1 //===-- LegalizeDAG.cpp - Implement SelectionDAG::Legalize ----------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the SelectionDAG::Legalize method.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "llvm/CodeGen/SelectionDAG.h"
15 #include "llvm/ADT/SetVector.h"
16 #include "llvm/ADT/SmallPtrSet.h"
17 #include "llvm/ADT/SmallSet.h"
18 #include "llvm/ADT/SmallVector.h"
19 #include "llvm/ADT/Triple.h"
20 #include "llvm/CodeGen/Analysis.h"
21 #include "llvm/CodeGen/MachineFunction.h"
22 #include "llvm/CodeGen/MachineJumpTableInfo.h"
23 #include "llvm/IR/CallingConv.h"
24 #include "llvm/IR/Constants.h"
25 #include "llvm/IR/DataLayout.h"
26 #include "llvm/IR/DebugInfo.h"
27 #include "llvm/IR/DerivedTypes.h"
28 #include "llvm/IR/Function.h"
29 #include "llvm/IR/LLVMContext.h"
30 #include "llvm/Support/Debug.h"
31 #include "llvm/Support/ErrorHandling.h"
32 #include "llvm/Support/MathExtras.h"
33 #include "llvm/Support/raw_ostream.h"
34 #include "llvm/Target/TargetFrameLowering.h"
35 #include "llvm/Target/TargetLowering.h"
36 #include "llvm/Target/TargetMachine.h"
37 #include "llvm/Target/TargetSubtargetInfo.h"
38 using namespace llvm;
39
40 #define DEBUG_TYPE "legalizedag"
41
42 namespace {
43
44 struct FloatSignAsInt;
45
46 //===----------------------------------------------------------------------===//
47 /// This takes an arbitrary SelectionDAG as input and
48 /// hacks on it until the target machine can handle it. This involves
49 /// eliminating value sizes the machine cannot handle (promoting small sizes to
50 /// large sizes or splitting up large values into small values) as well as
51 /// eliminating operations the machine cannot handle.
52 ///
53 /// This code also does a small amount of optimization and recognition of idioms
54 /// as part of its processing. For example, if a target does not support a
55 /// 'setcc' instruction efficiently, but does support 'brcc' instruction, this
56 /// will attempt merge setcc and brc instructions into brcc's.
57 ///
58 class SelectionDAGLegalize {
59 const TargetMachine &TM;
60 const TargetLowering &TLI;
61 SelectionDAG &DAG;
62
63 /// \brief The set of nodes which have already been legalized. We hold a
64 /// reference to it in order to update as necessary on node deletion.
65 SmallPtrSetImpl<SDNode *> &LegalizedNodes;
66
67 /// \brief A set of all the nodes updated during legalization.
68 SmallSetVector<SDNode *, 16> *UpdatedNodes;
69
getSetCCResultType(EVT VT) const70 EVT getSetCCResultType(EVT VT) const {
71 return TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
72 }
73
74 // Libcall insertion helpers.
75
76 public:
SelectionDAGLegalize(SelectionDAG & DAG,SmallPtrSetImpl<SDNode * > & LegalizedNodes,SmallSetVector<SDNode *,16> * UpdatedNodes=nullptr)77 SelectionDAGLegalize(SelectionDAG &DAG,
78 SmallPtrSetImpl<SDNode *> &LegalizedNodes,
79 SmallSetVector<SDNode *, 16> *UpdatedNodes = nullptr)
80 : TM(DAG.getTarget()), TLI(DAG.getTargetLoweringInfo()), DAG(DAG),
81 LegalizedNodes(LegalizedNodes), UpdatedNodes(UpdatedNodes) {}
82
83 /// \brief Legalizes the given operation.
84 void LegalizeOp(SDNode *Node);
85
86 private:
87 SDValue OptimizeFloatStore(StoreSDNode *ST);
88
89 void LegalizeLoadOps(SDNode *Node);
90 void LegalizeStoreOps(SDNode *Node);
91
92 /// Some targets cannot handle a variable
93 /// insertion index for the INSERT_VECTOR_ELT instruction. In this case, it
94 /// is necessary to spill the vector being inserted into to memory, perform
95 /// the insert there, and then read the result back.
96 SDValue PerformInsertVectorEltInMemory(SDValue Vec, SDValue Val,
97 SDValue Idx, SDLoc dl);
98 SDValue ExpandINSERT_VECTOR_ELT(SDValue Vec, SDValue Val,
99 SDValue Idx, SDLoc dl);
100
101 /// Return a vector shuffle operation which
102 /// performs the same shuffe in terms of order or result bytes, but on a type
103 /// whose vector element type is narrower than the original shuffle type.
104 /// e.g. <v4i32> <0, 1, 0, 1> -> v8i16 <0, 1, 2, 3, 0, 1, 2, 3>
105 SDValue ShuffleWithNarrowerEltType(EVT NVT, EVT VT, SDLoc dl,
106 SDValue N1, SDValue N2,
107 ArrayRef<int> Mask) const;
108
109 bool LegalizeSetCCCondCode(EVT VT, SDValue &LHS, SDValue &RHS, SDValue &CC,
110 bool &NeedInvert, SDLoc dl);
111
112 SDValue ExpandLibCall(RTLIB::Libcall LC, SDNode *Node, bool isSigned);
113 SDValue ExpandLibCall(RTLIB::Libcall LC, EVT RetVT, const SDValue *Ops,
114 unsigned NumOps, bool isSigned, SDLoc dl);
115
116 std::pair<SDValue, SDValue> ExpandChainLibCall(RTLIB::Libcall LC,
117 SDNode *Node, bool isSigned);
118 SDValue ExpandFPLibCall(SDNode *Node, RTLIB::Libcall Call_F32,
119 RTLIB::Libcall Call_F64, RTLIB::Libcall Call_F80,
120 RTLIB::Libcall Call_F128,
121 RTLIB::Libcall Call_PPCF128);
122 SDValue ExpandIntLibCall(SDNode *Node, bool isSigned,
123 RTLIB::Libcall Call_I8,
124 RTLIB::Libcall Call_I16,
125 RTLIB::Libcall Call_I32,
126 RTLIB::Libcall Call_I64,
127 RTLIB::Libcall Call_I128);
128 void ExpandDivRemLibCall(SDNode *Node, SmallVectorImpl<SDValue> &Results);
129 void ExpandSinCosLibCall(SDNode *Node, SmallVectorImpl<SDValue> &Results);
130
131 SDValue EmitStackConvert(SDValue SrcOp, EVT SlotVT, EVT DestVT, SDLoc dl);
132 SDValue ExpandBUILD_VECTOR(SDNode *Node);
133 SDValue ExpandSCALAR_TO_VECTOR(SDNode *Node);
134 void ExpandDYNAMIC_STACKALLOC(SDNode *Node,
135 SmallVectorImpl<SDValue> &Results);
136 void getSignAsIntValue(FloatSignAsInt &State, SDLoc DL, SDValue Value) const;
137 SDValue modifySignAsInt(const FloatSignAsInt &State, SDLoc DL,
138 SDValue NewIntValue) const;
139 SDValue ExpandFCOPYSIGN(SDNode *Node) const;
140 SDValue ExpandFABS(SDNode *Node) const;
141 SDValue ExpandLegalINT_TO_FP(bool isSigned, SDValue LegalOp, EVT DestVT,
142 SDLoc dl);
143 SDValue PromoteLegalINT_TO_FP(SDValue LegalOp, EVT DestVT, bool isSigned,
144 SDLoc dl);
145 SDValue PromoteLegalFP_TO_INT(SDValue LegalOp, EVT DestVT, bool isSigned,
146 SDLoc dl);
147
148 SDValue ExpandBITREVERSE(SDValue Op, SDLoc dl);
149 SDValue ExpandBSWAP(SDValue Op, SDLoc dl);
150 SDValue ExpandBitCount(unsigned Opc, SDValue Op, SDLoc dl);
151
152 SDValue ExpandExtractFromVectorThroughStack(SDValue Op);
153 SDValue ExpandInsertToVectorThroughStack(SDValue Op);
154 SDValue ExpandVectorBuildThroughStack(SDNode* Node);
155
156 SDValue ExpandConstantFP(ConstantFPSDNode *CFP, bool UseCP);
157 SDValue ExpandConstant(ConstantSDNode *CP);
158
159 // if ExpandNode returns false, LegalizeOp falls back to ConvertNodeToLibcall
160 bool ExpandNode(SDNode *Node);
161 void ConvertNodeToLibcall(SDNode *Node);
162 void PromoteNode(SDNode *Node);
163
164 public:
165 // Node replacement helpers
ReplacedNode(SDNode * N)166 void ReplacedNode(SDNode *N) {
167 LegalizedNodes.erase(N);
168 if (UpdatedNodes)
169 UpdatedNodes->insert(N);
170 }
ReplaceNode(SDNode * Old,SDNode * New)171 void ReplaceNode(SDNode *Old, SDNode *New) {
172 DEBUG(dbgs() << " ... replacing: "; Old->dump(&DAG);
173 dbgs() << " with: "; New->dump(&DAG));
174
175 assert(Old->getNumValues() == New->getNumValues() &&
176 "Replacing one node with another that produces a different number "
177 "of values!");
178 DAG.ReplaceAllUsesWith(Old, New);
179 for (unsigned i = 0, e = Old->getNumValues(); i != e; ++i)
180 DAG.TransferDbgValues(SDValue(Old, i), SDValue(New, i));
181 if (UpdatedNodes)
182 UpdatedNodes->insert(New);
183 ReplacedNode(Old);
184 }
ReplaceNode(SDValue Old,SDValue New)185 void ReplaceNode(SDValue Old, SDValue New) {
186 DEBUG(dbgs() << " ... replacing: "; Old->dump(&DAG);
187 dbgs() << " with: "; New->dump(&DAG));
188
189 DAG.ReplaceAllUsesWith(Old, New);
190 DAG.TransferDbgValues(Old, New);
191 if (UpdatedNodes)
192 UpdatedNodes->insert(New.getNode());
193 ReplacedNode(Old.getNode());
194 }
ReplaceNode(SDNode * Old,const SDValue * New)195 void ReplaceNode(SDNode *Old, const SDValue *New) {
196 DEBUG(dbgs() << " ... replacing: "; Old->dump(&DAG));
197
198 DAG.ReplaceAllUsesWith(Old, New);
199 for (unsigned i = 0, e = Old->getNumValues(); i != e; ++i) {
200 DEBUG(dbgs() << (i == 0 ? " with: "
201 : " and: ");
202 New[i]->dump(&DAG));
203 DAG.TransferDbgValues(SDValue(Old, i), New[i]);
204 if (UpdatedNodes)
205 UpdatedNodes->insert(New[i].getNode());
206 }
207 ReplacedNode(Old);
208 }
209 };
210 }
211
212 /// Return a vector shuffle operation which
213 /// performs the same shuffe in terms of order or result bytes, but on a type
214 /// whose vector element type is narrower than the original shuffle type.
215 /// e.g. <v4i32> <0, 1, 0, 1> -> v8i16 <0, 1, 2, 3, 0, 1, 2, 3>
216 SDValue
ShuffleWithNarrowerEltType(EVT NVT,EVT VT,SDLoc dl,SDValue N1,SDValue N2,ArrayRef<int> Mask) const217 SelectionDAGLegalize::ShuffleWithNarrowerEltType(EVT NVT, EVT VT, SDLoc dl,
218 SDValue N1, SDValue N2,
219 ArrayRef<int> Mask) const {
220 unsigned NumMaskElts = VT.getVectorNumElements();
221 unsigned NumDestElts = NVT.getVectorNumElements();
222 unsigned NumEltsGrowth = NumDestElts / NumMaskElts;
223
224 assert(NumEltsGrowth && "Cannot promote to vector type with fewer elts!");
225
226 if (NumEltsGrowth == 1)
227 return DAG.getVectorShuffle(NVT, dl, N1, N2, &Mask[0]);
228
229 SmallVector<int, 8> NewMask;
230 for (unsigned i = 0; i != NumMaskElts; ++i) {
231 int Idx = Mask[i];
232 for (unsigned j = 0; j != NumEltsGrowth; ++j) {
233 if (Idx < 0)
234 NewMask.push_back(-1);
235 else
236 NewMask.push_back(Idx * NumEltsGrowth + j);
237 }
238 }
239 assert(NewMask.size() == NumDestElts && "Non-integer NumEltsGrowth?");
240 assert(TLI.isShuffleMaskLegal(NewMask, NVT) && "Shuffle not legal?");
241 return DAG.getVectorShuffle(NVT, dl, N1, N2, &NewMask[0]);
242 }
243
244 /// Expands the ConstantFP node to an integer constant or
245 /// a load from the constant pool.
246 SDValue
ExpandConstantFP(ConstantFPSDNode * CFP,bool UseCP)247 SelectionDAGLegalize::ExpandConstantFP(ConstantFPSDNode *CFP, bool UseCP) {
248 bool Extend = false;
249 SDLoc dl(CFP);
250
251 // If a FP immediate is precise when represented as a float and if the
252 // target can do an extending load from float to double, we put it into
253 // the constant pool as a float, even if it's is statically typed as a
254 // double. This shrinks FP constants and canonicalizes them for targets where
255 // an FP extending load is the same cost as a normal load (such as on the x87
256 // fp stack or PPC FP unit).
257 EVT VT = CFP->getValueType(0);
258 ConstantFP *LLVMC = const_cast<ConstantFP*>(CFP->getConstantFPValue());
259 if (!UseCP) {
260 assert((VT == MVT::f64 || VT == MVT::f32) && "Invalid type expansion");
261 return DAG.getConstant(LLVMC->getValueAPF().bitcastToAPInt(), dl,
262 (VT == MVT::f64) ? MVT::i64 : MVT::i32);
263 }
264
265 EVT OrigVT = VT;
266 EVT SVT = VT;
267 while (SVT != MVT::f32 && SVT != MVT::f16) {
268 SVT = (MVT::SimpleValueType)(SVT.getSimpleVT().SimpleTy - 1);
269 if (ConstantFPSDNode::isValueValidForType(SVT, CFP->getValueAPF()) &&
270 // Only do this if the target has a native EXTLOAD instruction from
271 // smaller type.
272 TLI.isLoadExtLegal(ISD::EXTLOAD, OrigVT, SVT) &&
273 TLI.ShouldShrinkFPConstant(OrigVT)) {
274 Type *SType = SVT.getTypeForEVT(*DAG.getContext());
275 LLVMC = cast<ConstantFP>(ConstantExpr::getFPTrunc(LLVMC, SType));
276 VT = SVT;
277 Extend = true;
278 }
279 }
280
281 SDValue CPIdx =
282 DAG.getConstantPool(LLVMC, TLI.getPointerTy(DAG.getDataLayout()));
283 unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment();
284 if (Extend) {
285 SDValue Result = DAG.getExtLoad(
286 ISD::EXTLOAD, dl, OrigVT, DAG.getEntryNode(), CPIdx,
287 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), VT,
288 false, false, false, Alignment);
289 return Result;
290 }
291 SDValue Result =
292 DAG.getLoad(OrigVT, dl, DAG.getEntryNode(), CPIdx,
293 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()),
294 false, false, false, Alignment);
295 return Result;
296 }
297
298 /// Expands the Constant node to a load from the constant pool.
ExpandConstant(ConstantSDNode * CP)299 SDValue SelectionDAGLegalize::ExpandConstant(ConstantSDNode *CP) {
300 SDLoc dl(CP);
301 EVT VT = CP->getValueType(0);
302 SDValue CPIdx = DAG.getConstantPool(CP->getConstantIntValue(),
303 TLI.getPointerTy(DAG.getDataLayout()));
304 unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment();
305 SDValue Result =
306 DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
307 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()),
308 false, false, false, Alignment);
309 return Result;
310 }
311
312 /// Expands an unaligned store to 2 half-size stores.
ExpandUnalignedStore(StoreSDNode * ST,SelectionDAG & DAG,const TargetLowering & TLI,SelectionDAGLegalize * DAGLegalize)313 static void ExpandUnalignedStore(StoreSDNode *ST, SelectionDAG &DAG,
314 const TargetLowering &TLI,
315 SelectionDAGLegalize *DAGLegalize) {
316 assert(ST->getAddressingMode() == ISD::UNINDEXED &&
317 "unaligned indexed stores not implemented!");
318 SDValue Chain = ST->getChain();
319 SDValue Ptr = ST->getBasePtr();
320 SDValue Val = ST->getValue();
321 EVT VT = Val.getValueType();
322 int Alignment = ST->getAlignment();
323 unsigned AS = ST->getAddressSpace();
324
325 SDLoc dl(ST);
326 if (ST->getMemoryVT().isFloatingPoint() ||
327 ST->getMemoryVT().isVector()) {
328 EVT intVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits());
329 if (TLI.isTypeLegal(intVT)) {
330 // Expand to a bitconvert of the value to the integer type of the
331 // same size, then a (misaligned) int store.
332 // FIXME: Does not handle truncating floating point stores!
333 SDValue Result = DAG.getNode(ISD::BITCAST, dl, intVT, Val);
334 Result = DAG.getStore(Chain, dl, Result, Ptr, ST->getPointerInfo(),
335 ST->isVolatile(), ST->isNonTemporal(), Alignment);
336 DAGLegalize->ReplaceNode(SDValue(ST, 0), Result);
337 return;
338 }
339 // Do a (aligned) store to a stack slot, then copy from the stack slot
340 // to the final destination using (unaligned) integer loads and stores.
341 EVT StoredVT = ST->getMemoryVT();
342 MVT RegVT =
343 TLI.getRegisterType(*DAG.getContext(),
344 EVT::getIntegerVT(*DAG.getContext(),
345 StoredVT.getSizeInBits()));
346 unsigned StoredBytes = StoredVT.getSizeInBits() / 8;
347 unsigned RegBytes = RegVT.getSizeInBits() / 8;
348 unsigned NumRegs = (StoredBytes + RegBytes - 1) / RegBytes;
349
350 // Make sure the stack slot is also aligned for the register type.
351 SDValue StackPtr = DAG.CreateStackTemporary(StoredVT, RegVT);
352
353 // Perform the original store, only redirected to the stack slot.
354 SDValue Store = DAG.getTruncStore(Chain, dl,
355 Val, StackPtr, MachinePointerInfo(),
356 StoredVT, false, false, 0);
357 SDValue Increment = DAG.getConstant(
358 RegBytes, dl, TLI.getPointerTy(DAG.getDataLayout(), AS));
359 SmallVector<SDValue, 8> Stores;
360 unsigned Offset = 0;
361
362 // Do all but one copies using the full register width.
363 for (unsigned i = 1; i < NumRegs; i++) {
364 // Load one integer register's worth from the stack slot.
365 SDValue Load = DAG.getLoad(RegVT, dl, Store, StackPtr,
366 MachinePointerInfo(),
367 false, false, false, 0);
368 // Store it to the final location. Remember the store.
369 Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, Ptr,
370 ST->getPointerInfo().getWithOffset(Offset),
371 ST->isVolatile(), ST->isNonTemporal(),
372 MinAlign(ST->getAlignment(), Offset)));
373 // Increment the pointers.
374 Offset += RegBytes;
375 StackPtr = DAG.getNode(ISD::ADD, dl, StackPtr.getValueType(), StackPtr,
376 Increment);
377 Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment);
378 }
379
380 // The last store may be partial. Do a truncating store. On big-endian
381 // machines this requires an extending load from the stack slot to ensure
382 // that the bits are in the right place.
383 EVT MemVT = EVT::getIntegerVT(*DAG.getContext(),
384 8 * (StoredBytes - Offset));
385
386 // Load from the stack slot.
387 SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Store, StackPtr,
388 MachinePointerInfo(),
389 MemVT, false, false, false, 0);
390
391 Stores.push_back(DAG.getTruncStore(Load.getValue(1), dl, Load, Ptr,
392 ST->getPointerInfo()
393 .getWithOffset(Offset),
394 MemVT, ST->isVolatile(),
395 ST->isNonTemporal(),
396 MinAlign(ST->getAlignment(), Offset),
397 ST->getAAInfo()));
398 // The order of the stores doesn't matter - say it with a TokenFactor.
399 SDValue Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
400 DAGLegalize->ReplaceNode(SDValue(ST, 0), Result);
401 return;
402 }
403 assert(ST->getMemoryVT().isInteger() &&
404 !ST->getMemoryVT().isVector() &&
405 "Unaligned store of unknown type.");
406 // Get the half-size VT
407 EVT NewStoredVT = ST->getMemoryVT().getHalfSizedIntegerVT(*DAG.getContext());
408 int NumBits = NewStoredVT.getSizeInBits();
409 int IncrementSize = NumBits / 8;
410
411 // Divide the stored value in two parts.
412 SDValue ShiftAmount =
413 DAG.getConstant(NumBits, dl, TLI.getShiftAmountTy(Val.getValueType(),
414 DAG.getDataLayout()));
415 SDValue Lo = Val;
416 SDValue Hi = DAG.getNode(ISD::SRL, dl, VT, Val, ShiftAmount);
417
418 // Store the two parts
419 SDValue Store1, Store2;
420 Store1 = DAG.getTruncStore(Chain, dl,
421 DAG.getDataLayout().isLittleEndian() ? Lo : Hi,
422 Ptr, ST->getPointerInfo(), NewStoredVT,
423 ST->isVolatile(), ST->isNonTemporal(), Alignment);
424
425 Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
426 DAG.getConstant(IncrementSize, dl,
427 TLI.getPointerTy(DAG.getDataLayout(), AS)));
428 Alignment = MinAlign(Alignment, IncrementSize);
429 Store2 = DAG.getTruncStore(
430 Chain, dl, DAG.getDataLayout().isLittleEndian() ? Hi : Lo, Ptr,
431 ST->getPointerInfo().getWithOffset(IncrementSize), NewStoredVT,
432 ST->isVolatile(), ST->isNonTemporal(), Alignment, ST->getAAInfo());
433
434 SDValue Result =
435 DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Store1, Store2);
436 DAGLegalize->ReplaceNode(SDValue(ST, 0), Result);
437 }
438
439 /// Expands an unaligned load to 2 half-size loads.
440 static void
ExpandUnalignedLoad(LoadSDNode * LD,SelectionDAG & DAG,const TargetLowering & TLI,SDValue & ValResult,SDValue & ChainResult)441 ExpandUnalignedLoad(LoadSDNode *LD, SelectionDAG &DAG,
442 const TargetLowering &TLI,
443 SDValue &ValResult, SDValue &ChainResult) {
444 assert(LD->getAddressingMode() == ISD::UNINDEXED &&
445 "unaligned indexed loads not implemented!");
446 SDValue Chain = LD->getChain();
447 SDValue Ptr = LD->getBasePtr();
448 EVT VT = LD->getValueType(0);
449 EVT LoadedVT = LD->getMemoryVT();
450 SDLoc dl(LD);
451 if (VT.isFloatingPoint() || VT.isVector()) {
452 EVT intVT = EVT::getIntegerVT(*DAG.getContext(), LoadedVT.getSizeInBits());
453 if (TLI.isTypeLegal(intVT) && TLI.isTypeLegal(LoadedVT)) {
454 // Expand to a (misaligned) integer load of the same size,
455 // then bitconvert to floating point or vector.
456 SDValue newLoad = DAG.getLoad(intVT, dl, Chain, Ptr,
457 LD->getMemOperand());
458 SDValue Result = DAG.getNode(ISD::BITCAST, dl, LoadedVT, newLoad);
459 if (LoadedVT != VT)
460 Result = DAG.getNode(VT.isFloatingPoint() ? ISD::FP_EXTEND :
461 ISD::ANY_EXTEND, dl, VT, Result);
462
463 ValResult = Result;
464 ChainResult = newLoad.getValue(1);
465 return;
466 }
467
468 // Copy the value to a (aligned) stack slot using (unaligned) integer
469 // loads and stores, then do a (aligned) load from the stack slot.
470 MVT RegVT = TLI.getRegisterType(*DAG.getContext(), intVT);
471 unsigned LoadedBytes = LoadedVT.getSizeInBits() / 8;
472 unsigned RegBytes = RegVT.getSizeInBits() / 8;
473 unsigned NumRegs = (LoadedBytes + RegBytes - 1) / RegBytes;
474
475 // Make sure the stack slot is also aligned for the register type.
476 SDValue StackBase = DAG.CreateStackTemporary(LoadedVT, RegVT);
477
478 SDValue Increment =
479 DAG.getConstant(RegBytes, dl, TLI.getPointerTy(DAG.getDataLayout()));
480 SmallVector<SDValue, 8> Stores;
481 SDValue StackPtr = StackBase;
482 unsigned Offset = 0;
483
484 // Do all but one copies using the full register width.
485 for (unsigned i = 1; i < NumRegs; i++) {
486 // Load one integer register's worth from the original location.
487 SDValue Load = DAG.getLoad(RegVT, dl, Chain, Ptr,
488 LD->getPointerInfo().getWithOffset(Offset),
489 LD->isVolatile(), LD->isNonTemporal(),
490 LD->isInvariant(),
491 MinAlign(LD->getAlignment(), Offset),
492 LD->getAAInfo());
493 // Follow the load with a store to the stack slot. Remember the store.
494 Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, StackPtr,
495 MachinePointerInfo(), false, false, 0));
496 // Increment the pointers.
497 Offset += RegBytes;
498 Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment);
499 StackPtr = DAG.getNode(ISD::ADD, dl, StackPtr.getValueType(), StackPtr,
500 Increment);
501 }
502
503 // The last copy may be partial. Do an extending load.
504 EVT MemVT = EVT::getIntegerVT(*DAG.getContext(),
505 8 * (LoadedBytes - Offset));
506 SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Chain, Ptr,
507 LD->getPointerInfo().getWithOffset(Offset),
508 MemVT, LD->isVolatile(),
509 LD->isNonTemporal(),
510 LD->isInvariant(),
511 MinAlign(LD->getAlignment(), Offset),
512 LD->getAAInfo());
513 // Follow the load with a store to the stack slot. Remember the store.
514 // On big-endian machines this requires a truncating store to ensure
515 // that the bits end up in the right place.
516 Stores.push_back(DAG.getTruncStore(Load.getValue(1), dl, Load, StackPtr,
517 MachinePointerInfo(), MemVT,
518 false, false, 0));
519
520 // The order of the stores doesn't matter - say it with a TokenFactor.
521 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
522
523 // Finally, perform the original load only redirected to the stack slot.
524 Load = DAG.getExtLoad(LD->getExtensionType(), dl, VT, TF, StackBase,
525 MachinePointerInfo(), LoadedVT, false,false, false,
526 0);
527
528 // Callers expect a MERGE_VALUES node.
529 ValResult = Load;
530 ChainResult = TF;
531 return;
532 }
533 assert(LoadedVT.isInteger() && !LoadedVT.isVector() &&
534 "Unaligned load of unsupported type.");
535
536 // Compute the new VT that is half the size of the old one. This is an
537 // integer MVT.
538 unsigned NumBits = LoadedVT.getSizeInBits();
539 EVT NewLoadedVT;
540 NewLoadedVT = EVT::getIntegerVT(*DAG.getContext(), NumBits/2);
541 NumBits >>= 1;
542
543 unsigned Alignment = LD->getAlignment();
544 unsigned IncrementSize = NumBits / 8;
545 ISD::LoadExtType HiExtType = LD->getExtensionType();
546
547 // If the original load is NON_EXTLOAD, the hi part load must be ZEXTLOAD.
548 if (HiExtType == ISD::NON_EXTLOAD)
549 HiExtType = ISD::ZEXTLOAD;
550
551 // Load the value in two parts
552 SDValue Lo, Hi;
553 if (DAG.getDataLayout().isLittleEndian()) {
554 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, LD->getPointerInfo(),
555 NewLoadedVT, LD->isVolatile(),
556 LD->isNonTemporal(), LD->isInvariant(), Alignment,
557 LD->getAAInfo());
558 Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
559 DAG.getConstant(IncrementSize, dl, Ptr.getValueType()));
560 Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr,
561 LD->getPointerInfo().getWithOffset(IncrementSize),
562 NewLoadedVT, LD->isVolatile(),
563 LD->isNonTemporal(),LD->isInvariant(),
564 MinAlign(Alignment, IncrementSize), LD->getAAInfo());
565 } else {
566 Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, LD->getPointerInfo(),
567 NewLoadedVT, LD->isVolatile(),
568 LD->isNonTemporal(), LD->isInvariant(), Alignment,
569 LD->getAAInfo());
570 Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
571 DAG.getConstant(IncrementSize, dl, Ptr.getValueType()));
572 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr,
573 LD->getPointerInfo().getWithOffset(IncrementSize),
574 NewLoadedVT, LD->isVolatile(),
575 LD->isNonTemporal(), LD->isInvariant(),
576 MinAlign(Alignment, IncrementSize), LD->getAAInfo());
577 }
578
579 // aggregate the two parts
580 SDValue ShiftAmount =
581 DAG.getConstant(NumBits, dl, TLI.getShiftAmountTy(Hi.getValueType(),
582 DAG.getDataLayout()));
583 SDValue Result = DAG.getNode(ISD::SHL, dl, VT, Hi, ShiftAmount);
584 Result = DAG.getNode(ISD::OR, dl, VT, Result, Lo);
585
586 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
587 Hi.getValue(1));
588
589 ValResult = Result;
590 ChainResult = TF;
591 }
592
593 /// Some target cannot handle a variable insertion index for the
594 /// INSERT_VECTOR_ELT instruction. In this case, it
595 /// is necessary to spill the vector being inserted into to memory, perform
596 /// the insert there, and then read the result back.
