1 //===---- llvm/Analysis/ScalarEvolutionExpander.h - SCEV Exprs --*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines the classes used to generate code from scalar expressions.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #ifndef LLVM_ANALYSIS_SCALAREVOLUTIONEXPANDER_H
15 #define LLVM_ANALYSIS_SCALAREVOLUTIONEXPANDER_H
16 
17 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
18 #include "llvm/Analysis/ScalarEvolutionNormalization.h"
19 #include "llvm/Analysis/TargetFolder.h"
20 #include "llvm/IR/IRBuilder.h"
21 #include "llvm/IR/ValueHandle.h"
22 #include <set>
23 
24 namespace llvm {
25   class TargetTransformInfo;
26 
27   /// Return true if the given expression is safe to expand in the sense that
28   /// all materialized values are safe to speculate.
29   bool isSafeToExpand(const SCEV *S, ScalarEvolution &SE);
30 
31   /// This class uses information about analyze scalars to
32   /// rewrite expressions in canonical form.
33   ///
34   /// Clients should create an instance of this class when rewriting is needed,
35   /// and destroy it when finished to allow the release of the associated
36   /// memory.
37   class SCEVExpander : public SCEVVisitor<SCEVExpander, Value*> {
38     ScalarEvolution &SE;
39     const DataLayout &DL;
40 
41     // New instructions receive a name to identifies them with the current pass.
42     const char* IVName;
43 
44     // InsertedExpressions caches Values for reuse, so must track RAUW.
45     std::map<std::pair<const SCEV *, Instruction *>, TrackingVH<Value> >
46       InsertedExpressions;
47     // InsertedValues only flags inserted instructions so needs no RAUW.
48     std::set<AssertingVH<Value> > InsertedValues;
49     std::set<AssertingVH<Value> > InsertedPostIncValues;
50 
51     /// A memoization of the "relevant" loop for a given SCEV.
52     DenseMap<const SCEV *, const Loop *> RelevantLoops;
53 
54     /// \brief Addrecs referring to any of the given loops are expanded
55     /// in post-inc mode. For example, expanding {1,+,1}<L> in post-inc mode
56     /// returns the add instruction that adds one to the phi for {0,+,1}<L>,
57     /// as opposed to a new phi starting at 1. This is only supported in
58     /// non-canonical mode.
59     PostIncLoopSet PostIncLoops;
60 
61     /// \brief When this is non-null, addrecs expanded in the loop it indicates
62     /// should be inserted with increments at IVIncInsertPos.
63     const Loop *IVIncInsertLoop;
64 
65     /// \brief When expanding addrecs in the IVIncInsertLoop loop, insert the IV
66     /// increment at this position.
67     Instruction *IVIncInsertPos;
68 
69     /// \brief Phis that complete an IV chain. Reuse
70     std::set<AssertingVH<PHINode> > ChainedPhis;
71 
72     /// \brief When true, expressions are expanded in "canonical" form. In
73     /// particular, addrecs are expanded as arithmetic based on a canonical
74     /// induction variable. When false, expression are expanded in a more
75     /// literal form.
76     bool CanonicalMode;
77 
78     /// \brief When invoked from LSR, the expander is in "strength reduction"
79     /// mode. The only difference is that phi's are only reused if they are
80     /// already in "expanded" form.
81     bool LSRMode;
82 
83     typedef IRBuilder<true, TargetFolder> BuilderType;
84     BuilderType Builder;
85 
86 #ifndef NDEBUG
87     const char *DebugType;
88 #endif
89 
90     friend struct SCEVVisitor<SCEVExpander, Value*>;
91 
92   public:
93     /// \brief Construct a SCEVExpander in "canonical" mode.
94     explicit SCEVExpander(ScalarEvolution &se, const DataLayout &DL,
95                           const char *name)
96         : SE(se), DL(DL), IVName(name), IVIncInsertLoop(nullptr),
97           IVIncInsertPos(nullptr), CanonicalMode(true), LSRMode(false),
98           Builder(se.getContext(), TargetFolder(DL)) {
99 #ifndef NDEBUG
100       DebugType = "";
101 #endif
102     }
103 
104 #ifndef NDEBUG
105     void setDebugType(const char* s) { DebugType = s; }
106 #endif
107 
108     /// \brief Erase the contents of the InsertedExpressions map so that users
109     /// trying to expand the same expression into multiple BasicBlocks or
110     /// different places within the same BasicBlock can do so.
