.
1103     return;
1104   }
1105   HUseList<HInstruction*>::iterator before_use_node = input_use.GetBeforeUseNode();
1106   // Note: fixup_end remains valid across splice_after().
1107   auto fixup_end =
1108       replacement->uses_.empty() ? replacement->uses_.begin() : ++replacement->uses_.begin();
1109   replacement->uses_.splice_after(replacement->uses_.before_begin(),
1110                                   input_use.GetInstruction()->uses_,
1111                                   before_use_node);
1112   replacement->FixUpUserRecordsAfterUseInsertion(fixup_end);
1113   input_use.GetInstruction()->FixUpUserRecordsAfterUseRemoval(before_use_node);
1114 }
1115 
EnvironmentSize() const1116 size_t HInstruction::EnvironmentSize() const {
1117   return HasEnvironment() ? environment_->Size() : 0;
1118 }
1119 
AddInput(HInstruction * input)1120 void HPhi::AddInput(HInstruction* input) {
1121   DCHECK(input->GetBlock() != nullptr);
1122   inputs_.push_back(HUserRecord<HInstruction*>(input));
1123   input->AddUseAt(this, inputs_.size() - 1);
1124 }
1125 
RemoveInputAt(size_t index)1126 void HPhi::RemoveInputAt(size_t index) {
1127   RemoveAsUserOfInput(index);
1128   inputs_.erase(inputs_.begin() + index);
1129   for (size_t i = index, e = InputCount(); i < e; ++i) {
1130     DCHECK_EQ(InputRecordAt(i).GetUseNode()->GetIndex(), i + 1u);
1131     InputRecordAt(i).GetUseNode()->SetIndex(i);
1132   }
1133 }
1134 
1135 #define DEFINE_ACCEPT(name, super)                                             \
1136 void H##name::Accept(HGraphVisitor* visitor) {                                 \
1137   visitor->Visit##name(this);                                                  \
1138 }
1139 
FOR_EACH_CONCRETE_INSTRUCTION(DEFINE_ACCEPT)1140 FOR_EACH_CONCRETE_INSTRUCTION(DEFINE_ACCEPT)
1141 
1142 #undef DEFINE_ACCEPT
1143 
1144 void HGraphVisitor::VisitInsertionOrder() {
1145   const ArenaVector<HBasicBlock*>& blocks = graph_->GetBlocks();
1146   for (HBasicBlock* block : blocks) {
1147     if (block != nullptr) {
1148       VisitBasicBlock(block);
1149     }
1150   }
1151 }
1152 
VisitReversePostOrder()1153 void HGraphVisitor::VisitReversePostOrder() {
1154   for (HReversePostOrderIterator it(*graph_); !it.Done(); it.Advance()) {
1155     VisitBasicBlock(it.Current());
1156   }
1157 }
1158 
VisitBasicBlock(HBasicBlock * block)1159 void HGraphVisitor::VisitBasicBlock(HBasicBlock* block) {
1160   for (HInstructionIterator it(block->GetPhis()); !it.Done(); it.Advance()) {
1161     it.Current()->Accept(this);
1162   }
1163   for (HInstructionIterator it(block->GetInstructions()); !it.Done(); it.Advance()) {
1164     it.Current()->Accept(this);
1165   }
1166 }
1167 
TryStaticEvaluation() const1168 HConstant* HTypeConversion::TryStaticEvaluation() const {
1169   HGraph* graph = GetBlock()->GetGraph();
1170   if (GetInput()->IsIntConstant()) {
1171     int32_t value = GetInput()->AsIntConstant()->GetValue();
1172     switch (GetResultType()) {
1173       case Primitive::kPrimLong:
1174         return graph->GetLongConstant(static_cast<int64_t>(value), GetDexPc());
1175       case Primitive::kPrimFloat:
1176         return graph->GetFloatConstant(static_cast<float>(value), GetDexPc());
1177       case Primitive::kPrimDouble:
1178         return graph->GetDoubleConstant(static_cast<double>(value), GetDexPc());
1179       default:
1180         return nullptr;
1181     }
1182   } else if (GetInput()->IsLongConstant()) {
1183     int64_t value = GetInput()->AsLongConstant()->GetValue();
1184     switch (GetResultType()) {
1185       case Primitive::kPrimInt:
1186         return graph->GetIntConstant(static_cast<int32_t>(value), GetDexPc());
1187       case Primitive::kPrimFloat:
1188         return graph->GetFloatConstant(static_cast<float>(value), GetDexPc());
1189       case Primitive::kPrimDouble:
1190         return graph->GetDoubleConstant(static_cast<double>(value), GetDexPc());
1191       default:
1192         return nullptr;
1193     }
1194   } else if (GetInput()->IsFloatConstant()) {
1195     float value = GetInput()->AsFloatConstant()->GetValue();
1196     switch (GetResultType()) {
1197       case Primitive::kPrimInt:
1198         if (std::isnan(value))
1199           return graph->GetIntConstant(0, GetDexPc());
1200         if (value >= kPrimIntMax)
1201           return graph->GetIntConstant(kPrimIntMax, GetDexPc());
1202         if (value <= kPrimIntMin)
1203           return graph->GetIntConstant(kPrimIntMin, GetDexPc());
1204         return graph->GetIntConstant(static_cast<int32_t>(value), GetDexPc());
1205       case Primitive::kPrimLong:
1206         if (std::isnan(value))
1207           return graph->GetLongConstant(0, GetDexPc());
1208         if (value >= kPrimLongMax)
1209           return graph->GetLongConstant(kPrimLongMax, GetDexPc());
1210         if (value <= kPrimLongMin)
1211           return graph->GetLongConstant(kPrimLongMin, GetDexPc());
1212         return graph->GetLongConstant(static_cast<int64_t>(value), GetDexPc());
1213       case Primitive::kPrimDouble:
1214         return graph->GetDoubleConstant(static_cast<double>(value), GetDexPc());
1215       default:
1216         return nullptr;
1217     }
1218   } else if (GetInput()->IsDoubleConstant()) {
1219     double value = GetInput()->AsDoubleConstant()->GetValue();
1220     switch (GetResultType()) {
1221       case Primitive::kPrimInt:
1222         if (std::isnan(value))
1223           return graph->GetIntConstant(0, GetDexPc());
1224         if (value >= kPrimIntMax)
1225           return graph->GetIntConstant(kPrimIntMax, GetDexPc());
1226         if (value <= kPrimLongMin)
1227           return graph->GetIntConstant(kPrimIntMin, GetDexPc());
1228         return graph->GetIntConstant(static_cast<int32_t>(value), GetDexPc());
1229       case Primitive::kPrimLong:
1230         if (std::isnan(value))
1231           return graph->GetLongConstant(0, GetDexPc());
1232         if (value >= kPrimLongMax)
1233           return graph->GetLongConstant(kPrimLongMax, GetDexPc());
1234         if (value <= kPrimLongMin)
1235           return graph->GetLongConstant(kPrimLongMin, GetDexPc());
1236         return graph->GetLongConstant(static_cast<int64_t>(value), GetDexPc());
1237       case Primitive::kPrimFloat:
1238         return graph->GetFloatConstant(static_cast<float>(value), GetDexPc());
1239       default:
1240         return nullptr;
1241     }
1242   }
1243   return nullptr;
1244 }
1245 
TryStaticEvaluation() const1246 HConstant* HUnaryOperation::TryStaticEvaluation() const {
1247   if (GetInput()->IsIntConstant()) {
1248     return Evaluate(GetInput()->AsIntConstant());
1249   } else if (GetInput()->IsLongConstant()) {
1250     return Evaluate(GetInput()->AsLongConstant());
1251   } else if (kEnableFloatingPointStaticEvaluation) {
1252     if (GetInput()->IsFloatConstant()) {
1253       return Evaluate(GetInput()->AsFloatConstant());
1254     } else if (GetInput()->IsDoubleConstant()) {
1255       return Evaluate(GetInput()->AsDoubleConstant());
1256     }
1257   }
1258   return nullptr;
1259 }
1260 
TryStaticEvaluation() const1261 HConstant* HBinaryOperation::TryStaticEvaluation() const {
1262   if (GetLeft()->IsIntConstant() && GetRight()->IsIntConstant()) {
1263     return Evaluate(GetLeft()->AsIntConstant(), GetRight()->AsIntConstant());
1264   } else if (GetLeft()->IsLongConstant()) {
1265     if (GetRight()->IsIntConstant()) {
1266       // The binop(long, int) case is only valid for shifts and rotations.
1267       DCHECK(IsShl() || IsShr() || IsUShr() || IsRor()) << DebugName();
1268       return Evaluate(GetLeft()->AsLongConstant(), GetRight()->AsIntConstant());
1269     } else if (GetRight()->IsLongConstant()) {
1270       return Evaluate(GetLeft()->AsLongConstant(), GetRight()->AsLongConstant());
1271     }
1272   } else if (GetLeft()->IsNullConstant() && GetRight()->IsNullConstant()) {
1273     // The binop(null, null) case is only valid for equal and not-equal conditions.