597 SDValue SelectionDAGLegalize::
PerformInsertVectorEltInMemory(SDValue Vec,SDValue Val,SDValue Idx,SDLoc dl)598 PerformInsertVectorEltInMemory(SDValue Vec, SDValue Val, SDValue Idx,
599 SDLoc dl) {
600 SDValue Tmp1 = Vec;
601 SDValue Tmp2 = Val;
602 SDValue Tmp3 = Idx;
603
604 // If the target doesn't support this, we have to spill the input vector
605 // to a temporary stack slot, update the element, then reload it. This is
606 // badness. We could also load the value into a vector register (either
607 // with a "move to register" or "extload into register" instruction, then
608 // permute it into place, if the idx is a constant and if the idx is
609 // supported by the target.
610 EVT VT = Tmp1.getValueType();
611 EVT EltVT = VT.getVectorElementType();
612 EVT IdxVT = Tmp3.getValueType();
613 EVT PtrVT = TLI.getPointerTy(DAG.getDataLayout());
614 SDValue StackPtr = DAG.CreateStackTemporary(VT);
615
616 int SPFI = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex();
617
618 // Store the vector.
619 SDValue Ch = DAG.getStore(
620 DAG.getEntryNode(), dl, Tmp1, StackPtr,
621 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SPFI), false,
622 false, 0);
623
624 // Truncate or zero extend offset to target pointer type.
625 Tmp3 = DAG.getZExtOrTrunc(Tmp3, dl, PtrVT);
626 // Add the offset to the index.
627 unsigned EltSize = EltVT.getSizeInBits()/8;
628 Tmp3 = DAG.getNode(ISD::MUL, dl, IdxVT, Tmp3,
629 DAG.getConstant(EltSize, dl, IdxVT));
630 SDValue StackPtr2 = DAG.getNode(ISD::ADD, dl, IdxVT, Tmp3, StackPtr);
631 // Store the scalar value.
632 Ch = DAG.getTruncStore(Ch, dl, Tmp2, StackPtr2, MachinePointerInfo(), EltVT,
633 false, false, 0);
634 // Load the updated vector.
635 return DAG.getLoad(VT, dl, Ch, StackPtr, MachinePointerInfo::getFixedStack(
636 DAG.getMachineFunction(), SPFI),
637 false, false, false, 0);
638 }
639
640
641 SDValue SelectionDAGLegalize::
ExpandINSERT_VECTOR_ELT(SDValue Vec,SDValue Val,SDValue Idx,SDLoc dl)642 ExpandINSERT_VECTOR_ELT(SDValue Vec, SDValue Val, SDValue Idx, SDLoc dl) {
643 if (ConstantSDNode *InsertPos = dyn_cast<ConstantSDNode>(Idx)) {
644 // SCALAR_TO_VECTOR requires that the type of the value being inserted
645 // match the element type of the vector being created, except for
646 // integers in which case the inserted value can be over width.
647 EVT EltVT = Vec.getValueType().getVectorElementType();
648 if (Val.getValueType() == EltVT ||
649 (EltVT.isInteger() && Val.getValueType().bitsGE(EltVT))) {
650 SDValue ScVec = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
651 Vec.getValueType(), Val);
652
653 unsigned NumElts = Vec.getValueType().getVectorNumElements();
654 // We generate a shuffle of InVec and ScVec, so the shuffle mask
655 // should be 0,1,2,3,4,5... with the appropriate element replaced with
656 // elt 0 of the RHS.
657 SmallVector<int, 8> ShufOps;
658 for (unsigned i = 0; i != NumElts; ++i)
659 ShufOps.push_back(i != InsertPos->getZExtValue() ? i : NumElts);
660
661 return DAG.getVectorShuffle(Vec.getValueType(), dl, Vec, ScVec,
662 &ShufOps[0]);
663 }
664 }
665 return PerformInsertVectorEltInMemory(Vec, Val, Idx, dl);
666 }
667
OptimizeFloatStore(StoreSDNode * ST)668 SDValue SelectionDAGLegalize::OptimizeFloatStore(StoreSDNode* ST) {
669 // Turn 'store float 1.0, Ptr' -> 'store int 0x12345678, Ptr'
670 // FIXME: We shouldn't do this for TargetConstantFP's.
671 // FIXME: move this to the DAG Combiner! Note that we can't regress due
672 // to phase ordering between legalized code and the dag combiner. This
673 // probably means that we need to integrate dag combiner and legalizer
674 // together.
675 // We generally can't do this one for long doubles.
676 SDValue Chain = ST->getChain();
677 SDValue Ptr = ST->getBasePtr();
678 unsigned Alignment = ST->getAlignment();
679 bool isVolatile = ST->isVolatile();
680 bool isNonTemporal = ST->isNonTemporal();
681 AAMDNodes AAInfo = ST->getAAInfo();
682 SDLoc dl(ST);
683 if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(ST->getValue())) {
684 if (CFP->getValueType(0) == MVT::f32 &&
685 TLI.isTypeLegal(MVT::i32)) {
686 SDValue Con = DAG.getConstant(CFP->getValueAPF().
687 bitcastToAPInt().zextOrTrunc(32),
688 SDLoc(CFP), MVT::i32);
689 return DAG.getStore(Chain, dl, Con, Ptr, ST->getPointerInfo(),
690 isVolatile, isNonTemporal, Alignment, AAInfo);
691 }
692
693 if (CFP->getValueType(0) == MVT::f64) {
694 // If this target supports 64-bit registers, do a single 64-bit store.
695 if (TLI.isTypeLegal(MVT::i64)) {
696 SDValue Con = DAG.getConstant(CFP->getValueAPF().bitcastToAPInt().
697 zextOrTrunc(64), SDLoc(CFP), MVT::i64);
698 return DAG.getStore(Chain, dl, Con, Ptr, ST->getPointerInfo(),
699 isVolatile, isNonTemporal, Alignment, AAInfo);
700 }
701
702 if (TLI.isTypeLegal(MVT::i32) && !ST->isVolatile()) {
703 // Otherwise, if the target supports 32-bit registers, use 2 32-bit
704 // stores. If the target supports neither 32- nor 64-bits, this
705 // xform is certainly not worth it.
706 const APInt &IntVal = CFP->getValueAPF().bitcastToAPInt();
707 SDValue Lo = DAG.getConstant(IntVal.trunc(32), dl, MVT::i32);
708 SDValue Hi = DAG.getConstant(IntVal.lshr(32).trunc(32), dl, MVT::i32);
709 if (DAG.getDataLayout().isBigEndian())
710 std::swap(Lo, Hi);
711
712 Lo = DAG.getStore(Chain, dl, Lo, Ptr, ST->getPointerInfo(), isVolatile,
713 isNonTemporal, Alignment, AAInfo);
714 Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
715 DAG.getConstant(4, dl, Ptr.getValueType()));
716 Hi = DAG.getStore(Chain, dl, Hi, Ptr,
717 ST->getPointerInfo().getWithOffset(4),
718 isVolatile, isNonTemporal, MinAlign(Alignment, 4U),
719 AAInfo);
720
721 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo, Hi);
722 }
723 }
724 }
725 return SDValue(nullptr, 0);
726 }
727
LegalizeStoreOps(SDNode * Node)728 void SelectionDAGLegalize::LegalizeStoreOps(SDNode *Node) {
729 StoreSDNode *ST = cast<StoreSDNode>(Node);
730 SDValue Chain = ST->getChain();
731 SDValue Ptr = ST->getBasePtr();
732 SDLoc dl(Node);
733
734 unsigned Alignment = ST->getAlignment();
735 bool isVolatile = ST->isVolatile();
736 bool isNonTemporal = ST->isNonTemporal();
737 AAMDNodes AAInfo = ST->getAAInfo();
738
739 if (!ST->isTruncatingStore()) {
740 if (SDNode *OptStore = OptimizeFloatStore(ST).getNode()) {
741 ReplaceNode(ST, OptStore);
742 return;
743 }
744
745 {
746 SDValue Value = ST->getValue();
747 MVT VT = Value.getSimpleValueType();
748 switch (TLI.getOperationAction(ISD::STORE, VT)) {
749 default: llvm_unreachable("This action is not supported yet!");
750 case TargetLowering::Legal: {
751 // If this is an unaligned store and the target doesn't support it,
752 // expand it.
753 EVT MemVT = ST->getMemoryVT();
754 unsigned AS = ST->getAddressSpace();
755 unsigned Align = ST->getAlignment();
756 const DataLayout &DL = DAG.getDataLayout();
757 if (!TLI.allowsMemoryAccess(*DAG.getContext(), DL, MemVT, AS, Align))
758 ExpandUnalignedStore(cast<StoreSDNode>(Node), DAG, TLI, this);
759 break;
760 }
761 case TargetLowering::Custom: {
762 SDValue Res = TLI.LowerOperation(SDValue(Node, 0), DAG);
763 if (Res && Res != SDValue(Node, 0))
764 ReplaceNode(SDValue(Node, 0), Res);
765 return;
766 }
767 case TargetLowering::Promote: {
768 MVT NVT = TLI.getTypeToPromoteTo(ISD::STORE, VT);
769 assert(NVT.getSizeInBits() == VT.getSizeInBits() &&
770 "Can only promote stores to same size type");
771 Value = DAG.getNode(ISD::BITCAST, dl, NVT, Value);
772 SDValue Result =
773 DAG.getStore(Chain, dl, Value, Ptr,
774 ST->getPointerInfo(), isVolatile,
775 isNonTemporal, Alignment, AAInfo);
776 ReplaceNode(SDValue(Node, 0), Result);
777 break;
778 }
779 }
780 return;
781 }
782 } else {
783 SDValue Value = ST->getValue();
784
785 EVT StVT = ST->getMemoryVT();
786 unsigned StWidth = StVT.getSizeInBits();
787 auto &DL = DAG.getDataLayout();
788
789 if (StWidth != StVT.getStoreSizeInBits()) {
790 // Promote to a byte-sized store with upper bits zero if not
791 // storing an integral number of bytes. For example, promote
792 // TRUNCSTORE:i1 X -> TRUNCSTORE:i8 (and X, 1)
793 EVT NVT = EVT::getIntegerVT(*DAG.getContext(),
794 StVT.getStoreSizeInBits());
795 Value = DAG.getZeroExtendInReg(Value, dl, StVT);
796 SDValue Result =
797 DAG.getTruncStore(Chain, dl, Value, Ptr, ST->getPointerInfo(),
798 NVT, isVolatile, isNonTemporal, Alignment, AAInfo);
799 ReplaceNode(SDValue(Node, 0), Result);
800 } else if (StWidth & (StWidth - 1)) {
801 // If not storing a power-of-2 number of bits, expand as two stores.
802 assert(!StVT.isVector() && "Unsupported truncstore!");
803 unsigned RoundWidth = 1 << Log2_32(StWidth);
804 assert(RoundWidth < StWidth);
805 unsigned ExtraWidth = StWidth - RoundWidth;
806 assert(ExtraWidth < RoundWidth);
807 assert(!(RoundWidth % 8) && !(ExtraWidth % 8) &&
808 "Store size not an integral number of bytes!");
809 EVT RoundVT = EVT::getIntegerVT(*DAG.getContext(), RoundWidth);
810 EVT ExtraVT = EVT::getIntegerVT(*DAG.getContext(), ExtraWidth);
811 SDValue Lo, Hi;
812 unsigned IncrementSize;
813
814 if (DL.isLittleEndian()) {
815 // TRUNCSTORE:i24 X -> TRUNCSTORE:i16 X, TRUNCSTORE@+2:i8 (srl X, 16)
816 // Store the bottom RoundWidth bits.
817 Lo = DAG.getTruncStore(Chain, dl, Value, Ptr, ST->getPointerInfo(),
818 RoundVT,
819 isVolatile, isNonTemporal, Alignment,
820 AAInfo);
821
822 // Store the remaining ExtraWidth bits.
823 IncrementSize = RoundWidth / 8;
824 Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
825 DAG.getConstant(IncrementSize, dl,
826 Ptr.getValueType()));
827 Hi = DAG.getNode(
828 ISD::SRL, dl, Value.getValueType(), Value,
829 DAG.getConstant(RoundWidth, dl,
830 TLI.getShiftAmountTy(Value.getValueType(), DL)));
831 Hi = DAG.getTruncStore(Chain, dl, Hi, Ptr,
832 ST->getPointerInfo().getWithOffset(IncrementSize),
833 ExtraVT, isVolatile, isNonTemporal,
834 MinAlign(Alignment, IncrementSize), AAInfo);
835 } else {
836 // Big endian - avoid unaligned stores.
837 // TRUNCSTORE:i24 X -> TRUNCSTORE:i16 (srl X, 8), TRUNCSTORE@+2:i8 X
838 // Store the top RoundWidth bits.
839 Hi = DAG.getNode(
840 ISD::SRL, dl, Value.getValueType(), Value,
841 DAG.getConstant(ExtraWidth, dl,
842 TLI.getShiftAmountTy(Value.getValueType(), DL)));
843 Hi = DAG.getTruncStore(Chain, dl, Hi, Ptr, ST->getPointerInfo(),
844 RoundVT, isVolatile, isNonTemporal, Alignment,
845 AAInfo);
846
847 // Store the remaining ExtraWidth bits.
848 IncrementSize = RoundWidth / 8;
849 Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
850 DAG.getConstant(IncrementSize, dl,
851 Ptr.getValueType()));
852 Lo = DAG.getTruncStore(Chain, dl, Value, Ptr,
853 ST->getPointerInfo().getWithOffset(IncrementSize),
854 ExtraVT, isVolatile, isNonTemporal,
855 MinAlign(Alignment, IncrementSize), AAInfo);
856 }
857
858 // The order of the stores doesn't matter.
859 SDValue Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo, Hi);
860 ReplaceNode(SDValue(Node, 0), Result);
861 } else {
862 switch (TLI.getTruncStoreAction(ST->getValue().getValueType(), StVT)) {
863 default: llvm_unreachable("This action is not supported yet!");
864 case TargetLowering::Legal: {
865 EVT MemVT = ST->getMemoryVT();
866 unsigned AS = ST->getAddressSpace();
867 unsigned Align = ST->getAlignment();
868 // If this is an unaligned store and the target doesn't support it,
869 // expand it.
870 if (!TLI.allowsMemoryAccess(*DAG.getContext(), DL, MemVT, AS, Align))
871 ExpandUnalignedStore(cast<StoreSDNode>(Node), DAG, TLI, this);
872 break;
873 }
874 case TargetLowering::Custom: {
875 SDValue Res = TLI.LowerOperation(SDValue(Node, 0), DAG);
876 if (Res && Res != SDValue(Node, 0))
877 ReplaceNode(SDValue(Node, 0), Res);
878 return;
879 }
880 case TargetLowering::Expand:
881 assert(!StVT.isVector() &&
882 "Vector Stores are handled in LegalizeVectorOps");
883
884 // TRUNCSTORE:i16 i32 -> STORE i16
885 assert(TLI.isTypeLegal(StVT) &&
886 "Do not know how to expand this store!");
887 Value = DAG.getNode(ISD::TRUNCATE, dl, StVT, Value);
888 SDValue Result =
889 DAG.getStore(Chain, dl, Value, Ptr, ST->getPointerInfo(),
890 isVolatile, isNonTemporal, Alignment, AAInfo);
891 ReplaceNode(SDValue(Node, 0), Result);
892 break;
893 }
894 }
895 }
896 }
897
LegalizeLoadOps(SDNode * Node)898 void SelectionDAGLegalize::LegalizeLoadOps(SDNode *Node) {
899 LoadSDNode *LD = cast<LoadSDNode>(Node);
900 SDValue Chain = LD->getChain(); // The chain.
901 SDValue Ptr = LD->getBasePtr(); // The base pointer.
902 SDValue Value; // The value returned by the load op.
903 SDLoc dl(Node);
904
905 ISD::LoadExtType ExtType = LD->getExtensionType();
906 if (ExtType == ISD::NON_EXTLOAD) {
907 MVT VT = Node->getSimpleValueType(0);
908 SDValue RVal = SDValue(Node, 0);
909 SDValue RChain = SDValue(Node, 1);
910
911 switch (TLI.getOperationAction(Node->getOpcode(), VT)) {
912 default: llvm_unreachable("This action is not supported yet!");
913 case TargetLowering::Legal: {
914 EVT MemVT = LD->getMemoryVT();
915 unsigned AS = LD->getAddressSpace();
916 unsigned Align = LD->getAlignment();
917 const DataLayout &DL = DAG.getDataLayout();
918 // If this is an unaligned load and the target doesn't support it,
919 // expand it.
920 if (!TLI.allowsMemoryAccess(*DAG.getContext(), DL, MemVT, AS, Align))
921 ExpandUnalignedLoad(cast<LoadSDNode>(Node), DAG, TLI, RVal, RChain);
922 break;
923 }
924 case TargetLowering::Custom: {
925 SDValue Res = TLI.LowerOperation(RVal, DAG);
926 if (Res.getNode()) {
927 RVal = Res;
928 RChain = Res.getValue(1);
929 }
930 break;
931 }
932 case TargetLowering::Promote: {
933 MVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), VT);
934 assert(NVT.getSizeInBits() == VT.getSizeInBits() &&
935 "Can only promote loads to same size type");
936
937 SDValue Res = DAG.getLoad(NVT, dl, Chain, Ptr, LD->getMemOperand());
938 RVal = DAG.getNode(ISD::BITCAST, dl, VT, Res);
939 RChain = Res.getValue(1);
940 break;
941 }
942 }
943 if (RChain.getNode() != Node) {
944 assert(RVal.getNode() != Node && "Load must be completely replaced");
945 DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 0), RVal);
946 DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 1), RChain);
947 if (UpdatedNodes) {
948 UpdatedNodes->insert(RVal.getNode());
949 UpdatedNodes->insert(RChain.getNode());
950 }
951 ReplacedNode(Node);
952 }
953 return;
954 }
955
956 EVT SrcVT = LD->getMemoryVT();
957 unsigned SrcWidth = SrcVT.getSizeInBits();
958 unsigned Alignment = LD->getAlignment();
959 bool isVolatile = LD->isVolatile();
960 bool isNonTemporal = LD->isNonTemporal();
961 bool isInvariant = LD->isInvariant();
962 AAMDNodes AAInfo = LD->getAAInfo();
963
964 if (SrcWidth != SrcVT.getStoreSizeInBits() &&
965 // Some targets pretend to have an i1 loading operation, and actually
966 // load an i8. This trick is correct for ZEXTLOAD because the top 7
967 // bits are guaranteed to be zero; it helps the optimizers understand
968 // that these bits are zero. It is also useful for EXTLOAD, since it
969 // tells the optimizers that those bits are undefined. It would be
970 // nice to have an effective generic way of getting these benefits...
971 // Until such a way is found, don't insist on promoting i1 here.
972 (SrcVT != MVT::i1 ||
973 TLI.getLoadExtAction(ExtType, Node->getValueType(0), MVT::i1) ==
974 TargetLowering::Promote)) {
975 // Promote to a byte-sized load if not loading an integral number of
976 // bytes. For example, promote EXTLOAD:i20 -> EXTLOAD:i24.
977 unsigned NewWidth = SrcVT.getStoreSizeInBits();
978 EVT NVT = EVT::getIntegerVT(*DAG.getContext(), NewWidth);
979 SDValue Ch;
980
981 // The extra bits are guaranteed to be zero, since we stored them that
982 // way. A zext load from NVT thus automatically gives zext from SrcVT.
983
984 ISD::LoadExtType NewExtType =
985 ExtType == ISD::ZEXTLOAD ? ISD::ZEXTLOAD : ISD::EXTLOAD;
986
987 SDValue Result =
988 DAG.getExtLoad(NewExtType, dl, Node->getValueType(0),
989 Chain, Ptr, LD->getPointerInfo(),
990 NVT, isVolatile, isNonTemporal, isInvariant, Alignment,
991 AAInfo);
992
993 Ch = Result.getValue(1); // The chain.
994
995 if (ExtType == ISD::SEXTLOAD)
996 // Having the top bits zero doesn't help when sign extending.
997 Result = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl,
998 Result.getValueType(),
999 Result, DAG.getValueType(SrcVT));
1000 else if (ExtType == ISD::ZEXTLOAD || NVT == Result.getValueType())
1001 // All the top bits are guaranteed to be zero - inform the optimizers.
1002 Result = DAG.getNode(ISD::AssertZext, dl,
1003 Result.getValueType(), Result,
1004 DAG.getValueType(SrcVT));
1005
1006 Value = Result;
1007 Chain = Ch;
1008 } else if (SrcWidth & (SrcWidth - 1)) {
1009 // If not loading a power-of-2 number of bits, expand as two loads.
1010 assert(!SrcVT.isVector() && "Unsupported extload!");
1011 unsigned RoundWidth = 1 << Log2_32(SrcWidth);
1012 assert(RoundWidth < SrcWidth);
1013 unsigned ExtraWidth = SrcWidth - RoundWidth;
1014 assert(ExtraWidth < RoundWidth);
1015 assert(!(RoundWidth % 8) && !(ExtraWidth % 8) &&
1016 "Load size not an integral number of bytes!");
1017 EVT RoundVT = EVT::getIntegerVT(*DAG.getContext(), RoundWidth);
1018 EVT ExtraVT = EVT::getIntegerVT(*DAG.getContext(), ExtraWidth);
1019 SDValue Lo, Hi, Ch;
1020 unsigned IncrementSize;
1021 auto &DL = DAG.getDataLayout();
1022
1023 if (DL.isLittleEndian()) {
1024 // EXTLOAD:i24 -> ZEXTLOAD:i16 | (shl EXTLOAD@+2:i8, 16)
1025 // Load the bottom RoundWidth bits.
1026 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, Node->getValueType(0),
1027 Chain, Ptr,
1028 LD->getPointerInfo(), RoundVT, isVolatile,
1029 isNonTemporal, isInvariant, Alignment, AAInfo);
1030
1031 // Load the remaining ExtraWidth bits.
1032 IncrementSize = RoundWidth / 8;
1033 Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
1034 DAG.getConstant(IncrementSize, dl,
1035 Ptr.getValueType()));
1036 Hi = DAG.getExtLoad(ExtType, dl, Node->getValueType(0), Chain, Ptr,
1037 LD->getPointerInfo().getWithOffset(IncrementSize),
1038 ExtraVT, isVolatile, isNonTemporal, isInvariant,
1039 MinAlign(Alignment, IncrementSize), AAInfo);
1040
1041 // Build a factor node to remember that this load is independent of
1042 // the other one.
1043 Ch = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
1044 Hi.getValue(1));
1045
1046 // Move the top bits to the right place.
1047 Hi = DAG.getNode(
1048 ISD::SHL, dl, Hi.getValueType(), Hi,
1049 DAG.getConstant(RoundWidth, dl,
1050 TLI.getShiftAmountTy(Hi.getValueType(), DL)));
1051
1052 // Join the hi and lo parts.
1053 Value = DAG.getNode(ISD::OR, dl, Node->getValueType(0), Lo, Hi);
1054 } else {
1055 // Big endian - avoid unaligned loads.
1056 // EXTLOAD:i24 -> (shl EXTLOAD:i16, 8) | ZEXTLOAD@+2:i8
1057 // Load the top RoundWidth bits.
1058 Hi = DAG.getExtLoad(ExtType, dl, Node->getValueType(0), Chain, Ptr,
1059 LD->getPointerInfo(), RoundVT, isVolatile,
1060 isNonTemporal, isInvariant, Alignment, AAInfo);
1061
1062 // Load the remaining ExtraWidth bits.
1063 IncrementSize = RoundWidth / 8;
1064 Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
1065 DAG.getConstant(IncrementSize, dl,
1066 Ptr.getValueType()));
1067 Lo = DAG.getExtLoad(ISD::ZEXTLOAD,
1068 dl, Node->getValueType(0), Chain, Ptr,
1069 LD->getPointerInfo().getWithOffset(IncrementSize),
1070 ExtraVT, isVolatile, isNonTemporal, isInvariant,
1071 MinAlign(Alignment, IncrementSize), AAInfo);
1072
1073 // Build a factor node to remember that this load is independent of
1074 // the other one.
1075 Ch = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
1076 Hi.getValue(1));
1077
1078 // Move the top bits to the right place.
1079 Hi = DAG.getNode(
1080 ISD::SHL, dl, Hi.getValueType(), Hi,
1081 DAG.getConstant(ExtraWidth, dl,
1082 TLI.getShiftAmountTy(Hi.getValueType(), DL)));
1083
1084 // Join the hi and lo parts.
1085 Value = DAG.getNode(ISD::OR, dl, Node->getValueType(0), Lo, Hi);
1086 }
1087
1088 Chain = Ch;
1089 } else {
1090 bool isCustom = false;
1091 switch (TLI.getLoadExtAction(ExtType, Node->getValueType(0),
1092 SrcVT.getSimpleVT())) {
1093 default: llvm_unreachable("This action is not supported yet!");
1094 case TargetLowering::Custom:
1095 isCustom = true;
1096 // FALLTHROUGH
1097 case TargetLowering::Legal: {
1098 Value = SDValue(Node, 0);
1099 Chain = SDValue(Node, 1);
1100
1101 if (isCustom) {
1102 SDValue Res = TLI.LowerOperation(SDValue(Node, 0), DAG);
1103 if (Res.getNode()) {
1104 Value = Res;
1105 Chain = Res.getValue(1);
1106 }
1107 } else {
1108 // If this is an unaligned load and the target doesn't support it,
1109 // expand it.
1110 EVT MemVT = LD->getMemoryVT();
1111 unsigned AS = LD->getAddressSpace();
1112 unsigned Align = LD->getAlignment();
1113 const DataLayout &DL = DAG.getDataLayout();
1114 if (!TLI.allowsMemoryAccess(*DAG.getContext(), DL, MemVT, AS, Align))
1115 ExpandUnalignedLoad(cast<LoadSDNode>(Node), DAG, TLI, Value, Chain);
1116 }
1117 break;
1118 }
1119 case TargetLowering::Expand:
1120 EVT DestVT = Node->getValueType(0);
1121 if (!TLI.isLoadExtLegal(ISD::EXTLOAD, DestVT, SrcVT)) {
1122 // If the source type is not legal, see if there is a legal extload to
1123 // an intermediate type that we can then extend further.
1124 EVT LoadVT = TLI.getRegisterType(SrcVT.getSimpleVT());
1125 if (TLI.isTypeLegal(SrcVT) || // Same as SrcVT == LoadVT?
1126 TLI.isLoadExtLegal(ExtType, LoadVT, SrcVT)) {
1127 // If we are loading a legal type, this is a non-extload followed by a
1128 // full extend.
1129 ISD::LoadExtType MidExtType =
1130 (LoadVT == SrcVT) ? ISD::NON_EXTLOAD : ExtType;
1131
1132 SDValue Load = DAG.getExtLoad(MidExtType, dl, LoadVT, Chain, Ptr,
1133 SrcVT, LD->getMemOperand());
1134 unsigned ExtendOp =
1135 ISD::getExtForLoadExtType(SrcVT.isFloatingPoint(), ExtType);
1136 Value = DAG.getNode(ExtendOp, dl, Node->getValueType(0), Load);
1137 Chain = Load.getValue(1);
1138 break;
1139 }
1140
1141 // Handle the special case of fp16 extloads. EXTLOAD doesn't have the
1142 // normal undefined upper bits behavior to allow using an in-reg extend
1143 // with the illegal FP type, so load as an integer and do the
1144 // from-integer conversion.
1145 if (SrcVT.getScalarType() == MVT::f16) {
1146 EVT ISrcVT = SrcVT.changeTypeToInteger();
1147 EVT IDestVT = DestVT.changeTypeToInteger();
1148 EVT LoadVT = TLI.getRegisterType(IDestVT.getSimpleVT());
1149
1150 SDValue Result = DAG.getExtLoad(ISD::ZEXTLOAD, dl, LoadVT,
1151 Chain, Ptr, ISrcVT,
1152 LD->getMemOperand());
1153 Value = DAG.getNode(ISD::FP16_TO_FP, dl, DestVT, Result);
1154 Chain = Result.getValue(1);
1155 break;
1156 }
1157 }
1158
1159 assert(!SrcVT.isVector() &&
1160 "Vector Loads are handled in LegalizeVectorOps");
1161
1162 // FIXME: This does not work for vectors on most targets. Sign-
1163 // and zero-extend operations are currently folded into extending
1164 // loads, whether they are legal or not, and then we end up here
1165 // without any support for legalizing them.
1166 assert(ExtType != ISD::EXTLOAD &&
1167 "EXTLOAD should always be supported!");
1168 // Turn the unsupported load into an EXTLOAD followed by an
1169 // explicit zero/sign extend inreg.
1170 SDValue Result = DAG.getExtLoad(ISD::EXTLOAD, dl,
1171 Node->getValueType(0),
1172 Chain, Ptr, SrcVT,
1173 LD->getMemOperand());
1174 SDValue ValRes;
1175 if (ExtType == ISD::SEXTLOAD)
1176 ValRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl,
1177 Result.getValueType(),
1178 Result, DAG.getValueType(SrcVT));
1179 else
1180 ValRes = DAG.getZeroExtendInReg(Result, dl, SrcVT.getScalarType());
1181 Value = ValRes;
1182 Chain = Result.getValue(1);
1183 break;
1184 }
1185 }
1186
1187 // Since loads produce two values, make sure to remember that we legalized
1188 // both of them.
1189 if (Chain.getNode() != Node) {
1190 assert(Value.getNode() != Node && "Load must be completely replaced");
1191 DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 0), Value);
1192 DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 1), Chain);
1193 if (UpdatedNodes) {
1194 UpdatedNodes->insert(Value.getNode());
1195 UpdatedNodes->insert(Chain.getNode());
1196 }
1197 ReplacedNode(Node);
1198 }
1199 }
1200
1201 /// Return a legal replacement for the given operation, with all legal operands.
