1 //===- LoopVectorize.cpp - A Loop Vectorizer ------------------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This is the LLVM loop vectorizer. This pass modifies 'vectorizable' loops
11 // and generates target-independent LLVM-IR.
12 // The vectorizer uses the TargetTransformInfo analysis to estimate the costs
13 // of instructions in order to estimate the profitability of vectorization.
14 //
15 // The loop vectorizer combines consecutive loop iterations into a single
16 // 'wide' iteration. After this transformation the index is incremented
17 // by the SIMD vector width, and not by one.
18 //
19 // This pass has three parts:
20 // 1. The main loop pass that drives the different parts.
21 // 2. LoopVectorizationLegality - A unit that checks for the legality
22 // of the vectorization.
23 // 3. InnerLoopVectorizer - A unit that performs the actual
24 // widening of instructions.
25 // 4. LoopVectorizationCostModel - A unit that checks for the profitability
26 // of vectorization. It decides on the optimal vector width, which
27 // can be one, if vectorization is not profitable.
28 //
29 //===----------------------------------------------------------------------===//
30 //
31 // The reduction-variable vectorization is based on the paper:
32 // D. Nuzman and R. Henderson. Multi-platform Auto-vectorization.
33 //
34 // Variable uniformity checks are inspired by:
35 // Karrenberg, R. and Hack, S. Whole Function Vectorization.
36 //
37 // The interleaved access vectorization is based on the paper:
38 // Dorit Nuzman, Ira Rosen and Ayal Zaks. Auto-Vectorization of Interleaved
39 // Data for SIMD
40 //
41 // Other ideas/concepts are from:
42 // A. Zaks and D. Nuzman. Autovectorization in GCC-two years later.
43 //
44 // S. Maleki, Y. Gao, M. Garzaran, T. Wong and D. Padua. An Evaluation of
45 // Vectorizing Compilers.
46 //
47 //===----------------------------------------------------------------------===//
48
49 #include "llvm/Transforms/Vectorize.h"
50 #include "llvm/ADT/DenseMap.h"
51 #include "llvm/ADT/Hashing.h"
52 #include "llvm/ADT/MapVector.h"
53 #include "llvm/ADT/SetVector.h"
54 #include "llvm/ADT/SmallPtrSet.h"
55 #include "llvm/ADT/SmallSet.h"
56 #include "llvm/ADT/SmallVector.h"
57 #include "llvm/ADT/Statistic.h"
58 #include "llvm/ADT/StringExtras.h"
59 #include "llvm/Analysis/AliasAnalysis.h"
60 #include "llvm/Analysis/BasicAliasAnalysis.h"
61 #include "llvm/Analysis/AliasSetTracker.h"
62 #include "llvm/Analysis/AssumptionCache.h"
63 #include "llvm/Analysis/BlockFrequencyInfo.h"
64 #include "llvm/Analysis/CodeMetrics.h"
65 #include "llvm/Analysis/DemandedBits.h"
66 #include "llvm/Analysis/GlobalsModRef.h"
67 #include "llvm/Analysis/LoopAccessAnalysis.h"
68 #include "llvm/Analysis/LoopInfo.h"
69 #include "llvm/Analysis/LoopIterator.h"
70 #include "llvm/Analysis/LoopPass.h"
71 #include "llvm/Analysis/ScalarEvolution.h"
72 #include "llvm/Analysis/ScalarEvolutionExpander.h"
73 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
74 #include "llvm/Analysis/TargetTransformInfo.h"
75 #include "llvm/Analysis/ValueTracking.h"
76 #include "llvm/IR/Constants.h"
77 #include "llvm/IR/DataLayout.h"
78 #include "llvm/IR/DebugInfo.h"
79 #include "llvm/IR/DerivedTypes.h"
80 #include "llvm/IR/DiagnosticInfo.h"
81 #include "llvm/IR/Dominators.h"
82 #include "llvm/IR/Function.h"
83 #include "llvm/IR/IRBuilder.h"
84 #include "llvm/IR/Instructions.h"
85 #include "llvm/IR/IntrinsicInst.h"
86 #include "llvm/IR/LLVMContext.h"
87 #include "llvm/IR/Module.h"
88 #include "llvm/IR/PatternMatch.h"
89 #include "llvm/IR/Type.h"
90 #include "llvm/IR/Value.h"
91 #include "llvm/IR/ValueHandle.h"
92 #include "llvm/IR/Verifier.h"
93 #include "llvm/Pass.h"
94 #include "llvm/Support/BranchProbability.h"
95 #include "llvm/Support/CommandLine.h"
96 #include "llvm/Support/Debug.h"
97 #include "llvm/Support/raw_ostream.h"
98 #include "llvm/Transforms/Scalar.h"
99 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
100 #include "llvm/Transforms/Utils/Local.h"
101 #include "llvm/Analysis/VectorUtils.h"
102 #include "llvm/Transforms/Utils/LoopUtils.h"
103 #include <algorithm>
104 #include <functional>
105 #include <map>
106 #include <tuple>
107
108 using namespace llvm;
109 using namespace llvm::PatternMatch;
110
111 #define LV_NAME "loop-vectorize"
112 #define DEBUG_TYPE LV_NAME
113
114 STATISTIC(LoopsVectorized, "Number of loops vectorized");
115 STATISTIC(LoopsAnalyzed, "Number of loops analyzed for vectorization");
116
117 static cl::opt<bool>
118 EnableIfConversion("enable-if-conversion", cl::init(true), cl::Hidden,
119 cl::desc("Enable if-conversion during vectorization."));
120
121 /// We don't vectorize loops with a known constant trip count below this number.
122 static cl::opt<unsigned>
123 TinyTripCountVectorThreshold("vectorizer-min-trip-count", cl::init(16),
124 cl::Hidden,
125 cl::desc("Don't vectorize loops with a constant "
126 "trip count that is smaller than this "
127 "value."));
128
129 static cl::opt<bool> MaximizeBandwidth(
130 "vectorizer-maximize-bandwidth", cl::init(false), cl::Hidden,
131 cl::desc("Maximize bandwidth when selecting vectorization factor which "
132 "will be determined by the smallest type in loop."));
133
134 /// This enables versioning on the strides of symbolically striding memory
135 /// accesses in code like the following.
136 /// for (i = 0; i < N; ++i)
137 /// A[i * Stride1] += B[i * Stride2] ...
138 ///
139 /// Will be roughly translated to
140 /// if (Stride1 == 1 && Stride2 == 1) {
141 /// for (i = 0; i < N; i+=4)
142 /// A[i:i+3] += ...
143 /// } else
144 /// ...
145 static cl::opt<bool> EnableMemAccessVersioning(
146 "enable-mem-access-versioning", cl::init(true), cl::Hidden,
147 cl::desc("Enable symbolic stride memory access versioning"));
148
149 static cl::opt<bool> EnableInterleavedMemAccesses(
150 "enable-interleaved-mem-accesses", cl::init(false), cl::Hidden,
151 cl::desc("Enable vectorization on interleaved memory accesses in a loop"));
152
153 /// Maximum factor for an interleaved memory access.
154 static cl::opt<unsigned> MaxInterleaveGroupFactor(
155 "max-interleave-group-factor", cl::Hidden,
156 cl::desc("Maximum factor for an interleaved access group (default = 8)"),
157 cl::init(8));
158
159 /// We don't interleave loops with a known constant trip count below this
160 /// number.
161 static const unsigned TinyTripCountInterleaveThreshold = 128;
162
163 static cl::opt<unsigned> ForceTargetNumScalarRegs(
164 "force-target-num-scalar-regs", cl::init(0), cl::Hidden,
165 cl::desc("A flag that overrides the target's number of scalar registers."));
166
167 static cl::opt<unsigned> ForceTargetNumVectorRegs(
168 "force-target-num-vector-regs", cl::init(0), cl::Hidden,
169 cl::desc("A flag that overrides the target's number of vector registers."));
170
171 /// Maximum vectorization interleave count.
172 static const unsigned MaxInterleaveFactor = 16;
173
174 static cl::opt<unsigned> ForceTargetMaxScalarInterleaveFactor(
175 "force-target-max-scalar-interleave", cl::init(0), cl::Hidden,
176 cl::desc("A flag that overrides the target's max interleave factor for "
177 "scalar loops."));
178
179 static cl::opt<unsigned> ForceTargetMaxVectorInterleaveFactor(
180 "force-target-max-vector-interleave", cl::init(0), cl::Hidden,
181 cl::desc("A flag that overrides the target's max interleave factor for "
182 "vectorized loops."));
183
184 static cl::opt<unsigned> ForceTargetInstructionCost(
185 "force-target-instruction-cost", cl::init(0), cl::Hidden,
186 cl::desc("A flag that overrides the target's expected cost for "
187 "an instruction to a single constant value. Mostly "
188 "useful for getting consistent testing."));
189
190 static cl::opt<unsigned> SmallLoopCost(
191 "small-loop-cost", cl::init(20), cl::Hidden,
192 cl::desc(
193 "The cost of a loop that is considered 'small' by the interleaver."));
194
195 static cl::opt<bool> LoopVectorizeWithBlockFrequency(
196 "loop-vectorize-with-block-frequency", cl::init(false), cl::Hidden,
197 cl::desc("Enable the use of the block frequency analysis to access PGO "
198 "heuristics minimizing code growth in cold regions and being more "
199 "aggressive in hot regions."));
200
201 // Runtime interleave loops for load/store throughput.
202 static cl::opt<bool> EnableLoadStoreRuntimeInterleave(
203 "enable-loadstore-runtime-interleave", cl::init(true), cl::Hidden,
204 cl::desc(
205 "Enable runtime interleaving until load/store ports are saturated"));
206
207 /// The number of stores in a loop that are allowed to need predication.
208 static cl::opt<unsigned> NumberOfStoresToPredicate(
209 "vectorize-num-stores-pred", cl::init(1), cl::Hidden,
210 cl::desc("Max number of stores to be predicated behind an if."));
211
212 static cl::opt<bool> EnableIndVarRegisterHeur(
213 "enable-ind-var-reg-heur", cl::init(true), cl::Hidden,
214 cl::desc("Count the induction variable only once when interleaving"));
215
216 static cl::opt<bool> EnableCondStoresVectorization(
217 "enable-cond-stores-vec", cl::init(false), cl::Hidden,
218 cl::desc("Enable if predication of stores during vectorization."));
219
220 static cl::opt<unsigned> MaxNestedScalarReductionIC(
221 "max-nested-scalar-reduction-interleave", cl::init(2), cl::Hidden,
222 cl::desc("The maximum interleave count to use when interleaving a scalar "
223 "reduction in a nested loop."));
224
225 static cl::opt<unsigned> PragmaVectorizeMemoryCheckThreshold(
226 "pragma-vectorize-memory-check-threshold", cl::init(128), cl::Hidden,
227 cl::desc("The maximum allowed number of runtime memory checks with a "
228 "vectorize(enable) pragma."));
229
230 static cl::opt<unsigned> VectorizeSCEVCheckThreshold(
231 "vectorize-scev-check-threshold", cl::init(16), cl::Hidden,
232 cl::desc("The maximum number of SCEV checks allowed."));
233
234 static cl::opt<unsigned> PragmaVectorizeSCEVCheckThreshold(
235 "pragma-vectorize-scev-check-threshold", cl::init(128), cl::Hidden,
236 cl::desc("The maximum number of SCEV checks allowed with a "
237 "vectorize(enable) pragma"));
238
239 namespace {
240
241 // Forward declarations.
242 class LoopVectorizeHints;
243 class LoopVectorizationLegality;
244 class LoopVectorizationCostModel;
245 class LoopVectorizationRequirements;
246
247 /// \brief This modifies LoopAccessReport to initialize message with
248 /// loop-vectorizer-specific part.
249 class VectorizationReport : public LoopAccessReport {
250 public:
VectorizationReport(Instruction * I=nullptr)251 VectorizationReport(Instruction *I = nullptr)
252 : LoopAccessReport("loop not vectorized: ", I) {}
253
254 /// \brief This allows promotion of the loop-access analysis report into the
255 /// loop-vectorizer report. It modifies the message to add the
256 /// loop-vectorizer-specific part of the message.
VectorizationReport(const LoopAccessReport & R)257 explicit VectorizationReport(const LoopAccessReport &R)
258 : LoopAccessReport(Twine("loop not vectorized: ") + R.str(),
259 R.getInstr()) {}
260 };
261
262 /// A helper function for converting Scalar types to vector types.
263 /// If the incoming type is void, we return void. If the VF is 1, we return
264 /// the scalar type.
ToVectorTy(Type * Scalar,unsigned VF)265 static Type* ToVectorTy(Type *Scalar, unsigned VF) {
266 if (Scalar->isVoidTy() || VF == 1)
267 return Scalar;
268 return VectorType::get(Scalar, VF);
269 }
270
271 /// A helper function that returns GEP instruction and knows to skip a
272 /// 'bitcast'. The 'bitcast' may be skipped if the source and the destination
273 /// pointee types of the 'bitcast' have the same size.
274 /// For example:
275 /// bitcast double** %var to i64* - can be skipped
276 /// bitcast double** %var to i8* - can not
getGEPInstruction(Value * Ptr)277 static GetElementPtrInst *getGEPInstruction(Value *Ptr) {
278
279 if (isa<GetElementPtrInst>(Ptr))
280 return cast<GetElementPtrInst>(Ptr);
281
282 if (isa<BitCastInst>(Ptr) &&
283 isa<GetElementPtrInst>(cast<BitCastInst>(Ptr)->getOperand(0))) {
284 Type *BitcastTy = Ptr->getType();
285 Type *GEPTy = cast<BitCastInst>(Ptr)->getSrcTy();
286 if (!isa<PointerType>(BitcastTy) || !isa<PointerType>(GEPTy))
287 return nullptr;
288 Type *Pointee1Ty = cast<PointerType>(BitcastTy)->getPointerElementType();
289 Type *Pointee2Ty = cast<PointerType>(GEPTy)->getPointerElementType();
290 const DataLayout &DL = cast<BitCastInst>(Ptr)->getModule()->getDataLayout();
291 if (DL.getTypeSizeInBits(Pointee1Ty) == DL.getTypeSizeInBits(Pointee2Ty))
292 return cast<GetElementPtrInst>(cast<BitCastInst>(Ptr)->getOperand(0));
293 }
294 return nullptr;
295 }
296
297 /// InnerLoopVectorizer vectorizes loops which contain only one basic
298 /// block to a specified vectorization factor (VF).
299 /// This class performs the widening of scalars into vectors, or multiple
300 /// scalars. This class also implements the following features:
301 /// * It inserts an epilogue loop for handling loops that don't have iteration
302 /// counts that are known to be a multiple of the vectorization factor.
303 /// * It handles the code generation for reduction variables.
304 /// * Scalarization (implementation using scalars) of un-vectorizable
305 /// instructions.
306 /// InnerLoopVectorizer does not perform any vectorization-legality
307 /// checks, and relies on the caller to check for the different legality
308 /// aspects. The InnerLoopVectorizer relies on the
309 /// LoopVectorizationLegality class to provide information about the induction
310 /// and reduction variables that were found to a given vectorization factor.
311 class InnerLoopVectorizer {
312 public:
InnerLoopVectorizer(Loop * OrigLoop,PredicatedScalarEvolution & PSE,LoopInfo * LI,DominatorTree * DT,const TargetLibraryInfo * TLI,const TargetTransformInfo * TTI,unsigned VecWidth,unsigned UnrollFactor)313 InnerLoopVectorizer(Loop *OrigLoop, PredicatedScalarEvolution &PSE,
314 LoopInfo *LI, DominatorTree *DT,
315 const TargetLibraryInfo *TLI,
316 const TargetTransformInfo *TTI, unsigned VecWidth,
317 unsigned UnrollFactor)
318 : OrigLoop(OrigLoop), PSE(PSE), LI(LI), DT(DT), TLI(TLI), TTI(TTI),
319 VF(VecWidth), UF(UnrollFactor), Builder(PSE.getSE()->getContext()),
320 Induction(nullptr), OldInduction(nullptr), WidenMap(UnrollFactor),
321 TripCount(nullptr), VectorTripCount(nullptr), Legal(nullptr),
322 AddedSafetyChecks(false) {}
323
324 // Perform the actual loop widening (vectorization).
325 // MinimumBitWidths maps scalar integer values to the smallest bitwidth they
326 // can be validly truncated to. The cost model has assumed this truncation
327 // will happen when vectorizing.
vectorize(LoopVectorizationLegality * L,MapVector<Instruction *,uint64_t> MinimumBitWidths)328 void vectorize(LoopVectorizationLegality *L,
329 MapVector<Instruction*,uint64_t> MinimumBitWidths) {
330 MinBWs = MinimumBitWidths;
331 Legal = L;
332 // Create a new empty loop. Unlink the old loop and connect the new one.
333 createEmptyLoop();
334 // Widen each instruction in the old loop to a new one in the new loop.
335 // Use the Legality module to find the induction and reduction variables.
336 vectorizeLoop();
337 }
338
339 // Return true if any runtime check is added.
IsSafetyChecksAdded()340 bool IsSafetyChecksAdded() {
341 return AddedSafetyChecks;
342 }
343
~InnerLoopVectorizer()344 virtual ~InnerLoopVectorizer() {}
345
346 protected:
347 /// A small list of PHINodes.
348 typedef SmallVector<PHINode*, 4> PhiVector;
349 /// When we unroll loops we have multiple vector values for each scalar.
350 /// This data structure holds the unrolled and vectorized values that
351 /// originated from one scalar instruction.
352 typedef SmallVector<Value*, 2> VectorParts;
353
354 // When we if-convert we need to create edge masks. We have to cache values
355 // so that we don't end up with exponential recursion/IR.
356 typedef DenseMap<std::pair<BasicBlock*, BasicBlock*>,
357 VectorParts> EdgeMaskCache;
358
359 /// Create an empty loop, based on the loop ranges of the old loop.
360 void createEmptyLoop();
361 /// Create a new induction variable inside L.
362 PHINode *createInductionVariable(Loop *L, Value *Start, Value *End,
363 Value *Step, Instruction *DL);
364 /// Copy and widen the instructions from the old loop.
365 virtual void vectorizeLoop();
366
367 /// \brief The Loop exit block may have single value PHI nodes where the
368 /// incoming value is 'Undef'. While vectorizing we only handled real values
369 /// that were defined inside the loop. Here we fix the 'undef case'.
370 /// See PR14725.
371 void fixLCSSAPHIs();
372
373 /// Shrinks vector element sizes based on information in "MinBWs".
374 void truncateToMinimalBitwidths();
375
376 /// A helper function that computes the predicate of the block BB, assuming
377 /// that the header block of the loop is set to True. It returns the *entry*
378 /// mask for the block BB.
379 VectorParts createBlockInMask(BasicBlock *BB);
380 /// A helper function that computes the predicate of the edge between SRC
381 /// and DST.
382 VectorParts createEdgeMask(BasicBlock *Src, BasicBlock *Dst);
383
384 /// A helper function to vectorize a single BB within the innermost loop.
385 void vectorizeBlockInLoop(BasicBlock *BB, PhiVector *PV);
386
387 /// Vectorize a single PHINode in a block. This method handles the induction
388 /// variable canonicalization. It supports both VF = 1 for unrolled loops and
389 /// arbitrary length vectors.
390 void widenPHIInstruction(Instruction *PN, VectorParts &Entry,
391 unsigned UF, unsigned VF, PhiVector *PV);
392
393 /// Insert the new loop to the loop hierarchy and pass manager
394 /// and update the analysis passes.
395 void updateAnalysis();
396
397 /// This instruction is un-vectorizable. Implement it as a sequence
398 /// of scalars. If \p IfPredicateStore is true we need to 'hide' each
399 /// scalarized instruction behind an if block predicated on the control
400 /// dependence of the instruction.
401 virtual void scalarizeInstruction(Instruction *Instr,
402 bool IfPredicateStore=false);
403
404 /// Vectorize Load and Store instructions,
405 virtual void vectorizeMemoryInstruction(Instruction *Instr);
406
407 /// Create a broadcast instruction. This method generates a broadcast
408 /// instruction (shuffle) for loop invariant values and for the induction
409 /// value. If this is the induction variable then we extend it to N, N+1, ...
410 /// this is needed because each iteration in the loop corresponds to a SIMD
411 /// element.
412 virtual Value *getBroadcastInstrs(Value *V);
413
414 /// This function adds (StartIdx, StartIdx + Step, StartIdx + 2*Step, ...)
415 /// to each vector element of Val. The sequence starts at StartIndex.
416 virtual Value *getStepVector(Value *Val, int StartIdx, Value *Step);
417
418 /// When we go over instructions in the basic block we rely on previous
419 /// values within the current basic block or on loop invariant values.
420 /// When we widen (vectorize) values we place them in the map. If the values
421 /// are not within the map, they have to be loop invariant, so we simply
422 /// broadcast them into a vector.
423 VectorParts &getVectorValue(Value *V);
424
425 /// Try to vectorize the interleaved access group that \p Instr belongs to.
426 void vectorizeInterleaveGroup(Instruction *Instr);
427
428 /// Generate a shuffle sequence that will reverse the vector Vec.
429 virtual Value *reverseVector(Value *Vec);
430
431 /// Returns (and creates if needed) the original loop trip count.
432 Value *getOrCreateTripCount(Loop *NewLoop);
433
434 /// Returns (and creates if needed) the trip count of the widened loop.
435 Value *getOrCreateVectorTripCount(Loop *NewLoop);
436
437 /// Emit a bypass check to see if the trip count would overflow, or we
438 /// wouldn't have enough iterations to execute one vector loop.
439 void emitMinimumIterationCountCheck(Loop *L, BasicBlock *Bypass);
440 /// Emit a bypass check to see if the vector trip count is nonzero.
441 void emitVectorLoopEnteredCheck(Loop *L, BasicBlock *Bypass);
442 /// Emit a bypass check to see if all of the SCEV assumptions we've
443 /// had to make are correct.
444 void emitSCEVChecks(Loop *L, BasicBlock *Bypass);
445 /// Emit bypass checks to check any memory assumptions we may have made.
446 void emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass);
447
448 /// This is a helper class that holds the vectorizer state. It maps scalar
449 /// instructions to vector instructions. When the code is 'unrolled' then
450 /// then a single scalar value is mapped to multiple vector parts. The parts
451 /// are stored in the VectorPart type.
452 struct ValueMap {
453 /// C'tor. UnrollFactor controls the number of vectors ('parts') that
454 /// are mapped.
ValueMap__anon63bf7e8f0111::InnerLoopVectorizer::ValueMap455 ValueMap(unsigned UnrollFactor) : UF(UnrollFactor) {}
456
457 /// \return True if 'Key' is saved in the Value Map.
has__anon63bf7e8f0111::InnerLoopVectorizer::ValueMap458 bool has(Value *Key) const { return MapStorage.count(Key); }
459
460 /// Initializes a new entry in the map. Sets all of the vector parts to the
461 /// save value in 'Val'.
462 /// \return A reference to a vector with splat values.
splat__anon63bf7e8f0111::InnerLoopVectorizer::ValueMap463 VectorParts &splat(Value *Key, Value *Val) {
464 VectorParts &Entry = MapStorage[Key];
465 Entry.assign(UF, Val);
466 return Entry;
467 }
468
469 ///\return A reference to the value that is stored at 'Key'.
get__anon63bf7e8f0111::InnerLoopVectorizer::ValueMap470 VectorParts &get(Value *Key) {
471 VectorParts &Entry = MapStorage[Key];
472 if (Entry.empty())
473 Entry.resize(UF);
474 assert(Entry.size() == UF);
475 return Entry;
476 }
477
478 private:
479 /// The unroll factor. Each entry in the map stores this number of vector
480 /// elements.
481 unsigned UF;
482
483 /// Map storage. We use std::map and not DenseMap because insertions to a
484 /// dense map invalidates its iterators.
485 std::map<Value *, VectorParts> MapStorage;
486 };
487
488 /// The original loop.
489 Loop *OrigLoop;
490 /// A wrapper around ScalarEvolution used to add runtime SCEV checks. Applies
491 /// dynamic knowledge to simplify SCEV expressions and converts them to a
492 /// more usable form.
493 PredicatedScalarEvolution &PSE;
494 /// Loop Info.
495 LoopInfo *LI;
496 /// Dominator Tree.
497 DominatorTree *DT;
498 /// Alias Analysis.
499 AliasAnalysis *AA;
500 /// Target Library Info.
501 const TargetLibraryInfo *TLI;
502 /// Target Transform Info.
503 const TargetTransformInfo *TTI;
504
505 /// The vectorization SIMD factor to use. Each vector will have this many
506 /// vector elements.
507 unsigned VF;
508
509 protected:
510 /// The vectorization unroll factor to use. Each scalar is vectorized to this
511 /// many different vector instructions.
512 unsigned UF;
513
514 /// The builder that we use
515 IRBuilder<> Builder;
516
517 // --- Vectorization state ---
518
519 /// The vector-loop preheader.
520 BasicBlock *LoopVectorPreHeader;
521 /// The scalar-loop preheader.
522 BasicBlock *LoopScalarPreHeader;
523 /// Middle Block between the vector and the scalar.
524 BasicBlock *LoopMiddleBlock;
525 ///The ExitBlock of the scalar loop.
526 BasicBlock *LoopExitBlock;
527 ///The vector loop body.
528 SmallVector<BasicBlock *, 4> LoopVectorBody;
529 ///The scalar loop body.
530 BasicBlock *LoopScalarBody;
531 /// A list of all bypass blocks. The first block is the entry of the loop.
532 SmallVector<BasicBlock *, 4> LoopBypassBlocks;
533
534 /// The new Induction variable which was added to the new block.
535 PHINode *Induction;
536 /// The induction variable of the old basic block.
537 PHINode *OldInduction;
538 /// Maps scalars to widened vectors.
539 ValueMap WidenMap;
540 /// Store instructions that should be predicated, as a pair
541 /// <StoreInst, Predicate>
542 SmallVector<std::pair<StoreInst*,Value*>, 4> PredicatedStores;
543 EdgeMaskCache MaskCache;
544 /// Trip count of the original loop.
545 Value *TripCount;
546 /// Trip count of the widened loop (TripCount - TripCount % (VF*UF))
547 Value *VectorTripCount;
548
549 /// Map of scalar integer values to the smallest bitwidth they can be legally
550 /// represented as. The vector equivalents of these values should be truncated
551 /// to this type.
552 MapVector<Instruction*,uint64_t> MinBWs;
553 LoopVectorizationLegality *Legal;
554
555 // Record whether runtime check is added.
556 bool AddedSafetyChecks;
557 };
558
559 class InnerLoopUnroller : public InnerLoopVectorizer {
560 public:
InnerLoopUnroller(Loop * OrigLoop,PredicatedScalarEvolution & PSE,LoopInfo * LI,DominatorTree * DT,const TargetLibraryInfo * TLI,const TargetTransformInfo * TTI,unsigned UnrollFactor)561 InnerLoopUnroller(Loop *OrigLoop, PredicatedScalarEvolution &PSE,
562 LoopInfo *LI, DominatorTree *DT,
563 const TargetLibraryInfo *TLI,
564 const TargetTransformInfo *TTI, unsigned UnrollFactor)
565 : InnerLoopVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, 1, UnrollFactor) {}
566
567 private:
568 void scalarizeInstruction(Instruction *Instr,
569 bool IfPredicateStore = false) override;
570 void vectorizeMemoryInstruction(Instruction *Instr) override;
571 Value *getBroadcastInstrs(Value *V) override;
572 Value *getStepVector(Value *Val, int StartIdx, Value *Step) override;
573 Value *reverseVector(Value *Vec) override;
574 };
575
576 /// \brief Look for a meaningful debug location on the instruction or it's
577 /// operands.
getDebugLocFromInstOrOperands(Instruction * I)578 static Instruction *getDebugLocFromInstOrOperands(Instruction *I) {
579 if (!I)
580 return I;
581
582 DebugLoc Empty;
583 if (I->getDebugLoc() != Empty)
584 return I;
585
586 for (User::op_iterator OI = I->op_begin(), OE = I->op_end(); OI != OE; ++OI) {
587 if (Instruction *OpInst = dyn_cast<Instruction>(*OI))
588 if (OpInst->getDebugLoc() != Empty)
589 return OpInst;
590 }
591
592 return I;
593 }
594
595 /// \brief Set the debug location in the builder using the debug location in the
596 /// instruction.
setDebugLocFromInst(IRBuilder<> & B,const Value * Ptr)597 static void setDebugLocFromInst(IRBuilder<> &B, const Value *Ptr) {
598 if (const Instruction *Inst = dyn_cast_or_null<Instruction>(Ptr))
599 B.SetCurrentDebugLocation(Inst->getDebugLoc());
600 else
601 B.SetCurrentDebugLocation(DebugLoc());
602 }
603
604 #ifndef NDEBUG
605 /// \return string containing a file name and a line # for the given loop.
getDebugLocString(const Loop * L)606 static std::string getDebugLocString(const Loop *L) {
607 std::string Result;
608 if (L) {
609 raw_string_ostream OS(Result);
610 if (const DebugLoc LoopDbgLoc = L->getStartLoc())
611 LoopDbgLoc.print(OS);
612 else
613 // Just print the module name.
614 OS << L->getHeader()->getParent()->getParent()->getModuleIdentifier();
615 OS.flush();
616 }
617 return Result;
618 }
619 #endif
620
621 /// \brief Propagate known metadata from one instruction to another.
propagateMetadata(Instruction * To,const Instruction * From)622 static void propagateMetadata(Instruction *To, const Instruction *From) {
623 SmallVector<std::pair<unsigned, MDNode *>, 4> Metadata;
624 From->getAllMetadataOtherThanDebugLoc(Metadata);
625
626 for (auto M : Metadata) {
627 unsigned Kind = M.first;
628
629 // These are safe to transfer (this is safe for TBAA, even when we
630 // if-convert, because should that metadata have had a control dependency
631 // on the condition, and thus actually aliased with some other
632 // non-speculated memory access when the condition was false, this would be
633 // caught by the runtime overlap checks).
634 if (Kind != LLVMContext::MD_tbaa &&
635 Kind != LLVMContext::MD_alias_scope &&
636 Kind != LLVMContext::MD_noalias &&
637 Kind != LLVMContext::MD_fpmath &&
638 Kind != LLVMContext::MD_nontemporal)
639 continue;
640
641 To->setMetadata(Kind, M.second);
642 }
643 }
644
645 /// \brief Propagate known metadata from one instruction to a vector of others.
propagateMetadata(SmallVectorImpl<Value * > & To,const Instruction * From)646 static void propagateMetadata(SmallVectorImpl<Value *> &To,
647 const Instruction *From) {
648 for (Value *V : To)
649 if (Instruction *I = dyn_cast<Instruction>(V))
650 propagateMetadata(I, From);
651 }
652
653 /// \brief The group of interleaved loads/stores sharing the same stride and
654 /// close to each other.
655 ///
656 /// Each member in this group has an index starting from 0, and the largest
657 /// index should be less than interleaved factor, which is equal to the absolute
658 /// value of the access's stride.
659 ///
660 /// E.g. An interleaved load group of factor 4:
661 /// for (unsigned i = 0; i < 1024; i+=4) {
662 /// a = A[i]; // Member of index 0
663 /// b = A[i+1]; // Member of index 1
664 /// d = A[i+3]; // Member of index 3
665 /// ...
666 /// }
667 ///
668 /// An interleaved store group of factor 4:
669 /// for (unsigned i = 0; i < 1024; i+=4) {
670 /// ...
671 /// A[i] = a; // Member of index 0
672 /// A[i+1] = b; // Member of index 1
673 /// A[i+2] = c; // Member of index 2
674 /// A[i+3] = d; // Member of index 3
675 /// }
676 ///
677 /// Note: the interleaved load group could have gaps (missing members), but
678 /// the interleaved store group doesn't allow gaps.
679 class InterleaveGroup {
680 public:
InterleaveGroup(Instruction * Instr,int Stride,unsigned Align)681 InterleaveGroup(Instruction *Instr, int Stride, unsigned Align)
682 : Align(Align), SmallestKey(0), LargestKey(0), InsertPos(Instr) {
683 assert(Align && "The alignment should be non-zero");
684
685 Factor = std::abs(Stride);
686 assert(Factor > 1 && "Invalid interleave factor");
687
688 Reverse = Stride < 0;
689 Members[0] = Instr;
690 }
691
isReverse() const692 bool isReverse() const { return Reverse; }
getFactor() const693 unsigned getFactor() const { return Factor; }
getAlignment() const694 unsigned getAlignment() const { return Align; }
getNumMembers() const695 unsigned getNumMembers() const { return Members.size(); }
696
697 /// \brief Try to insert a new member \p Instr with index \p Index and
698 /// alignment \p NewAlign. The index is related to the leader and it could be
699 /// negative if it is the new leader.
700 ///
701 /// \returns false if the instruction doesn't belong to the group.
insertMember(Instruction * Instr,int Index,unsigned NewAlign)702 bool insertMember(Instruction *Instr, int Index, unsigned NewAlign) {
703 assert(NewAlign && "The new member's alignment should be non-zero");
704
705 int Key = Index + SmallestKey;
706
707 // Skip if there is already a member with the same index.
708 if (Members.count(Key))
709 return false;
710
711 if (Key > LargestKey) {
712 // The largest index is always less than the interleave factor.
713 if (Index >= static_cast<int>(Factor))
714 return false;
715
716 LargestKey = Key;
717 } else if (Key < SmallestKey) {
718 // The largest index is always less than the interleave factor.
719 if (LargestKey - Key >= static_cast<int>(Factor))
720 return false;
721
722 SmallestKey = Key;
723 }
724
725 // It's always safe to select the minimum alignment.
