1 /*
2  * Copyright 2012 Google Inc.
3  *
4  * Use of this source code is governed by a BSD-style license that can be
5  * found in the LICENSE file.
6  */
7 
8 #include "Sk4fLinearGradient.h"
9 #include "SkLinearGradient.h"
10 
11 // define to test the 4f gradient path
12 // #define FORCE_4F_CONTEXT
13 
14 static const float kInv255Float = 1.0f / 255;
15 
repeat_8bits(int x)16 static inline int repeat_8bits(int x) {
17     return x & 0xFF;
18 }
19 
20 // Visual Studio 2010 (MSC_VER=1600) optimizes bit-shift code incorrectly.
21 // See http://code.google.com/p/skia/issues/detail?id=472
22 #if defined(_MSC_VER) && (_MSC_VER >= 1600)
23 #pragma optimize("", off)
24 #endif
25 
mirror_8bits(int x)26 static inline int mirror_8bits(int x) {
27     if (x & 256) {
28         x = ~x;
29     }
30     return x & 255;
31 }
32 
33 #if defined(_MSC_VER) && (_MSC_VER >= 1600)
34 #pragma optimize("", on)
35 #endif
36 
pts_to_unit_matrix(const SkPoint pts[2])37 static SkMatrix pts_to_unit_matrix(const SkPoint pts[2]) {
38     SkVector    vec = pts[1] - pts[0];
39     SkScalar    mag = vec.length();
40     SkScalar    inv = mag ? SkScalarInvert(mag) : 0;
41 
42     vec.scale(inv);
43     SkMatrix matrix;
44     matrix.setSinCos(-vec.fY, vec.fX, pts[0].fX, pts[0].fY);
45     matrix.postTranslate(-pts[0].fX, -pts[0].fY);
46     matrix.postScale(inv, inv);
47     return matrix;
48 }
49 
use_4f_context(const SkShader::ContextRec & rec,uint32_t flags)50 static bool use_4f_context(const SkShader::ContextRec& rec, uint32_t flags) {
51 #ifdef FORCE_4F_CONTEXT
52     return true;
53 #else
54     // Perspective not supported in 4f yet.
55     if (rec.fMatrix->hasPerspective()
56         || (rec.fLocalMatrix && rec.fLocalMatrix->hasPerspective())) {
57         return false;
58     }
59 
60     return rec.fPreferredDstType == SkShader::ContextRec::kPM4f_DstType
61         || SkToBool(flags & SkLinearGradient::kForce4fContext_PrivateFlag);
62 #endif
63 }
64 
65 ///////////////////////////////////////////////////////////////////////////////
66 
SkLinearGradient(const SkPoint pts[2],const Descriptor & desc)67 SkLinearGradient::SkLinearGradient(const SkPoint pts[2], const Descriptor& desc)
68     : SkGradientShaderBase(desc, pts_to_unit_matrix(pts))
69     , fStart(pts[0])
70     , fEnd(pts[1]) {
71 }
72 
CreateProc(SkReadBuffer & buffer)73 SkFlattenable* SkLinearGradient::CreateProc(SkReadBuffer& buffer) {
74     DescriptorScope desc;
75     if (!desc.unflatten(buffer)) {
76         return nullptr;
77     }
78     SkPoint pts[2];
79     pts[0] = buffer.readPoint();
80     pts[1] = buffer.readPoint();
81     return SkGradientShader::CreateLinear(pts, desc.fColors, desc.fPos, desc.fCount,
82                                           desc.fTileMode, desc.fGradFlags, desc.fLocalMatrix);
83 }
84 
flatten(SkWriteBuffer & buffer) const85 void SkLinearGradient::flatten(SkWriteBuffer& buffer) const {
86     this->INHERITED::flatten(buffer);
87     buffer.writePoint(fStart);
88     buffer.writePoint(fEnd);
89 }
90 
contextSize(const ContextRec & rec) const91 size_t SkLinearGradient::contextSize(const ContextRec& rec) const {
92     return use_4f_context(rec, fGradFlags)
93         ? sizeof(LinearGradient4fContext)
94         : sizeof(LinearGradientContext);
95 }
96 
onCreateContext(const ContextRec & rec,void * storage) const97 SkShader::Context* SkLinearGradient::onCreateContext(const ContextRec& rec, void* storage) const {
98     return use_4f_context(rec, fGradFlags)
99         ? static_cast<SkShader::Context*>(new (storage) LinearGradient4fContext(*this, rec))
100         : static_cast<SkShader::Context*>(new (storage) LinearGradientContext(*this, rec));
101 }
102 
103 // This swizzles SkColor into the same component order as SkPMColor, but does not actually
104 // "pre" multiply the color components.