111     void clear() {
112       InsertedExpressions.clear();
113       InsertedValues.clear();
114       InsertedPostIncValues.clear();
115       ChainedPhis.clear();
116     }
117 
118     /// \brief Return true for expressions that may incur non-trivial cost to
119     /// evaluate at runtime.
120     ///
121     /// At is an optional parameter which specifies point in code where user is
122     /// going to expand this expression. Sometimes this knowledge can lead to a
123     /// more accurate cost estimation.
124     bool isHighCostExpansion(const SCEV *Expr, Loop *L,
125                              const Instruction *At = nullptr) {
126       SmallPtrSet<const SCEV *, 8> Processed;
127       return isHighCostExpansionHelper(Expr, L, At, Processed);
128     }
129 
130     /// \brief This method returns the canonical induction variable of the
131     /// specified type for the specified loop (inserting one if there is none).
132     /// A canonical induction variable starts at zero and steps by one on each
133     /// iteration.
134     PHINode *getOrInsertCanonicalInductionVariable(const Loop *L, Type *Ty);
135 
136     /// \brief Return the induction variable increment's IV operand.
137     Instruction *getIVIncOperand(Instruction *IncV, Instruction *InsertPos,
138                                  bool allowScale);
139 
140     /// \brief Utility for hoisting an IV increment.
141     bool hoistIVInc(Instruction *IncV, Instruction *InsertPos);
142 
143     /// \brief replace congruent phis with their most canonical
144     /// representative. Return the number of phis eliminated.
145     unsigned replaceCongruentIVs(Loop *L, const DominatorTree *DT,
146                                  SmallVectorImpl<WeakVH> &DeadInsts,
147                                  const TargetTransformInfo *TTI = nullptr);
148 
149     /// \brief Insert code to directly compute the specified SCEV expression
150     /// into the program.  The inserted code is inserted into the specified
151     /// block.
152     Value *expandCodeFor(const SCEV *SH, Type *Ty, Instruction *I);
153 
154     /// \brief Generates a code sequence that evaluates this predicate.
155     /// The inserted instructions will be at position \p Loc.
156     /// The result will be of type i1 and will have a value of 0 when the
157     /// predicate is false and 1 otherwise.
158     Value *expandCodeForPredicate(const SCEVPredicate *Pred, Instruction *Loc);
159 
160     /// \brief A specialized variant of expandCodeForPredicate, handling the
161     /// case when we are expanding code for a SCEVEqualPredicate.
162     Value *expandEqualPredicate(const SCEVEqualPredicate *Pred,
163                                 Instruction *Loc);
164 
165     /// \brief A specialized variant of expandCodeForPredicate, handling the
166     /// case when we are expanding code for a SCEVUnionPredicate.
167     Value *expandUnionPredicate(const SCEVUnionPredicate *Pred,
168                                 Instruction *Loc);
169 
170     /// \brief Set the current IV increment loop and position.
171     void setIVIncInsertPos(const Loop *L, Instruction *Pos) {
172       assert(!CanonicalMode &&
173              "IV increment positions are not supported in CanonicalMode");
174       IVIncInsertLoop = L;
175       IVIncInsertPos = Pos;
176     }
177 
178     /// \brief Enable post-inc expansion for addrecs referring to the given
179     /// loops. Post-inc expansion is only supported in non-canonical mode.
180     void setPostInc(const PostIncLoopSet &L) {
181       assert(!CanonicalMode &&
182              "Post-inc expansion is not supported in CanonicalMode");
183       PostIncLoops = L;
184     }
185 
186     /// \brief Disable all post-inc expansion.
187     void clearPostInc() {
188       PostIncLoops.clear();
189 
190       // When we change the post-inc loop set, cached expansions may no
191       // longer be valid.
192       InsertedPostIncValues.clear();
193     }
194 
195     /// \brief Disable the behavior of expanding expressions in canonical form
196     /// rather than in a more literal form. Non-canonical mode is useful for
197     /// late optimization passes.
198     void disableCanonicalMode() { CanonicalMode = false; }
199 
200     void enableLSRMode() { LSRMode = true; }
201 
202     /// \brief Clear the current insertion point. This is useful if the
203     /// instruction that had been serving as the insertion point may have been
204     /// deleted.
205     void clearInsertPoint() {
206       Builder.ClearInsertionPoint();
207     }
208 
209     /// \brief Return true if the specified instruction was inserted by the code
210     /// rewriter.  If so, the client should not modify the instruction.