726 Align = std::min(Align, NewAlign);
727 Members[Key] = Instr;
728 return true;
729 }
730
731 /// \brief Get the member with the given index \p Index
732 ///
733 /// \returns nullptr if contains no such member.
getMember(unsigned Index) const734 Instruction *getMember(unsigned Index) const {
735 int Key = SmallestKey + Index;
736 if (!Members.count(Key))
737 return nullptr;
738
739 return Members.find(Key)->second;
740 }
741
742 /// \brief Get the index for the given member. Unlike the key in the member
743 /// map, the index starts from 0.
getIndex(Instruction * Instr) const744 unsigned getIndex(Instruction *Instr) const {
745 for (auto I : Members)
746 if (I.second == Instr)
747 return I.first - SmallestKey;
748
749 llvm_unreachable("InterleaveGroup contains no such member");
750 }
751
getInsertPos() const752 Instruction *getInsertPos() const { return InsertPos; }
setInsertPos(Instruction * Inst)753 void setInsertPos(Instruction *Inst) { InsertPos = Inst; }
754
755 private:
756 unsigned Factor; // Interleave Factor.
757 bool Reverse;
758 unsigned Align;
759 DenseMap<int, Instruction *> Members;
760 int SmallestKey;
761 int LargestKey;
762
763 // To avoid breaking dependences, vectorized instructions of an interleave
764 // group should be inserted at either the first load or the last store in
765 // program order.
766 //
767 // E.g. %even = load i32 // Insert Position
768 // %add = add i32 %even // Use of %even
769 // %odd = load i32
770 //
771 // store i32 %even
772 // %odd = add i32 // Def of %odd
773 // store i32 %odd // Insert Position
774 Instruction *InsertPos;
775 };
776
777 /// \brief Drive the analysis of interleaved memory accesses in the loop.
778 ///
779 /// Use this class to analyze interleaved accesses only when we can vectorize
780 /// a loop. Otherwise it's meaningless to do analysis as the vectorization
781 /// on interleaved accesses is unsafe.
782 ///
783 /// The analysis collects interleave groups and records the relationships
784 /// between the member and the group in a map.
785 class InterleavedAccessInfo {
786 public:
InterleavedAccessInfo(PredicatedScalarEvolution & PSE,Loop * L,DominatorTree * DT)787 InterleavedAccessInfo(PredicatedScalarEvolution &PSE, Loop *L,
788 DominatorTree *DT)
789 : PSE(PSE), TheLoop(L), DT(DT) {}
790
~InterleavedAccessInfo()791 ~InterleavedAccessInfo() {
792 SmallSet<InterleaveGroup *, 4> DelSet;
793 // Avoid releasing a pointer twice.
794 for (auto &I : InterleaveGroupMap)
795 DelSet.insert(I.second);
796 for (auto *Ptr : DelSet)
797 delete Ptr;
798 }
799
800 /// \brief Analyze the interleaved accesses and collect them in interleave
801 /// groups. Substitute symbolic strides using \p Strides.
802 void analyzeInterleaving(const ValueToValueMap &Strides);
803
804 /// \brief Check if \p Instr belongs to any interleave group.
isInterleaved(Instruction * Instr) const805 bool isInterleaved(Instruction *Instr) const {
806 return InterleaveGroupMap.count(Instr);
807 }
808
809 /// \brief Get the interleave group that \p Instr belongs to.
810 ///
811 /// \returns nullptr if doesn't have such group.
getInterleaveGroup(Instruction * Instr) const812 InterleaveGroup *getInterleaveGroup(Instruction *Instr) const {
813 if (InterleaveGroupMap.count(Instr))
814 return InterleaveGroupMap.find(Instr)->second;
815 return nullptr;
816 }
817
818 private:
819 /// A wrapper around ScalarEvolution, used to add runtime SCEV checks.
820 /// Simplifies SCEV expressions in the context of existing SCEV assumptions.
821 /// The interleaved access analysis can also add new predicates (for example
822 /// by versioning strides of pointers).
823 PredicatedScalarEvolution &PSE;
824 Loop *TheLoop;
825 DominatorTree *DT;
826
827 /// Holds the relationships between the members and the interleave group.
828 DenseMap<Instruction *, InterleaveGroup *> InterleaveGroupMap;
829
830 /// \brief The descriptor for a strided memory access.
831 struct StrideDescriptor {
StrideDescriptor__anon63bf7e8f0111::InterleavedAccessInfo::StrideDescriptor832 StrideDescriptor(int Stride, const SCEV *Scev, unsigned Size,
833 unsigned Align)
834 : Stride(Stride), Scev(Scev), Size(Size), Align(Align) {}
835
StrideDescriptor__anon63bf7e8f0111::InterleavedAccessInfo::StrideDescriptor836 StrideDescriptor() : Stride(0), Scev(nullptr), Size(0), Align(0) {}
837
838 int Stride; // The access's stride. It is negative for a reverse access.
839 const SCEV *Scev; // The scalar expression of this access
840 unsigned Size; // The size of the memory object.
841 unsigned Align; // The alignment of this access.
842 };
843
844 /// \brief Create a new interleave group with the given instruction \p Instr,
845 /// stride \p Stride and alignment \p Align.
846 ///
847 /// \returns the newly created interleave group.
createInterleaveGroup(Instruction * Instr,int Stride,unsigned Align)848 InterleaveGroup *createInterleaveGroup(Instruction *Instr, int Stride,
849 unsigned Align) {
850 assert(!InterleaveGroupMap.count(Instr) &&
851 "Already in an interleaved access group");
852 InterleaveGroupMap[Instr] = new InterleaveGroup(Instr, Stride, Align);
853 return InterleaveGroupMap[Instr];
854 }
855
856 /// \brief Release the group and remove all the relationships.
releaseGroup(InterleaveGroup * Group)857 void releaseGroup(InterleaveGroup *Group) {
858 for (unsigned i = 0; i < Group->getFactor(); i++)
859 if (Instruction *Member = Group->getMember(i))
860 InterleaveGroupMap.erase(Member);
861
862 delete Group;
863 }
864
865 /// \brief Collect all the accesses with a constant stride in program order.
866 void collectConstStridedAccesses(
867 MapVector<Instruction *, StrideDescriptor> &StrideAccesses,
868 const ValueToValueMap &Strides);
869 };
870
871 /// Utility class for getting and setting loop vectorizer hints in the form
872 /// of loop metadata.
873 /// This class keeps a number of loop annotations locally (as member variables)
874 /// and can, upon request, write them back as metadata on the loop. It will
875 /// initially scan the loop for existing metadata, and will update the local
876 /// values based on information in the loop.
877 /// We cannot write all values to metadata, as the mere presence of some info,
878 /// for example 'force', means a decision has been made. So, we need to be
879 /// careful NOT to add them if the user hasn't specifically asked so.
880 class LoopVectorizeHints {
881 enum HintKind {
882 HK_WIDTH,
883 HK_UNROLL,
884 HK_FORCE
885 };
886
887 /// Hint - associates name and validation with the hint value.
888 struct Hint {
889 const char * Name;
890 unsigned Value; // This may have to change for non-numeric values.
891 HintKind Kind;
892
Hint__anon63bf7e8f0111::LoopVectorizeHints::Hint893 Hint(const char * Name, unsigned Value, HintKind Kind)
894 : Name(Name), Value(Value), Kind(Kind) { }
895
validate__anon63bf7e8f0111::LoopVectorizeHints::Hint896 bool validate(unsigned Val) {
897 switch (Kind) {
898 case HK_WIDTH:
899 return isPowerOf2_32(Val) && Val <= VectorizerParams::MaxVectorWidth;
900 case HK_UNROLL:
901 return isPowerOf2_32(Val) && Val <= MaxInterleaveFactor;
902 case HK_FORCE:
903 return (Val <= 1);
904 }
905 return false;
906 }
907 };
908
909 /// Vectorization width.
910 Hint Width;
911 /// Vectorization interleave factor.
912 Hint Interleave;
913 /// Vectorization forced
914 Hint Force;
915
916 /// Return the loop metadata prefix.
Prefix()917 static StringRef Prefix() { return "llvm.loop."; }
918
919 public:
920 enum ForceKind {
921 FK_Undefined = -1, ///< Not selected.
922 FK_Disabled = 0, ///< Forcing disabled.
923 FK_Enabled = 1, ///< Forcing enabled.
924 };
925
LoopVectorizeHints(const Loop * L,bool DisableInterleaving)926 LoopVectorizeHints(const Loop *L, bool DisableInterleaving)
927 : Width("vectorize.width", VectorizerParams::VectorizationFactor,
928 HK_WIDTH),
929 Interleave("interleave.count", DisableInterleaving, HK_UNROLL),
930 Force("vectorize.enable", FK_Undefined, HK_FORCE),
931 TheLoop(L) {
932 // Populate values with existing loop metadata.
933 getHintsFromMetadata();
934
935 // force-vector-interleave overrides DisableInterleaving.
936 if (VectorizerParams::isInterleaveForced())
937 Interleave.Value = VectorizerParams::VectorizationInterleave;
938
939 DEBUG(if (DisableInterleaving && Interleave.Value == 1) dbgs()
940 << "LV: Interleaving disabled by the pass manager\n");
941 }
942
943 /// Mark the loop L as already vectorized by setting the width to 1.
setAlreadyVectorized()944 void setAlreadyVectorized() {
945 Width.Value = Interleave.Value = 1;
946 Hint Hints[] = {Width, Interleave};
947 writeHintsToMetadata(Hints);
948 }
949
allowVectorization(Function * F,Loop * L,bool AlwaysVectorize) const950 bool allowVectorization(Function *F, Loop *L, bool AlwaysVectorize) const {
951 if (getForce() == LoopVectorizeHints::FK_Disabled) {
952 DEBUG(dbgs() << "LV: Not vectorizing: #pragma vectorize disable.\n");
953 emitOptimizationRemarkAnalysis(F->getContext(),
954 vectorizeAnalysisPassName(), *F,
955 L->getStartLoc(), emitRemark());
956 return false;
957 }
958
959 if (!AlwaysVectorize && getForce() != LoopVectorizeHints::FK_Enabled) {
960 DEBUG(dbgs() << "LV: Not vectorizing: No #pragma vectorize enable.\n");
961 emitOptimizationRemarkAnalysis(F->getContext(),
962 vectorizeAnalysisPassName(), *F,
963 L->getStartLoc(), emitRemark());
964 return false;
965 }
966
967 if (getWidth() == 1 && getInterleave() == 1) {
968 // FIXME: Add a separate metadata to indicate when the loop has already
969 // been vectorized instead of setting width and count to 1.
970 DEBUG(dbgs() << "LV: Not vectorizing: Disabled/already vectorized.\n");
971 // FIXME: Add interleave.disable metadata. This will allow
972 // vectorize.disable to be used without disabling the pass and errors
973 // to differentiate between disabled vectorization and a width of 1.
974 emitOptimizationRemarkAnalysis(
975 F->getContext(), vectorizeAnalysisPassName(), *F, L->getStartLoc(),
976 "loop not vectorized: vectorization and interleaving are explicitly "
977 "disabled, or vectorize width and interleave count are both set to "
978 "1");
979 return false;
980 }
981
982 return true;
983 }
984
985 /// Dumps all the hint information.
emitRemark() const986 std::string emitRemark() const {
987 VectorizationReport R;
988 if (Force.Value == LoopVectorizeHints::FK_Disabled)
989 R << "vectorization is explicitly disabled";
990 else {
991 R << "use -Rpass-analysis=loop-vectorize for more info";
992 if (Force.Value == LoopVectorizeHints::FK_Enabled) {
993 R << " (Force=true";
994 if (Width.Value != 0)
995 R << ", Vector Width=" << Width.Value;
996 if (Interleave.Value != 0)
997 R << ", Interleave Count=" << Interleave.Value;
998 R << ")";
999 }
1000 }
1001
1002 return R.str();
1003 }
1004
getWidth() const1005 unsigned getWidth() const { return Width.Value; }
getInterleave() const1006 unsigned getInterleave() const { return Interleave.Value; }
getForce() const1007 enum ForceKind getForce() const { return (ForceKind)Force.Value; }
vectorizeAnalysisPassName() const1008 const char *vectorizeAnalysisPassName() const {
1009 // If hints are provided that don't disable vectorization use the
1010 // AlwaysPrint pass name to force the frontend to print the diagnostic.
1011 if (getWidth() == 1)
1012 return LV_NAME;
1013 if (getForce() == LoopVectorizeHints::FK_Disabled)
1014 return LV_NAME;
1015 if (getForce() == LoopVectorizeHints::FK_Undefined && getWidth() == 0)
1016 return LV_NAME;
1017 return DiagnosticInfo::AlwaysPrint;
1018 }
1019
allowReordering() const1020 bool allowReordering() const {
1021 // When enabling loop hints are provided we allow the vectorizer to change
1022 // the order of operations that is given by the scalar loop. This is not
1023 // enabled by default because can be unsafe or inefficient. For example,
1024 // reordering floating-point operations will change the way round-off
1025 // error accumulates in the loop.
1026 return getForce() == LoopVectorizeHints::FK_Enabled || getWidth() > 1;
1027 }
1028
1029 private:
1030 /// Find hints specified in the loop metadata and update local values.
getHintsFromMetadata()1031 void getHintsFromMetadata() {
1032 MDNode *LoopID = TheLoop->getLoopID();
1033 if (!LoopID)
1034 return;
1035
1036 // First operand should refer to the loop id itself.
1037 assert(LoopID->getNumOperands() > 0 && "requires at least one operand");
1038 assert(LoopID->getOperand(0) == LoopID && "invalid loop id");
1039
1040 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) {
1041 const MDString *S = nullptr;
1042 SmallVector<Metadata *, 4> Args;
1043
1044 // The expected hint is either a MDString or a MDNode with the first
1045 // operand a MDString.
1046 if (const MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i))) {
1047 if (!MD || MD->getNumOperands() == 0)
1048 continue;
1049 S = dyn_cast<MDString>(MD->getOperand(0));
1050 for (unsigned i = 1, ie = MD->getNumOperands(); i < ie; ++i)
1051 Args.push_back(MD->getOperand(i));
1052 } else {
1053 S = dyn_cast<MDString>(LoopID->getOperand(i));
1054 assert(Args.size() == 0 && "too many arguments for MDString");
1055 }
1056
1057 if (!S)
1058 continue;
1059
1060 // Check if the hint starts with the loop metadata prefix.
1061 StringRef Name = S->getString();
1062 if (Args.size() == 1)
1063 setHint(Name, Args[0]);
1064 }
1065 }
1066
1067 /// Checks string hint with one operand and set value if valid.
setHint(StringRef Name,Metadata * Arg)1068 void setHint(StringRef Name, Metadata *Arg) {
1069 if (!Name.startswith(Prefix()))
1070 return;
1071 Name = Name.substr(Prefix().size(), StringRef::npos);
1072
1073 const ConstantInt *C = mdconst::dyn_extract<ConstantInt>(Arg);
1074 if (!C) return;
1075 unsigned Val = C->getZExtValue();
1076
1077 Hint *Hints[] = {&Width, &Interleave, &Force};
1078 for (auto H : Hints) {
1079 if (Name == H->Name) {
1080 if (H->validate(Val))
1081 H->Value = Val;
1082 else
1083 DEBUG(dbgs() << "LV: ignoring invalid hint '" << Name << "'\n");
1084 break;
1085 }
1086 }
1087 }
1088
1089 /// Create a new hint from name / value pair.
createHintMetadata(StringRef Name,unsigned V) const1090 MDNode *createHintMetadata(StringRef Name, unsigned V) const {
1091 LLVMContext &Context = TheLoop->getHeader()->getContext();
1092 Metadata *MDs[] = {MDString::get(Context, Name),
1093 ConstantAsMetadata::get(
1094 ConstantInt::get(Type::getInt32Ty(Context), V))};
1095 return MDNode::get(Context, MDs);
1096 }
1097
1098 /// Matches metadata with hint name.
matchesHintMetadataName(MDNode * Node,ArrayRef<Hint> HintTypes)1099 bool matchesHintMetadataName(MDNode *Node, ArrayRef<Hint> HintTypes) {
1100 MDString* Name = dyn_cast<MDString>(Node->getOperand(0));
1101 if (!Name)
1102 return false;
1103
1104 for (auto H : HintTypes)
1105 if (Name->getString().endswith(H.Name))
1106 return true;
1107 return false;
1108 }
1109
1110 /// Sets current hints into loop metadata, keeping other values intact.
writeHintsToMetadata(ArrayRef<Hint> HintTypes)1111 void writeHintsToMetadata(ArrayRef<Hint> HintTypes) {
1112 if (HintTypes.size() == 0)
1113 return;
1114
1115 // Reserve the first element to LoopID (see below).
1116 SmallVector<Metadata *, 4> MDs(1);
1117 // If the loop already has metadata, then ignore the existing operands.
1118 MDNode *LoopID = TheLoop->getLoopID();
1119 if (LoopID) {
1120 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) {
1121 MDNode *Node = cast<MDNode>(LoopID->getOperand(i));
1122 // If node in update list, ignore old value.
1123 if (!matchesHintMetadataName(Node, HintTypes))
1124 MDs.push_back(Node);
1125 }
1126 }
1127
1128 // Now, add the missing hints.
1129 for (auto H : HintTypes)
1130 MDs.push_back(createHintMetadata(Twine(Prefix(), H.Name).str(), H.Value));
1131
1132 // Replace current metadata node with new one.
1133 LLVMContext &Context = TheLoop->getHeader()->getContext();
1134 MDNode *NewLoopID = MDNode::get(Context, MDs);
1135 // Set operand 0 to refer to the loop id itself.
1136 NewLoopID->replaceOperandWith(0, NewLoopID);
1137
1138 TheLoop->setLoopID(NewLoopID);
1139 }
1140
1141 /// The loop these hints belong to.
1142 const Loop *TheLoop;
1143 };
1144
emitAnalysisDiag(const Function * TheFunction,const Loop * TheLoop,const LoopVectorizeHints & Hints,const LoopAccessReport & Message)1145 static void emitAnalysisDiag(const Function *TheFunction, const Loop *TheLoop,
1146 const LoopVectorizeHints &Hints,
1147 const LoopAccessReport &Message) {
1148 const char *Name = Hints.vectorizeAnalysisPassName();
1149 LoopAccessReport::emitAnalysis(Message, TheFunction, TheLoop, Name);
1150 }
1151
emitMissedWarning(Function * F,Loop * L,const LoopVectorizeHints & LH)1152 static void emitMissedWarning(Function *F, Loop *L,
1153 const LoopVectorizeHints &LH) {
1154 emitOptimizationRemarkMissed(F->getContext(), LV_NAME, *F, L->getStartLoc(),
1155 LH.emitRemark());
1156
1157 if (LH.getForce() == LoopVectorizeHints::FK_Enabled) {
1158 if (LH.getWidth() != 1)
1159 emitLoopVectorizeWarning(
1160 F->getContext(), *F, L->getStartLoc(),
1161 "failed explicitly specified loop vectorization");
1162 else if (LH.getInterleave() != 1)
1163 emitLoopInterleaveWarning(
1164 F->getContext(), *F, L->getStartLoc(),
1165 "failed explicitly specified loop interleaving");
1166 }
1167 }
1168
1169 /// LoopVectorizationLegality checks if it is legal to vectorize a loop, and
1170 /// to what vectorization factor.
1171 /// This class does not look at the profitability of vectorization, only the
1172 /// legality. This class has two main kinds of checks:
1173 /// * Memory checks - The code in canVectorizeMemory checks if vectorization
1174 /// will change the order of memory accesses in a way that will change the
1175 /// correctness of the program.
1176 /// * Scalars checks - The code in canVectorizeInstrs and canVectorizeMemory
1177 /// checks for a number of different conditions, such as the availability of a
1178 /// single induction variable, that all types are supported and vectorize-able,
1179 /// etc. This code reflects the capabilities of InnerLoopVectorizer.
1180 /// This class is also used by InnerLoopVectorizer for identifying
1181 /// induction variable and the different reduction variables.
1182 class LoopVectorizationLegality {
1183 public:
LoopVectorizationLegality(Loop * L,PredicatedScalarEvolution & PSE,DominatorTree * DT,TargetLibraryInfo * TLI,AliasAnalysis * AA,Function * F,const TargetTransformInfo * TTI,LoopAccessAnalysis * LAA,LoopVectorizationRequirements * R,const LoopVectorizeHints * H)1184 LoopVectorizationLegality(Loop *L, PredicatedScalarEvolution &PSE,
1185 DominatorTree *DT, TargetLibraryInfo *TLI,
1186 AliasAnalysis *AA, Function *F,
1187 const TargetTransformInfo *TTI,
1188 LoopAccessAnalysis *LAA,
1189 LoopVectorizationRequirements *R,
1190 const LoopVectorizeHints *H)
1191 : NumPredStores(0), TheLoop(L), PSE(PSE), TLI(TLI), TheFunction(F),
1192 TTI(TTI), DT(DT), LAA(LAA), LAI(nullptr), InterleaveInfo(PSE, L, DT),
1193 Induction(nullptr), WidestIndTy(nullptr), HasFunNoNaNAttr(false),
1194 Requirements(R), Hints(H) {}
1195
1196 /// ReductionList contains the reduction descriptors for all
1197 /// of the reductions that were found in the loop.
1198 typedef DenseMap<PHINode *, RecurrenceDescriptor> ReductionList;
1199
1200 /// InductionList saves induction variables and maps them to the
1201 /// induction descriptor.
1202 typedef MapVector<PHINode*, InductionDescriptor> InductionList;
1203
1204 /// Returns true if it is legal to vectorize this loop.
1205 /// This does not mean that it is profitable to vectorize this
1206 /// loop, only that it is legal to do so.
1207 bool canVectorize();
1208
1209 /// Returns the Induction variable.
getInduction()1210 PHINode *getInduction() { return Induction; }
1211
1212 /// Returns the reduction variables found in the loop.
getReductionVars()1213 ReductionList *getReductionVars() { return &Reductions; }
1214
1215 /// Returns the induction variables found in the loop.
getInductionVars()1216 InductionList *getInductionVars() { return &Inductions; }
1217
1218 /// Returns the widest induction type.
getWidestInductionType()1219 Type *getWidestInductionType() { return WidestIndTy; }
1220
1221 /// Returns True if V is an induction variable in this loop.
1222 bool isInductionVariable(const Value *V);
1223
1224 /// Returns True if PN is a reduction variable in this loop.
isReductionVariable(PHINode * PN)1225 bool isReductionVariable(PHINode *PN) { return Reductions.count(PN); }
1226
1227 /// Return true if the block BB needs to be predicated in order for the loop
1228 /// to be vectorized.
1229 bool blockNeedsPredication(BasicBlock *BB);
1230
1231 /// Check if this pointer is consecutive when vectorizing. This happens
1232 /// when the last index of the GEP is the induction variable, or that the
1233 /// pointer itself is an induction variable.
1234 /// This check allows us to vectorize A[idx] into a wide load/store.
1235 /// Returns:
1236 /// 0 - Stride is unknown or non-consecutive.
1237 /// 1 - Address is consecutive.
1238 /// -1 - Address is consecutive, and decreasing.
1239 int isConsecutivePtr(Value *Ptr);
1240
1241 /// Returns true if the value V is uniform within the loop.
1242 bool isUniform(Value *V);
1243
1244 /// Returns true if this instruction will remain scalar after vectorization.
isUniformAfterVectorization(Instruction * I)1245 bool isUniformAfterVectorization(Instruction* I) { return Uniforms.count(I); }
1246
1247 /// Returns the information that we collected about runtime memory check.
getRuntimePointerChecking() const1248 const RuntimePointerChecking *getRuntimePointerChecking() const {
1249 return LAI->getRuntimePointerChecking();
1250 }
1251
getLAI() const1252 const LoopAccessInfo *getLAI() const {
1253 return LAI;
1254 }
1255
1256 /// \brief Check if \p Instr belongs to any interleaved access group.
isAccessInterleaved(Instruction * Instr)1257 bool isAccessInterleaved(Instruction *Instr) {
1258 return InterleaveInfo.isInterleaved(Instr);
1259 }
1260
1261 /// \brief Get the interleaved access group that \p Instr belongs to.
getInterleavedAccessGroup(Instruction * Instr)1262 const InterleaveGroup *getInterleavedAccessGroup(Instruction *Instr) {
1263 return InterleaveInfo.getInterleaveGroup(Instr);
1264 }
1265
getMaxSafeDepDistBytes()1266 unsigned getMaxSafeDepDistBytes() { return LAI->getMaxSafeDepDistBytes(); }
1267
hasStride(Value * V)1268 bool hasStride(Value *V) { return StrideSet.count(V); }
mustCheckStrides()1269 bool mustCheckStrides() { return !StrideSet.empty(); }
strides_begin()1270 SmallPtrSet<Value *, 8>::iterator strides_begin() {
1271 return StrideSet.begin();
1272 }
strides_end()1273 SmallPtrSet<Value *, 8>::iterator strides_end() { return StrideSet.end(); }
1274
1275 /// Returns true if the target machine supports masked store operation
1276 /// for the given \p DataType and kind of access to \p Ptr.
isLegalMaskedStore(Type * DataType,Value * Ptr)1277 bool isLegalMaskedStore(Type *DataType, Value *Ptr) {
1278 return isConsecutivePtr(Ptr) && TTI->isLegalMaskedStore(DataType);
1279 }
1280 /// Returns true if the target machine supports masked load operation
1281 /// for the given \p DataType and kind of access to \p Ptr.
isLegalMaskedLoad(Type * DataType,Value * Ptr)1282 bool isLegalMaskedLoad(Type *DataType, Value *Ptr) {
1283 return isConsecutivePtr(Ptr) && TTI->isLegalMaskedLoad(DataType);
1284 }
1285 /// Returns true if vector representation of the instruction \p I
1286 /// requires mask.
isMaskRequired(const Instruction * I)1287 bool isMaskRequired(const Instruction* I) {
1288 return (MaskedOp.count(I) != 0);
1289 }
getNumStores() const1290 unsigned getNumStores() const {
1291 return LAI->getNumStores();
1292 }
getNumLoads() const1293 unsigned getNumLoads() const {
1294 return LAI->getNumLoads();
1295 }
getNumPredStores() const1296 unsigned getNumPredStores() const {
1297 return NumPredStores;
1298 }
1299 private:
1300 /// Check if a single basic block loop is vectorizable.
1301 /// At this point we know that this is a loop with a constant trip count
1302 /// and we only need to check individual instructions.
1303 bool canVectorizeInstrs();
1304
1305 /// When we vectorize loops we may change the order in which
1306 /// we read and write from memory. This method checks if it is
1307 /// legal to vectorize the code, considering only memory constrains.
1308 /// Returns true if the loop is vectorizable
1309 bool canVectorizeMemory();
1310
1311 /// Return true if we can vectorize this loop using the IF-conversion
1312 /// transformation.
1313 bool canVectorizeWithIfConvert();
1314
1315 /// Collect the variables that need to stay uniform after vectorization.
1316 void collectLoopUniforms();
1317
1318 /// Return true if all of the instructions in the block can be speculatively
1319 /// executed. \p SafePtrs is a list of addresses that are known to be legal
1320 /// and we know that we can read from them without segfault.
1321 bool blockCanBePredicated(BasicBlock *BB, SmallPtrSetImpl<Value *> &SafePtrs);
1322
1323 /// \brief Collect memory access with loop invariant strides.
1324 ///
1325 /// Looks for accesses like "a[i * StrideA]" where "StrideA" is loop
1326 /// invariant.
1327 void collectStridedAccess(Value *LoadOrStoreInst);
1328
1329 /// Report an analysis message to assist the user in diagnosing loops that are
1330 /// not vectorized. These are handled as LoopAccessReport rather than
1331 /// VectorizationReport because the << operator of VectorizationReport returns
1332 /// LoopAccessReport.
emitAnalysis(const LoopAccessReport & Message) const1333 void emitAnalysis(const LoopAccessReport &Message) const {
1334 emitAnalysisDiag(TheFunction, TheLoop, *Hints, Message);
1335 }
1336
1337 unsigned NumPredStores;
1338
1339 /// The loop that we evaluate.
1340 Loop *TheLoop;
1341 /// A wrapper around ScalarEvolution used to add runtime SCEV checks.
1342 /// Applies dynamic knowledge to simplify SCEV expressions in the context
1343 /// of existing SCEV assumptions. The analysis will also add a minimal set
1344 /// of new predicates if this is required to enable vectorization and
1345 /// unrolling.
1346 PredicatedScalarEvolution &PSE;
1347 /// Target Library Info.
1348 TargetLibraryInfo *TLI;
1349 /// Parent function
1350 Function *TheFunction;
1351 /// Target Transform Info
1352 const TargetTransformInfo *TTI;
1353 /// Dominator Tree.
1354 DominatorTree *DT;
1355 // LoopAccess analysis.
1356 LoopAccessAnalysis *LAA;
1357 // And the loop-accesses info corresponding to this loop. This pointer is
1358 // null until canVectorizeMemory sets it up.
1359 const LoopAccessInfo *LAI;
1360
1361 /// The interleave access information contains groups of interleaved accesses
1362 /// with the same stride and close to each other.
1363 InterleavedAccessInfo InterleaveInfo;
1364
1365 // --- vectorization state --- //
1366
1367 /// Holds the integer induction variable. This is the counter of the
1368 /// loop.
1369 PHINode *Induction;
1370 /// Holds the reduction variables.
1371 ReductionList Reductions;
1372 /// Holds all of the induction variables that we found in the loop.
1373 /// Notice that inductions don't need to start at zero and that induction
1374 /// variables can be pointers.
1375 InductionList Inductions;
1376 /// Holds the widest induction type encountered.
1377 Type *WidestIndTy;
1378
1379 /// Allowed outside users. This holds the reduction
1380 /// vars which can be accessed from outside the loop.
1381 SmallPtrSet<Value*, 4> AllowedExit;
1382 /// This set holds the variables which are known to be uniform after
1383 /// vectorization.
1384 SmallPtrSet<Instruction*, 4> Uniforms;
1385
1386 /// Can we assume the absence of NaNs.
1387 bool HasFunNoNaNAttr;
1388
1389 /// Vectorization requirements that will go through late-evaluation.
1390 LoopVectorizationRequirements *Requirements;
1391
1392 /// Used to emit an analysis of any legality issues.
1393 const LoopVectorizeHints *Hints;
1394
1395 ValueToValueMap Strides;
1396 SmallPtrSet<Value *, 8> StrideSet;
1397
1398 /// While vectorizing these instructions we have to generate a
1399 /// call to the appropriate masked intrinsic
1400 SmallPtrSet<const Instruction *, 8> MaskedOp;
1401 };
1402
1403 /// LoopVectorizationCostModel - estimates the expected speedups due to
1404 /// vectorization.
1405 /// In many cases vectorization is not profitable. This can happen because of
1406 /// a number of reasons. In this class we mainly attempt to predict the
1407 /// expected speedup/slowdowns due to the supported instruction set. We use the
1408 /// TargetTransformInfo to query the different backends for the cost of
1409 /// different operations.
1410 class LoopVectorizationCostModel {
1411 public:
LoopVectorizationCostModel(Loop * L,PredicatedScalarEvolution & PSE,LoopInfo * LI,LoopVectorizationLegality * Legal,const TargetTransformInfo & TTI,const TargetLibraryInfo * TLI,DemandedBits * DB,AssumptionCache * AC,const Function * F,const LoopVectorizeHints * Hints)1412 LoopVectorizationCostModel(Loop *L, PredicatedScalarEvolution &PSE,
1413 LoopInfo *LI, LoopVectorizationLegality *Legal,
1414 const TargetTransformInfo &TTI,
1415 const TargetLibraryInfo *TLI, DemandedBits *DB,
1416 AssumptionCache *AC, const Function *F,
1417 const LoopVectorizeHints *Hints)
1418 : TheLoop(L), PSE(PSE), LI(LI), Legal(Legal), TTI(TTI), TLI(TLI), DB(DB),
1419 AC(AC), TheFunction(F), Hints(Hints) {}
1420
1421 /// Information about vectorization costs
1422 struct VectorizationFactor {
1423 unsigned Width; // Vector width with best cost
1424 unsigned Cost; // Cost of the loop with that width
1425 };
1426 /// \return The most profitable vectorization factor and the cost of that VF.
1427 /// This method checks every power of two up to VF. If UserVF is not ZERO
1428 /// then this vectorization factor will be selected if vectorization is
1429 /// possible.
1430 VectorizationFactor selectVectorizationFactor(bool OptForSize);
1431
1432 /// \return The size (in bits) of the smallest and widest types in the code
1433 /// that needs to be vectorized. We ignore values that remain scalar such as
1434 /// 64 bit loop indices.
1435 std::pair<unsigned, unsigned> getSmallestAndWidestTypes();
1436
1437 /// \return The desired interleave count.
1438 /// If interleave count has been specified by metadata it will be returned.
1439 /// Otherwise, the interleave count is computed and returned. VF and LoopCost
1440 /// are the selected vectorization factor and the cost of the selected VF.
1441 unsigned selectInterleaveCount(bool OptForSize, unsigned VF,
1442 unsigned LoopCost);
1443
1444 /// \return The most profitable unroll factor.
1445 /// This method finds the best unroll-factor based on register pressure and
1446 /// other parameters. VF and LoopCost are the selected vectorization factor
1447 /// and the cost of the selected VF.
1448 unsigned computeInterleaveCount(bool OptForSize, unsigned VF,
1449 unsigned LoopCost);
1450
1451 /// \brief A struct that represents some properties of the register usage
1452 /// of a loop.
1453 struct RegisterUsage {
1454 /// Holds the number of loop invariant values that are used in the loop.
1455 unsigned LoopInvariantRegs;
1456 /// Holds the maximum number of concurrent live intervals in the loop.
1457 unsigned MaxLocalUsers;
1458 /// Holds the number of instructions in the loop.
1459 unsigned NumInstructions;
1460 };
1461
1462 /// \return Returns information about the register usages of the loop for the
1463 /// given vectorization factors.
