1 // Copyright (c) 1994-2006 Sun Microsystems Inc.
2 // All Rights Reserved.
3 //
4 // Redistribution and use in source and binary forms, with or without
5 // modification, are permitted provided that the following conditions
6 // are met:
7 //
8 // - Redistributions of source code must retain the above copyright notice,
9 // this list of conditions and the following disclaimer.
10 //
11 // - Redistribution in binary form must reproduce the above copyright
12 // notice, this list of conditions and the following disclaimer in the
13 // documentation and/or other materials provided with the
14 // distribution.
15 //
16 // - Neither the name of Sun Microsystems or the names of contributors may
17 // be used to endorse or promote products derived from this software without
18 // specific prior written permission.
19 //
20 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
21 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
22 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
23 // FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
24 // COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
25 // INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
26 // (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
27 // SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28 // HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
29 // STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30 // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
31 // OF THE POSSIBILITY OF SUCH DAMAGE.
32
33 // The original source code covered by the above license above has been modified
34 // significantly by Google Inc.
35 // Copyright 2014 the V8 project authors. All rights reserved.
36
37 #ifndef V8_PPC_ASSEMBLER_PPC_INL_H_
38 #define V8_PPC_ASSEMBLER_PPC_INL_H_
39
40 #include "src/ppc/assembler-ppc.h"
41
42 #include "src/assembler.h"
43 #include "src/debug/debug.h"
44
45
46 namespace v8 {
47 namespace internal {
48
49
SupportsCrankshaft()50 bool CpuFeatures::SupportsCrankshaft() { return true; }
51
52
apply(intptr_t delta)53 void RelocInfo::apply(intptr_t delta) {
54 // absolute code pointer inside code object moves with the code object.
55 if (IsInternalReference(rmode_)) {
56 // Jump table entry
57 Address target = Memory::Address_at(pc_);
58 Memory::Address_at(pc_) = target + delta;
59 } else {
60 // mov sequence
61 DCHECK(IsInternalReferenceEncoded(rmode_));
62 Address target = Assembler::target_address_at(pc_, host_);
63 Assembler::set_target_address_at(isolate_, pc_, host_, target + delta,
64 SKIP_ICACHE_FLUSH);
65 }
66 }
67
68
target_internal_reference()69 Address RelocInfo::target_internal_reference() {
70 if (IsInternalReference(rmode_)) {
71 // Jump table entry
72 return Memory::Address_at(pc_);
73 } else {
74 // mov sequence
75 DCHECK(IsInternalReferenceEncoded(rmode_));
76 return Assembler::target_address_at(pc_, host_);
77 }
78 }
79
80
target_internal_reference_address()81 Address RelocInfo::target_internal_reference_address() {
82 DCHECK(IsInternalReference(rmode_) || IsInternalReferenceEncoded(rmode_));
83 return reinterpret_cast<Address>(pc_);
84 }
85
86
target_address()87 Address RelocInfo::target_address() {
88 DCHECK(IsCodeTarget(rmode_) || IsRuntimeEntry(rmode_));
89 return Assembler::target_address_at(pc_, host_);
90 }
91
92
target_address_address()93 Address RelocInfo::target_address_address() {
94 DCHECK(IsCodeTarget(rmode_) || IsRuntimeEntry(rmode_) ||
95 rmode_ == EMBEDDED_OBJECT || rmode_ == EXTERNAL_REFERENCE);
96
97 if (FLAG_enable_embedded_constant_pool &&
98 Assembler::IsConstantPoolLoadStart(pc_)) {
99 // We return the PC for embedded constant pool since this function is used
100 // by the serializer and expects the address to reside within the code
101 // object.
102 return reinterpret_cast<Address>(pc_);
103 }
104
105 // Read the address of the word containing the target_address in an
106 // instruction stream.
107 // The only architecture-independent user of this function is the serializer.
108 // The serializer uses it to find out how many raw bytes of instruction to
109 // output before the next target.
110 // For an instruction like LIS/ORI where the target bits are mixed into the
111 // instruction bits, the size of the target will be zero, indicating that the
112 // serializer should not step forward in memory after a target is resolved
113 // and written.