105 //
106 // This allows us to map directly to Sk4f, and eventually scale down to bytes to output a
107 // SkPMColor from the floats, without having to swizzle each time.
108 //
SkSwizzle_Color_to_PMColor(SkColor c)109 static uint32_t SkSwizzle_Color_to_PMColor(SkColor c) {
110     return SkPackARGB32NoCheck(SkColorGetA(c), SkColorGetR(c), SkColorGetG(c), SkColorGetB(c));
111 }
112 
LinearGradientContext(const SkLinearGradient & shader,const ContextRec & ctx)113 SkLinearGradient::LinearGradientContext::LinearGradientContext(
114         const SkLinearGradient& shader, const ContextRec& ctx)
115     : INHERITED(shader, ctx)
116 {
117     // setup for Sk4f
118     int count = shader.fColorCount;
119     fRecs.setCount(count);
120     Rec* rec = fRecs.begin();
121     if (shader.fOrigPos) {
122         rec[0].fPos = 0;
123         SkDEBUGCODE(rec[0].fPosScale = SK_FloatNaN;)   // should never get used
124         for (int i = 1; i < count; ++i) {
125             rec[i].fPos = SkTPin(shader.fOrigPos[i], rec[i - 1].fPos, 1.0f);
126             float diff = rec[i].fPos - rec[i - 1].fPos;
127             if (diff > 0) {
128                 rec[i].fPosScale = 1.0f / diff;
129             } else {
130                 rec[i].fPosScale = 0;
131             }
132         }
133         rec[count - 1].fPos = 1;    // overwrite the last value just to be sure we end at 1.0
134     } else {
135         // no pos specified, so we compute evenly spaced values
136         const float scale = float(count - 1);
137         float invScale = 1.0f / scale;
138         for (int i = 0; i < count; ++i) {
139             rec[i].fPos = i * invScale;
140             rec[i].fPosScale = scale;
141         }
142     }
143 
144     fApplyAlphaAfterInterp = true;
145     if ((shader.getGradFlags() & SkGradientShader::kInterpolateColorsInPremul_Flag) ||
146         shader.colorsAreOpaque())
147     {
148         fApplyAlphaAfterInterp = false;
149     }
150 
151     if (fApplyAlphaAfterInterp) {
152         // Our fColor values are in PMColor order, but are still unpremultiplied, allowing us to
153         // interpolate in unpremultiplied space first, and then scale by alpha right before we
154         // convert to SkPMColor bytes.
155         const float paintAlpha = ctx.fPaint->getAlpha() * kInv255Float;
156         const Sk4f scale(1, 1, 1, paintAlpha);
157         for (int i = 0; i < count; ++i) {
158             uint32_t c = SkSwizzle_Color_to_PMColor(shader.fOrigColors[i]);
159             rec[i].fColor = SkNx_cast<float>(Sk4b::Load(&c)) * scale;
160             if (i > 0) {
161                 SkASSERT(rec[i - 1].fPos <= rec[i].fPos);
162             }
163         }
164     } else {
165         // Our fColor values are premultiplied, so converting to SkPMColor is just a matter
166         // of converting the floats down to bytes.
167         unsigned alphaScale = ctx.fPaint->getAlpha() + (ctx.fPaint->getAlpha() >> 7);
168         for (int i = 0; i < count; ++i) {
169             SkPMColor pmc = SkPreMultiplyColor(shader.fOrigColors[i]);
170             pmc = SkAlphaMulQ(pmc, alphaScale);
171             rec[i].fColor = SkNx_cast<float>(Sk4b::Load(&pmc));
172             if (i > 0) {
173                 SkASSERT(rec[i - 1].fPos <= rec[i].fPos);
174             }
175         }
176     }
177 }
178 
179 #define NO_CHECK_ITER               \
180     do {                            \
181     unsigned fi = SkGradFixedToFixed(fx) >> SkGradientShaderBase::kCache32Shift; \
182     SkASSERT(fi <= 0xFF);           \
183     fx += dx;                       \
184     *dstC++ = cache[toggle + fi];   \
185     toggle = next_dither_toggle(toggle); \
186     } while (0)
187 
188 namespace {
189 
190 typedef void (*LinearShadeProc)(TileProc proc, SkGradFixed dx, SkGradFixed fx,
191                                 SkPMColor* dstC, const SkPMColor* cache,
192                                 int toggle, int count);
193 
194 // Linear interpolation (lerp) is unnecessary if there are no sharp
195 // discontinuities in the gradient - which must be true if there are
196 // only 2 colors - but it's cheap.
shadeSpan_linear_vertical_lerp(TileProc proc,SkGradFixed dx,SkGradFixed fx,SkPMColor * SK_RESTRICT dstC,const SkPMColor * SK_RESTRICT cache,int toggle,int count)197 void shadeSpan_linear_vertical_lerp(TileProc proc, SkGradFixed dx, SkGradFixed fx,
198                                     SkPMColor* SK_RESTRICT dstC,
199                                     const SkPMColor* SK_RESTRICT cache,
200                                     int toggle, int count) {
201     // We're a vertical gradient, so no change in a span.