1464 SmallVector<RegisterUsage, 8>
1465 calculateRegisterUsage(const SmallVector<unsigned, 8> &VFs);
1466
1467 /// Collect values we want to ignore in the cost model.
1468 void collectValuesToIgnore();
1469
1470 private:
1471 /// Returns the expected execution cost. The unit of the cost does
1472 /// not matter because we use the 'cost' units to compare different
1473 /// vector widths. The cost that is returned is *not* normalized by
1474 /// the factor width.
1475 unsigned expectedCost(unsigned VF);
1476
1477 /// Returns the execution time cost of an instruction for a given vector
1478 /// width. Vector width of one means scalar.
1479 unsigned getInstructionCost(Instruction *I, unsigned VF);
1480
1481 /// Returns whether the instruction is a load or store and will be a emitted
1482 /// as a vector operation.
1483 bool isConsecutiveLoadOrStore(Instruction *I);
1484
1485 /// Report an analysis message to assist the user in diagnosing loops that are
1486 /// not vectorized. These are handled as LoopAccessReport rather than
1487 /// VectorizationReport because the << operator of VectorizationReport returns
1488 /// LoopAccessReport.
emitAnalysis(const LoopAccessReport & Message) const1489 void emitAnalysis(const LoopAccessReport &Message) const {
1490 emitAnalysisDiag(TheFunction, TheLoop, *Hints, Message);
1491 }
1492
1493 public:
1494 /// Map of scalar integer values to the smallest bitwidth they can be legally
1495 /// represented as. The vector equivalents of these values should be truncated
1496 /// to this type.
1497 MapVector<Instruction*,uint64_t> MinBWs;
1498
1499 /// The loop that we evaluate.
1500 Loop *TheLoop;
1501 /// Predicated scalar evolution analysis.
1502 PredicatedScalarEvolution &PSE;
1503 /// Loop Info analysis.
1504 LoopInfo *LI;
1505 /// Vectorization legality.
1506 LoopVectorizationLegality *Legal;
1507 /// Vector target information.
1508 const TargetTransformInfo &TTI;
1509 /// Target Library Info.
1510 const TargetLibraryInfo *TLI;
1511 /// Demanded bits analysis.
1512 DemandedBits *DB;
1513 /// Assumption cache.
1514 AssumptionCache *AC;
1515 const Function *TheFunction;
1516 /// Loop Vectorize Hint.
1517 const LoopVectorizeHints *Hints;
1518 /// Values to ignore in the cost model.
1519 SmallPtrSet<const Value *, 16> ValuesToIgnore;
1520 /// Values to ignore in the cost model when VF > 1.
1521 SmallPtrSet<const Value *, 16> VecValuesToIgnore;
1522 };
1523
1524 /// \brief This holds vectorization requirements that must be verified late in
1525 /// the process. The requirements are set by legalize and costmodel. Once
1526 /// vectorization has been determined to be possible and profitable the
1527 /// requirements can be verified by looking for metadata or compiler options.
1528 /// For example, some loops require FP commutativity which is only allowed if
1529 /// vectorization is explicitly specified or if the fast-math compiler option
1530 /// has been provided.
1531 /// Late evaluation of these requirements allows helpful diagnostics to be
1532 /// composed that tells the user what need to be done to vectorize the loop. For
1533 /// example, by specifying #pragma clang loop vectorize or -ffast-math. Late
1534 /// evaluation should be used only when diagnostics can generated that can be
1535 /// followed by a non-expert user.
1536 class LoopVectorizationRequirements {
1537 public:
LoopVectorizationRequirements()1538 LoopVectorizationRequirements()
1539 : NumRuntimePointerChecks(0), UnsafeAlgebraInst(nullptr) {}
1540
addUnsafeAlgebraInst(Instruction * I)1541 void addUnsafeAlgebraInst(Instruction *I) {
1542 // First unsafe algebra instruction.
1543 if (!UnsafeAlgebraInst)
1544 UnsafeAlgebraInst = I;
1545 }
1546
addRuntimePointerChecks(unsigned Num)1547 void addRuntimePointerChecks(unsigned Num) { NumRuntimePointerChecks = Num; }
1548
doesNotMeet(Function * F,Loop * L,const LoopVectorizeHints & Hints)1549 bool doesNotMeet(Function *F, Loop *L, const LoopVectorizeHints &Hints) {
1550 const char *Name = Hints.vectorizeAnalysisPassName();
1551 bool Failed = false;
1552 if (UnsafeAlgebraInst && !Hints.allowReordering()) {
1553 emitOptimizationRemarkAnalysisFPCommute(
1554 F->getContext(), Name, *F, UnsafeAlgebraInst->getDebugLoc(),
1555 VectorizationReport() << "cannot prove it is safe to reorder "
1556 "floating-point operations");
1557 Failed = true;
1558 }
1559
1560 // Test if runtime memcheck thresholds are exceeded.
1561 bool PragmaThresholdReached =
1562 NumRuntimePointerChecks > PragmaVectorizeMemoryCheckThreshold;
1563 bool ThresholdReached =
1564 NumRuntimePointerChecks > VectorizerParams::RuntimeMemoryCheckThreshold;
1565 if ((ThresholdReached && !Hints.allowReordering()) ||
1566 PragmaThresholdReached) {
1567 emitOptimizationRemarkAnalysisAliasing(
1568 F->getContext(), Name, *F, L->getStartLoc(),
1569 VectorizationReport()
1570 << "cannot prove it is safe to reorder memory operations");
1571 DEBUG(dbgs() << "LV: Too many memory checks needed.\n");
1572 Failed = true;
1573 }
1574
1575 return Failed;
1576 }
1577
1578 private:
1579 unsigned NumRuntimePointerChecks;
1580 Instruction *UnsafeAlgebraInst;
1581 };
1582
addInnerLoop(Loop & L,SmallVectorImpl<Loop * > & V)1583 static void addInnerLoop(Loop &L, SmallVectorImpl<Loop *> &V) {
1584 if (L.empty())
1585 return V.push_back(&L);
1586
1587 for (Loop *InnerL : L)
1588 addInnerLoop(*InnerL, V);
1589 }
1590
1591 /// The LoopVectorize Pass.
1592 struct LoopVectorize : public FunctionPass {
1593 /// Pass identification, replacement for typeid
1594 static char ID;
1595
LoopVectorize__anon63bf7e8f0111::LoopVectorize1596 explicit LoopVectorize(bool NoUnrolling = false, bool AlwaysVectorize = true)
1597 : FunctionPass(ID),
1598 DisableUnrolling(NoUnrolling),
1599 AlwaysVectorize(AlwaysVectorize) {
1600 initializeLoopVectorizePass(*PassRegistry::getPassRegistry());
1601 }
1602
1603 ScalarEvolution *SE;
1604 LoopInfo *LI;
1605 TargetTransformInfo *TTI;
1606 DominatorTree *DT;
1607 BlockFrequencyInfo *BFI;
1608 TargetLibraryInfo *TLI;
1609 DemandedBits *DB;
1610 AliasAnalysis *AA;
1611 AssumptionCache *AC;
1612 LoopAccessAnalysis *LAA;
1613 bool DisableUnrolling;
1614 bool AlwaysVectorize;
1615
1616 BlockFrequency ColdEntryFreq;
1617
runOnFunction__anon63bf7e8f0111::LoopVectorize1618 bool runOnFunction(Function &F) override {
1619 SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
1620 LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
1621 TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
1622 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
1623 BFI = &getAnalysis<BlockFrequencyInfoWrapperPass>().getBFI();
1624 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>();
1625 TLI = TLIP ? &TLIP->getTLI() : nullptr;
1626 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
1627 AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
1628 LAA = &getAnalysis<LoopAccessAnalysis>();
1629 DB = &getAnalysis<DemandedBits>();
1630
1631 // Compute some weights outside of the loop over the loops. Compute this
1632 // using a BranchProbability to re-use its scaling math.
1633 const BranchProbability ColdProb(1, 5); // 20%
1634 ColdEntryFreq = BlockFrequency(BFI->getEntryFreq()) * ColdProb;
1635
1636 // Don't attempt if
1637 // 1. the target claims to have no vector registers, and
1638 // 2. interleaving won't help ILP.
1639 //
1640 // The second condition is necessary because, even if the target has no
1641 // vector registers, loop vectorization may still enable scalar
1642 // interleaving.
1643 if (!TTI->getNumberOfRegisters(true) && TTI->getMaxInterleaveFactor(1) < 2)
1644 return false;
1645
1646 // Build up a worklist of inner-loops to vectorize. This is necessary as
1647 // the act of vectorizing or partially unrolling a loop creates new loops
1648 // and can invalidate iterators across the loops.
1649 SmallVector<Loop *, 8> Worklist;
1650
1651 for (Loop *L : *LI)
1652 addInnerLoop(*L, Worklist);
1653
1654 LoopsAnalyzed += Worklist.size();
1655
1656 // Now walk the identified inner loops.
1657 bool Changed = false;
1658 while (!Worklist.empty())
1659 Changed |= processLoop(Worklist.pop_back_val());
1660
1661 // Process each loop nest in the function.
1662 return Changed;
1663 }
1664
AddRuntimeUnrollDisableMetaData__anon63bf7e8f0111::LoopVectorize1665 static void AddRuntimeUnrollDisableMetaData(Loop *L) {
1666 SmallVector<Metadata *, 4> MDs;
1667 // Reserve first location for self reference to the LoopID metadata node.
1668 MDs.push_back(nullptr);
1669 bool IsUnrollMetadata = false;
1670 MDNode *LoopID = L->getLoopID();
1671 if (LoopID) {
1672 // First find existing loop unrolling disable metadata.
1673 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) {
1674 MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i));
1675 if (MD) {
1676 const MDString *S = dyn_cast<MDString>(MD->getOperand(0));
1677 IsUnrollMetadata =
1678 S && S->getString().startswith("llvm.loop.unroll.disable");
1679 }
1680 MDs.push_back(LoopID->getOperand(i));
1681 }
1682 }
1683
1684 if (!IsUnrollMetadata) {
1685 // Add runtime unroll disable metadata.
1686 LLVMContext &Context = L->getHeader()->getContext();
1687 SmallVector<Metadata *, 1> DisableOperands;
1688 DisableOperands.push_back(
1689 MDString::get(Context, "llvm.loop.unroll.runtime.disable"));
1690 MDNode *DisableNode = MDNode::get(Context, DisableOperands);
1691 MDs.push_back(DisableNode);
1692 MDNode *NewLoopID = MDNode::get(Context, MDs);
1693 // Set operand 0 to refer to the loop id itself.
1694 NewLoopID->replaceOperandWith(0, NewLoopID);
1695 L->setLoopID(NewLoopID);
1696 }
1697 }
1698
processLoop__anon63bf7e8f0111::LoopVectorize1699 bool processLoop(Loop *L) {
1700 assert(L->empty() && "Only process inner loops.");
1701
1702 #ifndef NDEBUG
1703 const std::string DebugLocStr = getDebugLocString(L);
1704 #endif /* NDEBUG */
1705
1706 DEBUG(dbgs() << "\nLV: Checking a loop in \""
1707 << L->getHeader()->getParent()->getName() << "\" from "
1708 << DebugLocStr << "\n");
1709
1710 LoopVectorizeHints Hints(L, DisableUnrolling);
1711
1712 DEBUG(dbgs() << "LV: Loop hints:"
1713 << " force="
1714 << (Hints.getForce() == LoopVectorizeHints::FK_Disabled
1715 ? "disabled"
1716 : (Hints.getForce() == LoopVectorizeHints::FK_Enabled
1717 ? "enabled"
1718 : "?")) << " width=" << Hints.getWidth()
1719 << " unroll=" << Hints.getInterleave() << "\n");
1720
1721 // Function containing loop
1722 Function *F = L->getHeader()->getParent();
1723
1724 // Looking at the diagnostic output is the only way to determine if a loop
1725 // was vectorized (other than looking at the IR or machine code), so it
1726 // is important to generate an optimization remark for each loop. Most of
1727 // these messages are generated by emitOptimizationRemarkAnalysis. Remarks
1728 // generated by emitOptimizationRemark and emitOptimizationRemarkMissed are
1729 // less verbose reporting vectorized loops and unvectorized loops that may
1730 // benefit from vectorization, respectively.
1731
1732 if (!Hints.allowVectorization(F, L, AlwaysVectorize)) {
1733 DEBUG(dbgs() << "LV: Loop hints prevent vectorization.\n");
1734 return false;
1735 }
1736
1737 // Check the loop for a trip count threshold:
1738 // do not vectorize loops with a tiny trip count.
1739 const unsigned TC = SE->getSmallConstantTripCount(L);
1740 if (TC > 0u && TC < TinyTripCountVectorThreshold) {
1741 DEBUG(dbgs() << "LV: Found a loop with a very small trip count. "
1742 << "This loop is not worth vectorizing.");
1743 if (Hints.getForce() == LoopVectorizeHints::FK_Enabled)
1744 DEBUG(dbgs() << " But vectorizing was explicitly forced.\n");
1745 else {
1746 DEBUG(dbgs() << "\n");
1747 emitAnalysisDiag(F, L, Hints, VectorizationReport()
1748 << "vectorization is not beneficial "
1749 "and is not explicitly forced");
1750 return false;
1751 }
1752 }
1753
1754 PredicatedScalarEvolution PSE(*SE);
1755
1756 // Check if it is legal to vectorize the loop.
1757 LoopVectorizationRequirements Requirements;
1758 LoopVectorizationLegality LVL(L, PSE, DT, TLI, AA, F, TTI, LAA,
1759 &Requirements, &Hints);
1760 if (!LVL.canVectorize()) {
1761 DEBUG(dbgs() << "LV: Not vectorizing: Cannot prove legality.\n");
1762 emitMissedWarning(F, L, Hints);
1763 return false;
1764 }
1765
1766 // Use the cost model.
1767 LoopVectorizationCostModel CM(L, PSE, LI, &LVL, *TTI, TLI, DB, AC, F,
1768 &Hints);
1769 CM.collectValuesToIgnore();
1770
1771 // Check the function attributes to find out if this function should be
1772 // optimized for size.
1773 bool OptForSize = Hints.getForce() != LoopVectorizeHints::FK_Enabled &&
1774 F->optForSize();
1775
1776 // Compute the weighted frequency of this loop being executed and see if it
1777 // is less than 20% of the function entry baseline frequency. Note that we
1778 // always have a canonical loop here because we think we *can* vectorize.
1779 // FIXME: This is hidden behind a flag due to pervasive problems with
1780 // exactly what block frequency models.
1781 if (LoopVectorizeWithBlockFrequency) {
1782 BlockFrequency LoopEntryFreq = BFI->getBlockFreq(L->getLoopPreheader());
1783 if (Hints.getForce() != LoopVectorizeHints::FK_Enabled &&
1784 LoopEntryFreq < ColdEntryFreq)
1785 OptForSize = true;
1786 }
1787
1788 // Check the function attributes to see if implicit floats are allowed.
1789 // FIXME: This check doesn't seem possibly correct -- what if the loop is
1790 // an integer loop and the vector instructions selected are purely integer
1791 // vector instructions?
1792 if (F->hasFnAttribute(Attribute::NoImplicitFloat)) {
1793 DEBUG(dbgs() << "LV: Can't vectorize when the NoImplicitFloat"
1794 "attribute is used.\n");
1795 emitAnalysisDiag(
1796 F, L, Hints,
1797 VectorizationReport()
1798 << "loop not vectorized due to NoImplicitFloat attribute");
1799 emitMissedWarning(F, L, Hints);
1800 return false;
1801 }
1802
1803 // Select the optimal vectorization factor.
1804 const LoopVectorizationCostModel::VectorizationFactor VF =
1805 CM.selectVectorizationFactor(OptForSize);
1806
1807 // Select the interleave count.
1808 unsigned IC = CM.selectInterleaveCount(OptForSize, VF.Width, VF.Cost);
1809
1810 // Get user interleave count.
1811 unsigned UserIC = Hints.getInterleave();
1812
1813 // Identify the diagnostic messages that should be produced.
1814 std::string VecDiagMsg, IntDiagMsg;
1815 bool VectorizeLoop = true, InterleaveLoop = true;
1816
1817 if (Requirements.doesNotMeet(F, L, Hints)) {
1818 DEBUG(dbgs() << "LV: Not vectorizing: loop did not meet vectorization "
1819 "requirements.\n");
1820 emitMissedWarning(F, L, Hints);
1821 return false;
1822 }
1823
1824 if (VF.Width == 1) {
1825 DEBUG(dbgs() << "LV: Vectorization is possible but not beneficial.\n");
1826 VecDiagMsg =
1827 "the cost-model indicates that vectorization is not beneficial";
1828 VectorizeLoop = false;
1829 }
1830
1831 if (IC == 1 && UserIC <= 1) {
1832 // Tell the user interleaving is not beneficial.
1833 DEBUG(dbgs() << "LV: Interleaving is not beneficial.\n");
1834 IntDiagMsg =
1835 "the cost-model indicates that interleaving is not beneficial";
1836 InterleaveLoop = false;
1837 if (UserIC == 1)
1838 IntDiagMsg +=
1839 " and is explicitly disabled or interleave count is set to 1";
1840 } else if (IC > 1 && UserIC == 1) {
1841 // Tell the user interleaving is beneficial, but it explicitly disabled.
1842 DEBUG(dbgs()
1843 << "LV: Interleaving is beneficial but is explicitly disabled.");
1844 IntDiagMsg = "the cost-model indicates that interleaving is beneficial "
1845 "but is explicitly disabled or interleave count is set to 1";
1846 InterleaveLoop = false;
1847 }
1848
1849 // Override IC if user provided an interleave count.
1850 IC = UserIC > 0 ? UserIC : IC;
1851
1852 // Emit diagnostic messages, if any.
1853 const char *VAPassName = Hints.vectorizeAnalysisPassName();
1854 if (!VectorizeLoop && !InterleaveLoop) {
1855 // Do not vectorize or interleaving the loop.
1856 emitOptimizationRemarkAnalysis(F->getContext(), VAPassName, *F,
1857 L->getStartLoc(), VecDiagMsg);
1858 emitOptimizationRemarkAnalysis(F->getContext(), LV_NAME, *F,
1859 L->getStartLoc(), IntDiagMsg);
1860 return false;
1861 } else if (!VectorizeLoop && InterleaveLoop) {
1862 DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n');
1863 emitOptimizationRemarkAnalysis(F->getContext(), VAPassName, *F,
1864 L->getStartLoc(), VecDiagMsg);
1865 } else if (VectorizeLoop && !InterleaveLoop) {
1866 DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width << ") in "
1867 << DebugLocStr << '\n');
1868 emitOptimizationRemarkAnalysis(F->getContext(), LV_NAME, *F,
1869 L->getStartLoc(), IntDiagMsg);
1870 } else if (VectorizeLoop && InterleaveLoop) {
1871 DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width << ") in "
1872 << DebugLocStr << '\n');
1873 DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n');
1874 }
1875
1876 if (!VectorizeLoop) {
1877 assert(IC > 1 && "interleave count should not be 1 or 0");
1878 // If we decided that it is not legal to vectorize the loop then
1879 // interleave it.
1880 InnerLoopUnroller Unroller(L, PSE, LI, DT, TLI, TTI, IC);
1881 Unroller.vectorize(&LVL, CM.MinBWs);
1882
1883 emitOptimizationRemark(F->getContext(), LV_NAME, *F, L->getStartLoc(),
1884 Twine("interleaved loop (interleaved count: ") +
1885 Twine(IC) + ")");
1886 } else {
1887 // If we decided that it is *legal* to vectorize the loop then do it.
1888 InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, VF.Width, IC);
1889 LB.vectorize(&LVL, CM.MinBWs);
1890 ++LoopsVectorized;
1891
1892 // Add metadata to disable runtime unrolling scalar loop when there's no
1893 // runtime check about strides and memory. Because at this situation,
1894 // scalar loop is rarely used not worthy to be unrolled.
1895 if (!LB.IsSafetyChecksAdded())
1896 AddRuntimeUnrollDisableMetaData(L);
1897
1898 // Report the vectorization decision.
1899 emitOptimizationRemark(F->getContext(), LV_NAME, *F, L->getStartLoc(),
1900 Twine("vectorized loop (vectorization width: ") +
1901 Twine(VF.Width) + ", interleaved count: " +
1902 Twine(IC) + ")");
1903 }
1904
1905 // Mark the loop as already vectorized to avoid vectorizing again.
1906 Hints.setAlreadyVectorized();
1907
1908 DEBUG(verifyFunction(*L->getHeader()->getParent()));
1909 return true;
1910 }
1911
getAnalysisUsage__anon63bf7e8f0111::LoopVectorize1912 void getAnalysisUsage(AnalysisUsage &AU) const override {
1913 AU.addRequired<AssumptionCacheTracker>();
1914 AU.addRequiredID(LoopSimplifyID);
1915 AU.addRequiredID(LCSSAID);
1916 AU.addRequired<BlockFrequencyInfoWrapperPass>();
1917 AU.addRequired<DominatorTreeWrapperPass>();
1918 AU.addRequired<LoopInfoWrapperPass>();
1919 AU.addRequired<ScalarEvolutionWrapperPass>();
1920 AU.addRequired<TargetTransformInfoWrapperPass>();
1921 AU.addRequired<AAResultsWrapperPass>();
1922 AU.addRequired<LoopAccessAnalysis>();
1923 AU.addRequired<DemandedBits>();
1924 AU.addPreserved<LoopInfoWrapperPass>();
1925 AU.addPreserved<DominatorTreeWrapperPass>();
1926 AU.addPreserved<BasicAAWrapperPass>();
1927 AU.addPreserved<AAResultsWrapperPass>();
1928 AU.addPreserved<GlobalsAAWrapperPass>();
1929 }
1930
1931 };
1932
1933 } // end anonymous namespace
1934
1935 //===----------------------------------------------------------------------===//
1936 // Implementation of LoopVectorizationLegality, InnerLoopVectorizer and
1937 // LoopVectorizationCostModel.
1938 //===----------------------------------------------------------------------===//
1939
getBroadcastInstrs(Value * V)1940 Value *InnerLoopVectorizer::getBroadcastInstrs(Value *V) {
1941 // We need to place the broadcast of invariant variables outside the loop.
1942 Instruction *Instr = dyn_cast<Instruction>(V);
1943 bool NewInstr =
1944 (Instr && std::find(LoopVectorBody.begin(), LoopVectorBody.end(),
1945 Instr->getParent()) != LoopVectorBody.end());
1946 bool Invariant = OrigLoop->isLoopInvariant(V) && !NewInstr;
1947
1948 // Place the code for broadcasting invariant variables in the new preheader.
1949 IRBuilder<>::InsertPointGuard Guard(Builder);
1950 if (Invariant)
1951 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator());
1952
1953 // Broadcast the scalar into all locations in the vector.
1954 Value *Shuf = Builder.CreateVectorSplat(VF, V, "broadcast");
1955
1956 return Shuf;
1957 }
1958
getStepVector(Value * Val,int StartIdx,Value * Step)1959 Value *InnerLoopVectorizer::getStepVector(Value *Val, int StartIdx,
1960 Value *Step) {
1961 assert(Val->getType()->isVectorTy() && "Must be a vector");
1962 assert(Val->getType()->getScalarType()->isIntegerTy() &&
1963 "Elem must be an integer");
1964 assert(Step->getType() == Val->getType()->getScalarType() &&
1965 "Step has wrong type");
1966 // Create the types.
1967 Type *ITy = Val->getType()->getScalarType();
1968 VectorType *Ty = cast<VectorType>(Val->getType());
1969 int VLen = Ty->getNumElements();
1970 SmallVector<Constant*, 8> Indices;
1971
1972 // Create a vector of consecutive numbers from zero to VF.
1973 for (int i = 0; i < VLen; ++i)
1974 Indices.push_back(ConstantInt::get(ITy, StartIdx + i));
1975
1976 // Add the consecutive indices to the vector value.
1977 Constant *Cv = ConstantVector::get(Indices);
1978 assert(Cv->getType() == Val->getType() && "Invalid consecutive vec");
1979 Step = Builder.CreateVectorSplat(VLen, Step);
1980 assert(Step->getType() == Val->getType() && "Invalid step vec");
1981 // FIXME: The newly created binary instructions should contain nsw/nuw flags,
1982 // which can be found from the original scalar operations.
1983 Step = Builder.CreateMul(Cv, Step);
1984 return Builder.CreateAdd(Val, Step, "induction");
1985 }
1986
isConsecutivePtr(Value * Ptr)1987 int LoopVectorizationLegality::isConsecutivePtr(Value *Ptr) {
1988 assert(Ptr->getType()->isPointerTy() && "Unexpected non-ptr");
1989 auto *SE = PSE.getSE();
1990 // Make sure that the pointer does not point to structs.
1991 if (Ptr->getType()->getPointerElementType()->isAggregateType())
1992 return 0;
1993
1994 // If this value is a pointer induction variable we know it is consecutive.
1995 PHINode *Phi = dyn_cast_or_null<PHINode>(Ptr);
1996 if (Phi && Inductions.count(Phi)) {
1997 InductionDescriptor II = Inductions[Phi];
1998 return II.getConsecutiveDirection();
1999 }
2000
2001 GetElementPtrInst *Gep = getGEPInstruction(Ptr);
2002 if (!Gep)
2003 return 0;
2004
2005 unsigned NumOperands = Gep->getNumOperands();
2006 Value *GpPtr = Gep->getPointerOperand();
2007 // If this GEP value is a consecutive pointer induction variable and all of
2008 // the indices are constant then we know it is consecutive. We can
2009 Phi = dyn_cast<PHINode>(GpPtr);
2010 if (Phi && Inductions.count(Phi)) {
2011
2012 // Make sure that the pointer does not point to structs.
2013 PointerType *GepPtrType = cast<PointerType>(GpPtr->getType());
2014 if (GepPtrType->getElementType()->isAggregateType())
2015 return 0;
2016
2017 // Make sure that all of the index operands are loop invariant.
2018 for (unsigned i = 1; i < NumOperands; ++i)
2019 if (!SE->isLoopInvariant(PSE.getSCEV(Gep->getOperand(i)), TheLoop))
2020 return 0;
2021
2022 InductionDescriptor II = Inductions[Phi];
2023 return II.getConsecutiveDirection();
2024 }
2025
2026 unsigned InductionOperand = getGEPInductionOperand(Gep);
2027
2028 // Check that all of the gep indices are uniform except for our induction
2029 // operand.
2030 for (unsigned i = 0; i != NumOperands; ++i)
2031 if (i != InductionOperand &&
2032 !SE->isLoopInvariant(PSE.getSCEV(Gep->getOperand(i)), TheLoop))
2033 return 0;
2034
2035 // We can emit wide load/stores only if the last non-zero index is the
2036 // induction variable.
2037 const SCEV *Last = nullptr;
2038 if (!Strides.count(Gep))
2039 Last = PSE.getSCEV(Gep->getOperand(InductionOperand));
2040 else {
2041 // Because of the multiplication by a stride we can have a s/zext cast.
2042 // We are going to replace this stride by 1 so the cast is safe to ignore.
2043 //
2044 // %indvars.iv = phi i64 [ 0, %entry ], [ %indvars.iv.next, %for.body ]
2045 // %0 = trunc i64 %indvars.iv to i32
2046 // %mul = mul i32 %0, %Stride1
2047 // %idxprom = zext i32 %mul to i64 << Safe cast.
2048 // %arrayidx = getelementptr inbounds i32* %B, i64 %idxprom
2049 //
2050 Last = replaceSymbolicStrideSCEV(PSE, Strides,
2051 Gep->getOperand(InductionOperand), Gep);
2052 if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(Last))
2053 Last =
2054 (C->getSCEVType() == scSignExtend || C->getSCEVType() == scZeroExtend)
2055 ? C->getOperand()
2056 : Last;
2057 }
2058 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Last)) {
2059 const SCEV *Step = AR->getStepRecurrence(*SE);
2060
2061 // The memory is consecutive because the last index is consecutive
2062 // and all other indices are loop invariant.
2063 if (Step->isOne())
2064 return 1;
2065 if (Step->isAllOnesValue())
2066 return -1;
2067 }
2068
2069 return 0;
2070 }
2071
isUniform(Value * V)2072 bool LoopVectorizationLegality::isUniform(Value *V) {
2073 return LAI->isUniform(V);
2074 }
2075
2076 InnerLoopVectorizer::VectorParts&
getVectorValue(Value * V)2077 InnerLoopVectorizer::getVectorValue(Value *V) {
2078 assert(V != Induction && "The new induction variable should not be used.");
2079 assert(!V->getType()->isVectorTy() && "Can't widen a vector");
2080
2081 // If we have a stride that is replaced by one, do it here.
2082 if (Legal->hasStride(V))
2083 V = ConstantInt::get(V->getType(), 1);
2084
2085 // If we have this scalar in the map, return it.
2086 if (WidenMap.has(V))
2087 return WidenMap.get(V);
2088
2089 // If this scalar is unknown, assume that it is a constant or that it is
2090 // loop invariant. Broadcast V and save the value for future uses.
2091 Value *B = getBroadcastInstrs(V);
2092 return WidenMap.splat(V, B);
2093 }
2094
reverseVector(Value * Vec)2095 Value *InnerLoopVectorizer::reverseVector(Value *Vec) {
2096 assert(Vec->getType()->isVectorTy() && "Invalid type");
2097 SmallVector<Constant*, 8> ShuffleMask;
2098 for (unsigned i = 0; i < VF; ++i)
2099 ShuffleMask.push_back(Builder.getInt32(VF - i - 1));
2100
2101 return Builder.CreateShuffleVector(Vec, UndefValue::get(Vec->getType()),
2102 ConstantVector::get(ShuffleMask),
2103 "reverse");
2104 }
2105
2106 // Get a mask to interleave \p NumVec vectors into a wide vector.
2107 // I.e. <0, VF, VF*2, ..., VF*(NumVec-1), 1, VF+1, VF*2+1, ...>
2108 // E.g. For 2 interleaved vectors, if VF is 4, the mask is:
2109 // <0, 4, 1, 5, 2, 6, 3, 7>
getInterleavedMask(IRBuilder<> & Builder,unsigned VF,unsigned NumVec)2110 static Constant *getInterleavedMask(IRBuilder<> &Builder, unsigned VF,
2111 unsigned NumVec) {
2112 SmallVector<Constant *, 16> Mask;
2113 for (unsigned i = 0; i < VF; i++)
2114 for (unsigned j = 0; j < NumVec; j++)
2115 Mask.push_back(Builder.getInt32(j * VF + i));
2116
2117 return ConstantVector::get(Mask);
2118 }
2119
2120 // Get the strided mask starting from index \p Start.
2121 // I.e. <Start, Start + Stride, ..., Start + Stride*(VF-1)>
getStridedMask(IRBuilder<> & Builder,unsigned Start,unsigned Stride,unsigned VF)2122 static Constant *getStridedMask(IRBuilder<> &Builder, unsigned Start,
2123 unsigned Stride, unsigned VF) {
2124 SmallVector<Constant *, 16> Mask;
2125 for (unsigned i = 0; i < VF; i++)
2126 Mask.push_back(Builder.getInt32(Start + i * Stride));
2127
2128 return ConstantVector::get(Mask);
2129 }
2130
2131 // Get a mask of two parts: The first part consists of sequential integers
2132 // starting from 0, The second part consists of UNDEFs.
2133 // I.e. <0, 1, 2, ..., NumInt - 1, undef, ..., undef>
getSequentialMask(IRBuilder<> & Builder,unsigned NumInt,unsigned NumUndef)2134 static Constant *getSequentialMask(IRBuilder<> &Builder, unsigned NumInt,
2135 unsigned NumUndef) {
2136 SmallVector<Constant *, 16> Mask;
2137 for (unsigned i = 0; i < NumInt; i++)
2138 Mask.push_back(Builder.getInt32(i));
2139
2140 Constant *Undef = UndefValue::get(Builder.getInt32Ty());
2141 for (unsigned i = 0; i < NumUndef; i++)
2142 Mask.push_back(Undef);
2143
2144 return ConstantVector::get(Mask);
2145 }
2146
2147 // Concatenate two vectors with the same element type. The 2nd vector should
2148 // not have more elements than the 1st vector. If the 2nd vector has less
2149 // elements, extend it with UNDEFs.
ConcatenateTwoVectors(IRBuilder<> & Builder,Value * V1,Value * V2)2150 static Value *ConcatenateTwoVectors(IRBuilder<> &Builder, Value *V1,
2151 Value *V2) {
2152 VectorType *VecTy1 = dyn_cast<VectorType>(V1->getType());
2153 VectorType *VecTy2 = dyn_cast<VectorType>(V2->getType());
2154 assert(VecTy1 && VecTy2 &&
2155 VecTy1->getScalarType() == VecTy2->getScalarType() &&
2156 "Expect two vectors with the same element type");
2157
2158 unsigned NumElts1 = VecTy1->getNumElements();
2159 unsigned NumElts2 = VecTy2->getNumElements();
2160 assert(NumElts1 >= NumElts2 && "Unexpect the first vector has less elements");
2161
2162 if (NumElts1 > NumElts2) {
2163 // Extend with UNDEFs.
2164 Constant *ExtMask =
2165 getSequentialMask(Builder, NumElts2, NumElts1 - NumElts2);
2166 V2 = Builder.CreateShuffleVector(V2, UndefValue::get(VecTy2), ExtMask);
2167 }
2168
2169 Constant *Mask = getSequentialMask(Builder, NumElts1 + NumElts2, 0);
2170 return Builder.CreateShuffleVector(V1, V2, Mask);
2171 }
2172
2173 // Concatenate vectors in the given list. All vectors have the same type.