211     bool isInsertedInstruction(Instruction *I) const {
212       return InsertedValues.count(I) || InsertedPostIncValues.count(I);
213     }
214 
215     void setChainedPhi(PHINode *PN) { ChainedPhis.insert(PN); }
216 
217     /// \brief Try to find LLVM IR value for S available at the point At.
218     ///
219     /// L is a hint which tells in which loop to look for the suitable value.
220     /// On success return value which is equivalent to the expanded S at point
221     /// At. Return nullptr if value was not found.
222     ///
223     /// Note that this function does not perform an exhaustive search. I.e if it
224     /// didn't find any value it does not mean that there is no such value.
225     Value *findExistingExpansion(const SCEV *S, const Instruction *At, Loop *L);
226 
227   private:
228     LLVMContext &getContext() const { return SE.getContext(); }
229 
230     /// \brief Recursive helper function for isHighCostExpansion.
231     bool isHighCostExpansionHelper(const SCEV *S, Loop *L,
232                                    const Instruction *At,
233                                    SmallPtrSetImpl<const SCEV *> &Processed);
234 
235     /// \brief Insert the specified binary operator, doing a small amount
236     /// of work to avoid inserting an obviously redundant operation.
237     Value *InsertBinop(Instruction::BinaryOps Opcode, Value *LHS, Value *RHS);
238 
239     /// \brief Arrange for there to be a cast of V to Ty at IP, reusing an
240     /// existing cast if a suitable one exists, moving an existing cast if a
241     /// suitable one exists but isn't in the right place, or or creating a new
242     /// one.
243     Value *ReuseOrCreateCast(Value *V, Type *Ty,
244                              Instruction::CastOps Op,
245                              BasicBlock::iterator IP);
246 
247     /// \brief Insert a cast of V to the specified type, which must be possible
248     /// with a noop cast, doing what we can to share the casts.
249     Value *InsertNoopCastOfTo(Value *V, Type *Ty);
250 
251     /// \brief Expand a SCEVAddExpr with a pointer type into a GEP
252     /// instead of using ptrtoint+arithmetic+inttoptr.
253     Value *expandAddToGEP(const SCEV *const *op_begin,
254                           const SCEV *const *op_end,
255                           PointerType *PTy, Type *Ty, Value *V);
256 
257     Value *expand(const SCEV *S);
258 
259     /// \brief Insert code to directly compute the specified SCEV expression
260     /// into the program.  The inserted code is inserted into the SCEVExpander's
261     /// current insertion point. If a type is specified, the result will be
262     /// expanded to have that type, with a cast if necessary.
263     Value *expandCodeFor(const SCEV *SH, Type *Ty = nullptr);
264 
265     /// \brief Determine the most "relevant" loop for the given SCEV.
266     const Loop *getRelevantLoop(const SCEV *);
267 
268     Value *visitConstant(const SCEVConstant *S) {
269       return S->getValue();
270     }
271 
272     Value *visitTruncateExpr(const SCEVTruncateExpr *S);
273 
274     Value *visitZeroExtendExpr(const SCEVZeroExtendExpr *S);
275 
276     Value *visitSignExtendExpr(const SCEVSignExtendExpr *S);
277 
278     Value *visitAddExpr(const SCEVAddExpr *S);
279 
280     Value *visitMulExpr(const SCEVMulExpr *S);
281 
282     Value *visitUDivExpr(const SCEVUDivExpr *S);
283 
284     Value *visitAddRecExpr(const SCEVAddRecExpr *S);
285 
286     Value *visitSMaxExpr(const SCEVSMaxExpr *S);
287 
288     Value *visitUMaxExpr(const SCEVUMaxExpr *S);
289 
290     Value *visitUnknown(const SCEVUnknown *S) {
291       return S->getValue();
292     }
293 
294     void rememberInstruction(Value *I);
295 
296     bool isNormalAddRecExprPHI(PHINode *PN, Instruction *IncV, const Loop *L);
297 
298     bool isExpandedAddRecExprPHI(PHINode *PN, Instruction *IncV, const Loop *L);
299 
300     Value *expandAddRecExprLiterally(const SCEVAddRecExpr *);
301     PHINode *getAddRecExprPHILiterally(const SCEVAddRecExpr *Normalized,
302                                        const Loop *L,
303                                        Type *ExpandTy,
304                                        Type *IntTy,
305                                        Type *&TruncTy,
306                                        bool &InvertStep);
307     Value *expandIVInc(PHINode *PN, Value *StepV, const Loop *L,
308                        Type *ExpandTy, Type *IntTy, bool useSubtract);
309   };
310 }
311 
312 #endif
313