202     // If colors change sharply across the gradient, dithering is
203     // insufficient (it subsamples the color space) and we need to lerp.
204     unsigned fullIndex = proc(SkGradFixedToFixed(fx));
205     unsigned fi = fullIndex >> SkGradientShaderBase::kCache32Shift;
206     unsigned remainder = fullIndex & ((1 << SkGradientShaderBase::kCache32Shift) - 1);
207 
208     int index0 = fi + toggle;
209     int index1 = index0;
210     if (fi < SkGradientShaderBase::kCache32Count - 1) {
211         index1 += 1;
212     }
213     SkPMColor lerp = SkFastFourByteInterp(cache[index1], cache[index0], remainder);
214     index0 ^= SkGradientShaderBase::kDitherStride32;
215     index1 ^= SkGradientShaderBase::kDitherStride32;
216     SkPMColor dlerp = SkFastFourByteInterp(cache[index1], cache[index0], remainder);
217     sk_memset32_dither(dstC, lerp, dlerp, count);
218 }
219 
shadeSpan_linear_clamp(TileProc proc,SkGradFixed dx,SkGradFixed fx,SkPMColor * SK_RESTRICT dstC,const SkPMColor * SK_RESTRICT cache,int toggle,int count)220 void shadeSpan_linear_clamp(TileProc proc, SkGradFixed dx, SkGradFixed fx,
221                             SkPMColor* SK_RESTRICT dstC,
222                             const SkPMColor* SK_RESTRICT cache,
223                             int toggle, int count) {
224     SkClampRange range;
225     range.init(fx, dx, count, 0, SkGradientShaderBase::kCache32Count - 1);
226     range.validate(count);
227 
228     if ((count = range.fCount0) > 0) {
229         sk_memset32_dither(dstC,
230             cache[toggle + range.fV0],
231             cache[next_dither_toggle(toggle) + range.fV0],
232             count);
233         dstC += count;
234     }
235     if ((count = range.fCount1) > 0) {
236         int unroll = count >> 3;
237         fx = range.fFx1;
238         for (int i = 0; i < unroll; i++) {
239             NO_CHECK_ITER;  NO_CHECK_ITER;
240             NO_CHECK_ITER;  NO_CHECK_ITER;
241             NO_CHECK_ITER;  NO_CHECK_ITER;
242             NO_CHECK_ITER;  NO_CHECK_ITER;
243         }
244         if ((count &= 7) > 0) {
245             do {
246                 NO_CHECK_ITER;
247             } while (--count != 0);
248         }
249     }
250     if ((count = range.fCount2) > 0) {
251         sk_memset32_dither(dstC,
252             cache[toggle + range.fV1],
253             cache[next_dither_toggle(toggle) + range.fV1],
254             count);
255     }
256 }
257 
shadeSpan_linear_mirror(TileProc proc,SkGradFixed dx,SkGradFixed fx,SkPMColor * SK_RESTRICT dstC,const SkPMColor * SK_RESTRICT cache,int toggle,int count)258 void shadeSpan_linear_mirror(TileProc proc, SkGradFixed dx, SkGradFixed fx,
259                              SkPMColor* SK_RESTRICT dstC,
260                              const SkPMColor* SK_RESTRICT cache,
261                              int toggle, int count) {
262     do {
263         unsigned fi = mirror_8bits(SkGradFixedToFixed(fx) >> 8);
264         SkASSERT(fi <= 0xFF);
265         fx += dx;
266         *dstC++ = cache[toggle + fi];
267         toggle = next_dither_toggle(toggle);
268     } while (--count != 0);
269 }
270 
shadeSpan_linear_repeat(TileProc proc,SkGradFixed dx,SkGradFixed fx,SkPMColor * SK_RESTRICT dstC,const SkPMColor * SK_RESTRICT cache,int toggle,int count)271 void shadeSpan_linear_repeat(TileProc proc, SkGradFixed dx, SkGradFixed fx,
272         SkPMColor* SK_RESTRICT dstC,
273         const SkPMColor* SK_RESTRICT cache,
274         int toggle, int count) {
275     do {
276         unsigned fi = repeat_8bits(SkGradFixedToFixed(fx) >> 8);
277         SkASSERT(fi <= 0xFF);
278         fx += dx;
279         *dstC++ = cache[toggle + fi];
280         toggle = next_dither_toggle(toggle);
281     } while (--count != 0);
282 }
283 
284 }
285 
shadeSpan(int x,int y,SkPMColor * SK_RESTRICT dstC,int count)286 void SkLinearGradient::LinearGradientContext::shadeSpan(int x, int y, SkPMColor* SK_RESTRICT dstC,
287                                                         int count) {
288     SkASSERT(count > 0);
289     const SkLinearGradient& linearGradient = static_cast<const SkLinearGradient&>(fShader);
290 
291 // Only use the Sk4f impl when known to be fast.