ConcatenateVectors(IRBuilder<> & Builder,ArrayRef<Value * > InputList)2174 static Value *ConcatenateVectors(IRBuilder<> &Builder,
2175 ArrayRef<Value *> InputList) {
2176 unsigned NumVec = InputList.size();
2177 assert(NumVec > 1 && "Should be at least two vectors");
2178
2179 SmallVector<Value *, 8> ResList;
2180 ResList.append(InputList.begin(), InputList.end());
2181 do {
2182 SmallVector<Value *, 8> TmpList;
2183 for (unsigned i = 0; i < NumVec - 1; i += 2) {
2184 Value *V0 = ResList[i], *V1 = ResList[i + 1];
2185 assert((V0->getType() == V1->getType() || i == NumVec - 2) &&
2186 "Only the last vector may have a different type");
2187
2188 TmpList.push_back(ConcatenateTwoVectors(Builder, V0, V1));
2189 }
2190
2191 // Push the last vector if the total number of vectors is odd.
2192 if (NumVec % 2 != 0)
2193 TmpList.push_back(ResList[NumVec - 1]);
2194
2195 ResList = TmpList;
2196 NumVec = ResList.size();
2197 } while (NumVec > 1);
2198
2199 return ResList[0];
2200 }
2201
2202 // Try to vectorize the interleave group that \p Instr belongs to.
2203 //
2204 // E.g. Translate following interleaved load group (factor = 3):
2205 // for (i = 0; i < N; i+=3) {
2206 // R = Pic[i]; // Member of index 0
2207 // G = Pic[i+1]; // Member of index 1
2208 // B = Pic[i+2]; // Member of index 2
2209 // ... // do something to R, G, B
2210 // }
2211 // To:
2212 // %wide.vec = load <12 x i32> ; Read 4 tuples of R,G,B
2213 // %R.vec = shuffle %wide.vec, undef, <0, 3, 6, 9> ; R elements
2214 // %G.vec = shuffle %wide.vec, undef, <1, 4, 7, 10> ; G elements
2215 // %B.vec = shuffle %wide.vec, undef, <2, 5, 8, 11> ; B elements
2216 //
2217 // Or translate following interleaved store group (factor = 3):
2218 // for (i = 0; i < N; i+=3) {
2219 // ... do something to R, G, B
2220 // Pic[i] = R; // Member of index 0
2221 // Pic[i+1] = G; // Member of index 1
2222 // Pic[i+2] = B; // Member of index 2
2223 // }
2224 // To:
2225 // %R_G.vec = shuffle %R.vec, %G.vec, <0, 1, 2, ..., 7>
2226 // %B_U.vec = shuffle %B.vec, undef, <0, 1, 2, 3, u, u, u, u>
2227 // %interleaved.vec = shuffle %R_G.vec, %B_U.vec,
2228 // <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11> ; Interleave R,G,B elements
2229 // store <12 x i32> %interleaved.vec ; Write 4 tuples of R,G,B
vectorizeInterleaveGroup(Instruction * Instr)2230 void InnerLoopVectorizer::vectorizeInterleaveGroup(Instruction *Instr) {
2231 const InterleaveGroup *Group = Legal->getInterleavedAccessGroup(Instr);
2232 assert(Group && "Fail to get an interleaved access group.");
2233
2234 // Skip if current instruction is not the insert position.
2235 if (Instr != Group->getInsertPos())
2236 return;
2237
2238 LoadInst *LI = dyn_cast<LoadInst>(Instr);
2239 StoreInst *SI = dyn_cast<StoreInst>(Instr);
2240 Value *Ptr = LI ? LI->getPointerOperand() : SI->getPointerOperand();
2241
2242 // Prepare for the vector type of the interleaved load/store.
2243 Type *ScalarTy = LI ? LI->getType() : SI->getValueOperand()->getType();
2244 unsigned InterleaveFactor = Group->getFactor();
2245 Type *VecTy = VectorType::get(ScalarTy, InterleaveFactor * VF);
2246 Type *PtrTy = VecTy->getPointerTo(Ptr->getType()->getPointerAddressSpace());
2247
2248 // Prepare for the new pointers.
2249 setDebugLocFromInst(Builder, Ptr);
2250 VectorParts &PtrParts = getVectorValue(Ptr);
2251 SmallVector<Value *, 2> NewPtrs;
2252 unsigned Index = Group->getIndex(Instr);
2253 for (unsigned Part = 0; Part < UF; Part++) {
2254 // Extract the pointer for current instruction from the pointer vector. A
2255 // reverse access uses the pointer in the last lane.
2256 Value *NewPtr = Builder.CreateExtractElement(
2257 PtrParts[Part],
2258 Group->isReverse() ? Builder.getInt32(VF - 1) : Builder.getInt32(0));
2259
2260 // Notice current instruction could be any index. Need to adjust the address
2261 // to the member of index 0.
2262 //
2263 // E.g. a = A[i+1]; // Member of index 1 (Current instruction)
2264 // b = A[i]; // Member of index 0
2265 // Current pointer is pointed to A[i+1], adjust it to A[i].
2266 //
2267 // E.g. A[i+1] = a; // Member of index 1
2268 // A[i] = b; // Member of index 0
2269 // A[i+2] = c; // Member of index 2 (Current instruction)
2270 // Current pointer is pointed to A[i+2], adjust it to A[i].
2271 NewPtr = Builder.CreateGEP(NewPtr, Builder.getInt32(-Index));
2272
2273 // Cast to the vector pointer type.
2274 NewPtrs.push_back(Builder.CreateBitCast(NewPtr, PtrTy));
2275 }
2276
2277 setDebugLocFromInst(Builder, Instr);
2278 Value *UndefVec = UndefValue::get(VecTy);
2279
2280 // Vectorize the interleaved load group.
2281 if (LI) {
2282 for (unsigned Part = 0; Part < UF; Part++) {
2283 Instruction *NewLoadInstr = Builder.CreateAlignedLoad(
2284 NewPtrs[Part], Group->getAlignment(), "wide.vec");
2285
2286 for (unsigned i = 0; i < InterleaveFactor; i++) {
2287 Instruction *Member = Group->getMember(i);
2288
2289 // Skip the gaps in the group.
2290 if (!Member)
2291 continue;
2292
2293 Constant *StrideMask = getStridedMask(Builder, i, InterleaveFactor, VF);
2294 Value *StridedVec = Builder.CreateShuffleVector(
2295 NewLoadInstr, UndefVec, StrideMask, "strided.vec");
2296
2297 // If this member has different type, cast the result type.
2298 if (Member->getType() != ScalarTy) {
2299 VectorType *OtherVTy = VectorType::get(Member->getType(), VF);
2300 StridedVec = Builder.CreateBitOrPointerCast(StridedVec, OtherVTy);
2301 }
2302
2303 VectorParts &Entry = WidenMap.get(Member);
2304 Entry[Part] =
2305 Group->isReverse() ? reverseVector(StridedVec) : StridedVec;
2306 }
2307
2308 propagateMetadata(NewLoadInstr, Instr);
2309 }
2310 return;
2311 }
2312
2313 // The sub vector type for current instruction.
2314 VectorType *SubVT = VectorType::get(ScalarTy, VF);
2315
2316 // Vectorize the interleaved store group.
2317 for (unsigned Part = 0; Part < UF; Part++) {
2318 // Collect the stored vector from each member.
2319 SmallVector<Value *, 4> StoredVecs;
2320 for (unsigned i = 0; i < InterleaveFactor; i++) {
2321 // Interleaved store group doesn't allow a gap, so each index has a member
2322 Instruction *Member = Group->getMember(i);
2323 assert(Member && "Fail to get a member from an interleaved store group");
2324
2325 Value *StoredVec =
2326 getVectorValue(dyn_cast<StoreInst>(Member)->getValueOperand())[Part];
2327 if (Group->isReverse())
2328 StoredVec = reverseVector(StoredVec);
2329
2330 // If this member has different type, cast it to an unified type.
2331 if (StoredVec->getType() != SubVT)
2332 StoredVec = Builder.CreateBitOrPointerCast(StoredVec, SubVT);
2333
2334 StoredVecs.push_back(StoredVec);
2335 }
2336
2337 // Concatenate all vectors into a wide vector.
2338 Value *WideVec = ConcatenateVectors(Builder, StoredVecs);
2339
2340 // Interleave the elements in the wide vector.
2341 Constant *IMask = getInterleavedMask(Builder, VF, InterleaveFactor);
2342 Value *IVec = Builder.CreateShuffleVector(WideVec, UndefVec, IMask,
2343 "interleaved.vec");
2344
2345 Instruction *NewStoreInstr =
2346 Builder.CreateAlignedStore(IVec, NewPtrs[Part], Group->getAlignment());
2347 propagateMetadata(NewStoreInstr, Instr);
2348 }
2349 }
2350
vectorizeMemoryInstruction(Instruction * Instr)2351 void InnerLoopVectorizer::vectorizeMemoryInstruction(Instruction *Instr) {
2352 // Attempt to issue a wide load.
2353 LoadInst *LI = dyn_cast<LoadInst>(Instr);
2354 StoreInst *SI = dyn_cast<StoreInst>(Instr);
2355
2356 assert((LI || SI) && "Invalid Load/Store instruction");
2357
2358 // Try to vectorize the interleave group if this access is interleaved.
2359 if (Legal->isAccessInterleaved(Instr))
2360 return vectorizeInterleaveGroup(Instr);
2361
2362 Type *ScalarDataTy = LI ? LI->getType() : SI->getValueOperand()->getType();
2363 Type *DataTy = VectorType::get(ScalarDataTy, VF);
2364 Value *Ptr = LI ? LI->getPointerOperand() : SI->getPointerOperand();
2365 unsigned Alignment = LI ? LI->getAlignment() : SI->getAlignment();
2366 // An alignment of 0 means target abi alignment. We need to use the scalar's
2367 // target abi alignment in such a case.
2368 const DataLayout &DL = Instr->getModule()->getDataLayout();
2369 if (!Alignment)
2370 Alignment = DL.getABITypeAlignment(ScalarDataTy);
2371 unsigned AddressSpace = Ptr->getType()->getPointerAddressSpace();
2372 unsigned ScalarAllocatedSize = DL.getTypeAllocSize(ScalarDataTy);
2373 unsigned VectorElementSize = DL.getTypeStoreSize(DataTy) / VF;
2374
2375 if (SI && Legal->blockNeedsPredication(SI->getParent()) &&
2376 !Legal->isMaskRequired(SI))
2377 return scalarizeInstruction(Instr, true);
2378
2379 if (ScalarAllocatedSize != VectorElementSize)
2380 return scalarizeInstruction(Instr);
2381
2382 // If the pointer is loop invariant or if it is non-consecutive,
2383 // scalarize the load.
2384 int ConsecutiveStride = Legal->isConsecutivePtr(Ptr);
2385 bool Reverse = ConsecutiveStride < 0;
2386 bool UniformLoad = LI && Legal->isUniform(Ptr);
2387 if (!ConsecutiveStride || UniformLoad)
2388 return scalarizeInstruction(Instr);
2389
2390 Constant *Zero = Builder.getInt32(0);
2391 VectorParts &Entry = WidenMap.get(Instr);
2392
2393 // Handle consecutive loads/stores.
2394 GetElementPtrInst *Gep = getGEPInstruction(Ptr);
2395 if (Gep && Legal->isInductionVariable(Gep->getPointerOperand())) {
2396 setDebugLocFromInst(Builder, Gep);
2397 Value *PtrOperand = Gep->getPointerOperand();
2398 Value *FirstBasePtr = getVectorValue(PtrOperand)[0];
2399 FirstBasePtr = Builder.CreateExtractElement(FirstBasePtr, Zero);
2400
2401 // Create the new GEP with the new induction variable.
2402 GetElementPtrInst *Gep2 = cast<GetElementPtrInst>(Gep->clone());
2403 Gep2->setOperand(0, FirstBasePtr);
2404 Gep2->setName("gep.indvar.base");
2405 Ptr = Builder.Insert(Gep2);
2406 } else if (Gep) {
2407 setDebugLocFromInst(Builder, Gep);
2408 assert(PSE.getSE()->isLoopInvariant(PSE.getSCEV(Gep->getPointerOperand()),
2409 OrigLoop) &&
2410 "Base ptr must be invariant");
2411
2412 // The last index does not have to be the induction. It can be
2413 // consecutive and be a function of the index. For example A[I+1];
2414 unsigned NumOperands = Gep->getNumOperands();
2415 unsigned InductionOperand = getGEPInductionOperand(Gep);
2416 // Create the new GEP with the new induction variable.
2417 GetElementPtrInst *Gep2 = cast<GetElementPtrInst>(Gep->clone());
2418
2419 for (unsigned i = 0; i < NumOperands; ++i) {
2420 Value *GepOperand = Gep->getOperand(i);
2421 Instruction *GepOperandInst = dyn_cast<Instruction>(GepOperand);
2422
2423 // Update last index or loop invariant instruction anchored in loop.
2424 if (i == InductionOperand ||
2425 (GepOperandInst && OrigLoop->contains(GepOperandInst))) {
2426 assert((i == InductionOperand ||
2427 PSE.getSE()->isLoopInvariant(PSE.getSCEV(GepOperandInst),
2428 OrigLoop)) &&
2429 "Must be last index or loop invariant");
2430
2431 VectorParts &GEPParts = getVectorValue(GepOperand);
2432 Value *Index = GEPParts[0];
2433 Index = Builder.CreateExtractElement(Index, Zero);
2434 Gep2->setOperand(i, Index);
2435 Gep2->setName("gep.indvar.idx");
2436 }
2437 }
2438 Ptr = Builder.Insert(Gep2);
2439 } else {
2440 // Use the induction element ptr.
2441 assert(isa<PHINode>(Ptr) && "Invalid induction ptr");
2442 setDebugLocFromInst(Builder, Ptr);
2443 VectorParts &PtrVal = getVectorValue(Ptr);
2444 Ptr = Builder.CreateExtractElement(PtrVal[0], Zero);
2445 }
2446
2447 VectorParts Mask = createBlockInMask(Instr->getParent());
2448 // Handle Stores:
2449 if (SI) {
2450 assert(!Legal->isUniform(SI->getPointerOperand()) &&
2451 "We do not allow storing to uniform addresses");
2452 setDebugLocFromInst(Builder, SI);
2453 // We don't want to update the value in the map as it might be used in
2454 // another expression. So don't use a reference type for "StoredVal".
2455 VectorParts StoredVal = getVectorValue(SI->getValueOperand());
2456
2457 for (unsigned Part = 0; Part < UF; ++Part) {
2458 // Calculate the pointer for the specific unroll-part.
2459 Value *PartPtr =
2460 Builder.CreateGEP(nullptr, Ptr, Builder.getInt32(Part * VF));
2461
2462 if (Reverse) {
2463 // If we store to reverse consecutive memory locations, then we need
2464 // to reverse the order of elements in the stored value.
2465 StoredVal[Part] = reverseVector(StoredVal[Part]);
2466 // If the address is consecutive but reversed, then the
2467 // wide store needs to start at the last vector element.
2468 PartPtr = Builder.CreateGEP(nullptr, Ptr, Builder.getInt32(-Part * VF));
2469 PartPtr = Builder.CreateGEP(nullptr, PartPtr, Builder.getInt32(1 - VF));
2470 Mask[Part] = reverseVector(Mask[Part]);
2471 }
2472
2473 Value *VecPtr = Builder.CreateBitCast(PartPtr,
2474 DataTy->getPointerTo(AddressSpace));
2475
2476 Instruction *NewSI;
2477 if (Legal->isMaskRequired(SI))
2478 NewSI = Builder.CreateMaskedStore(StoredVal[Part], VecPtr, Alignment,
2479 Mask[Part]);
2480 else
2481 NewSI = Builder.CreateAlignedStore(StoredVal[Part], VecPtr, Alignment);
2482 propagateMetadata(NewSI, SI);
2483 }
2484 return;
2485 }
2486
2487 // Handle loads.
2488 assert(LI && "Must have a load instruction");
2489 setDebugLocFromInst(Builder, LI);
2490 for (unsigned Part = 0; Part < UF; ++Part) {
2491 // Calculate the pointer for the specific unroll-part.
2492 Value *PartPtr =
2493 Builder.CreateGEP(nullptr, Ptr, Builder.getInt32(Part * VF));
2494
2495 if (Reverse) {
2496 // If the address is consecutive but reversed, then the
2497 // wide load needs to start at the last vector element.
2498 PartPtr = Builder.CreateGEP(nullptr, Ptr, Builder.getInt32(-Part * VF));
2499 PartPtr = Builder.CreateGEP(nullptr, PartPtr, Builder.getInt32(1 - VF));
2500 Mask[Part] = reverseVector(Mask[Part]);
2501 }
2502
2503 Instruction* NewLI;
2504 Value *VecPtr = Builder.CreateBitCast(PartPtr,
2505 DataTy->getPointerTo(AddressSpace));
2506 if (Legal->isMaskRequired(LI))
2507 NewLI = Builder.CreateMaskedLoad(VecPtr, Alignment, Mask[Part],
2508 UndefValue::get(DataTy),
2509 "wide.masked.load");
2510 else
2511 NewLI = Builder.CreateAlignedLoad(VecPtr, Alignment, "wide.load");
2512 propagateMetadata(NewLI, LI);
2513 Entry[Part] = Reverse ? reverseVector(NewLI) : NewLI;
2514 }
2515 }
2516
scalarizeInstruction(Instruction * Instr,bool IfPredicateStore)2517 void InnerLoopVectorizer::scalarizeInstruction(Instruction *Instr,
2518 bool IfPredicateStore) {
2519 assert(!Instr->getType()->isAggregateType() && "Can't handle vectors");
2520 // Holds vector parameters or scalars, in case of uniform vals.
2521 SmallVector<VectorParts, 4> Params;
2522
2523 setDebugLocFromInst(Builder, Instr);
2524
2525 // Find all of the vectorized parameters.
2526 for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) {
2527 Value *SrcOp = Instr->getOperand(op);
2528
2529 // If we are accessing the old induction variable, use the new one.
2530 if (SrcOp == OldInduction) {
2531 Params.push_back(getVectorValue(SrcOp));
2532 continue;
2533 }
2534
2535 // Try using previously calculated values.
2536 Instruction *SrcInst = dyn_cast<Instruction>(SrcOp);
2537
2538 // If the src is an instruction that appeared earlier in the basic block,
2539 // then it should already be vectorized.
2540 if (SrcInst && OrigLoop->contains(SrcInst)) {
2541 assert(WidenMap.has(SrcInst) && "Source operand is unavailable");
2542 // The parameter is a vector value from earlier.
2543 Params.push_back(WidenMap.get(SrcInst));
2544 } else {
2545 // The parameter is a scalar from outside the loop. Maybe even a constant.
2546 VectorParts Scalars;
2547 Scalars.append(UF, SrcOp);
2548 Params.push_back(Scalars);
2549 }
2550 }
2551
2552 assert(Params.size() == Instr->getNumOperands() &&
2553 "Invalid number of operands");
2554
2555 // Does this instruction return a value ?
2556 bool IsVoidRetTy = Instr->getType()->isVoidTy();
2557
2558 Value *UndefVec = IsVoidRetTy ? nullptr :
2559 UndefValue::get(VectorType::get(Instr->getType(), VF));
2560 // Create a new entry in the WidenMap and initialize it to Undef or Null.
2561 VectorParts &VecResults = WidenMap.splat(Instr, UndefVec);
2562
2563 VectorParts Cond;
2564 if (IfPredicateStore) {
2565 assert(Instr->getParent()->getSinglePredecessor() &&
2566 "Only support single predecessor blocks");
2567 Cond = createEdgeMask(Instr->getParent()->getSinglePredecessor(),
2568 Instr->getParent());
2569 }
2570
2571 // For each vector unroll 'part':
2572 for (unsigned Part = 0; Part < UF; ++Part) {
2573 // For each scalar that we create:
2574 for (unsigned Width = 0; Width < VF; ++Width) {
2575
2576 // Start if-block.
2577 Value *Cmp = nullptr;
2578 if (IfPredicateStore) {
2579 Cmp = Builder.CreateExtractElement(Cond[Part], Builder.getInt32(Width));
2580 Cmp = Builder.CreateICmp(ICmpInst::ICMP_EQ, Cmp,
2581 ConstantInt::get(Cmp->getType(), 1));
2582 }
2583
2584 Instruction *Cloned = Instr->clone();
2585 if (!IsVoidRetTy)
2586 Cloned->setName(Instr->getName() + ".cloned");
2587 // Replace the operands of the cloned instructions with extracted scalars.
2588 for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) {
2589 Value *Op = Params[op][Part];
2590 // Param is a vector. Need to extract the right lane.
2591 if (Op->getType()->isVectorTy())
2592 Op = Builder.CreateExtractElement(Op, Builder.getInt32(Width));
2593 Cloned->setOperand(op, Op);
2594 }
2595
2596 // Place the cloned scalar in the new loop.
2597 Builder.Insert(Cloned);
2598
2599 // If the original scalar returns a value we need to place it in a vector
2600 // so that future users will be able to use it.
2601 if (!IsVoidRetTy)
2602 VecResults[Part] = Builder.CreateInsertElement(VecResults[Part], Cloned,
2603 Builder.getInt32(Width));
2604 // End if-block.
2605 if (IfPredicateStore)
2606 PredicatedStores.push_back(std::make_pair(cast<StoreInst>(Cloned),
2607 Cmp));
2608 }
2609 }
2610 }
2611
createInductionVariable(Loop * L,Value * Start,Value * End,Value * Step,Instruction * DL)2612 PHINode *InnerLoopVectorizer::createInductionVariable(Loop *L, Value *Start,
2613 Value *End, Value *Step,
2614 Instruction *DL) {
2615 BasicBlock *Header = L->getHeader();
2616 BasicBlock *Latch = L->getLoopLatch();
2617 // As we're just creating this loop, it's possible no latch exists
2618 // yet. If so, use the header as this will be a single block loop.
2619 if (!Latch)
2620 Latch = Header;
2621
2622 IRBuilder<> Builder(&*Header->getFirstInsertionPt());
2623 setDebugLocFromInst(Builder, getDebugLocFromInstOrOperands(OldInduction));
2624 auto *Induction = Builder.CreatePHI(Start->getType(), 2, "index");
2625
2626 Builder.SetInsertPoint(Latch->getTerminator());
2627
2628 // Create i+1 and fill the PHINode.
2629 Value *Next = Builder.CreateAdd(Induction, Step, "index.next");
2630 Induction->addIncoming(Start, L->getLoopPreheader());
2631 Induction->addIncoming(Next, Latch);
2632 // Create the compare.
2633 Value *ICmp = Builder.CreateICmpEQ(Next, End);
2634 Builder.CreateCondBr(ICmp, L->getExitBlock(), Header);
2635
2636 // Now we have two terminators. Remove the old one from the block.
2637 Latch->getTerminator()->eraseFromParent();
2638
2639 return Induction;
2640 }
2641
getOrCreateTripCount(Loop * L)2642 Value *InnerLoopVectorizer::getOrCreateTripCount(Loop *L) {
2643 if (TripCount)
2644 return TripCount;
2645
2646 IRBuilder<> Builder(L->getLoopPreheader()->getTerminator());
2647 // Find the loop boundaries.
2648 ScalarEvolution *SE = PSE.getSE();
2649 const SCEV *BackedgeTakenCount = SE->getBackedgeTakenCount(OrigLoop);
2650 assert(BackedgeTakenCount != SE->getCouldNotCompute() &&
2651 "Invalid loop count");
2652
2653 Type *IdxTy = Legal->getWidestInductionType();
2654
2655 // The exit count might have the type of i64 while the phi is i32. This can
2656 // happen if we have an induction variable that is sign extended before the
2657 // compare. The only way that we get a backedge taken count is that the
2658 // induction variable was signed and as such will not overflow. In such a case
2659 // truncation is legal.
2660 if (BackedgeTakenCount->getType()->getPrimitiveSizeInBits() >
2661 IdxTy->getPrimitiveSizeInBits())
2662 BackedgeTakenCount = SE->getTruncateOrNoop(BackedgeTakenCount, IdxTy);
2663 BackedgeTakenCount = SE->getNoopOrZeroExtend(BackedgeTakenCount, IdxTy);
2664
2665 // Get the total trip count from the count by adding 1.
2666 const SCEV *ExitCount = SE->getAddExpr(
2667 BackedgeTakenCount, SE->getOne(BackedgeTakenCount->getType()));
2668
2669 const DataLayout &DL = L->getHeader()->getModule()->getDataLayout();
2670
2671 // Expand the trip count and place the new instructions in the preheader.
2672 // Notice that the pre-header does not change, only the loop body.
2673 SCEVExpander Exp(*SE, DL, "induction");
2674
2675 // Count holds the overall loop count (N).
2676 TripCount = Exp.expandCodeFor(ExitCount, ExitCount->getType(),
2677 L->getLoopPreheader()->getTerminator());
2678
2679 if (TripCount->getType()->isPointerTy())
2680 TripCount =
2681 CastInst::CreatePointerCast(TripCount, IdxTy,
2682 "exitcount.ptrcnt.to.int",
2683 L->getLoopPreheader()->getTerminator());
2684
2685 return TripCount;
2686 }
2687
getOrCreateVectorTripCount(Loop * L)2688 Value *InnerLoopVectorizer::getOrCreateVectorTripCount(Loop *L) {
2689 if (VectorTripCount)
2690 return VectorTripCount;
2691
2692 Value *TC = getOrCreateTripCount(L);
2693 IRBuilder<> Builder(L->getLoopPreheader()->getTerminator());
2694
2695 // Now we need to generate the expression for N - (N % VF), which is
2696 // the part that the vectorized body will execute.
2697 // The loop step is equal to the vectorization factor (num of SIMD elements)
2698 // times the unroll factor (num of SIMD instructions).
2699 Constant *Step = ConstantInt::get(TC->getType(), VF * UF);
2700 Value *R = Builder.CreateURem(TC, Step, "n.mod.vf");
2701 VectorTripCount = Builder.CreateSub(TC, R, "n.vec");
2702
2703 return VectorTripCount;
2704 }
2705
emitMinimumIterationCountCheck(Loop * L,BasicBlock * Bypass)2706 void InnerLoopVectorizer::emitMinimumIterationCountCheck(Loop *L,
2707 BasicBlock *Bypass) {
2708 Value *Count = getOrCreateTripCount(L);
2709 BasicBlock *BB = L->getLoopPreheader();
2710 IRBuilder<> Builder(BB->getTerminator());
2711
2712 // Generate code to check that the loop's trip count that we computed by
2713 // adding one to the backedge-taken count will not overflow.
2714 Value *CheckMinIters =
2715 Builder.CreateICmpULT(Count,
2716 ConstantInt::get(Count->getType(), VF * UF),
2717 "min.iters.check");
2718
2719 BasicBlock *NewBB = BB->splitBasicBlock(BB->getTerminator(),
2720 "min.iters.checked");
2721 if (L->getParentLoop())
2722 L->getParentLoop()->addBasicBlockToLoop(NewBB, *LI);
2723 ReplaceInstWithInst(BB->getTerminator(),
2724 BranchInst::Create(Bypass, NewBB, CheckMinIters));
2725 LoopBypassBlocks.push_back(BB);
2726 }
2727
emitVectorLoopEnteredCheck(Loop * L,BasicBlock * Bypass)2728 void InnerLoopVectorizer::emitVectorLoopEnteredCheck(Loop *L,
2729 BasicBlock *Bypass) {
2730 Value *TC = getOrCreateVectorTripCount(L);
2731 BasicBlock *BB = L->getLoopPreheader();
2732 IRBuilder<> Builder(BB->getTerminator());
2733
2734 // Now, compare the new count to zero. If it is zero skip the vector loop and
2735 // jump to the scalar loop.
2736 Value *Cmp = Builder.CreateICmpEQ(TC, Constant::getNullValue(TC->getType()),
2737 "cmp.zero");
2738
2739 // Generate code to check that the loop's trip count that we computed by
2740 // adding one to the backedge-taken count will not overflow.
2741 BasicBlock *NewBB = BB->splitBasicBlock(BB->getTerminator(),
2742 "vector.ph");
2743 if (L->getParentLoop())
2744 L->getParentLoop()->addBasicBlockToLoop(NewBB, *LI);
2745 ReplaceInstWithInst(BB->getTerminator(),
2746 BranchInst::Create(Bypass, NewBB, Cmp));
2747 LoopBypassBlocks.push_back(BB);
2748 }
2749
emitSCEVChecks(Loop * L,BasicBlock * Bypass)2750 void InnerLoopVectorizer::emitSCEVChecks(Loop *L, BasicBlock *Bypass) {
2751 BasicBlock *BB = L->getLoopPreheader();
2752
2753 // Generate the code to check that the SCEV assumptions that we made.
2754 // We want the new basic block to start at the first instruction in a
2755 // sequence of instructions that form a check.
2756 SCEVExpander Exp(*PSE.getSE(), Bypass->getModule()->getDataLayout(),
2757 "scev.check");
2758 Value *SCEVCheck =
2759 Exp.expandCodeForPredicate(&PSE.getUnionPredicate(), BB->getTerminator());
2760
2761 if (auto *C = dyn_cast<ConstantInt>(SCEVCheck))
2762 if (C->isZero())
2763 return;
2764
2765 // Create a new block containing the stride check.
2766 BB->setName("vector.scevcheck");
2767 auto *NewBB = BB->splitBasicBlock(BB->getTerminator(), "vector.ph");
2768 if (L->getParentLoop())
2769 L->getParentLoop()->addBasicBlockToLoop(NewBB, *LI);
2770 ReplaceInstWithInst(BB->getTerminator(),
2771 BranchInst::Create(Bypass, NewBB, SCEVCheck));
2772 LoopBypassBlocks.push_back(BB);
2773 AddedSafetyChecks = true;
2774 }
2775
emitMemRuntimeChecks(Loop * L,BasicBlock * Bypass)2776 void InnerLoopVectorizer::emitMemRuntimeChecks(Loop *L,
2777 BasicBlock *Bypass) {
2778 BasicBlock *BB = L->getLoopPreheader();
2779
2780 // Generate the code that checks in runtime if arrays overlap. We put the
2781 // checks into a separate block to make the more common case of few elements
2782 // faster.
2783 Instruction *FirstCheckInst;
2784 Instruction *MemRuntimeCheck;
2785 std::tie(FirstCheckInst, MemRuntimeCheck) =
2786 Legal->getLAI()->addRuntimeChecks(BB->getTerminator());
2787 if (!MemRuntimeCheck)
2788 return;
2789
2790 // Create a new block containing the memory check.
2791 BB->setName("vector.memcheck");
2792 auto *NewBB = BB->splitBasicBlock(BB->getTerminator(), "vector.ph");
2793 if (L->getParentLoop())
2794 L->getParentLoop()->addBasicBlockToLoop(NewBB, *LI);
2795 ReplaceInstWithInst(BB->getTerminator(),
2796 BranchInst::Create(Bypass, NewBB, MemRuntimeCheck));
2797 LoopBypassBlocks.push_back(BB);
2798 AddedSafetyChecks = true;
2799 }
2800
2801
createEmptyLoop()2802 void InnerLoopVectorizer::createEmptyLoop() {
2803 /*
2804 In this function we generate a new loop. The new loop will contain
2805 the vectorized instructions while the old loop will continue to run the
2806 scalar remainder.
2807
2808 [ ] <-- loop iteration number check.
2809 / |
2810 / v
2811 | [ ] <-- vector loop bypass (may consist of multiple blocks).
2812 | / |
2813 | / v
2814 || [ ] <-- vector pre header.
2815 |/ |
2816 | v
2817 | [ ] \
2818 | [ ]_| <-- vector loop.
2819 | |
2820 | v
2821 | -[ ] <--- middle-block.
2822 | / |
2823 | / v
2824 -|- >[ ] <--- new preheader.
2825 | |
2826 | v
2827 | [ ] \
2828 | [ ]_| <-- old scalar loop to handle remainder.
2829 \ |
2830 \ v
2831 >[ ] <-- exit block.
2832 ...
2833 */
2834
2835 BasicBlock *OldBasicBlock = OrigLoop->getHeader();
2836 BasicBlock *VectorPH = OrigLoop->getLoopPreheader();
2837 BasicBlock *ExitBlock = OrigLoop->getExitBlock();
2838 assert(VectorPH && "Invalid loop structure");
2839 assert(ExitBlock && "Must have an exit block");
2840
2841 // Some loops have a single integer induction variable, while other loops
2842 // don't. One example is c++ iterators that often have multiple pointer
2843 // induction variables. In the code below we also support a case where we
2844 // don't have a single induction variable.
2845 //
2846 // We try to obtain an induction variable from the original loop as hard
2847 // as possible. However if we don't find one that:
2848 // - is an integer
2849 // - counts from zero, stepping by one
2850 // - is the size of the widest induction variable type
2851 // then we create a new one.
2852 OldInduction = Legal->getInduction();
2853 Type *IdxTy = Legal->getWidestInductionType();
2854
2855 // Split the single block loop into the two loop structure described above.
2856 BasicBlock *VecBody =
2857 VectorPH->splitBasicBlock(VectorPH->getTerminator(), "vector.body");
2858 BasicBlock *MiddleBlock =
2859 VecBody->splitBasicBlock(VecBody->getTerminator(), "middle.block");
2860 BasicBlock *ScalarPH =
2861 MiddleBlock->splitBasicBlock(MiddleBlock->getTerminator(), "scalar.ph");
2862
2863 // Create and register the new vector loop.
2864 Loop* Lp = new Loop();
2865 Loop *ParentLoop = OrigLoop->getParentLoop();
2866
2867 // Insert the new loop into the loop nest and register the new basic blocks
2868 // before calling any utilities such as SCEV that require valid LoopInfo.
2869 if (ParentLoop) {
2870 ParentLoop->addChildLoop(Lp);
2871 ParentLoop->addBasicBlockToLoop(ScalarPH, *LI);
2872 ParentLoop->addBasicBlockToLoop(MiddleBlock, *LI);
2873 } else {
2874 LI->addTopLevelLoop(Lp);
2875 }
2876 Lp->addBasicBlockToLoop(VecBody, *LI);
2877
2878 // Find the loop boundaries.
