1 /*
2  *  Copyright 2011 The WebRTC Project Authors. All rights reserved.
3  *
4  *  Use of this source code is governed by a BSD-style license
5  *  that can be found in the LICENSE file in the root of the source
6  *  tree. An additional intellectual property rights grant can be found
7  *  in the file PATENTS.  All contributing project authors may
8  *  be found in the AUTHORS file in the root of the source tree.
9  */
10 
11 #include "webrtc/base/messagedigest.h"
12 
13 #include <string.h>
14 
15 #include "webrtc/base/basictypes.h"
16 #include "webrtc/base/sslconfig.h"
17 #if SSL_USE_OPENSSL
18 #include "webrtc/base/openssldigest.h"
19 #else
20 #include "webrtc/base/md5digest.h"
21 #include "webrtc/base/sha1digest.h"
22 #endif
23 #include "webrtc/base/scoped_ptr.h"
24 #include "webrtc/base/stringencode.h"
25 
26 namespace rtc {
27 
28 // From RFC 4572.
29 const char DIGEST_MD5[]     = "md5";
30 const char DIGEST_SHA_1[]   = "sha-1";
31 const char DIGEST_SHA_224[] = "sha-224";
32 const char DIGEST_SHA_256[] = "sha-256";
33 const char DIGEST_SHA_384[] = "sha-384";
34 const char DIGEST_SHA_512[] = "sha-512";
35 
36 static const size_t kBlockSize = 64;  // valid for SHA-256 and down
37 
Create(const std::string & alg)38 MessageDigest* MessageDigestFactory::Create(const std::string& alg) {
39 #if SSL_USE_OPENSSL
40   MessageDigest* digest = new OpenSSLDigest(alg);
41   if (digest->Size() == 0) {  // invalid algorithm
42     delete digest;
43     digest = NULL;
44   }
45   return digest;
46 #else
47   MessageDigest* digest = NULL;
48   if (alg == DIGEST_MD5) {
49     digest = new Md5Digest();
50   } else if (alg == DIGEST_SHA_1) {
51     digest = new Sha1Digest();
52   }
53   return digest;
54 #endif
55 }
56 
IsFips180DigestAlgorithm(const std::string & alg)57 bool IsFips180DigestAlgorithm(const std::string& alg) {
58   // These are the FIPS 180 algorithms.  According to RFC 4572 Section 5,
59   // "Self-signed certificates (for which legacy certificates are not a
60   // consideration) MUST use one of the FIPS 180 algorithms (SHA-1,
61   // SHA-224, SHA-256, SHA-384, or SHA-512) as their signature algorithm,
62   // and thus also MUST use it to calculate certificate fingerprints."
63   return alg == DIGEST_SHA_1 ||
64          alg == DIGEST_SHA_224 ||
65          alg == DIGEST_SHA_256 ||
66          alg == DIGEST_SHA_384 ||
67          alg == DIGEST_SHA_512;
68 }
69 
ComputeDigest(MessageDigest * digest,const void * input,size_t in_len,void * output,size_t out_len)70 size_t ComputeDigest(MessageDigest* digest, const void* input, size_t in_len,
71                      void* output, size_t out_len) {
72   digest->Update(input, in_len);
73   return digest->Finish(output, out_len);
74 }
75 
ComputeDigest(const std::string & alg,const void * input,size_t in_len,void * output,size_t out_len)76 size_t ComputeDigest(const std::string& alg, const void* input, size_t in_len,
77                      void* output, size_t out_len) {
78   scoped_ptr<MessageDigest> digest(MessageDigestFactory::Create(alg));
79   return (digest) ?