292 #if defined(SKNX_IS_FAST)
293     if (SkShader::kClamp_TileMode == linearGradient.fTileMode &&
294         kLinear_MatrixClass == fDstToIndexClass)
295     {
296         this->shade4_clamp(x, y, dstC, count);
297         return;
298     }
299 #endif
300 
301     SkPoint             srcPt;
302     SkMatrix::MapXYProc dstProc = fDstToIndexProc;
303     TileProc            proc = linearGradient.fTileProc;
304     const SkPMColor* SK_RESTRICT cache = fCache->getCache32();
305     int                 toggle = init_dither_toggle(x, y);
306 
307     if (fDstToIndexClass != kPerspective_MatrixClass) {
308         dstProc(fDstToIndex, SkIntToScalar(x) + SK_ScalarHalf,
309                              SkIntToScalar(y) + SK_ScalarHalf, &srcPt);
310         SkGradFixed dx, fx = SkScalarToGradFixed(srcPt.fX);
311 
312         if (fDstToIndexClass == kFixedStepInX_MatrixClass) {
313             const auto step = fDstToIndex.fixedStepInX(SkIntToScalar(y));
314             // todo: do we need a real/high-precision value for dx here?
315             dx = SkScalarToGradFixed(step.fX);
316         } else {
317             SkASSERT(fDstToIndexClass == kLinear_MatrixClass);
318             dx = SkScalarToGradFixed(fDstToIndex.getScaleX());
319         }
320 
321         LinearShadeProc shadeProc = shadeSpan_linear_repeat;
322         if (0 == dx) {
323             shadeProc = shadeSpan_linear_vertical_lerp;
324         } else if (SkShader::kClamp_TileMode == linearGradient.fTileMode) {
325             shadeProc = shadeSpan_linear_clamp;
326         } else if (SkShader::kMirror_TileMode == linearGradient.fTileMode) {
327             shadeProc = shadeSpan_linear_mirror;
328         } else {
329             SkASSERT(SkShader::kRepeat_TileMode == linearGradient.fTileMode);
330         }
331         (*shadeProc)(proc, dx, fx, dstC, cache, toggle, count);
332     } else {
333         SkScalar    dstX = SkIntToScalar(x);
334         SkScalar    dstY = SkIntToScalar(y);
335         do {
336             dstProc(fDstToIndex, dstX, dstY, &srcPt);
337             unsigned fi = proc(SkScalarToFixed(srcPt.fX));
338             SkASSERT(fi <= 0xFFFF);
339             *dstC++ = cache[toggle + (fi >> kCache32Shift)];
340             toggle = next_dither_toggle(toggle);
341             dstX += SK_Scalar1;
342         } while (--count != 0);
343     }
344 }
345 
asAGradient(GradientInfo * info) const346 SkShader::GradientType SkLinearGradient::asAGradient(GradientInfo* info) const {
347     if (info) {
348         commonAsAGradient(info);
349         info->fPoint[0] = fStart;
350         info->fPoint[1] = fEnd;
351     }
352     return kLinear_GradientType;
353 }
354 
355 #if SK_SUPPORT_GPU
356 
357 #include "glsl/GrGLSLCaps.h"
358 #include "glsl/GrGLSLFragmentShaderBuilder.h"
359 #include "SkGr.h"
360 
361 /////////////////////////////////////////////////////////////////////
362 
363 class GrGLLinearGradient : public GrGLGradientEffect {
364 public:
365 
GrGLLinearGradient(const GrProcessor &)366     GrGLLinearGradient(const GrProcessor&) {}
367 
~GrGLLinearGradient()368     virtual ~GrGLLinearGradient() { }
369 
370     virtual void emitCode(EmitArgs&) override;
371 
GenKey(const GrProcessor & processor,const GrGLSLCaps &,GrProcessorKeyBuilder * b)372     static void GenKey(const GrProcessor& processor, const GrGLSLCaps&, GrProcessorKeyBuilder* b) {
373         b->add32(GenBaseGradientKey(processor));
374     }
375 
376 private:
377 
378     typedef GrGLGradientEffect INHERITED;
379 };
380 
381 /////////////////////////////////////////////////////////////////////
382 
383 class GrLinearGradient : public GrGradientEffect {
384 public:
385 
Create(GrContext * ctx,const SkLinearGradient & shader,const SkMatrix & matrix,SkShader::TileMode tm)386     static GrFragmentProcessor* Create(GrContext* ctx,