1274     DCHECK(IsEqual() || IsNotEqual()) << DebugName();
1275     return Evaluate(GetLeft()->AsNullConstant(), GetRight()->AsNullConstant());
1276   } else if (kEnableFloatingPointStaticEvaluation) {
1277     if (GetLeft()->IsFloatConstant() && GetRight()->IsFloatConstant()) {
1278       return Evaluate(GetLeft()->AsFloatConstant(), GetRight()->AsFloatConstant());
1279     } else if (GetLeft()->IsDoubleConstant() && GetRight()->IsDoubleConstant()) {
1280       return Evaluate(GetLeft()->AsDoubleConstant(), GetRight()->AsDoubleConstant());
1281     }
1282   }
1283   return nullptr;
1284 }
1285 
GetConstantRight() const1286 HConstant* HBinaryOperation::GetConstantRight() const {
1287   if (GetRight()->IsConstant()) {
1288     return GetRight()->AsConstant();
1289   } else if (IsCommutative() && GetLeft()->IsConstant()) {
1290     return GetLeft()->AsConstant();
1291   } else {
1292     return nullptr;
1293   }
1294 }
1295 
1296 // If `GetConstantRight()` returns one of the input, this returns the other
1297 // one. Otherwise it returns null.
GetLeastConstantLeft() const1298 HInstruction* HBinaryOperation::GetLeastConstantLeft() const {
1299   HInstruction* most_constant_right = GetConstantRight();
1300   if (most_constant_right == nullptr) {
1301     return nullptr;
1302   } else if (most_constant_right == GetLeft()) {
1303     return GetRight();
1304   } else {
1305     return GetLeft();
1306   }
1307 }
1308 
operator <<(std::ostream & os,const ComparisonBias & rhs)1309 std::ostream& operator<<(std::ostream& os, const ComparisonBias& rhs) {
1310   switch (rhs) {
1311     case ComparisonBias::kNoBias:
1312       return os << "no_bias";
1313     case ComparisonBias::kGtBias:
1314       return os << "gt_bias";
1315     case ComparisonBias::kLtBias:
1316       return os << "lt_bias";
1317     default:
1318       LOG(FATAL) << "Unknown ComparisonBias: " << static_cast<int>(rhs);
1319       UNREACHABLE();
1320   }
1321 }
1322 
IsBeforeWhenDisregardMoves(HInstruction * instruction) const1323 bool HCondition::IsBeforeWhenDisregardMoves(HInstruction* instruction) const {
1324   return this == instruction->GetPreviousDisregardingMoves();
1325 }
1326 
Equals(HInstruction * other) const1327 bool HInstruction::Equals(HInstruction* other) const {
1328   if (!InstructionTypeEquals(other)) return false;
1329   DCHECK_EQ(GetKind(), other->GetKind());
1330   if (!InstructionDataEquals(other)) return false;
1331   if (GetType() != other->GetType()) return false;
1332   if (InputCount() != other->InputCount()) return false;
1333 
1334   for (size_t i = 0, e = InputCount(); i < e; ++i) {
1335     if (InputAt(i) != other->InputAt(i)) return false;
1336   }
1337   DCHECK_EQ(ComputeHashCode(), other->ComputeHashCode());
1338   return true;
1339 }
1340 
operator <<(std::ostream & os,const HInstruction::InstructionKind & rhs)1341 std::ostream& operator<<(std::ostream& os, const HInstruction::InstructionKind& rhs) {
1342 #define DECLARE_CASE(type, super) case HInstruction::k##type: os << #type; break;
1343   switch (rhs) {
1344     FOR_EACH_INSTRUCTION(DECLARE_CASE)
1345     default:
1346       os << "Unknown instruction kind " << static_cast<int>(rhs);
1347       break;
1348   }
1349 #undef DECLARE_CASE
1350   return os;
1351 }
1352 
MoveBefore(HInstruction * cursor)1353 void HInstruction::MoveBefore(HInstruction* cursor) {
1354   next_->previous_ = previous_;
1355   if (previous_ != nullptr) {
1356     previous_->next_ = next_;
1357   }
1358   if (block_->instructions_.first_instruction_ == this) {
1359     block_->instructions_.first_instruction_ = next_;
1360   }
1361   DCHECK_NE(block_->instructions_.last_instruction_, this);
1362 
1363   previous_ = cursor->previous_;
1364   if (previous_ != nullptr) {
1365     previous_->next_ = this;
1366   }
1367   next_ = cursor;
1368   cursor->previous_ = this;
1369   block_ = cursor->block_;
1370 
1371   if (block_->instructions_.first_instruction_ == cursor) {
1372     block_->instructions_.first_instruction_ = this;
1373   }
1374 }
1375 
MoveBeforeFirstUserAndOutOfLoops()1376 void HInstruction::MoveBeforeFirstUserAndOutOfLoops() {
1377   DCHECK(!CanThrow());
1378   DCHECK(!HasSideEffects());
1379   DCHECK(!HasEnvironmentUses());
1380   DCHECK(HasNonEnvironmentUses());
1381   DCHECK(!IsPhi());  // Makes no sense for Phi.
1382   DCHECK_EQ(InputCount(), 0u);
1383 
1384   // Find the target block.
1385   auto uses_it = GetUses().begin();
1386   auto uses_end = GetUses().end();
1387   HBasicBlock* target_block = uses_it->GetUser()->GetBlock();
1388   ++uses_it;
1389   while (uses_it != uses_end && uses_it->GetUser()->GetBlock() == target_block) {
1390     ++uses_it;
1391   }
1392   if (uses_it != uses_end) {
1393     // This instruction has uses in two or more blocks. Find the common dominator.
1394     CommonDominator finder(target_block);
1395     for (; uses_it != uses_end; ++uses_it) {
1396       finder.Update(uses_it->GetUser()->GetBlock());
1397     }
1398     target_block = finder.Get();
1399     DCHECK(target_block != nullptr);
1400   }
1401   // Move to the first dominator not in a loop.
1402   while (target_block->IsInLoop()) {
1403     target_block = target_block->GetDominator();
1404     DCHECK(target_block != nullptr);
1405   }
1406 
1407   // Find insertion position.
1408   HInstruction* insert_pos = nullptr;
1409   for (const HUseListNode<HInstruction*>& use : GetUses()) {
1410     if (use.GetUser()->GetBlock() == target_block &&
1411         (insert_pos == nullptr || use.GetUser()->StrictlyDominates(insert_pos))) {
1412       insert_pos = use.GetUser();
1413     }
1414   }
1415   if (insert_pos == nullptr) {
1416     // No user in `target_block`, insert before the control flow instruction.
1417     insert_pos = target_block->GetLastInstruction();
1418     DCHECK(insert_pos->IsControlFlow());
1419     // Avoid splitting HCondition from HIf to prevent unnecessary materialization.
1420     if (insert_pos->IsIf()) {
1421       HInstruction* if_input = insert_pos->AsIf()->InputAt(0);
1422       if (if_input == insert_pos->GetPrevious()) {
1423         insert_pos = if_input;
1424       }
1425     }
1426   }
1427   MoveBefore(insert_pos);
1428 }
1429 
SplitBefore(HInstruction * cursor)1430 HBasicBlock* HBasicBlock::SplitBefore(HInstruction* cursor) {
1431   DCHECK(!graph_->IsInSsaForm()) << "Support for SSA form not implemented.";
1432   DCHECK_EQ(cursor->GetBlock(), this);
1433 
1434   HBasicBlock* new_block = new (GetGraph()->GetArena()) HBasicBlock(GetGraph(),
1435                                                                     cursor->GetDexPc());
1436   new_block->instructions_.first_instruction_ = cursor;
1437   new_block->instructions_.last_instruction_ = instructions_.last_instruction_;
1438   instructions_.last_instruction_ = cursor->previous_;
1439   if (cursor->previous_ == nullptr) {
1440     instructions_.first_instruction_ = nullptr;
1441   } else {
1442     cursor->previous_->next_ = nullptr;
1443     cursor->previous_ = nullptr;
1444   }
1445 
1446   new_block->instructions_.SetBlockOfInstructions(new_block);
1447   AddInstruction(new (GetGraph()->GetArena()) HGoto(new_block->GetDexPc()));
1448 
1449   for (HBasicBlock* successor : GetSuccessors()) {
1450     new_block->successors_.push_back(successor);
1451     successor->predecessors_[successor->GetPredecessorIndexOf(this)] = new_block;
1452   }
1453   successors_.clear();
1454   AddSuccessor(new_block);
1455 
1456   GetGraph()->AddBlock(new_block);
1457   return new_block;
1458 }
1459 
CreateImmediateDominator()1460 HBasicBlock* HBasicBlock::CreateImmediateDominator() {
1461   DCHECK(!graph_->IsInSsaForm()) << "Support for SSA form not implemented.";
1462   DCHECK(!IsCatchBlock()) << "Support for updating try/catch information not implemented.";
1463 
1464   HBasicBlock* new_block = new (GetGraph()->GetArena()) HBasicBlock(GetGraph(), GetDexPc());
1465 
1466   for (HBasicBlock* predecessor : GetPredecessors()) {
1467     new_block->predecessors_.push_back(predecessor);
1468     predecessor->successors_[predecessor->GetSuccessorIndexOf(this)] = new_block;
1469   }
1470   predecessors_.clear();
1471   AddPredecessor(new_block);
1472 
1473   GetGraph()->AddBlock(new_block);
1474   return new_block;
1475 }
1476 
SplitBeforeForInlining(HInstruction * cursor)1477 HBasicBlock* HBasicBlock::SplitBeforeForInlining(HInstruction* cursor) {
1478   DCHECK_EQ(cursor->GetBlock(), this);
1479 
1480   HBasicBlock* new_block = new (GetGraph()->GetArena()) HBasicBlock(GetGraph(),
1481                                                                     cursor->GetDexPc());
1482   new_block->instructions_.first_instruction_ = cursor;