LegalizeOp(SDNode * Node)1202 void SelectionDAGLegalize::LegalizeOp(SDNode *Node) {
1203 DEBUG(dbgs() << "\nLegalizing: "; Node->dump(&DAG));
1204
1205 if (Node->getOpcode() == ISD::TargetConstant) // Allow illegal target nodes.
1206 return;
1207
1208 #ifndef NDEBUG
1209 for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i)
1210 assert((TLI.getTypeAction(*DAG.getContext(), Node->getValueType(i)) ==
1211 TargetLowering::TypeLegal ||
1212 TLI.isTypeLegal(Node->getValueType(i))) &&
1213 "Unexpected illegal type!");
1214
1215 for (const SDValue &Op : Node->op_values())
1216 assert((TLI.getTypeAction(*DAG.getContext(), Op.getValueType()) ==
1217 TargetLowering::TypeLegal ||
1218 TLI.isTypeLegal(Op.getValueType()) ||
1219 Op.getOpcode() == ISD::TargetConstant) &&
1220 "Unexpected illegal type!");
1221 #endif
1222
1223 // Figure out the correct action; the way to query this varies by opcode
1224 TargetLowering::LegalizeAction Action = TargetLowering::Legal;
1225 bool SimpleFinishLegalizing = true;
1226 switch (Node->getOpcode()) {
1227 case ISD::INTRINSIC_W_CHAIN:
1228 case ISD::INTRINSIC_WO_CHAIN:
1229 case ISD::INTRINSIC_VOID:
1230 case ISD::STACKSAVE:
1231 Action = TLI.getOperationAction(Node->getOpcode(), MVT::Other);
1232 break;
1233 case ISD::GET_DYNAMIC_AREA_OFFSET:
1234 Action = TLI.getOperationAction(Node->getOpcode(),
1235 Node->getValueType(0));
1236 break;
1237 case ISD::VAARG:
1238 Action = TLI.getOperationAction(Node->getOpcode(),
1239 Node->getValueType(0));
1240 if (Action != TargetLowering::Promote)
1241 Action = TLI.getOperationAction(Node->getOpcode(), MVT::Other);
1242 break;
1243 case ISD::FP_TO_FP16:
1244 case ISD::SINT_TO_FP:
1245 case ISD::UINT_TO_FP:
1246 case ISD::EXTRACT_VECTOR_ELT:
1247 Action = TLI.getOperationAction(Node->getOpcode(),
1248 Node->getOperand(0).getValueType());
1249 break;
1250 case ISD::FP_ROUND_INREG:
1251 case ISD::SIGN_EXTEND_INREG: {
1252 EVT InnerType = cast<VTSDNode>(Node->getOperand(1))->getVT();
1253 Action = TLI.getOperationAction(Node->getOpcode(), InnerType);
1254 break;
1255 }
1256 case ISD::ATOMIC_STORE: {
1257 Action = TLI.getOperationAction(Node->getOpcode(),
1258 Node->getOperand(2).getValueType());
1259 break;
1260 }
1261 case ISD::SELECT_CC:
1262 case ISD::SETCC:
1263 case ISD::BR_CC: {
1264 unsigned CCOperand = Node->getOpcode() == ISD::SELECT_CC ? 4 :
1265 Node->getOpcode() == ISD::SETCC ? 2 :
1266 Node->getOpcode() == ISD::SETCCE ? 3 : 1;
1267 unsigned CompareOperand = Node->getOpcode() == ISD::BR_CC ? 2 : 0;
1268 MVT OpVT = Node->getOperand(CompareOperand).getSimpleValueType();
1269 ISD::CondCode CCCode =
1270 cast<CondCodeSDNode>(Node->getOperand(CCOperand))->get();
1271 Action = TLI.getCondCodeAction(CCCode, OpVT);
1272 if (Action == TargetLowering::Legal) {
1273 if (Node->getOpcode() == ISD::SELECT_CC)
1274 Action = TLI.getOperationAction(Node->getOpcode(),
1275 Node->getValueType(0));
1276 else
1277 Action = TLI.getOperationAction(Node->getOpcode(), OpVT);
1278 }
1279 break;
1280 }
1281 case ISD::LOAD:
1282 case ISD::STORE:
1283 // FIXME: Model these properly. LOAD and STORE are complicated, and
1284 // STORE expects the unlegalized operand in some cases.
1285 SimpleFinishLegalizing = false;
1286 break;
1287 case ISD::CALLSEQ_START:
1288 case ISD::CALLSEQ_END:
1289 // FIXME: This shouldn't be necessary. These nodes have special properties
1290 // dealing with the recursive nature of legalization. Removing this
1291 // special case should be done as part of making LegalizeDAG non-recursive.
1292 SimpleFinishLegalizing = false;
1293 break;
1294 case ISD::EXTRACT_ELEMENT:
1295 case ISD::FLT_ROUNDS_:
1296 case ISD::FPOWI:
1297 case ISD::MERGE_VALUES:
1298 case ISD::EH_RETURN:
1299 case ISD::FRAME_TO_ARGS_OFFSET:
1300 case ISD::EH_SJLJ_SETJMP:
1301 case ISD::EH_SJLJ_LONGJMP:
1302 case ISD::EH_SJLJ_SETUP_DISPATCH:
1303 // These operations lie about being legal: when they claim to be legal,
1304 // they should actually be expanded.
1305 Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0));
1306 if (Action == TargetLowering::Legal)
1307 Action = TargetLowering::Expand;
1308 break;
1309 case ISD::INIT_TRAMPOLINE:
1310 case ISD::ADJUST_TRAMPOLINE:
1311 case ISD::FRAMEADDR:
1312 case ISD::RETURNADDR:
1313 // These operations lie about being legal: when they claim to be legal,
1314 // they should actually be custom-lowered.
1315 Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0));
1316 if (Action == TargetLowering::Legal)
1317 Action = TargetLowering::Custom;
1318 break;
1319 case ISD::READCYCLECOUNTER:
1320 // READCYCLECOUNTER returns an i64, even if type legalization might have
1321 // expanded that to several smaller types.
1322 Action = TLI.getOperationAction(Node->getOpcode(), MVT::i64);
1323 break;
1324 case ISD::READ_REGISTER:
1325 case ISD::WRITE_REGISTER:
1326 // Named register is legal in the DAG, but blocked by register name
1327 // selection if not implemented by target (to chose the correct register)
1328 // They'll be converted to Copy(To/From)Reg.
1329 Action = TargetLowering::Legal;
1330 break;
1331 case ISD::DEBUGTRAP:
1332 Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0));
1333 if (Action == TargetLowering::Expand) {
1334 // replace ISD::DEBUGTRAP with ISD::TRAP
1335 SDValue NewVal;
1336 NewVal = DAG.getNode(ISD::TRAP, SDLoc(Node), Node->getVTList(),
1337 Node->getOperand(0));
1338 ReplaceNode(Node, NewVal.getNode());
1339 LegalizeOp(NewVal.getNode());
1340 return;
1341 }
1342 break;
1343
1344 default:
1345 if (Node->getOpcode() >= ISD::BUILTIN_OP_END) {
1346 Action = TargetLowering::Legal;
1347 } else {
1348 Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0));
1349 }
1350 break;
1351 }
1352
1353 if (SimpleFinishLegalizing) {
1354 SDNode *NewNode = Node;
1355 switch (Node->getOpcode()) {
1356 default: break;
1357 case ISD::SHL:
1358 case ISD::SRL:
1359 case ISD::SRA:
1360 case ISD::ROTL:
1361 case ISD::ROTR:
1362 // Legalizing shifts/rotates requires adjusting the shift amount
1363 // to the appropriate width.
1364 if (!Node->getOperand(1).getValueType().isVector()) {
1365 SDValue SAO =
1366 DAG.getShiftAmountOperand(Node->getOperand(0).getValueType(),
1367 Node->getOperand(1));
1368 HandleSDNode Handle(SAO);
1369 LegalizeOp(SAO.getNode());
1370 NewNode = DAG.UpdateNodeOperands(Node, Node->getOperand(0),
1371 Handle.getValue());
1372 }
1373 break;
1374 case ISD::SRL_PARTS:
1375 case ISD::SRA_PARTS:
1376 case ISD::SHL_PARTS:
1377 // Legalizing shifts/rotates requires adjusting the shift amount
1378 // to the appropriate width.
1379 if (!Node->getOperand(2).getValueType().isVector()) {
1380 SDValue SAO =
1381 DAG.getShiftAmountOperand(Node->getOperand(0).getValueType(),
1382 Node->getOperand(2));
1383 HandleSDNode Handle(SAO);
1384 LegalizeOp(SAO.getNode());
1385 NewNode = DAG.UpdateNodeOperands(Node, Node->getOperand(0),
1386 Node->getOperand(1),
1387 Handle.getValue());
1388 }
1389 break;
1390 }
1391
1392 if (NewNode != Node) {
1393 ReplaceNode(Node, NewNode);
1394 Node = NewNode;
1395 }
1396 switch (Action) {
1397 case TargetLowering::Legal:
1398 return;
1399 case TargetLowering::Custom: {
1400 // FIXME: The handling for custom lowering with multiple results is
1401 // a complete mess.
1402 SDValue Res = TLI.LowerOperation(SDValue(Node, 0), DAG);
1403 if (Res.getNode()) {
1404 if (!(Res.getNode() != Node || Res.getResNo() != 0))
1405 return;
1406
1407 if (Node->getNumValues() == 1) {
1408 // We can just directly replace this node with the lowered value.
1409 ReplaceNode(SDValue(Node, 0), Res);
1410 return;
1411 }
1412
1413 SmallVector<SDValue, 8> ResultVals;
1414 for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i)
1415 ResultVals.push_back(Res.getValue(i));
1416 ReplaceNode(Node, ResultVals.data());
1417 return;
1418 }
1419 }
1420 // FALL THROUGH
1421 case TargetLowering::Expand:
1422 if (ExpandNode(Node))
1423 return;
1424 // FALL THROUGH
1425 case TargetLowering::LibCall:
1426 ConvertNodeToLibcall(Node);
1427 return;
1428 case TargetLowering::Promote:
1429 PromoteNode(Node);
1430 return;
1431 }
1432 }
1433
1434 switch (Node->getOpcode()) {
1435 default:
1436 #ifndef NDEBUG
1437 dbgs() << "NODE: ";
1438 Node->dump( &DAG);
1439 dbgs() << "\n";
1440 #endif
1441 llvm_unreachable("Do not know how to legalize this operator!");
1442
1443 case ISD::CALLSEQ_START:
1444 case ISD::CALLSEQ_END:
1445 break;
1446 case ISD::LOAD: {
1447 return LegalizeLoadOps(Node);
1448 }
1449 case ISD::STORE: {
1450 return LegalizeStoreOps(Node);
1451 }
1452 }
1453 }
1454
ExpandExtractFromVectorThroughStack(SDValue Op)1455 SDValue SelectionDAGLegalize::ExpandExtractFromVectorThroughStack(SDValue Op) {
1456 SDValue Vec = Op.getOperand(0);
1457 SDValue Idx = Op.getOperand(1);
1458 SDLoc dl(Op);
1459
1460 // Before we generate a new store to a temporary stack slot, see if there is
1461 // already one that we can use. There often is because when we scalarize
1462 // vector operations (using SelectionDAG::UnrollVectorOp for example) a whole
1463 // series of EXTRACT_VECTOR_ELT nodes are generated, one for each element in
1464 // the vector. If all are expanded here, we don't want one store per vector
1465 // element.
1466
1467 // Caches for hasPredecessorHelper
1468 SmallPtrSet<const SDNode *, 32> Visited;
1469 SmallVector<const SDNode *, 16> Worklist;
1470
1471 SDValue StackPtr, Ch;
1472 for (SDNode::use_iterator UI = Vec.getNode()->use_begin(),
1473 UE = Vec.getNode()->use_end(); UI != UE; ++UI) {
1474 SDNode *User = *UI;
1475 if (StoreSDNode *ST = dyn_cast<StoreSDNode>(User)) {
1476 if (ST->isIndexed() || ST->isTruncatingStore() ||
1477 ST->getValue() != Vec)
1478 continue;
1479
1480 // Make sure that nothing else could have stored into the destination of
1481 // this store.
1482 if (!ST->getChain().reachesChainWithoutSideEffects(DAG.getEntryNode()))
1483 continue;
1484
1485 // If the index is dependent on the store we will introduce a cycle when
1486 // creating the load (the load uses the index, and by replacing the chain
1487 // we will make the index dependent on the load).
1488 if (Idx.getNode()->hasPredecessorHelper(ST, Visited, Worklist))
1489 continue;
1490
1491 StackPtr = ST->getBasePtr();
1492 Ch = SDValue(ST, 0);
1493 break;
1494 }
1495 }
1496
1497 if (!Ch.getNode()) {
1498 // Store the value to a temporary stack slot, then LOAD the returned part.
1499 StackPtr = DAG.CreateStackTemporary(Vec.getValueType());
1500 Ch = DAG.getStore(DAG.getEntryNode(), dl, Vec, StackPtr,
1501 MachinePointerInfo(), false, false, 0);
1502 }
1503
1504 // Add the offset to the index.
1505 unsigned EltSize =
1506 Vec.getValueType().getVectorElementType().getSizeInBits()/8;
1507 Idx = DAG.getNode(ISD::MUL, dl, Idx.getValueType(), Idx,
1508 DAG.getConstant(EltSize, SDLoc(Vec), Idx.getValueType()));
1509
1510 Idx = DAG.getZExtOrTrunc(Idx, dl, TLI.getPointerTy(DAG.getDataLayout()));
1511 StackPtr = DAG.getNode(ISD::ADD, dl, Idx.getValueType(), Idx, StackPtr);
1512
1513 SDValue NewLoad;
1514
1515 if (Op.getValueType().isVector())
1516 NewLoad = DAG.getLoad(Op.getValueType(), dl, Ch, StackPtr,
1517 MachinePointerInfo(), false, false, false, 0);
1518 else
1519 NewLoad = DAG.getExtLoad(
1520 ISD::EXTLOAD, dl, Op.getValueType(), Ch, StackPtr, MachinePointerInfo(),
1521 Vec.getValueType().getVectorElementType(), false, false, false, 0);
1522
1523 // Replace the chain going out of the store, by the one out of the load.
1524 DAG.ReplaceAllUsesOfValueWith(Ch, SDValue(NewLoad.getNode(), 1));
1525
1526 // We introduced a cycle though, so update the loads operands, making sure
1527 // to use the original store's chain as an incoming chain.
1528 SmallVector<SDValue, 6> NewLoadOperands(NewLoad->op_begin(),
1529 NewLoad->op_end());
1530 NewLoadOperands[0] = Ch;
1531 NewLoad =
1532 SDValue(DAG.UpdateNodeOperands(NewLoad.getNode(), NewLoadOperands), 0);
1533 return NewLoad;
1534 }
1535
ExpandInsertToVectorThroughStack(SDValue Op)1536 SDValue SelectionDAGLegalize::ExpandInsertToVectorThroughStack(SDValue Op) {
1537 assert(Op.getValueType().isVector() && "Non-vector insert subvector!");
1538
1539 SDValue Vec = Op.getOperand(0);
1540 SDValue Part = Op.getOperand(1);
1541 SDValue Idx = Op.getOperand(2);
1542 SDLoc dl(Op);
1543
1544 // Store the value to a temporary stack slot, then LOAD the returned part.
1545
1546 SDValue StackPtr = DAG.CreateStackTemporary(Vec.getValueType());
1547 int FI = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex();
1548 MachinePointerInfo PtrInfo =
1549 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI);
1550
1551 // First store the whole vector.
1552 SDValue Ch = DAG.getStore(DAG.getEntryNode(), dl, Vec, StackPtr, PtrInfo,
1553 false, false, 0);
1554
1555 // Then store the inserted part.
1556
1557 // Add the offset to the index.
1558 unsigned EltSize =
1559 Vec.getValueType().getVectorElementType().getSizeInBits()/8;
1560
1561 Idx = DAG.getNode(ISD::MUL, dl, Idx.getValueType(), Idx,
1562 DAG.getConstant(EltSize, SDLoc(Vec), Idx.getValueType()));
1563 Idx = DAG.getZExtOrTrunc(Idx, dl, TLI.getPointerTy(DAG.getDataLayout()));
1564
1565 SDValue SubStackPtr = DAG.getNode(ISD::ADD, dl, Idx.getValueType(), Idx,
1566 StackPtr);
1567
1568 // Store the subvector.
1569 Ch = DAG.getStore(Ch, dl, Part, SubStackPtr,
1570 MachinePointerInfo(), false, false, 0);
1571
1572 // Finally, load the updated vector.
1573 return DAG.getLoad(Op.getValueType(), dl, Ch, StackPtr, PtrInfo,
1574 false, false, false, 0);
1575 }
1576
ExpandVectorBuildThroughStack(SDNode * Node)1577 SDValue SelectionDAGLegalize::ExpandVectorBuildThroughStack(SDNode* Node) {
1578 // We can't handle this case efficiently. Allocate a sufficiently
1579 // aligned object on the stack, store each element into it, then load
1580 // the result as a vector.
1581 // Create the stack frame object.
1582 EVT VT = Node->getValueType(0);
1583 EVT EltVT = VT.getVectorElementType();
1584 SDLoc dl(Node);
1585 SDValue FIPtr = DAG.CreateStackTemporary(VT);
1586 int FI = cast<FrameIndexSDNode>(FIPtr.getNode())->getIndex();
1587 MachinePointerInfo PtrInfo =
1588 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI);
1589
1590 // Emit a store of each element to the stack slot.
1591 SmallVector<SDValue, 8> Stores;
1592 unsigned TypeByteSize = EltVT.getSizeInBits() / 8;
1593 // Store (in the right endianness) the elements to memory.
1594 for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) {
1595 // Ignore undef elements.
1596 if (Node->getOperand(i).getOpcode() == ISD::UNDEF) continue;
1597
1598 unsigned Offset = TypeByteSize*i;
1599
1600 SDValue Idx = DAG.getConstant(Offset, dl, FIPtr.getValueType());
1601 Idx = DAG.getNode(ISD::ADD, dl, FIPtr.getValueType(), FIPtr, Idx);
1602
1603 // If the destination vector element type is narrower than the source
1604 // element type, only store the bits necessary.
1605 if (EltVT.bitsLT(Node->getOperand(i).getValueType().getScalarType())) {
1606 Stores.push_back(DAG.getTruncStore(DAG.getEntryNode(), dl,
1607 Node->getOperand(i), Idx,
1608 PtrInfo.getWithOffset(Offset),
1609 EltVT, false, false, 0));
1610 } else
1611 Stores.push_back(DAG.getStore(DAG.getEntryNode(), dl,
1612 Node->getOperand(i), Idx,
1613 PtrInfo.getWithOffset(Offset),
1614 false, false, 0));
1615 }
1616
1617 SDValue StoreChain;
1618 if (!Stores.empty()) // Not all undef elements?
1619 StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
1620 else
1621 StoreChain = DAG.getEntryNode();
1622
1623 // Result is a load from the stack slot.
1624 return DAG.getLoad(VT, dl, StoreChain, FIPtr, PtrInfo,
1625 false, false, false, 0);
1626 }
1627
1628 namespace {
1629 /// Keeps track of state when getting the sign of a floating-point value as an
1630 /// integer.
1631 struct FloatSignAsInt {
1632 EVT FloatVT;
1633 SDValue Chain;
1634 SDValue FloatPtr;
1635 SDValue IntPtr;
1636 MachinePointerInfo IntPointerInfo;
1637 MachinePointerInfo FloatPointerInfo;
1638 SDValue IntValue;
1639 APInt SignMask;
1640 };
1641 }
1642
1643 /// Bitcast a floating-point value to an integer value. Only bitcast the part
1644 /// containing the sign bit if the target has no integer value capable of
1645 /// holding all bits of the floating-point value.
getSignAsIntValue(FloatSignAsInt & State,SDLoc DL,SDValue Value) const1646 void SelectionDAGLegalize::getSignAsIntValue(FloatSignAsInt &State,
1647 SDLoc DL, SDValue Value) const {
1648 EVT FloatVT = Value.getValueType();
1649 unsigned NumBits = FloatVT.getSizeInBits();
1650 State.FloatVT = FloatVT;
1651 EVT IVT = EVT::getIntegerVT(*DAG.getContext(), NumBits);
1652 // Convert to an integer of the same size.
1653 if (TLI.isTypeLegal(IVT)) {
1654 State.IntValue = DAG.getNode(ISD::BITCAST, DL, IVT, Value);
1655 State.SignMask = APInt::getSignBit(NumBits);
1656 return;
1657 }
1658
1659 auto &DataLayout = DAG.getDataLayout();
1660 // Store the float to memory, then load the sign part out as an integer.
1661 MVT LoadTy = TLI.getRegisterType(*DAG.getContext(), MVT::i8);
1662 // First create a temporary that is aligned for both the load and store.
1663 SDValue StackPtr = DAG.CreateStackTemporary(FloatVT, LoadTy);
1664 int FI = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex();
1665 // Then store the float to it.
1666 State.FloatPtr = StackPtr;
1667 MachineFunction &MF = DAG.getMachineFunction();
1668 State.FloatPointerInfo = MachinePointerInfo::getFixedStack(MF, FI);
1669 State.Chain = DAG.getStore(DAG.getEntryNode(), DL, Value, State.FloatPtr,
1670 State.FloatPointerInfo, false, false, 0);
1671
1672 SDValue IntPtr;
1673 if (DataLayout.isBigEndian()) {
1674 assert(FloatVT.isByteSized() && "Unsupported floating point type!");
1675 // Load out a legal integer with the same sign bit as the float.
1676 IntPtr = StackPtr;
1677 State.IntPointerInfo = State.FloatPointerInfo;
1678 } else {
1679 // Advance the pointer so that the loaded byte will contain the sign bit.
1680 unsigned ByteOffset = (FloatVT.getSizeInBits() / 8) - 1;
1681 IntPtr = DAG.getNode(ISD::ADD, DL, StackPtr.getValueType(), StackPtr,
1682 DAG.getConstant(ByteOffset, DL, StackPtr.getValueType()));
1683 State.IntPointerInfo = MachinePointerInfo::getFixedStack(MF, FI,
1684 ByteOffset);
1685 }
1686
1687 State.IntPtr = IntPtr;
1688 State.IntValue = DAG.getExtLoad(ISD::EXTLOAD, DL, LoadTy, State.Chain,
1689 IntPtr, State.IntPointerInfo, MVT::i8,
1690 false, false, false, 0);
1691 State.SignMask = APInt::getOneBitSet(LoadTy.getSizeInBits(), 7);
1692 }
1693
1694 /// Replace the integer value produced by getSignAsIntValue() with a new value
1695 /// and cast the result back to a floating-point type.
modifySignAsInt(const FloatSignAsInt & State,SDLoc DL,SDValue NewIntValue) const1696 SDValue SelectionDAGLegalize::modifySignAsInt(const FloatSignAsInt &State,
1697 SDLoc DL, SDValue NewIntValue) const {
1698 if (!State.Chain)
1699 return DAG.getNode(ISD::BITCAST, DL, State.FloatVT, NewIntValue);
1700
1701 // Override the part containing the sign bit in the value stored on the stack.
1702 SDValue Chain = DAG.getTruncStore(State.Chain, DL, NewIntValue, State.IntPtr,
1703 State.IntPointerInfo, MVT::i8, false, false,
1704 0);
1705 return DAG.getLoad(State.FloatVT, DL, Chain, State.FloatPtr,
1706 State.FloatPointerInfo, false, false, false, 0);
1707 }
1708
ExpandFCOPYSIGN(SDNode * Node) const1709 SDValue SelectionDAGLegalize::ExpandFCOPYSIGN(SDNode *Node) const {
1710 SDLoc DL(Node);
1711 SDValue Mag = Node->getOperand(0);
1712 SDValue Sign = Node->getOperand(1);
1713
1714 // Get sign bit into an integer value.
1715 FloatSignAsInt SignAsInt;
1716 getSignAsIntValue(SignAsInt, DL, Sign);
1717
1718 EVT IntVT = SignAsInt.IntValue.getValueType();
1719 SDValue SignMask = DAG.getConstant(SignAsInt.SignMask, DL, IntVT);
1720 SDValue SignBit = DAG.getNode(ISD::AND, DL, IntVT, SignAsInt.IntValue,
1721 SignMask);
1722
1723 // If FABS is legal transform FCOPYSIGN(x, y) => sign(x) ? -FABS(x) : FABS(X)
1724 EVT FloatVT = Mag.getValueType();
1725 if (TLI.isOperationLegalOrCustom(ISD::FABS, FloatVT) &&
1726 TLI.isOperationLegalOrCustom(ISD::FNEG, FloatVT)) {
1727 SDValue AbsValue = DAG.getNode(ISD::FABS, DL, FloatVT, Mag);
1728 SDValue NegValue = DAG.getNode(ISD::FNEG, DL, FloatVT, AbsValue);
1729 SDValue Cond = DAG.getSetCC(DL, getSetCCResultType(IntVT), SignBit,
1730 DAG.getConstant(0, DL, IntVT), ISD::SETNE);
1731 return DAG.getSelect(DL, FloatVT, Cond, NegValue, AbsValue);
1732 }
1733
1734 // Transform values to integer, copy the sign bit and transform back.
1735 FloatSignAsInt MagAsInt;
1736 getSignAsIntValue(MagAsInt, DL, Mag);
1737 assert(SignAsInt.SignMask == MagAsInt.SignMask);
1738 SDValue ClearSignMask = DAG.getConstant(~SignAsInt.SignMask, DL, IntVT);
1739 SDValue ClearedSign = DAG.getNode(ISD::AND, DL, IntVT, MagAsInt.IntValue,
1740 ClearSignMask);
1741 SDValue CopiedSign = DAG.getNode(ISD::OR, DL, IntVT, ClearedSign, SignBit);
1742
1743 return modifySignAsInt(MagAsInt, DL, CopiedSign);
1744 }
1745
ExpandFABS(SDNode * Node) const1746 SDValue SelectionDAGLegalize::ExpandFABS(SDNode *Node) const {
1747 SDLoc DL(Node);
1748 SDValue Value = Node->getOperand(0);
1749
1750 // Transform FABS(x) => FCOPYSIGN(x, 0.0) if FCOPYSIGN is legal.
1751 EVT FloatVT = Value.getValueType();
1752 if (TLI.isOperationLegalOrCustom(ISD::FCOPYSIGN, FloatVT)) {
1753 SDValue Zero = DAG.getConstantFP(0.0, DL, FloatVT);
1754 return DAG.getNode(ISD::FCOPYSIGN, DL, FloatVT, Value, Zero);
1755 }
1756
1757 // Transform value to integer, clear the sign bit and transform back.
1758 FloatSignAsInt ValueAsInt;
1759 getSignAsIntValue(ValueAsInt, DL, Value);
1760 EVT IntVT = ValueAsInt.IntValue.getValueType();
1761 SDValue ClearSignMask = DAG.getConstant(~ValueAsInt.SignMask, DL, IntVT);
1762 SDValue ClearedSign = DAG.getNode(ISD::AND, DL, IntVT, ValueAsInt.IntValue,
1763 ClearSignMask);
1764 return modifySignAsInt(ValueAsInt, DL, ClearedSign);
1765 }
1766
ExpandDYNAMIC_STACKALLOC(SDNode * Node,SmallVectorImpl<SDValue> & Results)1767 void SelectionDAGLegalize::ExpandDYNAMIC_STACKALLOC(SDNode* Node,
1768 SmallVectorImpl<SDValue> &Results) {
1769 unsigned SPReg = TLI.getStackPointerRegisterToSaveRestore();
1770 assert(SPReg && "Target cannot require DYNAMIC_STACKALLOC expansion and"
1771 " not tell us which reg is the stack pointer!");
1772 SDLoc dl(Node);
1773 EVT VT = Node->getValueType(0);
1774 SDValue Tmp1 = SDValue(Node, 0);
1775 SDValue Tmp2 = SDValue(Node, 1);
1776 SDValue Tmp3 = Node->getOperand(2);
1777 SDValue Chain = Tmp1.getOperand(0);
1778
1779 // Chain the dynamic stack allocation so that it doesn't modify the stack
1780 // pointer when other instructions are using the stack.
1781 Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(0, dl, true), dl);
1782
1783 SDValue Size = Tmp2.getOperand(1);
1784 SDValue SP = DAG.getCopyFromReg(Chain, dl, SPReg, VT);
1785 Chain = SP.getValue(1);
1786 unsigned Align = cast<ConstantSDNode>(Tmp3)->getZExtValue();
1787 unsigned StackAlign =
1788 DAG.getSubtarget().getFrameLowering()->getStackAlignment();
1789 Tmp1 = DAG.getNode(ISD::SUB, dl, VT, SP, Size); // Value
1790 if (Align > StackAlign)
1791 Tmp1 = DAG.getNode(ISD::AND, dl, VT, Tmp1,
1792 DAG.getConstant(-(uint64_t)Align, dl, VT));
1793 Chain = DAG.getCopyToReg(Chain, dl, SPReg, Tmp1); // Output chain
1794
1795 Tmp2 = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(0, dl, true),
1796 DAG.getIntPtrConstant(0, dl, true), SDValue(), dl);
1797
1798 Results.push_back(Tmp1);
1799 Results.push_back(Tmp2);
1800 }
1801
1802 /// Legalize a SETCC with given LHS and RHS and condition code CC on the current
1803 /// target.