2879 Value *Count = getOrCreateTripCount(Lp);
2880
2881 Value *StartIdx = ConstantInt::get(IdxTy, 0);
2882
2883 // We need to test whether the backedge-taken count is uint##_max. Adding one
2884 // to it will cause overflow and an incorrect loop trip count in the vector
2885 // body. In case of overflow we want to directly jump to the scalar remainder
2886 // loop.
2887 emitMinimumIterationCountCheck(Lp, ScalarPH);
2888 // Now, compare the new count to zero. If it is zero skip the vector loop and
2889 // jump to the scalar loop.
2890 emitVectorLoopEnteredCheck(Lp, ScalarPH);
2891 // Generate the code to check any assumptions that we've made for SCEV
2892 // expressions.
2893 emitSCEVChecks(Lp, ScalarPH);
2894
2895 // Generate the code that checks in runtime if arrays overlap. We put the
2896 // checks into a separate block to make the more common case of few elements
2897 // faster.
2898 emitMemRuntimeChecks(Lp, ScalarPH);
2899
2900 // Generate the induction variable.
2901 // The loop step is equal to the vectorization factor (num of SIMD elements)
2902 // times the unroll factor (num of SIMD instructions).
2903 Value *CountRoundDown = getOrCreateVectorTripCount(Lp);
2904 Constant *Step = ConstantInt::get(IdxTy, VF * UF);
2905 Induction =
2906 createInductionVariable(Lp, StartIdx, CountRoundDown, Step,
2907 getDebugLocFromInstOrOperands(OldInduction));
2908
2909 // We are going to resume the execution of the scalar loop.
2910 // Go over all of the induction variables that we found and fix the
2911 // PHIs that are left in the scalar version of the loop.
2912 // The starting values of PHI nodes depend on the counter of the last
2913 // iteration in the vectorized loop.
2914 // If we come from a bypass edge then we need to start from the original
2915 // start value.
2916
2917 // This variable saves the new starting index for the scalar loop. It is used
2918 // to test if there are any tail iterations left once the vector loop has
2919 // completed.
2920 LoopVectorizationLegality::InductionList::iterator I, E;
2921 LoopVectorizationLegality::InductionList *List = Legal->getInductionVars();
2922 for (I = List->begin(), E = List->end(); I != E; ++I) {
2923 PHINode *OrigPhi = I->first;
2924 InductionDescriptor II = I->second;
2925
2926 // Create phi nodes to merge from the backedge-taken check block.
2927 PHINode *BCResumeVal = PHINode::Create(OrigPhi->getType(), 3,
2928 "bc.resume.val",
2929 ScalarPH->getTerminator());
2930 Value *EndValue;
2931 if (OrigPhi == OldInduction) {
2932 // We know what the end value is.
2933 EndValue = CountRoundDown;
2934 } else {
2935 IRBuilder<> B(LoopBypassBlocks.back()->getTerminator());
2936 Value *CRD = B.CreateSExtOrTrunc(CountRoundDown,
2937 II.getStepValue()->getType(),
2938 "cast.crd");
2939 EndValue = II.transform(B, CRD);
2940 EndValue->setName("ind.end");
2941 }
2942
2943 // The new PHI merges the original incoming value, in case of a bypass,
2944 // or the value at the end of the vectorized loop.
2945 BCResumeVal->addIncoming(EndValue, MiddleBlock);
2946
2947 // Fix the scalar body counter (PHI node).
2948 unsigned BlockIdx = OrigPhi->getBasicBlockIndex(ScalarPH);
2949
2950 // The old induction's phi node in the scalar body needs the truncated
2951 // value.
2952 for (unsigned I = 0, E = LoopBypassBlocks.size(); I != E; ++I)
2953 BCResumeVal->addIncoming(II.getStartValue(), LoopBypassBlocks[I]);
2954 OrigPhi->setIncomingValue(BlockIdx, BCResumeVal);
2955 }
2956
2957 // Add a check in the middle block to see if we have completed
2958 // all of the iterations in the first vector loop.
2959 // If (N - N%VF) == N, then we *don't* need to run the remainder.
2960 Value *CmpN = CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_EQ, Count,
2961 CountRoundDown, "cmp.n",
2962 MiddleBlock->getTerminator());
2963 ReplaceInstWithInst(MiddleBlock->getTerminator(),
2964 BranchInst::Create(ExitBlock, ScalarPH, CmpN));
2965
2966 // Get ready to start creating new instructions into the vectorized body.
2967 Builder.SetInsertPoint(&*VecBody->getFirstInsertionPt());
2968
2969 // Save the state.
2970 LoopVectorPreHeader = Lp->getLoopPreheader();
2971 LoopScalarPreHeader = ScalarPH;
2972 LoopMiddleBlock = MiddleBlock;
2973 LoopExitBlock = ExitBlock;
2974 LoopVectorBody.push_back(VecBody);
2975 LoopScalarBody = OldBasicBlock;
2976
2977 LoopVectorizeHints Hints(Lp, true);
2978 Hints.setAlreadyVectorized();
2979 }
2980
2981 namespace {
2982 struct CSEDenseMapInfo {
canHandle__anon63bf7e8f0211::CSEDenseMapInfo2983 static bool canHandle(Instruction *I) {
2984 return isa<InsertElementInst>(I) || isa<ExtractElementInst>(I) ||
2985 isa<ShuffleVectorInst>(I) || isa<GetElementPtrInst>(I);
2986 }
getEmptyKey__anon63bf7e8f0211::CSEDenseMapInfo2987 static inline Instruction *getEmptyKey() {
2988 return DenseMapInfo<Instruction *>::getEmptyKey();
2989 }
getTombstoneKey__anon63bf7e8f0211::CSEDenseMapInfo2990 static inline Instruction *getTombstoneKey() {
2991 return DenseMapInfo<Instruction *>::getTombstoneKey();
2992 }
getHashValue__anon63bf7e8f0211::CSEDenseMapInfo2993 static unsigned getHashValue(Instruction *I) {
2994 assert(canHandle(I) && "Unknown instruction!");
2995 return hash_combine(I->getOpcode(), hash_combine_range(I->value_op_begin(),
2996 I->value_op_end()));
2997 }
isEqual__anon63bf7e8f0211::CSEDenseMapInfo2998 static bool isEqual(Instruction *LHS, Instruction *RHS) {
2999 if (LHS == getEmptyKey() || RHS == getEmptyKey() ||
3000 LHS == getTombstoneKey() || RHS == getTombstoneKey())
3001 return LHS == RHS;
3002 return LHS->isIdenticalTo(RHS);
3003 }
3004 };
3005 }
3006
3007 /// \brief Check whether this block is a predicated block.
3008 /// Due to if predication of stores we might create a sequence of "if(pred) a[i]
3009 /// = ...; " blocks. We start with one vectorized basic block. For every
3010 /// conditional block we split this vectorized block. Therefore, every second
3011 /// block will be a predicated one.
isPredicatedBlock(unsigned BlockNum)3012 static bool isPredicatedBlock(unsigned BlockNum) {
3013 return BlockNum % 2;
3014 }
3015
3016 ///\brief Perform cse of induction variable instructions.
cse(SmallVector<BasicBlock *,4> & BBs)3017 static void cse(SmallVector<BasicBlock *, 4> &BBs) {
3018 // Perform simple cse.
3019 SmallDenseMap<Instruction *, Instruction *, 4, CSEDenseMapInfo> CSEMap;
3020 for (unsigned i = 0, e = BBs.size(); i != e; ++i) {
3021 BasicBlock *BB = BBs[i];
3022 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) {
3023 Instruction *In = &*I++;
3024
3025 if (!CSEDenseMapInfo::canHandle(In))
3026 continue;
3027
3028 // Check if we can replace this instruction with any of the
3029 // visited instructions.
3030 if (Instruction *V = CSEMap.lookup(In)) {
3031 In->replaceAllUsesWith(V);
3032 In->eraseFromParent();
3033 continue;
3034 }
3035 // Ignore instructions in conditional blocks. We create "if (pred) a[i] =
3036 // ...;" blocks for predicated stores. Every second block is a predicated
3037 // block.
3038 if (isPredicatedBlock(i))
3039 continue;
3040
3041 CSEMap[In] = In;
3042 }
3043 }
3044 }
3045
3046 /// \brief Adds a 'fast' flag to floating point operations.
addFastMathFlag(Value * V)3047 static Value *addFastMathFlag(Value *V) {
3048 if (isa<FPMathOperator>(V)){
3049 FastMathFlags Flags;
3050 Flags.setUnsafeAlgebra();
3051 cast<Instruction>(V)->setFastMathFlags(Flags);
3052 }
3053 return V;
3054 }
3055
3056 /// Estimate the overhead of scalarizing a value. Insert and Extract are set if
3057 /// the result needs to be inserted and/or extracted from vectors.
getScalarizationOverhead(Type * Ty,bool Insert,bool Extract,const TargetTransformInfo & TTI)3058 static unsigned getScalarizationOverhead(Type *Ty, bool Insert, bool Extract,
3059 const TargetTransformInfo &TTI) {
3060 if (Ty->isVoidTy())
3061 return 0;
3062
3063 assert(Ty->isVectorTy() && "Can only scalarize vectors");
3064 unsigned Cost = 0;
3065
3066 for (int i = 0, e = Ty->getVectorNumElements(); i < e; ++i) {
3067 if (Insert)
3068 Cost += TTI.getVectorInstrCost(Instruction::InsertElement, Ty, i);
3069 if (Extract)
3070 Cost += TTI.getVectorInstrCost(Instruction::ExtractElement, Ty, i);
3071 }
3072
3073 return Cost;
3074 }
3075
3076 // Estimate cost of a call instruction CI if it were vectorized with factor VF.
3077 // Return the cost of the instruction, including scalarization overhead if it's
3078 // needed. The flag NeedToScalarize shows if the call needs to be scalarized -
3079 // i.e. either vector version isn't available, or is too expensive.
getVectorCallCost(CallInst * CI,unsigned VF,const TargetTransformInfo & TTI,const TargetLibraryInfo * TLI,bool & NeedToScalarize)3080 static unsigned getVectorCallCost(CallInst *CI, unsigned VF,
3081 const TargetTransformInfo &TTI,
3082 const TargetLibraryInfo *TLI,
3083 bool &NeedToScalarize) {
3084 Function *F = CI->getCalledFunction();
3085 StringRef FnName = CI->getCalledFunction()->getName();
3086 Type *ScalarRetTy = CI->getType();
3087 SmallVector<Type *, 4> Tys, ScalarTys;
3088 for (auto &ArgOp : CI->arg_operands())
3089 ScalarTys.push_back(ArgOp->getType());
3090
3091 // Estimate cost of scalarized vector call. The source operands are assumed
3092 // to be vectors, so we need to extract individual elements from there,
3093 // execute VF scalar calls, and then gather the result into the vector return
3094 // value.
3095 unsigned ScalarCallCost = TTI.getCallInstrCost(F, ScalarRetTy, ScalarTys);
3096 if (VF == 1)
3097 return ScalarCallCost;
3098
3099 // Compute corresponding vector type for return value and arguments.
3100 Type *RetTy = ToVectorTy(ScalarRetTy, VF);
3101 for (unsigned i = 0, ie = ScalarTys.size(); i != ie; ++i)
3102 Tys.push_back(ToVectorTy(ScalarTys[i], VF));
3103
3104 // Compute costs of unpacking argument values for the scalar calls and
3105 // packing the return values to a vector.
3106 unsigned ScalarizationCost =
3107 getScalarizationOverhead(RetTy, true, false, TTI);
3108 for (unsigned i = 0, ie = Tys.size(); i != ie; ++i)
3109 ScalarizationCost += getScalarizationOverhead(Tys[i], false, true, TTI);
3110
3111 unsigned Cost = ScalarCallCost * VF + ScalarizationCost;
3112
3113 // If we can't emit a vector call for this function, then the currently found
3114 // cost is the cost we need to return.
3115 NeedToScalarize = true;
3116 if (!TLI || !TLI->isFunctionVectorizable(FnName, VF) || CI->isNoBuiltin())
3117 return Cost;
3118
3119 // If the corresponding vector cost is cheaper, return its cost.
3120 unsigned VectorCallCost = TTI.getCallInstrCost(nullptr, RetTy, Tys);
3121 if (VectorCallCost < Cost) {
3122 NeedToScalarize = false;
3123 return VectorCallCost;
3124 }
3125 return Cost;
3126 }
3127
3128 // Estimate cost of an intrinsic call instruction CI if it were vectorized with
3129 // factor VF. Return the cost of the instruction, including scalarization
3130 // overhead if it's needed.
getVectorIntrinsicCost(CallInst * CI,unsigned VF,const TargetTransformInfo & TTI,const TargetLibraryInfo * TLI)3131 static unsigned getVectorIntrinsicCost(CallInst *CI, unsigned VF,
3132 const TargetTransformInfo &TTI,
3133 const TargetLibraryInfo *TLI) {
3134 Intrinsic::ID ID = getIntrinsicIDForCall(CI, TLI);
3135 assert(ID && "Expected intrinsic call!");
3136
3137 Type *RetTy = ToVectorTy(CI->getType(), VF);
3138 SmallVector<Type *, 4> Tys;
3139 for (unsigned i = 0, ie = CI->getNumArgOperands(); i != ie; ++i)
3140 Tys.push_back(ToVectorTy(CI->getArgOperand(i)->getType(), VF));
3141
3142 return TTI.getIntrinsicInstrCost(ID, RetTy, Tys);
3143 }
3144
smallestIntegerVectorType(Type * T1,Type * T2)3145 static Type *smallestIntegerVectorType(Type *T1, Type *T2) {
3146 IntegerType *I1 = cast<IntegerType>(T1->getVectorElementType());
3147 IntegerType *I2 = cast<IntegerType>(T2->getVectorElementType());
3148 return I1->getBitWidth() < I2->getBitWidth() ? T1 : T2;
3149 }
largestIntegerVectorType(Type * T1,Type * T2)3150 static Type *largestIntegerVectorType(Type *T1, Type *T2) {
3151 IntegerType *I1 = cast<IntegerType>(T1->getVectorElementType());
3152 IntegerType *I2 = cast<IntegerType>(T2->getVectorElementType());
3153 return I1->getBitWidth() > I2->getBitWidth() ? T1 : T2;
3154 }
3155
truncateToMinimalBitwidths()3156 void InnerLoopVectorizer::truncateToMinimalBitwidths() {
3157 // For every instruction `I` in MinBWs, truncate the operands, create a
3158 // truncated version of `I` and reextend its result. InstCombine runs
3159 // later and will remove any ext/trunc pairs.
3160 //
3161 for (auto &KV : MinBWs) {
3162 VectorParts &Parts = WidenMap.get(KV.first);
3163 for (Value *&I : Parts) {
3164 if (I->use_empty())
3165 continue;
3166 Type *OriginalTy = I->getType();
3167 Type *ScalarTruncatedTy = IntegerType::get(OriginalTy->getContext(),
3168 KV.second);
3169 Type *TruncatedTy = VectorType::get(ScalarTruncatedTy,
3170 OriginalTy->getVectorNumElements());
3171 if (TruncatedTy == OriginalTy)
3172 continue;
3173
3174 IRBuilder<> B(cast<Instruction>(I));
3175 auto ShrinkOperand = [&](Value *V) -> Value* {
3176 if (auto *ZI = dyn_cast<ZExtInst>(V))
3177 if (ZI->getSrcTy() == TruncatedTy)
3178 return ZI->getOperand(0);
3179 return B.CreateZExtOrTrunc(V, TruncatedTy);
3180 };
3181
3182 // The actual instruction modification depends on the instruction type,
3183 // unfortunately.
3184 Value *NewI = nullptr;
3185 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I)) {
3186 NewI = B.CreateBinOp(BO->getOpcode(),
3187 ShrinkOperand(BO->getOperand(0)),
3188 ShrinkOperand(BO->getOperand(1)));
3189 cast<BinaryOperator>(NewI)->copyIRFlags(I);
3190 } else if (ICmpInst *CI = dyn_cast<ICmpInst>(I)) {
3191 NewI = B.CreateICmp(CI->getPredicate(),
3192 ShrinkOperand(CI->getOperand(0)),
3193 ShrinkOperand(CI->getOperand(1)));
3194 } else if (SelectInst *SI = dyn_cast<SelectInst>(I)) {
3195 NewI = B.CreateSelect(SI->getCondition(),
3196 ShrinkOperand(SI->getTrueValue()),
3197 ShrinkOperand(SI->getFalseValue()));
3198 } else if (CastInst *CI = dyn_cast<CastInst>(I)) {
3199 switch (CI->getOpcode()) {
3200 default: llvm_unreachable("Unhandled cast!");
3201 case Instruction::Trunc:
3202 NewI = ShrinkOperand(CI->getOperand(0));
3203 break;
3204 case Instruction::SExt:
3205 NewI = B.CreateSExtOrTrunc(CI->getOperand(0),
3206 smallestIntegerVectorType(OriginalTy,
3207 TruncatedTy));
3208 break;
3209 case Instruction::ZExt:
3210 NewI = B.CreateZExtOrTrunc(CI->getOperand(0),
3211 smallestIntegerVectorType(OriginalTy,
3212 TruncatedTy));
3213 break;
3214 }
3215 } else if (ShuffleVectorInst *SI = dyn_cast<ShuffleVectorInst>(I)) {
3216 auto Elements0 = SI->getOperand(0)->getType()->getVectorNumElements();
3217 auto *O0 =
3218 B.CreateZExtOrTrunc(SI->getOperand(0),
3219 VectorType::get(ScalarTruncatedTy, Elements0));
3220 auto Elements1 = SI->getOperand(1)->getType()->getVectorNumElements();
3221 auto *O1 =
3222 B.CreateZExtOrTrunc(SI->getOperand(1),
3223 VectorType::get(ScalarTruncatedTy, Elements1));
3224
3225 NewI = B.CreateShuffleVector(O0, O1, SI->getMask());
3226 } else if (isa<LoadInst>(I)) {
3227 // Don't do anything with the operands, just extend the result.
3228 continue;
3229 } else {
3230 llvm_unreachable("Unhandled instruction type!");
3231 }
3232
3233 // Lastly, extend the result.
3234 NewI->takeName(cast<Instruction>(I));
3235 Value *Res = B.CreateZExtOrTrunc(NewI, OriginalTy);
3236 I->replaceAllUsesWith(Res);
3237 cast<Instruction>(I)->eraseFromParent();
3238 I = Res;
3239 }
3240 }
3241
3242 // We'll have created a bunch of ZExts that are now parentless. Clean up.
3243 for (auto &KV : MinBWs) {
3244 VectorParts &Parts = WidenMap.get(KV.first);
3245 for (Value *&I : Parts) {
3246 ZExtInst *Inst = dyn_cast<ZExtInst>(I);
3247 if (Inst && Inst->use_empty()) {
3248 Value *NewI = Inst->getOperand(0);
3249 Inst->eraseFromParent();
3250 I = NewI;
3251 }
3252 }
3253 }
3254 }
3255
vectorizeLoop()3256 void InnerLoopVectorizer::vectorizeLoop() {
3257 //===------------------------------------------------===//
3258 //
3259 // Notice: any optimization or new instruction that go
3260 // into the code below should be also be implemented in
3261 // the cost-model.
3262 //
3263 //===------------------------------------------------===//
3264 Constant *Zero = Builder.getInt32(0);
3265
3266 // In order to support reduction variables we need to be able to vectorize
3267 // Phi nodes. Phi nodes have cycles, so we need to vectorize them in two
3268 // stages. First, we create a new vector PHI node with no incoming edges.
3269 // We use this value when we vectorize all of the instructions that use the
3270 // PHI. Next, after all of the instructions in the block are complete we
3271 // add the new incoming edges to the PHI. At this point all of the
3272 // instructions in the basic block are vectorized, so we can use them to
3273 // construct the PHI.
3274 PhiVector RdxPHIsToFix;
3275
3276 // Scan the loop in a topological order to ensure that defs are vectorized
3277 // before users.
3278 LoopBlocksDFS DFS(OrigLoop);
3279 DFS.perform(LI);
3280
3281 // Vectorize all of the blocks in the original loop.
3282 for (LoopBlocksDFS::RPOIterator bb = DFS.beginRPO(),
3283 be = DFS.endRPO(); bb != be; ++bb)
3284 vectorizeBlockInLoop(*bb, &RdxPHIsToFix);
3285
3286 // Insert truncates and extends for any truncated instructions as hints to
3287 // InstCombine.
3288 if (VF > 1)
3289 truncateToMinimalBitwidths();
3290
3291 // At this point every instruction in the original loop is widened to
3292 // a vector form. We are almost done. Now, we need to fix the PHI nodes
3293 // that we vectorized. The PHI nodes are currently empty because we did
3294 // not want to introduce cycles. Notice that the remaining PHI nodes
3295 // that we need to fix are reduction variables.
3296
3297 // Create the 'reduced' values for each of the induction vars.
3298 // The reduced values are the vector values that we scalarize and combine
3299 // after the loop is finished.
3300 for (PhiVector::iterator it = RdxPHIsToFix.begin(), e = RdxPHIsToFix.end();
3301 it != e; ++it) {
3302 PHINode *RdxPhi = *it;
3303 assert(RdxPhi && "Unable to recover vectorized PHI");
3304
3305 // Find the reduction variable descriptor.
3306 assert(Legal->isReductionVariable(RdxPhi) &&
3307 "Unable to find the reduction variable");
3308 RecurrenceDescriptor RdxDesc = (*Legal->getReductionVars())[RdxPhi];
3309
3310 RecurrenceDescriptor::RecurrenceKind RK = RdxDesc.getRecurrenceKind();
3311 TrackingVH<Value> ReductionStartValue = RdxDesc.getRecurrenceStartValue();
3312 Instruction *LoopExitInst = RdxDesc.getLoopExitInstr();
3313 RecurrenceDescriptor::MinMaxRecurrenceKind MinMaxKind =
3314 RdxDesc.getMinMaxRecurrenceKind();
3315 setDebugLocFromInst(Builder, ReductionStartValue);
3316
3317 // We need to generate a reduction vector from the incoming scalar.
3318 // To do so, we need to generate the 'identity' vector and override
3319 // one of the elements with the incoming scalar reduction. We need
3320 // to do it in the vector-loop preheader.
3321 Builder.SetInsertPoint(LoopBypassBlocks[1]->getTerminator());
3322
3323 // This is the vector-clone of the value that leaves the loop.
3324 VectorParts &VectorExit = getVectorValue(LoopExitInst);
3325 Type *VecTy = VectorExit[0]->getType();
3326
3327 // Find the reduction identity variable. Zero for addition, or, xor,
3328 // one for multiplication, -1 for And.
3329 Value *Identity;
3330 Value *VectorStart;
3331 if (RK == RecurrenceDescriptor::RK_IntegerMinMax ||
3332 RK == RecurrenceDescriptor::RK_FloatMinMax) {
3333 // MinMax reduction have the start value as their identify.
3334 if (VF == 1) {
3335 VectorStart = Identity = ReductionStartValue;
3336 } else {
3337 VectorStart = Identity =
3338 Builder.CreateVectorSplat(VF, ReductionStartValue, "minmax.ident");
3339 }
3340 } else {
3341 // Handle other reduction kinds:
3342 Constant *Iden = RecurrenceDescriptor::getRecurrenceIdentity(
3343 RK, VecTy->getScalarType());
3344 if (VF == 1) {
3345 Identity = Iden;
3346 // This vector is the Identity vector where the first element is the
3347 // incoming scalar reduction.
3348 VectorStart = ReductionStartValue;
3349 } else {
3350 Identity = ConstantVector::getSplat(VF, Iden);
3351
3352 // This vector is the Identity vector where the first element is the
3353 // incoming scalar reduction.
3354 VectorStart =
3355 Builder.CreateInsertElement(Identity, ReductionStartValue, Zero);
3356 }
3357 }
3358
3359 // Fix the vector-loop phi.
3360
3361 // Reductions do not have to start at zero. They can start with
3362 // any loop invariant values.
3363 VectorParts &VecRdxPhi = WidenMap.get(RdxPhi);
3364 BasicBlock *Latch = OrigLoop->getLoopLatch();
3365 Value *LoopVal = RdxPhi->getIncomingValueForBlock(Latch);
3366 VectorParts &Val = getVectorValue(LoopVal);
3367 for (unsigned part = 0; part < UF; ++part) {
3368 // Make sure to add the reduction stat value only to the
3369 // first unroll part.
3370 Value *StartVal = (part == 0) ? VectorStart : Identity;
3371 cast<PHINode>(VecRdxPhi[part])->addIncoming(StartVal,
3372 LoopVectorPreHeader);
3373 cast<PHINode>(VecRdxPhi[part])->addIncoming(Val[part],
3374 LoopVectorBody.back());
3375 }
3376
3377 // Before each round, move the insertion point right between
3378 // the PHIs and the values we are going to write.
3379 // This allows us to write both PHINodes and the extractelement
3380 // instructions.
3381 Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt());
3382
3383 VectorParts RdxParts = getVectorValue(LoopExitInst);
3384 setDebugLocFromInst(Builder, LoopExitInst);
3385
3386 // If the vector reduction can be performed in a smaller type, we truncate
3387 // then extend the loop exit value to enable InstCombine to evaluate the
3388 // entire expression in the smaller type.
3389 if (VF > 1 && RdxPhi->getType() != RdxDesc.getRecurrenceType()) {
3390 Type *RdxVecTy = VectorType::get(RdxDesc.getRecurrenceType(), VF);
3391 Builder.SetInsertPoint(LoopVectorBody.back()->getTerminator());
3392 for (unsigned part = 0; part < UF; ++part) {
3393 Value *Trunc = Builder.CreateTrunc(RdxParts[part], RdxVecTy);
3394 Value *Extnd = RdxDesc.isSigned() ? Builder.CreateSExt(Trunc, VecTy)
3395 : Builder.CreateZExt(Trunc, VecTy);
3396 for (Value::user_iterator UI = RdxParts[part]->user_begin();
3397 UI != RdxParts[part]->user_end();)
3398 if (*UI != Trunc) {
3399 (*UI++)->replaceUsesOfWith(RdxParts[part], Extnd);
3400 RdxParts[part] = Extnd;
3401 } else {
3402 ++UI;
3403 }
3404 }
3405 Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt());
3406 for (unsigned part = 0; part < UF; ++part)
3407 RdxParts[part] = Builder.CreateTrunc(RdxParts[part], RdxVecTy);
3408 }
3409
3410 // Reduce all of the unrolled parts into a single vector.
3411 Value *ReducedPartRdx = RdxParts[0];
3412 unsigned Op = RecurrenceDescriptor::getRecurrenceBinOp(RK);
3413 setDebugLocFromInst(Builder, ReducedPartRdx);
3414 for (unsigned part = 1; part < UF; ++part) {
3415 if (Op != Instruction::ICmp && Op != Instruction::FCmp)
3416 // Floating point operations had to be 'fast' to enable the reduction.
3417 ReducedPartRdx = addFastMathFlag(
3418 Builder.CreateBinOp((Instruction::BinaryOps)Op, RdxParts[part],
3419 ReducedPartRdx, "bin.rdx"));
3420 else
3421 ReducedPartRdx = RecurrenceDescriptor::createMinMaxOp(
3422 Builder, MinMaxKind, ReducedPartRdx, RdxParts[part]);
3423 }
3424
3425 if (VF > 1) {
3426 // VF is a power of 2 so we can emit the reduction using log2(VF) shuffles
3427 // and vector ops, reducing the set of values being computed by half each
3428 // round.
3429 assert(isPowerOf2_32(VF) &&
3430 "Reduction emission only supported for pow2 vectors!");
3431 Value *TmpVec = ReducedPartRdx;
3432 SmallVector<Constant*, 32> ShuffleMask(VF, nullptr);
3433 for (unsigned i = VF; i != 1; i >>= 1) {
3434 // Move the upper half of the vector to the lower half.
3435 for (unsigned j = 0; j != i/2; ++j)
3436 ShuffleMask[j] = Builder.getInt32(i/2 + j);
3437
3438 // Fill the rest of the mask with undef.
3439 std::fill(&ShuffleMask[i/2], ShuffleMask.end(),
3440 UndefValue::get(Builder.getInt32Ty()));
3441
3442 Value *Shuf =
3443 Builder.CreateShuffleVector(TmpVec,
3444 UndefValue::get(TmpVec->getType()),
3445 ConstantVector::get(ShuffleMask),
3446 "rdx.shuf");
3447
3448 if (Op != Instruction::ICmp && Op != Instruction::FCmp)
3449 // Floating point operations had to be 'fast' to enable the reduction.
3450 TmpVec = addFastMathFlag(Builder.CreateBinOp(
3451 (Instruction::BinaryOps)Op, TmpVec, Shuf, "bin.rdx"));
3452 else
3453 TmpVec = RecurrenceDescriptor::createMinMaxOp(Builder, MinMaxKind,
3454 TmpVec, Shuf);
3455 }
3456
3457 // The result is in the first element of the vector.
3458 ReducedPartRdx = Builder.CreateExtractElement(TmpVec,
3459 Builder.getInt32(0));
3460
3461 // If the reduction can be performed in a smaller type, we need to extend
3462 // the reduction to the wider type before we branch to the original loop.
3463 if (RdxPhi->getType() != RdxDesc.getRecurrenceType())
3464 ReducedPartRdx =
3465 RdxDesc.isSigned()
3466 ? Builder.CreateSExt(ReducedPartRdx, RdxPhi->getType())
3467 : Builder.CreateZExt(ReducedPartRdx, RdxPhi->getType());
3468 }
3469
3470 // Create a phi node that merges control-flow from the backedge-taken check
3471 // block and the middle block.
3472 PHINode *BCBlockPhi = PHINode::Create(RdxPhi->getType(), 2, "bc.merge.rdx",
3473 LoopScalarPreHeader->getTerminator());
3474 for (unsigned I = 0, E = LoopBypassBlocks.size(); I != E; ++I)
3475 BCBlockPhi->addIncoming(ReductionStartValue, LoopBypassBlocks[I]);
3476 BCBlockPhi->addIncoming(ReducedPartRdx, LoopMiddleBlock);
3477
3478 // Now, we need to fix the users of the reduction variable
3479 // inside and outside of the scalar remainder loop.
3480 // We know that the loop is in LCSSA form. We need to update the
3481 // PHI nodes in the exit blocks.
3482 for (BasicBlock::iterator LEI = LoopExitBlock->begin(),
3483 LEE = LoopExitBlock->end(); LEI != LEE; ++LEI) {
3484 PHINode *LCSSAPhi = dyn_cast<PHINode>(LEI);
3485 if (!LCSSAPhi) break;
3486
3487 // All PHINodes need to have a single entry edge, or two if
3488 // we already fixed them.
3489 assert(LCSSAPhi->getNumIncomingValues() < 3 && "Invalid LCSSA PHI");
3490
3491 // We found our reduction value exit-PHI. Update it with the
3492 // incoming bypass edge.
3493 if (LCSSAPhi->getIncomingValue(0) == LoopExitInst) {
3494 // Add an edge coming from the bypass.
3495 LCSSAPhi->addIncoming(ReducedPartRdx, LoopMiddleBlock);
3496 break;
3497 }
3498 }// end of the LCSSA phi scan.
3499
3500 // Fix the scalar loop reduction variable with the incoming reduction sum
3501 // from the vector body and from the backedge value.
3502 int IncomingEdgeBlockIdx =
3503 (RdxPhi)->getBasicBlockIndex(OrigLoop->getLoopLatch());
3504 assert(IncomingEdgeBlockIdx >= 0 && "Invalid block index");
3505 // Pick the other block.
3506 int SelfEdgeBlockIdx = (IncomingEdgeBlockIdx ? 0 : 1);
3507 (RdxPhi)->setIncomingValue(SelfEdgeBlockIdx, BCBlockPhi);
3508 (RdxPhi)->setIncomingValue(IncomingEdgeBlockIdx, LoopExitInst);
3509 }// end of for each redux variable.
3510
3511 fixLCSSAPHIs();
3512
3513 // Make sure DomTree is updated.
3514 updateAnalysis();
3515
3516 // Predicate any stores.
3517 for (auto KV : PredicatedStores) {
3518 BasicBlock::iterator I(KV.first);
3519 auto *BB = SplitBlock(I->getParent(), &*std::next(I), DT, LI);
3520 auto *T = SplitBlockAndInsertIfThen(KV.second, &*I, /*Unreachable=*/false,
3521 /*BranchWeights=*/nullptr, DT);
3522 I->moveBefore(T);
3523 I->getParent()->setName("pred.store.if");
3524 BB->setName("pred.store.continue");
3525 }
3526 DEBUG(DT->verifyDomTree());
3527 // Remove redundant induction instructions.
3528 cse(LoopVectorBody);
3529 }
3530
fixLCSSAPHIs()3531 void InnerLoopVectorizer::fixLCSSAPHIs() {
3532 for (BasicBlock::iterator LEI = LoopExitBlock->begin(),
3533 LEE = LoopExitBlock->end(); LEI != LEE; ++LEI) {
3534 PHINode *LCSSAPhi = dyn_cast<PHINode>(LEI);
3535 if (!LCSSAPhi) break;
3536 if (LCSSAPhi->getNumIncomingValues() == 1)
3537 LCSSAPhi->addIncoming(UndefValue::get(LCSSAPhi->getType()),
3538 LoopMiddleBlock);
3539 }
3540 }
3541
3542 InnerLoopVectorizer::VectorParts
createEdgeMask(BasicBlock * Src,BasicBlock * Dst)3543 InnerLoopVectorizer::createEdgeMask(BasicBlock *Src, BasicBlock *Dst) {
3544 assert(std::find(pred_begin(Dst), pred_end(Dst), Src) != pred_end(Dst) &&
3545 "Invalid edge");
3546
3547 // Look for cached value.