1483   new_block->instructions_.last_instruction_ = instructions_.last_instruction_;
1484   instructions_.last_instruction_ = cursor->previous_;
1485   if (cursor->previous_ == nullptr) {
1486     instructions_.first_instruction_ = nullptr;
1487   } else {
1488     cursor->previous_->next_ = nullptr;
1489     cursor->previous_ = nullptr;
1490   }
1491 
1492   new_block->instructions_.SetBlockOfInstructions(new_block);
1493 
1494   for (HBasicBlock* successor : GetSuccessors()) {
1495     new_block->successors_.push_back(successor);
1496     successor->predecessors_[successor->GetPredecessorIndexOf(this)] = new_block;
1497   }
1498   successors_.clear();
1499 
1500   for (HBasicBlock* dominated : GetDominatedBlocks()) {
1501     dominated->dominator_ = new_block;
1502     new_block->dominated_blocks_.push_back(dominated);
1503   }
1504   dominated_blocks_.clear();
1505   return new_block;
1506 }
1507 
SplitAfterForInlining(HInstruction * cursor)1508 HBasicBlock* HBasicBlock::SplitAfterForInlining(HInstruction* cursor) {
1509   DCHECK(!cursor->IsControlFlow());
1510   DCHECK_NE(instructions_.last_instruction_, cursor);
1511   DCHECK_EQ(cursor->GetBlock(), this);
1512 
1513   HBasicBlock* new_block = new (GetGraph()->GetArena()) HBasicBlock(GetGraph(), GetDexPc());
1514   new_block->instructions_.first_instruction_ = cursor->GetNext();
1515   new_block->instructions_.last_instruction_ = instructions_.last_instruction_;
1516   cursor->next_->previous_ = nullptr;
1517   cursor->next_ = nullptr;
1518   instructions_.last_instruction_ = cursor;
1519 
1520   new_block->instructions_.SetBlockOfInstructions(new_block);
1521   for (HBasicBlock* successor : GetSuccessors()) {
1522     new_block->successors_.push_back(successor);
1523     successor->predecessors_[successor->GetPredecessorIndexOf(this)] = new_block;
1524   }
1525   successors_.clear();
1526 
1527   for (HBasicBlock* dominated : GetDominatedBlocks()) {
1528     dominated->dominator_ = new_block;
1529     new_block->dominated_blocks_.push_back(dominated);
1530   }
1531   dominated_blocks_.clear();
1532   return new_block;
1533 }
1534 
ComputeTryEntryOfSuccessors() const1535 const HTryBoundary* HBasicBlock::ComputeTryEntryOfSuccessors() const {
1536   if (EndsWithTryBoundary()) {
1537     HTryBoundary* try_boundary = GetLastInstruction()->AsTryBoundary();
1538     if (try_boundary->IsEntry()) {
1539       DCHECK(!IsTryBlock());
1540       return try_boundary;
1541     } else {
1542       DCHECK(IsTryBlock());
1543       DCHECK(try_catch_information_->GetTryEntry().HasSameExceptionHandlersAs(*try_boundary));
1544       return nullptr;
1545     }
1546   } else if (IsTryBlock()) {
1547     return &try_catch_information_->GetTryEntry();
1548   } else {
1549     return nullptr;
1550   }
1551 }
1552 
HasThrowingInstructions() const1553 bool HBasicBlock::HasThrowingInstructions() const {
1554   for (HInstructionIterator it(GetInstructions()); !it.Done(); it.Advance()) {
1555     if (it.Current()->CanThrow()) {
1556       return true;
1557     }
1558   }
1559   return false;
1560 }
1561 
HasOnlyOneInstruction(const HBasicBlock & block)1562 static bool HasOnlyOneInstruction(const HBasicBlock& block) {
1563   return block.GetPhis().IsEmpty()
1564       && !block.GetInstructions().IsEmpty()
1565       && block.GetFirstInstruction() == block.GetLastInstruction();
1566 }
1567 
IsSingleGoto() const1568 bool HBasicBlock::IsSingleGoto() const {
1569   return HasOnlyOneInstruction(*this) && GetLastInstruction()->IsGoto();
1570 }
1571 
IsSingleTryBoundary() const1572 bool HBasicBlock::IsSingleTryBoundary() const {
1573   return HasOnlyOneInstruction(*this) && GetLastInstruction()->IsTryBoundary();
1574 }
1575 
EndsWithControlFlowInstruction() const1576 bool HBasicBlock::EndsWithControlFlowInstruction() const {
1577   return !GetInstructions().IsEmpty() && GetLastInstruction()->IsControlFlow();
1578 }
1579 
EndsWithIf() const1580 bool HBasicBlock::EndsWithIf() const {
1581   return !GetInstructions().IsEmpty() && GetLastInstruction()->IsIf();
1582 }
1583 
EndsWithTryBoundary() const1584 bool HBasicBlock::EndsWithTryBoundary() const {
1585   return !GetInstructions().IsEmpty() && GetLastInstruction()->IsTryBoundary();
1586 }
1587 
HasSinglePhi() const1588 bool HBasicBlock::HasSinglePhi() const {
1589   return !GetPhis().IsEmpty() && GetFirstPhi()->GetNext() == nullptr;
1590 }
1591 
GetNormalSuccessors() const1592 ArrayRef<HBasicBlock* const> HBasicBlock::GetNormalSuccessors() const {
1593   if (EndsWithTryBoundary()) {
1594     // The normal-flow successor of HTryBoundary is always stored at index zero.
1595     DCHECK_EQ(successors_[0], GetLastInstruction()->AsTryBoundary()->GetNormalFlowSuccessor());
1596     return ArrayRef<HBasicBlock* const>(successors_).SubArray(0u, 1u);
1597   } else {
1598     // All successors of blocks not ending with TryBoundary are normal.
1599     return ArrayRef<HBasicBlock* const>(successors_);
1600   }
1601 }
1602 
GetExceptionalSuccessors() const1603 ArrayRef<HBasicBlock* const> HBasicBlock::GetExceptionalSuccessors() const {
1604   if (EndsWithTryBoundary()) {
1605     return GetLastInstruction()->AsTryBoundary()->GetExceptionHandlers();
1606   } else {
1607     // Blocks not ending with TryBoundary do not have exceptional successors.
1608     return ArrayRef<HBasicBlock* const>();
1609   }
1610 }
1611 
HasSameExceptionHandlersAs(const HTryBoundary & other) const1612 bool HTryBoundary::HasSameExceptionHandlersAs(const HTryBoundary& other) const {
1613   ArrayRef<HBasicBlock* const> handlers1 = GetExceptionHandlers();
1614   ArrayRef<HBasicBlock* const> handlers2 = other.GetExceptionHandlers();
1615 
1616   size_t length = handlers1.size();
1617   if (length != handlers2.size()) {
1618     return false;
1619   }
1620 
1621   // Exception handlers need to be stored in the same order.
1622   for (size_t i = 0; i < length; ++i) {
1623     if (handlers1[i] != handlers2[i]) {
1624       return false;
1625     }
1626   }
1627   return true;
1628 }
1629 
CountSize() const1630 size_t HInstructionList::CountSize() const {
1631   size_t size = 0;
1632   HInstruction* current = first_instruction_;
1633   for (; current != nullptr; current = current->GetNext()) {
1634     size++;
1635   }
1636   return size;
1637 }
1638 
SetBlockOfInstructions(HBasicBlock * block) const1639 void HInstructionList::SetBlockOfInstructions(HBasicBlock* block) const {
1640   for (HInstruction* current = first_instruction_;
1641        current != nullptr;
1642        current = current->GetNext()) {
1643     current->SetBlock(block);
1644   }
1645 }
1646 
AddAfter(HInstruction * cursor,const HInstructionList & instruction_list)1647 void HInstructionList::AddAfter(HInstruction* cursor, const HInstructionList& instruction_list) {
1648   DCHECK(Contains(cursor));
1649   if (!instruction_list.IsEmpty()) {
1650     if (cursor == last_instruction_) {
1651       last_instruction_ = instruction_list.last_instruction_;
1652     } else {
1653       cursor->next_->previous_ = instruction_list.last_instruction_;
1654     }
1655     instruction_list.last_instruction_->next_ = cursor->next_;
1656     cursor->next_ = instruction_list.first_instruction_;
1657     instruction_list.first_instruction_->previous_ = cursor;
1658   }
1659 }
1660 
AddBefore(HInstruction * cursor,const HInstructionList & instruction_list)1661 void HInstructionList::AddBefore(HInstruction* cursor, const HInstructionList& instruction_list) {
1662   DCHECK(Contains(cursor));
1663   if (!instruction_list.IsEmpty()) {
1664     if (cursor == first_instruction_) {
1665       first_instruction_ = instruction_list.first_instruction_;
1666     } else {
1667       cursor->previous_->next_ = instruction_list.first_instruction_;
1668     }
1669     instruction_list.last_instruction_->next_ = cursor;
1670     instruction_list.first_instruction_->previous_ = cursor->previous_;
1671     cursor->previous_ = instruction_list.last_instruction_;
1672   }
1673 }
1674 
Add(const HInstructionList & instruction_list)1675 void HInstructionList::Add(const HInstructionList& instruction_list) {
1676   if (IsEmpty()) {
1677     first_instruction_ = instruction_list.first_instruction_;
1678     last_instruction_ = instruction_list.last_instruction_;
1679   } else {
1680     AddAfter(last_instruction_, instruction_list);
1681   }
1682 }
1683 
1684 // Should be called on instructions in a dead block in post order. This method
1685 // assumes `insn` has been removed from all users with the exception of catch
1686 // phis because of missing exceptional edges in the graph. It removes the
1687 // instruction from catch phi uses, together with inputs of other catch phis in
1688 // the catch block at the same index, as these must be dead too.