114 return reinterpret_cast<Address>(pc_);
115 }
116
117
constant_pool_entry_address()118 Address RelocInfo::constant_pool_entry_address() {
119 if (FLAG_enable_embedded_constant_pool) {
120 Address constant_pool = host_->constant_pool();
121 DCHECK(constant_pool);
122 ConstantPoolEntry::Access access;
123 if (Assembler::IsConstantPoolLoadStart(pc_, &access))
124 return Assembler::target_constant_pool_address_at(
125 pc_, constant_pool, access, ConstantPoolEntry::INTPTR);
126 }
127 UNREACHABLE();
128 return NULL;
129 }
130
131
target_address_size()132 int RelocInfo::target_address_size() { return Assembler::kSpecialTargetSize; }
133
134
set_target_address(Address target,WriteBarrierMode write_barrier_mode,ICacheFlushMode icache_flush_mode)135 void RelocInfo::set_target_address(Address target,
136 WriteBarrierMode write_barrier_mode,
137 ICacheFlushMode icache_flush_mode) {
138 DCHECK(IsCodeTarget(rmode_) || IsRuntimeEntry(rmode_));
139 Assembler::set_target_address_at(isolate_, pc_, host_, target,
140 icache_flush_mode);
141 if (write_barrier_mode == UPDATE_WRITE_BARRIER && host() != NULL &&
142 IsCodeTarget(rmode_)) {
143 Object* target_code = Code::GetCodeFromTargetAddress(target);
144 host()->GetHeap()->incremental_marking()->RecordWriteIntoCode(
145 host(), this, HeapObject::cast(target_code));
146 }
147 }
148
149
target_address_from_return_address(Address pc)150 Address Assembler::target_address_from_return_address(Address pc) {
151 // Returns the address of the call target from the return address that will
152 // be returned to after a call.
153 // Call sequence is :
154 // mov ip, @ call address
155 // mtlr ip
156 // blrl
157 // @ return address
158 int len;
159 ConstantPoolEntry::Access access;
160 if (FLAG_enable_embedded_constant_pool &&
161 IsConstantPoolLoadEnd(pc - 3 * kInstrSize, &access)) {
162 len = (access == ConstantPoolEntry::OVERFLOWED) ? 2 : 1;
163 } else {
164 len = kMovInstructionsNoConstantPool;
165 }
166 return pc - (len + 2) * kInstrSize;
167 }
168
169
return_address_from_call_start(Address pc)170 Address Assembler::return_address_from_call_start(Address pc) {
171 int len;
172 ConstantPoolEntry::Access access;
173 if (FLAG_enable_embedded_constant_pool &&
174 IsConstantPoolLoadStart(pc, &access)) {
175 len = (access == ConstantPoolEntry::OVERFLOWED) ? 2 : 1;
176 } else {
177 len = kMovInstructionsNoConstantPool;
178 }
179 return pc + (len + 2) * kInstrSize;
180 }
181
182
target_object()183 Object* RelocInfo::target_object() {
184 DCHECK(IsCodeTarget(rmode_) || rmode_ == EMBEDDED_OBJECT);
185 return reinterpret_cast<Object*>(Assembler::target_address_at(pc_, host_));
186 }
187
188
target_object_handle(Assembler * origin)189 Handle<Object> RelocInfo::target_object_handle(Assembler* origin) {
190 DCHECK(IsCodeTarget(rmode_) || rmode_ == EMBEDDED_OBJECT);
191 return Handle<Object>(
192 reinterpret_cast<Object**>(Assembler::target_address_at(pc_, host_)));
193 }
194
195
set_target_object(Object * target,WriteBarrierMode write_barrier_mode,ICacheFlushMode icache_flush_mode)196 void RelocInfo::set_target_object(Object* target,
197 WriteBarrierMode write_barrier_mode,