3548 std::pair<BasicBlock*, BasicBlock*> Edge(Src, Dst);
3549 EdgeMaskCache::iterator ECEntryIt = MaskCache.find(Edge);
3550 if (ECEntryIt != MaskCache.end())
3551 return ECEntryIt->second;
3552
3553 VectorParts SrcMask = createBlockInMask(Src);
3554
3555 // The terminator has to be a branch inst!
3556 BranchInst *BI = dyn_cast<BranchInst>(Src->getTerminator());
3557 assert(BI && "Unexpected terminator found");
3558
3559 if (BI->isConditional()) {
3560 VectorParts EdgeMask = getVectorValue(BI->getCondition());
3561
3562 if (BI->getSuccessor(0) != Dst)
3563 for (unsigned part = 0; part < UF; ++part)
3564 EdgeMask[part] = Builder.CreateNot(EdgeMask[part]);
3565
3566 for (unsigned part = 0; part < UF; ++part)
3567 EdgeMask[part] = Builder.CreateAnd(EdgeMask[part], SrcMask[part]);
3568
3569 MaskCache[Edge] = EdgeMask;
3570 return EdgeMask;
3571 }
3572
3573 MaskCache[Edge] = SrcMask;
3574 return SrcMask;
3575 }
3576
3577 InnerLoopVectorizer::VectorParts
createBlockInMask(BasicBlock * BB)3578 InnerLoopVectorizer::createBlockInMask(BasicBlock *BB) {
3579 assert(OrigLoop->contains(BB) && "Block is not a part of a loop");
3580
3581 // Loop incoming mask is all-one.
3582 if (OrigLoop->getHeader() == BB) {
3583 Value *C = ConstantInt::get(IntegerType::getInt1Ty(BB->getContext()), 1);
3584 return getVectorValue(C);
3585 }
3586
3587 // This is the block mask. We OR all incoming edges, and with zero.
3588 Value *Zero = ConstantInt::get(IntegerType::getInt1Ty(BB->getContext()), 0);
3589 VectorParts BlockMask = getVectorValue(Zero);
3590
3591 // For each pred:
3592 for (pred_iterator it = pred_begin(BB), e = pred_end(BB); it != e; ++it) {
3593 VectorParts EM = createEdgeMask(*it, BB);
3594 for (unsigned part = 0; part < UF; ++part)
3595 BlockMask[part] = Builder.CreateOr(BlockMask[part], EM[part]);
3596 }
3597
3598 return BlockMask;
3599 }
3600
widenPHIInstruction(Instruction * PN,InnerLoopVectorizer::VectorParts & Entry,unsigned UF,unsigned VF,PhiVector * PV)3601 void InnerLoopVectorizer::widenPHIInstruction(
3602 Instruction *PN, InnerLoopVectorizer::VectorParts &Entry, unsigned UF,
3603 unsigned VF, PhiVector *PV) {
3604 PHINode* P = cast<PHINode>(PN);
3605 // Handle reduction variables:
3606 if (Legal->isReductionVariable(P)) {
3607 for (unsigned part = 0; part < UF; ++part) {
3608 // This is phase one of vectorizing PHIs.
3609 Type *VecTy = (VF == 1) ? PN->getType() :
3610 VectorType::get(PN->getType(), VF);
3611 Entry[part] = PHINode::Create(
3612 VecTy, 2, "vec.phi", &*LoopVectorBody.back()->getFirstInsertionPt());
3613 }
3614 PV->push_back(P);
3615 return;
3616 }
3617
3618 setDebugLocFromInst(Builder, P);
3619 // Check for PHI nodes that are lowered to vector selects.
3620 if (P->getParent() != OrigLoop->getHeader()) {
3621 // We know that all PHIs in non-header blocks are converted into
3622 // selects, so we don't have to worry about the insertion order and we
3623 // can just use the builder.
3624 // At this point we generate the predication tree. There may be
3625 // duplications since this is a simple recursive scan, but future
3626 // optimizations will clean it up.
3627
3628 unsigned NumIncoming = P->getNumIncomingValues();
3629
3630 // Generate a sequence of selects of the form:
3631 // SELECT(Mask3, In3,
3632 // SELECT(Mask2, In2,
3633 // ( ...)))
3634 for (unsigned In = 0; In < NumIncoming; In++) {
3635 VectorParts Cond = createEdgeMask(P->getIncomingBlock(In),
3636 P->getParent());
3637 VectorParts &In0 = getVectorValue(P->getIncomingValue(In));
3638
3639 for (unsigned part = 0; part < UF; ++part) {
3640 // We might have single edge PHIs (blocks) - use an identity
3641 // 'select' for the first PHI operand.
3642 if (In == 0)
3643 Entry[part] = Builder.CreateSelect(Cond[part], In0[part],
3644 In0[part]);
3645 else
3646 // Select between the current value and the previous incoming edge
3647 // based on the incoming mask.
3648 Entry[part] = Builder.CreateSelect(Cond[part], In0[part],
3649 Entry[part], "predphi");
3650 }
3651 }
3652 return;
3653 }
3654
3655 // This PHINode must be an induction variable.
3656 // Make sure that we know about it.
3657 assert(Legal->getInductionVars()->count(P) &&
3658 "Not an induction variable");
3659
3660 InductionDescriptor II = Legal->getInductionVars()->lookup(P);
3661
3662 // FIXME: The newly created binary instructions should contain nsw/nuw flags,
3663 // which can be found from the original scalar operations.
3664 switch (II.getKind()) {
3665 case InductionDescriptor::IK_NoInduction:
3666 llvm_unreachable("Unknown induction");
3667 case InductionDescriptor::IK_IntInduction: {
3668 assert(P->getType() == II.getStartValue()->getType() &&
3669 "Types must match");
3670 // Handle other induction variables that are now based on the
3671 // canonical one.
3672 Value *V = Induction;
3673 if (P != OldInduction) {
3674 V = Builder.CreateSExtOrTrunc(Induction, P->getType());
3675 V = II.transform(Builder, V);
3676 V->setName("offset.idx");
3677 }
3678 Value *Broadcasted = getBroadcastInstrs(V);
3679 // After broadcasting the induction variable we need to make the vector
3680 // consecutive by adding 0, 1, 2, etc.
3681 for (unsigned part = 0; part < UF; ++part)
3682 Entry[part] = getStepVector(Broadcasted, VF * part, II.getStepValue());
3683 return;
3684 }
3685 case InductionDescriptor::IK_PtrInduction:
3686 // Handle the pointer induction variable case.
3687 assert(P->getType()->isPointerTy() && "Unexpected type.");
3688 // This is the normalized GEP that starts counting at zero.
3689 Value *PtrInd = Induction;
3690 PtrInd = Builder.CreateSExtOrTrunc(PtrInd, II.getStepValue()->getType());
3691 // This is the vector of results. Notice that we don't generate
3692 // vector geps because scalar geps result in better code.
3693 for (unsigned part = 0; part < UF; ++part) {
3694 if (VF == 1) {
3695 int EltIndex = part;
3696 Constant *Idx = ConstantInt::get(PtrInd->getType(), EltIndex);
3697 Value *GlobalIdx = Builder.CreateAdd(PtrInd, Idx);
3698 Value *SclrGep = II.transform(Builder, GlobalIdx);
3699 SclrGep->setName("next.gep");
3700 Entry[part] = SclrGep;
3701 continue;
3702 }
3703
3704 Value *VecVal = UndefValue::get(VectorType::get(P->getType(), VF));
3705 for (unsigned int i = 0; i < VF; ++i) {
3706 int EltIndex = i + part * VF;
3707 Constant *Idx = ConstantInt::get(PtrInd->getType(), EltIndex);
3708 Value *GlobalIdx = Builder.CreateAdd(PtrInd, Idx);
3709 Value *SclrGep = II.transform(Builder, GlobalIdx);
3710 SclrGep->setName("next.gep");
3711 VecVal = Builder.CreateInsertElement(VecVal, SclrGep,
3712 Builder.getInt32(i),
3713 "insert.gep");
3714 }
3715 Entry[part] = VecVal;
3716 }
3717 return;
3718 }
3719 }
3720
vectorizeBlockInLoop(BasicBlock * BB,PhiVector * PV)3721 void InnerLoopVectorizer::vectorizeBlockInLoop(BasicBlock *BB, PhiVector *PV) {
3722 // For each instruction in the old loop.
3723 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) {
3724 VectorParts &Entry = WidenMap.get(&*it);
3725
3726 switch (it->getOpcode()) {
3727 case Instruction::Br:
3728 // Nothing to do for PHIs and BR, since we already took care of the
3729 // loop control flow instructions.
3730 continue;
3731 case Instruction::PHI: {
3732 // Vectorize PHINodes.
3733 widenPHIInstruction(&*it, Entry, UF, VF, PV);
3734 continue;
3735 }// End of PHI.
3736
3737 case Instruction::Add:
3738 case Instruction::FAdd:
3739 case Instruction::Sub:
3740 case Instruction::FSub:
3741 case Instruction::Mul:
3742 case Instruction::FMul:
3743 case Instruction::UDiv:
3744 case Instruction::SDiv:
3745 case Instruction::FDiv:
3746 case Instruction::URem:
3747 case Instruction::SRem:
3748 case Instruction::FRem:
3749 case Instruction::Shl:
3750 case Instruction::LShr:
3751 case Instruction::AShr:
3752 case Instruction::And:
3753 case Instruction::Or:
3754 case Instruction::Xor: {
3755 // Just widen binops.
3756 BinaryOperator *BinOp = dyn_cast<BinaryOperator>(it);
3757 setDebugLocFromInst(Builder, BinOp);
3758 VectorParts &A = getVectorValue(it->getOperand(0));
3759 VectorParts &B = getVectorValue(it->getOperand(1));
3760
3761 // Use this vector value for all users of the original instruction.
3762 for (unsigned Part = 0; Part < UF; ++Part) {
3763 Value *V = Builder.CreateBinOp(BinOp->getOpcode(), A[Part], B[Part]);
3764
3765 if (BinaryOperator *VecOp = dyn_cast<BinaryOperator>(V))
3766 VecOp->copyIRFlags(BinOp);
3767
3768 Entry[Part] = V;
3769 }
3770
3771 propagateMetadata(Entry, &*it);
3772 break;
3773 }
3774 case Instruction::Select: {
3775 // Widen selects.
3776 // If the selector is loop invariant we can create a select
3777 // instruction with a scalar condition. Otherwise, use vector-select.
3778 auto *SE = PSE.getSE();
3779 bool InvariantCond =
3780 SE->isLoopInvariant(PSE.getSCEV(it->getOperand(0)), OrigLoop);
3781 setDebugLocFromInst(Builder, &*it);
3782
3783 // The condition can be loop invariant but still defined inside the
3784 // loop. This means that we can't just use the original 'cond' value.
3785 // We have to take the 'vectorized' value and pick the first lane.
3786 // Instcombine will make this a no-op.
3787 VectorParts &Cond = getVectorValue(it->getOperand(0));
3788 VectorParts &Op0 = getVectorValue(it->getOperand(1));
3789 VectorParts &Op1 = getVectorValue(it->getOperand(2));
3790
3791 Value *ScalarCond = (VF == 1) ? Cond[0] :
3792 Builder.CreateExtractElement(Cond[0], Builder.getInt32(0));
3793
3794 for (unsigned Part = 0; Part < UF; ++Part) {
3795 Entry[Part] = Builder.CreateSelect(
3796 InvariantCond ? ScalarCond : Cond[Part],
3797 Op0[Part],
3798 Op1[Part]);
3799 }
3800
3801 propagateMetadata(Entry, &*it);
3802 break;
3803 }
3804
3805 case Instruction::ICmp:
3806 case Instruction::FCmp: {
3807 // Widen compares. Generate vector compares.
3808 bool FCmp = (it->getOpcode() == Instruction::FCmp);
3809 CmpInst *Cmp = dyn_cast<CmpInst>(it);
3810 setDebugLocFromInst(Builder, &*it);
3811 VectorParts &A = getVectorValue(it->getOperand(0));
3812 VectorParts &B = getVectorValue(it->getOperand(1));
3813 for (unsigned Part = 0; Part < UF; ++Part) {
3814 Value *C = nullptr;
3815 if (FCmp) {
3816 C = Builder.CreateFCmp(Cmp->getPredicate(), A[Part], B[Part]);
3817 cast<FCmpInst>(C)->copyFastMathFlags(&*it);
3818 } else {
3819 C = Builder.CreateICmp(Cmp->getPredicate(), A[Part], B[Part]);
3820 }
3821 Entry[Part] = C;
3822 }
3823
3824 propagateMetadata(Entry, &*it);
3825 break;
3826 }
3827
3828 case Instruction::Store:
3829 case Instruction::Load:
3830 vectorizeMemoryInstruction(&*it);
3831 break;
3832 case Instruction::ZExt:
3833 case Instruction::SExt:
3834 case Instruction::FPToUI:
3835 case Instruction::FPToSI:
3836 case Instruction::FPExt:
3837 case Instruction::PtrToInt:
3838 case Instruction::IntToPtr:
3839 case Instruction::SIToFP:
3840 case Instruction::UIToFP:
3841 case Instruction::Trunc:
3842 case Instruction::FPTrunc:
3843 case Instruction::BitCast: {
3844 CastInst *CI = dyn_cast<CastInst>(it);
3845 setDebugLocFromInst(Builder, &*it);
3846 /// Optimize the special case where the source is the induction
3847 /// variable. Notice that we can only optimize the 'trunc' case
3848 /// because: a. FP conversions lose precision, b. sext/zext may wrap,
3849 /// c. other casts depend on pointer size.
3850 if (CI->getOperand(0) == OldInduction &&
3851 it->getOpcode() == Instruction::Trunc) {
3852 Value *ScalarCast = Builder.CreateCast(CI->getOpcode(), Induction,
3853 CI->getType());
3854 Value *Broadcasted = getBroadcastInstrs(ScalarCast);
3855 InductionDescriptor II =
3856 Legal->getInductionVars()->lookup(OldInduction);
3857 Constant *Step = ConstantInt::getSigned(
3858 CI->getType(), II.getStepValue()->getSExtValue());
3859 for (unsigned Part = 0; Part < UF; ++Part)
3860 Entry[Part] = getStepVector(Broadcasted, VF * Part, Step);
3861 propagateMetadata(Entry, &*it);
3862 break;
3863 }
3864 /// Vectorize casts.
3865 Type *DestTy = (VF == 1) ? CI->getType() :
3866 VectorType::get(CI->getType(), VF);
3867
3868 VectorParts &A = getVectorValue(it->getOperand(0));
3869 for (unsigned Part = 0; Part < UF; ++Part)
3870 Entry[Part] = Builder.CreateCast(CI->getOpcode(), A[Part], DestTy);
3871 propagateMetadata(Entry, &*it);
3872 break;
3873 }
3874
3875 case Instruction::Call: {
3876 // Ignore dbg intrinsics.
3877 if (isa<DbgInfoIntrinsic>(it))
3878 break;
3879 setDebugLocFromInst(Builder, &*it);
3880
3881 Module *M = BB->getParent()->getParent();
3882 CallInst *CI = cast<CallInst>(it);
3883
3884 StringRef FnName = CI->getCalledFunction()->getName();
3885 Function *F = CI->getCalledFunction();
3886 Type *RetTy = ToVectorTy(CI->getType(), VF);
3887 SmallVector<Type *, 4> Tys;
3888 for (unsigned i = 0, ie = CI->getNumArgOperands(); i != ie; ++i)
3889 Tys.push_back(ToVectorTy(CI->getArgOperand(i)->getType(), VF));
3890
3891 Intrinsic::ID ID = getIntrinsicIDForCall(CI, TLI);
3892 if (ID &&
3893 (ID == Intrinsic::assume || ID == Intrinsic::lifetime_end ||
3894 ID == Intrinsic::lifetime_start)) {
3895 scalarizeInstruction(&*it);
3896 break;
3897 }
3898 // The flag shows whether we use Intrinsic or a usual Call for vectorized
3899 // version of the instruction.
3900 // Is it beneficial to perform intrinsic call compared to lib call?
3901 bool NeedToScalarize;
3902 unsigned CallCost = getVectorCallCost(CI, VF, *TTI, TLI, NeedToScalarize);
3903 bool UseVectorIntrinsic =
3904 ID && getVectorIntrinsicCost(CI, VF, *TTI, TLI) <= CallCost;
3905 if (!UseVectorIntrinsic && NeedToScalarize) {
3906 scalarizeInstruction(&*it);
3907 break;
3908 }
3909
3910 for (unsigned Part = 0; Part < UF; ++Part) {
3911 SmallVector<Value *, 4> Args;
3912 for (unsigned i = 0, ie = CI->getNumArgOperands(); i != ie; ++i) {
3913 Value *Arg = CI->getArgOperand(i);
3914 // Some intrinsics have a scalar argument - don't replace it with a
3915 // vector.
3916 if (!UseVectorIntrinsic || !hasVectorInstrinsicScalarOpd(ID, i)) {
3917 VectorParts &VectorArg = getVectorValue(CI->getArgOperand(i));
3918 Arg = VectorArg[Part];
3919 }
3920 Args.push_back(Arg);
3921 }
3922
3923 Function *VectorF;
3924 if (UseVectorIntrinsic) {
3925 // Use vector version of the intrinsic.
3926 Type *TysForDecl[] = {CI->getType()};
3927 if (VF > 1)
3928 TysForDecl[0] = VectorType::get(CI->getType()->getScalarType(), VF);
3929 VectorF = Intrinsic::getDeclaration(M, ID, TysForDecl);
3930 } else {
3931 // Use vector version of the library call.
3932 StringRef VFnName = TLI->getVectorizedFunction(FnName, VF);
3933 assert(!VFnName.empty() && "Vector function name is empty.");
3934 VectorF = M->getFunction(VFnName);
3935 if (!VectorF) {
3936 // Generate a declaration
3937 FunctionType *FTy = FunctionType::get(RetTy, Tys, false);
3938 VectorF =
3939 Function::Create(FTy, Function::ExternalLinkage, VFnName, M);
3940 VectorF->copyAttributesFrom(F);
3941 }
3942 }
3943 assert(VectorF && "Can't create vector function.");
3944 Entry[Part] = Builder.CreateCall(VectorF, Args);
3945 }
3946
3947 propagateMetadata(Entry, &*it);
3948 break;
3949 }
3950
3951 default:
3952 // All other instructions are unsupported. Scalarize them.
3953 scalarizeInstruction(&*it);
3954 break;
3955 }// end of switch.
3956 }// end of for_each instr.
3957 }
3958
updateAnalysis()3959 void InnerLoopVectorizer::updateAnalysis() {
3960 // Forget the original basic block.
3961 PSE.getSE()->forgetLoop(OrigLoop);
3962
3963 // Update the dominator tree information.
3964 assert(DT->properlyDominates(LoopBypassBlocks.front(), LoopExitBlock) &&
3965 "Entry does not dominate exit.");
3966
3967 for (unsigned I = 1, E = LoopBypassBlocks.size(); I != E; ++I)
3968 DT->addNewBlock(LoopBypassBlocks[I], LoopBypassBlocks[I-1]);
3969 DT->addNewBlock(LoopVectorPreHeader, LoopBypassBlocks.back());
3970
3971 // We don't predicate stores by this point, so the vector body should be a
3972 // single loop.
3973 assert(LoopVectorBody.size() == 1 && "Expected single block loop!");
3974 DT->addNewBlock(LoopVectorBody[0], LoopVectorPreHeader);
3975
3976 DT->addNewBlock(LoopMiddleBlock, LoopVectorBody.back());
3977 DT->addNewBlock(LoopScalarPreHeader, LoopBypassBlocks[0]);
3978 DT->changeImmediateDominator(LoopScalarBody, LoopScalarPreHeader);
3979 DT->changeImmediateDominator(LoopExitBlock, LoopBypassBlocks[0]);
3980
3981 DEBUG(DT->verifyDomTree());
3982 }
3983
3984 /// \brief Check whether it is safe to if-convert this phi node.
3985 ///
3986 /// Phi nodes with constant expressions that can trap are not safe to if
3987 /// convert.
canIfConvertPHINodes(BasicBlock * BB)3988 static bool canIfConvertPHINodes(BasicBlock *BB) {
3989 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) {
3990 PHINode *Phi = dyn_cast<PHINode>(I);
3991 if (!Phi)
3992 return true;
3993 for (unsigned p = 0, e = Phi->getNumIncomingValues(); p != e; ++p)
3994 if (Constant *C = dyn_cast<Constant>(Phi->getIncomingValue(p)))
3995 if (C->canTrap())
3996 return false;
3997 }
3998 return true;
3999 }
4000
canVectorizeWithIfConvert()4001 bool LoopVectorizationLegality::canVectorizeWithIfConvert() {
4002 if (!EnableIfConversion) {
4003 emitAnalysis(VectorizationReport() << "if-conversion is disabled");
4004 return false;
4005 }
4006
4007 assert(TheLoop->getNumBlocks() > 1 && "Single block loops are vectorizable");
4008
4009 // A list of pointers that we can safely read and write to.
4010 SmallPtrSet<Value *, 8> SafePointes;
4011
4012 // Collect safe addresses.
4013 for (Loop::block_iterator BI = TheLoop->block_begin(),
4014 BE = TheLoop->block_end(); BI != BE; ++BI) {
4015 BasicBlock *BB = *BI;
4016
4017 if (blockNeedsPredication(BB))
4018 continue;
4019
4020 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) {
4021 if (LoadInst *LI = dyn_cast<LoadInst>(I))
4022 SafePointes.insert(LI->getPointerOperand());
4023 else if (StoreInst *SI = dyn_cast<StoreInst>(I))
4024 SafePointes.insert(SI->getPointerOperand());
4025 }
4026 }
4027
4028 // Collect the blocks that need predication.
4029 BasicBlock *Header = TheLoop->getHeader();
4030 for (Loop::block_iterator BI = TheLoop->block_begin(),
4031 BE = TheLoop->block_end(); BI != BE; ++BI) {
4032 BasicBlock *BB = *BI;
4033
4034 // We don't support switch statements inside loops.
4035 if (!isa<BranchInst>(BB->getTerminator())) {
4036 emitAnalysis(VectorizationReport(BB->getTerminator())
4037 << "loop contains a switch statement");
4038 return false;
4039 }
4040
4041 // We must be able to predicate all blocks that need to be predicated.
4042 if (blockNeedsPredication(BB)) {
4043 if (!blockCanBePredicated(BB, SafePointes)) {
4044 emitAnalysis(VectorizationReport(BB->getTerminator())
4045 << "control flow cannot be substituted for a select");
4046 return false;
4047 }
4048 } else if (BB != Header && !canIfConvertPHINodes(BB)) {
4049 emitAnalysis(VectorizationReport(BB->getTerminator())
4050 << "control flow cannot be substituted for a select");
4051 return false;
4052 }
4053 }
4054
4055 // We can if-convert this loop.
4056 return true;
4057 }
4058
canVectorize()4059 bool LoopVectorizationLegality::canVectorize() {
4060 // We must have a loop in canonical form. Loops with indirectbr in them cannot
4061 // be canonicalized.
4062 if (!TheLoop->getLoopPreheader()) {
4063 emitAnalysis(
4064 VectorizationReport() <<
4065 "loop control flow is not understood by vectorizer");
4066 return false;
4067 }
4068
4069 // We can only vectorize innermost loops.
4070 if (!TheLoop->empty()) {
4071 emitAnalysis(VectorizationReport() << "loop is not the innermost loop");
4072 return false;
4073 }
4074
4075 // We must have a single backedge.
4076 if (TheLoop->getNumBackEdges() != 1) {
4077 emitAnalysis(
4078 VectorizationReport() <<
4079 "loop control flow is not understood by vectorizer");
4080 return false;
4081 }
4082
4083 // We must have a single exiting block.
4084 if (!TheLoop->getExitingBlock()) {
4085 emitAnalysis(
4086 VectorizationReport() <<
4087 "loop control flow is not understood by vectorizer");
4088 return false;
4089 }
4090
4091 // We only handle bottom-tested loops, i.e. loop in which the condition is
4092 // checked at the end of each iteration. With that we can assume that all
4093 // instructions in the loop are executed the same number of times.
4094 if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch()) {
4095 emitAnalysis(
4096 VectorizationReport() <<
4097 "loop control flow is not understood by vectorizer");
4098 return false;
4099 }
4100
4101 // We need to have a loop header.
4102 DEBUG(dbgs() << "LV: Found a loop: " <<
4103 TheLoop->getHeader()->getName() << '\n');
4104
4105 // Check if we can if-convert non-single-bb loops.
4106 unsigned NumBlocks = TheLoop->getNumBlocks();
4107 if (NumBlocks != 1 && !canVectorizeWithIfConvert()) {
4108 DEBUG(dbgs() << "LV: Can't if-convert the loop.\n");
4109 return false;
4110 }
4111
4112 // ScalarEvolution needs to be able to find the exit count.
4113 const SCEV *ExitCount = PSE.getSE()->getBackedgeTakenCount(TheLoop);
4114 if (ExitCount == PSE.getSE()->getCouldNotCompute()) {
4115 emitAnalysis(VectorizationReport()
4116 << "could not determine number of loop iterations");
4117 DEBUG(dbgs() << "LV: SCEV could not compute the loop exit count.\n");
4118 return false;
4119 }
4120
4121 // Check if we can vectorize the instructions and CFG in this loop.
4122 if (!canVectorizeInstrs()) {
4123 DEBUG(dbgs() << "LV: Can't vectorize the instructions or CFG\n");
4124 return false;
4125 }
4126
4127 // Go over each instruction and look at memory deps.
4128 if (!canVectorizeMemory()) {
4129 DEBUG(dbgs() << "LV: Can't vectorize due to memory conflicts\n");
4130 return false;
4131 }
4132
4133 // Collect all of the variables that remain uniform after vectorization.
4134 collectLoopUniforms();
4135
4136 DEBUG(dbgs() << "LV: We can vectorize this loop"
4137 << (LAI->getRuntimePointerChecking()->Need
4138 ? " (with a runtime bound check)"
4139 : "")
4140 << "!\n");
4141
4142 bool UseInterleaved = TTI->enableInterleavedAccessVectorization();
4143
4144 // If an override option has been passed in for interleaved accesses, use it.
4145 if (EnableInterleavedMemAccesses.getNumOccurrences() > 0)
4146 UseInterleaved = EnableInterleavedMemAccesses;
4147
4148 // Analyze interleaved memory accesses.
4149 if (UseInterleaved)
4150 InterleaveInfo.analyzeInterleaving(Strides);
4151
4152 unsigned SCEVThreshold = VectorizeSCEVCheckThreshold;
4153 if (Hints->getForce() == LoopVectorizeHints::FK_Enabled)
4154 SCEVThreshold = PragmaVectorizeSCEVCheckThreshold;
4155
4156 if (PSE.getUnionPredicate().getComplexity() > SCEVThreshold) {
4157 emitAnalysis(VectorizationReport()
4158 << "Too many SCEV assumptions need to be made and checked "
4159 << "at runtime");
4160 DEBUG(dbgs() << "LV: Too many SCEV checks needed.\n");
4161 return false;
4162 }
4163
4164 // Okay! We can vectorize. At this point we don't have any other mem analysis
4165 // which may limit our maximum vectorization factor, so just return true with
4166 // no restrictions.
4167 return true;
4168 }
4169
convertPointerToIntegerType(const DataLayout & DL,Type * Ty)4170 static Type *convertPointerToIntegerType(const DataLayout &DL, Type *Ty) {
4171 if (Ty->isPointerTy())
4172 return DL.getIntPtrType(Ty);
4173
4174 // It is possible that char's or short's overflow when we ask for the loop's
4175 // trip count, work around this by changing the type size.
4176 if (Ty->getScalarSizeInBits() < 32)
4177 return Type::getInt32Ty(Ty->getContext());
4178
4179 return Ty;
4180 }
4181
getWiderType(const DataLayout & DL,Type * Ty0,Type * Ty1)4182 static Type* getWiderType(const DataLayout &DL, Type *Ty0, Type *Ty1) {
4183 Ty0 = convertPointerToIntegerType(DL, Ty0);
4184 Ty1 = convertPointerToIntegerType(DL, Ty1);
4185 if (Ty0->getScalarSizeInBits() > Ty1->getScalarSizeInBits())
4186 return Ty0;
4187 return Ty1;
4188 }
4189
4190 /// \brief Check that the instruction has outside loop users and is not an
4191 /// identified reduction variable.
hasOutsideLoopUser(const Loop * TheLoop,Instruction * Inst,SmallPtrSetImpl<Value * > & Reductions)4192 static bool hasOutsideLoopUser(const Loop *TheLoop, Instruction *Inst,
4193 SmallPtrSetImpl<Value *> &Reductions) {
4194 // Reduction instructions are allowed to have exit users. All other
4195 // instructions must not have external users.
4196 if (!Reductions.count(Inst))
4197 //Check that all of the users of the loop are inside the BB.
4198 for (User *U : Inst->users()) {
4199 Instruction *UI = cast<Instruction>(U);
4200 // This user may be a reduction exit value.
4201 if (!TheLoop->contains(UI)) {
4202 DEBUG(dbgs() << "LV: Found an outside user for : " << *UI << '\n');
4203 return true;
4204 }
4205 }
4206 return false;
4207 }
4208
canVectorizeInstrs()4209 bool LoopVectorizationLegality::canVectorizeInstrs() {
4210 BasicBlock *Header = TheLoop->getHeader();
4211
4212 // Look for the attribute signaling the absence of NaNs.
4213 Function &F = *Header->getParent();
4214 const DataLayout &DL = F.getParent()->getDataLayout();
4215 if (F.hasFnAttribute("no-nans-fp-math"))
4216 HasFunNoNaNAttr =
4217 F.getFnAttribute("no-nans-fp-math").getValueAsString() == "true";
4218
4219 // For each block in the loop.
4220 for (Loop::block_iterator bb = TheLoop->block_begin(),
4221 be = TheLoop->block_end(); bb != be; ++bb) {
4222
4223 // Scan the instructions in the block and look for hazards.
4224 for (BasicBlock::iterator it = (*bb)->begin(), e = (*bb)->end(); it != e;
4225 ++it) {
4226
4227 if (PHINode *Phi = dyn_cast<PHINode>(it)) {
4228 Type *PhiTy = Phi->getType();
4229 // Check that this PHI type is allowed.
4230 if (!PhiTy->isIntegerTy() &&
4231 !PhiTy->isFloatingPointTy() &&
4232 !PhiTy->isPointerTy()) {
4233 emitAnalysis(VectorizationReport(&*it)
4234 << "loop control flow is not understood by vectorizer");
4235 DEBUG(dbgs() << "LV: Found an non-int non-pointer PHI.\n");
4236 return false;
4237 }
4238
4239 // If this PHINode is not in the header block, then we know that we
4240 // can convert it to select during if-conversion. No need to check if
4241 // the PHIs in this block are induction or reduction variables.
4242 if (*bb != Header) {
4243 // Check that this instruction has no outside users or is an
4244 // identified reduction value with an outside user.
4245 if (!hasOutsideLoopUser(TheLoop, &*it, AllowedExit))
4246 continue;
4247 emitAnalysis(VectorizationReport(&*it) <<
4248 "value could not be identified as "
4249 "an induction or reduction variable");
4250 return false;
4251 }
4252
4253 // We only allow if-converted PHIs with exactly two incoming values.
4254 if (Phi->getNumIncomingValues() != 2) {
4255 emitAnalysis(VectorizationReport(&*it)
4256 << "control flow not understood by vectorizer");
4257 DEBUG(dbgs() << "LV: Found an invalid PHI.\n");
4258 return false;
4259 }
4260
4261 InductionDescriptor ID;
4262 if (InductionDescriptor::isInductionPHI(Phi, PSE.getSE(), ID)) {
4263 Inductions[Phi] = ID;
4264 // Get the widest type.
4265 if (!WidestIndTy)
4266 WidestIndTy = convertPointerToIntegerType(DL, PhiTy);
4267 else
4268 WidestIndTy = getWiderType(DL, PhiTy, WidestIndTy);
4269
4270 // Int inductions are special because we only allow one IV.
4271 if (ID.getKind() == InductionDescriptor::IK_IntInduction &&
4272 ID.getStepValue()->isOne() &&
4273 isa<Constant>(ID.getStartValue()) &&
4274 cast<Constant>(ID.getStartValue())->isNullValue()) {
4275 // Use the phi node with the widest type as induction. Use the last
4276 // one if there are multiple (no good reason for doing this other
4277 // than it is expedient). We've checked that it begins at zero and
4278 // steps by one, so this is a canonical induction variable.
4279 if (!Induction || PhiTy == WidestIndTy)
4280 Induction = Phi;
4281 }
4282
4283 DEBUG(dbgs() << "LV: Found an induction variable.\n");
4284
4285 // Until we explicitly handle the case of an induction variable with
4286 // an outside loop user we have to give up vectorizing this loop.
4287 if (hasOutsideLoopUser(TheLoop, &*it, AllowedExit)) {
4288 emitAnalysis(VectorizationReport(&*it) <<
4289 "use of induction value outside of the "
4290 "loop is not handled by vectorizer");
4291 return false;
4292 }
4293
4294 continue;
4295 }
4296
4297 if (RecurrenceDescriptor::isReductionPHI(Phi, TheLoop,
4298 Reductions[Phi])) {
4299 if (Reductions[Phi].hasUnsafeAlgebra())
4300 Requirements->addUnsafeAlgebraInst(
4301 Reductions[Phi].getUnsafeAlgebraInst());
4302 AllowedExit.insert(Reductions[Phi].getLoopExitInstr());
4303 continue;
4304 }
4305
4306 emitAnalysis(VectorizationReport(&*it) <<
4307 "value that could not be identified as "
4308 "reduction is used outside the loop");
4309 DEBUG(dbgs() << "LV: Found an unidentified PHI."<< *Phi <<"\n");
4310 return false;
4311 }// end of PHI handling
4312
4313 // We handle calls that:
4314 // * Are debug info intrinsics.
4315 // * Have a mapping to an IR intrinsic.
