1 // Copyright 2013 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4 
5 #if V8_TARGET_ARCH_ARM64
6 
7 #include "src/base/bits.h"
8 #include "src/base/division-by-constant.h"
9 #include "src/bootstrapper.h"
10 #include "src/codegen.h"
11 #include "src/debug/debug.h"
12 #include "src/register-configuration.h"
13 #include "src/runtime/runtime.h"
14 
15 #include "src/arm64/frames-arm64.h"
16 #include "src/arm64/macro-assembler-arm64.h"
17 
18 namespace v8 {
19 namespace internal {
20 
21 // Define a fake double underscore to use with the ASM_UNIMPLEMENTED macros.
22 #define __
23 
24 
MacroAssembler(Isolate * arg_isolate,byte * buffer,unsigned buffer_size,CodeObjectRequired create_code_object)25 MacroAssembler::MacroAssembler(Isolate* arg_isolate, byte* buffer,
26                                unsigned buffer_size,
27                                CodeObjectRequired create_code_object)
28     : Assembler(arg_isolate, buffer, buffer_size),
29       generating_stub_(false),
30 #if DEBUG
31       allow_macro_instructions_(true),
32 #endif
33       has_frame_(false),
34       use_real_aborts_(true),
35       sp_(jssp),
36       tmp_list_(DefaultTmpList()),
37       fptmp_list_(DefaultFPTmpList()) {
38   if (create_code_object == CodeObjectRequired::kYes) {
39     code_object_ =
40         Handle<Object>::New(isolate()->heap()->undefined_value(), isolate());
41   }
42 }
43 
44 
DefaultTmpList()45 CPURegList MacroAssembler::DefaultTmpList() {
46   return CPURegList(ip0, ip1);
47 }
48 
49 
DefaultFPTmpList()50 CPURegList MacroAssembler::DefaultFPTmpList() {
51   return CPURegList(fp_scratch1, fp_scratch2);
52 }
53 
54 
LogicalMacro(const Register & rd,const Register & rn,const Operand & operand,LogicalOp op)55 void MacroAssembler::LogicalMacro(const Register& rd,
56                                   const Register& rn,
57                                   const Operand& operand,
58                                   LogicalOp op) {
59   UseScratchRegisterScope temps(this);
60 
61   if (operand.NeedsRelocation(this)) {
62     Register temp = temps.AcquireX();
63     Ldr(temp, operand.immediate());
64     Logical(rd, rn, temp, op);
65 
66   } else if (operand.IsImmediate()) {
67     int64_t immediate = operand.ImmediateValue();
68     unsigned reg_size = rd.SizeInBits();
69 
70     // If the operation is NOT, invert the operation and immediate.
71     if ((op & NOT) == NOT) {
72       op = static_cast<LogicalOp>(op & ~NOT);
73       immediate = ~immediate;
74     }
75 
76     // Ignore the top 32 bits of an immediate if we're moving to a W register.
77     if (rd.Is32Bits()) {
78       // Check that the top 32 bits are consistent.
79       DCHECK(((immediate >> kWRegSizeInBits) == 0) ||
80              ((immediate >> kWRegSizeInBits) == -1));
81       immediate &= kWRegMask;
82     }
83 
84     DCHECK(rd.Is64Bits() || is_uint32(immediate));
85 
86     // Special cases for all set or all clear immediates.
87     if (immediate == 0) {
88       switch (op) {
89         case AND:
90           Mov(rd, 0);
91           return;
92         case ORR:  // Fall through.
93         case EOR:
94           Mov(rd, rn);
95           return;
96         case ANDS:  // Fall through.
97         case BICS:
98           break;
99         default:
100           UNREACHABLE();
101       }
102     } else if ((rd.Is64Bits() && (immediate == -1L)) ||
103                (rd.Is32Bits() && (immediate == 0xffffffffL))) {
104       switch (op) {
105         case AND:
106           Mov(rd, rn);
107           return;
108         case ORR:
109           Mov(rd, immediate);
110           return;
111         case EOR:
112           Mvn(rd, rn);
113           return;
114         case ANDS:  // Fall through.
115         case BICS:
116           break;
117         default:
118           UNREACHABLE();
119       }
120     }
121 
122     unsigned n, imm_s, imm_r;
123     if (IsImmLogical(immediate, reg_size, &n, &imm_s, &imm_r)) {
124       // Immediate can be encoded in the instruction.
125       LogicalImmediate(rd, rn, n, imm_s, imm_r, op);
126     } else {
127       // Immediate can't be encoded: synthesize using move immediate.
128       Register temp = temps.AcquireSameSizeAs(rn);
129       Operand imm_operand = MoveImmediateForShiftedOp(temp, immediate);
130       if (rd.Is(csp)) {
131         // If rd is the stack pointer we cannot use it as the destination
132         // register so we use the temp register as an intermediate again.
133         Logical(temp, rn, imm_operand, op);
134         Mov(csp, temp);
135         AssertStackConsistency();
136       } else {
137         Logical(rd, rn, imm_operand, op);
138       }
139     }
140 
141   } else if (operand.IsExtendedRegister()) {
142     DCHECK(operand.reg().SizeInBits() <= rd.SizeInBits());
143     // Add/sub extended supports shift <= 4. We want to support exactly the
144     // same modes here.
145     DCHECK(operand.shift_amount() <= 4);
146     DCHECK(operand.reg().Is64Bits() ||
147            ((operand.extend() != UXTX) && (operand.extend() != SXTX)));
148     Register temp = temps.AcquireSameSizeAs(rn);
149     EmitExtendShift(temp, operand.reg(), operand.extend(),
150                     operand.shift_amount());
151     Logical(rd, rn, temp, op);
152 
153   } else {
154     // The operand can be encoded in the instruction.
155     DCHECK(operand.IsShiftedRegister());
156     Logical(rd, rn, operand, op);
157   }
158 }
159 
160 
Mov(const Register & rd,uint64_t imm)161 void MacroAssembler::Mov(const Register& rd, uint64_t imm) {
162   DCHECK(allow_macro_instructions_);
163   DCHECK(is_uint32(imm) || is_int32(imm) || rd.Is64Bits());
164   DCHECK(!rd.IsZero());
165 
166   // TODO(all) extend to support more immediates.
167   //
168   // Immediates on Aarch64 can be produced using an initial value, and zero to
169   // three move keep operations.
170   //
171   // Initial values can be generated with:
172   //  1. 64-bit move zero (movz).
173   //  2. 32-bit move inverted (movn).
174   //  3. 64-bit move inverted.
175   //  4. 32-bit orr immediate.
176   //  5. 64-bit orr immediate.
177   // Move-keep may then be used to modify each of the 16-bit half-words.
178   //
179   // The code below supports all five initial value generators, and
180   // applying move-keep operations to move-zero and move-inverted initial
181   // values.
182 
183   // Try to move the immediate in one instruction, and if that fails, switch to
184   // using multiple instructions.
185   if (!TryOneInstrMoveImmediate(rd, imm)) {
186     unsigned reg_size = rd.SizeInBits();
187 
188     // Generic immediate case. Imm will be represented by
189     //   [imm3, imm2, imm1, imm0], where each imm is 16 bits.
190     // A move-zero or move-inverted is generated for the first non-zero or
191     // non-0xffff immX, and a move-keep for subsequent non-zero immX.
192 
193     uint64_t ignored_halfword = 0;
194     bool invert_move = false;
195     // If the number of 0xffff halfwords is greater than the number of 0x0000
196     // halfwords, it's more efficient to use move-inverted.
197     if (CountClearHalfWords(~imm, reg_size) >
198         CountClearHalfWords(imm, reg_size)) {
199       ignored_halfword = 0xffffL;
200       invert_move = true;
201     }
202 
203     // Mov instructions can't move immediate values into the stack pointer, so
204     // set up a temporary register, if needed.
205     UseScratchRegisterScope temps(this);
206     Register temp = rd.IsSP() ? temps.AcquireSameSizeAs(rd) : rd;
207 
208     // Iterate through the halfwords. Use movn/movz for the first non-ignored
209     // halfword, and movk for subsequent halfwords.
210     DCHECK((reg_size % 16) == 0);
211     bool first_mov_done = false;
212     for (int i = 0; i < (rd.SizeInBits() / 16); i++) {
213       uint64_t imm16 = (imm >> (16 * i)) & 0xffffL;
214       if (imm16 != ignored_halfword) {
215         if (!first_mov_done) {
216           if (invert_move) {
217             movn(temp, (~imm16) & 0xffffL, 16 * i);
218           } else {
219             movz(temp, imm16, 16 * i);
220           }
221           first_mov_done = true;
222         } else {
223           // Construct a wider constant.
224           movk(temp, imm16, 16 * i);
225         }
226       }
227     }
228     DCHECK(first_mov_done);
229 
230     // Move the temporary if the original destination register was the stack
231     // pointer.
232     if (rd.IsSP()) {
233       mov(rd, temp);
234       AssertStackConsistency();
235     }
236   }
237 }
238 
239 
Mov(const Register & rd,const Operand & operand,DiscardMoveMode discard_mode)240 void MacroAssembler::Mov(const Register& rd,
241                          const Operand& operand,
242                          DiscardMoveMode discard_mode) {
243   DCHECK(allow_macro_instructions_);
244   DCHECK(!rd.IsZero());
245 
246   // Provide a swap register for instructions that need to write into the
247   // system stack pointer (and can't do this inherently).
248   UseScratchRegisterScope temps(this);
249   Register dst = (rd.IsSP()) ? temps.AcquireSameSizeAs(rd) : rd;
250 
251   if (operand.NeedsRelocation(this)) {
252     Ldr(dst, operand.immediate());
253 
254   } else if (operand.IsImmediate()) {
255     // Call the macro assembler for generic immediates.
256     Mov(dst, operand.ImmediateValue());
257 
258   } else if (operand.IsShiftedRegister() && (operand.shift_amount() != 0)) {
259     // Emit a shift instruction if moving a shifted register. This operation
260     // could also be achieved using an orr instruction (like orn used by Mvn),
261     // but using a shift instruction makes the disassembly clearer.
262     EmitShift(dst, operand.reg(), operand.shift(), operand.shift_amount());
263 
264   } else if (operand.IsExtendedRegister()) {
265     // Emit an extend instruction if moving an extended register. This handles
266     // extend with post-shift operations, too.
267     EmitExtendShift(dst, operand.reg(), operand.extend(),
268                     operand.shift_amount());
269 
270   } else {
271     // Otherwise, emit a register move only if the registers are distinct, or
272     // if they are not X registers.
273     //
274     // Note that mov(w0, w0) is not a no-op because it clears the top word of
275     // x0. A flag is provided (kDiscardForSameWReg) if a move between the same W
276     // registers is not required to clear the top word of the X register. In
277     // this case, the instruction is discarded.
278     //
279     // If csp is an operand, add #0 is emitted, otherwise, orr #0.
280     if (!rd.Is(operand.reg()) || (rd.Is32Bits() &&
281                                   (discard_mode == kDontDiscardForSameWReg))) {
282       Assembler::mov(rd, operand.reg());
283     }
284     // This case can handle writes into the system stack pointer directly.
285     dst = rd;
286   }
287 
288   // Copy the result to the system stack pointer.
289   if (!dst.Is(rd)) {
290     DCHECK(rd.IsSP());
291     Assembler::mov(rd, dst);
292   }
293 }
294 
295 
Mvn(const Register & rd,const Operand & operand)296 void MacroAssembler::Mvn(const Register& rd, const Operand& operand) {
297   DCHECK(allow_macro_instructions_);
298 
299   if (operand.NeedsRelocation(this)) {
300     Ldr(rd, operand.immediate());
301     mvn(rd, rd);
302 
303   } else if (operand.IsImmediate()) {
304     // Call the macro assembler for generic immediates.
305     Mov(rd, ~operand.ImmediateValue());
306 
307   } else if (operand.IsExtendedRegister()) {
308     // Emit two instructions for the extend case. This differs from Mov, as
309     // the extend and invert can't be achieved in one instruction.
310     EmitExtendShift(rd, operand.reg(), operand.extend(),
311                     operand.shift_amount());
312     mvn(rd, rd);
313 
314   } else {
315     mvn(rd, operand);
316   }
317 }
318 
319 
CountClearHalfWords(uint64_t imm,unsigned reg_size)320 unsigned MacroAssembler::CountClearHalfWords(uint64_t imm, unsigned reg_size) {
321   DCHECK((reg_size % 8) == 0);
322   int count = 0;
323   for (unsigned i = 0; i < (reg_size / 16); i++) {
324     if ((imm & 0xffff) == 0) {
325       count++;
326     }
327     imm >>= 16;
328   }
329   return count;
330 }
331 
332 
333 // The movz instruction can generate immediates containing an arbitrary 16-bit
334 // half-word, with remaining bits clear, eg. 0x00001234, 0x0000123400000000.
IsImmMovz(uint64_t imm,unsigned reg_size)335 bool MacroAssembler::IsImmMovz(uint64_t imm, unsigned reg_size) {
336   DCHECK((reg_size == kXRegSizeInBits) || (reg_size == kWRegSizeInBits));
337   return CountClearHalfWords(imm, reg_size) >= ((reg_size / 16) - 1);
338 }
339 
340 
341 // The movn instruction can generate immediates containing an arbitrary 16-bit
342 // half-word, with remaining bits set, eg. 0xffff1234, 0xffff1234ffffffff.
IsImmMovn(uint64_t imm,unsigned reg_size)343 bool MacroAssembler::IsImmMovn(uint64_t imm, unsigned reg_size) {
344   return IsImmMovz(~imm, reg_size);
345 }
346 
347 
ConditionalCompareMacro(const Register & rn,const Operand & operand,StatusFlags nzcv,Condition cond,ConditionalCompareOp op)348 void MacroAssembler::ConditionalCompareMacro(const Register& rn,
349                                              const Operand& operand,
350                                              StatusFlags nzcv,
351                                              Condition cond,
352                                              ConditionalCompareOp op) {
353   DCHECK((cond != al) && (cond != nv));
354   if (operand.NeedsRelocation(this)) {
355     UseScratchRegisterScope temps(this);
356     Register temp = temps.AcquireX();
357     Ldr(temp, operand.immediate());
358     ConditionalCompareMacro(rn, temp, nzcv, cond, op);
359 
360   } else if ((operand.IsShiftedRegister() && (operand.shift_amount() == 0)) ||
361              (operand.IsImmediate() &&
362               IsImmConditionalCompare(operand.ImmediateValue()))) {
363     // The immediate can be encoded in the instruction, or the operand is an
364     // unshifted register: call the assembler.
365     ConditionalCompare(rn, operand, nzcv, cond, op);
366 
367   } else {
368     // The operand isn't directly supported by the instruction: perform the
369     // operation on a temporary register.
370     UseScratchRegisterScope temps(this);
371     Register temp = temps.AcquireSameSizeAs(rn);
372     Mov(temp, operand);
373     ConditionalCompare(rn, temp, nzcv, cond, op);
374   }
375 }
376 
377 
Csel(const Register & rd,const Register & rn,const Operand & operand,Condition cond)378 void MacroAssembler::Csel(const Register& rd,
379                           const Register& rn,
380                           const Operand& operand,
381                           Condition cond) {
382   DCHECK(allow_macro_instructions_);
383   DCHECK(!rd.IsZero());
384   DCHECK((cond != al) && (cond != nv));
385   if (operand.IsImmediate()) {
386     // Immediate argument. Handle special cases of 0, 1 and -1 using zero
387     // register.
388     int64_t imm = operand.ImmediateValue();
389     Register zr = AppropriateZeroRegFor(rn);
390     if (imm == 0) {
391       csel(rd, rn, zr, cond);
392     } else if (imm == 1) {
393       csinc(rd, rn, zr, cond);
394     } else if (imm == -1) {
395       csinv(rd, rn, zr, cond);
396     } else {
397       UseScratchRegisterScope temps(this);
398       Register temp = temps.AcquireSameSizeAs(rn);
399       Mov(temp, imm);
400       csel(rd, rn, temp, cond);
401     }
402   } else if (operand.IsShiftedRegister() && (operand.shift_amount() == 0)) {
403     // Unshifted register argument.
404     csel(rd, rn, operand.reg(), cond);
405   } else {
406     // All other arguments.
407     UseScratchRegisterScope temps(this);
408     Register temp = temps.AcquireSameSizeAs(rn);
409     Mov(temp, operand);
410     csel(rd, rn, temp, cond);
411   }
412 }
413 
414 
TryOneInstrMoveImmediate(const Register & dst,int64_t imm)415 bool MacroAssembler::TryOneInstrMoveImmediate(const Register& dst,
416                                               int64_t imm) {
417   unsigned n, imm_s, imm_r;
418   int reg_size = dst.SizeInBits();
419   if (IsImmMovz(imm, reg_size) && !dst.IsSP()) {
420     // Immediate can be represented in a move zero instruction. Movz can't write
421     // to the stack pointer.
422     movz(dst, imm);
423     return true;
424   } else if (IsImmMovn(imm, reg_size) && !dst.IsSP()) {
425     // Immediate can be represented in a move not instruction. Movn can't write
426     // to the stack pointer.
427     movn(dst, dst.Is64Bits() ? ~imm : (~imm & kWRegMask));
428     return true;
429   } else if (IsImmLogical(imm, reg_size, &n, &imm_s, &imm_r)) {
430     // Immediate can be represented in a logical orr instruction.
431     LogicalImmediate(dst, AppropriateZeroRegFor(dst), n, imm_s, imm_r, ORR);
432     return true;
433   }
434   return false;
435 }
436 
437 
MoveImmediateForShiftedOp(const Register & dst,int64_t imm)438 Operand MacroAssembler::MoveImmediateForShiftedOp(const Register& dst,
439                                                   int64_t imm) {
440   int reg_size = dst.SizeInBits();
441 
442   // Encode the immediate in a single move instruction, if possible.
443   if (TryOneInstrMoveImmediate(dst, imm)) {
444     // The move was successful; nothing to do here.
445   } else {
446     // Pre-shift the immediate to the least-significant bits of the register.
447     int shift_low = CountTrailingZeros(imm, reg_size);
448     int64_t imm_low = imm >> shift_low;
449 
450     // Pre-shift the immediate to the most-significant bits of the register. We
451     // insert set bits in the least-significant bits, as this creates a
452     // different immediate that may be encodable using movn or orr-immediate.
453     // If this new immediate is encodable, the set bits will be eliminated by
454     // the post shift on the following instruction.
455     int shift_high = CountLeadingZeros(imm, reg_size);
456     int64_t imm_high = (imm << shift_high) | ((1 << shift_high) - 1);
457 
458     if (TryOneInstrMoveImmediate(dst, imm_low)) {
459       // The new immediate has been moved into the destination's low bits:
460       // return a new leftward-shifting operand.
461       return Operand(dst, LSL, shift_low);
462     } else if (TryOneInstrMoveImmediate(dst, imm_high)) {
463       // The new immediate has been moved into the destination's high bits:
464       // return a new rightward-shifting operand.
465       return Operand(dst, LSR, shift_high);
466     } else {
467       // Use the generic move operation to set up the immediate.
468       Mov(dst, imm);
469     }
470   }
471   return Operand(dst);
472 }
473 
474 
AddSubMacro(const Register & rd,const Register & rn,const Operand & operand,FlagsUpdate S,AddSubOp op)475 void MacroAssembler::AddSubMacro(const Register& rd,
476                                  const Register& rn,
477                                  const Operand& operand,
478                                  FlagsUpdate S,
479                                  AddSubOp op) {
480   if (operand.IsZero() && rd.Is(rn) && rd.Is64Bits() && rn.Is64Bits() &&
481       !operand.NeedsRelocation(this) && (S == LeaveFlags)) {
482     // The instruction would be a nop. Avoid generating useless code.
483     return;
484   }
485 
486   if (operand.NeedsRelocation(this)) {
487     UseScratchRegisterScope temps(this);
488     Register temp = temps.AcquireX();
489     Ldr(temp, operand.immediate());
490     AddSubMacro(rd, rn, temp, S, op);
491   } else if ((operand.IsImmediate() &&
492               !IsImmAddSub(operand.ImmediateValue()))      ||
493              (rn.IsZero() && !operand.IsShiftedRegister()) ||
494              (operand.IsShiftedRegister() && (operand.shift() == ROR))) {
495     UseScratchRegisterScope temps(this);
496     Register temp = temps.AcquireSameSizeAs(rn);
497     if (operand.IsImmediate()) {
498       Operand imm_operand =
499           MoveImmediateForShiftedOp(temp, operand.ImmediateValue());
500       AddSub(rd, rn, imm_operand, S, op);
501     } else {
502       Mov(temp, operand);
503       AddSub(rd, rn, temp, S, op);
504     }
505   } else {
506     AddSub(rd, rn, operand, S, op);
507   }
508 }
509 
510 
AddSubWithCarryMacro(const Register & rd,const Register & rn,const Operand & operand,FlagsUpdate S,AddSubWithCarryOp op)511 void MacroAssembler::AddSubWithCarryMacro(const Register& rd,
512                                           const Register& rn,
513                                           const Operand& operand,
514                                           FlagsUpdate S,
515                                           AddSubWithCarryOp op) {
516   DCHECK(rd.SizeInBits() == rn.SizeInBits());
517   UseScratchRegisterScope temps(this);
518 
519   if (operand.NeedsRelocation(this)) {
520     Register temp = temps.AcquireX();
521     Ldr(temp, operand.immediate());
522     AddSubWithCarryMacro(rd, rn, temp, S, op);
523 
524   } else if (operand.IsImmediate() ||
525              (operand.IsShiftedRegister() && (operand.shift() == ROR))) {
526     // Add/sub with carry (immediate or ROR shifted register.)
527     Register temp = temps.AcquireSameSizeAs(rn);
528     Mov(temp, operand);
529     AddSubWithCarry(rd, rn, temp, S, op);
530 
531   } else if (operand.IsShiftedRegister() && (operand.shift_amount() != 0)) {
532     // Add/sub with carry (shifted register).
533     DCHECK(operand.reg().SizeInBits() == rd.SizeInBits());
534     DCHECK(operand.shift() != ROR);
535     DCHECK(is_uintn(operand.shift_amount(),
536           rd.SizeInBits() == kXRegSizeInBits ? kXRegSizeInBitsLog2
537                                              : kWRegSizeInBitsLog2));
538     Register temp = temps.AcquireSameSizeAs(rn);
539     EmitShift(temp, operand.reg(), operand.shift(), operand.shift_amount());
540     AddSubWithCarry(rd, rn, temp, S, op);
541 
542   } else if (operand.IsExtendedRegister()) {
543     // Add/sub with carry (extended register).
544     DCHECK(operand.reg().SizeInBits() <= rd.SizeInBits());
545     // Add/sub extended supports a shift <= 4. We want to support exactly the
546     // same modes.
547     DCHECK(operand.shift_amount() <= 4);
548     DCHECK(operand.reg().Is64Bits() ||
549            ((operand.extend() != UXTX) && (operand.extend() != SXTX)));
550     Register temp = temps.AcquireSameSizeAs(rn);
551     EmitExtendShift(temp, operand.reg(), operand.extend(),
552                     operand.shift_amount());
553     AddSubWithCarry(rd, rn, temp, S, op);
554 
555   } else {
556     // The addressing mode is directly supported by the instruction.
557     AddSubWithCarry(rd, rn, operand, S, op);
558   }
559 }
560 
561 
LoadStoreMacro(const CPURegister & rt,const MemOperand & addr,LoadStoreOp op)562 void MacroAssembler::LoadStoreMacro(const CPURegister& rt,
563                                     const MemOperand& addr,
564                                     LoadStoreOp op) {
565   int64_t offset = addr.offset();
566   LSDataSize size = CalcLSDataSize(op);
567 
568   // Check if an immediate offset fits in the immediate field of the
569   // appropriate instruction. If not, emit two instructions to perform
570   // the operation.
571   if (addr.IsImmediateOffset() && !IsImmLSScaled(offset, size) &&
572       !IsImmLSUnscaled(offset)) {
573     // Immediate offset that can't be encoded using unsigned or unscaled
574     // addressing modes.
575     UseScratchRegisterScope temps(this);
576     Register temp = temps.AcquireSameSizeAs(addr.base());
577     Mov(temp, addr.offset());
578     LoadStore(rt, MemOperand(addr.base(), temp), op);
579   } else if (addr.IsPostIndex() && !IsImmLSUnscaled(offset)) {
580     // Post-index beyond unscaled addressing range.