RemoveUsesOfDeadInstruction(HInstruction * insn)1689 static void RemoveUsesOfDeadInstruction(HInstruction* insn) {
1690   DCHECK(!insn->HasEnvironmentUses());
1691   while (insn->HasNonEnvironmentUses()) {
1692     const HUseListNode<HInstruction*>& use = insn->GetUses().front();
1693     size_t use_index = use.GetIndex();
1694     HBasicBlock* user_block =  use.GetUser()->GetBlock();
1695     DCHECK(use.GetUser()->IsPhi() && user_block->IsCatchBlock());
1696     for (HInstructionIterator phi_it(user_block->GetPhis()); !phi_it.Done(); phi_it.Advance()) {
1697       phi_it.Current()->AsPhi()->RemoveInputAt(use_index);
1698     }
1699   }
1700 }
1701 
DisconnectAndDelete()1702 void HBasicBlock::DisconnectAndDelete() {
1703   // Dominators must be removed after all the blocks they dominate. This way
1704   // a loop header is removed last, a requirement for correct loop information
1705   // iteration.
1706   DCHECK(dominated_blocks_.empty());
1707 
1708   // The following steps gradually remove the block from all its dependants in
1709   // post order (b/27683071).
1710 
1711   // (1) Store a basic block that we'll use in step (5) to find loops to be updated.
1712   //     We need to do this before step (4) which destroys the predecessor list.
1713   HBasicBlock* loop_update_start = this;
1714   if (IsLoopHeader()) {
1715     HLoopInformation* loop_info = GetLoopInformation();
1716     // All other blocks in this loop should have been removed because the header
1717     // was their dominator.
1718     // Note that we do not remove `this` from `loop_info` as it is unreachable.
1719     DCHECK(!loop_info->IsIrreducible());
1720     DCHECK_EQ(loop_info->GetBlocks().NumSetBits(), 1u);
1721     DCHECK_EQ(static_cast<uint32_t>(loop_info->GetBlocks().GetHighestBitSet()), GetBlockId());
1722     loop_update_start = loop_info->GetPreHeader();
1723   }
1724 
1725   // (2) Disconnect the block from its successors and update their phis.
1726   for (HBasicBlock* successor : successors_) {
1727     // Delete this block from the list of predecessors.
1728     size_t this_index = successor->GetPredecessorIndexOf(this);
1729     successor->predecessors_.erase(successor->predecessors_.begin() + this_index);
1730 
1731     // Check that `successor` has other predecessors, otherwise `this` is the
1732     // dominator of `successor` which violates the order DCHECKed at the top.
1733     DCHECK(!successor->predecessors_.empty());
1734 
1735     // Remove this block's entries in the successor's phis. Skip exceptional
1736     // successors because catch phi inputs do not correspond to predecessor
1737     // blocks but throwing instructions. The inputs of the catch phis will be
1738     // updated in step (3).
1739     if (!successor->IsCatchBlock()) {
1740       if (successor->predecessors_.size() == 1u) {
1741         // The successor has just one predecessor left. Replace phis with the only
1742         // remaining input.
1743         for (HInstructionIterator phi_it(successor->GetPhis()); !phi_it.Done(); phi_it.Advance()) {
1744           HPhi* phi = phi_it.Current()->AsPhi();
1745           phi->ReplaceWith(phi->InputAt(1 - this_index));
1746           successor->RemovePhi(phi);
1747         }
1748       } else {
1749         for (HInstructionIterator phi_it(successor->GetPhis()); !phi_it.Done(); phi_it.Advance()) {
1750           phi_it.Current()->AsPhi()->RemoveInputAt(this_index);
1751         }
1752       }
1753     }
1754   }
1755   successors_.clear();
1756 
1757   // (3) Remove instructions and phis. Instructions should have no remaining uses
1758   //     except in catch phis. If an instruction is used by a catch phi at `index`,
1759   //     remove `index`-th input of all phis in the catch block since they are
1760   //     guaranteed dead. Note that we may miss dead inputs this way but the
1761   //     graph will always remain consistent.
1762   for (HBackwardInstructionIterator it(GetInstructions()); !it.Done(); it.Advance()) {
1763     HInstruction* insn = it.Current();
1764     RemoveUsesOfDeadInstruction(insn);
1765     RemoveInstruction(insn);
1766   }
1767   for (HInstructionIterator it(GetPhis()); !it.Done(); it.Advance()) {
1768     HPhi* insn = it.Current()->AsPhi();
1769     RemoveUsesOfDeadInstruction(insn);
1770     RemovePhi(insn);
1771   }
1772 
1773   // (4) Disconnect the block from its predecessors and update their
1774   //     control-flow instructions.
1775   for (HBasicBlock* predecessor : predecessors_) {
1776     // We should not see any back edges as they would have been removed by step (3).
1777     DCHECK(!IsInLoop() || !GetLoopInformation()->IsBackEdge(*predecessor));
1778 
1779     HInstruction* last_instruction = predecessor->GetLastInstruction();
1780     if (last_instruction->IsTryBoundary() && !IsCatchBlock()) {
1781       // This block is the only normal-flow successor of the TryBoundary which
1782       // makes `predecessor` dead. Since DCE removes blocks in post order,
1783       // exception handlers of this TryBoundary were already visited and any
1784       // remaining handlers therefore must be live. We remove `predecessor` from
1785       // their list of predecessors.
1786       DCHECK_EQ(last_instruction->AsTryBoundary()->GetNormalFlowSuccessor(), this);
1787       while (predecessor->GetSuccessors().size() > 1) {
1788         HBasicBlock* handler = predecessor->GetSuccessors()[1];
1789         DCHECK(handler->IsCatchBlock());
1790         predecessor->RemoveSuccessor(handler);
1791         handler->RemovePredecessor(predecessor);
1792       }
1793     }
1794 
1795     predecessor->RemoveSuccessor(this);
1796     uint32_t num_pred_successors = predecessor->GetSuccessors().size();
1797     if (num_pred_successors == 1u) {
1798       // If we have one successor after removing one, then we must have
1799       // had an HIf, HPackedSwitch or HTryBoundary, as they have more than one
1800       // successor. Replace those with a HGoto.
1801       DCHECK(last_instruction->IsIf() ||
1802              last_instruction->IsPackedSwitch() ||
1803              (last_instruction->IsTryBoundary() && IsCatchBlock()));
1804       predecessor->RemoveInstruction(last_instruction);
1805       predecessor->AddInstruction(new (graph_->GetArena()) HGoto(last_instruction->GetDexPc()));
1806     } else if (num_pred_successors == 0u) {
1807       // The predecessor has no remaining successors and therefore must be dead.
1808       // We deliberately leave it without a control-flow instruction so that the
1809       // GraphChecker fails unless it is not removed during the pass too.
1810       predecessor->RemoveInstruction(last_instruction);
1811     } else {
1812       // There are multiple successors left. The removed block might be a successor
1813       // of a PackedSwitch which will be completely removed (perhaps replaced with
1814       // a Goto), or we are deleting a catch block from a TryBoundary. In either
1815       // case, leave `last_instruction` as is for now.
1816       DCHECK(last_instruction->IsPackedSwitch() ||
1817              (last_instruction->IsTryBoundary() && IsCatchBlock()));
1818     }
1819   }
1820   predecessors_.clear();
1821 
1822   // (5) Remove the block from all loops it is included in. Skip the inner-most
1823   //     loop if this is the loop header (see definition of `loop_update_start`)
1824   //     because the loop header's predecessor list has been destroyed in step (4).
1825   for (HLoopInformationOutwardIterator it(*loop_update_start); !it.Done(); it.Advance()) {
1826     HLoopInformation* loop_info = it.Current();
1827     loop_info->Remove(this);
1828     if (loop_info->IsBackEdge(*this)) {
1829       // If this was the last back edge of the loop, we deliberately leave the
1830       // loop in an inconsistent state and will fail GraphChecker unless the
1831       // entire loop is removed during the pass.
1832       loop_info->RemoveBackEdge(this);
1833     }
1834   }
1835 
1836   // (6) Disconnect from the dominator.
1837   dominator_->RemoveDominatedBlock(this);
1838   SetDominator(nullptr);
1839 
1840   // (7) Delete from the graph, update reverse post order.
1841   graph_->DeleteDeadEmptyBlock(this);
1842   SetGraph(nullptr);
1843 }
1844 
MergeWith(HBasicBlock * other)1845 void HBasicBlock::MergeWith(HBasicBlock* other) {
1846   DCHECK_EQ(GetGraph(), other->GetGraph());
1847   DCHECK(ContainsElement(dominated_blocks_, other));
1848   DCHECK_EQ(GetSingleSuccessor(), other);
1849   DCHECK_EQ(other->GetSinglePredecessor(), this);
1850   DCHECK(other->GetPhis().IsEmpty());
1851 
1852   // Move instructions from `other` to `this`.