1804 ///
1805 /// If the SETCC has been legalized using AND / OR, then the legalized node
1806 /// will be stored in LHS. RHS and CC will be set to SDValue(). NeedInvert
1807 /// will be set to false.
1808 ///
1809 /// If the SETCC has been legalized by using getSetCCSwappedOperands(),
1810 /// then the values of LHS and RHS will be swapped, CC will be set to the
1811 /// new condition, and NeedInvert will be set to false.
1812 ///
1813 /// If the SETCC has been legalized using the inverse condcode, then LHS and
1814 /// RHS will be unchanged, CC will set to the inverted condcode, and NeedInvert
1815 /// will be set to true. The caller must invert the result of the SETCC with
1816 /// SelectionDAG::getLogicalNOT() or take equivalent action to swap the effect
1817 /// of a true/false result.
1818 ///
1819 /// \returns true if the SetCC has been legalized, false if it hasn't.
LegalizeSetCCCondCode(EVT VT,SDValue & LHS,SDValue & RHS,SDValue & CC,bool & NeedInvert,SDLoc dl)1820 bool SelectionDAGLegalize::LegalizeSetCCCondCode(EVT VT,
1821 SDValue &LHS, SDValue &RHS,
1822 SDValue &CC,
1823 bool &NeedInvert,
1824 SDLoc dl) {
1825 MVT OpVT = LHS.getSimpleValueType();
1826 ISD::CondCode CCCode = cast<CondCodeSDNode>(CC)->get();
1827 NeedInvert = false;
1828 switch (TLI.getCondCodeAction(CCCode, OpVT)) {
1829 default: llvm_unreachable("Unknown condition code action!");
1830 case TargetLowering::Legal:
1831 // Nothing to do.
1832 break;
1833 case TargetLowering::Expand: {
1834 ISD::CondCode InvCC = ISD::getSetCCSwappedOperands(CCCode);
1835 if (TLI.isCondCodeLegal(InvCC, OpVT)) {
1836 std::swap(LHS, RHS);
1837 CC = DAG.getCondCode(InvCC);
1838 return true;
1839 }
1840 ISD::CondCode CC1 = ISD::SETCC_INVALID, CC2 = ISD::SETCC_INVALID;
1841 unsigned Opc = 0;
1842 switch (CCCode) {
1843 default: llvm_unreachable("Don't know how to expand this condition!");
1844 case ISD::SETO:
1845 assert(TLI.getCondCodeAction(ISD::SETOEQ, OpVT)
1846 == TargetLowering::Legal
1847 && "If SETO is expanded, SETOEQ must be legal!");
1848 CC1 = ISD::SETOEQ; CC2 = ISD::SETOEQ; Opc = ISD::AND; break;
1849 case ISD::SETUO:
1850 assert(TLI.getCondCodeAction(ISD::SETUNE, OpVT)
1851 == TargetLowering::Legal
1852 && "If SETUO is expanded, SETUNE must be legal!");
1853 CC1 = ISD::SETUNE; CC2 = ISD::SETUNE; Opc = ISD::OR; break;
1854 case ISD::SETOEQ:
1855 case ISD::SETOGT:
1856 case ISD::SETOGE:
1857 case ISD::SETOLT:
1858 case ISD::SETOLE:
1859 case ISD::SETONE:
1860 case ISD::SETUEQ:
1861 case ISD::SETUNE:
1862 case ISD::SETUGT:
1863 case ISD::SETUGE:
1864 case ISD::SETULT:
1865 case ISD::SETULE:
1866 // If we are floating point, assign and break, otherwise fall through.
1867 if (!OpVT.isInteger()) {
1868 // We can use the 4th bit to tell if we are the unordered
1869 // or ordered version of the opcode.
1870 CC2 = ((unsigned)CCCode & 0x8U) ? ISD::SETUO : ISD::SETO;
1871 Opc = ((unsigned)CCCode & 0x8U) ? ISD::OR : ISD::AND;
1872 CC1 = (ISD::CondCode)(((int)CCCode & 0x7) | 0x10);
1873 break;
1874 }
1875 // Fallthrough if we are unsigned integer.
1876 case ISD::SETLE:
1877 case ISD::SETGT:
1878 case ISD::SETGE:
1879 case ISD::SETLT:
1880 // We only support using the inverted operation, which is computed above
1881 // and not a different manner of supporting expanding these cases.
1882 llvm_unreachable("Don't know how to expand this condition!");
1883 case ISD::SETNE:
1884 case ISD::SETEQ:
1885 // Try inverting the result of the inverse condition.
1886 InvCC = CCCode == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ;
1887 if (TLI.isCondCodeLegal(InvCC, OpVT)) {
1888 CC = DAG.getCondCode(InvCC);
1889 NeedInvert = true;
1890 return true;
1891 }
1892 // If inverting the condition didn't work then we have no means to expand
1893 // the condition.
1894 llvm_unreachable("Don't know how to expand this condition!");
1895 }
1896
1897 SDValue SetCC1, SetCC2;
1898 if (CCCode != ISD::SETO && CCCode != ISD::SETUO) {
1899 // If we aren't the ordered or unorder operation,
1900 // then the pattern is (LHS CC1 RHS) Opc (LHS CC2 RHS).
1901 SetCC1 = DAG.getSetCC(dl, VT, LHS, RHS, CC1);
1902 SetCC2 = DAG.getSetCC(dl, VT, LHS, RHS, CC2);
1903 } else {
1904 // Otherwise, the pattern is (LHS CC1 LHS) Opc (RHS CC2 RHS)
1905 SetCC1 = DAG.getSetCC(dl, VT, LHS, LHS, CC1);
1906 SetCC2 = DAG.getSetCC(dl, VT, RHS, RHS, CC2);
1907 }
1908 LHS = DAG.getNode(Opc, dl, VT, SetCC1, SetCC2);
1909 RHS = SDValue();
1910 CC = SDValue();
1911 return true;
1912 }
1913 }
1914 return false;
1915 }
1916
1917 /// Emit a store/load combination to the stack. This stores
1918 /// SrcOp to a stack slot of type SlotVT, truncating it if needed. It then does
1919 /// a load from the stack slot to DestVT, extending it if needed.
1920 /// The resultant code need not be legal.
EmitStackConvert(SDValue SrcOp,EVT SlotVT,EVT DestVT,SDLoc dl)1921 SDValue SelectionDAGLegalize::EmitStackConvert(SDValue SrcOp,
1922 EVT SlotVT,
1923 EVT DestVT,
1924 SDLoc dl) {
1925 // Create the stack frame object.
1926 unsigned SrcAlign = DAG.getDataLayout().getPrefTypeAlignment(
1927 SrcOp.getValueType().getTypeForEVT(*DAG.getContext()));
1928 SDValue FIPtr = DAG.CreateStackTemporary(SlotVT, SrcAlign);
1929
1930 FrameIndexSDNode *StackPtrFI = cast<FrameIndexSDNode>(FIPtr);
1931 int SPFI = StackPtrFI->getIndex();
1932 MachinePointerInfo PtrInfo =
1933 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SPFI);
1934
1935 unsigned SrcSize = SrcOp.getValueType().getSizeInBits();
1936 unsigned SlotSize = SlotVT.getSizeInBits();
1937 unsigned DestSize = DestVT.getSizeInBits();
1938 Type *DestType = DestVT.getTypeForEVT(*DAG.getContext());
1939 unsigned DestAlign = DAG.getDataLayout().getPrefTypeAlignment(DestType);
1940
1941 // Emit a store to the stack slot. Use a truncstore if the input value is
1942 // later than DestVT.
1943 SDValue Store;
1944
1945 if (SrcSize > SlotSize)
1946 Store = DAG.getTruncStore(DAG.getEntryNode(), dl, SrcOp, FIPtr,
1947 PtrInfo, SlotVT, false, false, SrcAlign);
1948 else {
1949 assert(SrcSize == SlotSize && "Invalid store");
1950 Store = DAG.getStore(DAG.getEntryNode(), dl, SrcOp, FIPtr,
1951 PtrInfo, false, false, SrcAlign);
1952 }
1953
1954 // Result is a load from the stack slot.
1955 if (SlotSize == DestSize)
1956 return DAG.getLoad(DestVT, dl, Store, FIPtr, PtrInfo,
1957 false, false, false, DestAlign);
1958
1959 assert(SlotSize < DestSize && "Unknown extension!");
1960 return DAG.getExtLoad(ISD::EXTLOAD, dl, DestVT, Store, FIPtr,
1961 PtrInfo, SlotVT, false, false, false, DestAlign);
1962 }
1963
ExpandSCALAR_TO_VECTOR(SDNode * Node)1964 SDValue SelectionDAGLegalize::ExpandSCALAR_TO_VECTOR(SDNode *Node) {
1965 SDLoc dl(Node);
1966 // Create a vector sized/aligned stack slot, store the value to element #0,
1967 // then load the whole vector back out.
1968 SDValue StackPtr = DAG.CreateStackTemporary(Node->getValueType(0));
1969
1970 FrameIndexSDNode *StackPtrFI = cast<FrameIndexSDNode>(StackPtr);
1971 int SPFI = StackPtrFI->getIndex();
1972
1973 SDValue Ch = DAG.getTruncStore(
1974 DAG.getEntryNode(), dl, Node->getOperand(0), StackPtr,
1975 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SPFI),
1976 Node->getValueType(0).getVectorElementType(), false, false, 0);
1977 return DAG.getLoad(
1978 Node->getValueType(0), dl, Ch, StackPtr,
1979 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SPFI), false,
1980 false, false, 0);
1981 }
1982
1983 static bool
ExpandBVWithShuffles(SDNode * Node,SelectionDAG & DAG,const TargetLowering & TLI,SDValue & Res)1984 ExpandBVWithShuffles(SDNode *Node, SelectionDAG &DAG,
1985 const TargetLowering &TLI, SDValue &Res) {
1986 unsigned NumElems = Node->getNumOperands();
1987 SDLoc dl(Node);
1988 EVT VT = Node->getValueType(0);
1989
1990 // Try to group the scalars into pairs, shuffle the pairs together, then
1991 // shuffle the pairs of pairs together, etc. until the vector has
1992 // been built. This will work only if all of the necessary shuffle masks
1993 // are legal.
1994
1995 // We do this in two phases; first to check the legality of the shuffles,
1996 // and next, assuming that all shuffles are legal, to create the new nodes.
1997 for (int Phase = 0; Phase < 2; ++Phase) {
1998 SmallVector<std::pair<SDValue, SmallVector<int, 16> >, 16> IntermedVals,
1999 NewIntermedVals;
2000 for (unsigned i = 0; i < NumElems; ++i) {
2001 SDValue V = Node->getOperand(i);
2002 if (V.getOpcode() == ISD::UNDEF)
2003 continue;
2004
2005 SDValue Vec;
2006 if (Phase)
2007 Vec = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, V);
2008 IntermedVals.push_back(std::make_pair(Vec, SmallVector<int, 16>(1, i)));
2009 }
2010
2011 while (IntermedVals.size() > 2) {
2012 NewIntermedVals.clear();
2013 for (unsigned i = 0, e = (IntermedVals.size() & ~1u); i < e; i += 2) {
2014 // This vector and the next vector are shuffled together (simply to
2015 // append the one to the other).
2016 SmallVector<int, 16> ShuffleVec(NumElems, -1);
2017
2018 SmallVector<int, 16> FinalIndices;
2019 FinalIndices.reserve(IntermedVals[i].second.size() +
2020 IntermedVals[i+1].second.size());
2021
2022 int k = 0;
2023 for (unsigned j = 0, f = IntermedVals[i].second.size(); j != f;
2024 ++j, ++k) {
2025 ShuffleVec[k] = j;
2026 FinalIndices.push_back(IntermedVals[i].second[j]);
2027 }
2028 for (unsigned j = 0, f = IntermedVals[i+1].second.size(); j != f;
2029 ++j, ++k) {
2030 ShuffleVec[k] = NumElems + j;
2031 FinalIndices.push_back(IntermedVals[i+1].second[j]);
2032 }
2033
2034 SDValue Shuffle;
2035 if (Phase)
2036 Shuffle = DAG.getVectorShuffle(VT, dl, IntermedVals[i].first,
2037 IntermedVals[i+1].first,
2038 ShuffleVec.data());
2039 else if (!TLI.isShuffleMaskLegal(ShuffleVec, VT))
2040 return false;
2041 NewIntermedVals.push_back(
2042 std::make_pair(Shuffle, std::move(FinalIndices)));
2043 }
2044
2045 // If we had an odd number of defined values, then append the last
2046 // element to the array of new vectors.
2047 if ((IntermedVals.size() & 1) != 0)
2048 NewIntermedVals.push_back(IntermedVals.back());
2049
2050 IntermedVals.swap(NewIntermedVals);
2051 }
2052
2053 assert(IntermedVals.size() <= 2 && IntermedVals.size() > 0 &&
2054 "Invalid number of intermediate vectors");
2055 SDValue Vec1 = IntermedVals[0].first;
2056 SDValue Vec2;
2057 if (IntermedVals.size() > 1)
2058 Vec2 = IntermedVals[1].first;
2059 else if (Phase)
2060 Vec2 = DAG.getUNDEF(VT);
2061
2062 SmallVector<int, 16> ShuffleVec(NumElems, -1);
2063 for (unsigned i = 0, e = IntermedVals[0].second.size(); i != e; ++i)
2064 ShuffleVec[IntermedVals[0].second[i]] = i;
2065 for (unsigned i = 0, e = IntermedVals[1].second.size(); i != e; ++i)
2066 ShuffleVec[IntermedVals[1].second[i]] = NumElems + i;
2067
2068 if (Phase)
2069 Res = DAG.getVectorShuffle(VT, dl, Vec1, Vec2, ShuffleVec.data());
2070 else if (!TLI.isShuffleMaskLegal(ShuffleVec, VT))
2071 return false;
2072 }
2073
2074 return true;
2075 }
2076
2077 /// Expand a BUILD_VECTOR node on targets that don't
2078 /// support the operation, but do support the resultant vector type.
ExpandBUILD_VECTOR(SDNode * Node)2079 SDValue SelectionDAGLegalize::ExpandBUILD_VECTOR(SDNode *Node) {
2080 unsigned NumElems = Node->getNumOperands();
2081 SDValue Value1, Value2;
2082 SDLoc dl(Node);
2083 EVT VT = Node->getValueType(0);
2084 EVT OpVT = Node->getOperand(0).getValueType();
2085 EVT EltVT = VT.getVectorElementType();
2086
2087 // If the only non-undef value is the low element, turn this into a
2088 // SCALAR_TO_VECTOR node. If this is { X, X, X, X }, determine X.
2089 bool isOnlyLowElement = true;
2090 bool MoreThanTwoValues = false;
2091 bool isConstant = true;
2092 for (unsigned i = 0; i < NumElems; ++i) {
2093 SDValue V = Node->getOperand(i);
2094 if (V.getOpcode() == ISD::UNDEF)
2095 continue;
2096 if (i > 0)
2097 isOnlyLowElement = false;
2098 if (!isa<ConstantFPSDNode>(V) && !isa<ConstantSDNode>(V))
2099 isConstant = false;
2100
2101 if (!Value1.getNode()) {
2102 Value1 = V;
2103 } else if (!Value2.getNode()) {
2104 if (V != Value1)
2105 Value2 = V;
2106 } else if (V != Value1 && V != Value2) {
2107 MoreThanTwoValues = true;
2108 }
2109 }
2110
2111 if (!Value1.getNode())
2112 return DAG.getUNDEF(VT);
2113
2114 if (isOnlyLowElement)
2115 return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Node->getOperand(0));
2116
2117 // If all elements are constants, create a load from the constant pool.
2118 if (isConstant) {
2119 SmallVector<Constant*, 16> CV;
2120 for (unsigned i = 0, e = NumElems; i != e; ++i) {
2121 if (ConstantFPSDNode *V =
2122 dyn_cast<ConstantFPSDNode>(Node->getOperand(i))) {
2123 CV.push_back(const_cast<ConstantFP *>(V->getConstantFPValue()));
2124 } else if (ConstantSDNode *V =
2125 dyn_cast<ConstantSDNode>(Node->getOperand(i))) {
2126 if (OpVT==EltVT)
2127 CV.push_back(const_cast<ConstantInt *>(V->getConstantIntValue()));
2128 else {
2129 // If OpVT and EltVT don't match, EltVT is not legal and the
2130 // element values have been promoted/truncated earlier. Undo this;
2131 // we don't want a v16i8 to become a v16i32 for example.
2132 const ConstantInt *CI = V->getConstantIntValue();
2133 CV.push_back(ConstantInt::get(EltVT.getTypeForEVT(*DAG.getContext()),
2134 CI->getZExtValue()));
2135 }
2136 } else {
2137 assert(Node->getOperand(i).getOpcode() == ISD::UNDEF);
2138 Type *OpNTy = EltVT.getTypeForEVT(*DAG.getContext());
2139 CV.push_back(UndefValue::get(OpNTy));
2140 }
2141 }
2142 Constant *CP = ConstantVector::get(CV);
2143 SDValue CPIdx =
2144 DAG.getConstantPool(CP, TLI.getPointerTy(DAG.getDataLayout()));
2145 unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment();
2146 return DAG.getLoad(
2147 VT, dl, DAG.getEntryNode(), CPIdx,
2148 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), false,
2149 false, false, Alignment);
2150 }
2151
2152 SmallSet<SDValue, 16> DefinedValues;
2153 for (unsigned i = 0; i < NumElems; ++i) {
2154 if (Node->getOperand(i).getOpcode() == ISD::UNDEF)
2155 continue;
2156 DefinedValues.insert(Node->getOperand(i));
2157 }
2158
2159 if (TLI.shouldExpandBuildVectorWithShuffles(VT, DefinedValues.size())) {
2160 if (!MoreThanTwoValues) {
2161 SmallVector<int, 8> ShuffleVec(NumElems, -1);
2162 for (unsigned i = 0; i < NumElems; ++i) {
2163 SDValue V = Node->getOperand(i);
2164 if (V.getOpcode() == ISD::UNDEF)
2165 continue;
2166 ShuffleVec[i] = V == Value1 ? 0 : NumElems;
2167 }
2168 if (TLI.isShuffleMaskLegal(ShuffleVec, Node->getValueType(0))) {
2169 // Get the splatted value into the low element of a vector register.
2170 SDValue Vec1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value1);
2171 SDValue Vec2;
2172 if (Value2.getNode())
2173 Vec2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value2);
2174 else
2175 Vec2 = DAG.getUNDEF(VT);
2176
2177 // Return shuffle(LowValVec, undef, <0,0,0,0>)
2178 return DAG.getVectorShuffle(VT, dl, Vec1, Vec2, ShuffleVec.data());
2179 }
2180 } else {
2181 SDValue Res;
2182 if (ExpandBVWithShuffles(Node, DAG, TLI, Res))
2183 return Res;
2184 }
2185 }
2186
2187 // Otherwise, we can't handle this case efficiently.
2188 return ExpandVectorBuildThroughStack(Node);
2189 }
2190
2191 // Expand a node into a call to a libcall. If the result value
2192 // does not fit into a register, return the lo part and set the hi part to the
2193 // by-reg argument. If it does fit into a single register, return the result
2194 // and leave the Hi part unset.
ExpandLibCall(RTLIB::Libcall LC,SDNode * Node,bool isSigned)2195 SDValue SelectionDAGLegalize::ExpandLibCall(RTLIB::Libcall LC, SDNode *Node,
2196 bool isSigned) {
2197 TargetLowering::ArgListTy Args;
2198 TargetLowering::ArgListEntry Entry;
2199 for (const SDValue &Op : Node->op_values()) {
2200 EVT ArgVT = Op.getValueType();
2201 Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
2202 Entry.Node = Op;
2203 Entry.Ty = ArgTy;
2204 Entry.isSExt = isSigned;
2205 Entry.isZExt = !isSigned;
2206 Args.push_back(Entry);
2207 }
2208 SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC),
2209 TLI.getPointerTy(DAG.getDataLayout()));
2210
2211 Type *RetTy = Node->getValueType(0).getTypeForEVT(*DAG.getContext());
2212
2213 // By default, the input chain to this libcall is the entry node of the
2214 // function. If the libcall is going to be emitted as a tail call then
2215 // TLI.isUsedByReturnOnly will change it to the right chain if the return
2216 // node which is being folded has a non-entry input chain.
2217 SDValue InChain = DAG.getEntryNode();
2218
2219 // isTailCall may be true since the callee does not reference caller stack
2220 // frame. Check if it's in the right position.
2221 SDValue TCChain = InChain;
2222 bool isTailCall = TLI.isInTailCallPosition(DAG, Node, TCChain);
2223 if (isTailCall)
2224 InChain = TCChain;
2225
2226 TargetLowering::CallLoweringInfo CLI(DAG);
2227 CLI.setDebugLoc(SDLoc(Node)).setChain(InChain)
2228 .setCallee(TLI.getLibcallCallingConv(LC), RetTy, Callee, std::move(Args), 0)
2229 .setTailCall(isTailCall).setSExtResult(isSigned).setZExtResult(!isSigned);
2230
2231 std::pair<SDValue, SDValue> CallInfo = TLI.LowerCallTo(CLI);
2232
2233 if (!CallInfo.second.getNode())
2234 // It's a tailcall, return the chain (which is the DAG root).
2235 return DAG.getRoot();
2236
2237 return CallInfo.first;
2238 }
2239
2240 /// Generate a libcall taking the given operands as arguments
2241 /// and returning a result of type RetVT.
ExpandLibCall(RTLIB::Libcall LC,EVT RetVT,const SDValue * Ops,unsigned NumOps,bool isSigned,SDLoc dl)2242 SDValue SelectionDAGLegalize::ExpandLibCall(RTLIB::Libcall LC, EVT RetVT,
2243 const SDValue *Ops, unsigned NumOps,
2244 bool isSigned, SDLoc dl) {
2245 TargetLowering::ArgListTy Args;
2246 Args.reserve(NumOps);
2247
2248 TargetLowering::ArgListEntry Entry;
2249 for (unsigned i = 0; i != NumOps; ++i) {
2250 Entry.Node = Ops[i];
2251 Entry.Ty = Entry.Node.getValueType().getTypeForEVT(*DAG.getContext());
2252 Entry.isSExt = isSigned;
2253 Entry.isZExt = !isSigned;
2254 Args.push_back(Entry);
2255 }
2256 SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC),
2257 TLI.getPointerTy(DAG.getDataLayout()));
2258
2259 Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext());
2260
2261 TargetLowering::CallLoweringInfo CLI(DAG);
2262 CLI.setDebugLoc(dl).setChain(DAG.getEntryNode())
2263 .setCallee(TLI.getLibcallCallingConv(LC), RetTy, Callee, std::move(Args), 0)
2264 .setSExtResult(isSigned).setZExtResult(!isSigned);
2265
2266 std::pair<SDValue,SDValue> CallInfo = TLI.LowerCallTo(CLI);
2267
2268 return CallInfo.first;
2269 }
2270
2271 // Expand a node into a call to a libcall. Similar to
2272 // ExpandLibCall except that the first operand is the in-chain.
2273 std::pair<SDValue, SDValue>
ExpandChainLibCall(RTLIB::Libcall LC,SDNode * Node,bool isSigned)2274 SelectionDAGLegalize::ExpandChainLibCall(RTLIB::Libcall LC,
2275 SDNode *Node,
2276 bool isSigned) {
2277 SDValue InChain = Node->getOperand(0);
2278
2279 TargetLowering::ArgListTy Args;
2280 TargetLowering::ArgListEntry Entry;
2281 for (unsigned i = 1, e = Node->getNumOperands(); i != e; ++i) {
2282 EVT ArgVT = Node->getOperand(i).getValueType();
2283 Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
2284 Entry.Node = Node->getOperand(i);
2285 Entry.Ty = ArgTy;
2286 Entry.isSExt = isSigned;
2287 Entry.isZExt = !isSigned;
2288 Args.push_back(Entry);
2289 }
2290 SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC),
2291 TLI.getPointerTy(DAG.getDataLayout()));
2292
2293 Type *RetTy = Node->getValueType(0).getTypeForEVT(*DAG.getContext());
2294
2295 TargetLowering::CallLoweringInfo CLI(DAG);
2296 CLI.setDebugLoc(SDLoc(Node)).setChain(InChain)
2297 .setCallee(TLI.getLibcallCallingConv(LC), RetTy, Callee, std::move(Args), 0)
2298 .setSExtResult(isSigned).setZExtResult(!isSigned);
2299
2300 std::pair<SDValue, SDValue> CallInfo = TLI.LowerCallTo(CLI);
2301
2302 return CallInfo;
2303 }
2304
ExpandFPLibCall(SDNode * Node,RTLIB::Libcall Call_F32,RTLIB::Libcall Call_F64,RTLIB::Libcall Call_F80,RTLIB::Libcall Call_F128,RTLIB::Libcall Call_PPCF128)2305 SDValue SelectionDAGLegalize::ExpandFPLibCall(SDNode* Node,
2306 RTLIB::Libcall Call_F32,
2307 RTLIB::Libcall Call_F64,
2308 RTLIB::Libcall Call_F80,
2309 RTLIB::Libcall Call_F128,
2310 RTLIB::Libcall Call_PPCF128) {
2311 RTLIB::Libcall LC;
2312 switch (Node->getSimpleValueType(0).SimpleTy) {
2313 default: llvm_unreachable("Unexpected request for libcall!");
2314 case MVT::f32: LC = Call_F32; break;
2315 case MVT::f64: LC = Call_F64; break;
2316 case MVT::f80: LC = Call_F80; break;
2317 case MVT::f128: LC = Call_F128; break;
2318 case MVT::ppcf128: LC = Call_PPCF128; break;
2319 }
2320 return ExpandLibCall(LC, Node, false);
2321 }
2322
ExpandIntLibCall(SDNode * Node,bool isSigned,RTLIB::Libcall Call_I8,RTLIB::Libcall Call_I16,RTLIB::Libcall Call_I32,RTLIB::Libcall Call_I64,RTLIB::Libcall Call_I128)2323 SDValue SelectionDAGLegalize::ExpandIntLibCall(SDNode* Node, bool isSigned,
2324 RTLIB::Libcall Call_I8,
2325 RTLIB::Libcall Call_I16,
2326 RTLIB::Libcall Call_I32,
2327 RTLIB::Libcall Call_I64,
2328 RTLIB::Libcall Call_I128) {
2329 RTLIB::Libcall LC;
2330 switch (Node->getSimpleValueType(0).SimpleTy) {
2331 default: llvm_unreachable("Unexpected request for libcall!");
2332 case MVT::i8: LC = Call_I8; break;
2333 case MVT::i16: LC = Call_I16; break;
2334 case MVT::i32: LC = Call_I32; break;
2335 case MVT::i64: LC = Call_I64; break;
2336 case MVT::i128: LC = Call_I128; break;
2337 }
2338 return ExpandLibCall(LC, Node, isSigned);
2339 }
2340
2341 /// Issue libcalls to __{u}divmod to compute div / rem pairs.
2342 void
ExpandDivRemLibCall(SDNode * Node,SmallVectorImpl<SDValue> & Results)2343 SelectionDAGLegalize::ExpandDivRemLibCall(SDNode *Node,
2344 SmallVectorImpl<SDValue> &Results) {
2345 unsigned Opcode = Node->getOpcode();
2346 bool isSigned = Opcode == ISD::SDIVREM;
2347
2348 RTLIB::Libcall LC;
2349 switch (Node->getSimpleValueType(0).SimpleTy) {
2350 default: llvm_unreachable("Unexpected request for libcall!");
2351 case MVT::i8: LC= isSigned ? RTLIB::SDIVREM_I8 : RTLIB::UDIVREM_I8; break;
2352 case MVT::i16: LC= isSigned ? RTLIB::SDIVREM_I16 : RTLIB::UDIVREM_I16; break;
2353 case MVT::i32: LC= isSigned ? RTLIB::SDIVREM_I32 : RTLIB::UDIVREM_I32; break;
2354 case MVT::i64: LC= isSigned ? RTLIB::SDIVREM_I64 : RTLIB::UDIVREM_I64; break;
2355 case MVT::i128: LC= isSigned ? RTLIB::SDIVREM_I128:RTLIB::UDIVREM_I128; break;
2356 }
2357
2358 // The input chain to this libcall is the entry node of the function.
2359 // Legalizing the call will automatically add the previous call to the
2360 // dependence.
2361 SDValue InChain = DAG.getEntryNode();
2362
2363 EVT RetVT = Node->getValueType(0);
2364 Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext());
2365
2366 TargetLowering::ArgListTy Args;
2367 TargetLowering::ArgListEntry Entry;
2368 for (const SDValue &Op : Node->op_values()) {
2369 EVT ArgVT = Op.getValueType();
2370 Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
2371 Entry.Node = Op;
2372 Entry.Ty = ArgTy;
2373 Entry.isSExt = isSigned;
2374 Entry.isZExt = !isSigned;
2375 Args.push_back(Entry);
2376 }
2377
2378 // Also pass the return address of the remainder.
2379 SDValue FIPtr = DAG.CreateStackTemporary(RetVT);
2380 Entry.Node = FIPtr;
2381 Entry.Ty = RetTy->getPointerTo();
2382 Entry.isSExt = isSigned;
2383 Entry.isZExt = !isSigned;
2384 Args.push_back(Entry);
2385
2386 SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC),
2387 TLI.getPointerTy(DAG.getDataLayout()));
2388
2389 SDLoc dl(Node);
2390 TargetLowering::CallLoweringInfo CLI(DAG);
2391 CLI.setDebugLoc(dl).setChain(InChain)
2392 .setCallee(TLI.getLibcallCallingConv(LC), RetTy, Callee, std::move(Args), 0)
2393 .setSExtResult(isSigned).setZExtResult(!isSigned);
2394
2395 std::pair<SDValue, SDValue> CallInfo = TLI.LowerCallTo(CLI);
2396
2397 // Remainder is loaded back from the stack frame.