4316 // * Have a vector version available.
4317 CallInst *CI = dyn_cast<CallInst>(it);
4318 if (CI && !getIntrinsicIDForCall(CI, TLI) && !isa<DbgInfoIntrinsic>(CI) &&
4319 !(CI->getCalledFunction() && TLI &&
4320 TLI->isFunctionVectorizable(CI->getCalledFunction()->getName()))) {
4321 emitAnalysis(VectorizationReport(&*it)
4322 << "call instruction cannot be vectorized");
4323 DEBUG(dbgs() << "LV: Found a non-intrinsic, non-libfunc callsite.\n");
4324 return false;
4325 }
4326
4327 // Intrinsics such as powi,cttz and ctlz are legal to vectorize if the
4328 // second argument is the same (i.e. loop invariant)
4329 if (CI &&
4330 hasVectorInstrinsicScalarOpd(getIntrinsicIDForCall(CI, TLI), 1)) {
4331 auto *SE = PSE.getSE();
4332 if (!SE->isLoopInvariant(PSE.getSCEV(CI->getOperand(1)), TheLoop)) {
4333 emitAnalysis(VectorizationReport(&*it)
4334 << "intrinsic instruction cannot be vectorized");
4335 DEBUG(dbgs() << "LV: Found unvectorizable intrinsic " << *CI << "\n");
4336 return false;
4337 }
4338 }
4339
4340 // Check that the instruction return type is vectorizable.
4341 // Also, we can't vectorize extractelement instructions.
4342 if ((!VectorType::isValidElementType(it->getType()) &&
4343 !it->getType()->isVoidTy()) || isa<ExtractElementInst>(it)) {
4344 emitAnalysis(VectorizationReport(&*it)
4345 << "instruction return type cannot be vectorized");
4346 DEBUG(dbgs() << "LV: Found unvectorizable type.\n");
4347 return false;
4348 }
4349
4350 // Check that the stored type is vectorizable.
4351 if (StoreInst *ST = dyn_cast<StoreInst>(it)) {
4352 Type *T = ST->getValueOperand()->getType();
4353 if (!VectorType::isValidElementType(T)) {
4354 emitAnalysis(VectorizationReport(ST) <<
4355 "store instruction cannot be vectorized");
4356 return false;
4357 }
4358 if (EnableMemAccessVersioning)
4359 collectStridedAccess(ST);
4360 }
4361
4362 if (EnableMemAccessVersioning)
4363 if (LoadInst *LI = dyn_cast<LoadInst>(it))
4364 collectStridedAccess(LI);
4365
4366 // Reduction instructions are allowed to have exit users.
4367 // All other instructions must not have external users.
4368 if (hasOutsideLoopUser(TheLoop, &*it, AllowedExit)) {
4369 emitAnalysis(VectorizationReport(&*it) <<
4370 "value cannot be used outside the loop");
4371 return false;
4372 }
4373
4374 } // next instr.
4375
4376 }
4377
4378 if (!Induction) {
4379 DEBUG(dbgs() << "LV: Did not find one integer induction var.\n");
4380 if (Inductions.empty()) {
4381 emitAnalysis(VectorizationReport()
4382 << "loop induction variable could not be identified");
4383 return false;
4384 }
4385 }
4386
4387 // Now we know the widest induction type, check if our found induction
4388 // is the same size. If it's not, unset it here and InnerLoopVectorizer
4389 // will create another.
4390 if (Induction && WidestIndTy != Induction->getType())
4391 Induction = nullptr;
4392
4393 return true;
4394 }
4395
collectStridedAccess(Value * MemAccess)4396 void LoopVectorizationLegality::collectStridedAccess(Value *MemAccess) {
4397 Value *Ptr = nullptr;
4398 if (LoadInst *LI = dyn_cast<LoadInst>(MemAccess))
4399 Ptr = LI->getPointerOperand();
4400 else if (StoreInst *SI = dyn_cast<StoreInst>(MemAccess))
4401 Ptr = SI->getPointerOperand();
4402 else
4403 return;
4404
4405 Value *Stride = getStrideFromPointer(Ptr, PSE.getSE(), TheLoop);
4406 if (!Stride)
4407 return;
4408
4409 DEBUG(dbgs() << "LV: Found a strided access that we can version");
4410 DEBUG(dbgs() << " Ptr: " << *Ptr << " Stride: " << *Stride << "\n");
4411 Strides[Ptr] = Stride;
4412 StrideSet.insert(Stride);
4413 }
4414
collectLoopUniforms()4415 void LoopVectorizationLegality::collectLoopUniforms() {
4416 // We now know that the loop is vectorizable!
4417 // Collect variables that will remain uniform after vectorization.
4418 std::vector<Value*> Worklist;
4419 BasicBlock *Latch = TheLoop->getLoopLatch();
4420
4421 // Start with the conditional branch and walk up the block.
4422 Worklist.push_back(Latch->getTerminator()->getOperand(0));
4423
4424 // Also add all consecutive pointer values; these values will be uniform
4425 // after vectorization (and subsequent cleanup) and, until revectorization is
4426 // supported, all dependencies must also be uniform.
4427 for (Loop::block_iterator B = TheLoop->block_begin(),
4428 BE = TheLoop->block_end(); B != BE; ++B)
4429 for (BasicBlock::iterator I = (*B)->begin(), IE = (*B)->end();
4430 I != IE; ++I)
4431 if (I->getType()->isPointerTy() && isConsecutivePtr(&*I))
4432 Worklist.insert(Worklist.end(), I->op_begin(), I->op_end());
4433
4434 while (!Worklist.empty()) {
4435 Instruction *I = dyn_cast<Instruction>(Worklist.back());
4436 Worklist.pop_back();
4437
4438 // Look at instructions inside this loop.
4439 // Stop when reaching PHI nodes.
4440 // TODO: we need to follow values all over the loop, not only in this block.
4441 if (!I || !TheLoop->contains(I) || isa<PHINode>(I))
4442 continue;
4443
4444 // This is a known uniform.
4445 Uniforms.insert(I);
4446
4447 // Insert all operands.
4448 Worklist.insert(Worklist.end(), I->op_begin(), I->op_end());
4449 }
4450 }
4451
canVectorizeMemory()4452 bool LoopVectorizationLegality::canVectorizeMemory() {
4453 LAI = &LAA->getInfo(TheLoop, Strides);
4454 auto &OptionalReport = LAI->getReport();
4455 if (OptionalReport)
4456 emitAnalysis(VectorizationReport(*OptionalReport));
4457 if (!LAI->canVectorizeMemory())
4458 return false;
4459
4460 if (LAI->hasStoreToLoopInvariantAddress()) {
4461 emitAnalysis(
4462 VectorizationReport()
4463 << "write to a loop invariant address could not be vectorized");
4464 DEBUG(dbgs() << "LV: We don't allow storing to uniform addresses\n");
4465 return false;
4466 }
4467
4468 Requirements->addRuntimePointerChecks(LAI->getNumRuntimePointerChecks());
4469 PSE.addPredicate(LAI->PSE.getUnionPredicate());
4470
4471 return true;
4472 }
4473
isInductionVariable(const Value * V)4474 bool LoopVectorizationLegality::isInductionVariable(const Value *V) {
4475 Value *In0 = const_cast<Value*>(V);
4476 PHINode *PN = dyn_cast_or_null<PHINode>(In0);
4477 if (!PN)
4478 return false;
4479
4480 return Inductions.count(PN);
4481 }
4482
blockNeedsPredication(BasicBlock * BB)4483 bool LoopVectorizationLegality::blockNeedsPredication(BasicBlock *BB) {
4484 return LoopAccessInfo::blockNeedsPredication(BB, TheLoop, DT);
4485 }
4486
blockCanBePredicated(BasicBlock * BB,SmallPtrSetImpl<Value * > & SafePtrs)4487 bool LoopVectorizationLegality::blockCanBePredicated(BasicBlock *BB,
4488 SmallPtrSetImpl<Value *> &SafePtrs) {
4489
4490 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) {
4491 // Check that we don't have a constant expression that can trap as operand.
4492 for (Instruction::op_iterator OI = it->op_begin(), OE = it->op_end();
4493 OI != OE; ++OI) {
4494 if (Constant *C = dyn_cast<Constant>(*OI))
4495 if (C->canTrap())
4496 return false;
4497 }
4498 // We might be able to hoist the load.
4499 if (it->mayReadFromMemory()) {
4500 LoadInst *LI = dyn_cast<LoadInst>(it);
4501 if (!LI)
4502 return false;
4503 if (!SafePtrs.count(LI->getPointerOperand())) {
4504 if (isLegalMaskedLoad(LI->getType(), LI->getPointerOperand())) {
4505 MaskedOp.insert(LI);
4506 continue;
4507 }
4508 return false;
4509 }
4510 }
4511
4512 // We don't predicate stores at the moment.
4513 if (it->mayWriteToMemory()) {
4514 StoreInst *SI = dyn_cast<StoreInst>(it);
4515 // We only support predication of stores in basic blocks with one
4516 // predecessor.
4517 if (!SI)
4518 return false;
4519
4520 bool isSafePtr = (SafePtrs.count(SI->getPointerOperand()) != 0);
4521 bool isSinglePredecessor = SI->getParent()->getSinglePredecessor();
4522
4523 if (++NumPredStores > NumberOfStoresToPredicate || !isSafePtr ||
4524 !isSinglePredecessor) {
4525 // Build a masked store if it is legal for the target, otherwise
4526 // scalarize the block.
4527 bool isLegalMaskedOp =
4528 isLegalMaskedStore(SI->getValueOperand()->getType(),
4529 SI->getPointerOperand());
4530 if (isLegalMaskedOp) {
4531 --NumPredStores;
4532 MaskedOp.insert(SI);
4533 continue;
4534 }
4535 return false;
4536 }
4537 }
4538 if (it->mayThrow())
4539 return false;
4540
4541 // The instructions below can trap.
4542 switch (it->getOpcode()) {
4543 default: continue;
4544 case Instruction::UDiv:
4545 case Instruction::SDiv:
4546 case Instruction::URem:
4547 case Instruction::SRem:
4548 return false;
4549 }
4550 }
4551
4552 return true;
4553 }
4554
collectConstStridedAccesses(MapVector<Instruction *,StrideDescriptor> & StrideAccesses,const ValueToValueMap & Strides)4555 void InterleavedAccessInfo::collectConstStridedAccesses(
4556 MapVector<Instruction *, StrideDescriptor> &StrideAccesses,
4557 const ValueToValueMap &Strides) {
4558 // Holds load/store instructions in program order.
4559 SmallVector<Instruction *, 16> AccessList;
4560
4561 for (auto *BB : TheLoop->getBlocks()) {
4562 bool IsPred = LoopAccessInfo::blockNeedsPredication(BB, TheLoop, DT);
4563
4564 for (auto &I : *BB) {
4565 if (!isa<LoadInst>(&I) && !isa<StoreInst>(&I))
4566 continue;
4567 // FIXME: Currently we can't handle mixed accesses and predicated accesses
4568 if (IsPred)
4569 return;
4570
4571 AccessList.push_back(&I);
4572 }
4573 }
4574
4575 if (AccessList.empty())
4576 return;
4577
4578 auto &DL = TheLoop->getHeader()->getModule()->getDataLayout();
4579 for (auto I : AccessList) {
4580 LoadInst *LI = dyn_cast<LoadInst>(I);
4581 StoreInst *SI = dyn_cast<StoreInst>(I);
4582
4583 Value *Ptr = LI ? LI->getPointerOperand() : SI->getPointerOperand();
4584 int Stride = isStridedPtr(PSE, Ptr, TheLoop, Strides);
4585
4586 // The factor of the corresponding interleave group.
4587 unsigned Factor = std::abs(Stride);
4588
4589 // Ignore the access if the factor is too small or too large.
4590 if (Factor < 2 || Factor > MaxInterleaveGroupFactor)
4591 continue;
4592
4593 const SCEV *Scev = replaceSymbolicStrideSCEV(PSE, Strides, Ptr);
4594 PointerType *PtrTy = dyn_cast<PointerType>(Ptr->getType());
4595 unsigned Size = DL.getTypeAllocSize(PtrTy->getElementType());
4596
4597 // An alignment of 0 means target ABI alignment.
4598 unsigned Align = LI ? LI->getAlignment() : SI->getAlignment();
4599 if (!Align)
4600 Align = DL.getABITypeAlignment(PtrTy->getElementType());
4601
4602 StrideAccesses[I] = StrideDescriptor(Stride, Scev, Size, Align);
4603 }
4604 }
4605
4606 // Analyze interleaved accesses and collect them into interleave groups.
4607 //
4608 // Notice that the vectorization on interleaved groups will change instruction
4609 // orders and may break dependences. But the memory dependence check guarantees
4610 // that there is no overlap between two pointers of different strides, element
4611 // sizes or underlying bases.
4612 //
4613 // For pointers sharing the same stride, element size and underlying base, no
4614 // need to worry about Read-After-Write dependences and Write-After-Read
4615 // dependences.
4616 //
4617 // E.g. The RAW dependence: A[i] = a;
4618 // b = A[i];
4619 // This won't exist as it is a store-load forwarding conflict, which has
4620 // already been checked and forbidden in the dependence check.
4621 //
4622 // E.g. The WAR dependence: a = A[i]; // (1)
4623 // A[i] = b; // (2)
4624 // The store group of (2) is always inserted at or below (2), and the load group
4625 // of (1) is always inserted at or above (1). The dependence is safe.
analyzeInterleaving(const ValueToValueMap & Strides)4626 void InterleavedAccessInfo::analyzeInterleaving(
4627 const ValueToValueMap &Strides) {
4628 DEBUG(dbgs() << "LV: Analyzing interleaved accesses...\n");
4629
4630 // Holds all the stride accesses.
4631 MapVector<Instruction *, StrideDescriptor> StrideAccesses;
4632 collectConstStridedAccesses(StrideAccesses, Strides);
4633
4634 if (StrideAccesses.empty())
4635 return;
4636
4637 // Holds all interleaved store groups temporarily.
4638 SmallSetVector<InterleaveGroup *, 4> StoreGroups;
4639
4640 // Search the load-load/write-write pair B-A in bottom-up order and try to
4641 // insert B into the interleave group of A according to 3 rules:
4642 // 1. A and B have the same stride.
4643 // 2. A and B have the same memory object size.
4644 // 3. B belongs to the group according to the distance.
4645 //
4646 // The bottom-up order can avoid breaking the Write-After-Write dependences
4647 // between two pointers of the same base.
4648 // E.g. A[i] = a; (1)
4649 // A[i] = b; (2)
4650 // A[i+1] = c (3)
4651 // We form the group (2)+(3) in front, so (1) has to form groups with accesses
4652 // above (1), which guarantees that (1) is always above (2).
4653 for (auto I = StrideAccesses.rbegin(), E = StrideAccesses.rend(); I != E;
4654 ++I) {
4655 Instruction *A = I->first;
4656 StrideDescriptor DesA = I->second;
4657
4658 InterleaveGroup *Group = getInterleaveGroup(A);
4659 if (!Group) {
4660 DEBUG(dbgs() << "LV: Creating an interleave group with:" << *A << '\n');
4661 Group = createInterleaveGroup(A, DesA.Stride, DesA.Align);
4662 }
4663
4664 if (A->mayWriteToMemory())
4665 StoreGroups.insert(Group);
4666
4667 for (auto II = std::next(I); II != E; ++II) {
4668 Instruction *B = II->first;
4669 StrideDescriptor DesB = II->second;
4670
4671 // Ignore if B is already in a group or B is a different memory operation.
4672 if (isInterleaved(B) || A->mayReadFromMemory() != B->mayReadFromMemory())
4673 continue;
4674
4675 // Check the rule 1 and 2.
4676 if (DesB.Stride != DesA.Stride || DesB.Size != DesA.Size)
4677 continue;
4678
4679 // Calculate the distance and prepare for the rule 3.
4680 const SCEVConstant *DistToA = dyn_cast<SCEVConstant>(
4681 PSE.getSE()->getMinusSCEV(DesB.Scev, DesA.Scev));
4682 if (!DistToA)
4683 continue;
4684
4685 int DistanceToA = DistToA->getAPInt().getSExtValue();
4686
4687 // Skip if the distance is not multiple of size as they are not in the
4688 // same group.
4689 if (DistanceToA % static_cast<int>(DesA.Size))
4690 continue;
4691
4692 // The index of B is the index of A plus the related index to A.
4693 int IndexB =
4694 Group->getIndex(A) + DistanceToA / static_cast<int>(DesA.Size);
4695
4696 // Try to insert B into the group.
4697 if (Group->insertMember(B, IndexB, DesB.Align)) {
4698 DEBUG(dbgs() << "LV: Inserted:" << *B << '\n'
4699 << " into the interleave group with" << *A << '\n');
4700 InterleaveGroupMap[B] = Group;
4701
4702 // Set the first load in program order as the insert position.
4703 if (B->mayReadFromMemory())
4704 Group->setInsertPos(B);
4705 }
4706 } // Iteration on instruction B
4707 } // Iteration on instruction A
4708
4709 // Remove interleaved store groups with gaps.
4710 for (InterleaveGroup *Group : StoreGroups)
4711 if (Group->getNumMembers() != Group->getFactor())
4712 releaseGroup(Group);
4713 }
4714
4715 LoopVectorizationCostModel::VectorizationFactor
selectVectorizationFactor(bool OptForSize)4716 LoopVectorizationCostModel::selectVectorizationFactor(bool OptForSize) {
4717 // Width 1 means no vectorize
4718 VectorizationFactor Factor = { 1U, 0U };
4719 if (OptForSize && Legal->getRuntimePointerChecking()->Need) {
4720 emitAnalysis(VectorizationReport() <<
4721 "runtime pointer checks needed. Enable vectorization of this "
4722 "loop with '#pragma clang loop vectorize(enable)' when "
4723 "compiling with -Os/-Oz");
4724 DEBUG(dbgs() <<
4725 "LV: Aborting. Runtime ptr check is required with -Os/-Oz.\n");
4726 return Factor;
4727 }
4728
4729 if (!EnableCondStoresVectorization && Legal->getNumPredStores()) {
4730 emitAnalysis(VectorizationReport() <<
4731 "store that is conditionally executed prevents vectorization");
4732 DEBUG(dbgs() << "LV: No vectorization. There are conditional stores.\n");
4733 return Factor;
4734 }
4735
4736 // Find the trip count.
4737 unsigned TC = PSE.getSE()->getSmallConstantTripCount(TheLoop);
4738 DEBUG(dbgs() << "LV: Found trip count: " << TC << '\n');
4739
4740 MinBWs = computeMinimumValueSizes(TheLoop->getBlocks(), *DB, &TTI);
4741 unsigned SmallestType, WidestType;
4742 std::tie(SmallestType, WidestType) = getSmallestAndWidestTypes();
4743 unsigned WidestRegister = TTI.getRegisterBitWidth(true);
4744 unsigned MaxSafeDepDist = -1U;
4745 if (Legal->getMaxSafeDepDistBytes() != -1U)
4746 MaxSafeDepDist = Legal->getMaxSafeDepDistBytes() * 8;
4747 WidestRegister = ((WidestRegister < MaxSafeDepDist) ?
4748 WidestRegister : MaxSafeDepDist);
4749 unsigned MaxVectorSize = WidestRegister / WidestType;
4750
4751 DEBUG(dbgs() << "LV: The Smallest and Widest types: " << SmallestType << " / "
4752 << WidestType << " bits.\n");
4753 DEBUG(dbgs() << "LV: The Widest register is: "
4754 << WidestRegister << " bits.\n");
4755
4756 if (MaxVectorSize == 0) {
4757 DEBUG(dbgs() << "LV: The target has no vector registers.\n");
4758 MaxVectorSize = 1;
4759 }
4760
4761 assert(MaxVectorSize <= 64 && "Did not expect to pack so many elements"
4762 " into one vector!");
4763
4764 unsigned VF = MaxVectorSize;
4765 if (MaximizeBandwidth && !OptForSize) {
4766 // Collect all viable vectorization factors.
4767 SmallVector<unsigned, 8> VFs;
4768 unsigned NewMaxVectorSize = WidestRegister / SmallestType;
4769 for (unsigned VS = MaxVectorSize; VS <= NewMaxVectorSize; VS *= 2)
4770 VFs.push_back(VS);
4771
4772 // For each VF calculate its register usage.
4773 auto RUs = calculateRegisterUsage(VFs);
4774
4775 // Select the largest VF which doesn't require more registers than existing
4776 // ones.
4777 unsigned TargetNumRegisters = TTI.getNumberOfRegisters(true);
4778 for (int i = RUs.size() - 1; i >= 0; --i) {
4779 if (RUs[i].MaxLocalUsers <= TargetNumRegisters) {
4780 VF = VFs[i];
4781 break;
4782 }
4783 }
4784 }
4785
4786 // If we optimize the program for size, avoid creating the tail loop.
4787 if (OptForSize) {
4788 // If we are unable to calculate the trip count then don't try to vectorize.
4789 if (TC < 2) {
4790 emitAnalysis
4791 (VectorizationReport() <<
4792 "unable to calculate the loop count due to complex control flow");
4793 DEBUG(dbgs() << "LV: Aborting. A tail loop is required with -Os/-Oz.\n");
4794 return Factor;
4795 }
4796
4797 // Find the maximum SIMD width that can fit within the trip count.
4798 VF = TC % MaxVectorSize;
4799
4800 if (VF == 0)
4801 VF = MaxVectorSize;
4802 else {
4803 // If the trip count that we found modulo the vectorization factor is not
4804 // zero then we require a tail.
4805 emitAnalysis(VectorizationReport() <<
4806 "cannot optimize for size and vectorize at the "
4807 "same time. Enable vectorization of this loop "
4808 "with '#pragma clang loop vectorize(enable)' "
4809 "when compiling with -Os/-Oz");
4810 DEBUG(dbgs() << "LV: Aborting. A tail loop is required with -Os/-Oz.\n");
4811 return Factor;
4812 }
4813 }
4814
4815 int UserVF = Hints->getWidth();
4816 if (UserVF != 0) {
4817 assert(isPowerOf2_32(UserVF) && "VF needs to be a power of two");
4818 DEBUG(dbgs() << "LV: Using user VF " << UserVF << ".\n");
4819
4820 Factor.Width = UserVF;
4821 return Factor;
4822 }
4823
4824 float Cost = expectedCost(1);
4825 #ifndef NDEBUG
4826 const float ScalarCost = Cost;
4827 #endif /* NDEBUG */
4828 unsigned Width = 1;
4829 DEBUG(dbgs() << "LV: Scalar loop costs: " << (int)ScalarCost << ".\n");
4830
4831 bool ForceVectorization = Hints->getForce() == LoopVectorizeHints::FK_Enabled;
4832 // Ignore scalar width, because the user explicitly wants vectorization.
4833 if (ForceVectorization && VF > 1) {
4834 Width = 2;
4835 Cost = expectedCost(Width) / (float)Width;
4836 }
4837
4838 for (unsigned i=2; i <= VF; i*=2) {
4839 // Notice that the vector loop needs to be executed less times, so
4840 // we need to divide the cost of the vector loops by the width of
4841 // the vector elements.
4842 float VectorCost = expectedCost(i) / (float)i;
4843 DEBUG(dbgs() << "LV: Vector loop of width " << i << " costs: " <<
4844 (int)VectorCost << ".\n");
4845 if (VectorCost < Cost) {
4846 Cost = VectorCost;
4847 Width = i;
4848 }
4849 }
4850
4851 DEBUG(if (ForceVectorization && Width > 1 && Cost >= ScalarCost) dbgs()
4852 << "LV: Vectorization seems to be not beneficial, "
4853 << "but was forced by a user.\n");
4854 DEBUG(dbgs() << "LV: Selecting VF: "<< Width << ".\n");
4855 Factor.Width = Width;
4856 Factor.Cost = Width * Cost;
4857 return Factor;
4858 }
4859
4860 std::pair<unsigned, unsigned>
getSmallestAndWidestTypes()4861 LoopVectorizationCostModel::getSmallestAndWidestTypes() {
4862 unsigned MinWidth = -1U;
4863 unsigned MaxWidth = 8;
4864 const DataLayout &DL = TheFunction->getParent()->getDataLayout();
4865
4866 // For each block.
4867 for (Loop::block_iterator bb = TheLoop->block_begin(),
4868 be = TheLoop->block_end(); bb != be; ++bb) {
4869 BasicBlock *BB = *bb;
4870
4871 // For each instruction in the loop.
4872 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) {
4873 Type *T = it->getType();
4874
4875 // Skip ignored values.
4876 if (ValuesToIgnore.count(&*it))
4877 continue;
4878
4879 // Only examine Loads, Stores and PHINodes.
4880 if (!isa<LoadInst>(it) && !isa<StoreInst>(it) && !isa<PHINode>(it))
4881 continue;
4882
4883 // Examine PHI nodes that are reduction variables. Update the type to
4884 // account for the recurrence type.
4885 if (PHINode *PN = dyn_cast<PHINode>(it)) {
4886 if (!Legal->isReductionVariable(PN))
4887 continue;
4888 RecurrenceDescriptor RdxDesc = (*Legal->getReductionVars())[PN];
4889 T = RdxDesc.getRecurrenceType();
4890 }
4891
4892 // Examine the stored values.
4893 if (StoreInst *ST = dyn_cast<StoreInst>(it))
4894 T = ST->getValueOperand()->getType();
4895
4896 // Ignore loaded pointer types and stored pointer types that are not
4897 // consecutive. However, we do want to take consecutive stores/loads of
4898 // pointer vectors into account.
4899 if (T->isPointerTy() && !isConsecutiveLoadOrStore(&*it))
4900 continue;
4901
4902 MinWidth = std::min(MinWidth,
4903 (unsigned)DL.getTypeSizeInBits(T->getScalarType()));
4904 MaxWidth = std::max(MaxWidth,
4905 (unsigned)DL.getTypeSizeInBits(T->getScalarType()));
4906 }
4907 }
4908
4909 return {MinWidth, MaxWidth};
4910 }
4911
selectInterleaveCount(bool OptForSize,unsigned VF,unsigned LoopCost)4912 unsigned LoopVectorizationCostModel::selectInterleaveCount(bool OptForSize,
4913 unsigned VF,
4914 unsigned LoopCost) {
4915
4916 // -- The interleave heuristics --
4917 // We interleave the loop in order to expose ILP and reduce the loop overhead.
4918 // There are many micro-architectural considerations that we can't predict
4919 // at this level. For example, frontend pressure (on decode or fetch) due to
4920 // code size, or the number and capabilities of the execution ports.
4921 //
4922 // We use the following heuristics to select the interleave count:
4923 // 1. If the code has reductions, then we interleave to break the cross
4924 // iteration dependency.
4925 // 2. If the loop is really small, then we interleave to reduce the loop
4926 // overhead.
4927 // 3. We don't interleave if we think that we will spill registers to memory
4928 // due to the increased register pressure.
4929
4930 // When we optimize for size, we don't interleave.
4931 if (OptForSize)
4932 return 1;
4933
4934 // We used the distance for the interleave count.
4935 if (Legal->getMaxSafeDepDistBytes() != -1U)
4936 return 1;
4937
4938 // Do not interleave loops with a relatively small trip count.
4939 unsigned TC = PSE.getSE()->getSmallConstantTripCount(TheLoop);
4940 if (TC > 1 && TC < TinyTripCountInterleaveThreshold)
4941 return 1;
4942
4943 unsigned TargetNumRegisters = TTI.getNumberOfRegisters(VF > 1);
4944 DEBUG(dbgs() << "LV: The target has " << TargetNumRegisters <<
4945 " registers\n");
4946
4947 if (VF == 1) {
4948 if (ForceTargetNumScalarRegs.getNumOccurrences() > 0)
4949 TargetNumRegisters = ForceTargetNumScalarRegs;
4950 } else {
4951 if (ForceTargetNumVectorRegs.getNumOccurrences() > 0)
4952 TargetNumRegisters = ForceTargetNumVectorRegs;
4953 }
4954
4955 RegisterUsage R = calculateRegisterUsage({VF})[0];
4956 // We divide by these constants so assume that we have at least one
4957 // instruction that uses at least one register.
4958 R.MaxLocalUsers = std::max(R.MaxLocalUsers, 1U);
4959 R.NumInstructions = std::max(R.NumInstructions, 1U);
4960
4961 // We calculate the interleave count using the following formula.
4962 // Subtract the number of loop invariants from the number of available
4963 // registers. These registers are used by all of the interleaved instances.
4964 // Next, divide the remaining registers by the number of registers that is
4965 // required by the loop, in order to estimate how many parallel instances
4966 // fit without causing spills. All of this is rounded down if necessary to be
4967 // a power of two. We want power of two interleave count to simplify any
4968 // addressing operations or alignment considerations.
4969 unsigned IC = PowerOf2Floor((TargetNumRegisters - R.LoopInvariantRegs) /
4970 R.MaxLocalUsers);
4971
4972 // Don't count the induction variable as interleaved.
4973 if (EnableIndVarRegisterHeur)
4974 IC = PowerOf2Floor((TargetNumRegisters - R.LoopInvariantRegs - 1) /
4975 std::max(1U, (R.MaxLocalUsers - 1)));
4976
4977 // Clamp the interleave ranges to reasonable counts.
4978 unsigned MaxInterleaveCount = TTI.getMaxInterleaveFactor(VF);
4979
4980 // Check if the user has overridden the max.
4981 if (VF == 1) {
4982 if (ForceTargetMaxScalarInterleaveFactor.getNumOccurrences() > 0)
4983 MaxInterleaveCount = ForceTargetMaxScalarInterleaveFactor;
4984 } else {
4985 if (ForceTargetMaxVectorInterleaveFactor.getNumOccurrences() > 0)
4986 MaxInterleaveCount = ForceTargetMaxVectorInterleaveFactor;
4987 }
4988
4989 // If we did not calculate the cost for VF (because the user selected the VF)
4990 // then we calculate the cost of VF here.
4991 if (LoopCost == 0)
4992 LoopCost = expectedCost(VF);
4993
4994 // Clamp the calculated IC to be between the 1 and the max interleave count
4995 // that the target allows.
4996 if (IC > MaxInterleaveCount)
4997 IC = MaxInterleaveCount;
4998 else if (IC < 1)
4999 IC = 1;
5000
5001 // Interleave if we vectorized this loop and there is a reduction that could
5002 // benefit from interleaving.
5003 if (VF > 1 && Legal->getReductionVars()->size()) {
5004 DEBUG(dbgs() << "LV: Interleaving because of reductions.\n");
5005 return IC;
5006 }
5007
5008 // Note that if we've already vectorized the loop we will have done the
5009 // runtime check and so interleaving won't require further checks.
5010 bool InterleavingRequiresRuntimePointerCheck =
5011 (VF == 1 && Legal->getRuntimePointerChecking()->Need);
5012
5013 // We want to interleave small loops in order to reduce the loop overhead and
5014 // potentially expose ILP opportunities.
5015 DEBUG(dbgs() << "LV: Loop cost is " << LoopCost << '\n');
5016 if (!InterleavingRequiresRuntimePointerCheck && LoopCost < SmallLoopCost) {
5017 // We assume that the cost overhead is 1 and we use the cost model
5018 // to estimate the cost of the loop and interleave until the cost of the
5019 // loop overhead is about 5% of the cost of the loop.
5020 unsigned SmallIC =
5021 std::min(IC, (unsigned)PowerOf2Floor(SmallLoopCost / LoopCost));
5022
5023 // Interleave until store/load ports (estimated by max interleave count) are
5024 // saturated.
5025 unsigned NumStores = Legal->getNumStores();
5026 unsigned NumLoads = Legal->getNumLoads();
5027 unsigned StoresIC = IC / (NumStores ? NumStores : 1);
5028 unsigned LoadsIC = IC / (NumLoads ? NumLoads : 1);
5029
5030 // If we have a scalar reduction (vector reductions are already dealt with
5031 // by this point), we can increase the critical path length if the loop
5032 // we're interleaving is inside another loop. Limit, by default to 2, so the
5033 // critical path only gets increased by one reduction operation.
5034 if (Legal->getReductionVars()->size() &&
5035 TheLoop->getLoopDepth() > 1) {
5036 unsigned F = static_cast<unsigned>(MaxNestedScalarReductionIC);
5037 SmallIC = std::min(SmallIC, F);
5038 StoresIC = std::min(StoresIC, F);
5039 LoadsIC = std::min(LoadsIC, F);
5040 }
5041
5042 if (EnableLoadStoreRuntimeInterleave &&
5043 std::max(StoresIC, LoadsIC) > SmallIC) {
5044 DEBUG(dbgs() << "LV: Interleaving to saturate store or load ports.\n");
5045 return std::max(StoresIC, LoadsIC);
5046 }
5047
5048 DEBUG(dbgs() << "LV: Interleaving to reduce branch cost.\n");
5049 return SmallIC;
5050 }
5051
5052 // Interleave if this is a large loop (small loops are already dealt with by
5053 // this point) that could benefit from interleaving.
5054 bool HasReductions = (Legal->getReductionVars()->size() > 0);
5055 if (TTI.enableAggressiveInterleaving(HasReductions)) {
5056 DEBUG(dbgs() << "LV: Interleaving to expose ILP.\n");
5057 return IC;
5058 }
5059
5060 DEBUG(dbgs() << "LV: Not Interleaving.\n");
5061 return 1;
5062 }
5063
5064 SmallVector<LoopVectorizationCostModel::RegisterUsage, 8>
calculateRegisterUsage(const SmallVector<unsigned,8> & VFs)5065 LoopVectorizationCostModel::calculateRegisterUsage(
5066 const SmallVector<unsigned, 8> &VFs) {
5067 // This function calculates the register usage by measuring the highest number
5068 // of values that are alive at a single location. Obviously, this is a very
5069 // rough estimation. We scan the loop in a topological order in order and
5070 // assign a number to each instruction. We use RPO to ensure that defs are
5071 // met before their users. We assume that each instruction that has in-loop
5072 // users starts an interval. We record every time that an in-loop value is
5073 // used, so we have a list of the first and last occurrences of each
5074 // instruction. Next, we transpose this data structure into a multi map that
5075 // holds the list of intervals that *end* at a specific location. This multi
5076 // map allows us to perform a linear search. We scan the instructions linearly
5077 // and record each time that a new interval starts, by placing it in a set.