387                                        const SkLinearGradient& shader,
388                                        const SkMatrix& matrix,
389                                        SkShader::TileMode tm) {
390         return new GrLinearGradient(ctx, shader, matrix, tm);
391     }
392 
~GrLinearGradient()393     virtual ~GrLinearGradient() { }
394 
name() const395     const char* name() const override { return "Linear Gradient"; }
396 
397 private:
GrLinearGradient(GrContext * ctx,const SkLinearGradient & shader,const SkMatrix & matrix,SkShader::TileMode tm)398     GrLinearGradient(GrContext* ctx,
399                      const SkLinearGradient& shader,
400                      const SkMatrix& matrix,
401                      SkShader::TileMode tm)
402         : INHERITED(ctx, shader, matrix, tm) {
403         this->initClassID<GrLinearGradient>();
404     }
405 
onCreateGLSLInstance() const406     GrGLSLFragmentProcessor* onCreateGLSLInstance() const override {
407         return new GrGLLinearGradient(*this);
408     }
409 
onGetGLSLProcessorKey(const GrGLSLCaps & caps,GrProcessorKeyBuilder * b) const410     virtual void onGetGLSLProcessorKey(const GrGLSLCaps& caps,
411                                        GrProcessorKeyBuilder* b) const override {
412         GrGLLinearGradient::GenKey(*this, caps, b);
413     }
414 
415     GR_DECLARE_FRAGMENT_PROCESSOR_TEST;
416 
417     typedef GrGradientEffect INHERITED;
418 };
419 
420 /////////////////////////////////////////////////////////////////////
421 
422 GR_DEFINE_FRAGMENT_PROCESSOR_TEST(GrLinearGradient);
423 
TestCreate(GrProcessorTestData * d)424 const GrFragmentProcessor* GrLinearGradient::TestCreate(GrProcessorTestData* d) {
425     SkPoint points[] = {{d->fRandom->nextUScalar1(), d->fRandom->nextUScalar1()},
426                         {d->fRandom->nextUScalar1(), d->fRandom->nextUScalar1()}};
427 
428     SkColor colors[kMaxRandomGradientColors];
429     SkScalar stopsArray[kMaxRandomGradientColors];
430     SkScalar* stops = stopsArray;
431     SkShader::TileMode tm;
432     int colorCount = RandomGradientParams(d->fRandom, colors, &stops, &tm);
433     SkAutoTUnref<SkShader> shader(SkGradientShader::CreateLinear(points,
434                                                                  colors, stops, colorCount,
435                                                                  tm));
436     const GrFragmentProcessor* fp = shader->asFragmentProcessor(d->fContext,
437         GrTest::TestMatrix(d->fRandom), NULL, kNone_SkFilterQuality);
438     GrAlwaysAssert(fp);
439     return fp;
440 }
441 
442 /////////////////////////////////////////////////////////////////////
443 
emitCode(EmitArgs & args)444 void GrGLLinearGradient::emitCode(EmitArgs& args) {
445     const GrLinearGradient& ge = args.fFp.cast<GrLinearGradient>();
446     this->emitUniforms(args.fUniformHandler, ge);
447     SkString t = args.fFragBuilder->ensureFSCoords2D(args.fCoords, 0);
448     t.append(".x");
449     this->emitColor(args.fFragBuilder,
450                     args.fUniformHandler,
451                     args.fGLSLCaps,
452                     ge, t.c_str(),
453                     args.fOutputColor,
454                     args.fInputColor,
455                     args.fSamplers);
456 }
457 
458 /////////////////////////////////////////////////////////////////////
459 
asFragmentProcessor(GrContext * context,const SkMatrix & viewm,const SkMatrix * localMatrix,SkFilterQuality) const460 const GrFragmentProcessor* SkLinearGradient::asFragmentProcessor(
461                                                  GrContext* context,
462                                                  const SkMatrix& viewm,