2398 SDValue Rem = DAG.getLoad(RetVT, dl, CallInfo.second, FIPtr,
2399 MachinePointerInfo(), false, false, false, 0);
2400 Results.push_back(CallInfo.first);
2401 Results.push_back(Rem);
2402 }
2403
2404 /// Return true if sincos libcall is available.
isSinCosLibcallAvailable(SDNode * Node,const TargetLowering & TLI)2405 static bool isSinCosLibcallAvailable(SDNode *Node, const TargetLowering &TLI) {
2406 RTLIB::Libcall LC;
2407 switch (Node->getSimpleValueType(0).SimpleTy) {
2408 default: llvm_unreachable("Unexpected request for libcall!");
2409 case MVT::f32: LC = RTLIB::SINCOS_F32; break;
2410 case MVT::f64: LC = RTLIB::SINCOS_F64; break;
2411 case MVT::f80: LC = RTLIB::SINCOS_F80; break;
2412 case MVT::f128: LC = RTLIB::SINCOS_F128; break;
2413 case MVT::ppcf128: LC = RTLIB::SINCOS_PPCF128; break;
2414 }
2415 return TLI.getLibcallName(LC) != nullptr;
2416 }
2417
2418 /// Return true if sincos libcall is available and can be used to combine sin
2419 /// and cos.
canCombineSinCosLibcall(SDNode * Node,const TargetLowering & TLI,const TargetMachine & TM)2420 static bool canCombineSinCosLibcall(SDNode *Node, const TargetLowering &TLI,
2421 const TargetMachine &TM) {
2422 if (!isSinCosLibcallAvailable(Node, TLI))
2423 return false;
2424 // GNU sin/cos functions set errno while sincos does not. Therefore
2425 // combining sin and cos is only safe if unsafe-fpmath is enabled.
2426 bool isGNU = Triple(TM.getTargetTriple()).getEnvironment() == Triple::GNU;
2427 if (isGNU && !TM.Options.UnsafeFPMath)
2428 return false;
2429 return true;
2430 }
2431
2432 /// Only issue sincos libcall if both sin and cos are needed.
useSinCos(SDNode * Node)2433 static bool useSinCos(SDNode *Node) {
2434 unsigned OtherOpcode = Node->getOpcode() == ISD::FSIN
2435 ? ISD::FCOS : ISD::FSIN;
2436
2437 SDValue Op0 = Node->getOperand(0);
2438 for (SDNode::use_iterator UI = Op0.getNode()->use_begin(),
2439 UE = Op0.getNode()->use_end(); UI != UE; ++UI) {
2440 SDNode *User = *UI;
2441 if (User == Node)
2442 continue;
2443 // The other user might have been turned into sincos already.
2444 if (User->getOpcode() == OtherOpcode || User->getOpcode() == ISD::FSINCOS)
2445 return true;
2446 }
2447 return false;
2448 }
2449
2450 /// Issue libcalls to sincos to compute sin / cos pairs.
2451 void
ExpandSinCosLibCall(SDNode * Node,SmallVectorImpl<SDValue> & Results)2452 SelectionDAGLegalize::ExpandSinCosLibCall(SDNode *Node,
2453 SmallVectorImpl<SDValue> &Results) {
2454 RTLIB::Libcall LC;
2455 switch (Node->getSimpleValueType(0).SimpleTy) {
2456 default: llvm_unreachable("Unexpected request for libcall!");
2457 case MVT::f32: LC = RTLIB::SINCOS_F32; break;
2458 case MVT::f64: LC = RTLIB::SINCOS_F64; break;
2459 case MVT::f80: LC = RTLIB::SINCOS_F80; break;
2460 case MVT::f128: LC = RTLIB::SINCOS_F128; break;
2461 case MVT::ppcf128: LC = RTLIB::SINCOS_PPCF128; break;
2462 }
2463
2464 // The input chain to this libcall is the entry node of the function.
2465 // Legalizing the call will automatically add the previous call to the
2466 // dependence.
2467 SDValue InChain = DAG.getEntryNode();
2468
2469 EVT RetVT = Node->getValueType(0);
2470 Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext());
2471
2472 TargetLowering::ArgListTy Args;
2473 TargetLowering::ArgListEntry Entry;
2474
2475 // Pass the argument.
2476 Entry.Node = Node->getOperand(0);
2477 Entry.Ty = RetTy;
2478 Entry.isSExt = false;
2479 Entry.isZExt = false;
2480 Args.push_back(Entry);
2481
2482 // Pass the return address of sin.
2483 SDValue SinPtr = DAG.CreateStackTemporary(RetVT);
2484 Entry.Node = SinPtr;
2485 Entry.Ty = RetTy->getPointerTo();
2486 Entry.isSExt = false;
2487 Entry.isZExt = false;
2488 Args.push_back(Entry);
2489
2490 // Also pass the return address of the cos.
2491 SDValue CosPtr = DAG.CreateStackTemporary(RetVT);
2492 Entry.Node = CosPtr;
2493 Entry.Ty = RetTy->getPointerTo();
2494 Entry.isSExt = false;
2495 Entry.isZExt = false;
2496 Args.push_back(Entry);
2497
2498 SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC),
2499 TLI.getPointerTy(DAG.getDataLayout()));
2500
2501 SDLoc dl(Node);
2502 TargetLowering::CallLoweringInfo CLI(DAG);
2503 CLI.setDebugLoc(dl).setChain(InChain)
2504 .setCallee(TLI.getLibcallCallingConv(LC),
2505 Type::getVoidTy(*DAG.getContext()), Callee, std::move(Args), 0);
2506
2507 std::pair<SDValue, SDValue> CallInfo = TLI.LowerCallTo(CLI);
2508
2509 Results.push_back(DAG.getLoad(RetVT, dl, CallInfo.second, SinPtr,
2510 MachinePointerInfo(), false, false, false, 0));
2511 Results.push_back(DAG.getLoad(RetVT, dl, CallInfo.second, CosPtr,
2512 MachinePointerInfo(), false, false, false, 0));
2513 }
2514
2515 /// This function is responsible for legalizing a
2516 /// INT_TO_FP operation of the specified operand when the target requests that
2517 /// we expand it. At this point, we know that the result and operand types are
2518 /// legal for the target.
ExpandLegalINT_TO_FP(bool isSigned,SDValue Op0,EVT DestVT,SDLoc dl)2519 SDValue SelectionDAGLegalize::ExpandLegalINT_TO_FP(bool isSigned,
2520 SDValue Op0,
2521 EVT DestVT,
2522 SDLoc dl) {
2523 // TODO: Should any fast-math-flags be set for the created nodes?
2524
2525 if (Op0.getValueType() == MVT::i32 && TLI.isTypeLegal(MVT::f64)) {
2526 // simple 32-bit [signed|unsigned] integer to float/double expansion
2527
2528 // Get the stack frame index of a 8 byte buffer.
2529 SDValue StackSlot = DAG.CreateStackTemporary(MVT::f64);
2530
2531 // word offset constant for Hi/Lo address computation
2532 SDValue WordOff = DAG.getConstant(sizeof(int), dl,
2533 StackSlot.getValueType());
2534 // set up Hi and Lo (into buffer) address based on endian
2535 SDValue Hi = StackSlot;
2536 SDValue Lo = DAG.getNode(ISD::ADD, dl, StackSlot.getValueType(),
2537 StackSlot, WordOff);
2538 if (DAG.getDataLayout().isLittleEndian())
2539 std::swap(Hi, Lo);
2540
2541 // if signed map to unsigned space
2542 SDValue Op0Mapped;
2543 if (isSigned) {
2544 // constant used to invert sign bit (signed to unsigned mapping)
2545 SDValue SignBit = DAG.getConstant(0x80000000u, dl, MVT::i32);
2546 Op0Mapped = DAG.getNode(ISD::XOR, dl, MVT::i32, Op0, SignBit);
2547 } else {
2548 Op0Mapped = Op0;
2549 }
2550 // store the lo of the constructed double - based on integer input
2551 SDValue Store1 = DAG.getStore(DAG.getEntryNode(), dl,
2552 Op0Mapped, Lo, MachinePointerInfo(),
2553 false, false, 0);
2554 // initial hi portion of constructed double
2555 SDValue InitialHi = DAG.getConstant(0x43300000u, dl, MVT::i32);
2556 // store the hi of the constructed double - biased exponent
2557 SDValue Store2 = DAG.getStore(Store1, dl, InitialHi, Hi,
2558 MachinePointerInfo(),
2559 false, false, 0);
2560 // load the constructed double
2561 SDValue Load = DAG.getLoad(MVT::f64, dl, Store2, StackSlot,
2562 MachinePointerInfo(), false, false, false, 0);
2563 // FP constant to bias correct the final result
2564 SDValue Bias = DAG.getConstantFP(isSigned ?
2565 BitsToDouble(0x4330000080000000ULL) :
2566 BitsToDouble(0x4330000000000000ULL),
2567 dl, MVT::f64);
2568 // subtract the bias
2569 SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::f64, Load, Bias);
2570 // final result
2571 SDValue Result;
2572 // handle final rounding
2573 if (DestVT == MVT::f64) {
2574 // do nothing
2575 Result = Sub;
2576 } else if (DestVT.bitsLT(MVT::f64)) {
2577 Result = DAG.getNode(ISD::FP_ROUND, dl, DestVT, Sub,
2578 DAG.getIntPtrConstant(0, dl));
2579 } else if (DestVT.bitsGT(MVT::f64)) {
2580 Result = DAG.getNode(ISD::FP_EXTEND, dl, DestVT, Sub);
2581 }
2582 return Result;
2583 }
2584 assert(!isSigned && "Legalize cannot Expand SINT_TO_FP for i64 yet");
2585 // Code below here assumes !isSigned without checking again.
2586
2587 // Implementation of unsigned i64 to f64 following the algorithm in
2588 // __floatundidf in compiler_rt. This implementation has the advantage
2589 // of performing rounding correctly, both in the default rounding mode
2590 // and in all alternate rounding modes.
2591 // TODO: Generalize this for use with other types.
2592 if (Op0.getValueType() == MVT::i64 && DestVT == MVT::f64) {
2593 SDValue TwoP52 =
2594 DAG.getConstant(UINT64_C(0x4330000000000000), dl, MVT::i64);
2595 SDValue TwoP84PlusTwoP52 =
2596 DAG.getConstantFP(BitsToDouble(UINT64_C(0x4530000000100000)), dl,
2597 MVT::f64);
2598 SDValue TwoP84 =
2599 DAG.getConstant(UINT64_C(0x4530000000000000), dl, MVT::i64);
2600
2601 SDValue Lo = DAG.getZeroExtendInReg(Op0, dl, MVT::i32);
2602 SDValue Hi = DAG.getNode(ISD::SRL, dl, MVT::i64, Op0,
2603 DAG.getConstant(32, dl, MVT::i64));
2604 SDValue LoOr = DAG.getNode(ISD::OR, dl, MVT::i64, Lo, TwoP52);
2605 SDValue HiOr = DAG.getNode(ISD::OR, dl, MVT::i64, Hi, TwoP84);
2606 SDValue LoFlt = DAG.getNode(ISD::BITCAST, dl, MVT::f64, LoOr);
2607 SDValue HiFlt = DAG.getNode(ISD::BITCAST, dl, MVT::f64, HiOr);
2608 SDValue HiSub = DAG.getNode(ISD::FSUB, dl, MVT::f64, HiFlt,
2609 TwoP84PlusTwoP52);
2610 return DAG.getNode(ISD::FADD, dl, MVT::f64, LoFlt, HiSub);
2611 }
2612
2613 // Implementation of unsigned i64 to f32.
2614 // TODO: Generalize this for use with other types.
2615 if (Op0.getValueType() == MVT::i64 && DestVT == MVT::f32) {
2616 // For unsigned conversions, convert them to signed conversions using the
2617 // algorithm from the x86_64 __floatundidf in compiler_rt.
2618 if (!isSigned) {
2619 SDValue Fast = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, Op0);
2620
2621 SDValue ShiftConst = DAG.getConstant(
2622 1, dl, TLI.getShiftAmountTy(Op0.getValueType(), DAG.getDataLayout()));
2623 SDValue Shr = DAG.getNode(ISD::SRL, dl, MVT::i64, Op0, ShiftConst);
2624 SDValue AndConst = DAG.getConstant(1, dl, MVT::i64);
2625 SDValue And = DAG.getNode(ISD::AND, dl, MVT::i64, Op0, AndConst);
2626 SDValue Or = DAG.getNode(ISD::OR, dl, MVT::i64, And, Shr);
2627
2628 SDValue SignCvt = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, Or);
2629 SDValue Slow = DAG.getNode(ISD::FADD, dl, MVT::f32, SignCvt, SignCvt);
2630
2631 // TODO: This really should be implemented using a branch rather than a
2632 // select. We happen to get lucky and machinesink does the right
2633 // thing most of the time. This would be a good candidate for a
2634 //pseudo-op, or, even better, for whole-function isel.
2635 SDValue SignBitTest = DAG.getSetCC(dl, getSetCCResultType(MVT::i64),
2636 Op0, DAG.getConstant(0, dl, MVT::i64), ISD::SETLT);
2637 return DAG.getSelect(dl, MVT::f32, SignBitTest, Slow, Fast);
2638 }
2639
2640 // Otherwise, implement the fully general conversion.
2641
2642 SDValue And = DAG.getNode(ISD::AND, dl, MVT::i64, Op0,
2643 DAG.getConstant(UINT64_C(0xfffffffffffff800), dl, MVT::i64));
2644 SDValue Or = DAG.getNode(ISD::OR, dl, MVT::i64, And,
2645 DAG.getConstant(UINT64_C(0x800), dl, MVT::i64));
2646 SDValue And2 = DAG.getNode(ISD::AND, dl, MVT::i64, Op0,
2647 DAG.getConstant(UINT64_C(0x7ff), dl, MVT::i64));
2648 SDValue Ne = DAG.getSetCC(dl, getSetCCResultType(MVT::i64), And2,
2649 DAG.getConstant(UINT64_C(0), dl, MVT::i64),
2650 ISD::SETNE);
2651 SDValue Sel = DAG.getSelect(dl, MVT::i64, Ne, Or, Op0);
2652 SDValue Ge = DAG.getSetCC(dl, getSetCCResultType(MVT::i64), Op0,
2653 DAG.getConstant(UINT64_C(0x0020000000000000), dl,
2654 MVT::i64),
2655 ISD::SETUGE);
2656 SDValue Sel2 = DAG.getSelect(dl, MVT::i64, Ge, Sel, Op0);
2657 EVT SHVT = TLI.getShiftAmountTy(Sel2.getValueType(), DAG.getDataLayout());
2658
2659 SDValue Sh = DAG.getNode(ISD::SRL, dl, MVT::i64, Sel2,
2660 DAG.getConstant(32, dl, SHVT));
2661 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Sh);
2662 SDValue Fcvt = DAG.getNode(ISD::UINT_TO_FP, dl, MVT::f64, Trunc);
2663 SDValue TwoP32 =
2664 DAG.getConstantFP(BitsToDouble(UINT64_C(0x41f0000000000000)), dl,
2665 MVT::f64);
2666 SDValue Fmul = DAG.getNode(ISD::FMUL, dl, MVT::f64, TwoP32, Fcvt);
2667 SDValue Lo = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Sel2);
2668 SDValue Fcvt2 = DAG.getNode(ISD::UINT_TO_FP, dl, MVT::f64, Lo);
2669 SDValue Fadd = DAG.getNode(ISD::FADD, dl, MVT::f64, Fmul, Fcvt2);
2670 return DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, Fadd,
2671 DAG.getIntPtrConstant(0, dl));
2672 }
2673
2674 SDValue Tmp1 = DAG.getNode(ISD::SINT_TO_FP, dl, DestVT, Op0);
2675
2676 SDValue SignSet = DAG.getSetCC(dl, getSetCCResultType(Op0.getValueType()),
2677 Op0,
2678 DAG.getConstant(0, dl, Op0.getValueType()),
2679 ISD::SETLT);
2680 SDValue Zero = DAG.getIntPtrConstant(0, dl),
2681 Four = DAG.getIntPtrConstant(4, dl);
2682 SDValue CstOffset = DAG.getSelect(dl, Zero.getValueType(),
2683 SignSet, Four, Zero);
2684
2685 // If the sign bit of the integer is set, the large number will be treated
2686 // as a negative number. To counteract this, the dynamic code adds an
2687 // offset depending on the data type.
2688 uint64_t FF;
2689 switch (Op0.getSimpleValueType().SimpleTy) {
2690 default: llvm_unreachable("Unsupported integer type!");
2691 case MVT::i8 : FF = 0x43800000ULL; break; // 2^8 (as a float)
2692 case MVT::i16: FF = 0x47800000ULL; break; // 2^16 (as a float)
2693 case MVT::i32: FF = 0x4F800000ULL; break; // 2^32 (as a float)
2694 case MVT::i64: FF = 0x5F800000ULL; break; // 2^64 (as a float)
2695 }
2696 if (DAG.getDataLayout().isLittleEndian())
2697 FF <<= 32;
2698 Constant *FudgeFactor = ConstantInt::get(
2699 Type::getInt64Ty(*DAG.getContext()), FF);
2700
2701 SDValue CPIdx =
2702 DAG.getConstantPool(FudgeFactor, TLI.getPointerTy(DAG.getDataLayout()));
2703 unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment();
2704 CPIdx = DAG.getNode(ISD::ADD, dl, CPIdx.getValueType(), CPIdx, CstOffset);
2705 Alignment = std::min(Alignment, 4u);
2706 SDValue FudgeInReg;
2707 if (DestVT == MVT::f32)
2708 FudgeInReg = DAG.getLoad(
2709 MVT::f32, dl, DAG.getEntryNode(), CPIdx,
2710 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), false,
2711 false, false, Alignment);
2712 else {
2713 SDValue Load = DAG.getExtLoad(
2714 ISD::EXTLOAD, dl, DestVT, DAG.getEntryNode(), CPIdx,
2715 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), MVT::f32,
2716 false, false, false, Alignment);
2717 HandleSDNode Handle(Load);
2718 LegalizeOp(Load.getNode());
2719 FudgeInReg = Handle.getValue();
2720 }
2721
2722 return DAG.getNode(ISD::FADD, dl, DestVT, Tmp1, FudgeInReg);
2723 }
2724
2725 /// This function is responsible for legalizing a
2726 /// *INT_TO_FP operation of the specified operand when the target requests that
2727 /// we promote it. At this point, we know that the result and operand types are
2728 /// legal for the target, and that there is a legal UINT_TO_FP or SINT_TO_FP
2729 /// operation that takes a larger input.
PromoteLegalINT_TO_FP(SDValue LegalOp,EVT DestVT,bool isSigned,SDLoc dl)2730 SDValue SelectionDAGLegalize::PromoteLegalINT_TO_FP(SDValue LegalOp,
2731 EVT DestVT,
2732 bool isSigned,
2733 SDLoc dl) {
2734 // First step, figure out the appropriate *INT_TO_FP operation to use.
2735 EVT NewInTy = LegalOp.getValueType();
2736
2737 unsigned OpToUse = 0;
2738
2739 // Scan for the appropriate larger type to use.
2740 while (1) {
2741 NewInTy = (MVT::SimpleValueType)(NewInTy.getSimpleVT().SimpleTy+1);
2742 assert(NewInTy.isInteger() && "Ran out of possibilities!");
2743
2744 // If the target supports SINT_TO_FP of this type, use it.
2745 if (TLI.isOperationLegalOrCustom(ISD::SINT_TO_FP, NewInTy)) {
2746 OpToUse = ISD::SINT_TO_FP;
2747 break;
2748 }
2749 if (isSigned) continue;
2750
2751 // If the target supports UINT_TO_FP of this type, use it.
2752 if (TLI.isOperationLegalOrCustom(ISD::UINT_TO_FP, NewInTy)) {
2753 OpToUse = ISD::UINT_TO_FP;
2754 break;
2755 }
2756
2757 // Otherwise, try a larger type.
2758 }
2759
2760 // Okay, we found the operation and type to use. Zero extend our input to the
2761 // desired type then run the operation on it.
2762 return DAG.getNode(OpToUse, dl, DestVT,
2763 DAG.getNode(isSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND,
2764 dl, NewInTy, LegalOp));
2765 }
2766
2767 /// This function is responsible for legalizing a
2768 /// FP_TO_*INT operation of the specified operand when the target requests that
2769 /// we promote it. At this point, we know that the result and operand types are
2770 /// legal for the target, and that there is a legal FP_TO_UINT or FP_TO_SINT
2771 /// operation that returns a larger result.
PromoteLegalFP_TO_INT(SDValue LegalOp,EVT DestVT,bool isSigned,SDLoc dl)2772 SDValue SelectionDAGLegalize::PromoteLegalFP_TO_INT(SDValue LegalOp,
2773 EVT DestVT,
2774 bool isSigned,
2775 SDLoc dl) {
2776 // First step, figure out the appropriate FP_TO*INT operation to use.
2777 EVT NewOutTy = DestVT;
2778
2779 unsigned OpToUse = 0;
2780
2781 // Scan for the appropriate larger type to use.
2782 while (1) {
2783 NewOutTy = (MVT::SimpleValueType)(NewOutTy.getSimpleVT().SimpleTy+1);
2784 assert(NewOutTy.isInteger() && "Ran out of possibilities!");
2785
2786 // A larger signed type can hold all unsigned values of the requested type,
2787 // so using FP_TO_SINT is valid
2788 if (TLI.isOperationLegalOrCustom(ISD::FP_TO_SINT, NewOutTy)) {
2789 OpToUse = ISD::FP_TO_SINT;
2790 break;
2791 }
2792
2793 // However, if the value may be < 0.0, we *must* use some FP_TO_SINT.
2794 if (!isSigned && TLI.isOperationLegalOrCustom(ISD::FP_TO_UINT, NewOutTy)) {
2795 OpToUse = ISD::FP_TO_UINT;
2796 break;
2797 }
2798
2799 // Otherwise, try a larger type.
2800 }
2801
2802
2803 // Okay, we found the operation and type to use.
2804 SDValue Operation = DAG.getNode(OpToUse, dl, NewOutTy, LegalOp);
2805
2806 // Truncate the result of the extended FP_TO_*INT operation to the desired
2807 // size.
2808 return DAG.getNode(ISD::TRUNCATE, dl, DestVT, Operation);
2809 }
2810
2811 /// Open code the operations for BITREVERSE.
ExpandBITREVERSE(SDValue Op,SDLoc dl)2812 SDValue SelectionDAGLegalize::ExpandBITREVERSE(SDValue Op, SDLoc dl) {
2813 EVT VT = Op.getValueType();
2814 EVT SHVT = TLI.getShiftAmountTy(VT, DAG.getDataLayout());
2815 unsigned Sz = VT.getScalarSizeInBits();
2816
2817 SDValue Tmp, Tmp2;
2818 Tmp = DAG.getConstant(0, dl, VT);
2819 for (unsigned I = 0, J = Sz-1; I < Sz; ++I, --J) {
2820 if (I < J)
2821 Tmp2 =
2822 DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(J - I, dl, SHVT));
2823 else
2824 Tmp2 =
2825 DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(I - J, dl, SHVT));
2826
2827 APInt Shift(Sz, 1);
2828 Shift = Shift.shl(J);
2829 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(Shift, dl, VT));
2830 Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp, Tmp2);
2831 }
2832
2833 return Tmp;
2834 }
2835
2836 /// Open code the operations for BSWAP of the specified operation.
ExpandBSWAP(SDValue Op,SDLoc dl)2837 SDValue SelectionDAGLegalize::ExpandBSWAP(SDValue Op, SDLoc dl) {
2838 EVT VT = Op.getValueType();
2839 EVT SHVT = TLI.getShiftAmountTy(VT, DAG.getDataLayout());
2840 SDValue Tmp1, Tmp2, Tmp3, Tmp4, Tmp5, Tmp6, Tmp7, Tmp8;
2841 switch (VT.getSimpleVT().SimpleTy) {
2842 default: llvm_unreachable("Unhandled Expand type in BSWAP!");
2843 case MVT::i16:
2844 Tmp2 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, dl, SHVT));
2845 Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, dl, SHVT));
2846 return DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2);
2847 case MVT::i32:
2848 Tmp4 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, dl, SHVT));
2849 Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, dl, SHVT));
2850 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, dl, SHVT));
2851 Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, dl, SHVT));
2852 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3,
2853 DAG.getConstant(0xFF0000, dl, VT));
2854 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(0xFF00, dl, VT));
2855 Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3);
2856 Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1);
2857 return DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2);
2858 case MVT::i64:
2859 Tmp8 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(56, dl, SHVT));
2860 Tmp7 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(40, dl, SHVT));
2861 Tmp6 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, dl, SHVT));
2862 Tmp5 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, dl, SHVT));
2863 Tmp4 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, dl, SHVT));
2864 Tmp3 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, dl, SHVT));
2865 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(40, dl, SHVT));
2866 Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(56, dl, SHVT));
2867 Tmp7 = DAG.getNode(ISD::AND, dl, VT, Tmp7,
2868 DAG.getConstant(255ULL<<48, dl, VT));
2869 Tmp6 = DAG.getNode(ISD::AND, dl, VT, Tmp6,
2870 DAG.getConstant(255ULL<<40, dl, VT));
2871 Tmp5 = DAG.getNode(ISD::AND, dl, VT, Tmp5,
2872 DAG.getConstant(255ULL<<32, dl, VT));
2873 Tmp4 = DAG.getNode(ISD::AND, dl, VT, Tmp4,
2874 DAG.getConstant(255ULL<<24, dl, VT));
2875 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3,
2876 DAG.getConstant(255ULL<<16, dl, VT));
2877 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2,
2878 DAG.getConstant(255ULL<<8 , dl, VT));
2879 Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp7);
2880 Tmp6 = DAG.getNode(ISD::OR, dl, VT, Tmp6, Tmp5);
2881 Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3);
2882 Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1);
2883 Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp6);
2884 Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2);
2885 return DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp4);
2886 }
2887 }
2888
2889 /// Expand the specified bitcount instruction into operations.
ExpandBitCount(unsigned Opc,SDValue Op,SDLoc dl)2890 SDValue SelectionDAGLegalize::ExpandBitCount(unsigned Opc, SDValue Op,
2891 SDLoc dl) {
2892 switch (Opc) {
2893 default: llvm_unreachable("Cannot expand this yet!");
2894 case ISD::CTPOP: {
2895 EVT VT = Op.getValueType();
2896 EVT ShVT = TLI.getShiftAmountTy(VT, DAG.getDataLayout());
2897 unsigned Len = VT.getSizeInBits();
2898
2899 assert(VT.isInteger() && Len <= 128 && Len % 8 == 0 &&
2900 "CTPOP not implemented for this type.");
2901
2902 // This is the "best" algorithm from
2903 // http://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetParallel
2904
2905 SDValue Mask55 = DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x55)),
2906 dl, VT);
2907 SDValue Mask33 = DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x33)),
2908 dl, VT);
2909 SDValue Mask0F = DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x0F)),
2910 dl, VT);
2911 SDValue Mask01 = DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x01)),
2912 dl, VT);
2913
2914 // v = v - ((v >> 1) & 0x55555555...)
2915 Op = DAG.getNode(ISD::SUB, dl, VT, Op,
2916 DAG.getNode(ISD::AND, dl, VT,
2917 DAG.getNode(ISD::SRL, dl, VT, Op,
2918 DAG.getConstant(1, dl, ShVT)),
2919 Mask55));
2920 // v = (v & 0x33333333...) + ((v >> 2) & 0x33333333...)
2921 Op = DAG.getNode(ISD::ADD, dl, VT,
2922 DAG.getNode(ISD::AND, dl, VT, Op, Mask33),
2923 DAG.getNode(ISD::AND, dl, VT,
2924 DAG.getNode(ISD::SRL, dl, VT, Op,
2925 DAG.getConstant(2, dl, ShVT)),
2926 Mask33));
2927 // v = (v + (v >> 4)) & 0x0F0F0F0F...
2928 Op = DAG.getNode(ISD::AND, dl, VT,
2929 DAG.getNode(ISD::ADD, dl, VT, Op,
2930 DAG.getNode(ISD::SRL, dl, VT, Op,
2931 DAG.getConstant(4, dl, ShVT))),
2932 Mask0F);
2933 // v = (v * 0x01010101...) >> (Len - 8)
2934 Op = DAG.getNode(ISD::SRL, dl, VT,
2935 DAG.getNode(ISD::MUL, dl, VT, Op, Mask01),
2936 DAG.getConstant(Len - 8, dl, ShVT));
2937
2938 return Op;
2939 }
2940 case ISD::CTLZ_ZERO_UNDEF:
2941 // This trivially expands to CTLZ.
2942 return DAG.getNode(ISD::CTLZ, dl, Op.getValueType(), Op);
2943 case ISD::CTLZ: {
2944 // for now, we do this:
2945 // x = x | (x >> 1);
2946 // x = x | (x >> 2);
2947 // ...