1853   DCHECK(EndsWithControlFlowInstruction());
1854   RemoveInstruction(GetLastInstruction());
1855   instructions_.Add(other->GetInstructions());
1856   other->instructions_.SetBlockOfInstructions(this);
1857   other->instructions_.Clear();
1858 
1859   // Remove `other` from the loops it is included in.
1860   for (HLoopInformationOutwardIterator it(*other); !it.Done(); it.Advance()) {
1861     HLoopInformation* loop_info = it.Current();
1862     loop_info->Remove(other);
1863     if (loop_info->IsBackEdge(*other)) {
1864       loop_info->ReplaceBackEdge(other, this);
1865     }
1866   }
1867 
1868   // Update links to the successors of `other`.
1869   successors_.clear();
1870   while (!other->successors_.empty()) {
1871     HBasicBlock* successor = other->GetSuccessors()[0];
1872     successor->ReplacePredecessor(other, this);
1873   }
1874 
1875   // Update the dominator tree.
1876   RemoveDominatedBlock(other);
1877   for (HBasicBlock* dominated : other->GetDominatedBlocks()) {
1878     dominated_blocks_.push_back(dominated);
1879     dominated->SetDominator(this);
1880   }
1881   other->dominated_blocks_.clear();
1882   other->dominator_ = nullptr;
1883 
1884   // Clear the list of predecessors of `other` in preparation of deleting it.
1885   other->predecessors_.clear();
1886 
1887   // Delete `other` from the graph. The function updates reverse post order.
1888   graph_->DeleteDeadEmptyBlock(other);
1889   other->SetGraph(nullptr);
1890 }
1891 
MergeWithInlined(HBasicBlock * other)1892 void HBasicBlock::MergeWithInlined(HBasicBlock* other) {
1893   DCHECK_NE(GetGraph(), other->GetGraph());
1894   DCHECK(GetDominatedBlocks().empty());
1895   DCHECK(GetSuccessors().empty());
1896   DCHECK(!EndsWithControlFlowInstruction());
1897   DCHECK(other->GetSinglePredecessor()->IsEntryBlock());
1898   DCHECK(other->GetPhis().IsEmpty());
1899   DCHECK(!other->IsInLoop());
1900 
1901   // Move instructions from `other` to `this`.
1902   instructions_.Add(other->GetInstructions());
1903   other->instructions_.SetBlockOfInstructions(this);
1904 
1905   // Update links to the successors of `other`.
1906   successors_.clear();
1907   while (!other->successors_.empty()) {
1908     HBasicBlock* successor = other->GetSuccessors()[0];
1909     successor->ReplacePredecessor(other, this);
1910   }
1911 
1912   // Update the dominator tree.
1913   for (HBasicBlock* dominated : other->GetDominatedBlocks()) {
1914     dominated_blocks_.push_back(dominated);
1915     dominated->SetDominator(this);
1916   }
1917   other->dominated_blocks_.clear();
1918   other->dominator_ = nullptr;
1919   other->graph_ = nullptr;
1920 }
1921 
ReplaceWith(HBasicBlock * other)1922 void HBasicBlock::ReplaceWith(HBasicBlock* other) {
1923   while (!GetPredecessors().empty()) {
1924     HBasicBlock* predecessor = GetPredecessors()[0];
1925     predecessor->ReplaceSuccessor(this, other);
1926   }
1927   while (!GetSuccessors().empty()) {
1928     HBasicBlock* successor = GetSuccessors()[0];
1929     successor->ReplacePredecessor(this, other);
1930   }
1931   for (HBasicBlock* dominated : GetDominatedBlocks()) {
1932     other->AddDominatedBlock(dominated);
1933   }
1934   GetDominator()->ReplaceDominatedBlock(this, other);
1935   other->SetDominator(GetDominator());
1936   dominator_ = nullptr;
1937   graph_ = nullptr;
1938 }
1939 
DeleteDeadEmptyBlock(HBasicBlock * block)1940 void HGraph::DeleteDeadEmptyBlock(HBasicBlock* block) {
1941   DCHECK_EQ(block->GetGraph(), this);
1942   DCHECK(block->GetSuccessors().empty());
1943   DCHECK(block->GetPredecessors().empty());
1944   DCHECK(block->GetDominatedBlocks().empty());
1945   DCHECK(block->GetDominator() == nullptr);
1946   DCHECK(block->GetInstructions().IsEmpty());
1947   DCHECK(block->GetPhis().IsEmpty());
1948 
1949   if (block->IsExitBlock()) {
1950     SetExitBlock(nullptr);
1951   }
1952 
1953   RemoveElement(reverse_post_order_, block);
1954   blocks_[block->GetBlockId()] = nullptr;
1955   block->SetGraph(nullptr);
1956 }
1957 
UpdateLoopAndTryInformationOfNewBlock(HBasicBlock * block,HBasicBlock * reference,bool replace_if_back_edge)1958 void HGraph::UpdateLoopAndTryInformationOfNewBlock(HBasicBlock* block,
1959                                                    HBasicBlock* reference,
1960                                                    bool replace_if_back_edge) {
1961   if (block->IsLoopHeader()) {
1962     // Clear the information of which blocks are contained in that loop. Since the
1963     // information is stored as a bit vector based on block ids, we have to update
1964     // it, as those block ids were specific to the callee graph and we are now adding
1965     // these blocks to the caller graph.
1966     block->GetLoopInformation()->ClearAllBlocks();
1967   }
1968 
1969   // If not already in a loop, update the loop information.
1970   if (!block->IsInLoop()) {
1971     block->SetLoopInformation(reference->GetLoopInformation());
1972   }
1973 
1974   // If the block is in a loop, update all its outward loops.
1975   HLoopInformation* loop_info = block->GetLoopInformation();
1976   if (loop_info != nullptr) {
1977     for (HLoopInformationOutwardIterator loop_it(*block);
1978          !loop_it.Done();
1979          loop_it.Advance()) {
1980       loop_it.Current()->Add(block);
1981     }
1982     if (replace_if_back_edge && loop_info->IsBackEdge(*reference)) {
1983       loop_info->ReplaceBackEdge(reference, block);
1984     }
1985   }
1986 
1987   // Copy TryCatchInformation if `reference` is a try block, not if it is a catch block.
1988   TryCatchInformation* try_catch_info = reference->IsTryBlock()
1989       ? reference->GetTryCatchInformation()
1990       : nullptr;
1991   block->SetTryCatchInformation(try_catch_info);
1992 }
1993 
InlineInto(HGraph * outer_graph,HInvoke * invoke)1994 HInstruction* HGraph::InlineInto(HGraph* outer_graph, HInvoke* invoke) {
1995   DCHECK(HasExitBlock()) << "Unimplemented scenario";
1996   // Update the environments in this graph to have the invoke's environment
1997   // as parent.
1998   {
1999     HReversePostOrderIterator it(*this);
2000     it.Advance();  // Skip the entry block, we do not need to update the entry's suspend check.
2001     for (; !it.Done(); it.Advance()) {
2002       HBasicBlock* block = it.Current();
2003       for (HInstructionIterator instr_it(block->GetInstructions());
2004            !instr_it.Done();
2005            instr_it.Advance()) {
2006         HInstruction* current = instr_it.Current();
2007         if (current->NeedsEnvironment()) {
2008           DCHECK(current->HasEnvironment());
2009           current->GetEnvironment()->SetAndCopyParentChain(
2010               outer_graph->GetArena(), invoke->GetEnvironment());
2011         }
2012       }
2013     }
2014   }
2015   outer_graph->UpdateMaximumNumberOfOutVRegs(GetMaximumNumberOfOutVRegs());
2016   if (HasBoundsChecks()) {
2017     outer_graph->SetHasBoundsChecks(true);
2018   }
2019 
2020   HInstruction* return_value = nullptr;
2021   if (GetBlocks().size() == 3) {
2022     // Simple case of an entry block, a body block, and an exit block.
2023     // Put the body block's instruction into `invoke`'s block.
2024     HBasicBlock* body = GetBlocks()[1];
2025     DCHECK(GetBlocks()[0]->IsEntryBlock());
2026     DCHECK(GetBlocks()[2]->IsExitBlock());
2027     DCHECK(!body->IsExitBlock());
2028     DCHECK(!body->IsInLoop());
2029     HInstruction* last = body->GetLastInstruction();
2030 
2031     // Note that we add instructions before the invoke only to simplify polymorphic inlining.
2032     invoke->GetBlock()->instructions_.AddBefore(invoke, body->GetInstructions());
2033     body->GetInstructions().SetBlockOfInstructions(invoke->GetBlock());
2034 
2035     // Replace the invoke with the return value of the inlined graph.
2036     if (last->IsReturn()) {
2037       return_value = last->InputAt(0);
2038     } else {
2039       DCHECK(last->IsReturnVoid());
2040     }
2041 
2042     invoke->GetBlock()->RemoveInstruction(last);
2043   } else {
2044     // Need to inline multiple blocks. We split `invoke`'s block
2045     // into two blocks, merge the first block of the inlined graph into
2046     // the first half, and replace the exit block of the inlined graph
2047     // with the second half.
2048     ArenaAllocator* allocator = outer_graph->GetArena();
2049     HBasicBlock* at = invoke->GetBlock();
2050     // Note that we split before the invoke only to simplify polymorphic inlining.