463                                                  const SkMatrix* localMatrix,
464                                                  SkFilterQuality) const {
465     SkASSERT(context);
466 
467     SkMatrix matrix;
468     if (!this->getLocalMatrix().invert(&matrix)) {
469         return nullptr;
470     }
471     if (localMatrix) {
472         SkMatrix inv;
473         if (!localMatrix->invert(&inv)) {
474             return nullptr;
475         }
476         matrix.postConcat(inv);
477     }
478     matrix.postConcat(fPtsToUnit);
479 
480     SkAutoTUnref<const GrFragmentProcessor> inner(
481         GrLinearGradient::Create(context, *this, matrix, fTileMode));
482     return GrFragmentProcessor::MulOutputByInputAlpha(inner);
483 }
484 
485 
486 #endif
487 
488 #ifndef SK_IGNORE_TO_STRING
toString(SkString * str) const489 void SkLinearGradient::toString(SkString* str) const {
490     str->append("SkLinearGradient (");
491 
492     str->appendf("start: (%f, %f)", fStart.fX, fStart.fY);
493     str->appendf(" end: (%f, %f) ", fEnd.fX, fEnd.fY);
494 
495     this->INHERITED::toString(str);
496 
497     str->append(")");
498 }
499 #endif
500 
501 ///////////////////////////////////////////////////////////////////////////////////////////////////
502 
503 #include "SkNx.h"
504 
505 static const SkLinearGradient::LinearGradientContext::Rec*
find_forward(const SkLinearGradient::LinearGradientContext::Rec rec[],float tiledX)506 find_forward(const SkLinearGradient::LinearGradientContext::Rec rec[], float tiledX) {
507     SkASSERT(tiledX >= 0 && tiledX <= 1);
508 
509     SkASSERT(rec[0].fPos >= 0 && rec[0].fPos <= 1);
510     SkASSERT(rec[1].fPos >= 0 && rec[1].fPos <= 1);
511     SkASSERT(rec[0].fPos <= rec[1].fPos);
512     rec += 1;
513     while (rec->fPos < tiledX || rec->fPosScale == 0) {
514         SkASSERT(rec[0].fPos >= 0 && rec[0].fPos <= 1);
515         SkASSERT(rec[1].fPos >= 0 && rec[1].fPos <= 1);
516         SkASSERT(rec[0].fPos <= rec[1].fPos);
517         rec += 1;
518     }
519     return rec - 1;
520 }
521 
522 static const SkLinearGradient::LinearGradientContext::Rec*
find_backward(const SkLinearGradient::LinearGradientContext::Rec rec[],float tiledX)523 find_backward(const SkLinearGradient::LinearGradientContext::Rec rec[], float tiledX) {
524     SkASSERT(tiledX >= 0 && tiledX <= 1);
525 
526     SkASSERT(rec[0].fPos >= 0 && rec[0].fPos <= 1);
527     SkASSERT(rec[1].fPos >= 0 && rec[1].fPos <= 1);
528     SkASSERT(rec[0].fPos <= rec[1].fPos);
529     while (tiledX < rec->fPos || rec[1].fPosScale == 0) {
530         rec -= 1;
531         SkASSERT(rec[0].fPos >= 0 && rec[0].fPos <= 1);
532         SkASSERT(rec[1].fPos >= 0 && rec[1].fPos <= 1);
533         SkASSERT(rec[0].fPos <= rec[1].fPos);
534     }
535     return rec;
536 }
537 
trunc_from_255(const Sk4f & x)538 template <bool apply_alpha> SkPMColor trunc_from_255(const Sk4f& x) {
539     SkPMColor c;
540     SkNx_cast<uint8_t>(x).store(&c);
541     if (apply_alpha) {
542         c = SkPreMultiplyARGB(SkGetPackedA32(c), SkGetPackedR32(c),
543                               SkGetPackedG32(c), SkGetPackedB32(c));
544     }
545     return c;
546 }
547 
fill(SkPMColor dst[],int count,const Sk4f & c4,const Sk4f & c4other)548 template <bool apply_alpha> void fill(SkPMColor dst[], int count,
549                                       const Sk4f& c4, const Sk4f& c4other) {
550     sk_memset32_dither(dst, trunc_from_255<apply_alpha>(c4),
551                        trunc_from_255<apply_alpha>(c4other), count);
552 }
553 
fill(SkPMColor dst[],int count,const Sk4f & c4)554 template <bool apply_alpha> void fill(SkPMColor dst[], int count, const Sk4f& c4) {
555     // Assumes that c4 does not need to be dithered.