2948 // x = x | (x >>16);
2949 // x = x | (x >>32); // for 64-bit input
2950 // return popcount(~x);
2951 //
2952 // Ref: "Hacker's Delight" by Henry Warren
2953 EVT VT = Op.getValueType();
2954 EVT ShVT = TLI.getShiftAmountTy(VT, DAG.getDataLayout());
2955 unsigned len = VT.getSizeInBits();
2956 for (unsigned i = 0; (1U << i) <= (len / 2); ++i) {
2957 SDValue Tmp3 = DAG.getConstant(1ULL << i, dl, ShVT);
2958 Op = DAG.getNode(ISD::OR, dl, VT, Op,
2959 DAG.getNode(ISD::SRL, dl, VT, Op, Tmp3));
2960 }
2961 Op = DAG.getNOT(dl, Op, VT);
2962 return DAG.getNode(ISD::CTPOP, dl, VT, Op);
2963 }
2964 case ISD::CTTZ_ZERO_UNDEF:
2965 // This trivially expands to CTTZ.
2966 return DAG.getNode(ISD::CTTZ, dl, Op.getValueType(), Op);
2967 case ISD::CTTZ: {
2968 // for now, we use: { return popcount(~x & (x - 1)); }
2969 // unless the target has ctlz but not ctpop, in which case we use:
2970 // { return 32 - nlz(~x & (x-1)); }
2971 // Ref: "Hacker's Delight" by Henry Warren
2972 EVT VT = Op.getValueType();
2973 SDValue Tmp3 = DAG.getNode(ISD::AND, dl, VT,
2974 DAG.getNOT(dl, Op, VT),
2975 DAG.getNode(ISD::SUB, dl, VT, Op,
2976 DAG.getConstant(1, dl, VT)));
2977 // If ISD::CTLZ is legal and CTPOP isn't, then do that instead.
2978 if (!TLI.isOperationLegalOrCustom(ISD::CTPOP, VT) &&
2979 TLI.isOperationLegalOrCustom(ISD::CTLZ, VT))
2980 return DAG.getNode(ISD::SUB, dl, VT,
2981 DAG.getConstant(VT.getSizeInBits(), dl, VT),
2982 DAG.getNode(ISD::CTLZ, dl, VT, Tmp3));
2983 return DAG.getNode(ISD::CTPOP, dl, VT, Tmp3);
2984 }
2985 }
2986 }
2987
ExpandNode(SDNode * Node)2988 bool SelectionDAGLegalize::ExpandNode(SDNode *Node) {
2989 SmallVector<SDValue, 8> Results;
2990 SDLoc dl(Node);
2991 SDValue Tmp1, Tmp2, Tmp3, Tmp4;
2992 bool NeedInvert;
2993 switch (Node->getOpcode()) {
2994 case ISD::CTPOP:
2995 case ISD::CTLZ:
2996 case ISD::CTLZ_ZERO_UNDEF:
2997 case ISD::CTTZ:
2998 case ISD::CTTZ_ZERO_UNDEF:
2999 Tmp1 = ExpandBitCount(Node->getOpcode(), Node->getOperand(0), dl);
3000 Results.push_back(Tmp1);
3001 break;
3002 case ISD::BITREVERSE:
3003 Results.push_back(ExpandBITREVERSE(Node->getOperand(0), dl));
3004 break;
3005 case ISD::BSWAP:
3006 Results.push_back(ExpandBSWAP(Node->getOperand(0), dl));
3007 break;
3008 case ISD::FRAMEADDR:
3009 case ISD::RETURNADDR:
3010 case ISD::FRAME_TO_ARGS_OFFSET:
3011 Results.push_back(DAG.getConstant(0, dl, Node->getValueType(0)));
3012 break;
3013 case ISD::FLT_ROUNDS_:
3014 Results.push_back(DAG.getConstant(1, dl, Node->getValueType(0)));
3015 break;
3016 case ISD::EH_RETURN:
3017 case ISD::EH_LABEL:
3018 case ISD::PREFETCH:
3019 case ISD::VAEND:
3020 case ISD::EH_SJLJ_LONGJMP:
3021 // If the target didn't expand these, there's nothing to do, so just
3022 // preserve the chain and be done.
3023 Results.push_back(Node->getOperand(0));
3024 break;
3025 case ISD::READCYCLECOUNTER:
3026 // If the target didn't expand this, just return 'zero' and preserve the
3027 // chain.
3028 Results.append(Node->getNumValues() - 1,
3029 DAG.getConstant(0, dl, Node->getValueType(0)));
3030 Results.push_back(Node->getOperand(0));
3031 break;
3032 case ISD::EH_SJLJ_SETJMP:
3033 // If the target didn't expand this, just return 'zero' and preserve the
3034 // chain.
3035 Results.push_back(DAG.getConstant(0, dl, MVT::i32));
3036 Results.push_back(Node->getOperand(0));
3037 break;
3038 case ISD::ATOMIC_LOAD: {
3039 // There is no libcall for atomic load; fake it with ATOMIC_CMP_SWAP.
3040 SDValue Zero = DAG.getConstant(0, dl, Node->getValueType(0));
3041 SDVTList VTs = DAG.getVTList(Node->getValueType(0), MVT::Other);
3042 SDValue Swap = DAG.getAtomicCmpSwap(
3043 ISD::ATOMIC_CMP_SWAP, dl, cast<AtomicSDNode>(Node)->getMemoryVT(), VTs,
3044 Node->getOperand(0), Node->getOperand(1), Zero, Zero,
3045 cast<AtomicSDNode>(Node)->getMemOperand(),
3046 cast<AtomicSDNode>(Node)->getOrdering(),
3047 cast<AtomicSDNode>(Node)->getOrdering(),
3048 cast<AtomicSDNode>(Node)->getSynchScope());
3049 Results.push_back(Swap.getValue(0));
3050 Results.push_back(Swap.getValue(1));
3051 break;
3052 }
3053 case ISD::ATOMIC_STORE: {
3054 // There is no libcall for atomic store; fake it with ATOMIC_SWAP.
3055 SDValue Swap = DAG.getAtomic(ISD::ATOMIC_SWAP, dl,
3056 cast<AtomicSDNode>(Node)->getMemoryVT(),
3057 Node->getOperand(0),
3058 Node->getOperand(1), Node->getOperand(2),
3059 cast<AtomicSDNode>(Node)->getMemOperand(),
3060 cast<AtomicSDNode>(Node)->getOrdering(),
3061 cast<AtomicSDNode>(Node)->getSynchScope());
3062 Results.push_back(Swap.getValue(1));
3063 break;
3064 }
3065 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: {
3066 // Expanding an ATOMIC_CMP_SWAP_WITH_SUCCESS produces an ATOMIC_CMP_SWAP and
3067 // splits out the success value as a comparison. Expanding the resulting
3068 // ATOMIC_CMP_SWAP will produce a libcall.
3069 SDVTList VTs = DAG.getVTList(Node->getValueType(0), MVT::Other);
3070 SDValue Res = DAG.getAtomicCmpSwap(
3071 ISD::ATOMIC_CMP_SWAP, dl, cast<AtomicSDNode>(Node)->getMemoryVT(), VTs,
3072 Node->getOperand(0), Node->getOperand(1), Node->getOperand(2),
3073 Node->getOperand(3), cast<MemSDNode>(Node)->getMemOperand(),
3074 cast<AtomicSDNode>(Node)->getSuccessOrdering(),
3075 cast<AtomicSDNode>(Node)->getFailureOrdering(),
3076 cast<AtomicSDNode>(Node)->getSynchScope());
3077
3078 SDValue Success = DAG.getSetCC(SDLoc(Node), Node->getValueType(1),
3079 Res, Node->getOperand(2), ISD::SETEQ);
3080
3081 Results.push_back(Res.getValue(0));
3082 Results.push_back(Success);
3083 Results.push_back(Res.getValue(1));
3084 break;
3085 }
3086 case ISD::DYNAMIC_STACKALLOC:
3087 ExpandDYNAMIC_STACKALLOC(Node, Results);
3088 break;
3089 case ISD::MERGE_VALUES:
3090 for (unsigned i = 0; i < Node->getNumValues(); i++)
3091 Results.push_back(Node->getOperand(i));
3092 break;
3093 case ISD::UNDEF: {
3094 EVT VT = Node->getValueType(0);
3095 if (VT.isInteger())
3096 Results.push_back(DAG.getConstant(0, dl, VT));
3097 else {
3098 assert(VT.isFloatingPoint() && "Unknown value type!");
3099 Results.push_back(DAG.getConstantFP(0, dl, VT));
3100 }
3101 break;
3102 }
3103 case ISD::FP_ROUND:
3104 case ISD::BITCAST:
3105 Tmp1 = EmitStackConvert(Node->getOperand(0), Node->getValueType(0),
3106 Node->getValueType(0), dl);
3107 Results.push_back(Tmp1);
3108 break;
3109 case ISD::FP_EXTEND:
3110 Tmp1 = EmitStackConvert(Node->getOperand(0),
3111 Node->getOperand(0).getValueType(),
3112 Node->getValueType(0), dl);
3113 Results.push_back(Tmp1);
3114 break;
3115 case ISD::SIGN_EXTEND_INREG: {
3116 // NOTE: we could fall back on load/store here too for targets without
3117 // SAR. However, it is doubtful that any exist.
3118 EVT ExtraVT = cast<VTSDNode>(Node->getOperand(1))->getVT();
3119 EVT VT = Node->getValueType(0);
3120 EVT ShiftAmountTy = TLI.getShiftAmountTy(VT, DAG.getDataLayout());
3121 if (VT.isVector())
3122 ShiftAmountTy = VT;
3123 unsigned BitsDiff = VT.getScalarType().getSizeInBits() -
3124 ExtraVT.getScalarType().getSizeInBits();
3125 SDValue ShiftCst = DAG.getConstant(BitsDiff, dl, ShiftAmountTy);
3126 Tmp1 = DAG.getNode(ISD::SHL, dl, Node->getValueType(0),
3127 Node->getOperand(0), ShiftCst);
3128 Tmp1 = DAG.getNode(ISD::SRA, dl, Node->getValueType(0), Tmp1, ShiftCst);
3129 Results.push_back(Tmp1);
3130 break;
3131 }
3132 case ISD::FP_ROUND_INREG: {
3133 // The only way we can lower this is to turn it into a TRUNCSTORE,
3134 // EXTLOAD pair, targeting a temporary location (a stack slot).
3135
3136 // NOTE: there is a choice here between constantly creating new stack
3137 // slots and always reusing the same one. We currently always create
3138 // new ones, as reuse may inhibit scheduling.
3139 EVT ExtraVT = cast<VTSDNode>(Node->getOperand(1))->getVT();
3140 Tmp1 = EmitStackConvert(Node->getOperand(0), ExtraVT,
3141 Node->getValueType(0), dl);
3142 Results.push_back(Tmp1);
3143 break;
3144 }
3145 case ISD::SINT_TO_FP:
3146 case ISD::UINT_TO_FP:
3147 Tmp1 = ExpandLegalINT_TO_FP(Node->getOpcode() == ISD::SINT_TO_FP,
3148 Node->getOperand(0), Node->getValueType(0), dl);
3149 Results.push_back(Tmp1);
3150 break;
3151 case ISD::FP_TO_SINT:
3152 if (TLI.expandFP_TO_SINT(Node, Tmp1, DAG))
3153 Results.push_back(Tmp1);
3154 break;
3155 case ISD::FP_TO_UINT: {
3156 SDValue True, False;
3157 EVT VT = Node->getOperand(0).getValueType();
3158 EVT NVT = Node->getValueType(0);
3159 APFloat apf(DAG.EVTToAPFloatSemantics(VT),
3160 APInt::getNullValue(VT.getSizeInBits()));
3161 APInt x = APInt::getSignBit(NVT.getSizeInBits());
3162 (void)apf.convertFromAPInt(x, false, APFloat::rmNearestTiesToEven);
3163 Tmp1 = DAG.getConstantFP(apf, dl, VT);
3164 Tmp2 = DAG.getSetCC(dl, getSetCCResultType(VT),
3165 Node->getOperand(0),
3166 Tmp1, ISD::SETLT);
3167 True = DAG.getNode(ISD::FP_TO_SINT, dl, NVT, Node->getOperand(0));
3168 // TODO: Should any fast-math-flags be set for the FSUB?
3169 False = DAG.getNode(ISD::FP_TO_SINT, dl, NVT,
3170 DAG.getNode(ISD::FSUB, dl, VT,
3171 Node->getOperand(0), Tmp1));
3172 False = DAG.getNode(ISD::XOR, dl, NVT, False,
3173 DAG.getConstant(x, dl, NVT));
3174 Tmp1 = DAG.getSelect(dl, NVT, Tmp2, True, False);
3175 Results.push_back(Tmp1);
3176 break;
3177 }
3178 case ISD::VAARG:
3179 Results.push_back(DAG.expandVAArg(Node));
3180 Results.push_back(Results[0].getValue(1));
3181 break;
3182 case ISD::VACOPY:
3183 Results.push_back(DAG.expandVACopy(Node));
3184 break;
3185 case ISD::EXTRACT_VECTOR_ELT:
3186 if (Node->getOperand(0).getValueType().getVectorNumElements() == 1)
3187 // This must be an access of the only element. Return it.
3188 Tmp1 = DAG.getNode(ISD::BITCAST, dl, Node->getValueType(0),
3189 Node->getOperand(0));
3190 else
3191 Tmp1 = ExpandExtractFromVectorThroughStack(SDValue(Node, 0));
3192 Results.push_back(Tmp1);
3193 break;
3194 case ISD::EXTRACT_SUBVECTOR:
3195 Results.push_back(ExpandExtractFromVectorThroughStack(SDValue(Node, 0)));
3196 break;
3197 case ISD::INSERT_SUBVECTOR:
3198 Results.push_back(ExpandInsertToVectorThroughStack(SDValue(Node, 0)));
3199 break;
3200 case ISD::CONCAT_VECTORS: {
3201 Results.push_back(ExpandVectorBuildThroughStack(Node));
3202 break;
3203 }
3204 case ISD::SCALAR_TO_VECTOR:
3205 Results.push_back(ExpandSCALAR_TO_VECTOR(Node));
3206 break;
3207 case ISD::INSERT_VECTOR_ELT:
3208 Results.push_back(ExpandINSERT_VECTOR_ELT(Node->getOperand(0),
3209 Node->getOperand(1),
3210 Node->getOperand(2), dl));
3211 break;
3212 case ISD::VECTOR_SHUFFLE: {
3213 SmallVector<int, 32> NewMask;
3214 ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(Node)->getMask();
3215
3216 EVT VT = Node->getValueType(0);
3217 EVT EltVT = VT.getVectorElementType();
3218 SDValue Op0 = Node->getOperand(0);
3219 SDValue Op1 = Node->getOperand(1);
3220 if (!TLI.isTypeLegal(EltVT)) {
3221
3222 EVT NewEltVT = TLI.getTypeToTransformTo(*DAG.getContext(), EltVT);
3223
3224 // BUILD_VECTOR operands are allowed to be wider than the element type.
3225 // But if NewEltVT is smaller that EltVT the BUILD_VECTOR does not accept
3226 // it.
3227 if (NewEltVT.bitsLT(EltVT)) {
3228
3229 // Convert shuffle node.
3230 // If original node was v4i64 and the new EltVT is i32,
3231 // cast operands to v8i32 and re-build the mask.
3232
3233 // Calculate new VT, the size of the new VT should be equal to original.
3234 EVT NewVT =
3235 EVT::getVectorVT(*DAG.getContext(), NewEltVT,
3236 VT.getSizeInBits() / NewEltVT.getSizeInBits());
3237 assert(NewVT.bitsEq(VT));
3238
3239 // cast operands to new VT
3240 Op0 = DAG.getNode(ISD::BITCAST, dl, NewVT, Op0);
3241 Op1 = DAG.getNode(ISD::BITCAST, dl, NewVT, Op1);
3242
3243 // Convert the shuffle mask
3244 unsigned int factor =
3245 NewVT.getVectorNumElements()/VT.getVectorNumElements();
3246
3247 // EltVT gets smaller
3248 assert(factor > 0);
3249
3250 for (unsigned i = 0; i < VT.getVectorNumElements(); ++i) {
3251 if (Mask[i] < 0) {
3252 for (unsigned fi = 0; fi < factor; ++fi)
3253 NewMask.push_back(Mask[i]);
3254 }
3255 else {
3256 for (unsigned fi = 0; fi < factor; ++fi)
3257 NewMask.push_back(Mask[i]*factor+fi);
3258 }
3259 }
3260 Mask = NewMask;
3261 VT = NewVT;
3262 }
3263 EltVT = NewEltVT;
3264 }
3265 unsigned NumElems = VT.getVectorNumElements();
3266 SmallVector<SDValue, 16> Ops;
3267 for (unsigned i = 0; i != NumElems; ++i) {
3268 if (Mask[i] < 0) {
3269 Ops.push_back(DAG.getUNDEF(EltVT));
3270 continue;
3271 }
3272 unsigned Idx = Mask[i];
3273 if (Idx < NumElems)
3274 Ops.push_back(DAG.getNode(
3275 ISD::EXTRACT_VECTOR_ELT, dl, EltVT, Op0,
3276 DAG.getConstant(Idx, dl, TLI.getVectorIdxTy(DAG.getDataLayout()))));
3277 else
3278 Ops.push_back(DAG.getNode(
3279 ISD::EXTRACT_VECTOR_ELT, dl, EltVT, Op1,
3280 DAG.getConstant(Idx - NumElems, dl,
3281 TLI.getVectorIdxTy(DAG.getDataLayout()))));
3282 }
3283
3284 Tmp1 = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Ops);
3285 // We may have changed the BUILD_VECTOR type. Cast it back to the Node type.
3286 Tmp1 = DAG.getNode(ISD::BITCAST, dl, Node->getValueType(0), Tmp1);
3287 Results.push_back(Tmp1);
3288 break;
3289 }
3290 case ISD::EXTRACT_ELEMENT: {
3291 EVT OpTy = Node->getOperand(0).getValueType();
3292 if (cast<ConstantSDNode>(Node->getOperand(1))->getZExtValue()) {
3293 // 1 -> Hi
3294 Tmp1 = DAG.getNode(ISD::SRL, dl, OpTy, Node->getOperand(0),
3295 DAG.getConstant(OpTy.getSizeInBits() / 2, dl,
3296 TLI.getShiftAmountTy(
3297 Node->getOperand(0).getValueType(),
3298 DAG.getDataLayout())));
3299 Tmp1 = DAG.getNode(ISD::TRUNCATE, dl, Node->getValueType(0), Tmp1);
3300 } else {
3301 // 0 -> Lo
3302 Tmp1 = DAG.getNode(ISD::TRUNCATE, dl, Node->getValueType(0),
3303 Node->getOperand(0));
3304 }
3305 Results.push_back(Tmp1);
3306 break;
3307 }
3308 case ISD::STACKSAVE:
3309 // Expand to CopyFromReg if the target set
3310 // StackPointerRegisterToSaveRestore.
3311 if (unsigned SP = TLI.getStackPointerRegisterToSaveRestore()) {
3312 Results.push_back(DAG.getCopyFromReg(Node->getOperand(0), dl, SP,
3313 Node->getValueType(0)));
3314 Results.push_back(Results[0].getValue(1));
3315 } else {
3316 Results.push_back(DAG.getUNDEF(Node->getValueType(0)));
3317 Results.push_back(Node->getOperand(0));
3318 }
3319 break;
3320 case ISD::STACKRESTORE:
3321 // Expand to CopyToReg if the target set
3322 // StackPointerRegisterToSaveRestore.
3323 if (unsigned SP = TLI.getStackPointerRegisterToSaveRestore()) {
3324 Results.push_back(DAG.getCopyToReg(Node->getOperand(0), dl, SP,
3325 Node->getOperand(1)));
3326 } else {
3327 Results.push_back(Node->getOperand(0));
3328 }
3329 break;
3330 case ISD::GET_DYNAMIC_AREA_OFFSET:
3331 Results.push_back(DAG.getConstant(0, dl, Node->getValueType(0)));
3332 Results.push_back(Results[0].getValue(0));
3333 break;
3334 case ISD::FCOPYSIGN:
3335 Results.push_back(ExpandFCOPYSIGN(Node));
3336 break;
3337 case ISD::FNEG:
3338 // Expand Y = FNEG(X) -> Y = SUB -0.0, X
3339 Tmp1 = DAG.getConstantFP(-0.0, dl, Node->getValueType(0));
3340 // TODO: If FNEG has fast-math-flags, propagate them to the FSUB.
3341 Tmp1 = DAG.getNode(ISD::FSUB, dl, Node->getValueType(0), Tmp1,
3342 Node->getOperand(0));
3343 Results.push_back(Tmp1);
3344 break;
3345 case ISD::FABS:
3346 Results.push_back(ExpandFABS(Node));
3347 break;
3348 case ISD::SMIN:
3349 case ISD::SMAX:
3350 case ISD::UMIN:
3351 case ISD::UMAX: {
3352 // Expand Y = MAX(A, B) -> Y = (A > B) ? A : B
3353 ISD::CondCode Pred;
3354 switch (Node->getOpcode()) {
3355 default: llvm_unreachable("How did we get here?");
3356 case ISD::SMAX: Pred = ISD::SETGT; break;
3357 case ISD::SMIN: Pred = ISD::SETLT; break;
3358 case ISD::UMAX: Pred = ISD::SETUGT; break;
3359 case ISD::UMIN: Pred = ISD::SETULT; break;
3360 }
3361 Tmp1 = Node->getOperand(0);
3362 Tmp2 = Node->getOperand(1);
3363 Tmp1 = DAG.getSelectCC(dl, Tmp1, Tmp2, Tmp1, Tmp2, Pred);
3364 Results.push_back(Tmp1);
3365 break;
3366 }
3367
3368 case ISD::FSIN:
3369 case ISD::FCOS: {
3370 EVT VT = Node->getValueType(0);
3371 // Turn fsin / fcos into ISD::FSINCOS node if there are a pair of fsin /
3372 // fcos which share the same operand and both are used.
3373 if ((TLI.isOperationLegalOrCustom(ISD::FSINCOS, VT) ||
3374 canCombineSinCosLibcall(Node, TLI, TM))
3375 && useSinCos(Node)) {
3376 SDVTList VTs = DAG.getVTList(VT, VT);
3377 Tmp1 = DAG.getNode(ISD::FSINCOS, dl, VTs, Node->getOperand(0));
3378 if (Node->getOpcode() == ISD::FCOS)
3379 Tmp1 = Tmp1.getValue(1);
3380 Results.push_back(Tmp1);
3381 }
3382 break;
3383 }
3384 case ISD::FMAD:
3385 llvm_unreachable("Illegal fmad should never be formed");
3386
3387 case ISD::FP16_TO_FP:
3388 if (Node->getValueType(0) != MVT::f32) {
3389 // We can extend to types bigger than f32 in two steps without changing
3390 // the result. Since "f16 -> f32" is much more commonly available, give
3391 // CodeGen the option of emitting that before resorting to a libcall.
3392 SDValue Res =
3393 DAG.getNode(ISD::FP16_TO_FP, dl, MVT::f32, Node->getOperand(0));
3394 Results.push_back(
3395 DAG.getNode(ISD::FP_EXTEND, dl, Node->getValueType(0), Res));
3396 }
3397 break;
3398 case ISD::FP_TO_FP16:
3399 if (!TLI.useSoftFloat() && TM.Options.UnsafeFPMath) {
3400 SDValue Op = Node->getOperand(0);
3401 MVT SVT = Op.getSimpleValueType();
3402 if ((SVT == MVT::f64 || SVT == MVT::f80) &&
3403 TLI.isOperationLegalOrCustom(ISD::FP_TO_FP16, MVT::f32)) {
3404 // Under fastmath, we can expand this node into a fround followed by
3405 // a float-half conversion.
3406 SDValue FloatVal = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, Op,
3407 DAG.getIntPtrConstant(0, dl));
3408 Results.push_back(
3409 DAG.getNode(ISD::FP_TO_FP16, dl, MVT::i16, FloatVal));
3410 }
3411 }
3412 break;
3413 case ISD::ConstantFP: {
3414 ConstantFPSDNode *CFP = cast<ConstantFPSDNode>(Node);
3415 // Check to see if this FP immediate is already legal.
3416 // If this is a legal constant, turn it into a TargetConstantFP node.
3417 if (!TLI.isFPImmLegal(CFP->getValueAPF(), Node->getValueType(0)))
3418 Results.push_back(ExpandConstantFP(CFP, true));
3419 break;
3420 }
3421 case ISD::Constant: {
3422 ConstantSDNode *CP = cast<ConstantSDNode>(Node);
3423 Results.push_back(ExpandConstant(CP));
3424 break;
3425 }
3426 case ISD::FSUB: {
3427 EVT VT = Node->getValueType(0);
3428 if (TLI.isOperationLegalOrCustom(ISD::FADD, VT) &&
3429 TLI.isOperationLegalOrCustom(ISD::FNEG, VT)) {
3430 const SDNodeFlags *Flags = &cast<BinaryWithFlagsSDNode>(Node)->Flags;
3431 Tmp1 = DAG.getNode(ISD::FNEG, dl, VT, Node->getOperand(1));
3432 Tmp1 = DAG.getNode(ISD::FADD, dl, VT, Node->getOperand(0), Tmp1, Flags);
3433 Results.push_back(Tmp1);
3434 }
3435 break;
3436 }
3437 case ISD::SUB: {
3438 EVT VT = Node->getValueType(0);
3439 assert(TLI.isOperationLegalOrCustom(ISD::ADD, VT) &&
3440 TLI.isOperationLegalOrCustom(ISD::XOR, VT) &&
3441 "Don't know how to expand this subtraction!");
3442 Tmp1 = DAG.getNode(ISD::XOR, dl, VT, Node->getOperand(1),
3443 DAG.getConstant(APInt::getAllOnesValue(VT.getSizeInBits()), dl,
3444 VT));
3445 Tmp1 = DAG.getNode(ISD::ADD, dl, VT, Tmp1, DAG.getConstant(1, dl, VT));
3446 Results.push_back(DAG.getNode(ISD::ADD, dl, VT, Node->getOperand(0), Tmp1));
3447 break;
3448 }
3449 case ISD::UREM:
3450 case ISD::SREM: {
3451 EVT VT = Node->getValueType(0);
3452 bool isSigned = Node->getOpcode() == ISD::SREM;
3453 unsigned DivOpc = isSigned ? ISD::SDIV : ISD::UDIV;
3454 unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM;
3455 Tmp2 = Node->getOperand(0);
3456 Tmp3 = Node->getOperand(1);
3457 if (TLI.isOperationLegalOrCustom(DivRemOpc, VT)) {
3458 SDVTList VTs = DAG.getVTList(VT, VT);
3459 Tmp1 = DAG.getNode(DivRemOpc, dl, VTs, Tmp2, Tmp3).getValue(1);
3460 Results.push_back(Tmp1);
3461 } else if (TLI.isOperationLegalOrCustom(DivOpc, VT)) {
3462 // X % Y -> X-X/Y*Y
3463 Tmp1 = DAG.getNode(DivOpc, dl, VT, Tmp2, Tmp3);
3464 Tmp1 = DAG.getNode(ISD::MUL, dl, VT, Tmp1, Tmp3);
3465 Tmp1 = DAG.getNode(ISD::SUB, dl, VT, Tmp2, Tmp1);
3466 Results.push_back(Tmp1);
3467 }
3468 break;
3469 }
3470 case ISD::UDIV:
3471 case ISD::SDIV: {
3472 bool isSigned = Node->getOpcode() == ISD::SDIV;
3473 unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM;
3474 EVT VT = Node->getValueType(0);
3475 if (TLI.isOperationLegalOrCustom(DivRemOpc, VT)) {
3476 SDVTList VTs = DAG.getVTList(VT, VT);
3477 Tmp1 = DAG.getNode(DivRemOpc, dl, VTs, Node->getOperand(0),
3478 Node->getOperand(1));
3479 Results.push_back(Tmp1);
3480 }
3481 break;
3482 }
3483 case ISD::MULHU:
3484 case ISD::MULHS: {
3485 unsigned ExpandOpcode = Node->getOpcode() == ISD::MULHU ? ISD::UMUL_LOHI :
3486 ISD::SMUL_LOHI;
3487 EVT VT = Node->getValueType(0);
3488 SDVTList VTs = DAG.getVTList(VT, VT);
3489 assert(TLI.isOperationLegalOrCustom(ExpandOpcode, VT) &&
3490 "If this wasn't legal, it shouldn't have been created!");
3491 Tmp1 = DAG.getNode(ExpandOpcode, dl, VTs, Node->getOperand(0),
3492 Node->getOperand(1));
3493 Results.push_back(Tmp1.getValue(1));
3494 break;
3495 }
3496 case ISD::MUL: {
3497 EVT VT = Node->getValueType(0);
3498 SDVTList VTs = DAG.getVTList(VT, VT);
3499 // See if multiply or divide can be lowered using two-result operations.
3500 // We just need the low half of the multiply; try both the signed
3501 // and unsigned forms. If the target supports both SMUL_LOHI and
3502 // UMUL_LOHI, form a preference by checking which forms of plain
3503 // MULH it supports.