2051     HBasicBlock* to = at->SplitBeforeForInlining(invoke);
2052 
2053     HBasicBlock* first = entry_block_->GetSuccessors()[0];
2054     DCHECK(!first->IsInLoop());
2055     at->MergeWithInlined(first);
2056     exit_block_->ReplaceWith(to);
2057 
2058     // Update the meta information surrounding blocks:
2059     // (1) the graph they are now in,
2060     // (2) the reverse post order of that graph,
2061     // (3) their potential loop information, inner and outer,
2062     // (4) try block membership.
2063     // Note that we do not need to update catch phi inputs because they
2064     // correspond to the register file of the outer method which the inlinee
2065     // cannot modify.
2066 
2067     // We don't add the entry block, the exit block, and the first block, which
2068     // has been merged with `at`.
2069     static constexpr int kNumberOfSkippedBlocksInCallee = 3;
2070 
2071     // We add the `to` block.
2072     static constexpr int kNumberOfNewBlocksInCaller = 1;
2073     size_t blocks_added = (reverse_post_order_.size() - kNumberOfSkippedBlocksInCallee)
2074         + kNumberOfNewBlocksInCaller;
2075 
2076     // Find the location of `at` in the outer graph's reverse post order. The new
2077     // blocks will be added after it.
2078     size_t index_of_at = IndexOfElement(outer_graph->reverse_post_order_, at);
2079     MakeRoomFor(&outer_graph->reverse_post_order_, blocks_added, index_of_at);
2080 
2081     // Do a reverse post order of the blocks in the callee and do (1), (2), (3)
2082     // and (4) to the blocks that apply.
2083     for (HReversePostOrderIterator it(*this); !it.Done(); it.Advance()) {
2084       HBasicBlock* current = it.Current();
2085       if (current != exit_block_ && current != entry_block_ && current != first) {
2086         DCHECK(current->GetTryCatchInformation() == nullptr);
2087         DCHECK(current->GetGraph() == this);
2088         current->SetGraph(outer_graph);
2089         outer_graph->AddBlock(current);
2090         outer_graph->reverse_post_order_[++index_of_at] = current;
2091         UpdateLoopAndTryInformationOfNewBlock(current, at,  /* replace_if_back_edge */ false);
2092       }
2093     }
2094 
2095     // Do (1), (2), (3) and (4) to `to`.
2096     to->SetGraph(outer_graph);
2097     outer_graph->AddBlock(to);
2098     outer_graph->reverse_post_order_[++index_of_at] = to;
2099     // Only `to` can become a back edge, as the inlined blocks
2100     // are predecessors of `to`.
2101     UpdateLoopAndTryInformationOfNewBlock(to, at, /* replace_if_back_edge */ true);
2102 
2103     // Update all predecessors of the exit block (now the `to` block)
2104     // to not `HReturn` but `HGoto` instead.
2105     bool returns_void = to->GetPredecessors()[0]->GetLastInstruction()->IsReturnVoid();
2106     if (to->GetPredecessors().size() == 1) {
2107       HBasicBlock* predecessor = to->GetPredecessors()[0];
2108       HInstruction* last = predecessor->GetLastInstruction();
2109       if (!returns_void) {
2110         return_value = last->InputAt(0);
2111       }
2112       predecessor->AddInstruction(new (allocator) HGoto(last->GetDexPc()));
2113       predecessor->RemoveInstruction(last);
2114     } else {
2115       if (!returns_void) {
2116         // There will be multiple returns.
2117         return_value = new (allocator) HPhi(
2118             allocator, kNoRegNumber, 0, HPhi::ToPhiType(invoke->GetType()), to->GetDexPc());
2119         to->AddPhi(return_value->AsPhi());
2120       }
2121       for (HBasicBlock* predecessor : to->GetPredecessors()) {
2122         HInstruction* last = predecessor->GetLastInstruction();
2123         if (!returns_void) {
2124           DCHECK(last->IsReturn());
2125           return_value->AsPhi()->AddInput(last->InputAt(0));
2126         }
2127         predecessor->AddInstruction(new (allocator) HGoto(last->GetDexPc()));
2128         predecessor->RemoveInstruction(last);
2129       }
2130     }
2131   }
2132 
2133   // Walk over the entry block and:
2134   // - Move constants from the entry block to the outer_graph's entry block,
2135   // - Replace HParameterValue instructions with their real value.
2136   // - Remove suspend checks, that hold an environment.
2137   // We must do this after the other blocks have been inlined, otherwise ids of
2138   // constants could overlap with the inner graph.
2139   size_t parameter_index = 0;
2140   for (HInstructionIterator it(entry_block_->GetInstructions()); !it.Done(); it.Advance()) {
2141     HInstruction* current = it.Current();
2142     HInstruction* replacement = nullptr;
2143     if (current->IsNullConstant()) {
2144       replacement = outer_graph->GetNullConstant(current->GetDexPc());
2145     } else if (current->IsIntConstant()) {
2146       replacement = outer_graph->GetIntConstant(
2147           current->AsIntConstant()->GetValue(), current->GetDexPc());
2148     } else if (current->IsLongConstant()) {
2149       replacement = outer_graph->GetLongConstant(
2150           current->AsLongConstant()->GetValue(), current->GetDexPc());
2151     } else if (current->IsFloatConstant()) {
2152       replacement = outer_graph->GetFloatConstant(
2153           current->AsFloatConstant()->GetValue(), current->GetDexPc());
2154     } else if (current->IsDoubleConstant()) {
2155       replacement = outer_graph->GetDoubleConstant(
2156           current->AsDoubleConstant()->GetValue(), current->GetDexPc());
2157     } else if (current->IsParameterValue()) {
2158       if (kIsDebugBuild
2159           && invoke->IsInvokeStaticOrDirect()
2160           && invoke->AsInvokeStaticOrDirect()->IsStaticWithExplicitClinitCheck()) {
2161         // Ensure we do not use the last input of `invoke`, as it
2162         // contains a clinit check which is not an actual argument.
2163         size_t last_input_index = invoke->InputCount() - 1;
2164         DCHECK(parameter_index != last_input_index);
2165       }
2166       replacement = invoke->InputAt(parameter_index++);
2167     } else if (current->IsCurrentMethod()) {
2168       replacement = outer_graph->GetCurrentMethod();
2169     } else {
2170       DCHECK(current->IsGoto() || current->IsSuspendCheck());
2171       entry_block_->RemoveInstruction(current);
2172     }
2173     if (replacement != nullptr) {
2174       current->ReplaceWith(replacement);
2175       // If the current is the return value then we need to update the latter.
2176       if (current == return_value) {
2177         DCHECK_EQ(entry_block_, return_value->GetBlock());
2178         return_value = replacement;
2179       }
2180     }
2181   }
2182 
2183   return return_value;
2184 }
2185 
2186 /*
2187  * Loop will be transformed to:
2188  *       old_pre_header
2189  *             |
2190  *          if_block
2191  *           /    \
2192  *  true_block   false_block
2193  *           \    /
2194  *       new_pre_header
2195  *             |
2196  *           header
2197  */
TransformLoopHeaderForBCE(HBasicBlock * header)2198 void HGraph::TransformLoopHeaderForBCE(HBasicBlock* header) {
2199   DCHECK(header->IsLoopHeader());
2200   HBasicBlock* old_pre_header = header->GetDominator();
2201 
2202   // Need extra block to avoid critical edge.
2203   HBasicBlock* if_block = new (arena_) HBasicBlock(this, header->GetDexPc());
2204   HBasicBlock* true_block = new (arena_) HBasicBlock(this, header->GetDexPc());
2205   HBasicBlock* false_block = new (arena_) HBasicBlock(this, header->GetDexPc());
2206   HBasicBlock* new_pre_header = new (arena_) HBasicBlock(this, header->GetDexPc());
2207   AddBlock(if_block);
2208   AddBlock(true_block);
2209   AddBlock(false_block);
2210   AddBlock(new_pre_header);
2211 
2212   header->ReplacePredecessor(old_pre_header, new_pre_header);
2213   old_pre_header->successors_.clear();
2214   old_pre_header->dominated_blocks_.clear();
2215 
2216   old_pre_header->AddSuccessor(if_block);
2217   if_block->AddSuccessor(true_block);  // True successor
2218   if_block->AddSuccessor(false_block);  // False successor
2219   true_block->AddSuccessor(new_pre_header);
2220   false_block->AddSuccessor(new_pre_header);
2221 
2222   old_pre_header->dominated_blocks_.push_back(if_block);
2223   if_block->SetDominator(old_pre_header);
2224   if_block->dominated_blocks_.push_back(true_block);
2225   true_block->SetDominator(if_block);
2226   if_block->dominated_blocks_.push_back(false_block);
2227   false_block->SetDominator(if_block);
2228   if_block->dominated_blocks_.push_back(new_pre_header);
2229   new_pre_header->SetDominator(if_block);
2230   new_pre_header->dominated_blocks_.push_back(header);
2231   header->SetDominator(new_pre_header);
2232 
2233   // Fix reverse post order.
2234   size_t index_of_header = IndexOfElement(reverse_post_order_, header);
2235   MakeRoomFor(&reverse_post_order_, 4, index_of_header - 1);
2236   reverse_post_order_[index_of_header++] = if_block;
2237   reverse_post_order_[index_of_header++] = true_block;
2238   reverse_post_order_[index_of_header++] = false_block;
2239   reverse_post_order_[index_of_header++] = new_pre_header;
2240 
2241   // The pre_header can never be a back edge of a loop.