198 ICacheFlushMode icache_flush_mode) {
199 DCHECK(IsCodeTarget(rmode_) || rmode_ == EMBEDDED_OBJECT);
200 Assembler::set_target_address_at(isolate_, pc_, host_,
201 reinterpret_cast<Address>(target),
202 icache_flush_mode);
203 if (write_barrier_mode == UPDATE_WRITE_BARRIER && host() != NULL &&
204 target->IsHeapObject()) {
205 host()->GetHeap()->incremental_marking()->RecordWrite(
206 host(), &Memory::Object_at(pc_), HeapObject::cast(target));
207 }
208 }
209
210
target_external_reference()211 Address RelocInfo::target_external_reference() {
212 DCHECK(rmode_ == EXTERNAL_REFERENCE);
213 return Assembler::target_address_at(pc_, host_);
214 }
215
216
target_runtime_entry(Assembler * origin)217 Address RelocInfo::target_runtime_entry(Assembler* origin) {
218 DCHECK(IsRuntimeEntry(rmode_));
219 return target_address();
220 }
221
222
set_target_runtime_entry(Address target,WriteBarrierMode write_barrier_mode,ICacheFlushMode icache_flush_mode)223 void RelocInfo::set_target_runtime_entry(Address target,
224 WriteBarrierMode write_barrier_mode,
225 ICacheFlushMode icache_flush_mode) {
226 DCHECK(IsRuntimeEntry(rmode_));
227 if (target_address() != target)
228 set_target_address(target, write_barrier_mode, icache_flush_mode);
229 }
230
231
target_cell_handle()232 Handle<Cell> RelocInfo::target_cell_handle() {
233 DCHECK(rmode_ == RelocInfo::CELL);
234 Address address = Memory::Address_at(pc_);
235 return Handle<Cell>(reinterpret_cast<Cell**>(address));
236 }
237
238
target_cell()239 Cell* RelocInfo::target_cell() {
240 DCHECK(rmode_ == RelocInfo::CELL);
241 return Cell::FromValueAddress(Memory::Address_at(pc_));
242 }
243
244
set_target_cell(Cell * cell,WriteBarrierMode write_barrier_mode,ICacheFlushMode icache_flush_mode)245 void RelocInfo::set_target_cell(Cell* cell, WriteBarrierMode write_barrier_mode,
246 ICacheFlushMode icache_flush_mode) {
247 DCHECK(rmode_ == RelocInfo::CELL);
248 Address address = cell->address() + Cell::kValueOffset;
249 Memory::Address_at(pc_) = address;
250 if (write_barrier_mode == UPDATE_WRITE_BARRIER && host() != NULL) {
251 // TODO(1550) We are passing NULL as a slot because cell can never be on
252 // evacuation candidate.
253 host()->GetHeap()->incremental_marking()->RecordWrite(host(), NULL, cell);
254 }
255 }
256
257
258 static const int kNoCodeAgeInstructions =
259 FLAG_enable_embedded_constant_pool ? 7 : 6;
260 static const int kCodeAgingInstructions =
261 Assembler::kMovInstructionsNoConstantPool + 3;
262 static const int kNoCodeAgeSequenceInstructions =
263 ((kNoCodeAgeInstructions >= kCodeAgingInstructions)
264 ? kNoCodeAgeInstructions
265 : kCodeAgingInstructions);
266 static const int kNoCodeAgeSequenceNops =
267 (kNoCodeAgeSequenceInstructions - kNoCodeAgeInstructions);
268 static const int kCodeAgingSequenceNops =
269 (kNoCodeAgeSequenceInstructions - kCodeAgingInstructions);
270 static const int kCodeAgingTargetDelta = 1 * Assembler::kInstrSize;
271 static const int kNoCodeAgeSequenceLength =
272 (kNoCodeAgeSequenceInstructions * Assembler::kInstrSize);
273
274
code_age_stub_handle(Assembler * origin)275 Handle<Object> RelocInfo::code_age_stub_handle(Assembler* origin) {