3504 bool HasSMUL_LOHI = TLI.isOperationLegalOrCustom(ISD::SMUL_LOHI, VT);
3505 bool HasUMUL_LOHI = TLI.isOperationLegalOrCustom(ISD::UMUL_LOHI, VT);
3506 bool HasMULHS = TLI.isOperationLegalOrCustom(ISD::MULHS, VT);
3507 bool HasMULHU = TLI.isOperationLegalOrCustom(ISD::MULHU, VT);
3508 unsigned OpToUse = 0;
3509 if (HasSMUL_LOHI && !HasMULHS) {
3510 OpToUse = ISD::SMUL_LOHI;
3511 } else if (HasUMUL_LOHI && !HasMULHU) {
3512 OpToUse = ISD::UMUL_LOHI;
3513 } else if (HasSMUL_LOHI) {
3514 OpToUse = ISD::SMUL_LOHI;
3515 } else if (HasUMUL_LOHI) {
3516 OpToUse = ISD::UMUL_LOHI;
3517 }
3518 if (OpToUse) {
3519 Results.push_back(DAG.getNode(OpToUse, dl, VTs, Node->getOperand(0),
3520 Node->getOperand(1)));
3521 break;
3522 }
3523
3524 SDValue Lo, Hi;
3525 EVT HalfType = VT.getHalfSizedIntegerVT(*DAG.getContext());
3526 if (TLI.isOperationLegalOrCustom(ISD::ZERO_EXTEND, VT) &&
3527 TLI.isOperationLegalOrCustom(ISD::ANY_EXTEND, VT) &&
3528 TLI.isOperationLegalOrCustom(ISD::SHL, VT) &&
3529 TLI.isOperationLegalOrCustom(ISD::OR, VT) &&
3530 TLI.expandMUL(Node, Lo, Hi, HalfType, DAG)) {
3531 Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Lo);
3532 Hi = DAG.getNode(ISD::ANY_EXTEND, dl, VT, Hi);
3533 SDValue Shift =
3534 DAG.getConstant(HalfType.getSizeInBits(), dl,
3535 TLI.getShiftAmountTy(HalfType, DAG.getDataLayout()));
3536 Hi = DAG.getNode(ISD::SHL, dl, VT, Hi, Shift);
3537 Results.push_back(DAG.getNode(ISD::OR, dl, VT, Lo, Hi));
3538 }
3539 break;
3540 }
3541 case ISD::SADDO:
3542 case ISD::SSUBO: {
3543 SDValue LHS = Node->getOperand(0);
3544 SDValue RHS = Node->getOperand(1);
3545 SDValue Sum = DAG.getNode(Node->getOpcode() == ISD::SADDO ?
3546 ISD::ADD : ISD::SUB, dl, LHS.getValueType(),
3547 LHS, RHS);
3548 Results.push_back(Sum);
3549 EVT ResultType = Node->getValueType(1);
3550 EVT OType = getSetCCResultType(Node->getValueType(0));
3551
3552 SDValue Zero = DAG.getConstant(0, dl, LHS.getValueType());
3553
3554 // LHSSign -> LHS >= 0
3555 // RHSSign -> RHS >= 0
3556 // SumSign -> Sum >= 0
3557 //
3558 // Add:
3559 // Overflow -> (LHSSign == RHSSign) && (LHSSign != SumSign)
3560 // Sub:
3561 // Overflow -> (LHSSign != RHSSign) && (LHSSign != SumSign)
3562 //
3563 SDValue LHSSign = DAG.getSetCC(dl, OType, LHS, Zero, ISD::SETGE);
3564 SDValue RHSSign = DAG.getSetCC(dl, OType, RHS, Zero, ISD::SETGE);
3565 SDValue SignsMatch = DAG.getSetCC(dl, OType, LHSSign, RHSSign,
3566 Node->getOpcode() == ISD::SADDO ?
3567 ISD::SETEQ : ISD::SETNE);
3568
3569 SDValue SumSign = DAG.getSetCC(dl, OType, Sum, Zero, ISD::SETGE);
3570 SDValue SumSignNE = DAG.getSetCC(dl, OType, LHSSign, SumSign, ISD::SETNE);
3571
3572 SDValue Cmp = DAG.getNode(ISD::AND, dl, OType, SignsMatch, SumSignNE);
3573 Results.push_back(DAG.getBoolExtOrTrunc(Cmp, dl, ResultType, ResultType));
3574 break;
3575 }
3576 case ISD::UADDO:
3577 case ISD::USUBO: {
3578 SDValue LHS = Node->getOperand(0);
3579 SDValue RHS = Node->getOperand(1);
3580 SDValue Sum = DAG.getNode(Node->getOpcode() == ISD::UADDO ?
3581 ISD::ADD : ISD::SUB, dl, LHS.getValueType(),
3582 LHS, RHS);
3583 Results.push_back(Sum);
3584
3585 EVT ResultType = Node->getValueType(1);
3586 EVT SetCCType = getSetCCResultType(Node->getValueType(0));
3587 ISD::CondCode CC
3588 = Node->getOpcode() == ISD::UADDO ? ISD::SETULT : ISD::SETUGT;
3589 SDValue SetCC = DAG.getSetCC(dl, SetCCType, Sum, LHS, CC);
3590
3591 Results.push_back(DAG.getBoolExtOrTrunc(SetCC, dl, ResultType, ResultType));
3592 break;
3593 }
3594 case ISD::UMULO:
3595 case ISD::SMULO: {
3596 EVT VT = Node->getValueType(0);
3597 EVT WideVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits() * 2);
3598 SDValue LHS = Node->getOperand(0);
3599 SDValue RHS = Node->getOperand(1);
3600 SDValue BottomHalf;
3601 SDValue TopHalf;
3602 static const unsigned Ops[2][3] =
3603 { { ISD::MULHU, ISD::UMUL_LOHI, ISD::ZERO_EXTEND },
3604 { ISD::MULHS, ISD::SMUL_LOHI, ISD::SIGN_EXTEND }};
3605 bool isSigned = Node->getOpcode() == ISD::SMULO;
3606 if (TLI.isOperationLegalOrCustom(Ops[isSigned][0], VT)) {
3607 BottomHalf = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS);
3608 TopHalf = DAG.getNode(Ops[isSigned][0], dl, VT, LHS, RHS);
3609 } else if (TLI.isOperationLegalOrCustom(Ops[isSigned][1], VT)) {
3610 BottomHalf = DAG.getNode(Ops[isSigned][1], dl, DAG.getVTList(VT, VT), LHS,
3611 RHS);
3612 TopHalf = BottomHalf.getValue(1);
3613 } else if (TLI.isTypeLegal(WideVT)) {
3614 LHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, LHS);
3615 RHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, RHS);
3616 Tmp1 = DAG.getNode(ISD::MUL, dl, WideVT, LHS, RHS);
3617 BottomHalf = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, VT, Tmp1,
3618 DAG.getIntPtrConstant(0, dl));
3619 TopHalf = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, VT, Tmp1,
3620 DAG.getIntPtrConstant(1, dl));
3621 } else {
3622 // We can fall back to a libcall with an illegal type for the MUL if we
3623 // have a libcall big enough.
3624 // Also, we can fall back to a division in some cases, but that's a big
3625 // performance hit in the general case.
3626 RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL;
3627 if (WideVT == MVT::i16)
3628 LC = RTLIB::MUL_I16;
3629 else if (WideVT == MVT::i32)
3630 LC = RTLIB::MUL_I32;
3631 else if (WideVT == MVT::i64)
3632 LC = RTLIB::MUL_I64;
3633 else if (WideVT == MVT::i128)
3634 LC = RTLIB::MUL_I128;
3635 assert(LC != RTLIB::UNKNOWN_LIBCALL && "Cannot expand this operation!");
3636
3637 // The high part is obtained by SRA'ing all but one of the bits of low
3638 // part.
3639 unsigned LoSize = VT.getSizeInBits();
3640 SDValue HiLHS =
3641 DAG.getNode(ISD::SRA, dl, VT, RHS,
3642 DAG.getConstant(LoSize - 1, dl,
3643 TLI.getPointerTy(DAG.getDataLayout())));
3644 SDValue HiRHS =
3645 DAG.getNode(ISD::SRA, dl, VT, LHS,
3646 DAG.getConstant(LoSize - 1, dl,
3647 TLI.getPointerTy(DAG.getDataLayout())));
3648
3649 // Here we're passing the 2 arguments explicitly as 4 arguments that are
3650 // pre-lowered to the correct types. This all depends upon WideVT not
3651 // being a legal type for the architecture and thus has to be split to
3652 // two arguments.
3653 SDValue Args[] = { LHS, HiLHS, RHS, HiRHS };
3654 SDValue Ret = ExpandLibCall(LC, WideVT, Args, 4, isSigned, dl);
3655 BottomHalf = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, VT, Ret,
3656 DAG.getIntPtrConstant(0, dl));
3657 TopHalf = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, VT, Ret,
3658 DAG.getIntPtrConstant(1, dl));
3659 // Ret is a node with an illegal type. Because such things are not
3660 // generally permitted during this phase of legalization, make sure the
3661 // node has no more uses. The above EXTRACT_ELEMENT nodes should have been
3662 // folded.
3663 assert(Ret->use_empty() &&
3664 "Unexpected uses of illegally type from expanded lib call.");
3665 }
3666
3667 if (isSigned) {
3668 Tmp1 = DAG.getConstant(
3669 VT.getSizeInBits() - 1, dl,
3670 TLI.getShiftAmountTy(BottomHalf.getValueType(), DAG.getDataLayout()));
3671 Tmp1 = DAG.getNode(ISD::SRA, dl, VT, BottomHalf, Tmp1);
3672 TopHalf = DAG.getSetCC(dl, getSetCCResultType(VT), TopHalf, Tmp1,
3673 ISD::SETNE);
3674 } else {
3675 TopHalf = DAG.getSetCC(dl, getSetCCResultType(VT), TopHalf,
3676 DAG.getConstant(0, dl, VT), ISD::SETNE);
3677 }
3678 Results.push_back(BottomHalf);
3679 Results.push_back(TopHalf);
3680 break;
3681 }
3682 case ISD::BUILD_PAIR: {
3683 EVT PairTy = Node->getValueType(0);
3684 Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, PairTy, Node->getOperand(0));
3685 Tmp2 = DAG.getNode(ISD::ANY_EXTEND, dl, PairTy, Node->getOperand(1));
3686 Tmp2 = DAG.getNode(
3687 ISD::SHL, dl, PairTy, Tmp2,
3688 DAG.getConstant(PairTy.getSizeInBits() / 2, dl,
3689 TLI.getShiftAmountTy(PairTy, DAG.getDataLayout())));
3690 Results.push_back(DAG.getNode(ISD::OR, dl, PairTy, Tmp1, Tmp2));
3691 break;
3692 }
3693 case ISD::SELECT:
3694 Tmp1 = Node->getOperand(0);
3695 Tmp2 = Node->getOperand(1);
3696 Tmp3 = Node->getOperand(2);
3697 if (Tmp1.getOpcode() == ISD::SETCC) {
3698 Tmp1 = DAG.getSelectCC(dl, Tmp1.getOperand(0), Tmp1.getOperand(1),
3699 Tmp2, Tmp3,
3700 cast<CondCodeSDNode>(Tmp1.getOperand(2))->get());
3701 } else {
3702 Tmp1 = DAG.getSelectCC(dl, Tmp1,
3703 DAG.getConstant(0, dl, Tmp1.getValueType()),
3704 Tmp2, Tmp3, ISD::SETNE);
3705 }
3706 Results.push_back(Tmp1);
3707 break;
3708 case ISD::BR_JT: {
3709 SDValue Chain = Node->getOperand(0);
3710 SDValue Table = Node->getOperand(1);
3711 SDValue Index = Node->getOperand(2);
3712
3713 EVT PTy = TLI.getPointerTy(DAG.getDataLayout());
3714
3715 const DataLayout &TD = DAG.getDataLayout();
3716 unsigned EntrySize =
3717 DAG.getMachineFunction().getJumpTableInfo()->getEntrySize(TD);
3718
3719 Index = DAG.getNode(ISD::MUL, dl, Index.getValueType(), Index,
3720 DAG.getConstant(EntrySize, dl, Index.getValueType()));
3721 SDValue Addr = DAG.getNode(ISD::ADD, dl, Index.getValueType(),
3722 Index, Table);
3723
3724 EVT MemVT = EVT::getIntegerVT(*DAG.getContext(), EntrySize * 8);
3725 SDValue LD = DAG.getExtLoad(
3726 ISD::SEXTLOAD, dl, PTy, Chain, Addr,
3727 MachinePointerInfo::getJumpTable(DAG.getMachineFunction()), MemVT,
3728 false, false, false, 0);
3729 Addr = LD;
3730 if (TM.getRelocationModel() == Reloc::PIC_) {
3731 // For PIC, the sequence is:
3732 // BRIND(load(Jumptable + index) + RelocBase)
3733 // RelocBase can be JumpTable, GOT or some sort of global base.
3734 Addr = DAG.getNode(ISD::ADD, dl, PTy, Addr,
3735 TLI.getPICJumpTableRelocBase(Table, DAG));
3736 }
3737 Tmp1 = DAG.getNode(ISD::BRIND, dl, MVT::Other, LD.getValue(1), Addr);
3738 Results.push_back(Tmp1);
3739 break;
3740 }
3741 case ISD::BRCOND:
3742 // Expand brcond's setcc into its constituent parts and create a BR_CC
3743 // Node.
3744 Tmp1 = Node->getOperand(0);
3745 Tmp2 = Node->getOperand(1);
3746 if (Tmp2.getOpcode() == ISD::SETCC) {
3747 Tmp1 = DAG.getNode(ISD::BR_CC, dl, MVT::Other,
3748 Tmp1, Tmp2.getOperand(2),
3749 Tmp2.getOperand(0), Tmp2.getOperand(1),
3750 Node->getOperand(2));
3751 } else {
3752 // We test only the i1 bit. Skip the AND if UNDEF.
3753 Tmp3 = (Tmp2.getOpcode() == ISD::UNDEF) ? Tmp2 :
3754 DAG.getNode(ISD::AND, dl, Tmp2.getValueType(), Tmp2,
3755 DAG.getConstant(1, dl, Tmp2.getValueType()));
3756 Tmp1 = DAG.getNode(ISD::BR_CC, dl, MVT::Other, Tmp1,
3757 DAG.getCondCode(ISD::SETNE), Tmp3,
3758 DAG.getConstant(0, dl, Tmp3.getValueType()),
3759 Node->getOperand(2));
3760 }
3761 Results.push_back(Tmp1);
3762 break;
3763 case ISD::SETCC: {
3764 Tmp1 = Node->getOperand(0);
3765 Tmp2 = Node->getOperand(1);
3766 Tmp3 = Node->getOperand(2);
3767 bool Legalized = LegalizeSetCCCondCode(Node->getValueType(0), Tmp1, Tmp2,
3768 Tmp3, NeedInvert, dl);
3769
3770 if (Legalized) {
3771 // If we expanded the SETCC by swapping LHS and RHS, or by inverting the
3772 // condition code, create a new SETCC node.
3773 if (Tmp3.getNode())
3774 Tmp1 = DAG.getNode(ISD::SETCC, dl, Node->getValueType(0),
3775 Tmp1, Tmp2, Tmp3);
3776
3777 // If we expanded the SETCC by inverting the condition code, then wrap
3778 // the existing SETCC in a NOT to restore the intended condition.
3779 if (NeedInvert)
3780 Tmp1 = DAG.getLogicalNOT(dl, Tmp1, Tmp1->getValueType(0));
3781
3782 Results.push_back(Tmp1);
3783 break;
3784 }
3785
3786 // Otherwise, SETCC for the given comparison type must be completely
3787 // illegal; expand it into a SELECT_CC.
3788 EVT VT = Node->getValueType(0);
3789 int TrueValue;
3790 switch (TLI.getBooleanContents(Tmp1->getValueType(0))) {
3791 case TargetLowering::ZeroOrOneBooleanContent:
3792 case TargetLowering::UndefinedBooleanContent:
3793 TrueValue = 1;
3794 break;
3795 case TargetLowering::ZeroOrNegativeOneBooleanContent:
3796 TrueValue = -1;
3797 break;
3798 }
3799 Tmp1 = DAG.getNode(ISD::SELECT_CC, dl, VT, Tmp1, Tmp2,
3800 DAG.getConstant(TrueValue, dl, VT),
3801 DAG.getConstant(0, dl, VT),
3802 Tmp3);
3803 Results.push_back(Tmp1);
3804 break;
3805 }
3806 case ISD::SELECT_CC: {
3807 Tmp1 = Node->getOperand(0); // LHS
3808 Tmp2 = Node->getOperand(1); // RHS
3809 Tmp3 = Node->getOperand(2); // True
3810 Tmp4 = Node->getOperand(3); // False
3811 EVT VT = Node->getValueType(0);
3812 SDValue CC = Node->getOperand(4);
3813 ISD::CondCode CCOp = cast<CondCodeSDNode>(CC)->get();
3814
3815 if (TLI.isCondCodeLegal(CCOp, Tmp1.getSimpleValueType())) {
3816 // If the condition code is legal, then we need to expand this
3817 // node using SETCC and SELECT.
3818 EVT CmpVT = Tmp1.getValueType();
3819 assert(!TLI.isOperationExpand(ISD::SELECT, VT) &&
3820 "Cannot expand ISD::SELECT_CC when ISD::SELECT also needs to be "
3821 "expanded.");
3822 EVT CCVT =
3823 TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), CmpVT);
3824 SDValue Cond = DAG.getNode(ISD::SETCC, dl, CCVT, Tmp1, Tmp2, CC);
3825 Results.push_back(DAG.getSelect(dl, VT, Cond, Tmp3, Tmp4));
3826 break;
3827 }
3828
3829 // SELECT_CC is legal, so the condition code must not be.
3830 bool Legalized = false;
3831 // Try to legalize by inverting the condition. This is for targets that
3832 // might support an ordered version of a condition, but not the unordered
3833 // version (or vice versa).
3834 ISD::CondCode InvCC = ISD::getSetCCInverse(CCOp,
3835 Tmp1.getValueType().isInteger());
3836 if (TLI.isCondCodeLegal(InvCC, Tmp1.getSimpleValueType())) {
3837 // Use the new condition code and swap true and false
3838 Legalized = true;
3839 Tmp1 = DAG.getSelectCC(dl, Tmp1, Tmp2, Tmp4, Tmp3, InvCC);
3840 } else {
3841 // If The inverse is not legal, then try to swap the arguments using
3842 // the inverse condition code.
3843 ISD::CondCode SwapInvCC = ISD::getSetCCSwappedOperands(InvCC);
3844 if (TLI.isCondCodeLegal(SwapInvCC, Tmp1.getSimpleValueType())) {
3845 // The swapped inverse condition is legal, so swap true and false,
3846 // lhs and rhs.
3847 Legalized = true;
3848 Tmp1 = DAG.getSelectCC(dl, Tmp2, Tmp1, Tmp4, Tmp3, SwapInvCC);
3849 }
3850 }
3851
3852 if (!Legalized) {
3853 Legalized = LegalizeSetCCCondCode(
3854 getSetCCResultType(Tmp1.getValueType()), Tmp1, Tmp2, CC, NeedInvert,
3855 dl);
3856
3857 assert(Legalized && "Can't legalize SELECT_CC with legal condition!");
3858
3859 // If we expanded the SETCC by inverting the condition code, then swap
3860 // the True/False operands to match.
3861 if (NeedInvert)
3862 std::swap(Tmp3, Tmp4);
3863
3864 // If we expanded the SETCC by swapping LHS and RHS, or by inverting the
3865 // condition code, create a new SELECT_CC node.
3866 if (CC.getNode()) {
3867 Tmp1 = DAG.getNode(ISD::SELECT_CC, dl, Node->getValueType(0),
3868 Tmp1, Tmp2, Tmp3, Tmp4, CC);
3869 } else {
3870 Tmp2 = DAG.getConstant(0, dl, Tmp1.getValueType());
3871 CC = DAG.getCondCode(ISD::SETNE);
3872 Tmp1 = DAG.getNode(ISD::SELECT_CC, dl, Node->getValueType(0), Tmp1,
3873 Tmp2, Tmp3, Tmp4, CC);
3874 }
3875 }
3876 Results.push_back(Tmp1);
3877 break;
3878 }
3879 case ISD::BR_CC: {
3880 Tmp1 = Node->getOperand(0); // Chain
3881 Tmp2 = Node->getOperand(2); // LHS
3882 Tmp3 = Node->getOperand(3); // RHS
3883 Tmp4 = Node->getOperand(1); // CC
3884
3885 bool Legalized = LegalizeSetCCCondCode(getSetCCResultType(
3886 Tmp2.getValueType()), Tmp2, Tmp3, Tmp4, NeedInvert, dl);
3887 (void)Legalized;
3888 assert(Legalized && "Can't legalize BR_CC with legal condition!");
3889
3890 // If we expanded the SETCC by inverting the condition code, then wrap
3891 // the existing SETCC in a NOT to restore the intended condition.
3892 if (NeedInvert)
3893 Tmp4 = DAG.getNOT(dl, Tmp4, Tmp4->getValueType(0));
3894
3895 // If we expanded the SETCC by swapping LHS and RHS, create a new BR_CC
3896 // node.
3897 if (Tmp4.getNode()) {
3898 Tmp1 = DAG.getNode(ISD::BR_CC, dl, Node->getValueType(0), Tmp1,
3899 Tmp4, Tmp2, Tmp3, Node->getOperand(4));
3900 } else {
3901 Tmp3 = DAG.getConstant(0, dl, Tmp2.getValueType());
3902 Tmp4 = DAG.getCondCode(ISD::SETNE);
3903 Tmp1 = DAG.getNode(ISD::BR_CC, dl, Node->getValueType(0), Tmp1, Tmp4,
3904 Tmp2, Tmp3, Node->getOperand(4));
3905 }
3906 Results.push_back(Tmp1);
3907 break;
3908 }
3909 case ISD::BUILD_VECTOR:
3910 Results.push_back(ExpandBUILD_VECTOR(Node));
3911 break;
3912 case ISD::SRA:
3913 case ISD::SRL:
3914 case ISD::SHL: {
3915 // Scalarize vector SRA/SRL/SHL.
3916 EVT VT = Node->getValueType(0);
3917 assert(VT.isVector() && "Unable to legalize non-vector shift");
3918 assert(TLI.isTypeLegal(VT.getScalarType())&& "Element type must be legal");
3919 unsigned NumElem = VT.getVectorNumElements();
3920
3921 SmallVector<SDValue, 8> Scalars;
3922 for (unsigned Idx = 0; Idx < NumElem; Idx++) {
3923 SDValue Ex = DAG.getNode(
3924 ISD::EXTRACT_VECTOR_ELT, dl, VT.getScalarType(), Node->getOperand(0),
3925 DAG.getConstant(Idx, dl, TLI.getVectorIdxTy(DAG.getDataLayout())));
3926 SDValue Sh = DAG.getNode(
3927 ISD::EXTRACT_VECTOR_ELT, dl, VT.getScalarType(), Node->getOperand(1),
3928 DAG.getConstant(Idx, dl, TLI.getVectorIdxTy(DAG.getDataLayout())));
3929 Scalars.push_back(DAG.getNode(Node->getOpcode(), dl,
3930 VT.getScalarType(), Ex, Sh));
3931 }
3932 SDValue Result =
3933 DAG.getNode(ISD::BUILD_VECTOR, dl, Node->getValueType(0), Scalars);
3934 ReplaceNode(SDValue(Node, 0), Result);
3935 break;
3936 }
3937 case ISD::GLOBAL_OFFSET_TABLE:
3938 case ISD::GlobalAddress:
3939 case ISD::GlobalTLSAddress:
3940 case ISD::ExternalSymbol:
3941 case ISD::ConstantPool:
3942 case ISD::JumpTable:
3943 case ISD::INTRINSIC_W_CHAIN:
3944 case ISD::INTRINSIC_WO_CHAIN:
3945 case ISD::INTRINSIC_VOID:
3946 // FIXME: Custom lowering for these operations shouldn't return null!
3947 break;
3948 }
3949
3950 // Replace the original node with the legalized result.
3951 if (Results.empty())
3952 return false;
3953
3954 ReplaceNode(Node, Results.data());
3955 return true;
3956 }
3957
ConvertNodeToLibcall(SDNode * Node)3958 void SelectionDAGLegalize::ConvertNodeToLibcall(SDNode *Node) {
3959 SmallVector<SDValue, 8> Results;
3960 SDLoc dl(Node);
3961 SDValue Tmp1, Tmp2, Tmp3, Tmp4;
3962 unsigned Opc = Node->getOpcode();
3963 switch (Opc) {
3964 case ISD::ATOMIC_FENCE: {
3965 // If the target didn't lower this, lower it to '__sync_synchronize()' call
3966 // FIXME: handle "fence singlethread" more efficiently.
3967 TargetLowering::ArgListTy Args;
3968
3969 TargetLowering::CallLoweringInfo CLI(DAG);
3970 CLI.setDebugLoc(dl)
3971 .setChain(Node->getOperand(0))
3972 .setCallee(CallingConv::C, Type::getVoidTy(*DAG.getContext()),
3973 DAG.getExternalSymbol("__sync_synchronize",
3974 TLI.getPointerTy(DAG.getDataLayout())),
3975 std::move(Args), 0);
3976
3977 std::pair<SDValue, SDValue> CallResult = TLI.LowerCallTo(CLI);
3978
3979 Results.push_back(CallResult.second);
3980 break;
3981 }
3982 // By default, atomic intrinsics are marked Legal and lowered. Targets
3983 // which don't support them directly, however, may want libcalls, in which
3984 // case they mark them Expand, and we get here.
3985 case ISD::ATOMIC_SWAP:
3986 case ISD::ATOMIC_LOAD_ADD:
3987 case ISD::ATOMIC_LOAD_SUB:
3988 case ISD::ATOMIC_LOAD_AND:
3989 case ISD::ATOMIC_LOAD_OR:
3990 case ISD::ATOMIC_LOAD_XOR:
3991 case ISD::ATOMIC_LOAD_NAND:
3992 case ISD::ATOMIC_LOAD_MIN:
3993 case ISD::ATOMIC_LOAD_MAX:
3994 case ISD::ATOMIC_LOAD_UMIN:
3995 case ISD::ATOMIC_LOAD_UMAX:
3996 case ISD::ATOMIC_CMP_SWAP: {
3997 MVT VT = cast<AtomicSDNode>(Node)->getMemoryVT().getSimpleVT();
3998 RTLIB::Libcall LC = RTLIB::getATOMIC(Opc, VT);
3999 assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unexpected atomic op or value type!");
4000
4001 std::pair<SDValue, SDValue> Tmp = ExpandChainLibCall(LC, Node, false);
4002 Results.push_back(Tmp.first);
4003 Results.push_back(Tmp.second);
4004 break;
4005 }
4006 case ISD::TRAP: {
4007 // If this operation is not supported, lower it to 'abort()' call
4008 TargetLowering::ArgListTy Args;
4009 TargetLowering::CallLoweringInfo CLI(DAG);
4010 CLI.setDebugLoc(dl)
4011 .setChain(Node->getOperand(0))
4012 .setCallee(CallingConv::C, Type::getVoidTy(*DAG.getContext()),
4013 DAG.getExternalSymbol("abort",
4014 TLI.getPointerTy(DAG.getDataLayout())),
4015 std::move(Args), 0);
4016 std::pair<SDValue, SDValue> CallResult = TLI.LowerCallTo(CLI);
4017
4018 Results.push_back(CallResult.second);
4019 break;
4020 }
4021 case ISD::FMINNUM:
4022 Results.push_back(ExpandFPLibCall(Node, RTLIB::FMIN_F32, RTLIB::FMIN_F64,
4023 RTLIB::FMIN_F80, RTLIB::FMIN_F128,
4024 RTLIB::FMIN_PPCF128));
4025 break;
4026 case ISD::FMAXNUM:
4027 Results.push_back(ExpandFPLibCall(Node, RTLIB::FMAX_F32, RTLIB::FMAX_F64,
4028 RTLIB::FMAX_F80, RTLIB::FMAX_F128,
4029 RTLIB::FMAX_PPCF128));
4030 break;
4031 case ISD::FSQRT:
4032 Results.push_back(ExpandFPLibCall(Node, RTLIB::SQRT_F32, RTLIB::SQRT_F64,
4033 RTLIB::SQRT_F80, RTLIB::SQRT_F128,
4034 RTLIB::SQRT_PPCF128));
4035 break;
4036 case ISD::FSIN:
4037 Results.push_back(ExpandFPLibCall(Node, RTLIB::SIN_F32, RTLIB::SIN_F64,
4038 RTLIB::SIN_F80, RTLIB::SIN_F128,
4039 RTLIB::SIN_PPCF128));
4040 break;
4041 case ISD::FCOS:
4042 Results.push_back(ExpandFPLibCall(Node, RTLIB::COS_F32, RTLIB::COS_F64,
4043 RTLIB::COS_F80, RTLIB::COS_F128,
4044 RTLIB::COS_PPCF128));
4045 break;
4046 case ISD::FSINCOS:
4047 // Expand into sincos libcall.