581     LoadStore(rt, MemOperand(addr.base()), op);
582     add(addr.base(), addr.base(), offset);
583   } else if (addr.IsPreIndex() && !IsImmLSUnscaled(offset)) {
584     // Pre-index beyond unscaled addressing range.
585     add(addr.base(), addr.base(), offset);
586     LoadStore(rt, MemOperand(addr.base()), op);
587   } else {
588     // Encodable in one load/store instruction.
589     LoadStore(rt, addr, op);
590   }
591 }
592 
LoadStorePairMacro(const CPURegister & rt,const CPURegister & rt2,const MemOperand & addr,LoadStorePairOp op)593 void MacroAssembler::LoadStorePairMacro(const CPURegister& rt,
594                                         const CPURegister& rt2,
595                                         const MemOperand& addr,
596                                         LoadStorePairOp op) {
597   // TODO(all): Should we support register offset for load-store-pair?
598   DCHECK(!addr.IsRegisterOffset());
599 
600   int64_t offset = addr.offset();
601   LSDataSize size = CalcLSPairDataSize(op);
602 
603   // Check if the offset fits in the immediate field of the appropriate
604   // instruction. If not, emit two instructions to perform the operation.
605   if (IsImmLSPair(offset, size)) {
606     // Encodable in one load/store pair instruction.
607     LoadStorePair(rt, rt2, addr, op);
608   } else {
609     Register base = addr.base();
610     if (addr.IsImmediateOffset()) {
611       UseScratchRegisterScope temps(this);
612       Register temp = temps.AcquireSameSizeAs(base);
613       Add(temp, base, offset);
614       LoadStorePair(rt, rt2, MemOperand(temp), op);
615     } else if (addr.IsPostIndex()) {
616       LoadStorePair(rt, rt2, MemOperand(base), op);
617       Add(base, base, offset);
618     } else {
619       DCHECK(addr.IsPreIndex());
620       Add(base, base, offset);
621       LoadStorePair(rt, rt2, MemOperand(base), op);
622     }
623   }
624 }
625 
626 
Load(const Register & rt,const MemOperand & addr,Representation r)627 void MacroAssembler::Load(const Register& rt,
628                           const MemOperand& addr,
629                           Representation r) {
630   DCHECK(!r.IsDouble());
631 
632   if (r.IsInteger8()) {
633     Ldrsb(rt, addr);
634   } else if (r.IsUInteger8()) {
635     Ldrb(rt, addr);
636   } else if (r.IsInteger16()) {
637     Ldrsh(rt, addr);
638   } else if (r.IsUInteger16()) {
639     Ldrh(rt, addr);
640   } else if (r.IsInteger32()) {
641     Ldr(rt.W(), addr);
642   } else {
643     DCHECK(rt.Is64Bits());
644     Ldr(rt, addr);
645   }
646 }
647 
648 
Store(const Register & rt,const MemOperand & addr,Representation r)649 void MacroAssembler::Store(const Register& rt,
650                            const MemOperand& addr,
651                            Representation r) {
652   DCHECK(!r.IsDouble());
653 
654   if (r.IsInteger8() || r.IsUInteger8()) {
655     Strb(rt, addr);
656   } else if (r.IsInteger16() || r.IsUInteger16()) {
657     Strh(rt, addr);
658   } else if (r.IsInteger32()) {
659     Str(rt.W(), addr);
660   } else {
661     DCHECK(rt.Is64Bits());
662     if (r.IsHeapObject()) {
663       AssertNotSmi(rt);
664     } else if (r.IsSmi()) {
665       AssertSmi(rt);
666     }
667     Str(rt, addr);
668   }
669 }
670 
671 
NeedExtraInstructionsOrRegisterBranch(Label * label,ImmBranchType b_type)672 bool MacroAssembler::NeedExtraInstructionsOrRegisterBranch(
673     Label *label, ImmBranchType b_type) {
674   bool need_longer_range = false;
675   // There are two situations in which we care about the offset being out of
676   // range:
677   //  - The label is bound but too far away.
678   //  - The label is not bound but linked, and the previous branch
679   //    instruction in the chain is too far away.
680   if (label->is_bound() || label->is_linked()) {
681     need_longer_range =
682       !Instruction::IsValidImmPCOffset(b_type, label->pos() - pc_offset());
683   }
684   if (!need_longer_range && !label->is_bound()) {
685     int max_reachable_pc = pc_offset() + Instruction::ImmBranchRange(b_type);
686     unresolved_branches_.insert(
687         std::pair<int, FarBranchInfo>(max_reachable_pc,
688                                       FarBranchInfo(pc_offset(), label)));
689     // Also maintain the next pool check.
690     next_veneer_pool_check_ =
691       Min(next_veneer_pool_check_,
692           max_reachable_pc - kVeneerDistanceCheckMargin);
693   }
694   return need_longer_range;
695 }
696 
697 
Adr(const Register & rd,Label * label,AdrHint hint)698 void MacroAssembler::Adr(const Register& rd, Label* label, AdrHint hint) {
699   DCHECK(allow_macro_instructions_);
700   DCHECK(!rd.IsZero());
701 
702   if (hint == kAdrNear) {
703     adr(rd, label);
704     return;
705   }
706 
707   DCHECK(hint == kAdrFar);
708   if (label->is_bound()) {
709     int label_offset = label->pos() - pc_offset();
710     if (Instruction::IsValidPCRelOffset(label_offset)) {
711       adr(rd, label);
712     } else {
713       DCHECK(label_offset <= 0);
714       int min_adr_offset = -(1 << (Instruction::ImmPCRelRangeBitwidth - 1));
715       adr(rd, min_adr_offset);
716       Add(rd, rd, label_offset - min_adr_offset);
717     }
718   } else {
719     UseScratchRegisterScope temps(this);
720     Register scratch = temps.AcquireX();
721 
722     InstructionAccurateScope scope(
723         this, PatchingAssembler::kAdrFarPatchableNInstrs);
724     adr(rd, label);
725     for (int i = 0; i < PatchingAssembler::kAdrFarPatchableNNops; ++i) {
726       nop(ADR_FAR_NOP);
727     }
728     movz(scratch, 0);
729   }
730 }
731 
732 
B(Label * label,BranchType type,Register reg,int bit)733 void MacroAssembler::B(Label* label, BranchType type, Register reg, int bit) {
734   DCHECK((reg.Is(NoReg) || type >= kBranchTypeFirstUsingReg) &&
735          (bit == -1 || type >= kBranchTypeFirstUsingBit));
736   if (kBranchTypeFirstCondition <= type && type <= kBranchTypeLastCondition) {
737     B(static_cast<Condition>(type), label);
738   } else {
739     switch (type) {
740       case always:        B(label);              break;
741       case never:         break;
742       case reg_zero:      Cbz(reg, label);       break;
743       case reg_not_zero:  Cbnz(reg, label);      break;
744       case reg_bit_clear: Tbz(reg, bit, label);  break;
745       case reg_bit_set:   Tbnz(reg, bit, label); break;
746       default:
747         UNREACHABLE();
748     }
749   }
750 }
751 
752 
B(Label * label,Condition cond)753 void MacroAssembler::B(Label* label, Condition cond) {
754   DCHECK(allow_macro_instructions_);
755   DCHECK((cond != al) && (cond != nv));
756 
757   Label done;
758   bool need_extra_instructions =
759     NeedExtraInstructionsOrRegisterBranch(label, CondBranchType);
760 
761   if (need_extra_instructions) {
762     b(&done, NegateCondition(cond));
763     B(label);
764   } else {
765     b(label, cond);
766   }
767   bind(&done);
768 }
769 
770 
Tbnz(const Register & rt,unsigned bit_pos,Label * label)771 void MacroAssembler::Tbnz(const Register& rt, unsigned bit_pos, Label* label) {
772   DCHECK(allow_macro_instructions_);
773 
774   Label done;
775   bool need_extra_instructions =
776     NeedExtraInstructionsOrRegisterBranch(label, TestBranchType);
777 
778   if (need_extra_instructions) {
779     tbz(rt, bit_pos, &done);
780     B(label);
781   } else {
782     tbnz(rt, bit_pos, label);
783   }
784   bind(&done);
785 }
786 
787 
Tbz(const Register & rt,unsigned bit_pos,Label * label)788 void MacroAssembler::Tbz(const Register& rt, unsigned bit_pos, Label* label) {
789   DCHECK(allow_macro_instructions_);
790 
791   Label done;
792   bool need_extra_instructions =
793     NeedExtraInstructionsOrRegisterBranch(label, TestBranchType);
794 
795   if (need_extra_instructions) {
796     tbnz(rt, bit_pos, &done);
797     B(label);
798   } else {
799     tbz(rt, bit_pos, label);
800   }
801   bind(&done);
802 }
803 
804 
Cbnz(const Register & rt,Label * label)805 void MacroAssembler::Cbnz(const Register& rt, Label* label) {
806   DCHECK(allow_macro_instructions_);
807 
808   Label done;
809   bool need_extra_instructions =
810     NeedExtraInstructionsOrRegisterBranch(label, CompareBranchType);
811 
812   if (need_extra_instructions) {
813     cbz(rt, &done);
814     B(label);
815   } else {
816     cbnz(rt, label);
817   }
818   bind(&done);
819 }
820 
821 
Cbz(const Register & rt,Label * label)822 void MacroAssembler::Cbz(const Register& rt, Label* label) {
823   DCHECK(allow_macro_instructions_);
824 
825   Label done;
826   bool need_extra_instructions =
827     NeedExtraInstructionsOrRegisterBranch(label, CompareBranchType);
828 
829   if (need_extra_instructions) {
830     cbnz(rt, &done);
831     B(label);
832   } else {
833     cbz(rt, label);
834   }
835   bind(&done);
836 }
837 
838 
839 // Pseudo-instructions.
840 
841 
Abs(const Register & rd,const Register & rm,Label * is_not_representable,Label * is_representable)842 void MacroAssembler::Abs(const Register& rd, const Register& rm,
843                          Label* is_not_representable,
844                          Label* is_representable) {
845   DCHECK(allow_macro_instructions_);
846   DCHECK(AreSameSizeAndType(rd, rm));
847 
848   Cmp(rm, 1);
849   Cneg(rd, rm, lt);
850 
851   // If the comparison sets the v flag, the input was the smallest value
852   // representable by rm, and the mathematical result of abs(rm) is not
853   // representable using two's complement.
854   if ((is_not_representable != NULL) && (is_representable != NULL)) {
855     B(is_not_representable, vs);
856     B(is_representable);
857   } else if (is_not_representable != NULL) {
858     B(is_not_representable, vs);
859   } else if (is_representable != NULL) {
860     B(is_representable, vc);
861   }
862 }
863 
864 
865 // Abstracted stack operations.
866 
867 
Push(const CPURegister & src0,const CPURegister & src1,const CPURegister & src2,const CPURegister & src3)868 void MacroAssembler::Push(const CPURegister& src0, const CPURegister& src1,
869                           const CPURegister& src2, const CPURegister& src3) {
870   DCHECK(AreSameSizeAndType(src0, src1, src2, src3));
871 
872   int count = 1 + src1.IsValid() + src2.IsValid() + src3.IsValid();
873   int size = src0.SizeInBytes();
874 
875   PushPreamble(count, size);
876   PushHelper(count, size, src0, src1, src2, src3);
877 }
878 
879 
Push(const CPURegister & src0,const CPURegister & src1,const CPURegister & src2,const CPURegister & src3,const CPURegister & src4,const CPURegister & src5,const CPURegister & src6,const CPURegister & src7)880 void MacroAssembler::Push(const CPURegister& src0, const CPURegister& src1,
881                           const CPURegister& src2, const CPURegister& src3,
882                           const CPURegister& src4, const CPURegister& src5,
883                           const CPURegister& src6, const CPURegister& src7) {
884   DCHECK(AreSameSizeAndType(src0, src1, src2, src3, src4, src5, src6, src7));
885 
886   int count = 5 + src5.IsValid() + src6.IsValid() + src6.IsValid();
887   int size = src0.SizeInBytes();
888 
889   PushPreamble(count, size);
890   PushHelper(4, size, src0, src1, src2, src3);
891   PushHelper(count - 4, size, src4, src5, src6, src7);
892 }
893 
894 
Pop(const CPURegister & dst0,const CPURegister & dst1,const CPURegister & dst2,const CPURegister & dst3)895 void MacroAssembler::Pop(const CPURegister& dst0, const CPURegister& dst1,
896                          const CPURegister& dst2, const CPURegister& dst3) {
897   // It is not valid to pop into the same register more than once in one
898   // instruction, not even into the zero register.
899   DCHECK(!AreAliased(dst0, dst1, dst2, dst3));
900   DCHECK(AreSameSizeAndType(dst0, dst1, dst2, dst3));
901   DCHECK(dst0.IsValid());
902 
903   int count = 1 + dst1.IsValid() + dst2.IsValid() + dst3.IsValid();
904   int size = dst0.SizeInBytes();
905 
906   PopHelper(count, size, dst0, dst1, dst2, dst3);
907   PopPostamble(count, size);
908 }
909 
910 
Pop(const CPURegister & dst0,const CPURegister & dst1,const CPURegister & dst2,const CPURegister & dst3,const CPURegister & dst4,const CPURegister & dst5,const CPURegister & dst6,const CPURegister & dst7)911 void MacroAssembler::Pop(const CPURegister& dst0, const CPURegister& dst1,
912                          const CPURegister& dst2, const CPURegister& dst3,
913                          const CPURegister& dst4, const CPURegister& dst5,
914                          const CPURegister& dst6, const CPURegister& dst7) {
915   // It is not valid to pop into the same register more than once in one
916   // instruction, not even into the zero register.
917   DCHECK(!AreAliased(dst0, dst1, dst2, dst3, dst4, dst5, dst6, dst7));
918   DCHECK(AreSameSizeAndType(dst0, dst1, dst2, dst3, dst4, dst5, dst6, dst7));
919   DCHECK(dst0.IsValid());
920 
921   int count = 5 + dst5.IsValid() + dst6.IsValid() + dst7.IsValid();
922   int size = dst0.SizeInBytes();
923 
924   PopHelper(4, size, dst0, dst1, dst2, dst3);
925   PopHelper(count - 4, size, dst4, dst5, dst6, dst7);
926   PopPostamble(count, size);
927 }
928 
929 
Push(const Register & src0,const FPRegister & src1)930 void MacroAssembler::Push(const Register& src0, const FPRegister& src1) {
931   int size = src0.SizeInBytes() + src1.SizeInBytes();
932 
933   PushPreamble(size);
934   // Reserve room for src0 and push src1.
935   str(src1, MemOperand(StackPointer(), -size, PreIndex));
936   // Fill the gap with src0.
937   str(src0, MemOperand(StackPointer(), src1.SizeInBytes()));
938 }
939 
940 
PushQueued(PreambleDirective preamble_directive)941 void MacroAssembler::PushPopQueue::PushQueued(
942     PreambleDirective preamble_directive) {
943   if (queued_.empty()) return;
944 
945   if (preamble_directive == WITH_PREAMBLE) {
946     masm_->PushPreamble(size_);
947   }
948 
949   size_t count = queued_.size();
950   size_t index = 0;
951   while (index < count) {
952     // PushHelper can only handle registers with the same size and type, and it
953     // can handle only four at a time. Batch them up accordingly.
954     CPURegister batch[4] = {NoReg, NoReg, NoReg, NoReg};
955     int batch_index = 0;
956     do {
957       batch[batch_index++] = queued_[index++];
958     } while ((batch_index < 4) && (index < count) &&
959              batch[0].IsSameSizeAndType(queued_[index]));
960 
961     masm_->PushHelper(batch_index, batch[0].SizeInBytes(),
962                       batch[0], batch[1], batch[2], batch[3]);
963   }
964 
965   queued_.clear();
966 }
967 
968 
PopQueued()969 void MacroAssembler::PushPopQueue::PopQueued() {
970   if (queued_.empty()) return;
971 
972   size_t count = queued_.size();
973   size_t index = 0;
974   while (index < count) {
975     // PopHelper can only handle registers with the same size and type, and it
976     // can handle only four at a time. Batch them up accordingly.
977     CPURegister batch[4] = {NoReg, NoReg, NoReg, NoReg};
978     int batch_index = 0;
979     do {
980       batch[batch_index++] = queued_[index++];
981     } while ((batch_index < 4) && (index < count) &&
982              batch[0].IsSameSizeAndType(queued_[index]));
983 
984     masm_->PopHelper(batch_index, batch[0].SizeInBytes(),
985                      batch[0], batch[1], batch[2], batch[3]);
986   }
987 
988   masm_->PopPostamble(size_);
989   queued_.clear();
990 }
991 
992 
PushCPURegList(CPURegList registers)993 void MacroAssembler::PushCPURegList(CPURegList registers) {
994   int size = registers.RegisterSizeInBytes();
995 
996   PushPreamble(registers.Count(), size);
997   // Push up to four registers at a time because if the current stack pointer is
998   // csp and reg_size is 32, registers must be pushed in blocks of four in order
999   // to maintain the 16-byte alignment for csp.
1000   while (!registers.IsEmpty()) {
1001     int count_before = registers.Count();
1002     const CPURegister& src0 = registers.PopHighestIndex();
1003     const CPURegister& src1 = registers.PopHighestIndex();
1004     const CPURegister& src2 = registers.PopHighestIndex();
1005     const CPURegister& src3 = registers.PopHighestIndex();
1006     int count = count_before - registers.Count();
1007     PushHelper(count, size, src0, src1, src2, src3);
1008   }
1009 }
1010 
1011 
PopCPURegList(CPURegList registers)1012 void MacroAssembler::PopCPURegList(CPURegList registers) {
1013   int size = registers.RegisterSizeInBytes();
1014 
1015   // Pop up to four registers at a time because if the current stack pointer is
1016   // csp and reg_size is 32, registers must be pushed in blocks of four in
1017   // order to maintain the 16-byte alignment for csp.
1018   while (!registers.IsEmpty()) {
1019     int count_before = registers.Count();
1020     const CPURegister& dst0 = registers.PopLowestIndex();
1021     const CPURegister& dst1 = registers.PopLowestIndex();
1022     const CPURegister& dst2 = registers.PopLowestIndex();
1023     const CPURegister& dst3 = registers.PopLowestIndex();
1024     int count = count_before - registers.Count();
1025     PopHelper(count, size, dst0, dst1, dst2, dst3);
1026   }
1027   PopPostamble(registers.Count(), size);
1028 }
1029 
1030 
PushMultipleTimes(CPURegister src,int count)1031 void MacroAssembler::PushMultipleTimes(CPURegister src, int count) {
1032   int size = src.SizeInBytes();
1033 
1034   PushPreamble(count, size);
1035 
1036   if (FLAG_optimize_for_size && count > 8) {
1037     UseScratchRegisterScope temps(this);
1038     Register temp = temps.AcquireX();
1039 
1040     Label loop;
1041     __ Mov(temp, count / 2);
1042     __ Bind(&loop);
1043     PushHelper(2, size, src, src, NoReg, NoReg);
1044     __ Subs(temp, temp, 1);
1045     __ B(ne, &loop);
1046 
1047     count %= 2;
1048   }
1049 
1050   // Push up to four registers at a time if possible because if the current
1051   // stack pointer is csp and the register size is 32, registers must be pushed
1052   // in blocks of four in order to maintain the 16-byte alignment for csp.
1053   while (count >= 4) {
1054     PushHelper(4, size, src, src, src, src);
1055     count -= 4;
1056   }
1057   if (count >= 2) {
1058     PushHelper(2, size, src, src, NoReg, NoReg);
1059     count -= 2;
1060   }
1061   if (count == 1) {
1062     PushHelper(1, size, src, NoReg, NoReg, NoReg);
1063     count -= 1;
1064   }
1065   DCHECK(count == 0);
1066 }
1067 
1068 
PushMultipleTimes(CPURegister src,Register count)1069 void MacroAssembler::PushMultipleTimes(CPURegister src, Register count) {
1070   PushPreamble(Operand(count, UXTW, WhichPowerOf2(src.SizeInBytes())));
1071 
1072   UseScratchRegisterScope temps(this);
1073   Register temp = temps.AcquireSameSizeAs(count);
1074 
1075   if (FLAG_optimize_for_size) {
1076     Label loop, done;
1077 
1078     Subs(temp, count, 1);
1079     B(mi, &done);
1080 
1081     // Push all registers individually, to save code size.
1082     Bind(&loop);
1083     Subs(temp, temp, 1);
1084     PushHelper(1, src.SizeInBytes(), src, NoReg, NoReg, NoReg);
1085     B(pl, &loop);
1086 
1087     Bind(&done);
1088   } else {
1089     Label loop, leftover2, leftover1, done;
1090 
1091     Subs(temp, count, 4);
1092     B(mi, &leftover2);
1093 
1094     // Push groups of four first.
1095     Bind(&loop);
1096     Subs(temp, temp, 4);
1097     PushHelper(4, src.SizeInBytes(), src, src, src, src);
1098     B(pl, &loop);
1099 
1100     // Push groups of two.
1101     Bind(&leftover2);
1102     Tbz(count, 1, &leftover1);
1103     PushHelper(2, src.SizeInBytes(), src, src, NoReg, NoReg);
1104 
1105     // Push the last one (if required).
1106     Bind(&leftover1);
1107     Tbz(count, 0, &done);
1108     PushHelper(1, src.SizeInBytes(), src, NoReg, NoReg, NoReg);
1109 
1110     Bind(&done);
1111   }
1112 }
1113 
1114 
PushHelper(int count,int size,const CPURegister & src0,const CPURegister & src1,const CPURegister & src2,const CPURegister & src3)1115 void MacroAssembler::PushHelper(int count, int size,
1116                                 const CPURegister& src0,
1117                                 const CPURegister& src1,
1118                                 const CPURegister& src2,
1119                                 const CPURegister& src3) {
1120   // Ensure that we don't unintentially modify scratch or debug registers.
1121   InstructionAccurateScope scope(this);
1122 
1123   DCHECK(AreSameSizeAndType(src0, src1, src2, src3));
1124   DCHECK(size == src0.SizeInBytes());
1125 
1126   // When pushing multiple registers, the store order is chosen such that
1127   // Push(a, b) is equivalent to Push(a) followed by Push(b).
1128   switch (count) {
1129     case 1:
1130       DCHECK(src1.IsNone() && src2.IsNone() && src3.IsNone());
1131       str(src0, MemOperand(StackPointer(), -1 * size, PreIndex));
1132       break;
1133     case 2:
1134       DCHECK(src2.IsNone() && src3.IsNone());
1135       stp(src1, src0, MemOperand(StackPointer(), -2 * size, PreIndex));
1136       break;
1137     case 3:
1138       DCHECK(src3.IsNone());
1139       stp(src2, src1, MemOperand(StackPointer(), -3 * size, PreIndex));
1140       str(src0, MemOperand(StackPointer(), 2 * size));
1141       break;
1142     case 4:
1143       // Skip over 4 * size, then fill in the gap. This allows four W registers
1144       // to be pushed using csp, whilst maintaining 16-byte alignment for csp
1145       // at all times.
1146       stp(src3, src2, MemOperand(StackPointer(), -4 * size, PreIndex));
1147       stp(src1, src0, MemOperand(StackPointer(), 2 * size));
1148       break;
1149     default:
1150       UNREACHABLE();
1151   }
1152 }
1153 
1154 
PopHelper(int count,int size,const CPURegister & dst0,const CPURegister & dst1,const CPURegister & dst2,const CPURegister & dst3)1155 void MacroAssembler::PopHelper(int count, int size,
1156                                const CPURegister& dst0,
1157                                const CPURegister& dst1,
1158                                const CPURegister& dst2,
1159                                const CPURegister& dst3) {
1160   // Ensure that we don't unintentially modify scratch or debug registers.
1161   InstructionAccurateScope scope(this);
1162 
1163   DCHECK(AreSameSizeAndType(dst0, dst1, dst2, dst3));
1164   DCHECK(size == dst0.SizeInBytes());
1165 
1166   // When popping multiple registers, the load order is chosen such that
1167   // Pop(a, b) is equivalent to Pop(a) followed by Pop(b).