276 UNREACHABLE(); // This should never be reached on PPC.
277 return Handle<Object>();
278 }
279
280
code_age_stub()281 Code* RelocInfo::code_age_stub() {
282 DCHECK(rmode_ == RelocInfo::CODE_AGE_SEQUENCE);
283 return Code::GetCodeFromTargetAddress(
284 Assembler::target_address_at(pc_ + kCodeAgingTargetDelta, host_));
285 }
286
287
set_code_age_stub(Code * stub,ICacheFlushMode icache_flush_mode)288 void RelocInfo::set_code_age_stub(Code* stub,
289 ICacheFlushMode icache_flush_mode) {
290 DCHECK(rmode_ == RelocInfo::CODE_AGE_SEQUENCE);
291 Assembler::set_target_address_at(isolate_, pc_ + kCodeAgingTargetDelta, host_,
292 stub->instruction_start(),
293 icache_flush_mode);
294 }
295
296
debug_call_address()297 Address RelocInfo::debug_call_address() {
298 DCHECK(IsDebugBreakSlot(rmode()) && IsPatchedDebugBreakSlotSequence());
299 return Assembler::target_address_at(pc_, host_);
300 }
301
302
set_debug_call_address(Address target)303 void RelocInfo::set_debug_call_address(Address target) {
304 DCHECK(IsDebugBreakSlot(rmode()) && IsPatchedDebugBreakSlotSequence());
305 Assembler::set_target_address_at(isolate_, pc_, host_, target);
306 if (host() != NULL) {
307 Object* target_code = Code::GetCodeFromTargetAddress(target);
308 host()->GetHeap()->incremental_marking()->RecordWriteIntoCode(
309 host(), this, HeapObject::cast(target_code));
310 }
311 }
312
313
WipeOut()314 void RelocInfo::WipeOut() {
315 DCHECK(IsEmbeddedObject(rmode_) || IsCodeTarget(rmode_) ||
316 IsRuntimeEntry(rmode_) || IsExternalReference(rmode_) ||
317 IsInternalReference(rmode_) || IsInternalReferenceEncoded(rmode_));
318 if (IsInternalReference(rmode_)) {
319 // Jump table entry
320 Memory::Address_at(pc_) = NULL;
321 } else if (IsInternalReferenceEncoded(rmode_)) {
322 // mov sequence
323 // Currently used only by deserializer, no need to flush.
324 Assembler::set_target_address_at(isolate_, pc_, host_, NULL,
325 SKIP_ICACHE_FLUSH);
326 } else {
327 Assembler::set_target_address_at(isolate_, pc_, host_, NULL);
328 }
329 }
330
331
IsPatchedReturnSequence()332 bool RelocInfo::IsPatchedReturnSequence() {
333 //
334 // The patched return sequence is defined by
335 // BreakLocation::SetDebugBreakAtReturn()
336 // FIXED_SEQUENCE
337
338 Instr instr0 = Assembler::instr_at(pc_);
339 Instr instr1 = Assembler::instr_at(pc_ + 1 * Assembler::kInstrSize);
340 #if V8_TARGET_ARCH_PPC64
341 Instr instr3 = Assembler::instr_at(pc_ + (3 * Assembler::kInstrSize));
342 Instr instr4 = Assembler::instr_at(pc_ + (4 * Assembler::kInstrSize));
343 Instr binstr = Assembler::instr_at(pc_ + (7 * Assembler::kInstrSize));
344 #else
345 Instr binstr = Assembler::instr_at(pc_ + 4 * Assembler::kInstrSize);
346 #endif
347 bool patched_return =
348 ((instr0 & kOpcodeMask) == ADDIS && (instr1 & kOpcodeMask) == ORI &&
349 #if V8_TARGET_ARCH_PPC64
350 (instr3 & kOpcodeMask) == ORIS && (instr4 & kOpcodeMask) == ORI &&
351 #endif
352 (binstr == 0x7d821008)); // twge r2, r2
353
354 // printf("IsPatchedReturnSequence: %d\n", patched_return);
355 return patched_return;
356 }
357
358
IsPatchedDebugBreakSlotSequence()359 bool RelocInfo::IsPatchedDebugBreakSlotSequence() {