556     sk_memset32(dst, trunc_from_255<apply_alpha>(c4), count);
557 }
558 
559 /*
560  *  TODOs
561  *
562  *  - tilemodes
563  *  - interp before or after premul
564  *  - perspective
565  *  - optimizations
566  *      - use fixed (32bit or 16bit) instead of floats?
567  */
568 
lerp_color(float fx,const SkLinearGradient::LinearGradientContext::Rec * rec)569 static Sk4f lerp_color(float fx, const SkLinearGradient::LinearGradientContext::Rec* rec) {
570     SkASSERT(fx >= rec[0].fPos);
571     SkASSERT(fx <= rec[1].fPos);
572 
573     const float p0 = rec[0].fPos;
574     const Sk4f c0 = rec[0].fColor;
575     const Sk4f c1 = rec[1].fColor;
576     const Sk4f diffc = c1 - c0;
577     const float scale = rec[1].fPosScale;
578     const float t = (fx - p0) * scale;
579     return c0 + Sk4f(t) * diffc;
580 }
581 
ramp(SkPMColor dstC[],int n,const Sk4f & c,const Sk4f & dc,const Sk4f & dither0,const Sk4f & dither1)582 template <bool apply_alpha> void ramp(SkPMColor dstC[], int n, const Sk4f& c, const Sk4f& dc,
583                                       const Sk4f& dither0, const Sk4f& dither1) {
584     Sk4f dc2 = dc + dc;
585     Sk4f dc4 = dc2 + dc2;
586     Sk4f cd0 = c + dither0;
587     Sk4f cd1 = c + dc + dither1;
588     Sk4f cd2 = cd0 + dc2;
589     Sk4f cd3 = cd1 + dc2;
590     while (n >= 4) {
591         if (!apply_alpha) {
592             Sk4f_ToBytes((uint8_t*)dstC, cd0, cd1, cd2, cd3);
593             dstC += 4;
594         } else {
595             *dstC++ = trunc_from_255<apply_alpha>(cd0);
596             *dstC++ = trunc_from_255<apply_alpha>(cd1);
597             *dstC++ = trunc_from_255<apply_alpha>(cd2);
598             *dstC++ = trunc_from_255<apply_alpha>(cd3);
599         }
600         cd0 = cd0 + dc4;
601         cd1 = cd1 + dc4;
602         cd2 = cd2 + dc4;
603         cd3 = cd3 + dc4;
604         n -= 4;
605     }
606     if (n & 2) {
607         *dstC++ = trunc_from_255<apply_alpha>(cd0);
608         *dstC++ = trunc_from_255<apply_alpha>(cd1);
609         cd0 = cd0 + dc2;
610     }
611     if (n & 1) {
612         *dstC++ = trunc_from_255<apply_alpha>(cd0);
613     }
614 }
615 
616 template <bool apply_alpha, bool dx_is_pos>
shade4_dx_clamp(SkPMColor dstC[],int count,float fx,float dx,float invDx,const float dither[2])617 void SkLinearGradient::LinearGradientContext::shade4_dx_clamp(SkPMColor dstC[], int count,
618                                                               float fx, float dx, float invDx,
619                                                               const float dither[2]) {
620     Sk4f dither0(dither[0]);
621     Sk4f dither1(dither[1]);
622     const Rec* rec = fRecs.begin();
623 
624     const Sk4f dx4 = Sk4f(dx);
625     SkDEBUGCODE(SkPMColor* endDstC = dstC + count;)
626 
627     if (dx_is_pos) {
628         if (fx < 0) {
629             int n = SkTMin(SkFloatToIntFloor(-fx * invDx) + 1, count);
630             fill<apply_alpha>(dstC, n, rec[0].fColor);
631             count -= n;
632             dstC += n;
633             fx += n * dx;
634             SkASSERT(0 == count || fx >= 0);
635             if (n & 1) {
636                 SkTSwap(dither0, dither1);
637             }
638         }
639     } else { // dx < 0
640         if (fx > 1) {
641             int n = SkTMin(SkFloatToIntFloor((1 - fx) * invDx) + 1, count);
642             fill<apply_alpha>(dstC, n, rec[fRecs.count() - 1].fColor);
643             count -= n;
644             dstC += n;
645             fx += n * dx;
646             SkASSERT(0 == count || fx <= 1);
647             if (n & 1) {
648                 SkTSwap(dither0, dither1);
649             }
650         }
651     }
652     SkASSERT(count >= 0);
653 
654     const Rec* r;
655     if (dx_is_pos) {
656         r = fRecs.begin();                      // start at the beginning
657     } else {
658         r = fRecs.begin() + fRecs.count() - 2;  // start at the end
659     }
660 
661     while (count > 0) {
662         if (dx_is_pos) {