1168   switch (count) {
1169     case 1:
1170       DCHECK(dst1.IsNone() && dst2.IsNone() && dst3.IsNone());
1171       ldr(dst0, MemOperand(StackPointer(), 1 * size, PostIndex));
1172       break;
1173     case 2:
1174       DCHECK(dst2.IsNone() && dst3.IsNone());
1175       ldp(dst0, dst1, MemOperand(StackPointer(), 2 * size, PostIndex));
1176       break;
1177     case 3:
1178       DCHECK(dst3.IsNone());
1179       ldr(dst2, MemOperand(StackPointer(), 2 * size));
1180       ldp(dst0, dst1, MemOperand(StackPointer(), 3 * size, PostIndex));
1181       break;
1182     case 4:
1183       // Load the higher addresses first, then load the lower addresses and
1184       // skip the whole block in the second instruction. This allows four W
1185       // registers to be popped using csp, whilst maintaining 16-byte alignment
1186       // for csp at all times.
1187       ldp(dst2, dst3, MemOperand(StackPointer(), 2 * size));
1188       ldp(dst0, dst1, MemOperand(StackPointer(), 4 * size, PostIndex));
1189       break;
1190     default:
1191       UNREACHABLE();
1192   }
1193 }
1194 
1195 
PushPreamble(Operand total_size)1196 void MacroAssembler::PushPreamble(Operand total_size) {
1197   if (csp.Is(StackPointer())) {
1198     // If the current stack pointer is csp, then it must be aligned to 16 bytes
1199     // on entry and the total size of the specified registers must also be a
1200     // multiple of 16 bytes.
1201     if (total_size.IsImmediate()) {
1202       DCHECK((total_size.ImmediateValue() % 16) == 0);
1203     }
1204 
1205     // Don't check access size for non-immediate sizes. It's difficult to do
1206     // well, and it will be caught by hardware (or the simulator) anyway.
1207   } else {
1208     // Even if the current stack pointer is not the system stack pointer (csp),
1209     // the system stack pointer will still be modified in order to comply with
1210     // ABI rules about accessing memory below the system stack pointer.
1211     BumpSystemStackPointer(total_size);
1212   }
1213 }
1214 
1215 
PopPostamble(Operand total_size)1216 void MacroAssembler::PopPostamble(Operand total_size) {
1217   if (csp.Is(StackPointer())) {
1218     // If the current stack pointer is csp, then it must be aligned to 16 bytes
1219     // on entry and the total size of the specified registers must also be a
1220     // multiple of 16 bytes.
1221     if (total_size.IsImmediate()) {
1222       DCHECK((total_size.ImmediateValue() % 16) == 0);
1223     }
1224 
1225     // Don't check access size for non-immediate sizes. It's difficult to do
1226     // well, and it will be caught by hardware (or the simulator) anyway.
1227   } else if (emit_debug_code()) {
1228     // It is safe to leave csp where it is when unwinding the JavaScript stack,
1229     // but if we keep it matching StackPointer, the simulator can detect memory
1230     // accesses in the now-free part of the stack.
1231     SyncSystemStackPointer();
1232   }
1233 }
1234 
1235 
Poke(const CPURegister & src,const Operand & offset)1236 void MacroAssembler::Poke(const CPURegister& src, const Operand& offset) {
1237   if (offset.IsImmediate()) {
1238     DCHECK(offset.ImmediateValue() >= 0);
1239   } else if (emit_debug_code()) {
1240     Cmp(xzr, offset);
1241     Check(le, kStackAccessBelowStackPointer);
1242   }
1243 
1244   Str(src, MemOperand(StackPointer(), offset));
1245 }
1246 
1247 
Peek(const CPURegister & dst,const Operand & offset)1248 void MacroAssembler::Peek(const CPURegister& dst, const Operand& offset) {
1249   if (offset.IsImmediate()) {
1250     DCHECK(offset.ImmediateValue() >= 0);
1251   } else if (emit_debug_code()) {
1252     Cmp(xzr, offset);
1253     Check(le, kStackAccessBelowStackPointer);
1254   }
1255 
1256   Ldr(dst, MemOperand(StackPointer(), offset));
1257 }
1258 
1259 
PokePair(const CPURegister & src1,const CPURegister & src2,int offset)1260 void MacroAssembler::PokePair(const CPURegister& src1,
1261                               const CPURegister& src2,
1262                               int offset) {
1263   DCHECK(AreSameSizeAndType(src1, src2));
1264   DCHECK((offset >= 0) && ((offset % src1.SizeInBytes()) == 0));
1265   Stp(src1, src2, MemOperand(StackPointer(), offset));
1266 }
1267 
1268 
PeekPair(const CPURegister & dst1,const CPURegister & dst2,int offset)1269 void MacroAssembler::PeekPair(const CPURegister& dst1,
1270                               const CPURegister& dst2,
1271                               int offset) {
1272   DCHECK(AreSameSizeAndType(dst1, dst2));
1273   DCHECK((offset >= 0) && ((offset % dst1.SizeInBytes()) == 0));
1274   Ldp(dst1, dst2, MemOperand(StackPointer(), offset));
1275 }
1276 
1277 
PushCalleeSavedRegisters()1278 void MacroAssembler::PushCalleeSavedRegisters() {
1279   // Ensure that the macro-assembler doesn't use any scratch registers.
1280   InstructionAccurateScope scope(this);
1281 
1282   // This method must not be called unless the current stack pointer is the
1283   // system stack pointer (csp).
1284   DCHECK(csp.Is(StackPointer()));
1285 
1286   MemOperand tos(csp, -2 * static_cast<int>(kXRegSize), PreIndex);
1287 
1288   stp(d14, d15, tos);
1289   stp(d12, d13, tos);
1290   stp(d10, d11, tos);
1291   stp(d8, d9, tos);
1292 
1293   stp(x29, x30, tos);
1294   stp(x27, x28, tos);    // x28 = jssp
1295   stp(x25, x26, tos);
1296   stp(x23, x24, tos);
1297   stp(x21, x22, tos);
1298   stp(x19, x20, tos);
1299 }
1300 
1301 
PopCalleeSavedRegisters()1302 void MacroAssembler::PopCalleeSavedRegisters() {
1303   // Ensure that the macro-assembler doesn't use any scratch registers.
1304   InstructionAccurateScope scope(this);
1305 
1306   // This method must not be called unless the current stack pointer is the
1307   // system stack pointer (csp).
1308   DCHECK(csp.Is(StackPointer()));
1309 
1310   MemOperand tos(csp, 2 * kXRegSize, PostIndex);
1311 
1312   ldp(x19, x20, tos);
1313   ldp(x21, x22, tos);
1314   ldp(x23, x24, tos);
1315   ldp(x25, x26, tos);
1316   ldp(x27, x28, tos);    // x28 = jssp
1317   ldp(x29, x30, tos);
1318 
1319   ldp(d8, d9, tos);
1320   ldp(d10, d11, tos);
1321   ldp(d12, d13, tos);
1322   ldp(d14, d15, tos);
1323 }
1324 
1325 
AssertStackConsistency()1326 void MacroAssembler::AssertStackConsistency() {
1327   // Avoid emitting code when !use_real_abort() since non-real aborts cause too
1328   // much code to be generated.
1329   if (emit_debug_code() && use_real_aborts()) {
1330     if (csp.Is(StackPointer())) {
1331       // Always check the alignment of csp if ALWAYS_ALIGN_CSP is true.  We
1332       // can't check the alignment of csp without using a scratch register (or
1333       // clobbering the flags), but the processor (or simulator) will abort if
1334       // it is not properly aligned during a load.
1335       ldr(xzr, MemOperand(csp, 0));
1336     }
1337     if (FLAG_enable_slow_asserts && !csp.Is(StackPointer())) {
1338       Label ok;
1339       // Check that csp <= StackPointer(), preserving all registers and NZCV.
1340       sub(StackPointer(), csp, StackPointer());
1341       cbz(StackPointer(), &ok);                 // Ok if csp == StackPointer().
1342       tbnz(StackPointer(), kXSignBit, &ok);     // Ok if csp < StackPointer().
1343 
1344       // Avoid generating AssertStackConsistency checks for the Push in Abort.
1345       { DontEmitDebugCodeScope dont_emit_debug_code_scope(this);
1346         // Restore StackPointer().
1347         sub(StackPointer(), csp, StackPointer());
1348         Abort(kTheCurrentStackPointerIsBelowCsp);
1349       }
1350 
1351       bind(&ok);
1352       // Restore StackPointer().
1353       sub(StackPointer(), csp, StackPointer());
1354     }
1355   }
1356 }
1357 
1358 
AssertFPCRState(Register fpcr)1359 void MacroAssembler::AssertFPCRState(Register fpcr) {
1360   if (emit_debug_code()) {
1361     Label unexpected_mode, done;
1362     UseScratchRegisterScope temps(this);
1363     if (fpcr.IsNone()) {
1364       fpcr = temps.AcquireX();
1365       Mrs(fpcr, FPCR);
1366     }
1367 
1368     // Settings overridden by ConfiugreFPCR():
1369     //   - Assert that default-NaN mode is set.
1370     Tbz(fpcr, DN_offset, &unexpected_mode);
1371 
1372     // Settings left to their default values:
1373     //   - Assert that flush-to-zero is not set.
1374     Tbnz(fpcr, FZ_offset, &unexpected_mode);
1375     //   - Assert that the rounding mode is nearest-with-ties-to-even.
1376     STATIC_ASSERT(FPTieEven == 0);
1377     Tst(fpcr, RMode_mask);
1378     B(eq, &done);
1379 
1380     Bind(&unexpected_mode);
1381     Abort(kUnexpectedFPCRMode);
1382 
1383     Bind(&done);
1384   }
1385 }
1386 
1387 
ConfigureFPCR()1388 void MacroAssembler::ConfigureFPCR() {
1389   UseScratchRegisterScope temps(this);
1390   Register fpcr = temps.AcquireX();
1391   Mrs(fpcr, FPCR);
1392 
1393   // If necessary, enable default-NaN mode. The default values of the other FPCR
1394   // options should be suitable, and AssertFPCRState will verify that.
1395   Label no_write_required;
1396   Tbnz(fpcr, DN_offset, &no_write_required);
1397 
1398   Orr(fpcr, fpcr, DN_mask);
1399   Msr(FPCR, fpcr);
1400 
1401   Bind(&no_write_required);
1402   AssertFPCRState(fpcr);
1403 }
1404 
1405 
CanonicalizeNaN(const FPRegister & dst,const FPRegister & src)1406 void MacroAssembler::CanonicalizeNaN(const FPRegister& dst,
1407                                      const FPRegister& src) {
1408   AssertFPCRState();
1409 
1410   // With DN=1 and RMode=FPTieEven, subtracting 0.0 preserves all inputs except
1411   // for NaNs, which become the default NaN. We use fsub rather than fadd
1412   // because sub preserves -0.0 inputs: -0.0 + 0.0 = 0.0, but -0.0 - 0.0 = -0.0.
1413   Fsub(dst, src, fp_zero);
1414 }
1415 
1416 
LoadRoot(CPURegister destination,Heap::RootListIndex index)1417 void MacroAssembler::LoadRoot(CPURegister destination,
1418                               Heap::RootListIndex index) {
1419   // TODO(jbramley): Most root values are constants, and can be synthesized
1420   // without a load. Refer to the ARM back end for details.
1421   Ldr(destination, MemOperand(root, index << kPointerSizeLog2));
1422 }
1423 
1424 
StoreRoot(Register source,Heap::RootListIndex index)1425 void MacroAssembler::StoreRoot(Register source,
1426                                Heap::RootListIndex index) {
1427   DCHECK(Heap::RootCanBeWrittenAfterInitialization(index));
1428   Str(source, MemOperand(root, index << kPointerSizeLog2));
1429 }
1430 
1431 
LoadTrueFalseRoots(Register true_root,Register false_root)1432 void MacroAssembler::LoadTrueFalseRoots(Register true_root,
1433                                         Register false_root) {
1434   STATIC_ASSERT((Heap::kTrueValueRootIndex + 1) == Heap::kFalseValueRootIndex);
1435   Ldp(true_root, false_root,
1436       MemOperand(root, Heap::kTrueValueRootIndex << kPointerSizeLog2));
1437 }
1438 
1439 
LoadHeapObject(Register result,Handle<HeapObject> object)1440 void MacroAssembler::LoadHeapObject(Register result,
1441                                     Handle<HeapObject> object) {
1442   AllowDeferredHandleDereference using_raw_address;
1443   if (isolate()->heap()->InNewSpace(*object)) {
1444     Handle<Cell> cell = isolate()->factory()->NewCell(object);
1445     Mov(result, Operand(cell));
1446     Ldr(result, FieldMemOperand(result, Cell::kValueOffset));
1447   } else {
1448     Mov(result, Operand(object));
1449   }
1450 }
1451 
1452 
LoadInstanceDescriptors(Register map,Register descriptors)1453 void MacroAssembler::LoadInstanceDescriptors(Register map,
1454                                              Register descriptors) {
1455   Ldr(descriptors, FieldMemOperand(map, Map::kDescriptorsOffset));
1456 }
1457 
1458 
NumberOfOwnDescriptors(Register dst,Register map)1459 void MacroAssembler::NumberOfOwnDescriptors(Register dst, Register map) {
1460   Ldr(dst, FieldMemOperand(map, Map::kBitField3Offset));
1461   DecodeField<Map::NumberOfOwnDescriptorsBits>(dst);
1462 }
1463 
1464 
EnumLengthUntagged(Register dst,Register map)1465 void MacroAssembler::EnumLengthUntagged(Register dst, Register map) {
1466   STATIC_ASSERT(Map::EnumLengthBits::kShift == 0);
1467   Ldrsw(dst, FieldMemOperand(map, Map::kBitField3Offset));
1468   And(dst, dst, Map::EnumLengthBits::kMask);
1469 }
1470 
1471 
EnumLengthSmi(Register dst,Register map)1472 void MacroAssembler::EnumLengthSmi(Register dst, Register map) {
1473   EnumLengthUntagged(dst, map);
1474   SmiTag(dst, dst);
1475 }
1476 
1477 
LoadAccessor(Register dst,Register holder,int accessor_index,AccessorComponent accessor)1478 void MacroAssembler::LoadAccessor(Register dst, Register holder,
1479                                   int accessor_index,
1480                                   AccessorComponent accessor) {
1481   Ldr(dst, FieldMemOperand(holder, HeapObject::kMapOffset));
1482   LoadInstanceDescriptors(dst, dst);
1483   Ldr(dst,
1484       FieldMemOperand(dst, DescriptorArray::GetValueOffset(accessor_index)));
1485   int offset = accessor == ACCESSOR_GETTER ? AccessorPair::kGetterOffset
1486                                            : AccessorPair::kSetterOffset;
1487   Ldr(dst, FieldMemOperand(dst, offset));
1488 }
1489 
1490 
CheckEnumCache(Register object,Register null_value,Register scratch0,Register scratch1,Register scratch2,Register scratch3,Label * call_runtime)1491 void MacroAssembler::CheckEnumCache(Register object,
1492                                     Register null_value,
1493                                     Register scratch0,
1494                                     Register scratch1,
1495                                     Register scratch2,
1496                                     Register scratch3,
1497                                     Label* call_runtime) {
1498   DCHECK(!AreAliased(object, null_value, scratch0, scratch1, scratch2,
1499                      scratch3));
1500 
1501   Register empty_fixed_array_value = scratch0;
1502   Register current_object = scratch1;
1503 
1504   LoadRoot(empty_fixed_array_value, Heap::kEmptyFixedArrayRootIndex);
1505   Label next, start;
1506 
1507   Mov(current_object, object);
1508 
1509   // Check if the enum length field is properly initialized, indicating that
1510   // there is an enum cache.
1511   Register map = scratch2;
1512   Register enum_length = scratch3;
1513   Ldr(map, FieldMemOperand(current_object, HeapObject::kMapOffset));
1514 
1515   EnumLengthUntagged(enum_length, map);
1516   Cmp(enum_length, kInvalidEnumCacheSentinel);
1517   B(eq, call_runtime);
1518 
1519   B(&start);
1520 
1521   Bind(&next);
1522   Ldr(map, FieldMemOperand(current_object, HeapObject::kMapOffset));
1523 
1524   // For all objects but the receiver, check that the cache is empty.
1525   EnumLengthUntagged(enum_length, map);
1526   Cbnz(enum_length, call_runtime);
1527 
1528   Bind(&start);
1529 
1530   // Check that there are no elements. Register current_object contains the
1531   // current JS object we've reached through the prototype chain.
1532   Label no_elements;
1533   Ldr(current_object, FieldMemOperand(current_object,
1534                                       JSObject::kElementsOffset));
1535   Cmp(current_object, empty_fixed_array_value);
1536   B(eq, &no_elements);
1537 
1538   // Second chance, the object may be using the empty slow element dictionary.
1539   CompareRoot(current_object, Heap::kEmptySlowElementDictionaryRootIndex);
1540   B(ne, call_runtime);
1541 
1542   Bind(&no_elements);
1543   Ldr(current_object, FieldMemOperand(map, Map::kPrototypeOffset));
1544   Cmp(current_object, null_value);
1545   B(ne, &next);
1546 }
1547 
1548 
TestJSArrayForAllocationMemento(Register receiver,Register scratch1,Register scratch2,Label * no_memento_found)1549 void MacroAssembler::TestJSArrayForAllocationMemento(Register receiver,
1550                                                      Register scratch1,
1551                                                      Register scratch2,
1552                                                      Label* no_memento_found) {
1553   ExternalReference new_space_start =
1554       ExternalReference::new_space_start(isolate());
1555   ExternalReference new_space_allocation_top =
1556       ExternalReference::new_space_allocation_top_address(isolate());
1557 
1558   Add(scratch1, receiver,
1559       JSArray::kSize + AllocationMemento::kSize - kHeapObjectTag);
1560   Cmp(scratch1, new_space_start);
1561   B(lt, no_memento_found);
1562 
1563   Mov(scratch2, new_space_allocation_top);
1564   Ldr(scratch2, MemOperand(scratch2));
1565   Cmp(scratch1, scratch2);
1566   B(gt, no_memento_found);
1567 
1568   Ldr(scratch1, MemOperand(scratch1, -AllocationMemento::kSize));
1569   Cmp(scratch1,
1570       Operand(isolate()->factory()->allocation_memento_map()));
1571 }
1572 
1573 
InNewSpace(Register object,Condition cond,Label * branch)1574 void MacroAssembler::InNewSpace(Register object,
1575                                 Condition cond,
1576                                 Label* branch) {
1577   DCHECK(cond == eq || cond == ne);
1578   UseScratchRegisterScope temps(this);
1579   Register temp = temps.AcquireX();
1580   And(temp, object, ExternalReference::new_space_mask(isolate()));
1581   Cmp(temp, ExternalReference::new_space_start(isolate()));
1582   B(cond, branch);
1583 }
1584 
1585 
AssertSmi(Register object,BailoutReason reason)1586 void MacroAssembler::AssertSmi(Register object, BailoutReason reason) {
1587   if (emit_debug_code()) {
1588     STATIC_ASSERT(kSmiTag == 0);
1589     Tst(object, kSmiTagMask);
1590     Check(eq, reason);
1591   }
1592 }
1593 
1594 
AssertNotSmi(Register object,BailoutReason reason)1595 void MacroAssembler::AssertNotSmi(Register object, BailoutReason reason) {
1596   if (emit_debug_code()) {
1597     STATIC_ASSERT(kSmiTag == 0);
1598     Tst(object, kSmiTagMask);
1599     Check(ne, reason);
1600   }
1601 }
1602 
1603 
AssertName(Register object)1604 void MacroAssembler::AssertName(Register object) {
1605   if (emit_debug_code()) {
1606     AssertNotSmi(object, kOperandIsASmiAndNotAName);
1607 
1608     UseScratchRegisterScope temps(this);
1609     Register temp = temps.AcquireX();
1610 
1611     Ldr(temp, FieldMemOperand(object, HeapObject::kMapOffset));
1612     CompareInstanceType(temp, temp, LAST_NAME_TYPE);
1613     Check(ls, kOperandIsNotAName);
1614   }
1615 }
1616 
1617 
AssertFunction(Register object)1618 void MacroAssembler::AssertFunction(Register object) {
1619   if (emit_debug_code()) {
1620     AssertNotSmi(object, kOperandIsASmiAndNotAFunction);
1621 
1622     UseScratchRegisterScope temps(this);
1623     Register temp = temps.AcquireX();
1624 
1625     CompareObjectType(object, temp, temp, JS_FUNCTION_TYPE);
1626     Check(eq, kOperandIsNotAFunction);
1627   }
1628 }
1629 
1630 
AssertBoundFunction(Register object)1631 void MacroAssembler::AssertBoundFunction(Register object) {
1632   if (emit_debug_code()) {
1633     AssertNotSmi(object, kOperandIsASmiAndNotABoundFunction);
1634 
1635     UseScratchRegisterScope temps(this);
1636     Register temp = temps.AcquireX();
1637 
1638     CompareObjectType(object, temp, temp, JS_BOUND_FUNCTION_TYPE);
1639     Check(eq, kOperandIsNotABoundFunction);
1640   }
1641 }
1642 
1643 
AssertUndefinedOrAllocationSite(Register object,Register scratch)1644 void MacroAssembler::AssertUndefinedOrAllocationSite(Register object,
1645                                                      Register scratch) {
1646   if (emit_debug_code()) {
1647     Label done_checking;
1648     AssertNotSmi(object);
1649     JumpIfRoot(object, Heap::kUndefinedValueRootIndex, &done_checking);
1650     Ldr(scratch, FieldMemOperand(object, HeapObject::kMapOffset));
1651     CompareRoot(scratch, Heap::kAllocationSiteMapRootIndex);
1652     Assert(eq, kExpectedUndefinedOrCell);
1653     Bind(&done_checking);
1654   }
1655 }
1656 
1657 
AssertString(Register object)1658 void MacroAssembler::AssertString(Register object) {
1659   if (emit_debug_code()) {
1660     UseScratchRegisterScope temps(this);
1661     Register temp = temps.AcquireX();
1662     STATIC_ASSERT(kSmiTag == 0);
1663     Tst(object, kSmiTagMask);
1664     Check(ne, kOperandIsASmiAndNotAString);
1665     Ldr(temp, FieldMemOperand(object, HeapObject::kMapOffset));
1666     CompareInstanceType(temp, temp, FIRST_NONSTRING_TYPE);
1667     Check(lo, kOperandIsNotAString);
1668   }
1669 }
1670 
1671 
AssertPositiveOrZero(Register value)1672 void MacroAssembler::AssertPositiveOrZero(Register value) {
1673   if (emit_debug_code()) {
1674     Label done;
1675     int sign_bit = value.Is64Bits() ? kXSignBit : kWSignBit;
1676     Tbz(value, sign_bit, &done);
1677     Abort(kUnexpectedNegativeValue);
1678     Bind(&done);
1679   }
1680 }
1681 
1682 
CallStub(CodeStub * stub,TypeFeedbackId ast_id)1683 void MacroAssembler::CallStub(CodeStub* stub, TypeFeedbackId ast_id) {
1684   DCHECK(AllowThisStubCall(stub));  // Stub calls are not allowed in some stubs.
1685   Call(stub->GetCode(), RelocInfo::CODE_TARGET, ast_id);
1686 }
1687 
1688 
TailCallStub(CodeStub * stub)1689 void MacroAssembler::TailCallStub(CodeStub* stub) {
1690   Jump(stub->GetCode(), RelocInfo::CODE_TARGET);
1691 }
1692 
1693 
CallRuntime(const Runtime::Function * f,int num_arguments,SaveFPRegsMode save_doubles)1694 void MacroAssembler::CallRuntime(const Runtime::Function* f,
1695                                  int num_arguments,
1696                                  SaveFPRegsMode save_doubles) {
1697   // All arguments must be on the stack before this function is called.
1698   // x0 holds the return value after the call.
1699 
1700   // Check that the number of arguments matches what the function expects.
1701   // If f->nargs is -1, the function can accept a variable number of arguments.
1702   CHECK(f->nargs < 0 || f->nargs == num_arguments);
1703 
1704   // Place the necessary arguments.