360 Instr current_instr = Assembler::instr_at(pc_);
361 return !Assembler::IsNop(current_instr, Assembler::DEBUG_BREAK_NOP);
362 }
363
364
Visit(Isolate * isolate,ObjectVisitor * visitor)365 void RelocInfo::Visit(Isolate* isolate, ObjectVisitor* visitor) {
366 RelocInfo::Mode mode = rmode();
367 if (mode == RelocInfo::EMBEDDED_OBJECT) {
368 visitor->VisitEmbeddedPointer(this);
369 } else if (RelocInfo::IsCodeTarget(mode)) {
370 visitor->VisitCodeTarget(this);
371 } else if (mode == RelocInfo::CELL) {
372 visitor->VisitCell(this);
373 } else if (mode == RelocInfo::EXTERNAL_REFERENCE) {
374 visitor->VisitExternalReference(this);
375 } else if (mode == RelocInfo::INTERNAL_REFERENCE ||
376 mode == RelocInfo::INTERNAL_REFERENCE_ENCODED) {
377 visitor->VisitInternalReference(this);
378 } else if (RelocInfo::IsCodeAgeSequence(mode)) {
379 visitor->VisitCodeAgeSequence(this);
380 } else if (RelocInfo::IsDebugBreakSlot(mode) &&
381 IsPatchedDebugBreakSlotSequence()) {
382 visitor->VisitDebugTarget(this);
383 } else if (IsRuntimeEntry(mode)) {
384 visitor->VisitRuntimeEntry(this);
385 }
386 }
387
388
389 template <typename StaticVisitor>
Visit(Heap * heap)390 void RelocInfo::Visit(Heap* heap) {
391 RelocInfo::Mode mode = rmode();
392 if (mode == RelocInfo::EMBEDDED_OBJECT) {
393 StaticVisitor::VisitEmbeddedPointer(heap, this);
394 } else if (RelocInfo::IsCodeTarget(mode)) {
395 StaticVisitor::VisitCodeTarget(heap, this);
396 } else if (mode == RelocInfo::CELL) {
397 StaticVisitor::VisitCell(heap, this);
398 } else if (mode == RelocInfo::EXTERNAL_REFERENCE) {
399 StaticVisitor::VisitExternalReference(this);
400 } else if (mode == RelocInfo::INTERNAL_REFERENCE ||
401 mode == RelocInfo::INTERNAL_REFERENCE_ENCODED) {
402 StaticVisitor::VisitInternalReference(this);
403 } else if (RelocInfo::IsCodeAgeSequence(mode)) {
404 StaticVisitor::VisitCodeAgeSequence(heap, this);
405 } else if (RelocInfo::IsDebugBreakSlot(mode) &&
406 IsPatchedDebugBreakSlotSequence()) {
407 StaticVisitor::VisitDebugTarget(heap, this);
408 } else if (IsRuntimeEntry(mode)) {
409 StaticVisitor::VisitRuntimeEntry(this);
410 }
411 }
412
Operand(intptr_t immediate,RelocInfo::Mode rmode)413 Operand::Operand(intptr_t immediate, RelocInfo::Mode rmode) {
414 rm_ = no_reg;
415 imm_ = immediate;
416 rmode_ = rmode;
417 }
418
Operand(const ExternalReference & f)419 Operand::Operand(const ExternalReference& f) {
420 rm_ = no_reg;
421 imm_ = reinterpret_cast<intptr_t>(f.address());
422 rmode_ = RelocInfo::EXTERNAL_REFERENCE;
423 }
424
Operand(Smi * value)425 Operand::Operand(Smi* value) {
426 rm_ = no_reg;
427 imm_ = reinterpret_cast<intptr_t>(value);
428 rmode_ = kRelocInfo_NONEPTR;
429 }
430
Operand(Register rm)431 Operand::Operand(Register rm) {
432 rm_ = rm;
433 rmode_ = kRelocInfo_NONEPTR; // PPC -why doesn't ARM do this?
434 }
435
CheckBuffer()436 void Assembler::CheckBuffer() {
437 if (buffer_space() <= kGap) {
438 GrowBuffer();
439 }
440 }
441
TrackBranch()442 void Assembler::TrackBranch() {
443 DCHECK(!trampoline_emitted_);
444 int count = tracked_branch_count_++;
445 if (count == 0) {
446 // We leave space (kMaxBlockTrampolineSectionSize)
447 // for BlockTrampolinePoolScope buffer.