4048 ExpandSinCosLibCall(Node, Results);
4049 break;
4050 case ISD::FLOG:
4051 Results.push_back(ExpandFPLibCall(Node, RTLIB::LOG_F32, RTLIB::LOG_F64,
4052 RTLIB::LOG_F80, RTLIB::LOG_F128,
4053 RTLIB::LOG_PPCF128));
4054 break;
4055 case ISD::FLOG2:
4056 Results.push_back(ExpandFPLibCall(Node, RTLIB::LOG2_F32, RTLIB::LOG2_F64,
4057 RTLIB::LOG2_F80, RTLIB::LOG2_F128,
4058 RTLIB::LOG2_PPCF128));
4059 break;
4060 case ISD::FLOG10:
4061 Results.push_back(ExpandFPLibCall(Node, RTLIB::LOG10_F32, RTLIB::LOG10_F64,
4062 RTLIB::LOG10_F80, RTLIB::LOG10_F128,
4063 RTLIB::LOG10_PPCF128));
4064 break;
4065 case ISD::FEXP:
4066 Results.push_back(ExpandFPLibCall(Node, RTLIB::EXP_F32, RTLIB::EXP_F64,
4067 RTLIB::EXP_F80, RTLIB::EXP_F128,
4068 RTLIB::EXP_PPCF128));
4069 break;
4070 case ISD::FEXP2:
4071 Results.push_back(ExpandFPLibCall(Node, RTLIB::EXP2_F32, RTLIB::EXP2_F64,
4072 RTLIB::EXP2_F80, RTLIB::EXP2_F128,
4073 RTLIB::EXP2_PPCF128));
4074 break;
4075 case ISD::FTRUNC:
4076 Results.push_back(ExpandFPLibCall(Node, RTLIB::TRUNC_F32, RTLIB::TRUNC_F64,
4077 RTLIB::TRUNC_F80, RTLIB::TRUNC_F128,
4078 RTLIB::TRUNC_PPCF128));
4079 break;
4080 case ISD::FFLOOR:
4081 Results.push_back(ExpandFPLibCall(Node, RTLIB::FLOOR_F32, RTLIB::FLOOR_F64,
4082 RTLIB::FLOOR_F80, RTLIB::FLOOR_F128,
4083 RTLIB::FLOOR_PPCF128));
4084 break;
4085 case ISD::FCEIL:
4086 Results.push_back(ExpandFPLibCall(Node, RTLIB::CEIL_F32, RTLIB::CEIL_F64,
4087 RTLIB::CEIL_F80, RTLIB::CEIL_F128,
4088 RTLIB::CEIL_PPCF128));
4089 break;
4090 case ISD::FRINT:
4091 Results.push_back(ExpandFPLibCall(Node, RTLIB::RINT_F32, RTLIB::RINT_F64,
4092 RTLIB::RINT_F80, RTLIB::RINT_F128,
4093 RTLIB::RINT_PPCF128));
4094 break;
4095 case ISD::FNEARBYINT:
4096 Results.push_back(ExpandFPLibCall(Node, RTLIB::NEARBYINT_F32,
4097 RTLIB::NEARBYINT_F64,
4098 RTLIB::NEARBYINT_F80,
4099 RTLIB::NEARBYINT_F128,
4100 RTLIB::NEARBYINT_PPCF128));
4101 break;
4102 case ISD::FROUND:
4103 Results.push_back(ExpandFPLibCall(Node, RTLIB::ROUND_F32,
4104 RTLIB::ROUND_F64,
4105 RTLIB::ROUND_F80,
4106 RTLIB::ROUND_F128,
4107 RTLIB::ROUND_PPCF128));
4108 break;
4109 case ISD::FPOWI:
4110 Results.push_back(ExpandFPLibCall(Node, RTLIB::POWI_F32, RTLIB::POWI_F64,
4111 RTLIB::POWI_F80, RTLIB::POWI_F128,
4112 RTLIB::POWI_PPCF128));
4113 break;
4114 case ISD::FPOW:
4115 Results.push_back(ExpandFPLibCall(Node, RTLIB::POW_F32, RTLIB::POW_F64,
4116 RTLIB::POW_F80, RTLIB::POW_F128,
4117 RTLIB::POW_PPCF128));
4118 break;
4119 case ISD::FDIV:
4120 Results.push_back(ExpandFPLibCall(Node, RTLIB::DIV_F32, RTLIB::DIV_F64,
4121 RTLIB::DIV_F80, RTLIB::DIV_F128,
4122 RTLIB::DIV_PPCF128));
4123 break;
4124 case ISD::FREM:
4125 Results.push_back(ExpandFPLibCall(Node, RTLIB::REM_F32, RTLIB::REM_F64,
4126 RTLIB::REM_F80, RTLIB::REM_F128,
4127 RTLIB::REM_PPCF128));
4128 break;
4129 case ISD::FMA:
4130 Results.push_back(ExpandFPLibCall(Node, RTLIB::FMA_F32, RTLIB::FMA_F64,
4131 RTLIB::FMA_F80, RTLIB::FMA_F128,
4132 RTLIB::FMA_PPCF128));
4133 break;
4134 case ISD::FADD:
4135 Results.push_back(ExpandFPLibCall(Node, RTLIB::ADD_F32, RTLIB::ADD_F64,
4136 RTLIB::ADD_F80, RTLIB::ADD_F128,
4137 RTLIB::ADD_PPCF128));
4138 break;
4139 case ISD::FMUL:
4140 Results.push_back(ExpandFPLibCall(Node, RTLIB::MUL_F32, RTLIB::MUL_F64,
4141 RTLIB::MUL_F80, RTLIB::MUL_F128,
4142 RTLIB::MUL_PPCF128));
4143 break;
4144 case ISD::FP16_TO_FP:
4145 if (Node->getValueType(0) == MVT::f32) {
4146 Results.push_back(ExpandLibCall(RTLIB::FPEXT_F16_F32, Node, false));
4147 }
4148 break;
4149 case ISD::FP_TO_FP16: {
4150 RTLIB::Libcall LC =
4151 RTLIB::getFPROUND(Node->getOperand(0).getValueType(), MVT::f16);
4152 assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unable to expand fp_to_fp16");
4153 Results.push_back(ExpandLibCall(LC, Node, false));
4154 break;
4155 }
4156 case ISD::FSUB:
4157 Results.push_back(ExpandFPLibCall(Node, RTLIB::SUB_F32, RTLIB::SUB_F64,
4158 RTLIB::SUB_F80, RTLIB::SUB_F128,
4159 RTLIB::SUB_PPCF128));
4160 break;
4161 case ISD::SREM:
4162 Results.push_back(ExpandIntLibCall(Node, true,
4163 RTLIB::SREM_I8,
4164 RTLIB::SREM_I16, RTLIB::SREM_I32,
4165 RTLIB::SREM_I64, RTLIB::SREM_I128));
4166 break;
4167 case ISD::UREM:
4168 Results.push_back(ExpandIntLibCall(Node, false,
4169 RTLIB::UREM_I8,
4170 RTLIB::UREM_I16, RTLIB::UREM_I32,
4171 RTLIB::UREM_I64, RTLIB::UREM_I128));
4172 break;
4173 case ISD::SDIV:
4174 Results.push_back(ExpandIntLibCall(Node, true,
4175 RTLIB::SDIV_I8,
4176 RTLIB::SDIV_I16, RTLIB::SDIV_I32,
4177 RTLIB::SDIV_I64, RTLIB::SDIV_I128));
4178 break;
4179 case ISD::UDIV:
4180 Results.push_back(ExpandIntLibCall(Node, false,
4181 RTLIB::UDIV_I8,
4182 RTLIB::UDIV_I16, RTLIB::UDIV_I32,
4183 RTLIB::UDIV_I64, RTLIB::UDIV_I128));
4184 break;
4185 case ISD::SDIVREM:
4186 case ISD::UDIVREM:
4187 // Expand into divrem libcall
4188 ExpandDivRemLibCall(Node, Results);
4189 break;
4190 case ISD::MUL:
4191 Results.push_back(ExpandIntLibCall(Node, false,
4192 RTLIB::MUL_I8,
4193 RTLIB::MUL_I16, RTLIB::MUL_I32,
4194 RTLIB::MUL_I64, RTLIB::MUL_I128));
4195 break;
4196 }
4197
4198 // Replace the original node with the legalized result.
4199 if (!Results.empty())
4200 ReplaceNode(Node, Results.data());
4201 }
4202
4203 // Determine the vector type to use in place of an original scalar element when
4204 // promoting equally sized vectors.
getPromotedVectorElementType(const TargetLowering & TLI,MVT EltVT,MVT NewEltVT)4205 static MVT getPromotedVectorElementType(const TargetLowering &TLI,
4206 MVT EltVT, MVT NewEltVT) {
4207 unsigned OldEltsPerNewElt = EltVT.getSizeInBits() / NewEltVT.getSizeInBits();
4208 MVT MidVT = MVT::getVectorVT(NewEltVT, OldEltsPerNewElt);
4209 assert(TLI.isTypeLegal(MidVT) && "unexpected");
4210 return MidVT;
4211 }
4212
PromoteNode(SDNode * Node)4213 void SelectionDAGLegalize::PromoteNode(SDNode *Node) {
4214 SmallVector<SDValue, 8> Results;
4215 MVT OVT = Node->getSimpleValueType(0);
4216 if (Node->getOpcode() == ISD::UINT_TO_FP ||
4217 Node->getOpcode() == ISD::SINT_TO_FP ||
4218 Node->getOpcode() == ISD::SETCC ||
4219 Node->getOpcode() == ISD::EXTRACT_VECTOR_ELT ||
4220 Node->getOpcode() == ISD::INSERT_VECTOR_ELT) {
4221 OVT = Node->getOperand(0).getSimpleValueType();
4222 }
4223 if (Node->getOpcode() == ISD::BR_CC)
4224 OVT = Node->getOperand(2).getSimpleValueType();
4225 MVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), OVT);
4226 SDLoc dl(Node);
4227 SDValue Tmp1, Tmp2, Tmp3;
4228 switch (Node->getOpcode()) {
4229 case ISD::CTTZ:
4230 case ISD::CTTZ_ZERO_UNDEF:
4231 case ISD::CTLZ:
4232 case ISD::CTLZ_ZERO_UNDEF:
4233 case ISD::CTPOP:
4234 // Zero extend the argument.
4235 Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, NVT, Node->getOperand(0));
4236 // Perform the larger operation. For CTPOP and CTTZ_ZERO_UNDEF, this is
4237 // already the correct result.
4238 Tmp1 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1);
4239 if (Node->getOpcode() == ISD::CTTZ) {
4240 // FIXME: This should set a bit in the zero extended value instead.
4241 Tmp2 = DAG.getSetCC(dl, getSetCCResultType(NVT),
4242 Tmp1, DAG.getConstant(NVT.getSizeInBits(), dl, NVT),
4243 ISD::SETEQ);
4244 Tmp1 = DAG.getSelect(dl, NVT, Tmp2,
4245 DAG.getConstant(OVT.getSizeInBits(), dl, NVT), Tmp1);
4246 } else if (Node->getOpcode() == ISD::CTLZ ||
4247 Node->getOpcode() == ISD::CTLZ_ZERO_UNDEF) {
4248 // Tmp1 = Tmp1 - (sizeinbits(NVT) - sizeinbits(Old VT))
4249 Tmp1 = DAG.getNode(ISD::SUB, dl, NVT, Tmp1,
4250 DAG.getConstant(NVT.getSizeInBits() -
4251 OVT.getSizeInBits(), dl, NVT));
4252 }
4253 Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, OVT, Tmp1));
4254 break;
4255 case ISD::BSWAP: {
4256 unsigned DiffBits = NVT.getSizeInBits() - OVT.getSizeInBits();
4257 Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, NVT, Node->getOperand(0));
4258 Tmp1 = DAG.getNode(ISD::BSWAP, dl, NVT, Tmp1);
4259 Tmp1 = DAG.getNode(
4260 ISD::SRL, dl, NVT, Tmp1,
4261 DAG.getConstant(DiffBits, dl,
4262 TLI.getShiftAmountTy(NVT, DAG.getDataLayout())));
4263 Results.push_back(Tmp1);
4264 break;
4265 }
4266 case ISD::FP_TO_UINT:
4267 case ISD::FP_TO_SINT:
4268 Tmp1 = PromoteLegalFP_TO_INT(Node->getOperand(0), Node->getValueType(0),
4269 Node->getOpcode() == ISD::FP_TO_SINT, dl);
4270 Results.push_back(Tmp1);
4271 break;
4272 case ISD::UINT_TO_FP:
4273 case ISD::SINT_TO_FP:
4274 Tmp1 = PromoteLegalINT_TO_FP(Node->getOperand(0), Node->getValueType(0),
4275 Node->getOpcode() == ISD::SINT_TO_FP, dl);
4276 Results.push_back(Tmp1);
4277 break;
4278 case ISD::VAARG: {
4279 SDValue Chain = Node->getOperand(0); // Get the chain.
4280 SDValue Ptr = Node->getOperand(1); // Get the pointer.
4281
4282 unsigned TruncOp;
4283 if (OVT.isVector()) {
4284 TruncOp = ISD::BITCAST;
4285 } else {
4286 assert(OVT.isInteger()
4287 && "VAARG promotion is supported only for vectors or integer types");
4288 TruncOp = ISD::TRUNCATE;
4289 }
4290
4291 // Perform the larger operation, then convert back
4292 Tmp1 = DAG.getVAArg(NVT, dl, Chain, Ptr, Node->getOperand(2),
4293 Node->getConstantOperandVal(3));
4294 Chain = Tmp1.getValue(1);
4295
4296 Tmp2 = DAG.getNode(TruncOp, dl, OVT, Tmp1);
4297
4298 // Modified the chain result - switch anything that used the old chain to
4299 // use the new one.
4300 DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 0), Tmp2);
4301 DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 1), Chain);
4302 if (UpdatedNodes) {
4303 UpdatedNodes->insert(Tmp2.getNode());
4304 UpdatedNodes->insert(Chain.getNode());
4305 }
4306 ReplacedNode(Node);
4307 break;
4308 }
4309 case ISD::AND:
4310 case ISD::OR:
4311 case ISD::XOR: {
4312 unsigned ExtOp, TruncOp;
4313 if (OVT.isVector()) {
4314 ExtOp = ISD::BITCAST;
4315 TruncOp = ISD::BITCAST;
4316 } else {
4317 assert(OVT.isInteger() && "Cannot promote logic operation");
4318 ExtOp = ISD::ANY_EXTEND;
4319 TruncOp = ISD::TRUNCATE;
4320 }
4321 // Promote each of the values to the new type.
4322 Tmp1 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(0));
4323 Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1));
4324 // Perform the larger operation, then convert back
4325 Tmp1 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1, Tmp2);
4326 Results.push_back(DAG.getNode(TruncOp, dl, OVT, Tmp1));
4327 break;
4328 }
4329 case ISD::SELECT: {
4330 unsigned ExtOp, TruncOp;
4331 if (Node->getValueType(0).isVector() ||
4332 Node->getValueType(0).getSizeInBits() == NVT.getSizeInBits()) {
4333 ExtOp = ISD::BITCAST;
4334 TruncOp = ISD::BITCAST;
4335 } else if (Node->getValueType(0).isInteger()) {
4336 ExtOp = ISD::ANY_EXTEND;
4337 TruncOp = ISD::TRUNCATE;
4338 } else {
4339 ExtOp = ISD::FP_EXTEND;
4340 TruncOp = ISD::FP_ROUND;
4341 }
4342 Tmp1 = Node->getOperand(0);
4343 // Promote each of the values to the new type.
4344 Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1));
4345 Tmp3 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(2));
4346 // Perform the larger operation, then round down.
4347 Tmp1 = DAG.getSelect(dl, NVT, Tmp1, Tmp2, Tmp3);
4348 if (TruncOp != ISD::FP_ROUND)
4349 Tmp1 = DAG.getNode(TruncOp, dl, Node->getValueType(0), Tmp1);
4350 else
4351 Tmp1 = DAG.getNode(TruncOp, dl, Node->getValueType(0), Tmp1,
4352 DAG.getIntPtrConstant(0, dl));
4353 Results.push_back(Tmp1);
4354 break;
4355 }
4356 case ISD::VECTOR_SHUFFLE: {
4357 ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(Node)->getMask();
4358
4359 // Cast the two input vectors.
4360 Tmp1 = DAG.getNode(ISD::BITCAST, dl, NVT, Node->getOperand(0));
4361 Tmp2 = DAG.getNode(ISD::BITCAST, dl, NVT, Node->getOperand(1));
4362
4363 // Convert the shuffle mask to the right # elements.
4364 Tmp1 = ShuffleWithNarrowerEltType(NVT, OVT, dl, Tmp1, Tmp2, Mask);
4365 Tmp1 = DAG.getNode(ISD::BITCAST, dl, OVT, Tmp1);
4366 Results.push_back(Tmp1);
4367 break;
4368 }
4369 case ISD::SETCC: {
4370 unsigned ExtOp = ISD::FP_EXTEND;
4371 if (NVT.isInteger()) {
4372 ISD::CondCode CCCode =
4373 cast<CondCodeSDNode>(Node->getOperand(2))->get();
4374 ExtOp = isSignedIntSetCC(CCCode) ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
4375 }
4376 Tmp1 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(0));
4377 Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1));
4378 Results.push_back(DAG.getNode(ISD::SETCC, dl, Node->getValueType(0),
4379 Tmp1, Tmp2, Node->getOperand(2)));
4380 break;
4381 }
4382 case ISD::BR_CC: {
4383 unsigned ExtOp = ISD::FP_EXTEND;
4384 if (NVT.isInteger()) {
4385 ISD::CondCode CCCode =
4386 cast<CondCodeSDNode>(Node->getOperand(1))->get();
4387 ExtOp = isSignedIntSetCC(CCCode) ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
4388 }
4389 Tmp1 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(2));
4390 Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(3));
4391 Results.push_back(DAG.getNode(ISD::BR_CC, dl, Node->getValueType(0),
4392 Node->getOperand(0), Node->getOperand(1),
4393 Tmp1, Tmp2, Node->getOperand(4)));
4394 break;
4395 }
4396 case ISD::FADD:
4397 case ISD::FSUB:
4398 case ISD::FMUL:
4399 case ISD::FDIV:
4400 case ISD::FREM:
4401 case ISD::FMINNUM:
4402 case ISD::FMAXNUM:
4403 case ISD::FPOW: {
4404 Tmp1 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(0));
4405 Tmp2 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(1));
4406 Tmp3 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1, Tmp2,
4407 Node->getFlags());
4408 Results.push_back(DAG.getNode(ISD::FP_ROUND, dl, OVT,
4409 Tmp3, DAG.getIntPtrConstant(0, dl)));
4410 break;
4411 }
4412 case ISD::FMA: {
4413 Tmp1 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(0));
4414 Tmp2 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(1));
4415 Tmp3 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(2));
4416 Results.push_back(
4417 DAG.getNode(ISD::FP_ROUND, dl, OVT,
4418 DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1, Tmp2, Tmp3),
4419 DAG.getIntPtrConstant(0, dl)));
4420 break;
4421 }
4422 case ISD::FCOPYSIGN:
4423 case ISD::FPOWI: {
4424 Tmp1 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(0));
4425 Tmp2 = Node->getOperand(1);
4426 Tmp3 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1, Tmp2);
4427
4428 // fcopysign doesn't change anything but the sign bit, so
4429 // (fp_round (fcopysign (fpext a), b))
4430 // is as precise as
4431 // (fp_round (fpext a))
4432 // which is a no-op. Mark it as a TRUNCating FP_ROUND.
4433 const bool isTrunc = (Node->getOpcode() == ISD::FCOPYSIGN);
4434 Results.push_back(DAG.getNode(ISD::FP_ROUND, dl, OVT,
4435 Tmp3, DAG.getIntPtrConstant(isTrunc, dl)));
4436 break;
4437 }
4438 case ISD::FFLOOR:
4439 case ISD::FCEIL:
4440 case ISD::FRINT:
4441 case ISD::FNEARBYINT:
4442 case ISD::FROUND:
4443 case ISD::FTRUNC:
4444 case ISD::FNEG:
4445 case ISD::FSQRT:
4446 case ISD::FSIN:
4447 case ISD::FCOS:
4448 case ISD::FLOG:
4449 case ISD::FLOG2:
4450 case ISD::FLOG10:
4451 case ISD::FABS:
4452 case ISD::FEXP:
4453 case ISD::FEXP2: {
4454 Tmp1 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(0));
4455 Tmp2 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1);
4456 Results.push_back(DAG.getNode(ISD::FP_ROUND, dl, OVT,
4457 Tmp2, DAG.getIntPtrConstant(0, dl)));
4458 break;
4459 }
4460 case ISD::BUILD_VECTOR: {
4461 MVT EltVT = OVT.getVectorElementType();
4462 MVT NewEltVT = NVT.getVectorElementType();
4463
4464 // Handle bitcasts to a different vector type with the same total bit size
4465 //
4466 // e.g. v2i64 = build_vector i64:x, i64:y => v4i32
4467 // =>
4468 // v4i32 = concat_vectors (v2i32 (bitcast i64:x)), (v2i32 (bitcast i64:y))
4469
4470 assert(NVT.isVector() && OVT.getSizeInBits() == NVT.getSizeInBits() &&
4471 "Invalid promote type for build_vector");
4472 assert(NewEltVT.bitsLT(EltVT) && "not handled");
4473
4474 MVT MidVT = getPromotedVectorElementType(TLI, EltVT, NewEltVT);
4475
4476 SmallVector<SDValue, 8> NewOps;
4477 for (unsigned I = 0, E = Node->getNumOperands(); I != E; ++I) {
4478 SDValue Op = Node->getOperand(I);
4479 NewOps.push_back(DAG.getNode(ISD::BITCAST, SDLoc(Op), MidVT, Op));
4480 }
4481
4482 SDLoc SL(Node);
4483 SDValue Concat = DAG.getNode(ISD::CONCAT_VECTORS, SL, NVT, NewOps);
4484 SDValue CvtVec = DAG.getNode(ISD::BITCAST, SL, OVT, Concat);
4485 Results.push_back(CvtVec);
4486 break;
4487 }
4488 case ISD::EXTRACT_VECTOR_ELT: {
4489 MVT EltVT = OVT.getVectorElementType();
4490 MVT NewEltVT = NVT.getVectorElementType();
4491
4492 // Handle bitcasts to a different vector type with the same total bit size.
4493 //
4494 // e.g. v2i64 = extract_vector_elt x:v2i64, y:i32
4495 // =>
4496 // v4i32:castx = bitcast x:v2i64
4497 //
4498 // i64 = bitcast
4499 // (v2i32 build_vector (i32 (extract_vector_elt castx, (2 * y))),
4500 // (i32 (extract_vector_elt castx, (2 * y + 1)))
4501 //
4502
4503 assert(NVT.isVector() && OVT.getSizeInBits() == NVT.getSizeInBits() &&
4504 "Invalid promote type for extract_vector_elt");
4505 assert(NewEltVT.bitsLT(EltVT) && "not handled");
4506
4507 MVT MidVT = getPromotedVectorElementType(TLI, EltVT, NewEltVT);
4508 unsigned NewEltsPerOldElt = MidVT.getVectorNumElements();
4509
4510 SDValue Idx = Node->getOperand(1);
4511 EVT IdxVT = Idx.getValueType();
4512 SDLoc SL(Node);
4513 SDValue Factor = DAG.getConstant(NewEltsPerOldElt, SL, IdxVT);
4514 SDValue NewBaseIdx = DAG.getNode(ISD::MUL, SL, IdxVT, Idx, Factor);
4515
4516 SDValue CastVec = DAG.getNode(ISD::BITCAST, SL, NVT, Node->getOperand(0));
4517
4518 SmallVector<SDValue, 8> NewOps;
4519 for (unsigned I = 0; I < NewEltsPerOldElt; ++I) {
4520 SDValue IdxOffset = DAG.getConstant(I, SL, IdxVT);
4521 SDValue TmpIdx = DAG.getNode(ISD::ADD, SL, IdxVT, NewBaseIdx, IdxOffset);
4522
4523 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, NewEltVT,
4524 CastVec, TmpIdx);
4525 NewOps.push_back(Elt);
4526 }
4527
4528 SDValue NewVec = DAG.getNode(ISD::BUILD_VECTOR, SL, MidVT, NewOps);
4529
4530 Results.push_back(DAG.getNode(ISD::BITCAST, SL, EltVT, NewVec));
4531 break;
4532 }
4533 case ISD::INSERT_VECTOR_ELT: {
4534 MVT EltVT = OVT.getVectorElementType();
4535 MVT NewEltVT = NVT.getVectorElementType();
4536
4537 // Handle bitcasts to a different vector type with the same total bit size
4538 //
4539 // e.g. v2i64 = insert_vector_elt x:v2i64, y:i64, z:i32
4540 // =>
4541 // v4i32:castx = bitcast x:v2i64
4542 // v2i32:casty = bitcast y:i64
4543 //
4544 // v2i64 = bitcast
4545 // (v4i32 insert_vector_elt
4546 // (v4i32 insert_vector_elt v4i32:castx,
4547 // (extract_vector_elt casty, 0), 2 * z),
4548 // (extract_vector_elt casty, 1), (2 * z + 1))
4549
4550 assert(NVT.isVector() && OVT.getSizeInBits() == NVT.getSizeInBits() &&
4551 "Invalid promote type for insert_vector_elt");
4552 assert(NewEltVT.bitsLT(EltVT) && "not handled");
4553
4554 MVT MidVT = getPromotedVectorElementType(TLI, EltVT, NewEltVT);
4555 unsigned NewEltsPerOldElt = MidVT.getVectorNumElements();
4556
4557 SDValue Val = Node->getOperand(1);
4558 SDValue Idx = Node->getOperand(2);
4559 EVT IdxVT = Idx.getValueType();
4560 SDLoc SL(Node);
4561
4562 SDValue Factor = DAG.getConstant(NewEltsPerOldElt, SDLoc(), IdxVT);
4563 SDValue NewBaseIdx = DAG.getNode(ISD::MUL, SL, IdxVT, Idx, Factor);
4564
4565 SDValue CastVec = DAG.getNode(ISD::BITCAST, SL, NVT, Node->getOperand(0));
4566 SDValue CastVal = DAG.getNode(ISD::BITCAST, SL, MidVT, Val);
4567
4568 SDValue NewVec = CastVec;
4569 for (unsigned I = 0; I < NewEltsPerOldElt; ++I) {
4570 SDValue IdxOffset = DAG.getConstant(I, SL, IdxVT);
4571 SDValue InEltIdx = DAG.getNode(ISD::ADD, SL, IdxVT, NewBaseIdx, IdxOffset);
4572
4573 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, NewEltVT,
4574 CastVal, IdxOffset);
4575
4576 NewVec = DAG.getNode(ISD::INSERT_VECTOR_ELT, SL, NVT,
4577 NewVec, Elt, InEltIdx);
4578 }
4579
4580 Results.push_back(DAG.getNode(ISD::BITCAST, SL, OVT, NewVec));
4581 break;
4582 }
4583 case ISD::SCALAR_TO_VECTOR: {
4584 MVT EltVT = OVT.getVectorElementType();
4585 MVT NewEltVT = NVT.getVectorElementType();
4586
4587 // Handle bitcasts to different vector type with the smae total bit size.
4588 //
4589 // e.g. v2i64 = scalar_to_vector x:i64
4590 // =>
4591 // concat_vectors (v2i32 bitcast x:i64), (v2i32 undef)
4592 //
4593
4594 MVT MidVT = getPromotedVectorElementType(TLI, EltVT, NewEltVT);
4595 SDValue Val = Node->getOperand(0);
4596 SDLoc SL(Node);
4597
4598 SDValue CastVal = DAG.getNode(ISD::BITCAST, SL, MidVT, Val);
4599 SDValue Undef = DAG.getUNDEF(MidVT);
4600
4601 SmallVector<SDValue, 8> NewElts;
4602 NewElts.push_back(CastVal);
4603 for (unsigned I = 1, NElts = OVT.getVectorNumElements(); I != NElts; ++I)
4604 NewElts.push_back(Undef);
4605
4606 SDValue Concat = DAG.getNode(ISD::CONCAT_VECTORS, SL, NVT, NewElts);
4607 SDValue CvtVec = DAG.getNode(ISD::BITCAST, SL, OVT, Concat);
4608 Results.push_back(CvtVec);
4609 break;
4610 }
4611 }
4612
4613 // Replace the original node with the legalized result.
4614 if (!Results.empty())
4615 ReplaceNode(Node, Results.data());
4616 }
4617
4618 /// This is the entry point for the file.
Legalize()4619 void SelectionDAG::Legalize() {
4620 AssignTopologicalOrder();
4621
4622 SmallPtrSet<SDNode *, 16> LegalizedNodes;
4623 SelectionDAGLegalize Legalizer(*this, LegalizedNodes);
4624
4625 // Visit all the nodes. We start in topological order, so that we see
4626 // nodes with their original operands intact. Legalization can produce
4627 // new nodes which may themselves need to be legalized. Iterate until all
4628 // nodes have been legalized.
4629 for (;;) {
4630 bool AnyLegalized = false;
4631 for (auto NI = allnodes_end(); NI != allnodes_begin();) {
4632 --NI;
4633
4634 SDNode *N = &*NI;
4635 if (N->use_empty() && N != getRoot().getNode()) {
4636 ++NI;
4637 DeleteNode(N);
4638 continue;
4639 }
4640
4641 if (LegalizedNodes.insert(N).second) {
4642 AnyLegalized = true;
4643 Legalizer.LegalizeOp(N);
4644
4645 if (N->use_empty() && N != getRoot().getNode()) {
4646 ++NI;
4647 DeleteNode(N);
4648 }
4649 }
4650 }
4651 if (!AnyLegalized)
4652 break;
4653
4654 }
4655
4656 // Remove dead nodes now.
4657 RemoveDeadNodes();
4658 }
4659
LegalizeOp(SDNode * N,SmallSetVector<SDNode *,16> & UpdatedNodes)4660 bool SelectionDAG::LegalizeOp(SDNode *N,
4661 SmallSetVector<SDNode *, 16> &UpdatedNodes) {
4662 SmallPtrSet<SDNode *, 16> LegalizedNodes;
4663 SelectionDAGLegalize Legalizer(*this, LegalizedNodes, &UpdatedNodes);
4664
4665 // Directly insert the node in question, and legalize it. This will recurse
4666 // as needed through operands.
4667 LegalizedNodes.insert(N);
4668 Legalizer.LegalizeOp(N);
4669
4670 return LegalizedNodes.count(N);
4671 }
4672