1705   Mov(x0, num_arguments);
1706   Mov(x1, ExternalReference(f, isolate()));
1707 
1708   CEntryStub stub(isolate(), 1, save_doubles);
1709   CallStub(&stub);
1710 }
1711 
1712 
CallExternalReference(const ExternalReference & ext,int num_arguments)1713 void MacroAssembler::CallExternalReference(const ExternalReference& ext,
1714                                            int num_arguments) {
1715   Mov(x0, num_arguments);
1716   Mov(x1, ext);
1717 
1718   CEntryStub stub(isolate(), 1);
1719   CallStub(&stub);
1720 }
1721 
1722 
JumpToExternalReference(const ExternalReference & builtin)1723 void MacroAssembler::JumpToExternalReference(const ExternalReference& builtin) {
1724   Mov(x1, builtin);
1725   CEntryStub stub(isolate(), 1);
1726   Jump(stub.GetCode(), RelocInfo::CODE_TARGET);
1727 }
1728 
1729 
InvokeBuiltin(int native_context_index,InvokeFlag flag,const CallWrapper & call_wrapper)1730 void MacroAssembler::InvokeBuiltin(int native_context_index, InvokeFlag flag,
1731                                    const CallWrapper& call_wrapper) {
1732   ASM_LOCATION("MacroAssembler::InvokeBuiltin");
1733   // You can't call a builtin without a valid frame.
1734   DCHECK(flag == JUMP_FUNCTION || has_frame());
1735 
1736   // Fake a parameter count to avoid emitting code to do the check.
1737   ParameterCount expected(0);
1738   LoadNativeContextSlot(native_context_index, x1);
1739   InvokeFunctionCode(x1, no_reg, expected, expected, flag, call_wrapper);
1740 }
1741 
1742 
TailCallRuntime(Runtime::FunctionId fid)1743 void MacroAssembler::TailCallRuntime(Runtime::FunctionId fid) {
1744   const Runtime::Function* function = Runtime::FunctionForId(fid);
1745   DCHECK_EQ(1, function->result_size);
1746   if (function->nargs >= 0) {
1747     // TODO(1236192): Most runtime routines don't need the number of
1748     // arguments passed in because it is constant. At some point we
1749     // should remove this need and make the runtime routine entry code
1750     // smarter.
1751     Mov(x0, function->nargs);
1752   }
1753   JumpToExternalReference(ExternalReference(fid, isolate()));
1754 }
1755 
1756 
InitializeNewString(Register string,Register length,Heap::RootListIndex map_index,Register scratch1,Register scratch2)1757 void MacroAssembler::InitializeNewString(Register string,
1758                                          Register length,
1759                                          Heap::RootListIndex map_index,
1760                                          Register scratch1,
1761                                          Register scratch2) {
1762   DCHECK(!AreAliased(string, length, scratch1, scratch2));
1763   LoadRoot(scratch2, map_index);
1764   SmiTag(scratch1, length);
1765   Str(scratch2, FieldMemOperand(string, HeapObject::kMapOffset));
1766 
1767   Mov(scratch2, String::kEmptyHashField);
1768   Str(scratch1, FieldMemOperand(string, String::kLengthOffset));
1769   Str(scratch2, FieldMemOperand(string, String::kHashFieldOffset));
1770 }
1771 
1772 
ActivationFrameAlignment()1773 int MacroAssembler::ActivationFrameAlignment() {
1774 #if V8_HOST_ARCH_ARM64
1775   // Running on the real platform. Use the alignment as mandated by the local
1776   // environment.
1777   // Note: This will break if we ever start generating snapshots on one ARM
1778   // platform for another ARM platform with a different alignment.
1779   return base::OS::ActivationFrameAlignment();
1780 #else  // V8_HOST_ARCH_ARM64
1781   // If we are using the simulator then we should always align to the expected
1782   // alignment. As the simulator is used to generate snapshots we do not know
1783   // if the target platform will need alignment, so this is controlled from a
1784   // flag.
1785   return FLAG_sim_stack_alignment;
1786 #endif  // V8_HOST_ARCH_ARM64
1787 }
1788 
1789 
CallCFunction(ExternalReference function,int num_of_reg_args)1790 void MacroAssembler::CallCFunction(ExternalReference function,
1791                                    int num_of_reg_args) {
1792   CallCFunction(function, num_of_reg_args, 0);
1793 }
1794 
1795 
CallCFunction(ExternalReference function,int num_of_reg_args,int num_of_double_args)1796 void MacroAssembler::CallCFunction(ExternalReference function,
1797                                    int num_of_reg_args,
1798                                    int num_of_double_args) {
1799   UseScratchRegisterScope temps(this);
1800   Register temp = temps.AcquireX();
1801   Mov(temp, function);
1802   CallCFunction(temp, num_of_reg_args, num_of_double_args);
1803 }
1804 
1805 
CallCFunction(Register function,int num_of_reg_args,int num_of_double_args)1806 void MacroAssembler::CallCFunction(Register function,
1807                                    int num_of_reg_args,
1808                                    int num_of_double_args) {
1809   DCHECK(has_frame());
1810   // We can pass 8 integer arguments in registers. If we need to pass more than
1811   // that, we'll need to implement support for passing them on the stack.
1812   DCHECK(num_of_reg_args <= 8);
1813 
1814   // If we're passing doubles, we're limited to the following prototypes
1815   // (defined by ExternalReference::Type):
1816   //  BUILTIN_COMPARE_CALL:  int f(double, double)
1817   //  BUILTIN_FP_FP_CALL:    double f(double, double)
1818   //  BUILTIN_FP_CALL:       double f(double)
1819   //  BUILTIN_FP_INT_CALL:   double f(double, int)
1820   if (num_of_double_args > 0) {
1821     DCHECK(num_of_reg_args <= 1);
1822     DCHECK((num_of_double_args + num_of_reg_args) <= 2);
1823   }
1824 
1825 
1826   // If the stack pointer is not csp, we need to derive an aligned csp from the
1827   // current stack pointer.
1828   const Register old_stack_pointer = StackPointer();
1829   if (!csp.Is(old_stack_pointer)) {
1830     AssertStackConsistency();
1831 
1832     int sp_alignment = ActivationFrameAlignment();
1833     // The ABI mandates at least 16-byte alignment.
1834     DCHECK(sp_alignment >= 16);
1835     DCHECK(base::bits::IsPowerOfTwo32(sp_alignment));
1836 
1837     // The current stack pointer is a callee saved register, and is preserved
1838     // across the call.
1839     DCHECK(kCalleeSaved.IncludesAliasOf(old_stack_pointer));
1840 
1841     // Align and synchronize the system stack pointer with jssp.
1842     Bic(csp, old_stack_pointer, sp_alignment - 1);
1843     SetStackPointer(csp);
1844   }
1845 
1846   // Call directly. The function called cannot cause a GC, or allow preemption,
1847   // so the return address in the link register stays correct.
1848   Call(function);
1849 
1850   if (!csp.Is(old_stack_pointer)) {
1851     if (emit_debug_code()) {
1852       // Because the stack pointer must be aligned on a 16-byte boundary, the
1853       // aligned csp can be up to 12 bytes below the jssp. This is the case
1854       // where we only pushed one W register on top of an aligned jssp.
1855       UseScratchRegisterScope temps(this);
1856       Register temp = temps.AcquireX();
1857       DCHECK(ActivationFrameAlignment() == 16);
1858       Sub(temp, csp, old_stack_pointer);
1859       // We want temp <= 0 && temp >= -12.
1860       Cmp(temp, 0);
1861       Ccmp(temp, -12, NFlag, le);
1862       Check(ge, kTheStackWasCorruptedByMacroAssemblerCall);
1863     }
1864     SetStackPointer(old_stack_pointer);
1865   }
1866 }
1867 
1868 
Jump(Register target)1869 void MacroAssembler::Jump(Register target) {
1870   Br(target);
1871 }
1872 
1873 
Jump(intptr_t target,RelocInfo::Mode rmode,Condition cond)1874 void MacroAssembler::Jump(intptr_t target, RelocInfo::Mode rmode,
1875                           Condition cond) {
1876   if (cond == nv) return;
1877   UseScratchRegisterScope temps(this);
1878   Register temp = temps.AcquireX();
1879   Label done;
1880   if (cond != al) B(NegateCondition(cond), &done);
1881   Mov(temp, Operand(target, rmode));
1882   Br(temp);
1883   Bind(&done);
1884 }
1885 
1886 
Jump(Address target,RelocInfo::Mode rmode,Condition cond)1887 void MacroAssembler::Jump(Address target, RelocInfo::Mode rmode,
1888                           Condition cond) {
1889   DCHECK(!RelocInfo::IsCodeTarget(rmode));
1890   Jump(reinterpret_cast<intptr_t>(target), rmode, cond);
1891 }
1892 
1893 
Jump(Handle<Code> code,RelocInfo::Mode rmode,Condition cond)1894 void MacroAssembler::Jump(Handle<Code> code, RelocInfo::Mode rmode,
1895                           Condition cond) {
1896   DCHECK(RelocInfo::IsCodeTarget(rmode));
1897   AllowDeferredHandleDereference embedding_raw_address;
1898   Jump(reinterpret_cast<intptr_t>(code.location()), rmode, cond);
1899 }
1900 
1901 
Call(Register target)1902 void MacroAssembler::Call(Register target) {
1903   BlockPoolsScope scope(this);
1904 #ifdef DEBUG
1905   Label start_call;
1906   Bind(&start_call);
1907 #endif
1908 
1909   Blr(target);
1910 
1911 #ifdef DEBUG
1912   AssertSizeOfCodeGeneratedSince(&start_call, CallSize(target));
1913 #endif
1914 }
1915 
1916 
Call(Label * target)1917 void MacroAssembler::Call(Label* target) {
1918   BlockPoolsScope scope(this);
1919 #ifdef DEBUG
1920   Label start_call;
1921   Bind(&start_call);
1922 #endif
1923 
1924   Bl(target);
1925 
1926 #ifdef DEBUG
1927   AssertSizeOfCodeGeneratedSince(&start_call, CallSize(target));
1928 #endif
1929 }
1930 
1931 
1932 // MacroAssembler::CallSize is sensitive to changes in this function, as it
1933 // requires to know how many instructions are used to branch to the target.
Call(Address target,RelocInfo::Mode rmode)1934 void MacroAssembler::Call(Address target, RelocInfo::Mode rmode) {
1935   BlockPoolsScope scope(this);
1936 #ifdef DEBUG
1937   Label start_call;
1938   Bind(&start_call);
1939 #endif
1940   // Statement positions are expected to be recorded when the target
1941   // address is loaded.
1942   positions_recorder()->WriteRecordedPositions();
1943 
1944   // Addresses always have 64 bits, so we shouldn't encounter NONE32.
1945   DCHECK(rmode != RelocInfo::NONE32);
1946 
1947   UseScratchRegisterScope temps(this);
1948   Register temp = temps.AcquireX();
1949 
1950   if (rmode == RelocInfo::NONE64) {
1951     // Addresses are 48 bits so we never need to load the upper 16 bits.
1952     uint64_t imm = reinterpret_cast<uint64_t>(target);
1953     // If we don't use ARM tagged addresses, the 16 higher bits must be 0.
1954     DCHECK(((imm >> 48) & 0xffff) == 0);
1955     movz(temp, (imm >> 0) & 0xffff, 0);
1956     movk(temp, (imm >> 16) & 0xffff, 16);
1957     movk(temp, (imm >> 32) & 0xffff, 32);
1958   } else {
1959     Ldr(temp, Immediate(reinterpret_cast<intptr_t>(target), rmode));
1960   }
1961   Blr(temp);
1962 #ifdef DEBUG
1963   AssertSizeOfCodeGeneratedSince(&start_call, CallSize(target, rmode));
1964 #endif
1965 }
1966 
1967 
Call(Handle<Code> code,RelocInfo::Mode rmode,TypeFeedbackId ast_id)1968 void MacroAssembler::Call(Handle<Code> code,
1969                           RelocInfo::Mode rmode,
1970                           TypeFeedbackId ast_id) {
1971 #ifdef DEBUG
1972   Label start_call;
1973   Bind(&start_call);
1974 #endif
1975 
1976   if ((rmode == RelocInfo::CODE_TARGET) && (!ast_id.IsNone())) {
1977     SetRecordedAstId(ast_id);
1978     rmode = RelocInfo::CODE_TARGET_WITH_ID;
1979   }
1980 
1981   AllowDeferredHandleDereference embedding_raw_address;
1982   Call(reinterpret_cast<Address>(code.location()), rmode);
1983 
1984 #ifdef DEBUG
1985   // Check the size of the code generated.
1986   AssertSizeOfCodeGeneratedSince(&start_call, CallSize(code, rmode, ast_id));
1987 #endif
1988 }
1989 
1990 
CallSize(Register target)1991 int MacroAssembler::CallSize(Register target) {
1992   USE(target);
1993   return kInstructionSize;
1994 }
1995 
1996 
CallSize(Label * target)1997 int MacroAssembler::CallSize(Label* target) {
1998   USE(target);
1999   return kInstructionSize;
2000 }
2001 
2002 
CallSize(Address target,RelocInfo::Mode rmode)2003 int MacroAssembler::CallSize(Address target, RelocInfo::Mode rmode) {
2004   USE(target);
2005 
2006   // Addresses always have 64 bits, so we shouldn't encounter NONE32.
2007   DCHECK(rmode != RelocInfo::NONE32);
2008 
2009   if (rmode == RelocInfo::NONE64) {
2010     return kCallSizeWithoutRelocation;
2011   } else {
2012     return kCallSizeWithRelocation;
2013   }
2014 }
2015 
2016 
CallSize(Handle<Code> code,RelocInfo::Mode rmode,TypeFeedbackId ast_id)2017 int MacroAssembler::CallSize(Handle<Code> code,
2018                              RelocInfo::Mode rmode,
2019                              TypeFeedbackId ast_id) {
2020   USE(code);
2021   USE(ast_id);
2022 
2023   // Addresses always have 64 bits, so we shouldn't encounter NONE32.
2024   DCHECK(rmode != RelocInfo::NONE32);
2025 
2026   if (rmode == RelocInfo::NONE64) {
2027     return kCallSizeWithoutRelocation;
2028   } else {
2029     return kCallSizeWithRelocation;
2030   }
2031 }
2032 
2033 
JumpIfHeapNumber(Register object,Label * on_heap_number,SmiCheckType smi_check_type)2034 void MacroAssembler::JumpIfHeapNumber(Register object, Label* on_heap_number,
2035                                       SmiCheckType smi_check_type) {
2036   Label on_not_heap_number;
2037 
2038   if (smi_check_type == DO_SMI_CHECK) {
2039     JumpIfSmi(object, &on_not_heap_number);
2040   }
2041 
2042   AssertNotSmi(object);
2043 
2044   UseScratchRegisterScope temps(this);
2045   Register temp = temps.AcquireX();
2046   Ldr(temp, FieldMemOperand(object, HeapObject::kMapOffset));
2047   JumpIfRoot(temp, Heap::kHeapNumberMapRootIndex, on_heap_number);
2048 
2049   Bind(&on_not_heap_number);
2050 }
2051 
2052 
JumpIfNotHeapNumber(Register object,Label * on_not_heap_number,SmiCheckType smi_check_type)2053 void MacroAssembler::JumpIfNotHeapNumber(Register object,
2054                                          Label* on_not_heap_number,
2055                                          SmiCheckType smi_check_type) {
2056   if (smi_check_type == DO_SMI_CHECK) {
2057     JumpIfSmi(object, on_not_heap_number);
2058   }
2059 
2060   AssertNotSmi(object);
2061 
2062   UseScratchRegisterScope temps(this);
2063   Register temp = temps.AcquireX();
2064   Ldr(temp, FieldMemOperand(object, HeapObject::kMapOffset));
2065   JumpIfNotRoot(temp, Heap::kHeapNumberMapRootIndex, on_not_heap_number);
2066 }
2067 
2068 
TryRepresentDoubleAsInt(Register as_int,FPRegister value,FPRegister scratch_d,Label * on_successful_conversion,Label * on_failed_conversion)2069 void MacroAssembler::TryRepresentDoubleAsInt(Register as_int,
2070                                              FPRegister value,
2071                                              FPRegister scratch_d,
2072                                              Label* on_successful_conversion,
2073                                              Label* on_failed_conversion) {
2074   // Convert to an int and back again, then compare with the original value.
2075   Fcvtzs(as_int, value);
2076   Scvtf(scratch_d, as_int);
2077   Fcmp(value, scratch_d);
2078 
2079   if (on_successful_conversion) {
2080     B(on_successful_conversion, eq);
2081   }
2082   if (on_failed_conversion) {
2083     B(on_failed_conversion, ne);
2084   }
2085 }
2086 
2087 
TestForMinusZero(DoubleRegister input)2088 void MacroAssembler::TestForMinusZero(DoubleRegister input) {
2089   UseScratchRegisterScope temps(this);
2090   Register temp = temps.AcquireX();
2091   // Floating point -0.0 is kMinInt as an integer, so subtracting 1 (cmp) will
2092   // cause overflow.
2093   Fmov(temp, input);
2094   Cmp(temp, 1);
2095 }
2096 
2097 
JumpIfMinusZero(DoubleRegister input,Label * on_negative_zero)2098 void MacroAssembler::JumpIfMinusZero(DoubleRegister input,
2099                                      Label* on_negative_zero) {
2100   TestForMinusZero(input);
2101   B(vs, on_negative_zero);
2102 }
2103 
2104 
JumpIfMinusZero(Register input,Label * on_negative_zero)2105 void MacroAssembler::JumpIfMinusZero(Register input,
2106                                      Label* on_negative_zero) {
2107   DCHECK(input.Is64Bits());
2108   // Floating point value is in an integer register. Detect -0.0 by subtracting
2109   // 1 (cmp), which will cause overflow.
2110   Cmp(input, 1);
2111   B(vs, on_negative_zero);
2112 }
2113 
2114 
ClampInt32ToUint8(Register output,Register input)2115 void MacroAssembler::ClampInt32ToUint8(Register output, Register input) {
2116   // Clamp the value to [0..255].
2117   Cmp(input.W(), Operand(input.W(), UXTB));
2118   // If input < input & 0xff, it must be < 0, so saturate to 0.
2119   Csel(output.W(), wzr, input.W(), lt);
2120   // If input <= input & 0xff, it must be <= 255. Otherwise, saturate to 255.
2121   Csel(output.W(), output.W(), 255, le);
2122 }
2123 
2124 
ClampInt32ToUint8(Register in_out)2125 void MacroAssembler::ClampInt32ToUint8(Register in_out) {
2126   ClampInt32ToUint8(in_out, in_out);
2127 }
2128 
2129 
ClampDoubleToUint8(Register output,DoubleRegister input,DoubleRegister dbl_scratch)2130 void MacroAssembler::ClampDoubleToUint8(Register output,
2131                                         DoubleRegister input,
2132                                         DoubleRegister dbl_scratch) {
2133   // This conversion follows the WebIDL "[Clamp]" rules for PIXEL types:
2134   //   - Inputs lower than 0 (including -infinity) produce 0.
2135   //   - Inputs higher than 255 (including +infinity) produce 255.
2136   // Also, it seems that PIXEL types use round-to-nearest rather than
2137   // round-towards-zero.
2138 
2139   // Squash +infinity before the conversion, since Fcvtnu will normally
2140   // convert it to 0.
2141   Fmov(dbl_scratch, 255);
2142   Fmin(dbl_scratch, dbl_scratch, input);
2143 
2144   // Convert double to unsigned integer. Values less than zero become zero.
2145   // Values greater than 255 have already been clamped to 255.
2146   Fcvtnu(output, dbl_scratch);
2147 }
2148 
2149 
CopyBytes(Register dst,Register src,Register length,Register scratch,CopyHint hint)2150 void MacroAssembler::CopyBytes(Register dst,
2151                                Register src,
2152                                Register length,
2153                                Register scratch,
2154                                CopyHint hint) {
2155   UseScratchRegisterScope temps(this);
2156   Register tmp1 = temps.AcquireX();
2157   Register tmp2 = temps.AcquireX();
2158   DCHECK(!AreAliased(src, dst, length, scratch, tmp1, tmp2));
2159   DCHECK(!AreAliased(src, dst, csp));
2160 
2161   if (emit_debug_code()) {
2162     // Check copy length.
2163     Cmp(length, 0);
2164     Assert(ge, kUnexpectedNegativeValue);
2165 
2166     // Check src and dst buffers don't overlap.
2167     Add(scratch, src, length);  // Calculate end of src buffer.
2168     Cmp(scratch, dst);
2169     Add(scratch, dst, length);  // Calculate end of dst buffer.
2170     Ccmp(scratch, src, ZFlag, gt);
2171     Assert(le, kCopyBuffersOverlap);
2172   }
2173 
2174   Label short_copy, short_loop, bulk_loop, done;
2175 
2176   if ((hint == kCopyLong || hint == kCopyUnknown) && !FLAG_optimize_for_size) {
2177     Register bulk_length = scratch;
2178     int pair_size = 2 * kXRegSize;
2179     int pair_mask = pair_size - 1;
2180 
2181     Bic(bulk_length, length, pair_mask);
2182     Cbz(bulk_length, &short_copy);
2183     Bind(&bulk_loop);
2184     Sub(bulk_length, bulk_length, pair_size);
2185     Ldp(tmp1, tmp2, MemOperand(src, pair_size, PostIndex));
2186     Stp(tmp1, tmp2, MemOperand(dst, pair_size, PostIndex));
2187     Cbnz(bulk_length, &bulk_loop);
2188 
2189     And(length, length, pair_mask);
2190   }
2191 
2192   Bind(&short_copy);
2193   Cbz(length, &done);
2194   Bind(&short_loop);
2195   Sub(length, length, 1);
2196   Ldrb(tmp1, MemOperand(src, 1, PostIndex));
2197   Strb(tmp1, MemOperand(dst, 1, PostIndex));
2198   Cbnz(length, &short_loop);
2199 
2200 
2201   Bind(&done);
2202 }
2203 
2204 
InitializeFieldsWithFiller(Register current_address,Register end_address,Register filler)2205 void MacroAssembler::InitializeFieldsWithFiller(Register current_address,
2206                                                 Register end_address,
2207                                                 Register filler) {
2208   DCHECK(!current_address.Is(csp));
2209   UseScratchRegisterScope temps(this);
2210   Register distance_in_words = temps.AcquireX();
2211   Label done;
2212 
2213   // Calculate the distance. If it's <= zero then there's nothing to do.
2214   Subs(distance_in_words, end_address, current_address);
2215   B(le, &done);
2216 
2217   // There's at least one field to fill, so do this unconditionally.
2218   Str(filler, MemOperand(current_address));
2219 
2220   // If the distance_in_words consists of odd number of words we advance
2221   // start_address by one word, otherwise the pairs loop will ovwerite the
2222   // field that was stored above.
2223   And(distance_in_words, distance_in_words, kPointerSize);
2224   Add(current_address, current_address, distance_in_words);
2225 
2226   // Store filler to memory in pairs.
2227   Label loop, entry;
2228   B(&entry);
2229   Bind(&loop);
2230   Stp(filler, filler, MemOperand(current_address, 2 * kPointerSize, PostIndex));
2231   Bind(&entry);
2232   Cmp(current_address, end_address);
2233   B(lo, &loop);
2234 
2235   Bind(&done);
2236 }
2237 
2238 
JumpIfEitherIsNotSequentialOneByteStrings(Register first,Register second,Register scratch1,Register scratch2,Label * failure,SmiCheckType smi_check)2239 void MacroAssembler::JumpIfEitherIsNotSequentialOneByteStrings(
2240     Register first, Register second, Register scratch1, Register scratch2,
2241     Label* failure, SmiCheckType smi_check) {
2242   if (smi_check == DO_SMI_CHECK) {
2243     JumpIfEitherSmi(first, second, failure);
2244   } else if (emit_debug_code()) {
2245     DCHECK(smi_check == DONT_DO_SMI_CHECK);
2246     Label not_smi;
2247     JumpIfEitherSmi(first, second, NULL, &not_smi);
2248 
2249     // At least one input is a smi, but the flags indicated a smi check wasn't
2250     // needed.
2251     Abort(kUnexpectedSmi);
2252 
2253     Bind(&not_smi);
2254   }
2255 
2256   // Test that both first and second are sequential one-byte strings.