448 next_trampoline_check_ =
449 pc_offset() + kMaxCondBranchReach - kMaxBlockTrampolineSectionSize;
450 } else {
451 next_trampoline_check_ -= kTrampolineSlotsSize;
452 }
453 }
454
UntrackBranch()455 void Assembler::UntrackBranch() {
456 DCHECK(!trampoline_emitted_);
457 DCHECK(tracked_branch_count_ > 0);
458 int count = --tracked_branch_count_;
459 if (count == 0) {
460 // Reset
461 next_trampoline_check_ = kMaxInt;
462 } else {
463 next_trampoline_check_ += kTrampolineSlotsSize;
464 }
465 }
466
CheckTrampolinePoolQuick()467 void Assembler::CheckTrampolinePoolQuick() {
468 if (pc_offset() >= next_trampoline_check_) {
469 CheckTrampolinePool();
470 }
471 }
472
emit(Instr x)473 void Assembler::emit(Instr x) {
474 CheckBuffer();
475 *reinterpret_cast<Instr*>(pc_) = x;
476 pc_ += kInstrSize;
477 CheckTrampolinePoolQuick();
478 }
479
is_reg()480 bool Operand::is_reg() const { return rm_.is_valid(); }
481
482
483 // Fetch the 32bit value from the FIXED_SEQUENCE lis/ori
target_address_at(Address pc,Address constant_pool)484 Address Assembler::target_address_at(Address pc, Address constant_pool) {
485 if (FLAG_enable_embedded_constant_pool && constant_pool) {
486 ConstantPoolEntry::Access access;
487 if (IsConstantPoolLoadStart(pc, &access))
488 return Memory::Address_at(target_constant_pool_address_at(
489 pc, constant_pool, access, ConstantPoolEntry::INTPTR));
490 }
491
492 Instr instr1 = instr_at(pc);
493 Instr instr2 = instr_at(pc + kInstrSize);
494 // Interpret 2 instructions generated by lis/ori
495 if (IsLis(instr1) && IsOri(instr2)) {
496 #if V8_TARGET_ARCH_PPC64
497 Instr instr4 = instr_at(pc + (3 * kInstrSize));
498 Instr instr5 = instr_at(pc + (4 * kInstrSize));
499 // Assemble the 64 bit value.
500 uint64_t hi = (static_cast<uint32_t>((instr1 & kImm16Mask) << 16) |
501 static_cast<uint32_t>(instr2 & kImm16Mask));
502 uint64_t lo = (static_cast<uint32_t>((instr4 & kImm16Mask) << 16) |
503 static_cast<uint32_t>(instr5 & kImm16Mask));
504 return reinterpret_cast<Address>((hi << 32) | lo);
505 #else
506 // Assemble the 32 bit value.
507 return reinterpret_cast<Address>(((instr1 & kImm16Mask) << 16) |
508 (instr2 & kImm16Mask));
509 #endif
510 }
511
512 UNREACHABLE();
513 return NULL;
514 }
515
516
517 #if V8_TARGET_ARCH_PPC64
518 const int kLoadIntptrOpcode = LD;
519 #else
520 const int kLoadIntptrOpcode = LWZ;
521 #endif
522
523 // Constant pool load sequence detection:
524 // 1) REGULAR access:
525 // load <dst>, kConstantPoolRegister + <offset>
526 //
527 // 2) OVERFLOWED access:
528 // addis <scratch>, kConstantPoolRegister, <offset_high>
529 // load <dst>, <scratch> + <offset_low>
IsConstantPoolLoadStart(Address pc,ConstantPoolEntry::Access * access)530 bool Assembler::IsConstantPoolLoadStart(Address pc,
531 ConstantPoolEntry::Access* access) {
532 Instr instr = instr_at(pc);
533 int opcode = instr & kOpcodeMask;
534 if (!GetRA(instr).is(kConstantPoolRegister)) return false;
535 bool overflowed = (opcode == ADDIS);
536 #ifdef DEBUG
537 if (overflowed) {
538 opcode = instr_at(pc + kInstrSize) & kOpcodeMask;
539 }
540 DCHECK(opcode == kLoadIntptrOpcode || opcode == LFD);
541 #endif
542 if (access) {
543 *access = (overflowed ? ConstantPoolEntry::OVERFLOWED
544 : ConstantPoolEntry::REGULAR);
545 }
546 return true;
547 }
548
549