80       ComputeDigest(digest.get(), input, in_len, output, out_len) :
81       0;
82 }
83 
ComputeDigest(MessageDigest * digest,const std::string & input)84 std::string ComputeDigest(MessageDigest* digest, const std::string& input) {
85   scoped_ptr<char[]> output(new char[digest->Size()]);
86   ComputeDigest(digest, input.data(), input.size(),
87                 output.get(), digest->Size());
88   return hex_encode(output.get(), digest->Size());
89 }
90 
ComputeDigest(const std::string & alg,const std::string & input,std::string * output)91 bool ComputeDigest(const std::string& alg, const std::string& input,
92                    std::string* output) {
93   scoped_ptr<MessageDigest> digest(MessageDigestFactory::Create(alg));
94   if (!digest) {
95     return false;
96   }
97   *output = ComputeDigest(digest.get(), input);
98   return true;
99 }
100 
ComputeDigest(const std::string & alg,const std::string & input)101 std::string ComputeDigest(const std::string& alg, const std::string& input) {
102   std::string output;
103   ComputeDigest(alg, input, &output);
104   return output;
105 }
106 
107 // Compute a RFC 2104 HMAC: H(K XOR opad, H(K XOR ipad, text))
ComputeHmac(MessageDigest * digest,const void * key,size_t key_len,const void * input,size_t in_len,void * output,size_t out_len)108 size_t ComputeHmac(MessageDigest* digest,
109                    const void* key, size_t key_len,
110                    const void* input, size_t in_len,
111                    void* output, size_t out_len) {
112   // We only handle algorithms with a 64-byte blocksize.
113   // TODO: Add BlockSize() method to MessageDigest.
114   size_t block_len = kBlockSize;
115   if (digest->Size() > 32) {
116     return 0;
117   }
118   // Copy the key to a block-sized buffer to simplify padding.
119   // If the key is longer than a block, hash it and use the result instead.
120   scoped_ptr<uint8_t[]> new_key(new uint8_t[block_len]);
121   if (key_len > block_len) {
122     ComputeDigest(digest, key, key_len, new_key.get(), block_len);
123     memset(new_key.get() + digest->Size(), 0, block_len - digest->Size());
124   } else {
125     memcpy(new_key.get(), key, key_len);
126     memset(new_key.get() + key_len, 0, block_len - key_len);
127   }
128   // Set up the padding from the key, salting appropriately for each padding.
129   scoped_ptr<uint8_t[]> o_pad(new uint8_t[block_len]);
130   scoped_ptr<uint8_t[]> i_pad(new uint8_t[block_len]);
131   for (size_t i = 0; i < block_len; ++i) {
132     o_pad[i] = 0x5c ^ new_key[i];
133     i_pad[i] = 0x36 ^ new_key[i];
134   }
135   // Inner hash; hash the inner padding, and then the input buffer.
136   scoped_ptr<uint8_t[]> inner(new uint8_t[digest->Size()]);
137   digest->Update(i_pad.get(), block_len);
138   digest->Update(input, in_len);
139   digest->Finish(inner.get(), digest->Size());
140   // Outer hash; hash the outer padding, and then the result of the inner hash.
141   digest->Update(o_pad.get(), block_len);
142   digest->Update(inner.get(), digest->Size());
143   return digest->Finish(output, out_len);
144 }
145 
ComputeHmac(const std::string & alg,const void * key,size_t key_len,const void * input,size_t in_len,void * output,size_t out_len)146 size_t ComputeHmac(const std::string& alg, const void* key, size_t key_len,
147                    const void* input, size_t in_len,
148                    void* output, size_t out_len) {
149   scoped_ptr<MessageDigest> digest(MessageDigestFactory::Create(alg));
150   if (!digest) {
151     return 0;
152   }
153   return ComputeHmac(digest.get(), key, key_len,
154                      input, in_len, output, out_len);
155 }
156 
ComputeHmac(MessageDigest * digest,const std::string & key,const std::string & input)157 std::string ComputeHmac(MessageDigest* digest, const std::string& key,
158                         const std::string& input) {
159   scoped_ptr<char[]> output(new char[digest->Size()]);
160   ComputeHmac(digest, key.data(), key.size(),
161               input.data(), input.size(), output.get(), digest->Size());
162   return hex_encode(output.get(), digest->Size());
163 }
164 
ComputeHmac(const std::string & alg,const std::string & key,const std::string & input,std::string * output)165 bool ComputeHmac(const std::string& alg, const std::string& key,
166                  const std::string& input, std::string* output) {
167   scoped_ptr<MessageDigest> digest(MessageDigestFactory::Create(alg));
168   if (!digest) {
169     return false;
170   }
171   *output = ComputeHmac(digest.get(), key, input);
172   return true;
173 }
174 
ComputeHmac(const std::string & alg,const std::string & key,const std::string & input)175 std::string ComputeHmac(const std::string& alg, const std::string& key,
176                         const std::string& input) {
177   std::string output;
178   ComputeHmac(alg, key, input, &output);
179   return output;
180 }
181 
182 }  // namespace rtc
183