2257   Ldr(scratch1, FieldMemOperand(first, HeapObject::kMapOffset));
2258   Ldr(scratch2, FieldMemOperand(second, HeapObject::kMapOffset));
2259   Ldrb(scratch1, FieldMemOperand(scratch1, Map::kInstanceTypeOffset));
2260   Ldrb(scratch2, FieldMemOperand(scratch2, Map::kInstanceTypeOffset));
2261 
2262   JumpIfEitherInstanceTypeIsNotSequentialOneByte(scratch1, scratch2, scratch1,
2263                                                  scratch2, failure);
2264 }
2265 
2266 
JumpIfEitherInstanceTypeIsNotSequentialOneByte(Register first,Register second,Register scratch1,Register scratch2,Label * failure)2267 void MacroAssembler::JumpIfEitherInstanceTypeIsNotSequentialOneByte(
2268     Register first, Register second, Register scratch1, Register scratch2,
2269     Label* failure) {
2270   DCHECK(!AreAliased(scratch1, second));
2271   DCHECK(!AreAliased(scratch1, scratch2));
2272   const int kFlatOneByteStringMask =
2273       kIsNotStringMask | kStringEncodingMask | kStringRepresentationMask;
2274   const int kFlatOneByteStringTag =
2275       kStringTag | kOneByteStringTag | kSeqStringTag;
2276   And(scratch1, first, kFlatOneByteStringMask);
2277   And(scratch2, second, kFlatOneByteStringMask);
2278   Cmp(scratch1, kFlatOneByteStringTag);
2279   Ccmp(scratch2, kFlatOneByteStringTag, NoFlag, eq);
2280   B(ne, failure);
2281 }
2282 
2283 
JumpIfInstanceTypeIsNotSequentialOneByte(Register type,Register scratch,Label * failure)2284 void MacroAssembler::JumpIfInstanceTypeIsNotSequentialOneByte(Register type,
2285                                                               Register scratch,
2286                                                               Label* failure) {
2287   const int kFlatOneByteStringMask =
2288       kIsNotStringMask | kStringEncodingMask | kStringRepresentationMask;
2289   const int kFlatOneByteStringTag =
2290       kStringTag | kOneByteStringTag | kSeqStringTag;
2291   And(scratch, type, kFlatOneByteStringMask);
2292   Cmp(scratch, kFlatOneByteStringTag);
2293   B(ne, failure);
2294 }
2295 
2296 
JumpIfBothInstanceTypesAreNotSequentialOneByte(Register first,Register second,Register scratch1,Register scratch2,Label * failure)2297 void MacroAssembler::JumpIfBothInstanceTypesAreNotSequentialOneByte(
2298     Register first, Register second, Register scratch1, Register scratch2,
2299     Label* failure) {
2300   DCHECK(!AreAliased(first, second, scratch1, scratch2));
2301   const int kFlatOneByteStringMask =
2302       kIsNotStringMask | kStringEncodingMask | kStringRepresentationMask;
2303   const int kFlatOneByteStringTag =
2304       kStringTag | kOneByteStringTag | kSeqStringTag;
2305   And(scratch1, first, kFlatOneByteStringMask);
2306   And(scratch2, second, kFlatOneByteStringMask);
2307   Cmp(scratch1, kFlatOneByteStringTag);
2308   Ccmp(scratch2, kFlatOneByteStringTag, NoFlag, eq);
2309   B(ne, failure);
2310 }
2311 
2312 
JumpIfNotUniqueNameInstanceType(Register type,Label * not_unique_name)2313 void MacroAssembler::JumpIfNotUniqueNameInstanceType(Register type,
2314                                                      Label* not_unique_name) {
2315   STATIC_ASSERT((kInternalizedTag == 0) && (kStringTag == 0));
2316   // if ((type is string && type is internalized) || type == SYMBOL_TYPE) {
2317   //   continue
2318   // } else {
2319   //   goto not_unique_name
2320   // }
2321   Tst(type, kIsNotStringMask | kIsNotInternalizedMask);
2322   Ccmp(type, SYMBOL_TYPE, ZFlag, ne);
2323   B(ne, not_unique_name);
2324 }
2325 
2326 
InvokePrologue(const ParameterCount & expected,const ParameterCount & actual,Label * done,InvokeFlag flag,bool * definitely_mismatches,const CallWrapper & call_wrapper)2327 void MacroAssembler::InvokePrologue(const ParameterCount& expected,
2328                                     const ParameterCount& actual,
2329                                     Label* done,
2330                                     InvokeFlag flag,
2331                                     bool* definitely_mismatches,
2332                                     const CallWrapper& call_wrapper) {
2333   bool definitely_matches = false;
2334   *definitely_mismatches = false;
2335   Label regular_invoke;
2336 
2337   // Check whether the expected and actual arguments count match. If not,
2338   // setup registers according to contract with ArgumentsAdaptorTrampoline:
2339   //  x0: actual arguments count.
2340   //  x1: function (passed through to callee).
2341   //  x2: expected arguments count.
2342 
2343   // The code below is made a lot easier because the calling code already sets
2344   // up actual and expected registers according to the contract if values are
2345   // passed in registers.
2346   DCHECK(actual.is_immediate() || actual.reg().is(x0));
2347   DCHECK(expected.is_immediate() || expected.reg().is(x2));
2348 
2349   if (expected.is_immediate()) {
2350     DCHECK(actual.is_immediate());
2351     Mov(x0, actual.immediate());
2352     if (expected.immediate() == actual.immediate()) {
2353       definitely_matches = true;
2354 
2355     } else {
2356       if (expected.immediate() ==
2357           SharedFunctionInfo::kDontAdaptArgumentsSentinel) {
2358         // Don't worry about adapting arguments for builtins that
2359         // don't want that done. Skip adaption code by making it look
2360         // like we have a match between expected and actual number of
2361         // arguments.
2362         definitely_matches = true;
2363       } else {
2364         *definitely_mismatches = true;
2365         // Set up x2 for the argument adaptor.
2366         Mov(x2, expected.immediate());
2367       }
2368     }
2369 
2370   } else {  // expected is a register.
2371     Operand actual_op = actual.is_immediate() ? Operand(actual.immediate())
2372                                               : Operand(actual.reg());
2373     Mov(x0, actual_op);
2374     // If actual == expected perform a regular invocation.
2375     Cmp(expected.reg(), actual_op);
2376     B(eq, &regular_invoke);
2377   }
2378 
2379   // If the argument counts may mismatch, generate a call to the argument
2380   // adaptor.
2381   if (!definitely_matches) {
2382     Handle<Code> adaptor =
2383         isolate()->builtins()->ArgumentsAdaptorTrampoline();
2384     if (flag == CALL_FUNCTION) {
2385       call_wrapper.BeforeCall(CallSize(adaptor));
2386       Call(adaptor);
2387       call_wrapper.AfterCall();
2388       if (!*definitely_mismatches) {
2389         // If the arg counts don't match, no extra code is emitted by
2390         // MAsm::InvokeFunctionCode and we can just fall through.
2391         B(done);
2392       }
2393     } else {
2394       Jump(adaptor, RelocInfo::CODE_TARGET);
2395     }
2396   }
2397   Bind(&regular_invoke);
2398 }
2399 
2400 
FloodFunctionIfStepping(Register fun,Register new_target,const ParameterCount & expected,const ParameterCount & actual)2401 void MacroAssembler::FloodFunctionIfStepping(Register fun, Register new_target,
2402                                              const ParameterCount& expected,
2403                                              const ParameterCount& actual) {
2404   Label skip_flooding;
2405   ExternalReference step_in_enabled =
2406       ExternalReference::debug_step_in_enabled_address(isolate());
2407   Mov(x4, Operand(step_in_enabled));
2408   ldrb(x4, MemOperand(x4));
2409   CompareAndBranch(x4, Operand(0), eq, &skip_flooding);
2410   {
2411     FrameScope frame(this,
2412                      has_frame() ? StackFrame::NONE : StackFrame::INTERNAL);
2413     if (expected.is_reg()) {
2414       SmiTag(expected.reg());
2415       Push(expected.reg());
2416     }
2417     if (actual.is_reg()) {
2418       SmiTag(actual.reg());
2419       Push(actual.reg());
2420     }
2421     if (new_target.is_valid()) {
2422       Push(new_target);
2423     }
2424     Push(fun);
2425     Push(fun);
2426     CallRuntime(Runtime::kDebugPrepareStepInIfStepping, 1);
2427     Pop(fun);
2428     if (new_target.is_valid()) {
2429       Pop(new_target);
2430     }
2431     if (actual.is_reg()) {
2432       Pop(actual.reg());
2433       SmiUntag(actual.reg());
2434     }
2435     if (expected.is_reg()) {
2436       Pop(expected.reg());
2437       SmiUntag(expected.reg());
2438     }
2439   }
2440   bind(&skip_flooding);
2441 }
2442 
2443 
InvokeFunctionCode(Register function,Register new_target,const ParameterCount & expected,const ParameterCount & actual,InvokeFlag flag,const CallWrapper & call_wrapper)2444 void MacroAssembler::InvokeFunctionCode(Register function, Register new_target,
2445                                         const ParameterCount& expected,
2446                                         const ParameterCount& actual,
2447                                         InvokeFlag flag,
2448                                         const CallWrapper& call_wrapper) {
2449   // You can't call a function without a valid frame.
2450   DCHECK(flag == JUMP_FUNCTION || has_frame());
2451   DCHECK(function.is(x1));
2452   DCHECK_IMPLIES(new_target.is_valid(), new_target.is(x3));
2453 
2454   FloodFunctionIfStepping(function, new_target, expected, actual);
2455 
2456   // Clear the new.target register if not given.
2457   if (!new_target.is_valid()) {
2458     LoadRoot(x3, Heap::kUndefinedValueRootIndex);
2459   }
2460 
2461   Label done;
2462   bool definitely_mismatches = false;
2463   InvokePrologue(expected, actual, &done, flag, &definitely_mismatches,
2464                  call_wrapper);
2465 
2466   // If we are certain that actual != expected, then we know InvokePrologue will
2467   // have handled the call through the argument adaptor mechanism.
2468   // The called function expects the call kind in x5.
2469   if (!definitely_mismatches) {
2470     // We call indirectly through the code field in the function to
2471     // allow recompilation to take effect without changing any of the
2472     // call sites.
2473     Register code = x4;
2474     Ldr(code, FieldMemOperand(function, JSFunction::kCodeEntryOffset));
2475     if (flag == CALL_FUNCTION) {
2476       call_wrapper.BeforeCall(CallSize(code));
2477       Call(code);
2478       call_wrapper.AfterCall();
2479     } else {
2480       DCHECK(flag == JUMP_FUNCTION);
2481       Jump(code);
2482     }
2483   }
2484 
2485   // Continue here if InvokePrologue does handle the invocation due to
2486   // mismatched parameter counts.
2487   Bind(&done);
2488 }
2489 
2490 
InvokeFunction(Register function,Register new_target,const ParameterCount & actual,InvokeFlag flag,const CallWrapper & call_wrapper)2491 void MacroAssembler::InvokeFunction(Register function,
2492                                     Register new_target,
2493                                     const ParameterCount& actual,
2494                                     InvokeFlag flag,
2495                                     const CallWrapper& call_wrapper) {
2496   // You can't call a function without a valid frame.
2497   DCHECK(flag == JUMP_FUNCTION || has_frame());
2498 
2499   // Contract with called JS functions requires that function is passed in x1.
2500   // (See FullCodeGenerator::Generate().)
2501   DCHECK(function.is(x1));
2502 
2503   Register expected_reg = x2;
2504 
2505   Ldr(cp, FieldMemOperand(function, JSFunction::kContextOffset));
2506   // The number of arguments is stored as an int32_t, and -1 is a marker
2507   // (SharedFunctionInfo::kDontAdaptArgumentsSentinel), so we need sign
2508   // extension to correctly handle it.
2509   Ldr(expected_reg, FieldMemOperand(function,
2510                                     JSFunction::kSharedFunctionInfoOffset));
2511   Ldrsw(expected_reg,
2512         FieldMemOperand(expected_reg,
2513                         SharedFunctionInfo::kFormalParameterCountOffset));
2514 
2515   ParameterCount expected(expected_reg);
2516   InvokeFunctionCode(function, new_target, expected, actual, flag,
2517                      call_wrapper);
2518 }
2519 
2520 
InvokeFunction(Register function,const ParameterCount & expected,const ParameterCount & actual,InvokeFlag flag,const CallWrapper & call_wrapper)2521 void MacroAssembler::InvokeFunction(Register function,
2522                                     const ParameterCount& expected,
2523                                     const ParameterCount& actual,
2524                                     InvokeFlag flag,
2525                                     const CallWrapper& call_wrapper) {
2526   // You can't call a function without a valid frame.
2527   DCHECK(flag == JUMP_FUNCTION || has_frame());
2528 
2529   // Contract with called JS functions requires that function is passed in x1.
2530   // (See FullCodeGenerator::Generate().)
2531   DCHECK(function.Is(x1));
2532 
2533   // Set up the context.
2534   Ldr(cp, FieldMemOperand(function, JSFunction::kContextOffset));
2535 
2536   InvokeFunctionCode(function, no_reg, expected, actual, flag, call_wrapper);
2537 }
2538 
2539 
InvokeFunction(Handle<JSFunction> function,const ParameterCount & expected,const ParameterCount & actual,InvokeFlag flag,const CallWrapper & call_wrapper)2540 void MacroAssembler::InvokeFunction(Handle<JSFunction> function,
2541                                     const ParameterCount& expected,
2542                                     const ParameterCount& actual,
2543                                     InvokeFlag flag,
2544                                     const CallWrapper& call_wrapper) {
2545   // Contract with called JS functions requires that function is passed in x1.
2546   // (See FullCodeGenerator::Generate().)
2547   __ LoadObject(x1, function);
2548   InvokeFunction(x1, expected, actual, flag, call_wrapper);
2549 }
2550 
2551 
TryConvertDoubleToInt64(Register result,DoubleRegister double_input,Label * done)2552 void MacroAssembler::TryConvertDoubleToInt64(Register result,
2553                                              DoubleRegister double_input,
2554                                              Label* done) {
2555   // Try to convert with an FPU convert instruction. It's trivial to compute
2556   // the modulo operation on an integer register so we convert to a 64-bit
2557   // integer.
2558   //
2559   // Fcvtzs will saturate to INT64_MIN (0x800...00) or INT64_MAX (0x7ff...ff)
2560   // when the double is out of range. NaNs and infinities will be converted to 0
2561   // (as ECMA-262 requires).
2562   Fcvtzs(result.X(), double_input);
2563 
2564   // The values INT64_MIN (0x800...00) or INT64_MAX (0x7ff...ff) are not
2565   // representable using a double, so if the result is one of those then we know
2566   // that saturation occured, and we need to manually handle the conversion.
2567   //
2568   // It is easy to detect INT64_MIN and INT64_MAX because adding or subtracting
2569   // 1 will cause signed overflow.
2570   Cmp(result.X(), 1);
2571   Ccmp(result.X(), -1, VFlag, vc);
2572 
2573   B(vc, done);
2574 }
2575 
2576 
TruncateDoubleToI(Register result,DoubleRegister double_input)2577 void MacroAssembler::TruncateDoubleToI(Register result,
2578                                        DoubleRegister double_input) {
2579   Label done;
2580 
2581   // Try to convert the double to an int64. If successful, the bottom 32 bits
2582   // contain our truncated int32 result.
2583   TryConvertDoubleToInt64(result, double_input, &done);
2584 
2585   const Register old_stack_pointer = StackPointer();
2586   if (csp.Is(old_stack_pointer)) {
2587     // This currently only happens during compiler-unittest. If it arises
2588     // during regular code generation the DoubleToI stub should be updated to
2589     // cope with csp and have an extra parameter indicating which stack pointer
2590     // it should use.
2591     Push(jssp, xzr);  // Push xzr to maintain csp required 16-bytes alignment.
2592     Mov(jssp, csp);
2593     SetStackPointer(jssp);
2594   }
2595 
2596   // If we fell through then inline version didn't succeed - call stub instead.
2597   Push(lr, double_input);
2598 
2599   DoubleToIStub stub(isolate(),
2600                      jssp,
2601                      result,
2602                      0,
2603                      true,   // is_truncating
2604                      true);  // skip_fastpath
2605   CallStub(&stub);  // DoubleToIStub preserves any registers it needs to clobber
2606 
2607   DCHECK_EQ(xzr.SizeInBytes(), double_input.SizeInBytes());
2608   Pop(xzr, lr);  // xzr to drop the double input on the stack.
2609 
2610   if (csp.Is(old_stack_pointer)) {
2611     Mov(csp, jssp);
2612     SetStackPointer(csp);
2613     AssertStackConsistency();
2614     Pop(xzr, jssp);
2615   }
2616 
2617   Bind(&done);
2618 }
2619 
2620 
TruncateHeapNumberToI(Register result,Register object)2621 void MacroAssembler::TruncateHeapNumberToI(Register result,
2622                                            Register object) {
2623   Label done;
2624   DCHECK(!result.is(object));
2625   DCHECK(jssp.Is(StackPointer()));
2626 
2627   Ldr(fp_scratch, FieldMemOperand(object, HeapNumber::kValueOffset));
2628 
2629   // Try to convert the double to an int64. If successful, the bottom 32 bits
2630   // contain our truncated int32 result.
2631   TryConvertDoubleToInt64(result, fp_scratch, &done);
2632 
2633   // If we fell through then inline version didn't succeed - call stub instead.
2634   Push(lr);
2635   DoubleToIStub stub(isolate(),
2636                      object,
2637                      result,
2638                      HeapNumber::kValueOffset - kHeapObjectTag,
2639                      true,   // is_truncating
2640                      true);  // skip_fastpath
2641   CallStub(&stub);  // DoubleToIStub preserves any registers it needs to clobber
2642   Pop(lr);
2643 
2644   Bind(&done);
2645 }
2646 
2647 
StubPrologue()2648 void MacroAssembler::StubPrologue() {
2649   UseScratchRegisterScope temps(this);
2650   Register temp = temps.AcquireX();
2651   __ Mov(temp, Smi::FromInt(StackFrame::STUB));
2652   // Compiled stubs don't age, and so they don't need the predictable code
2653   // ageing sequence.
2654   __ Push(lr, fp, cp, temp);
2655   __ Add(fp, StackPointer(), StandardFrameConstants::kFixedFrameSizeFromFp);
2656 }
2657 
2658 
Prologue(bool code_pre_aging)2659 void MacroAssembler::Prologue(bool code_pre_aging) {
2660   if (code_pre_aging) {
2661     Code* stub = Code::GetPreAgedCodeAgeStub(isolate());
2662     __ EmitCodeAgeSequence(stub);
2663   } else {
2664     __ EmitFrameSetupForCodeAgePatching();
2665   }
2666 }
2667 
2668 
EmitLoadTypeFeedbackVector(Register vector)2669 void MacroAssembler::EmitLoadTypeFeedbackVector(Register vector) {
2670   Ldr(vector, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset));
2671   Ldr(vector, FieldMemOperand(vector, JSFunction::kSharedFunctionInfoOffset));
2672   Ldr(vector,
2673       FieldMemOperand(vector, SharedFunctionInfo::kFeedbackVectorOffset));
2674 }
2675 
2676 
EnterFrame(StackFrame::Type type,bool load_constant_pool_pointer_reg)2677 void MacroAssembler::EnterFrame(StackFrame::Type type,
2678                                 bool load_constant_pool_pointer_reg) {
2679   // Out-of-line constant pool not implemented on arm64.
2680   UNREACHABLE();
2681 }
2682 
2683 
EnterFrame(StackFrame::Type type)2684 void MacroAssembler::EnterFrame(StackFrame::Type type) {
2685   DCHECK(jssp.Is(StackPointer()));
2686   UseScratchRegisterScope temps(this);
2687   Register type_reg = temps.AcquireX();
2688   Register code_reg = temps.AcquireX();
2689 
2690   Push(lr, fp, cp);
2691   Mov(type_reg, Smi::FromInt(type));
2692   Mov(code_reg, Operand(CodeObject()));
2693   Push(type_reg, code_reg);
2694   // jssp[4] : lr
2695   // jssp[3] : fp
2696   // jssp[2] : cp
2697   // jssp[1] : type
2698   // jssp[0] : code object
2699 
2700   // Adjust FP to point to saved FP.
2701   Add(fp, jssp, StandardFrameConstants::kFixedFrameSizeFromFp + kPointerSize);
2702 }
2703 
2704 
LeaveFrame(StackFrame::Type type)2705 void MacroAssembler::LeaveFrame(StackFrame::Type type) {
2706   DCHECK(jssp.Is(StackPointer()));
2707   // Drop the execution stack down to the frame pointer and restore
2708   // the caller frame pointer and return address.
2709   Mov(jssp, fp);
2710   AssertStackConsistency();
2711   Pop(fp, lr);
2712 }
2713 
2714 
ExitFramePreserveFPRegs()2715 void MacroAssembler::ExitFramePreserveFPRegs() {
2716   PushCPURegList(kCallerSavedFP);
2717 }
2718 
2719 
ExitFrameRestoreFPRegs()2720 void MacroAssembler::ExitFrameRestoreFPRegs() {
2721   // Read the registers from the stack without popping them. The stack pointer
2722   // will be reset as part of the unwinding process.
2723   CPURegList saved_fp_regs = kCallerSavedFP;
2724   DCHECK(saved_fp_regs.Count() % 2 == 0);
2725 
2726   int offset = ExitFrameConstants::kLastExitFrameField;
2727   while (!saved_fp_regs.IsEmpty()) {
2728     const CPURegister& dst0 = saved_fp_regs.PopHighestIndex();
2729     const CPURegister& dst1 = saved_fp_regs.PopHighestIndex();
2730     offset -= 2 * kDRegSize;
2731     Ldp(dst1, dst0, MemOperand(fp, offset));
2732   }
2733 }
2734 
2735 
EnterExitFrame(bool save_doubles,const Register & scratch,int extra_space)2736 void MacroAssembler::EnterExitFrame(bool save_doubles,
2737                                     const Register& scratch,
2738                                     int extra_space) {
2739   DCHECK(jssp.Is(StackPointer()));
2740 
2741   // Set up the new stack frame.
2742   Mov(scratch, Operand(CodeObject()));
2743   Push(lr, fp);
2744   Mov(fp, StackPointer());
2745   Push(xzr, scratch);
2746   //          fp[8]: CallerPC (lr)
2747   //    fp -> fp[0]: CallerFP (old fp)
2748   //          fp[-8]: Space reserved for SPOffset.
2749   //  jssp -> fp[-16]: CodeObject()
2750   STATIC_ASSERT((2 * kPointerSize) ==
2751                 ExitFrameConstants::kCallerSPDisplacement);
2752   STATIC_ASSERT((1 * kPointerSize) == ExitFrameConstants::kCallerPCOffset);
2753   STATIC_ASSERT((0 * kPointerSize) == ExitFrameConstants::kCallerFPOffset);
2754   STATIC_ASSERT((-1 * kPointerSize) == ExitFrameConstants::kSPOffset);
2755   STATIC_ASSERT((-2 * kPointerSize) == ExitFrameConstants::kCodeOffset);
2756 
2757   // Save the frame pointer and context pointer in the top frame.
2758   Mov(scratch, Operand(ExternalReference(Isolate::kCEntryFPAddress,
2759                                          isolate())));
2760   Str(fp, MemOperand(scratch));
2761   Mov(scratch, Operand(ExternalReference(Isolate::kContextAddress,
2762                                          isolate())));
2763   Str(cp, MemOperand(scratch));
2764 
2765   STATIC_ASSERT((-2 * kPointerSize) ==
2766                 ExitFrameConstants::kLastExitFrameField);
2767   if (save_doubles) {
2768     ExitFramePreserveFPRegs();
2769   }
2770 
2771   // Reserve space for the return address and for user requested memory.
2772   // We do this before aligning to make sure that we end up correctly
2773   // aligned with the minimum of wasted space.
2774   Claim(extra_space + 1, kXRegSize);
2775   //         fp[8]: CallerPC (lr)
2776   //   fp -> fp[0]: CallerFP (old fp)
2777   //         fp[-8]: Space reserved for SPOffset.
2778   //         fp[-16]: CodeObject()
2779   //         fp[-16 - fp_size]: Saved doubles (if save_doubles is true).
2780   //         jssp[8]: Extra space reserved for caller (if extra_space != 0).
2781   // jssp -> jssp[0]: Space reserved for the return address.
2782 
2783   // Align and synchronize the system stack pointer with jssp.