2242   DCHECK((old_pre_header->GetLoopInformation() == nullptr) ||
2243          !old_pre_header->GetLoopInformation()->IsBackEdge(*old_pre_header));
2244   UpdateLoopAndTryInformationOfNewBlock(
2245       if_block, old_pre_header, /* replace_if_back_edge */ false);
2246   UpdateLoopAndTryInformationOfNewBlock(
2247       true_block, old_pre_header, /* replace_if_back_edge */ false);
2248   UpdateLoopAndTryInformationOfNewBlock(
2249       false_block, old_pre_header, /* replace_if_back_edge */ false);
2250   UpdateLoopAndTryInformationOfNewBlock(
2251       new_pre_header, old_pre_header, /* replace_if_back_edge */ false);
2252 }
2253 
CheckAgainstUpperBound(ReferenceTypeInfo rti,ReferenceTypeInfo upper_bound_rti)2254 static void CheckAgainstUpperBound(ReferenceTypeInfo rti, ReferenceTypeInfo upper_bound_rti)
2255     SHARED_REQUIRES(Locks::mutator_lock_) {
2256   if (rti.IsValid()) {
2257     DCHECK(upper_bound_rti.IsSupertypeOf(rti))
2258         << " upper_bound_rti: " << upper_bound_rti
2259         << " rti: " << rti;
2260     DCHECK(!upper_bound_rti.GetTypeHandle()->CannotBeAssignedFromOtherTypes() || rti.IsExact())
2261         << " upper_bound_rti: " << upper_bound_rti
2262         << " rti: " << rti;
2263   }
2264 }
2265 
SetReferenceTypeInfo(ReferenceTypeInfo rti)2266 void HInstruction::SetReferenceTypeInfo(ReferenceTypeInfo rti) {
2267   if (kIsDebugBuild) {
2268     DCHECK_EQ(GetType(), Primitive::kPrimNot);
2269     ScopedObjectAccess soa(Thread::Current());
2270     DCHECK(rti.IsValid()) << "Invalid RTI for " << DebugName();
2271     if (IsBoundType()) {
2272       // Having the test here spares us from making the method virtual just for
2273       // the sake of a DCHECK.
2274       CheckAgainstUpperBound(rti, AsBoundType()->GetUpperBound());
2275     }
2276   }
2277   reference_type_handle_ = rti.GetTypeHandle();
2278   SetPackedFlag<kFlagReferenceTypeIsExact>(rti.IsExact());
2279 }
2280 
SetUpperBound(const ReferenceTypeInfo & upper_bound,bool can_be_null)2281 void HBoundType::SetUpperBound(const ReferenceTypeInfo& upper_bound, bool can_be_null) {
2282   if (kIsDebugBuild) {
2283     ScopedObjectAccess soa(Thread::Current());
2284     DCHECK(upper_bound.IsValid());
2285     DCHECK(!upper_bound_.IsValid()) << "Upper bound should only be set once.";
2286     CheckAgainstUpperBound(GetReferenceTypeInfo(), upper_bound);
2287   }
2288   upper_bound_ = upper_bound;
2289   SetPackedFlag<kFlagUpperCanBeNull>(can_be_null);
2290 }
2291 
Create(TypeHandle type_handle,bool is_exact)2292 ReferenceTypeInfo ReferenceTypeInfo::Create(TypeHandle type_handle, bool is_exact) {
2293   if (kIsDebugBuild) {
2294     ScopedObjectAccess soa(Thread::Current());
2295     DCHECK(IsValidHandle(type_handle));
2296     if (!is_exact) {
2297       DCHECK(!type_handle->CannotBeAssignedFromOtherTypes())
2298           << "Callers of ReferenceTypeInfo::Create should ensure is_exact is properly computed";
2299     }
2300   }
2301   return ReferenceTypeInfo(type_handle, is_exact);
2302 }
2303 
operator <<(std::ostream & os,const ReferenceTypeInfo & rhs)2304 std::ostream& operator<<(std::ostream& os, const ReferenceTypeInfo& rhs) {
2305   ScopedObjectAccess soa(Thread::Current());
2306   os << "["
2307      << " is_valid=" << rhs.IsValid()
2308      << " type=" << (!rhs.IsValid() ? "?" : PrettyClass(rhs.GetTypeHandle().Get()))
2309      << " is_exact=" << rhs.IsExact()
2310      << " ]";
2311   return os;
2312 }
2313 
HasAnyEnvironmentUseBefore(HInstruction * other)2314 bool HInstruction::HasAnyEnvironmentUseBefore(HInstruction* other) {
2315   // For now, assume that instructions in different blocks may use the
2316   // environment.
2317   // TODO: Use the control flow to decide if this is true.
2318   if (GetBlock() != other->GetBlock()) {
2319     return true;
2320   }
2321 
2322   // We know that we are in the same block. Walk from 'this' to 'other',
2323   // checking to see if there is any instruction with an environment.
2324   HInstruction* current = this;
2325   for (; current != other && current != nullptr; current = current->GetNext()) {
2326     // This is a conservative check, as the instruction result may not be in
2327     // the referenced environment.
2328     if (current->HasEnvironment()) {
2329       return true;
2330     }
2331   }
2332 
2333   // We should have been called with 'this' before 'other' in the block.
2334   // Just confirm this.
2335   DCHECK(current != nullptr);
2336   return false;
2337 }
2338 
SetIntrinsic(Intrinsics intrinsic,IntrinsicNeedsEnvironmentOrCache needs_env_or_cache,IntrinsicSideEffects side_effects,IntrinsicExceptions exceptions)2339 void HInvoke::SetIntrinsic(Intrinsics intrinsic,
2340                            IntrinsicNeedsEnvironmentOrCache needs_env_or_cache,
2341                            IntrinsicSideEffects side_effects,
2342                            IntrinsicExceptions exceptions) {
2343   intrinsic_ = intrinsic;
2344   IntrinsicOptimizations opt(this);
2345 
2346   // Adjust method's side effects from intrinsic table.
2347   switch (side_effects) {
2348     case kNoSideEffects: SetSideEffects(SideEffects::None()); break;
2349     case kReadSideEffects: SetSideEffects(SideEffects::AllReads()); break;
2350     case kWriteSideEffects: SetSideEffects(SideEffects::AllWrites()); break;
2351     case kAllSideEffects: SetSideEffects(SideEffects::AllExceptGCDependency()); break;
2352   }
2353 
2354   if (needs_env_or_cache == kNoEnvironmentOrCache) {
2355     opt.SetDoesNotNeedDexCache();
2356     opt.SetDoesNotNeedEnvironment();
2357   } else {
2358     // If we need an environment, that means there will be a call, which can trigger GC.
2359     SetSideEffects(GetSideEffects().Union(SideEffects::CanTriggerGC()));
2360   }
2361   // Adjust method's exception status from intrinsic table.
2362   SetCanThrow(exceptions == kCanThrow);
2363 }
2364 
IsStringAlloc() const2365 bool HNewInstance::IsStringAlloc() const {
2366   ScopedObjectAccess soa(Thread::Current());
2367   return GetReferenceTypeInfo().IsStringClass();
2368 }
2369 
NeedsEnvironment() const2370 bool HInvoke::NeedsEnvironment() const {
2371   if (!IsIntrinsic()) {
2372     return true;
2373   }
2374   IntrinsicOptimizations opt(*this);
2375   return !opt.GetDoesNotNeedEnvironment();
2376 }
2377 
NeedsDexCacheOfDeclaringClass() const2378 bool HInvokeStaticOrDirect::NeedsDexCacheOfDeclaringClass() const {
2379   if (GetMethodLoadKind() != MethodLoadKind::kDexCacheViaMethod) {
2380     return false;
2381   }
2382   if (!IsIntrinsic()) {
2383     return true;
2384   }
2385   IntrinsicOptimizations opt(*this);
2386   return !opt.GetDoesNotNeedDexCache();
2387 }
2388 
InsertInputAt(size_t index,HInstruction * input)2389 void HInvokeStaticOrDirect::InsertInputAt(size_t index, HInstruction* input) {
2390   inputs_.insert(inputs_.begin() + index, HUserRecord<HInstruction*>(input));
2391   input->AddUseAt(this, index);
2392   // Update indexes in use nodes of inputs that have been pushed further back by the insert().
2393   for (size_t i = index + 1u, size = inputs_.size(); i != size; ++i) {
2394     DCHECK_EQ(InputRecordAt(i).GetUseNode()->GetIndex(), i - 1u);
2395     InputRecordAt(i).GetUseNode()->SetIndex(i);
2396   }
2397 }
2398 
RemoveInputAt(size_t index)2399 void HInvokeStaticOrDirect::RemoveInputAt(size_t index) {
2400   RemoveAsUserOfInput(index);
2401   inputs_.erase(inputs_.begin() + index);
2402   // Update indexes in use nodes of inputs that have been pulled forward by the erase().