5078 // If we find this value in the multi-map then we remove it from the set.
5079 // The max register usage is the maximum size of the set.
5080 // We also search for instructions that are defined outside the loop, but are
5081 // used inside the loop. We need this number separately from the max-interval
5082 // usage number because when we unroll, loop-invariant values do not take
5083 // more register.
5084 LoopBlocksDFS DFS(TheLoop);
5085 DFS.perform(LI);
5086
5087 RegisterUsage RU;
5088 RU.NumInstructions = 0;
5089
5090 // Each 'key' in the map opens a new interval. The values
5091 // of the map are the index of the 'last seen' usage of the
5092 // instruction that is the key.
5093 typedef DenseMap<Instruction*, unsigned> IntervalMap;
5094 // Maps instruction to its index.
5095 DenseMap<unsigned, Instruction*> IdxToInstr;
5096 // Marks the end of each interval.
5097 IntervalMap EndPoint;
5098 // Saves the list of instruction indices that are used in the loop.
5099 SmallSet<Instruction*, 8> Ends;
5100 // Saves the list of values that are used in the loop but are
5101 // defined outside the loop, such as arguments and constants.
5102 SmallPtrSet<Value*, 8> LoopInvariants;
5103
5104 unsigned Index = 0;
5105 for (LoopBlocksDFS::RPOIterator bb = DFS.beginRPO(),
5106 be = DFS.endRPO(); bb != be; ++bb) {
5107 RU.NumInstructions += (*bb)->size();
5108 for (Instruction &I : **bb) {
5109 IdxToInstr[Index++] = &I;
5110
5111 // Save the end location of each USE.
5112 for (unsigned i = 0; i < I.getNumOperands(); ++i) {
5113 Value *U = I.getOperand(i);
5114 Instruction *Instr = dyn_cast<Instruction>(U);
5115
5116 // Ignore non-instruction values such as arguments, constants, etc.
5117 if (!Instr) continue;
5118
5119 // If this instruction is outside the loop then record it and continue.
5120 if (!TheLoop->contains(Instr)) {
5121 LoopInvariants.insert(Instr);
5122 continue;
5123 }
5124
5125 // Overwrite previous end points.
5126 EndPoint[Instr] = Index;
5127 Ends.insert(Instr);
5128 }
5129 }
5130 }
5131
5132 // Saves the list of intervals that end with the index in 'key'.
5133 typedef SmallVector<Instruction*, 2> InstrList;
5134 DenseMap<unsigned, InstrList> TransposeEnds;
5135
5136 // Transpose the EndPoints to a list of values that end at each index.
5137 for (IntervalMap::iterator it = EndPoint.begin(), e = EndPoint.end();
5138 it != e; ++it)
5139 TransposeEnds[it->second].push_back(it->first);
5140
5141 SmallSet<Instruction*, 8> OpenIntervals;
5142
5143 // Get the size of the widest register.
5144 unsigned MaxSafeDepDist = -1U;
5145 if (Legal->getMaxSafeDepDistBytes() != -1U)
5146 MaxSafeDepDist = Legal->getMaxSafeDepDistBytes() * 8;
5147 unsigned WidestRegister =
5148 std::min(TTI.getRegisterBitWidth(true), MaxSafeDepDist);
5149 const DataLayout &DL = TheFunction->getParent()->getDataLayout();
5150
5151 SmallVector<RegisterUsage, 8> RUs(VFs.size());
5152 SmallVector<unsigned, 8> MaxUsages(VFs.size(), 0);
5153
5154 DEBUG(dbgs() << "LV(REG): Calculating max register usage:\n");
5155
5156 // A lambda that gets the register usage for the given type and VF.
5157 auto GetRegUsage = [&DL, WidestRegister](Type *Ty, unsigned VF) {
5158 unsigned TypeSize = DL.getTypeSizeInBits(Ty->getScalarType());
5159 return std::max<unsigned>(1, VF * TypeSize / WidestRegister);
5160 };
5161
5162 for (unsigned int i = 0; i < Index; ++i) {
5163 Instruction *I = IdxToInstr[i];
5164 // Ignore instructions that are never used within the loop.
5165 if (!Ends.count(I)) continue;
5166
5167 // Remove all of the instructions that end at this location.
5168 InstrList &List = TransposeEnds[i];
5169 for (unsigned int j = 0, e = List.size(); j < e; ++j)
5170 OpenIntervals.erase(List[j]);
5171
5172 // Skip ignored values.
5173 if (ValuesToIgnore.count(I))
5174 continue;
5175
5176 // For each VF find the maximum usage of registers.
5177 for (unsigned j = 0, e = VFs.size(); j < e; ++j) {
5178 if (VFs[j] == 1) {
5179 MaxUsages[j] = std::max(MaxUsages[j], OpenIntervals.size());
5180 continue;
5181 }
5182
5183 // Count the number of live intervals.
5184 unsigned RegUsage = 0;
5185 for (auto Inst : OpenIntervals) {
5186 // Skip ignored values for VF > 1.
5187 if (VecValuesToIgnore.count(Inst))
5188 continue;
5189 RegUsage += GetRegUsage(Inst->getType(), VFs[j]);
5190 }
5191 MaxUsages[j] = std::max(MaxUsages[j], RegUsage);
5192 }
5193
5194 DEBUG(dbgs() << "LV(REG): At #" << i << " Interval # "
5195 << OpenIntervals.size() << '\n');
5196
5197 // Add the current instruction to the list of open intervals.
5198 OpenIntervals.insert(I);
5199 }
5200
5201 for (unsigned i = 0, e = VFs.size(); i < e; ++i) {
5202 unsigned Invariant = 0;
5203 if (VFs[i] == 1)
5204 Invariant = LoopInvariants.size();
5205 else {
5206 for (auto Inst : LoopInvariants)
5207 Invariant += GetRegUsage(Inst->getType(), VFs[i]);
5208 }
5209
5210 DEBUG(dbgs() << "LV(REG): VF = " << VFs[i] << '\n');
5211 DEBUG(dbgs() << "LV(REG): Found max usage: " << MaxUsages[i] << '\n');
5212 DEBUG(dbgs() << "LV(REG): Found invariant usage: " << Invariant << '\n');
5213 DEBUG(dbgs() << "LV(REG): LoopSize: " << RU.NumInstructions << '\n');
5214
5215 RU.LoopInvariantRegs = Invariant;
5216 RU.MaxLocalUsers = MaxUsages[i];
5217 RUs[i] = RU;
5218 }
5219
5220 return RUs;
5221 }
5222
expectedCost(unsigned VF)5223 unsigned LoopVectorizationCostModel::expectedCost(unsigned VF) {
5224 unsigned Cost = 0;
5225
5226 // For each block.
5227 for (Loop::block_iterator bb = TheLoop->block_begin(),
5228 be = TheLoop->block_end(); bb != be; ++bb) {
5229 unsigned BlockCost = 0;
5230 BasicBlock *BB = *bb;
5231
5232 // For each instruction in the old loop.
5233 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) {
5234 // Skip dbg intrinsics.
5235 if (isa<DbgInfoIntrinsic>(it))
5236 continue;
5237
5238 // Skip ignored values.
5239 if (ValuesToIgnore.count(&*it))
5240 continue;
5241
5242 unsigned C = getInstructionCost(&*it, VF);
5243
5244 // Check if we should override the cost.
5245 if (ForceTargetInstructionCost.getNumOccurrences() > 0)
5246 C = ForceTargetInstructionCost;
5247
5248 BlockCost += C;
5249 DEBUG(dbgs() << "LV: Found an estimated cost of " << C << " for VF " <<
5250 VF << " For instruction: " << *it << '\n');
5251 }
5252
5253 // We assume that if-converted blocks have a 50% chance of being executed.
5254 // When the code is scalar then some of the blocks are avoided due to CF.
5255 // When the code is vectorized we execute all code paths.
5256 if (VF == 1 && Legal->blockNeedsPredication(*bb))
5257 BlockCost /= 2;
5258
5259 Cost += BlockCost;
5260 }
5261
5262 return Cost;
5263 }
5264
5265 /// \brief Check whether the address computation for a non-consecutive memory
5266 /// access looks like an unlikely candidate for being merged into the indexing
5267 /// mode.
5268 ///
5269 /// We look for a GEP which has one index that is an induction variable and all
5270 /// other indices are loop invariant. If the stride of this access is also
5271 /// within a small bound we decide that this address computation can likely be
5272 /// merged into the addressing mode.
5273 /// In all other cases, we identify the address computation as complex.
isLikelyComplexAddressComputation(Value * Ptr,LoopVectorizationLegality * Legal,ScalarEvolution * SE,const Loop * TheLoop)5274 static bool isLikelyComplexAddressComputation(Value *Ptr,
5275 LoopVectorizationLegality *Legal,
5276 ScalarEvolution *SE,
5277 const Loop *TheLoop) {
5278 GetElementPtrInst *Gep = dyn_cast<GetElementPtrInst>(Ptr);
5279 if (!Gep)
5280 return true;
5281
5282 // We are looking for a gep with all loop invariant indices except for one
5283 // which should be an induction variable.
5284 unsigned NumOperands = Gep->getNumOperands();
5285 for (unsigned i = 1; i < NumOperands; ++i) {
5286 Value *Opd = Gep->getOperand(i);
5287 if (!SE->isLoopInvariant(SE->getSCEV(Opd), TheLoop) &&
5288 !Legal->isInductionVariable(Opd))
5289 return true;
5290 }
5291
5292 // Now we know we have a GEP ptr, %inv, %ind, %inv. Make sure that the step
5293 // can likely be merged into the address computation.
5294 unsigned MaxMergeDistance = 64;
5295
5296 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Ptr));
5297 if (!AddRec)
5298 return true;
5299
5300 // Check the step is constant.
5301 const SCEV *Step = AddRec->getStepRecurrence(*SE);
5302 // Calculate the pointer stride and check if it is consecutive.
5303 const SCEVConstant *C = dyn_cast<SCEVConstant>(Step);
5304 if (!C)
5305 return true;
5306
5307 const APInt &APStepVal = C->getAPInt();
5308
5309 // Huge step value - give up.
5310 if (APStepVal.getBitWidth() > 64)
5311 return true;
5312
5313 int64_t StepVal = APStepVal.getSExtValue();
5314
5315 return StepVal > MaxMergeDistance;
5316 }
5317
isStrideMul(Instruction * I,LoopVectorizationLegality * Legal)5318 static bool isStrideMul(Instruction *I, LoopVectorizationLegality *Legal) {
5319 return Legal->hasStride(I->getOperand(0)) ||
5320 Legal->hasStride(I->getOperand(1));
5321 }
5322
5323 unsigned
getInstructionCost(Instruction * I,unsigned VF)5324 LoopVectorizationCostModel::getInstructionCost(Instruction *I, unsigned VF) {
5325 // If we know that this instruction will remain uniform, check the cost of
5326 // the scalar version.
5327 if (Legal->isUniformAfterVectorization(I))
5328 VF = 1;
5329
5330 Type *RetTy = I->getType();
5331 if (VF > 1 && MinBWs.count(I))
5332 RetTy = IntegerType::get(RetTy->getContext(), MinBWs[I]);
5333 Type *VectorTy = ToVectorTy(RetTy, VF);
5334 auto SE = PSE.getSE();
5335
5336 // TODO: We need to estimate the cost of intrinsic calls.
5337 switch (I->getOpcode()) {
5338 case Instruction::GetElementPtr:
5339 // We mark this instruction as zero-cost because the cost of GEPs in
5340 // vectorized code depends on whether the corresponding memory instruction
5341 // is scalarized or not. Therefore, we handle GEPs with the memory
5342 // instruction cost.
5343 return 0;
5344 case Instruction::Br: {
5345 return TTI.getCFInstrCost(I->getOpcode());
5346 }
5347 case Instruction::PHI:
5348 //TODO: IF-converted IFs become selects.
5349 return 0;
5350 case Instruction::Add:
5351 case Instruction::FAdd:
5352 case Instruction::Sub:
5353 case Instruction::FSub:
5354 case Instruction::Mul:
5355 case Instruction::FMul:
5356 case Instruction::UDiv:
5357 case Instruction::SDiv:
5358 case Instruction::FDiv:
5359 case Instruction::URem:
5360 case Instruction::SRem:
5361 case Instruction::FRem:
5362 case Instruction::Shl:
5363 case Instruction::LShr:
5364 case Instruction::AShr:
5365 case Instruction::And:
5366 case Instruction::Or:
5367 case Instruction::Xor: {
5368 // Since we will replace the stride by 1 the multiplication should go away.
5369 if (I->getOpcode() == Instruction::Mul && isStrideMul(I, Legal))
5370 return 0;
5371 // Certain instructions can be cheaper to vectorize if they have a constant
5372 // second vector operand. One example of this are shifts on x86.
5373 TargetTransformInfo::OperandValueKind Op1VK =
5374 TargetTransformInfo::OK_AnyValue;
5375 TargetTransformInfo::OperandValueKind Op2VK =
5376 TargetTransformInfo::OK_AnyValue;
5377 TargetTransformInfo::OperandValueProperties Op1VP =
5378 TargetTransformInfo::OP_None;
5379 TargetTransformInfo::OperandValueProperties Op2VP =
5380 TargetTransformInfo::OP_None;
5381 Value *Op2 = I->getOperand(1);
5382
5383 // Check for a splat of a constant or for a non uniform vector of constants.
5384 if (isa<ConstantInt>(Op2)) {
5385 ConstantInt *CInt = cast<ConstantInt>(Op2);
5386 if (CInt && CInt->getValue().isPowerOf2())
5387 Op2VP = TargetTransformInfo::OP_PowerOf2;
5388 Op2VK = TargetTransformInfo::OK_UniformConstantValue;
5389 } else if (isa<ConstantVector>(Op2) || isa<ConstantDataVector>(Op2)) {
5390 Op2VK = TargetTransformInfo::OK_NonUniformConstantValue;
5391 Constant *SplatValue = cast<Constant>(Op2)->getSplatValue();
5392 if (SplatValue) {
5393 ConstantInt *CInt = dyn_cast<ConstantInt>(SplatValue);
5394 if (CInt && CInt->getValue().isPowerOf2())
5395 Op2VP = TargetTransformInfo::OP_PowerOf2;
5396 Op2VK = TargetTransformInfo::OK_UniformConstantValue;
5397 }
5398 }
5399
5400 return TTI.getArithmeticInstrCost(I->getOpcode(), VectorTy, Op1VK, Op2VK,
5401 Op1VP, Op2VP);
5402 }
5403 case Instruction::Select: {
5404 SelectInst *SI = cast<SelectInst>(I);
5405 const SCEV *CondSCEV = SE->getSCEV(SI->getCondition());
5406 bool ScalarCond = (SE->isLoopInvariant(CondSCEV, TheLoop));
5407 Type *CondTy = SI->getCondition()->getType();
5408 if (!ScalarCond)
5409 CondTy = VectorType::get(CondTy, VF);
5410
5411 return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, CondTy);
5412 }
5413 case Instruction::ICmp:
5414 case Instruction::FCmp: {
5415 Type *ValTy = I->getOperand(0)->getType();
5416 Instruction *Op0AsInstruction = dyn_cast<Instruction>(I->getOperand(0));
5417 auto It = MinBWs.find(Op0AsInstruction);
5418 if (VF > 1 && It != MinBWs.end())
5419 ValTy = IntegerType::get(ValTy->getContext(), It->second);
5420 VectorTy = ToVectorTy(ValTy, VF);
5421 return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy);
5422 }
5423 case Instruction::Store:
5424 case Instruction::Load: {
5425 StoreInst *SI = dyn_cast<StoreInst>(I);
5426 LoadInst *LI = dyn_cast<LoadInst>(I);
5427 Type *ValTy = (SI ? SI->getValueOperand()->getType() :
5428 LI->getType());
5429 VectorTy = ToVectorTy(ValTy, VF);
5430
5431 unsigned Alignment = SI ? SI->getAlignment() : LI->getAlignment();
5432 unsigned AS = SI ? SI->getPointerAddressSpace() :
5433 LI->getPointerAddressSpace();
5434 Value *Ptr = SI ? SI->getPointerOperand() : LI->getPointerOperand();
5435 // We add the cost of address computation here instead of with the gep
5436 // instruction because only here we know whether the operation is
5437 // scalarized.
5438 if (VF == 1)
5439 return TTI.getAddressComputationCost(VectorTy) +
5440 TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS);
5441
5442 // For an interleaved access, calculate the total cost of the whole
5443 // interleave group.
5444 if (Legal->isAccessInterleaved(I)) {
5445 auto Group = Legal->getInterleavedAccessGroup(I);
5446 assert(Group && "Fail to get an interleaved access group.");
5447
5448 // Only calculate the cost once at the insert position.
5449 if (Group->getInsertPos() != I)
5450 return 0;
5451
5452 unsigned InterleaveFactor = Group->getFactor();
5453 Type *WideVecTy =
5454 VectorType::get(VectorTy->getVectorElementType(),
5455 VectorTy->getVectorNumElements() * InterleaveFactor);
5456
5457 // Holds the indices of existing members in an interleaved load group.
5458 // An interleaved store group doesn't need this as it dones't allow gaps.
5459 SmallVector<unsigned, 4> Indices;
5460 if (LI) {
5461 for (unsigned i = 0; i < InterleaveFactor; i++)
5462 if (Group->getMember(i))
5463 Indices.push_back(i);
5464 }
5465
5466 // Calculate the cost of the whole interleaved group.
5467 unsigned Cost = TTI.getInterleavedMemoryOpCost(
5468 I->getOpcode(), WideVecTy, Group->getFactor(), Indices,
5469 Group->getAlignment(), AS);
5470
5471 if (Group->isReverse())
5472 Cost +=
5473 Group->getNumMembers() *
5474 TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, 0);
5475
5476 // FIXME: The interleaved load group with a huge gap could be even more
5477 // expensive than scalar operations. Then we could ignore such group and
5478 // use scalar operations instead.
5479 return Cost;
5480 }
5481
5482 // Scalarized loads/stores.
5483 int ConsecutiveStride = Legal->isConsecutivePtr(Ptr);
5484 bool Reverse = ConsecutiveStride < 0;
5485 const DataLayout &DL = I->getModule()->getDataLayout();
5486 unsigned ScalarAllocatedSize = DL.getTypeAllocSize(ValTy);
5487 unsigned VectorElementSize = DL.getTypeStoreSize(VectorTy) / VF;
5488 if (!ConsecutiveStride || ScalarAllocatedSize != VectorElementSize) {
5489 bool IsComplexComputation =
5490 isLikelyComplexAddressComputation(Ptr, Legal, SE, TheLoop);
5491 unsigned Cost = 0;
5492 // The cost of extracting from the value vector and pointer vector.
5493 Type *PtrTy = ToVectorTy(Ptr->getType(), VF);
5494 for (unsigned i = 0; i < VF; ++i) {
5495 // The cost of extracting the pointer operand.
5496 Cost += TTI.getVectorInstrCost(Instruction::ExtractElement, PtrTy, i);
5497 // In case of STORE, the cost of ExtractElement from the vector.
5498 // In case of LOAD, the cost of InsertElement into the returned
5499 // vector.
5500 Cost += TTI.getVectorInstrCost(SI ? Instruction::ExtractElement :
5501 Instruction::InsertElement,
5502 VectorTy, i);
5503 }
5504
5505 // The cost of the scalar loads/stores.
5506 Cost += VF * TTI.getAddressComputationCost(PtrTy, IsComplexComputation);
5507 Cost += VF * TTI.getMemoryOpCost(I->getOpcode(), ValTy->getScalarType(),
5508 Alignment, AS);
5509 return Cost;
5510 }
5511
5512 // Wide load/stores.
5513 unsigned Cost = TTI.getAddressComputationCost(VectorTy);
5514 if (Legal->isMaskRequired(I))
5515 Cost += TTI.getMaskedMemoryOpCost(I->getOpcode(), VectorTy, Alignment,
5516 AS);
5517 else
5518 Cost += TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS);
5519
5520 if (Reverse)
5521 Cost += TTI.getShuffleCost(TargetTransformInfo::SK_Reverse,
5522 VectorTy, 0);
5523 return Cost;
5524 }
5525 case Instruction::ZExt:
5526 case Instruction::SExt:
5527 case Instruction::FPToUI:
5528 case Instruction::FPToSI:
5529 case Instruction::FPExt:
5530 case Instruction::PtrToInt:
5531 case Instruction::IntToPtr:
5532 case Instruction::SIToFP:
5533 case Instruction::UIToFP:
5534 case Instruction::Trunc:
5535 case Instruction::FPTrunc:
5536 case Instruction::BitCast: {
5537 // We optimize the truncation of induction variable.
5538 // The cost of these is the same as the scalar operation.
5539 if (I->getOpcode() == Instruction::Trunc &&
5540 Legal->isInductionVariable(I->getOperand(0)))
5541 return TTI.getCastInstrCost(I->getOpcode(), I->getType(),
5542 I->getOperand(0)->getType());
5543
5544 Type *SrcScalarTy = I->getOperand(0)->getType();
5545 Type *SrcVecTy = ToVectorTy(SrcScalarTy, VF);
5546 if (VF > 1 && MinBWs.count(I)) {
5547 // This cast is going to be shrunk. This may remove the cast or it might
5548 // turn it into slightly different cast. For example, if MinBW == 16,
5549 // "zext i8 %1 to i32" becomes "zext i8 %1 to i16".
5550 //
5551 // Calculate the modified src and dest types.
5552 Type *MinVecTy = VectorTy;
5553 if (I->getOpcode() == Instruction::Trunc) {
5554 SrcVecTy = smallestIntegerVectorType(SrcVecTy, MinVecTy);
5555 VectorTy = largestIntegerVectorType(ToVectorTy(I->getType(), VF),
5556 MinVecTy);
5557 } else if (I->getOpcode() == Instruction::ZExt ||
5558 I->getOpcode() == Instruction::SExt) {
5559 SrcVecTy = largestIntegerVectorType(SrcVecTy, MinVecTy);
5560 VectorTy = smallestIntegerVectorType(ToVectorTy(I->getType(), VF),
5561 MinVecTy);
5562 }
5563 }
5564
5565 return TTI.getCastInstrCost(I->getOpcode(), VectorTy, SrcVecTy);
5566 }
5567 case Instruction::Call: {
5568 bool NeedToScalarize;
5569 CallInst *CI = cast<CallInst>(I);
5570 unsigned CallCost = getVectorCallCost(CI, VF, TTI, TLI, NeedToScalarize);
5571 if (getIntrinsicIDForCall(CI, TLI))
5572 return std::min(CallCost, getVectorIntrinsicCost(CI, VF, TTI, TLI));
5573 return CallCost;
5574 }
5575 default: {
5576 // We are scalarizing the instruction. Return the cost of the scalar
5577 // instruction, plus the cost of insert and extract into vector
5578 // elements, times the vector width.
5579 unsigned Cost = 0;
5580
5581 if (!RetTy->isVoidTy() && VF != 1) {
5582 unsigned InsCost = TTI.getVectorInstrCost(Instruction::InsertElement,
5583 VectorTy);
5584 unsigned ExtCost = TTI.getVectorInstrCost(Instruction::ExtractElement,
5585 VectorTy);
5586
5587 // The cost of inserting the results plus extracting each one of the
5588 // operands.
5589 Cost += VF * (InsCost + ExtCost * I->getNumOperands());
5590 }
5591
5592 // The cost of executing VF copies of the scalar instruction. This opcode
5593 // is unknown. Assume that it is the same as 'mul'.
5594 Cost += VF * TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy);
5595 return Cost;
5596 }
5597 }// end of switch.
5598 }
5599
5600 char LoopVectorize::ID = 0;
5601 static const char lv_name[] = "Loop Vectorization";
5602 INITIALIZE_PASS_BEGIN(LoopVectorize, LV_NAME, lv_name, false, false)
5603 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
5604 INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass)
5605 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
5606 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass)
5607 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
5608 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass)
5609 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
5610 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
5611 INITIALIZE_PASS_DEPENDENCY(LCSSA)
5612 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
5613 INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
5614 INITIALIZE_PASS_DEPENDENCY(LoopAccessAnalysis)
5615 INITIALIZE_PASS_DEPENDENCY(DemandedBits)
5616 INITIALIZE_PASS_END(LoopVectorize, LV_NAME, lv_name, false, false)
5617
5618 namespace llvm {
createLoopVectorizePass(bool NoUnrolling,bool AlwaysVectorize)5619 Pass *createLoopVectorizePass(bool NoUnrolling, bool AlwaysVectorize) {
5620 return new LoopVectorize(NoUnrolling, AlwaysVectorize);
5621 }
5622 }
5623
isConsecutiveLoadOrStore(Instruction * Inst)5624 bool LoopVectorizationCostModel::isConsecutiveLoadOrStore(Instruction *Inst) {
5625 // Check for a store.
5626 if (StoreInst *ST = dyn_cast<StoreInst>(Inst))
5627 return Legal->isConsecutivePtr(ST->getPointerOperand()) != 0;
5628
5629 // Check for a load.
5630 if (LoadInst *LI = dyn_cast<LoadInst>(Inst))
5631 return Legal->isConsecutivePtr(LI->getPointerOperand()) != 0;
5632
5633 return false;
5634 }
5635
collectValuesToIgnore()5636 void LoopVectorizationCostModel::collectValuesToIgnore() {
5637 // Ignore ephemeral values.
5638 CodeMetrics::collectEphemeralValues(TheLoop, AC, ValuesToIgnore);
5639
5640 // Ignore type-promoting instructions we identified during reduction
5641 // detection.
5642 for (auto &Reduction : *Legal->getReductionVars()) {
5643 RecurrenceDescriptor &RedDes = Reduction.second;
5644 SmallPtrSetImpl<Instruction *> &Casts = RedDes.getCastInsts();
5645 VecValuesToIgnore.insert(Casts.begin(), Casts.end());
5646 }
5647
5648 // Ignore induction phis that are only used in either GetElementPtr or ICmp
5649 // instruction to exit loop. Induction variables usually have large types and
5650 // can have big impact when estimating register usage.
5651 // This is for when VF > 1.
5652 for (auto &Induction : *Legal->getInductionVars()) {
5653 auto *PN = Induction.first;
5654 auto *UpdateV = PN->getIncomingValueForBlock(TheLoop->getLoopLatch());
5655
5656 // Check that the PHI is only used by the induction increment (UpdateV) or
5657 // by GEPs. Then check that UpdateV is only used by a compare instruction or
5658 // the loop header PHI.
5659 // FIXME: Need precise def-use analysis to determine if this instruction
5660 // variable will be vectorized.
5661 if (std::all_of(PN->user_begin(), PN->user_end(),
5662 [&](const User *U) -> bool {
5663 return U == UpdateV || isa<GetElementPtrInst>(U);
5664 }) &&
5665 std::all_of(UpdateV->user_begin(), UpdateV->user_end(),
5666 [&](const User *U) -> bool {
5667 return U == PN || isa<ICmpInst>(U);
5668 })) {
5669 VecValuesToIgnore.insert(PN);
5670 VecValuesToIgnore.insert(UpdateV);
5671 }
5672 }
5673
5674 // Ignore instructions that will not be vectorized.
5675 // This is for when VF > 1.
5676 for (auto bb = TheLoop->block_begin(), be = TheLoop->block_end(); bb != be;
5677 ++bb) {
5678 for (auto &Inst : **bb) {
5679 switch (Inst.getOpcode()) {
5680 case Instruction::GetElementPtr: {
5681 // Ignore GEP if its last operand is an induction variable so that it is
5682 // a consecutive load/store and won't be vectorized as scatter/gather
5683 // pattern.
5684
5685 GetElementPtrInst *Gep = cast<GetElementPtrInst>(&Inst);
5686 unsigned NumOperands = Gep->getNumOperands();
5687 unsigned InductionOperand = getGEPInductionOperand(Gep);
5688 bool GepToIgnore = true;
5689
5690 // Check that all of the gep indices are uniform except for the
5691 // induction operand.
5692 for (unsigned i = 0; i != NumOperands; ++i) {
5693 if (i != InductionOperand &&
5694 !PSE.getSE()->isLoopInvariant(PSE.getSCEV(Gep->getOperand(i)),
5695 TheLoop)) {
5696 GepToIgnore = false;
5697 break;
5698 }
5699 }
5700
5701 if (GepToIgnore)
5702 VecValuesToIgnore.insert(&Inst);
5703 break;
5704 }
5705 }
5706 }
5707 }
5708 }
5709
scalarizeInstruction(Instruction * Instr,bool IfPredicateStore)5710 void InnerLoopUnroller::scalarizeInstruction(Instruction *Instr,
5711 bool IfPredicateStore) {
5712 assert(!Instr->getType()->isAggregateType() && "Can't handle vectors");
5713 // Holds vector parameters or scalars, in case of uniform vals.
5714 SmallVector<VectorParts, 4> Params;
5715
5716 setDebugLocFromInst(Builder, Instr);
5717
5718 // Find all of the vectorized parameters.
5719 for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) {
5720 Value *SrcOp = Instr->getOperand(op);
5721
5722 // If we are accessing the old induction variable, use the new one.
5723 if (SrcOp == OldInduction) {
5724 Params.push_back(getVectorValue(SrcOp));
5725 continue;
5726 }
5727
5728 // Try using previously calculated values.
5729 Instruction *SrcInst = dyn_cast<Instruction>(SrcOp);
5730
5731 // If the src is an instruction that appeared earlier in the basic block
5732 // then it should already be vectorized.
5733 if (SrcInst && OrigLoop->contains(SrcInst)) {
5734 assert(WidenMap.has(SrcInst) && "Source operand is unavailable");
5735 // The parameter is a vector value from earlier.
5736 Params.push_back(WidenMap.get(SrcInst));
5737 } else {
5738 // The parameter is a scalar from outside the loop. Maybe even a constant.
5739 VectorParts Scalars;
5740 Scalars.append(UF, SrcOp);
5741 Params.push_back(Scalars);
5742 }
5743 }
5744
5745 assert(Params.size() == Instr->getNumOperands() &&
5746 "Invalid number of operands");
5747
5748 // Does this instruction return a value ?
5749 bool IsVoidRetTy = Instr->getType()->isVoidTy();
5750
5751 Value *UndefVec = IsVoidRetTy ? nullptr :
5752 UndefValue::get(Instr->getType());
5753 // Create a new entry in the WidenMap and initialize it to Undef or Null.
5754 VectorParts &VecResults = WidenMap.splat(Instr, UndefVec);
5755
5756 VectorParts Cond;
5757 if (IfPredicateStore) {
5758 assert(Instr->getParent()->getSinglePredecessor() &&
5759 "Only support single predecessor blocks");
5760 Cond = createEdgeMask(Instr->getParent()->getSinglePredecessor(),
5761 Instr->getParent());
5762 }
5763
5764 // For each vector unroll 'part':
5765 for (unsigned Part = 0; Part < UF; ++Part) {
5766 // For each scalar that we create:
5767
5768 // Start an "if (pred) a[i] = ..." block.
5769 Value *Cmp = nullptr;
5770 if (IfPredicateStore) {
5771 if (Cond[Part]->getType()->isVectorTy())
5772 Cond[Part] =
5773 Builder.CreateExtractElement(Cond[Part], Builder.getInt32(0));
5774 Cmp = Builder.CreateICmp(ICmpInst::ICMP_EQ, Cond[Part],
5775 ConstantInt::get(Cond[Part]->getType(), 1));
5776 }
5777
5778 Instruction *Cloned = Instr->clone();
5779 if (!IsVoidRetTy)
5780 Cloned->setName(Instr->getName() + ".cloned");
5781 // Replace the operands of the cloned instructions with extracted scalars.
5782 for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) {
5783 Value *Op = Params[op][Part];
5784 Cloned->setOperand(op, Op);
5785 }
5786
5787 // Place the cloned scalar in the new loop.
5788 Builder.Insert(Cloned);
5789
5790 // If the original scalar returns a value we need to place it in a vector
5791 // so that future users will be able to use it.
5792 if (!IsVoidRetTy)
5793 VecResults[Part] = Cloned;
5794
5795 // End if-block.
5796 if (IfPredicateStore)
5797 PredicatedStores.push_back(std::make_pair(cast<StoreInst>(Cloned),
5798 Cmp));
5799 }
5800 }
5801
vectorizeMemoryInstruction(Instruction * Instr)5802 void InnerLoopUnroller::vectorizeMemoryInstruction(Instruction *Instr) {
5803 StoreInst *SI = dyn_cast<StoreInst>(Instr);
5804 bool IfPredicateStore = (SI && Legal->blockNeedsPredication(SI->getParent()));
5805
5806 return scalarizeInstruction(Instr, IfPredicateStore);
5807 }
5808
reverseVector(Value * Vec)5809 Value *InnerLoopUnroller::reverseVector(Value *Vec) {
5810 return Vec;
5811 }
5812
getBroadcastInstrs(Value * V)5813 Value *InnerLoopUnroller::getBroadcastInstrs(Value *V) {
5814 return V;
5815 }
5816
getStepVector(Value * Val,int StartIdx,Value * Step)5817 Value *InnerLoopUnroller::getStepVector(Value *Val, int StartIdx, Value *Step) {
5818 // When unrolling and the VF is 1, we only need to add a simple scalar.
5819 Type *ITy = Val->getType();
5820 assert(!ITy->isVectorTy() && "Val must be a scalar");
5821 Constant *C = ConstantInt::get(ITy, StartIdx);
5822 return Builder.CreateAdd(Val, Builder.CreateMul(C, Step), "induction");
5823 }
5824