663             if (fx >= 1) {
664                 fill<apply_alpha>(dstC, count, rec[fRecs.count() - 1].fColor);
665                 return;
666             }
667         } else {    // dx < 0
668             if (fx <= 0) {
669                 fill<apply_alpha>(dstC, count, rec[0].fColor);
670                 return;
671             }
672         }
673 
674         if (dx_is_pos) {
675             r = find_forward(r, fx);
676         } else {
677             r = find_backward(r, fx);
678         }
679         SkASSERT(r >= fRecs.begin() && r < fRecs.begin() + fRecs.count() - 1);
680 
681         const float p0 = r[0].fPos;
682         const Sk4f c0 = r[0].fColor;
683         const float p1 = r[1].fPos;
684         const Sk4f diffc = Sk4f(r[1].fColor) - c0;
685         const float scale = r[1].fPosScale;
686         const float t = (fx - p0) * scale;
687         const Sk4f c = c0 + Sk4f(t) * diffc;
688         const Sk4f dc = diffc * dx4 * Sk4f(scale);
689 
690         int n;
691         if (dx_is_pos) {
692             n = SkTMin((int)((p1 - fx) * invDx) + 1, count);
693         } else {
694             n = SkTMin((int)((p0 - fx) * invDx) + 1, count);
695         }
696 
697         fx += n * dx;
698         // fx should now outside of the p0..p1 interval. However, due to float precision loss,
699         // its possible that fx is slightly too small/large, so we clamp it.
700         if (dx_is_pos) {
701             fx = SkTMax(fx, p1);
702         } else {
703             fx = SkTMin(fx, p0);
704         }
705 
706         ramp<apply_alpha>(dstC, n, c, dc, dither0, dither1);
707         dstC += n;
708         SkASSERT(dstC <= endDstC);
709 
710         if (n & 1) {
711             SkTSwap(dither0, dither1);
712         }
713 
714         count -= n;
715         SkASSERT(count >= 0);
716     }
717 }
718 
shade4_clamp(int x,int y,SkPMColor dstC[],int count)719 void SkLinearGradient::LinearGradientContext::shade4_clamp(int x, int y, SkPMColor dstC[],
720                                                            int count) {
721     SkASSERT(count > 0);
722     SkASSERT(kLinear_MatrixClass == fDstToIndexClass);
723 
724     SkPoint srcPt;
725     fDstToIndexProc(fDstToIndex, x + SK_ScalarHalf, y + SK_ScalarHalf, &srcPt);
726     float fx = srcPt.x();
727     const float dx = fDstToIndex.getScaleX();
728 
729     // Default our dither bias values to 1/2, (rounding), which is no dithering
730     float dither0 = 0.5f;
731     float dither1 = 0.5f;
732     if (fDither) {
733         const float ditherCell[] = {
734             1/8.0f,   5/8.0f,
735             7/8.0f,   3/8.0f,
736         };
737         const int rowIndex = (y & 1) << 1;
738         dither0 = ditherCell[rowIndex];
739         dither1 = ditherCell[rowIndex + 1];
740         if (x & 1) {
741             SkTSwap(dither0, dither1);
742         }
743     }
744     const float dither[2] = { dither0, dither1 };
745     const float invDx = 1 / dx;
746 
747     if (SkScalarNearlyZero(dx * count)) { // gradient is vertical
748         const float pinFx = SkTPin(fx, 0.0f, 1.0f);
749         Sk4f c = lerp_color(pinFx, find_forward(fRecs.begin(), pinFx));
750         if (fApplyAlphaAfterInterp) {
751             fill<true>(dstC, count, c + dither0, c + dither1);
752         } else {
753             fill<false>(dstC, count, c + dither0, c + dither1);
754         }
755         return;
756     }
757 
758     if (dx > 0) {
759         if (fApplyAlphaAfterInterp) {
760             this->shade4_dx_clamp<true, true>(dstC, count, fx, dx, invDx, dither);
761         } else {
762             this->shade4_dx_clamp<false, true>(dstC, count, fx, dx, invDx, dither);
763         }
764     } else {
765         if (fApplyAlphaAfterInterp) {
766             this->shade4_dx_clamp<true, false>(dstC, count, fx, dx, invDx, dither);
767         } else {
768             this->shade4_dx_clamp<false, false>(dstC, count, fx, dx, invDx, dither);
769         }
770     }
771 }
772