2784   AlignAndSetCSPForFrame();
2785   DCHECK(csp.Is(StackPointer()));
2786 
2787   //         fp[8]: CallerPC (lr)
2788   //   fp -> fp[0]: CallerFP (old fp)
2789   //         fp[-8]: Space reserved for SPOffset.
2790   //         fp[-16]: CodeObject()
2791   //         fp[-16 - fp_size]: Saved doubles (if save_doubles is true).
2792   //         csp[8]: Memory reserved for the caller if extra_space != 0.
2793   //                 Alignment padding, if necessary.
2794   //  csp -> csp[0]: Space reserved for the return address.
2795 
2796   // ExitFrame::GetStateForFramePointer expects to find the return address at
2797   // the memory address immediately below the pointer stored in SPOffset.
2798   // It is not safe to derive much else from SPOffset, because the size of the
2799   // padding can vary.
2800   Add(scratch, csp, kXRegSize);
2801   Str(scratch, MemOperand(fp, ExitFrameConstants::kSPOffset));
2802 }
2803 
2804 
2805 // Leave the current exit frame.
LeaveExitFrame(bool restore_doubles,const Register & scratch,bool restore_context)2806 void MacroAssembler::LeaveExitFrame(bool restore_doubles,
2807                                     const Register& scratch,
2808                                     bool restore_context) {
2809   DCHECK(csp.Is(StackPointer()));
2810 
2811   if (restore_doubles) {
2812     ExitFrameRestoreFPRegs();
2813   }
2814 
2815   // Restore the context pointer from the top frame.
2816   if (restore_context) {
2817     Mov(scratch, Operand(ExternalReference(Isolate::kContextAddress,
2818                                            isolate())));
2819     Ldr(cp, MemOperand(scratch));
2820   }
2821 
2822   if (emit_debug_code()) {
2823     // Also emit debug code to clear the cp in the top frame.
2824     Mov(scratch, Operand(ExternalReference(Isolate::kContextAddress,
2825                                            isolate())));
2826     Str(xzr, MemOperand(scratch));
2827   }
2828   // Clear the frame pointer from the top frame.
2829   Mov(scratch, Operand(ExternalReference(Isolate::kCEntryFPAddress,
2830                                          isolate())));
2831   Str(xzr, MemOperand(scratch));
2832 
2833   // Pop the exit frame.
2834   //         fp[8]: CallerPC (lr)
2835   //   fp -> fp[0]: CallerFP (old fp)
2836   //         fp[...]: The rest of the frame.
2837   Mov(jssp, fp);
2838   SetStackPointer(jssp);
2839   AssertStackConsistency();
2840   Pop(fp, lr);
2841 }
2842 
2843 
SetCounter(StatsCounter * counter,int value,Register scratch1,Register scratch2)2844 void MacroAssembler::SetCounter(StatsCounter* counter, int value,
2845                                 Register scratch1, Register scratch2) {
2846   if (FLAG_native_code_counters && counter->Enabled()) {
2847     Mov(scratch1, value);
2848     Mov(scratch2, ExternalReference(counter));
2849     Str(scratch1, MemOperand(scratch2));
2850   }
2851 }
2852 
2853 
IncrementCounter(StatsCounter * counter,int value,Register scratch1,Register scratch2)2854 void MacroAssembler::IncrementCounter(StatsCounter* counter, int value,
2855                                       Register scratch1, Register scratch2) {
2856   DCHECK(value != 0);
2857   if (FLAG_native_code_counters && counter->Enabled()) {
2858     Mov(scratch2, ExternalReference(counter));
2859     Ldr(scratch1, MemOperand(scratch2));
2860     Add(scratch1, scratch1, value);
2861     Str(scratch1, MemOperand(scratch2));
2862   }
2863 }
2864 
2865 
DecrementCounter(StatsCounter * counter,int value,Register scratch1,Register scratch2)2866 void MacroAssembler::DecrementCounter(StatsCounter* counter, int value,
2867                                       Register scratch1, Register scratch2) {
2868   IncrementCounter(counter, -value, scratch1, scratch2);
2869 }
2870 
2871 
LoadContext(Register dst,int context_chain_length)2872 void MacroAssembler::LoadContext(Register dst, int context_chain_length) {
2873   if (context_chain_length > 0) {
2874     // Move up the chain of contexts to the context containing the slot.
2875     Ldr(dst, MemOperand(cp, Context::SlotOffset(Context::PREVIOUS_INDEX)));
2876     for (int i = 1; i < context_chain_length; i++) {
2877       Ldr(dst, MemOperand(dst, Context::SlotOffset(Context::PREVIOUS_INDEX)));
2878     }
2879   } else {
2880     // Slot is in the current function context.  Move it into the
2881     // destination register in case we store into it (the write barrier
2882     // cannot be allowed to destroy the context in cp).
2883     Mov(dst, cp);
2884   }
2885 }
2886 
2887 
DebugBreak()2888 void MacroAssembler::DebugBreak() {
2889   Mov(x0, 0);
2890   Mov(x1, ExternalReference(Runtime::kHandleDebuggerStatement, isolate()));
2891   CEntryStub ces(isolate(), 1);
2892   DCHECK(AllowThisStubCall(&ces));
2893   Call(ces.GetCode(), RelocInfo::DEBUGGER_STATEMENT);
2894 }
2895 
2896 
PushStackHandler()2897 void MacroAssembler::PushStackHandler() {
2898   DCHECK(jssp.Is(StackPointer()));
2899   // Adjust this code if the asserts don't hold.
2900   STATIC_ASSERT(StackHandlerConstants::kSize == 1 * kPointerSize);
2901   STATIC_ASSERT(StackHandlerConstants::kNextOffset == 0 * kPointerSize);
2902 
2903   // For the JSEntry handler, we must preserve the live registers x0-x4.
2904   // (See JSEntryStub::GenerateBody().)
2905 
2906   // Link the current handler as the next handler.
2907   Mov(x11, ExternalReference(Isolate::kHandlerAddress, isolate()));
2908   Ldr(x10, MemOperand(x11));
2909   Push(x10);
2910 
2911   // Set this new handler as the current one.
2912   Str(jssp, MemOperand(x11));
2913 }
2914 
2915 
PopStackHandler()2916 void MacroAssembler::PopStackHandler() {
2917   STATIC_ASSERT(StackHandlerConstants::kNextOffset == 0);
2918   Pop(x10);
2919   Mov(x11, ExternalReference(Isolate::kHandlerAddress, isolate()));
2920   Drop(StackHandlerConstants::kSize - kXRegSize, kByteSizeInBytes);
2921   Str(x10, MemOperand(x11));
2922 }
2923 
2924 
Allocate(int object_size,Register result,Register scratch1,Register scratch2,Label * gc_required,AllocationFlags flags)2925 void MacroAssembler::Allocate(int object_size,
2926                               Register result,
2927                               Register scratch1,
2928                               Register scratch2,
2929                               Label* gc_required,
2930                               AllocationFlags flags) {
2931   DCHECK(object_size <= Page::kMaxRegularHeapObjectSize);
2932   if (!FLAG_inline_new) {
2933     if (emit_debug_code()) {
2934       // Trash the registers to simulate an allocation failure.
2935       // We apply salt to the original zap value to easily spot the values.
2936       Mov(result, (kDebugZapValue & ~0xffL) | 0x11L);
2937       Mov(scratch1, (kDebugZapValue & ~0xffL) | 0x21L);
2938       Mov(scratch2, (kDebugZapValue & ~0xffL) | 0x21L);
2939     }
2940     B(gc_required);
2941     return;
2942   }
2943 
2944   UseScratchRegisterScope temps(this);
2945   Register scratch3 = temps.AcquireX();
2946 
2947   DCHECK(!AreAliased(result, scratch1, scratch2, scratch3));
2948   DCHECK(result.Is64Bits() && scratch1.Is64Bits() && scratch2.Is64Bits());
2949 
2950   // Make object size into bytes.
2951   if ((flags & SIZE_IN_WORDS) != 0) {
2952     object_size *= kPointerSize;
2953   }
2954   DCHECK(0 == (object_size & kObjectAlignmentMask));
2955 
2956   // Check relative positions of allocation top and limit addresses.
2957   // The values must be adjacent in memory to allow the use of LDP.
2958   ExternalReference heap_allocation_top =
2959       AllocationUtils::GetAllocationTopReference(isolate(), flags);
2960   ExternalReference heap_allocation_limit =
2961       AllocationUtils::GetAllocationLimitReference(isolate(), flags);
2962   intptr_t top = reinterpret_cast<intptr_t>(heap_allocation_top.address());
2963   intptr_t limit = reinterpret_cast<intptr_t>(heap_allocation_limit.address());
2964   DCHECK((limit - top) == kPointerSize);
2965 
2966   // Set up allocation top address and allocation limit registers.
2967   Register top_address = scratch1;
2968   Register alloc_limit = scratch2;
2969   Register result_end = scratch3;
2970   Mov(top_address, Operand(heap_allocation_top));
2971 
2972   if ((flags & RESULT_CONTAINS_TOP) == 0) {
2973     // Load allocation top into result and allocation limit into alloc_limit.
2974     Ldp(result, alloc_limit, MemOperand(top_address));
2975   } else {
2976     if (emit_debug_code()) {
2977       // Assert that result actually contains top on entry.
2978       Ldr(alloc_limit, MemOperand(top_address));
2979       Cmp(result, alloc_limit);
2980       Check(eq, kUnexpectedAllocationTop);
2981     }
2982     // Load allocation limit. Result already contains allocation top.
2983     Ldr(alloc_limit, MemOperand(top_address, limit - top));
2984   }
2985 
2986   // We can ignore DOUBLE_ALIGNMENT flags here because doubles and pointers have
2987   // the same alignment on ARM64.
2988   STATIC_ASSERT(kPointerAlignment == kDoubleAlignment);
2989 
2990   // Calculate new top and bail out if new space is exhausted.
2991   Adds(result_end, result, object_size);
2992   Ccmp(result_end, alloc_limit, CFlag, cc);
2993   B(hi, gc_required);
2994   Str(result_end, MemOperand(top_address));
2995 
2996   // Tag the object if requested.
2997   if ((flags & TAG_OBJECT) != 0) {
2998     ObjectTag(result, result);
2999   }
3000 }
3001 
3002 
Allocate(Register object_size,Register result,Register result_end,Register scratch,Label * gc_required,AllocationFlags flags)3003 void MacroAssembler::Allocate(Register object_size, Register result,
3004                               Register result_end, Register scratch,
3005                               Label* gc_required, AllocationFlags flags) {
3006   if (!FLAG_inline_new) {
3007     if (emit_debug_code()) {
3008       // Trash the registers to simulate an allocation failure.
3009       // We apply salt to the original zap value to easily spot the values.
3010       Mov(result, (kDebugZapValue & ~0xffL) | 0x11L);
3011       Mov(scratch, (kDebugZapValue & ~0xffL) | 0x21L);
3012       Mov(result_end, (kDebugZapValue & ~0xffL) | 0x21L);
3013     }
3014     B(gc_required);
3015     return;
3016   }
3017 
3018   UseScratchRegisterScope temps(this);
3019   Register scratch2 = temps.AcquireX();
3020 
3021   // |object_size| and |result_end| may overlap, other registers must not.
3022   DCHECK(!AreAliased(object_size, result, scratch, scratch2));
3023   DCHECK(!AreAliased(result_end, result, scratch, scratch2));
3024   DCHECK(object_size.Is64Bits() && result.Is64Bits() && scratch.Is64Bits() &&
3025          result_end.Is64Bits());
3026 
3027   // Check relative positions of allocation top and limit addresses.
3028   // The values must be adjacent in memory to allow the use of LDP.
3029   ExternalReference heap_allocation_top =
3030       AllocationUtils::GetAllocationTopReference(isolate(), flags);
3031   ExternalReference heap_allocation_limit =
3032       AllocationUtils::GetAllocationLimitReference(isolate(), flags);
3033   intptr_t top = reinterpret_cast<intptr_t>(heap_allocation_top.address());
3034   intptr_t limit = reinterpret_cast<intptr_t>(heap_allocation_limit.address());
3035   DCHECK((limit - top) == kPointerSize);
3036 
3037   // Set up allocation top address and allocation limit registers.
3038   Register top_address = scratch;
3039   Register alloc_limit = scratch2;
3040   Mov(top_address, heap_allocation_top);
3041 
3042   if ((flags & RESULT_CONTAINS_TOP) == 0) {
3043     // Load allocation top into result and allocation limit into alloc_limit.
3044     Ldp(result, alloc_limit, MemOperand(top_address));
3045   } else {
3046     if (emit_debug_code()) {
3047       // Assert that result actually contains top on entry.
3048       Ldr(alloc_limit, MemOperand(top_address));
3049       Cmp(result, alloc_limit);
3050       Check(eq, kUnexpectedAllocationTop);
3051     }
3052     // Load allocation limit. Result already contains allocation top.
3053     Ldr(alloc_limit, MemOperand(top_address, limit - top));
3054   }
3055 
3056   // We can ignore DOUBLE_ALIGNMENT flags here because doubles and pointers have
3057   // the same alignment on ARM64.
3058   STATIC_ASSERT(kPointerAlignment == kDoubleAlignment);
3059 
3060   // Calculate new top and bail out if new space is exhausted
3061   if ((flags & SIZE_IN_WORDS) != 0) {
3062     Adds(result_end, result, Operand(object_size, LSL, kPointerSizeLog2));
3063   } else {
3064     Adds(result_end, result, object_size);
3065   }
3066 
3067   if (emit_debug_code()) {
3068     Tst(result_end, kObjectAlignmentMask);
3069     Check(eq, kUnalignedAllocationInNewSpace);
3070   }
3071 
3072   Ccmp(result_end, alloc_limit, CFlag, cc);
3073   B(hi, gc_required);
3074   Str(result_end, MemOperand(top_address));
3075 
3076   // Tag the object if requested.
3077   if ((flags & TAG_OBJECT) != 0) {
3078     ObjectTag(result, result);
3079   }
3080 }
3081 
3082 
AllocateTwoByteString(Register result,Register length,Register scratch1,Register scratch2,Register scratch3,Label * gc_required)3083 void MacroAssembler::AllocateTwoByteString(Register result,
3084                                            Register length,
3085                                            Register scratch1,
3086                                            Register scratch2,
3087                                            Register scratch3,
3088                                            Label* gc_required) {
3089   DCHECK(!AreAliased(result, length, scratch1, scratch2, scratch3));
3090   // Calculate the number of bytes needed for the characters in the string while
3091   // observing object alignment.
3092   STATIC_ASSERT((SeqTwoByteString::kHeaderSize & kObjectAlignmentMask) == 0);
3093   Add(scratch1, length, length);  // Length in bytes, not chars.
3094   Add(scratch1, scratch1, kObjectAlignmentMask + SeqTwoByteString::kHeaderSize);
3095   Bic(scratch1, scratch1, kObjectAlignmentMask);
3096 
3097   // Allocate two-byte string in new space.
3098   Allocate(scratch1,
3099            result,
3100            scratch2,
3101            scratch3,
3102            gc_required,
3103            TAG_OBJECT);
3104 
3105   // Set the map, length and hash field.
3106   InitializeNewString(result,
3107                       length,
3108                       Heap::kStringMapRootIndex,
3109                       scratch1,
3110                       scratch2);
3111 }
3112 
3113 
AllocateOneByteString(Register result,Register length,Register scratch1,Register scratch2,Register scratch3,Label * gc_required)3114 void MacroAssembler::AllocateOneByteString(Register result, Register length,
3115                                            Register scratch1, Register scratch2,
3116                                            Register scratch3,
3117                                            Label* gc_required) {
3118   DCHECK(!AreAliased(result, length, scratch1, scratch2, scratch3));
3119   // Calculate the number of bytes needed for the characters in the string while
3120   // observing object alignment.
3121   STATIC_ASSERT((SeqOneByteString::kHeaderSize & kObjectAlignmentMask) == 0);
3122   STATIC_ASSERT(kCharSize == 1);
3123   Add(scratch1, length, kObjectAlignmentMask + SeqOneByteString::kHeaderSize);
3124   Bic(scratch1, scratch1, kObjectAlignmentMask);
3125 
3126   // Allocate one-byte string in new space.
3127   Allocate(scratch1,
3128            result,
3129            scratch2,
3130            scratch3,
3131            gc_required,
3132            TAG_OBJECT);
3133 
3134   // Set the map, length and hash field.
3135   InitializeNewString(result, length, Heap::kOneByteStringMapRootIndex,
3136                       scratch1, scratch2);
3137 }
3138 
3139 
AllocateTwoByteConsString(Register result,Register length,Register scratch1,Register scratch2,Label * gc_required)3140 void MacroAssembler::AllocateTwoByteConsString(Register result,
3141                                                Register length,
3142                                                Register scratch1,
3143                                                Register scratch2,
3144                                                Label* gc_required) {
3145   Allocate(ConsString::kSize, result, scratch1, scratch2, gc_required,
3146            TAG_OBJECT);
3147 
3148   InitializeNewString(result,
3149                       length,
3150                       Heap::kConsStringMapRootIndex,
3151                       scratch1,
3152                       scratch2);
3153 }
3154 
3155 
AllocateOneByteConsString(Register result,Register length,Register scratch1,Register scratch2,Label * gc_required)3156 void MacroAssembler::AllocateOneByteConsString(Register result, Register length,
3157                                                Register scratch1,
3158                                                Register scratch2,
3159                                                Label* gc_required) {
3160   Allocate(ConsString::kSize,
3161            result,
3162            scratch1,
3163            scratch2,
3164            gc_required,
3165            TAG_OBJECT);
3166 
3167   InitializeNewString(result, length, Heap::kConsOneByteStringMapRootIndex,
3168                       scratch1, scratch2);
3169 }
3170 
3171 
AllocateTwoByteSlicedString(Register result,Register length,Register scratch1,Register scratch2,Label * gc_required)3172 void MacroAssembler::AllocateTwoByteSlicedString(Register result,
3173                                                  Register length,
3174                                                  Register scratch1,
3175                                                  Register scratch2,
3176                                                  Label* gc_required) {
3177   DCHECK(!AreAliased(result, length, scratch1, scratch2));
3178   Allocate(SlicedString::kSize, result, scratch1, scratch2, gc_required,
3179            TAG_OBJECT);
3180 
3181   InitializeNewString(result,
3182                       length,
3183                       Heap::kSlicedStringMapRootIndex,
3184                       scratch1,
3185                       scratch2);
3186 }
3187 
3188 
AllocateOneByteSlicedString(Register result,Register length,Register scratch1,Register scratch2,Label * gc_required)3189 void MacroAssembler::AllocateOneByteSlicedString(Register result,
3190                                                  Register length,
3191                                                  Register scratch1,
3192                                                  Register scratch2,
3193                                                  Label* gc_required) {
3194   DCHECK(!AreAliased(result, length, scratch1, scratch2));
3195   Allocate(SlicedString::kSize, result, scratch1, scratch2, gc_required,
3196            TAG_OBJECT);
3197 
3198   InitializeNewString(result, length, Heap::kSlicedOneByteStringMapRootIndex,
3199                       scratch1, scratch2);
3200 }
3201 
3202 
3203 // Allocates a heap number or jumps to the need_gc label if the young space
3204 // is full and a scavenge is needed.
AllocateHeapNumber(Register result,Label * gc_required,Register scratch1,Register scratch2,CPURegister value,CPURegister heap_number_map,MutableMode mode)3205 void MacroAssembler::AllocateHeapNumber(Register result,
3206                                         Label* gc_required,
3207                                         Register scratch1,
3208                                         Register scratch2,
3209                                         CPURegister value,
3210                                         CPURegister heap_number_map,
3211                                         MutableMode mode) {
3212   DCHECK(!value.IsValid() || value.Is64Bits());
3213   UseScratchRegisterScope temps(this);
3214 
3215   // Allocate an object in the heap for the heap number and tag it as a heap
3216   // object.
3217   Allocate(HeapNumber::kSize, result, scratch1, scratch2, gc_required,
3218            NO_ALLOCATION_FLAGS);
3219 
3220   Heap::RootListIndex map_index = mode == MUTABLE
3221       ? Heap::kMutableHeapNumberMapRootIndex
3222       : Heap::kHeapNumberMapRootIndex;
3223 
3224   // Prepare the heap number map.
3225   if (!heap_number_map.IsValid()) {
3226     // If we have a valid value register, use the same type of register to store
3227     // the map so we can use STP to store both in one instruction.
3228     if (value.IsValid() && value.IsFPRegister()) {
3229       heap_number_map = temps.AcquireD();
3230     } else {
3231       heap_number_map = scratch1;
3232     }
3233     LoadRoot(heap_number_map, map_index);
3234   }
3235   if (emit_debug_code()) {
3236     Register map;
3237     if (heap_number_map.IsFPRegister()) {
3238       map = scratch1;
3239       Fmov(map, DoubleRegister(heap_number_map));
3240     } else {
3241       map = Register(heap_number_map);
3242     }
3243     AssertRegisterIsRoot(map, map_index);
3244   }
3245 
3246   // Store the heap number map and the value in the allocated object.
3247   if (value.IsSameSizeAndType(heap_number_map)) {
3248     STATIC_ASSERT(HeapObject::kMapOffset + kPointerSize ==
3249                   HeapNumber::kValueOffset);
3250     Stp(heap_number_map, value, MemOperand(result, HeapObject::kMapOffset));
3251   } else {
3252     Str(heap_number_map, MemOperand(result, HeapObject::kMapOffset));
3253     if (value.IsValid()) {
3254       Str(value, MemOperand(result, HeapNumber::kValueOffset));
3255     }
3256   }
3257   ObjectTag(result, result);
3258 }
3259 
3260 
JumpIfObjectType(Register object,Register map,Register type_reg,InstanceType type,Label * if_cond_pass,Condition cond)3261 void MacroAssembler::JumpIfObjectType(Register object,
3262                                       Register map,
3263                                       Register type_reg,
3264                                       InstanceType type,
3265                                       Label* if_cond_pass,
3266                                       Condition cond) {
3267   CompareObjectType(object, map, type_reg, type);
3268   B(cond, if_cond_pass);
3269 }
3270 
3271 
AllocateJSValue(Register result,Register constructor,Register value,Register scratch1,Register scratch2,Label * gc_required)3272 void MacroAssembler::AllocateJSValue(Register result, Register constructor,
3273                                      Register value, Register scratch1,
3274                                      Register scratch2, Label* gc_required) {
3275   DCHECK(!result.is(constructor));
3276   DCHECK(!result.is(scratch1));
3277   DCHECK(!result.is(scratch2));
3278   DCHECK(!result.is(value));
3279 
3280   // Allocate JSValue in new space.
3281   Allocate(JSValue::kSize, result, scratch1, scratch2, gc_required, TAG_OBJECT);
3282 
3283   // Initialize the JSValue.
3284   LoadGlobalFunctionInitialMap(constructor, scratch1, scratch2);
3285   Str(scratch1, FieldMemOperand(result, HeapObject::kMapOffset));
3286   LoadRoot(scratch1, Heap::kEmptyFixedArrayRootIndex);
3287   Str(scratch1, FieldMemOperand(result, JSObject::kPropertiesOffset));
3288   Str(scratch1, FieldMemOperand(result, JSObject::kElementsOffset));
3289   Str(value, FieldMemOperand(result, JSValue::kValueOffset));
3290   STATIC_ASSERT(JSValue::kSize == 4 * kPointerSize);
3291 }
3292 
3293 
JumpIfNotObjectType(Register object,Register map,Register type_reg,InstanceType type,Label * if_not_object)3294 void MacroAssembler::JumpIfNotObjectType(Register object,
3295                                          Register map,
3296                                          Register type_reg,
3297                                          InstanceType type,
3298                                          Label* if_not_object) {
3299   JumpIfObjectType(object, map, type_reg, type, if_not_object, ne);
3300 }
3301 
3302 
3303 // Sets condition flags based on comparison, and returns type in type_reg.
CompareObjectType(Register object,Register map,Register type_reg,InstanceType type)3304 void MacroAssembler::CompareObjectType(Register object,
3305                                        Register map,
3306                                        Register type_reg,
3307                                        InstanceType type) {
3308   Ldr(map, FieldMemOperand(object, HeapObject::kMapOffset));
3309   CompareInstanceType(map, type_reg, type);
3310 }
3311 
3312 
3313 // Sets condition flags based on comparison, and returns type in type_reg.