IsConstantPoolLoadEnd(Address pc,ConstantPoolEntry::Access * access)550 bool Assembler::IsConstantPoolLoadEnd(Address pc,
551 ConstantPoolEntry::Access* access) {
552 Instr instr = instr_at(pc);
553 int opcode = instr & kOpcodeMask;
554 bool overflowed = false;
555 if (!(opcode == kLoadIntptrOpcode || opcode == LFD)) return false;
556 if (!GetRA(instr).is(kConstantPoolRegister)) {
557 instr = instr_at(pc - kInstrSize);
558 opcode = instr & kOpcodeMask;
559 if ((opcode != ADDIS) || !GetRA(instr).is(kConstantPoolRegister)) {
560 return false;
561 }
562 overflowed = true;
563 }
564 if (access) {
565 *access = (overflowed ? ConstantPoolEntry::OVERFLOWED
566 : ConstantPoolEntry::REGULAR);
567 }
568 return true;
569 }
570
571
GetConstantPoolOffset(Address pc,ConstantPoolEntry::Access access,ConstantPoolEntry::Type type)572 int Assembler::GetConstantPoolOffset(Address pc,
573 ConstantPoolEntry::Access access,
574 ConstantPoolEntry::Type type) {
575 bool overflowed = (access == ConstantPoolEntry::OVERFLOWED);
576 #ifdef DEBUG
577 ConstantPoolEntry::Access access_check =
578 static_cast<ConstantPoolEntry::Access>(-1);
579 DCHECK(IsConstantPoolLoadStart(pc, &access_check));
580 DCHECK(access_check == access);
581 #endif
582 int offset;
583 if (overflowed) {
584 offset = (instr_at(pc) & kImm16Mask) << 16;
585 offset += SIGN_EXT_IMM16(instr_at(pc + kInstrSize) & kImm16Mask);
586 DCHECK(!is_int16(offset));
587 } else {
588 offset = SIGN_EXT_IMM16((instr_at(pc) & kImm16Mask));
589 }
590 return offset;
591 }
592
593
PatchConstantPoolAccessInstruction(int pc_offset,int offset,ConstantPoolEntry::Access access,ConstantPoolEntry::Type type)594 void Assembler::PatchConstantPoolAccessInstruction(
595 int pc_offset, int offset, ConstantPoolEntry::Access access,
596 ConstantPoolEntry::Type type) {
597 Address pc = buffer_ + pc_offset;
598 bool overflowed = (access == ConstantPoolEntry::OVERFLOWED);
599 CHECK(overflowed != is_int16(offset));
600 #ifdef DEBUG
601 ConstantPoolEntry::Access access_check =
602 static_cast<ConstantPoolEntry::Access>(-1);
603 DCHECK(IsConstantPoolLoadStart(pc, &access_check));
604 DCHECK(access_check == access);
605 #endif
606 if (overflowed) {
607 int hi_word = static_cast<int>(offset >> 16);
608 int lo_word = static_cast<int>(offset & 0xffff);
609 if (lo_word & 0x8000) hi_word++;
610
611 Instr instr1 = instr_at(pc);
612 Instr instr2 = instr_at(pc + kInstrSize);
613 instr1 &= ~kImm16Mask;
614 instr1 |= (hi_word & kImm16Mask);
615 instr2 &= ~kImm16Mask;
616 instr2 |= (lo_word & kImm16Mask);
617 instr_at_put(pc, instr1);
618 instr_at_put(pc + kInstrSize, instr2);
619 } else {
620 Instr instr = instr_at(pc);
621 instr &= ~kImm16Mask;
622 instr |= (offset & kImm16Mask);
623 instr_at_put(pc, instr);
624 }
625 }
626
627
target_constant_pool_address_at(Address pc,Address constant_pool,ConstantPoolEntry::Access access,ConstantPoolEntry::Type type)628 Address Assembler::target_constant_pool_address_at(
629 Address pc, Address constant_pool, ConstantPoolEntry::Access access,
630 ConstantPoolEntry::Type type) {
631 Address addr = constant_pool;
632 DCHECK(addr);
633 addr += GetConstantPoolOffset(pc, access, type);
634 return addr;
635 }
636
637
638 // This sets the branch destination (which gets loaded at the call address).
639 // This is for calls and branches within generated code. The serializer
640 // has already deserialized the mov instructions etc.