2403   for (size_t i = index, e = InputCount(); i < e; ++i) {
2404     DCHECK_EQ(InputRecordAt(i).GetUseNode()->GetIndex(), i + 1u);
2405     InputRecordAt(i).GetUseNode()->SetIndex(i);
2406   }
2407 }
2408 
operator <<(std::ostream & os,HInvokeStaticOrDirect::MethodLoadKind rhs)2409 std::ostream& operator<<(std::ostream& os, HInvokeStaticOrDirect::MethodLoadKind rhs) {
2410   switch (rhs) {
2411     case HInvokeStaticOrDirect::MethodLoadKind::kStringInit:
2412       return os << "string_init";
2413     case HInvokeStaticOrDirect::MethodLoadKind::kRecursive:
2414       return os << "recursive";
2415     case HInvokeStaticOrDirect::MethodLoadKind::kDirectAddress:
2416       return os << "direct";
2417     case HInvokeStaticOrDirect::MethodLoadKind::kDirectAddressWithFixup:
2418       return os << "direct_fixup";
2419     case HInvokeStaticOrDirect::MethodLoadKind::kDexCachePcRelative:
2420       return os << "dex_cache_pc_relative";
2421     case HInvokeStaticOrDirect::MethodLoadKind::kDexCacheViaMethod:
2422       return os << "dex_cache_via_method";
2423     default:
2424       LOG(FATAL) << "Unknown MethodLoadKind: " << static_cast<int>(rhs);
2425       UNREACHABLE();
2426   }
2427 }
2428 
operator <<(std::ostream & os,HInvokeStaticOrDirect::ClinitCheckRequirement rhs)2429 std::ostream& operator<<(std::ostream& os, HInvokeStaticOrDirect::ClinitCheckRequirement rhs) {
2430   switch (rhs) {
2431     case HInvokeStaticOrDirect::ClinitCheckRequirement::kExplicit:
2432       return os << "explicit";
2433     case HInvokeStaticOrDirect::ClinitCheckRequirement::kImplicit:
2434       return os << "implicit";
2435     case HInvokeStaticOrDirect::ClinitCheckRequirement::kNone:
2436       return os << "none";
2437     default:
2438       LOG(FATAL) << "Unknown ClinitCheckRequirement: " << static_cast<int>(rhs);
2439       UNREACHABLE();
2440   }
2441 }
2442 
InstructionDataEquals(HInstruction * other) const2443 bool HLoadString::InstructionDataEquals(HInstruction* other) const {
2444   HLoadString* other_load_string = other->AsLoadString();
2445   if (string_index_ != other_load_string->string_index_ ||
2446       GetPackedFields() != other_load_string->GetPackedFields()) {
2447     return false;
2448   }
2449   LoadKind load_kind = GetLoadKind();
2450   if (HasAddress(load_kind)) {
2451     return GetAddress() == other_load_string->GetAddress();
2452   } else if (HasStringReference(load_kind)) {
2453     return IsSameDexFile(GetDexFile(), other_load_string->GetDexFile());
2454   } else {
2455     DCHECK(HasDexCacheReference(load_kind)) << load_kind;
2456     // If the string indexes and dex files are the same, dex cache element offsets
2457     // must also be the same, so we don't need to compare them.
2458     return IsSameDexFile(GetDexFile(), other_load_string->GetDexFile());
2459   }
2460 }
2461 
SetLoadKindInternal(LoadKind load_kind)2462 void HLoadString::SetLoadKindInternal(LoadKind load_kind) {
2463   // Once sharpened, the load kind should not be changed again.
2464   DCHECK_EQ(GetLoadKind(), LoadKind::kDexCacheViaMethod);
2465   SetPackedField<LoadKindField>(load_kind);
2466 
2467   if (load_kind != LoadKind::kDexCacheViaMethod) {
2468     RemoveAsUserOfInput(0u);
2469     SetRawInputAt(0u, nullptr);
2470   }
2471   if (!NeedsEnvironment()) {
2472     RemoveEnvironment();
2473     SetSideEffects(SideEffects::None());
2474   }
2475 }
2476 
operator <<(std::ostream & os,HLoadString::LoadKind rhs)2477 std::ostream& operator<<(std::ostream& os, HLoadString::LoadKind rhs) {
2478   switch (rhs) {
2479     case HLoadString::LoadKind::kBootImageLinkTimeAddress:
2480       return os << "BootImageLinkTimeAddress";
2481     case HLoadString::LoadKind::kBootImageLinkTimePcRelative:
2482       return os << "BootImageLinkTimePcRelative";
2483     case HLoadString::LoadKind::kBootImageAddress:
2484       return os << "BootImageAddress";
2485     case HLoadString::LoadKind::kDexCacheAddress:
2486       return os << "DexCacheAddress";
2487     case HLoadString::LoadKind::kDexCachePcRelative:
2488       return os << "DexCachePcRelative";
2489     case HLoadString::LoadKind::kDexCacheViaMethod:
2490       return os << "DexCacheViaMethod";
2491     default:
2492       LOG(FATAL) << "Unknown HLoadString::LoadKind: " << static_cast<int>(rhs);
2493       UNREACHABLE();
2494   }
2495 }
2496 
RemoveEnvironmentUsers()2497 void HInstruction::RemoveEnvironmentUsers() {
2498   for (const HUseListNode<HEnvironment*>& use : GetEnvUses()) {
2499     HEnvironment* user = use.GetUser();
2500     user->SetRawEnvAt(use.GetIndex(), nullptr);
2501   }
2502   env_uses_.clear();
2503 }
2504 
2505 // Returns an instruction with the opposite Boolean value from 'cond'.
InsertOppositeCondition(HInstruction * cond,HInstruction * cursor)2506 HInstruction* HGraph::InsertOppositeCondition(HInstruction* cond, HInstruction* cursor) {
2507   ArenaAllocator* allocator = GetArena();
2508 
2509   if (cond->IsCondition() &&
2510       !Primitive::IsFloatingPointType(cond->InputAt(0)->GetType())) {
2511     // Can't reverse floating point conditions.  We have to use HBooleanNot in that case.
2512     HInstruction* lhs = cond->InputAt(0);
2513     HInstruction* rhs = cond->InputAt(1);
2514     HInstruction* replacement = nullptr;
2515     switch (cond->AsCondition()->GetOppositeCondition()) {  // get *opposite*
2516       case kCondEQ: replacement = new (allocator) HEqual(lhs, rhs); break;
2517       case kCondNE: replacement = new (allocator) HNotEqual(lhs, rhs); break;
2518       case kCondLT: replacement = new (allocator) HLessThan(lhs, rhs); break;
2519       case kCondLE: replacement = new (allocator) HLessThanOrEqual(lhs, rhs); break;
2520       case kCondGT: replacement = new (allocator) HGreaterThan(lhs, rhs); break;
2521       case kCondGE: replacement = new (allocator) HGreaterThanOrEqual(lhs, rhs); break;
2522       case kCondB:  replacement = new (allocator) HBelow(lhs, rhs); break;
2523       case kCondBE: replacement = new (allocator) HBelowOrEqual(lhs, rhs); break;
2524       case kCondA:  replacement = new (allocator) HAbove(lhs, rhs); break;
2525       case kCondAE: replacement = new (allocator) HAboveOrEqual(lhs, rhs); break;
2526       default:
2527         LOG(FATAL) << "Unexpected condition";
2528         UNREACHABLE();
2529     }
2530     cursor->GetBlock()->InsertInstructionBefore(replacement, cursor);
2531     return replacement;
2532   } else if (cond->IsIntConstant()) {
2533     HIntConstant* int_const = cond->AsIntConstant();
2534     if (int_const->IsFalse()) {
2535       return GetIntConstant(1);
2536     } else {
2537       DCHECK(int_const->IsTrue()) << int_const->GetValue();
2538       return GetIntConstant(0);
2539     }
2540   } else {
2541     HInstruction* replacement = new (allocator) HBooleanNot(cond);
2542     cursor->GetBlock()->InsertInstructionBefore(replacement, cursor);
2543     return replacement;
2544   }
2545 }
2546 
operator <<(std::ostream & os,const MoveOperands & rhs)2547 std::ostream& operator<<(std::ostream& os, const MoveOperands& rhs) {
2548   os << "["
2549      << " source=" << rhs.GetSource()
2550      << " destination=" << rhs.GetDestination()
2551      << " type=" << rhs.GetType()
2552      << " instruction=";
2553   if (rhs.GetInstruction() != nullptr) {
2554     os << rhs.GetInstruction()->DebugName() << ' ' << rhs.GetInstruction()->GetId();
2555   } else {
2556     os << "null";
2557   }
2558   os << " ]";
2559   return os;
2560 }
2561 
operator <<(std::ostream & os,TypeCheckKind rhs)2562 std::ostream& operator<<(std::ostream& os, TypeCheckKind rhs) {
2563   switch (rhs) {
2564     case TypeCheckKind::kUnresolvedCheck:
2565       return os << "unresolved_check";
2566     case TypeCheckKind::kExactCheck:
2567       return os << "exact_check";
2568     case TypeCheckKind::kClassHierarchyCheck:
2569       return os << "class_hierarchy_check";
2570     case TypeCheckKind::kAbstractClassCheck:
2571       return os << "abstract_class_check";
2572     case TypeCheckKind::kInterfaceCheck:
2573       return os << "interface_check";
2574     case TypeCheckKind::kArrayObjectCheck:
2575       return os << "array_object_check";
2576     case TypeCheckKind::kArrayCheck:
2577       return os << "array_check";
2578     default:
2579       LOG(FATAL) << "Unknown TypeCheckKind: " << static_cast<int>(rhs);
2580       UNREACHABLE();
2581   }
2582 }
2583 
2584 }  // namespace art
2585