CompareInstanceType(Register map,Register type_reg,InstanceType type)3314 void MacroAssembler::CompareInstanceType(Register map,
3315                                          Register type_reg,
3316                                          InstanceType type) {
3317   Ldrb(type_reg, FieldMemOperand(map, Map::kInstanceTypeOffset));
3318   Cmp(type_reg, type);
3319 }
3320 
3321 
CompareObjectMap(Register obj,Heap::RootListIndex index)3322 void MacroAssembler::CompareObjectMap(Register obj, Heap::RootListIndex index) {
3323   UseScratchRegisterScope temps(this);
3324   Register obj_map = temps.AcquireX();
3325   Ldr(obj_map, FieldMemOperand(obj, HeapObject::kMapOffset));
3326   CompareRoot(obj_map, index);
3327 }
3328 
3329 
CompareObjectMap(Register obj,Register scratch,Handle<Map> map)3330 void MacroAssembler::CompareObjectMap(Register obj, Register scratch,
3331                                       Handle<Map> map) {
3332   Ldr(scratch, FieldMemOperand(obj, HeapObject::kMapOffset));
3333   CompareMap(scratch, map);
3334 }
3335 
3336 
CompareMap(Register obj_map,Handle<Map> map)3337 void MacroAssembler::CompareMap(Register obj_map,
3338                                 Handle<Map> map) {
3339   Cmp(obj_map, Operand(map));
3340 }
3341 
3342 
CheckMap(Register obj,Register scratch,Handle<Map> map,Label * fail,SmiCheckType smi_check_type)3343 void MacroAssembler::CheckMap(Register obj,
3344                               Register scratch,
3345                               Handle<Map> map,
3346                               Label* fail,
3347                               SmiCheckType smi_check_type) {
3348   if (smi_check_type == DO_SMI_CHECK) {
3349     JumpIfSmi(obj, fail);
3350   }
3351 
3352   CompareObjectMap(obj, scratch, map);
3353   B(ne, fail);
3354 }
3355 
3356 
CheckMap(Register obj,Register scratch,Heap::RootListIndex index,Label * fail,SmiCheckType smi_check_type)3357 void MacroAssembler::CheckMap(Register obj,
3358                               Register scratch,
3359                               Heap::RootListIndex index,
3360                               Label* fail,
3361                               SmiCheckType smi_check_type) {
3362   if (smi_check_type == DO_SMI_CHECK) {
3363     JumpIfSmi(obj, fail);
3364   }
3365   Ldr(scratch, FieldMemOperand(obj, HeapObject::kMapOffset));
3366   JumpIfNotRoot(scratch, index, fail);
3367 }
3368 
3369 
CheckMap(Register obj_map,Handle<Map> map,Label * fail,SmiCheckType smi_check_type)3370 void MacroAssembler::CheckMap(Register obj_map,
3371                               Handle<Map> map,
3372                               Label* fail,
3373                               SmiCheckType smi_check_type) {
3374   if (smi_check_type == DO_SMI_CHECK) {
3375     JumpIfSmi(obj_map, fail);
3376   }
3377 
3378   CompareMap(obj_map, map);
3379   B(ne, fail);
3380 }
3381 
3382 
DispatchWeakMap(Register obj,Register scratch1,Register scratch2,Handle<WeakCell> cell,Handle<Code> success,SmiCheckType smi_check_type)3383 void MacroAssembler::DispatchWeakMap(Register obj, Register scratch1,
3384                                      Register scratch2, Handle<WeakCell> cell,
3385                                      Handle<Code> success,
3386                                      SmiCheckType smi_check_type) {
3387   Label fail;
3388   if (smi_check_type == DO_SMI_CHECK) {
3389     JumpIfSmi(obj, &fail);
3390   }
3391   Ldr(scratch1, FieldMemOperand(obj, HeapObject::kMapOffset));
3392   CmpWeakValue(scratch1, cell, scratch2);
3393   B(ne, &fail);
3394   Jump(success, RelocInfo::CODE_TARGET);
3395   Bind(&fail);
3396 }
3397 
3398 
CmpWeakValue(Register value,Handle<WeakCell> cell,Register scratch)3399 void MacroAssembler::CmpWeakValue(Register value, Handle<WeakCell> cell,
3400                                   Register scratch) {
3401   Mov(scratch, Operand(cell));
3402   Ldr(scratch, FieldMemOperand(scratch, WeakCell::kValueOffset));
3403   Cmp(value, scratch);
3404 }
3405 
3406 
GetWeakValue(Register value,Handle<WeakCell> cell)3407 void MacroAssembler::GetWeakValue(Register value, Handle<WeakCell> cell) {
3408   Mov(value, Operand(cell));
3409   Ldr(value, FieldMemOperand(value, WeakCell::kValueOffset));
3410 }
3411 
3412 
LoadWeakValue(Register value,Handle<WeakCell> cell,Label * miss)3413 void MacroAssembler::LoadWeakValue(Register value, Handle<WeakCell> cell,
3414                                    Label* miss) {
3415   GetWeakValue(value, cell);
3416   JumpIfSmi(value, miss);
3417 }
3418 
3419 
TestMapBitfield(Register object,uint64_t mask)3420 void MacroAssembler::TestMapBitfield(Register object, uint64_t mask) {
3421   UseScratchRegisterScope temps(this);
3422   Register temp = temps.AcquireX();
3423   Ldr(temp, FieldMemOperand(object, HeapObject::kMapOffset));
3424   Ldrb(temp, FieldMemOperand(temp, Map::kBitFieldOffset));
3425   Tst(temp, mask);
3426 }
3427 
3428 
LoadElementsKindFromMap(Register result,Register map)3429 void MacroAssembler::LoadElementsKindFromMap(Register result, Register map) {
3430   // Load the map's "bit field 2".
3431   __ Ldrb(result, FieldMemOperand(map, Map::kBitField2Offset));
3432   // Retrieve elements_kind from bit field 2.
3433   DecodeField<Map::ElementsKindBits>(result);
3434 }
3435 
3436 
GetMapConstructor(Register result,Register map,Register temp,Register temp2)3437 void MacroAssembler::GetMapConstructor(Register result, Register map,
3438                                        Register temp, Register temp2) {
3439   Label done, loop;
3440   Ldr(result, FieldMemOperand(map, Map::kConstructorOrBackPointerOffset));
3441   Bind(&loop);
3442   JumpIfSmi(result, &done);
3443   CompareObjectType(result, temp, temp2, MAP_TYPE);
3444   B(ne, &done);
3445   Ldr(result, FieldMemOperand(result, Map::kConstructorOrBackPointerOffset));
3446   B(&loop);
3447   Bind(&done);
3448 }
3449 
3450 
TryGetFunctionPrototype(Register function,Register result,Register scratch,Label * miss)3451 void MacroAssembler::TryGetFunctionPrototype(Register function, Register result,
3452                                              Register scratch, Label* miss) {
3453   DCHECK(!AreAliased(function, result, scratch));
3454 
3455   // Get the prototype or initial map from the function.
3456   Ldr(result,
3457       FieldMemOperand(function, JSFunction::kPrototypeOrInitialMapOffset));
3458 
3459   // If the prototype or initial map is the hole, don't return it and simply
3460   // miss the cache instead. This will allow us to allocate a prototype object
3461   // on-demand in the runtime system.
3462   JumpIfRoot(result, Heap::kTheHoleValueRootIndex, miss);
3463 
3464   // If the function does not have an initial map, we're done.
3465   Label done;
3466   JumpIfNotObjectType(result, scratch, scratch, MAP_TYPE, &done);
3467 
3468   // Get the prototype from the initial map.
3469   Ldr(result, FieldMemOperand(result, Map::kPrototypeOffset));
3470 
3471   // All done.
3472   Bind(&done);
3473 }
3474 
3475 
PushRoot(Heap::RootListIndex index)3476 void MacroAssembler::PushRoot(Heap::RootListIndex index) {
3477   UseScratchRegisterScope temps(this);
3478   Register temp = temps.AcquireX();
3479   LoadRoot(temp, index);
3480   Push(temp);
3481 }
3482 
3483 
CompareRoot(const Register & obj,Heap::RootListIndex index)3484 void MacroAssembler::CompareRoot(const Register& obj,
3485                                  Heap::RootListIndex index) {
3486   UseScratchRegisterScope temps(this);
3487   Register temp = temps.AcquireX();
3488   DCHECK(!AreAliased(obj, temp));
3489   LoadRoot(temp, index);
3490   Cmp(obj, temp);
3491 }
3492 
3493 
JumpIfRoot(const Register & obj,Heap::RootListIndex index,Label * if_equal)3494 void MacroAssembler::JumpIfRoot(const Register& obj,
3495                                 Heap::RootListIndex index,
3496                                 Label* if_equal) {
3497   CompareRoot(obj, index);
3498   B(eq, if_equal);
3499 }
3500 
3501 
JumpIfNotRoot(const Register & obj,Heap::RootListIndex index,Label * if_not_equal)3502 void MacroAssembler::JumpIfNotRoot(const Register& obj,
3503                                    Heap::RootListIndex index,
3504                                    Label* if_not_equal) {
3505   CompareRoot(obj, index);
3506   B(ne, if_not_equal);
3507 }
3508 
3509 
CompareAndSplit(const Register & lhs,const Operand & rhs,Condition cond,Label * if_true,Label * if_false,Label * fall_through)3510 void MacroAssembler::CompareAndSplit(const Register& lhs,
3511                                      const Operand& rhs,
3512                                      Condition cond,
3513                                      Label* if_true,
3514                                      Label* if_false,
3515                                      Label* fall_through) {
3516   if ((if_true == if_false) && (if_false == fall_through)) {
3517     // Fall through.
3518   } else if (if_true == if_false) {
3519     B(if_true);
3520   } else if (if_false == fall_through) {
3521     CompareAndBranch(lhs, rhs, cond, if_true);
3522   } else if (if_true == fall_through) {
3523     CompareAndBranch(lhs, rhs, NegateCondition(cond), if_false);
3524   } else {
3525     CompareAndBranch(lhs, rhs, cond, if_true);
3526     B(if_false);
3527   }
3528 }
3529 
3530 
TestAndSplit(const Register & reg,uint64_t bit_pattern,Label * if_all_clear,Label * if_any_set,Label * fall_through)3531 void MacroAssembler::TestAndSplit(const Register& reg,
3532                                   uint64_t bit_pattern,
3533                                   Label* if_all_clear,
3534                                   Label* if_any_set,
3535                                   Label* fall_through) {
3536   if ((if_all_clear == if_any_set) && (if_any_set == fall_through)) {
3537     // Fall through.
3538   } else if (if_all_clear == if_any_set) {
3539     B(if_all_clear);
3540   } else if (if_all_clear == fall_through) {
3541     TestAndBranchIfAnySet(reg, bit_pattern, if_any_set);
3542   } else if (if_any_set == fall_through) {
3543     TestAndBranchIfAllClear(reg, bit_pattern, if_all_clear);
3544   } else {
3545     TestAndBranchIfAnySet(reg, bit_pattern, if_any_set);
3546     B(if_all_clear);
3547   }
3548 }
3549 
3550 
CheckFastElements(Register map,Register scratch,Label * fail)3551 void MacroAssembler::CheckFastElements(Register map,
3552                                        Register scratch,
3553                                        Label* fail) {
3554   STATIC_ASSERT(FAST_SMI_ELEMENTS == 0);
3555   STATIC_ASSERT(FAST_HOLEY_SMI_ELEMENTS == 1);
3556   STATIC_ASSERT(FAST_ELEMENTS == 2);
3557   STATIC_ASSERT(FAST_HOLEY_ELEMENTS == 3);
3558   Ldrb(scratch, FieldMemOperand(map, Map::kBitField2Offset));
3559   Cmp(scratch, Map::kMaximumBitField2FastHoleyElementValue);
3560   B(hi, fail);
3561 }
3562 
3563 
CheckFastObjectElements(Register map,Register scratch,Label * fail)3564 void MacroAssembler::CheckFastObjectElements(Register map,
3565                                              Register scratch,
3566                                              Label* fail) {
3567   STATIC_ASSERT(FAST_SMI_ELEMENTS == 0);
3568   STATIC_ASSERT(FAST_HOLEY_SMI_ELEMENTS == 1);
3569   STATIC_ASSERT(FAST_ELEMENTS == 2);
3570   STATIC_ASSERT(FAST_HOLEY_ELEMENTS == 3);
3571   Ldrb(scratch, FieldMemOperand(map, Map::kBitField2Offset));
3572   Cmp(scratch, Operand(Map::kMaximumBitField2FastHoleySmiElementValue));
3573   // If cond==ls, set cond=hi, otherwise compare.
3574   Ccmp(scratch,
3575        Operand(Map::kMaximumBitField2FastHoleyElementValue), CFlag, hi);
3576   B(hi, fail);
3577 }
3578 
3579 
3580 // Note: The ARM version of this clobbers elements_reg, but this version does
3581 // not. Some uses of this in ARM64 assume that elements_reg will be preserved.
StoreNumberToDoubleElements(Register value_reg,Register key_reg,Register elements_reg,Register scratch1,FPRegister fpscratch1,Label * fail,int elements_offset)3582 void MacroAssembler::StoreNumberToDoubleElements(Register value_reg,
3583                                                  Register key_reg,
3584                                                  Register elements_reg,
3585                                                  Register scratch1,
3586                                                  FPRegister fpscratch1,
3587                                                  Label* fail,
3588                                                  int elements_offset) {
3589   DCHECK(!AreAliased(value_reg, key_reg, elements_reg, scratch1));
3590   Label store_num;
3591 
3592   // Speculatively convert the smi to a double - all smis can be exactly
3593   // represented as a double.
3594   SmiUntagToDouble(fpscratch1, value_reg, kSpeculativeUntag);
3595 
3596   // If value_reg is a smi, we're done.
3597   JumpIfSmi(value_reg, &store_num);
3598 
3599   // Ensure that the object is a heap number.
3600   JumpIfNotHeapNumber(value_reg, fail);
3601 
3602   Ldr(fpscratch1, FieldMemOperand(value_reg, HeapNumber::kValueOffset));
3603 
3604   // Canonicalize NaNs.
3605   CanonicalizeNaN(fpscratch1);
3606 
3607   // Store the result.
3608   Bind(&store_num);
3609   Add(scratch1, elements_reg,
3610       Operand::UntagSmiAndScale(key_reg, kDoubleSizeLog2));
3611   Str(fpscratch1,
3612       FieldMemOperand(scratch1,
3613                       FixedDoubleArray::kHeaderSize - elements_offset));
3614 }
3615 
3616 
AllowThisStubCall(CodeStub * stub)3617 bool MacroAssembler::AllowThisStubCall(CodeStub* stub) {
3618   return has_frame_ || !stub->SometimesSetsUpAFrame();
3619 }
3620 
3621 
IndexFromHash(Register hash,Register index)3622 void MacroAssembler::IndexFromHash(Register hash, Register index) {
3623   // If the hash field contains an array index pick it out. The assert checks
3624   // that the constants for the maximum number of digits for an array index
3625   // cached in the hash field and the number of bits reserved for it does not
3626   // conflict.
3627   DCHECK(TenToThe(String::kMaxCachedArrayIndexLength) <
3628          (1 << String::kArrayIndexValueBits));
3629   DecodeField<String::ArrayIndexValueBits>(index, hash);
3630   SmiTag(index, index);
3631 }
3632 
3633 
EmitSeqStringSetCharCheck(Register string,Register index,SeqStringSetCharCheckIndexType index_type,Register scratch,uint32_t encoding_mask)3634 void MacroAssembler::EmitSeqStringSetCharCheck(
3635     Register string,
3636     Register index,
3637     SeqStringSetCharCheckIndexType index_type,
3638     Register scratch,
3639     uint32_t encoding_mask) {
3640   DCHECK(!AreAliased(string, index, scratch));
3641 
3642   if (index_type == kIndexIsSmi) {
3643     AssertSmi(index);
3644   }
3645 
3646   // Check that string is an object.
3647   AssertNotSmi(string, kNonObject);
3648 
3649   // Check that string has an appropriate map.
3650   Ldr(scratch, FieldMemOperand(string, HeapObject::kMapOffset));
3651   Ldrb(scratch, FieldMemOperand(scratch, Map::kInstanceTypeOffset));
3652 
3653   And(scratch, scratch, kStringRepresentationMask | kStringEncodingMask);
3654   Cmp(scratch, encoding_mask);
3655   Check(eq, kUnexpectedStringType);
3656 
3657   Ldr(scratch, FieldMemOperand(string, String::kLengthOffset));
3658   Cmp(index, index_type == kIndexIsSmi ? scratch : Operand::UntagSmi(scratch));
3659   Check(lt, kIndexIsTooLarge);
3660 
3661   DCHECK_EQ(static_cast<Smi*>(0), Smi::FromInt(0));
3662   Cmp(index, 0);
3663   Check(ge, kIndexIsNegative);
3664 }
3665 
3666 
CheckAccessGlobalProxy(Register holder_reg,Register scratch1,Register scratch2,Label * miss)3667 void MacroAssembler::CheckAccessGlobalProxy(Register holder_reg,
3668                                             Register scratch1,
3669                                             Register scratch2,
3670                                             Label* miss) {
3671   DCHECK(!AreAliased(holder_reg, scratch1, scratch2));
3672   Label same_contexts;
3673 
3674   // Load current lexical context from the stack frame.
3675   Ldr(scratch1, MemOperand(fp, StandardFrameConstants::kContextOffset));
3676   // In debug mode, make sure the lexical context is set.
3677 #ifdef DEBUG
3678   Cmp(scratch1, 0);
3679   Check(ne, kWeShouldNotHaveAnEmptyLexicalContext);
3680 #endif
3681 
3682   // Load the native context of the current context.
3683   Ldr(scratch1, ContextMemOperand(scratch1, Context::NATIVE_CONTEXT_INDEX));
3684 
3685   // Check the context is a native context.
3686   if (emit_debug_code()) {
3687     // Read the first word and compare to the native_context_map.
3688     Ldr(scratch2, FieldMemOperand(scratch1, HeapObject::kMapOffset));
3689     CompareRoot(scratch2, Heap::kNativeContextMapRootIndex);
3690     Check(eq, kExpectedNativeContext);
3691   }
3692 
3693   // Check if both contexts are the same.
3694   Ldr(scratch2, FieldMemOperand(holder_reg,
3695                                 JSGlobalProxy::kNativeContextOffset));
3696   Cmp(scratch1, scratch2);
3697   B(&same_contexts, eq);
3698 
3699   // Check the context is a native context.
3700   if (emit_debug_code()) {
3701     // We're short on scratch registers here, so use holder_reg as a scratch.
3702     Push(holder_reg);
3703     Register scratch3 = holder_reg;
3704 
3705     CompareRoot(scratch2, Heap::kNullValueRootIndex);
3706     Check(ne, kExpectedNonNullContext);
3707 
3708     Ldr(scratch3, FieldMemOperand(scratch2, HeapObject::kMapOffset));
3709     CompareRoot(scratch3, Heap::kNativeContextMapRootIndex);
3710     Check(eq, kExpectedNativeContext);
3711     Pop(holder_reg);
3712   }
3713 
3714   // Check that the security token in the calling global object is
3715   // compatible with the security token in the receiving global
3716   // object.
3717   int token_offset = Context::kHeaderSize +
3718                      Context::SECURITY_TOKEN_INDEX * kPointerSize;
3719 
3720   Ldr(scratch1, FieldMemOperand(scratch1, token_offset));
3721   Ldr(scratch2, FieldMemOperand(scratch2, token_offset));
3722   Cmp(scratch1, scratch2);
3723   B(miss, ne);
3724 
3725   Bind(&same_contexts);
3726 }
3727 
3728 
3729 // Compute the hash code from the untagged key. This must be kept in sync with
3730 // ComputeIntegerHash in utils.h and KeyedLoadGenericStub in
3731 // code-stub-hydrogen.cc
GetNumberHash(Register key,Register scratch)3732 void MacroAssembler::GetNumberHash(Register key, Register scratch) {
3733   DCHECK(!AreAliased(key, scratch));
3734 
3735   // Xor original key with a seed.
3736   LoadRoot(scratch, Heap::kHashSeedRootIndex);
3737   Eor(key, key, Operand::UntagSmi(scratch));
3738 
3739   // The algorithm uses 32-bit integer values.
3740   key = key.W();
3741   scratch = scratch.W();
3742 
3743   // Compute the hash code from the untagged key.  This must be kept in sync
3744   // with ComputeIntegerHash in utils.h.
3745   //
3746   // hash = ~hash + (hash <<1 15);
3747   Mvn(scratch, key);
3748   Add(key, scratch, Operand(key, LSL, 15));
3749   // hash = hash ^ (hash >> 12);
3750   Eor(key, key, Operand(key, LSR, 12));
3751   // hash = hash + (hash << 2);
3752   Add(key, key, Operand(key, LSL, 2));
3753   // hash = hash ^ (hash >> 4);
3754   Eor(key, key, Operand(key, LSR, 4));
3755   // hash = hash * 2057;
3756   Mov(scratch, Operand(key, LSL, 11));
3757   Add(key, key, Operand(key, LSL, 3));
3758   Add(key, key, scratch);
3759   // hash = hash ^ (hash >> 16);
3760   Eor(key, key, Operand(key, LSR, 16));
3761   Bic(key, key, Operand(0xc0000000u));
3762 }
3763 
3764 
LoadFromNumberDictionary(Label * miss,Register elements,Register key,Register result,Register scratch0,Register scratch1,Register scratch2,Register scratch3)3765 void MacroAssembler::LoadFromNumberDictionary(Label* miss,
3766                                               Register elements,
3767                                               Register key,
3768                                               Register result,
3769                                               Register scratch0,
3770                                               Register scratch1,
3771                                               Register scratch2,
3772                                               Register scratch3) {
3773   DCHECK(!AreAliased(elements, key, scratch0, scratch1, scratch2, scratch3));
3774 
3775   Label done;
3776 
3777   SmiUntag(scratch0, key);
3778   GetNumberHash(scratch0, scratch1);
3779 
3780   // Compute the capacity mask.
3781   Ldrsw(scratch1,
3782         UntagSmiFieldMemOperand(elements,
3783                                 SeededNumberDictionary::kCapacityOffset));
3784   Sub(scratch1, scratch1, 1);
3785 
3786   // Generate an unrolled loop that performs a few probes before giving up.
3787   for (int i = 0; i < kNumberDictionaryProbes; i++) {
3788     // Compute the masked index: (hash + i + i * i) & mask.
3789     if (i > 0) {
3790       Add(scratch2, scratch0, SeededNumberDictionary::GetProbeOffset(i));
3791     } else {
3792       Mov(scratch2, scratch0);
3793     }
3794     And(scratch2, scratch2, scratch1);
3795 
3796     // Scale the index by multiplying by the element size.
3797     DCHECK(SeededNumberDictionary::kEntrySize == 3);
3798     Add(scratch2, scratch2, Operand(scratch2, LSL, 1));
3799 
3800     // Check if the key is identical to the name.
3801     Add(scratch2, elements, Operand(scratch2, LSL, kPointerSizeLog2));
3802     Ldr(scratch3,
3803         FieldMemOperand(scratch2,
3804                         SeededNumberDictionary::kElementsStartOffset));
3805     Cmp(key, scratch3);
3806     if (i != (kNumberDictionaryProbes - 1)) {
3807       B(eq, &done);
3808     } else {
3809       B(ne, miss);
3810     }
3811   }
3812 
3813   Bind(&done);
3814   // Check that the value is a field property.
3815   const int kDetailsOffset =
3816       SeededNumberDictionary::kElementsStartOffset + 2 * kPointerSize;
3817   Ldrsw(scratch1, UntagSmiFieldMemOperand(scratch2, kDetailsOffset));
3818   DCHECK_EQ(DATA, 0);
3819   TestAndBranchIfAnySet(scratch1, PropertyDetails::TypeField::kMask, miss);
3820 
3821   // Get the value at the masked, scaled index and return.
3822   const int kValueOffset =
3823       SeededNumberDictionary::kElementsStartOffset + kPointerSize;
3824   Ldr(result, FieldMemOperand(scratch2, kValueOffset));
3825 }
3826 
3827 
RememberedSetHelper(Register object,Register address,Register scratch1,SaveFPRegsMode fp_mode,RememberedSetFinalAction and_then)3828 void MacroAssembler::RememberedSetHelper(Register object,  // For debug tests.