641 // There is a FIXED_SEQUENCE assumption here
deserialization_set_special_target_at(Isolate * isolate,Address instruction_payload,Code * code,Address target)642 void Assembler::deserialization_set_special_target_at(
643 Isolate* isolate, Address instruction_payload, Code* code, Address target) {
644 set_target_address_at(isolate, instruction_payload, code, target);
645 }
646
647
deserialization_set_target_internal_reference_at(Isolate * isolate,Address pc,Address target,RelocInfo::Mode mode)648 void Assembler::deserialization_set_target_internal_reference_at(
649 Isolate* isolate, Address pc, Address target, RelocInfo::Mode mode) {
650 if (RelocInfo::IsInternalReferenceEncoded(mode)) {
651 Code* code = NULL;
652 set_target_address_at(isolate, pc, code, target, SKIP_ICACHE_FLUSH);
653 } else {
654 Memory::Address_at(pc) = target;
655 }
656 }
657
658
659 // This code assumes the FIXED_SEQUENCE of lis/ori
set_target_address_at(Isolate * isolate,Address pc,Address constant_pool,Address target,ICacheFlushMode icache_flush_mode)660 void Assembler::set_target_address_at(Isolate* isolate, Address pc,
661 Address constant_pool, Address target,
662 ICacheFlushMode icache_flush_mode) {
663 if (FLAG_enable_embedded_constant_pool && constant_pool) {
664 ConstantPoolEntry::Access access;
665 if (IsConstantPoolLoadStart(pc, &access)) {
666 Memory::Address_at(target_constant_pool_address_at(
667 pc, constant_pool, access, ConstantPoolEntry::INTPTR)) = target;
668 return;
669 }
670 }
671
672 Instr instr1 = instr_at(pc);
673 Instr instr2 = instr_at(pc + kInstrSize);
674 // Interpret 2 instructions generated by lis/ori
675 if (IsLis(instr1) && IsOri(instr2)) {
676 #if V8_TARGET_ARCH_PPC64
677 Instr instr4 = instr_at(pc + (3 * kInstrSize));
678 Instr instr5 = instr_at(pc + (4 * kInstrSize));
679 // Needs to be fixed up when mov changes to handle 64-bit values.
680 uint32_t* p = reinterpret_cast<uint32_t*>(pc);
681 uintptr_t itarget = reinterpret_cast<uintptr_t>(target);
682
683 instr5 &= ~kImm16Mask;
684 instr5 |= itarget & kImm16Mask;
685 itarget = itarget >> 16;
686
687 instr4 &= ~kImm16Mask;
688 instr4 |= itarget & kImm16Mask;
689 itarget = itarget >> 16;
690
691 instr2 &= ~kImm16Mask;
692 instr2 |= itarget & kImm16Mask;
693 itarget = itarget >> 16;
694
695 instr1 &= ~kImm16Mask;
696 instr1 |= itarget & kImm16Mask;
697 itarget = itarget >> 16;
698
699 *p = instr1;
700 *(p + 1) = instr2;
701 *(p + 3) = instr4;
702 *(p + 4) = instr5;
703 if (icache_flush_mode != SKIP_ICACHE_FLUSH) {
704 Assembler::FlushICache(isolate, p, 5 * kInstrSize);
705 }
706 #else
707 uint32_t* p = reinterpret_cast<uint32_t*>(pc);
708 uint32_t itarget = reinterpret_cast<uint32_t>(target);
709 int lo_word = itarget & kImm16Mask;
710 int hi_word = itarget >> 16;
711 instr1 &= ~kImm16Mask;
712 instr1 |= hi_word;
713 instr2 &= ~kImm16Mask;
714 instr2 |= lo_word;
715
716 *p = instr1;
717 *(p + 1) = instr2;
718 if (icache_flush_mode != SKIP_ICACHE_FLUSH) {
719 Assembler::FlushICache(isolate, p, 2 * kInstrSize);
720 }
721 #endif
722 return;
723 }
724 UNREACHABLE();
725 }
726 } // namespace internal
727 } // namespace v8
728
729 #endif // V8_PPC_ASSEMBLER_PPC_INL_H_
730