3829                                          Register address,
3830                                          Register scratch1,
3831                                          SaveFPRegsMode fp_mode,
3832                                          RememberedSetFinalAction and_then) {
3833   DCHECK(!AreAliased(object, address, scratch1));
3834   Label done, store_buffer_overflow;
3835   if (emit_debug_code()) {
3836     Label ok;
3837     JumpIfNotInNewSpace(object, &ok);
3838     Abort(kRememberedSetPointerInNewSpace);
3839     bind(&ok);
3840   }
3841   UseScratchRegisterScope temps(this);
3842   Register scratch2 = temps.AcquireX();
3843 
3844   // Load store buffer top.
3845   Mov(scratch2, ExternalReference::store_buffer_top(isolate()));
3846   Ldr(scratch1, MemOperand(scratch2));
3847   // Store pointer to buffer and increment buffer top.
3848   Str(address, MemOperand(scratch1, kPointerSize, PostIndex));
3849   // Write back new top of buffer.
3850   Str(scratch1, MemOperand(scratch2));
3851   // Call stub on end of buffer.
3852   // Check for end of buffer.
3853   DCHECK(StoreBuffer::kStoreBufferOverflowBit ==
3854          (1 << (14 + kPointerSizeLog2)));
3855   if (and_then == kFallThroughAtEnd) {
3856     Tbz(scratch1, (14 + kPointerSizeLog2), &done);
3857   } else {
3858     DCHECK(and_then == kReturnAtEnd);
3859     Tbnz(scratch1, (14 + kPointerSizeLog2), &store_buffer_overflow);
3860     Ret();
3861   }
3862 
3863   Bind(&store_buffer_overflow);
3864   Push(lr);
3865   StoreBufferOverflowStub store_buffer_overflow_stub(isolate(), fp_mode);
3866   CallStub(&store_buffer_overflow_stub);
3867   Pop(lr);
3868 
3869   Bind(&done);
3870   if (and_then == kReturnAtEnd) {
3871     Ret();
3872   }
3873 }
3874 
3875 
PopSafepointRegisters()3876 void MacroAssembler::PopSafepointRegisters() {
3877   const int num_unsaved = kNumSafepointRegisters - kNumSafepointSavedRegisters;
3878   PopXRegList(kSafepointSavedRegisters);
3879   Drop(num_unsaved);
3880 }
3881 
3882 
PushSafepointRegisters()3883 void MacroAssembler::PushSafepointRegisters() {
3884   // Safepoints expect a block of kNumSafepointRegisters values on the stack, so
3885   // adjust the stack for unsaved registers.
3886   const int num_unsaved = kNumSafepointRegisters - kNumSafepointSavedRegisters;
3887   DCHECK(num_unsaved >= 0);
3888   Claim(num_unsaved);
3889   PushXRegList(kSafepointSavedRegisters);
3890 }
3891 
3892 
PushSafepointRegistersAndDoubles()3893 void MacroAssembler::PushSafepointRegistersAndDoubles() {
3894   PushSafepointRegisters();
3895   PushCPURegList(CPURegList(
3896       CPURegister::kFPRegister, kDRegSizeInBits,
3897       RegisterConfiguration::ArchDefault(RegisterConfiguration::CRANKSHAFT)
3898           ->allocatable_double_codes_mask()));
3899 }
3900 
3901 
PopSafepointRegistersAndDoubles()3902 void MacroAssembler::PopSafepointRegistersAndDoubles() {
3903   PopCPURegList(CPURegList(
3904       CPURegister::kFPRegister, kDRegSizeInBits,
3905       RegisterConfiguration::ArchDefault(RegisterConfiguration::CRANKSHAFT)
3906           ->allocatable_double_codes_mask()));
3907   PopSafepointRegisters();
3908 }
3909 
3910 
SafepointRegisterStackIndex(int reg_code)3911 int MacroAssembler::SafepointRegisterStackIndex(int reg_code) {
3912   // Make sure the safepoint registers list is what we expect.
3913   DCHECK(CPURegList::GetSafepointSavedRegisters().list() == 0x6ffcffff);
3914 
3915   // Safepoint registers are stored contiguously on the stack, but not all the
3916   // registers are saved. The following registers are excluded:
3917   //  - x16 and x17 (ip0 and ip1) because they shouldn't be preserved outside of
3918   //    the macro assembler.
3919   //  - x28 (jssp) because JS stack pointer doesn't need to be included in
3920   //    safepoint registers.
3921   //  - x31 (csp) because the system stack pointer doesn't need to be included
3922   //    in safepoint registers.
3923   //
3924   // This function implements the mapping of register code to index into the
3925   // safepoint register slots.
3926   if ((reg_code >= 0) && (reg_code <= 15)) {
3927     return reg_code;
3928   } else if ((reg_code >= 18) && (reg_code <= 27)) {
3929     // Skip ip0 and ip1.
3930     return reg_code - 2;
3931   } else if ((reg_code == 29) || (reg_code == 30)) {
3932     // Also skip jssp.
3933     return reg_code - 3;
3934   } else {
3935     // This register has no safepoint register slot.
3936     UNREACHABLE();
3937     return -1;
3938   }
3939 }
3940 
3941 
CheckPageFlagSet(const Register & object,const Register & scratch,int mask,Label * if_any_set)3942 void MacroAssembler::CheckPageFlagSet(const Register& object,
3943                                       const Register& scratch,
3944                                       int mask,
3945                                       Label* if_any_set) {
3946   And(scratch, object, ~Page::kPageAlignmentMask);
3947   Ldr(scratch, MemOperand(scratch, MemoryChunk::kFlagsOffset));
3948   TestAndBranchIfAnySet(scratch, mask, if_any_set);
3949 }
3950 
3951 
CheckPageFlagClear(const Register & object,const Register & scratch,int mask,Label * if_all_clear)3952 void MacroAssembler::CheckPageFlagClear(const Register& object,
3953                                         const Register& scratch,
3954                                         int mask,
3955                                         Label* if_all_clear) {
3956   And(scratch, object, ~Page::kPageAlignmentMask);
3957   Ldr(scratch, MemOperand(scratch, MemoryChunk::kFlagsOffset));
3958   TestAndBranchIfAllClear(scratch, mask, if_all_clear);
3959 }
3960 
3961 
RecordWriteField(Register object,int offset,Register value,Register scratch,LinkRegisterStatus lr_status,SaveFPRegsMode save_fp,RememberedSetAction remembered_set_action,SmiCheck smi_check,PointersToHereCheck pointers_to_here_check_for_value)3962 void MacroAssembler::RecordWriteField(
3963     Register object,
3964     int offset,
3965     Register value,
3966     Register scratch,
3967     LinkRegisterStatus lr_status,
3968     SaveFPRegsMode save_fp,
3969     RememberedSetAction remembered_set_action,
3970     SmiCheck smi_check,
3971     PointersToHereCheck pointers_to_here_check_for_value) {
3972   // First, check if a write barrier is even needed. The tests below
3973   // catch stores of Smis.
3974   Label done;
3975 
3976   // Skip the barrier if writing a smi.
3977   if (smi_check == INLINE_SMI_CHECK) {
3978     JumpIfSmi(value, &done);
3979   }
3980 
3981   // Although the object register is tagged, the offset is relative to the start
3982   // of the object, so offset must be a multiple of kPointerSize.
3983   DCHECK(IsAligned(offset, kPointerSize));
3984 
3985   Add(scratch, object, offset - kHeapObjectTag);
3986   if (emit_debug_code()) {
3987     Label ok;
3988     Tst(scratch, (1 << kPointerSizeLog2) - 1);
3989     B(eq, &ok);
3990     Abort(kUnalignedCellInWriteBarrier);
3991     Bind(&ok);
3992   }
3993 
3994   RecordWrite(object,
3995               scratch,
3996               value,
3997               lr_status,
3998               save_fp,
3999               remembered_set_action,
4000               OMIT_SMI_CHECK,
4001               pointers_to_here_check_for_value);
4002 
4003   Bind(&done);
4004 
4005   // Clobber clobbered input registers when running with the debug-code flag
4006   // turned on to provoke errors.
4007   if (emit_debug_code()) {
4008     Mov(value, Operand(bit_cast<int64_t>(kZapValue + 4)));
4009     Mov(scratch, Operand(bit_cast<int64_t>(kZapValue + 8)));
4010   }
4011 }
4012 
4013 
4014 // Will clobber: object, map, dst.
4015 // If lr_status is kLRHasBeenSaved, lr will also be clobbered.
RecordWriteForMap(Register object,Register map,Register dst,LinkRegisterStatus lr_status,SaveFPRegsMode fp_mode)4016 void MacroAssembler::RecordWriteForMap(Register object,
4017                                        Register map,
4018                                        Register dst,
4019                                        LinkRegisterStatus lr_status,
4020                                        SaveFPRegsMode fp_mode) {
4021   ASM_LOCATION("MacroAssembler::RecordWrite");
4022   DCHECK(!AreAliased(object, map));
4023 
4024   if (emit_debug_code()) {
4025     UseScratchRegisterScope temps(this);
4026     Register temp = temps.AcquireX();
4027 
4028     CompareObjectMap(map, temp, isolate()->factory()->meta_map());
4029     Check(eq, kWrongAddressOrValuePassedToRecordWrite);
4030   }
4031 
4032   if (!FLAG_incremental_marking) {
4033     return;
4034   }
4035 
4036   if (emit_debug_code()) {
4037     UseScratchRegisterScope temps(this);
4038     Register temp = temps.AcquireX();
4039 
4040     Ldr(temp, FieldMemOperand(object, HeapObject::kMapOffset));
4041     Cmp(temp, map);
4042     Check(eq, kWrongAddressOrValuePassedToRecordWrite);
4043   }
4044 
4045   // First, check if a write barrier is even needed. The tests below
4046   // catch stores of smis and stores into the young generation.
4047   Label done;
4048 
4049   // A single check of the map's pages interesting flag suffices, since it is
4050   // only set during incremental collection, and then it's also guaranteed that
4051   // the from object's page's interesting flag is also set.  This optimization
4052   // relies on the fact that maps can never be in new space.
4053   CheckPageFlagClear(map,
4054                      map,  // Used as scratch.
4055                      MemoryChunk::kPointersToHereAreInterestingMask,
4056                      &done);
4057 
4058   // Record the actual write.
4059   if (lr_status == kLRHasNotBeenSaved) {
4060     Push(lr);
4061   }
4062   Add(dst, object, HeapObject::kMapOffset - kHeapObjectTag);
4063   RecordWriteStub stub(isolate(), object, map, dst, OMIT_REMEMBERED_SET,
4064                        fp_mode);
4065   CallStub(&stub);
4066   if (lr_status == kLRHasNotBeenSaved) {
4067     Pop(lr);
4068   }
4069 
4070   Bind(&done);
4071 
4072   // Count number of write barriers in generated code.
4073   isolate()->counters()->write_barriers_static()->Increment();
4074   IncrementCounter(isolate()->counters()->write_barriers_dynamic(), 1, map,
4075                    dst);
4076 
4077   // Clobber clobbered registers when running with the debug-code flag
4078   // turned on to provoke errors.
4079   if (emit_debug_code()) {
4080     Mov(dst, Operand(bit_cast<int64_t>(kZapValue + 12)));
4081     Mov(map, Operand(bit_cast<int64_t>(kZapValue + 16)));
4082   }
4083 }
4084 
4085 
4086 // Will clobber: object, address, value.
4087 // If lr_status is kLRHasBeenSaved, lr will also be clobbered.
4088 //
4089 // The register 'object' contains a heap object pointer. The heap object tag is
4090 // shifted away.
RecordWrite(Register object,Register address,Register value,LinkRegisterStatus lr_status,SaveFPRegsMode fp_mode,RememberedSetAction remembered_set_action,SmiCheck smi_check,PointersToHereCheck pointers_to_here_check_for_value)4091 void MacroAssembler::RecordWrite(
4092     Register object,
4093     Register address,
4094     Register value,
4095     LinkRegisterStatus lr_status,
4096     SaveFPRegsMode fp_mode,
4097     RememberedSetAction remembered_set_action,
4098     SmiCheck smi_check,
4099     PointersToHereCheck pointers_to_here_check_for_value) {
4100   ASM_LOCATION("MacroAssembler::RecordWrite");
4101   DCHECK(!AreAliased(object, value));
4102 
4103   if (emit_debug_code()) {
4104     UseScratchRegisterScope temps(this);
4105     Register temp = temps.AcquireX();
4106 
4107     Ldr(temp, MemOperand(address));
4108     Cmp(temp, value);
4109     Check(eq, kWrongAddressOrValuePassedToRecordWrite);
4110   }
4111 
4112   // First, check if a write barrier is even needed. The tests below
4113   // catch stores of smis and stores into the young generation.
4114   Label done;
4115 
4116   if (smi_check == INLINE_SMI_CHECK) {
4117     DCHECK_EQ(0, kSmiTag);
4118     JumpIfSmi(value, &done);
4119   }
4120 
4121   if (pointers_to_here_check_for_value != kPointersToHereAreAlwaysInteresting) {
4122     CheckPageFlagClear(value,
4123                        value,  // Used as scratch.
4124                        MemoryChunk::kPointersToHereAreInterestingMask,
4125                        &done);
4126   }
4127   CheckPageFlagClear(object,
4128                      value,  // Used as scratch.
4129                      MemoryChunk::kPointersFromHereAreInterestingMask,
4130                      &done);
4131 
4132   // Record the actual write.
4133   if (lr_status == kLRHasNotBeenSaved) {
4134     Push(lr);
4135   }
4136   RecordWriteStub stub(isolate(), object, value, address, remembered_set_action,
4137                        fp_mode);
4138   CallStub(&stub);
4139   if (lr_status == kLRHasNotBeenSaved) {
4140     Pop(lr);
4141   }
4142 
4143   Bind(&done);
4144 
4145   // Count number of write barriers in generated code.
4146   isolate()->counters()->write_barriers_static()->Increment();
4147   IncrementCounter(isolate()->counters()->write_barriers_dynamic(), 1, address,
4148                    value);
4149 
4150   // Clobber clobbered registers when running with the debug-code flag
4151   // turned on to provoke errors.
4152   if (emit_debug_code()) {
4153     Mov(address, Operand(bit_cast<int64_t>(kZapValue + 12)));
4154     Mov(value, Operand(bit_cast<int64_t>(kZapValue + 16)));
4155   }
4156 }
4157 
4158 
AssertHasValidColor(const Register & reg)4159 void MacroAssembler::AssertHasValidColor(const Register& reg) {
4160   if (emit_debug_code()) {
4161     // The bit sequence is backward. The first character in the string
4162     // represents the least significant bit.
4163     DCHECK(strcmp(Marking::kImpossibleBitPattern, "01") == 0);
4164 
4165     Label color_is_valid;
4166     Tbnz(reg, 0, &color_is_valid);
4167     Tbz(reg, 1, &color_is_valid);
4168     Abort(kUnexpectedColorFound);
4169     Bind(&color_is_valid);
4170   }
4171 }
4172 
4173 
GetMarkBits(Register addr_reg,Register bitmap_reg,Register shift_reg)4174 void MacroAssembler::GetMarkBits(Register addr_reg,
4175                                  Register bitmap_reg,
4176                                  Register shift_reg) {
4177   DCHECK(!AreAliased(addr_reg, bitmap_reg, shift_reg));
4178   DCHECK(addr_reg.Is64Bits() && bitmap_reg.Is64Bits() && shift_reg.Is64Bits());
4179   // addr_reg is divided into fields:
4180   // |63        page base        20|19    high      8|7   shift   3|2  0|
4181   // 'high' gives the index of the cell holding color bits for the object.
4182   // 'shift' gives the offset in the cell for this object's color.
4183   const int kShiftBits = kPointerSizeLog2 + Bitmap::kBitsPerCellLog2;
4184   UseScratchRegisterScope temps(this);
4185   Register temp = temps.AcquireX();
4186   Ubfx(temp, addr_reg, kShiftBits, kPageSizeBits - kShiftBits);
4187   Bic(bitmap_reg, addr_reg, Page::kPageAlignmentMask);
4188   Add(bitmap_reg, bitmap_reg, Operand(temp, LSL, Bitmap::kBytesPerCellLog2));
4189   // bitmap_reg:
4190   // |63        page base        20|19 zeros 15|14      high      3|2  0|
4191   Ubfx(shift_reg, addr_reg, kPointerSizeLog2, Bitmap::kBitsPerCellLog2);
4192 }
4193 
4194 
HasColor(Register object,Register bitmap_scratch,Register shift_scratch,Label * has_color,int first_bit,int second_bit)4195 void MacroAssembler::HasColor(Register object,
4196                               Register bitmap_scratch,
4197                               Register shift_scratch,
4198                               Label* has_color,
4199                               int first_bit,
4200                               int second_bit) {
4201   // See mark-compact.h for color definitions.
4202   DCHECK(!AreAliased(object, bitmap_scratch, shift_scratch));
4203 
4204   GetMarkBits(object, bitmap_scratch, shift_scratch);
4205   Ldr(bitmap_scratch, MemOperand(bitmap_scratch, MemoryChunk::kHeaderSize));
4206   // Shift the bitmap down to get the color of the object in bits [1:0].
4207   Lsr(bitmap_scratch, bitmap_scratch, shift_scratch);
4208 
4209   AssertHasValidColor(bitmap_scratch);
4210 
4211   // These bit sequences are backwards. The first character in the string
4212   // represents the least significant bit.
4213   DCHECK(strcmp(Marking::kWhiteBitPattern, "00") == 0);
4214   DCHECK(strcmp(Marking::kBlackBitPattern, "11") == 0);
4215   DCHECK(strcmp(Marking::kGreyBitPattern, "10") == 0);
4216 
4217   // Check for the color.
4218   if (first_bit == 0) {
4219     // Checking for white.
4220     DCHECK(second_bit == 0);
4221     // We only need to test the first bit.
4222     Tbz(bitmap_scratch, 0, has_color);
4223   } else {
4224     Label other_color;
4225     // Checking for grey or black.
4226     Tbz(bitmap_scratch, 0, &other_color);
4227     if (second_bit == 0) {
4228       Tbz(bitmap_scratch, 1, has_color);
4229     } else {
4230       Tbnz(bitmap_scratch, 1, has_color);
4231     }
4232     Bind(&other_color);
4233   }
4234 
4235   // Fall through if it does not have the right color.
4236 }
4237 
4238 
JumpIfBlack(Register object,Register scratch0,Register scratch1,Label * on_black)4239 void MacroAssembler::JumpIfBlack(Register object,
4240                                  Register scratch0,
4241                                  Register scratch1,
4242                                  Label* on_black) {
4243   DCHECK(strcmp(Marking::kBlackBitPattern, "11") == 0);
4244   HasColor(object, scratch0, scratch1, on_black, 1, 1);  // kBlackBitPattern.
4245 }
4246 
4247 
JumpIfDictionaryInPrototypeChain(Register object,Register scratch0,Register scratch1,Label * found)4248 void MacroAssembler::JumpIfDictionaryInPrototypeChain(
4249     Register object,
4250     Register scratch0,
4251     Register scratch1,
4252     Label* found) {
4253   DCHECK(!AreAliased(object, scratch0, scratch1));
4254   Register current = scratch0;
4255   Label loop_again, end;
4256 
4257   // Scratch contains elements pointer.
4258   Mov(current, object);
4259   Ldr(current, FieldMemOperand(current, HeapObject::kMapOffset));
4260   Ldr(current, FieldMemOperand(current, Map::kPrototypeOffset));
4261   CompareAndBranch(current, Heap::kNullValueRootIndex, eq, &end);
4262 
4263   // Loop based on the map going up the prototype chain.
4264   Bind(&loop_again);
4265   Ldr(current, FieldMemOperand(current, HeapObject::kMapOffset));
4266   STATIC_ASSERT(JS_PROXY_TYPE < JS_OBJECT_TYPE);
4267   STATIC_ASSERT(JS_VALUE_TYPE < JS_OBJECT_TYPE);
4268   CompareInstanceType(current, scratch1, JS_OBJECT_TYPE);
4269   B(lo, found);
4270   Ldrb(scratch1, FieldMemOperand(current, Map::kBitField2Offset));
4271   DecodeField<Map::ElementsKindBits>(scratch1);
4272   CompareAndBranch(scratch1, DICTIONARY_ELEMENTS, eq, found);
4273   Ldr(current, FieldMemOperand(current, Map::kPrototypeOffset));
4274   CompareAndBranch(current, Heap::kNullValueRootIndex, ne, &loop_again);
4275 
4276   Bind(&end);
4277 }
4278 
4279 
JumpIfWhite(Register value,Register bitmap_scratch,Register shift_scratch,Register load_scratch,Register length_scratch,Label * value_is_white)4280 void MacroAssembler::JumpIfWhite(Register value, Register bitmap_scratch,
4281                                  Register shift_scratch, Register load_scratch,
4282                                  Register length_scratch,
4283                                  Label* value_is_white) {
4284   DCHECK(!AreAliased(
4285       value, bitmap_scratch, shift_scratch, load_scratch, length_scratch));
4286 
4287   // These bit sequences are backwards. The first character in the string
4288   // represents the least significant bit.
4289   DCHECK(strcmp(Marking::kWhiteBitPattern, "00") == 0);
4290   DCHECK(strcmp(Marking::kBlackBitPattern, "11") == 0);
4291   DCHECK(strcmp(Marking::kGreyBitPattern, "10") == 0);
4292 
4293   GetMarkBits(value, bitmap_scratch, shift_scratch);
4294   Ldr(load_scratch, MemOperand(bitmap_scratch, MemoryChunk::kHeaderSize));
4295   Lsr(load_scratch, load_scratch, shift_scratch);
4296 
4297   AssertHasValidColor(load_scratch);
4298 
4299   // If the value is black or grey we don't need to do anything.
4300   // Since both black and grey have a 1 in the first position and white does
4301   // not have a 1 there we only need to check one bit.
4302   Tbz(load_scratch, 0, value_is_white);
4303 }
4304 
4305 
Assert(Condition cond,BailoutReason reason)4306 void MacroAssembler::Assert(Condition cond, BailoutReason reason) {
4307   if (emit_debug_code()) {
4308     Check(cond, reason);
4309   }
4310 }
4311 
4312 
4313 
AssertRegisterIsClear(Register reg,BailoutReason reason)4314 void MacroAssembler::AssertRegisterIsClear(Register reg, BailoutReason reason) {
4315   if (emit_debug_code()) {
4316     CheckRegisterIsClear(reg, reason);
4317   }
4318 }
4319 
4320 
AssertRegisterIsRoot(Register reg,Heap::RootListIndex index,BailoutReason reason)4321 void MacroAssembler::AssertRegisterIsRoot(Register reg,
4322                                           Heap::RootListIndex index,
4323                                           BailoutReason reason) {
4324   if (emit_debug_code()) {
4325     CompareRoot(reg, index);
4326     Check(eq, reason);
4327   }
4328 }
4329 
4330 
AssertFastElements(Register elements)4331 void MacroAssembler::AssertFastElements(Register elements) {
4332   if (emit_debug_code()) {
4333     UseScratchRegisterScope temps(this);
4334     Register temp = temps.AcquireX();
4335     Label ok;
4336     Ldr(temp, FieldMemOperand(elements, HeapObject::kMapOffset));
4337     JumpIfRoot(temp, Heap::kFixedArrayMapRootIndex, &ok);
4338     JumpIfRoot(temp, Heap::kFixedDoubleArrayMapRootIndex, &ok);
4339     JumpIfRoot(temp, Heap::kFixedCOWArrayMapRootIndex, &ok);
4340     Abort(kJSObjectWithFastElementsMapHasSlowElements);
4341     Bind(&ok);
4342   }
4343 }
4344 
4345 
AssertIsString(const Register & object)4346 void MacroAssembler::AssertIsString(const Register& object) {
4347   if (emit_debug_code()) {
4348     UseScratchRegisterScope temps(this);
4349     Register temp = temps.AcquireX();
4350     STATIC_ASSERT(kSmiTag == 0);
4351     Tst(object, kSmiTagMask);
4352     Check(ne, kOperandIsNotAString);
4353     Ldr(temp, FieldMemOperand(object, HeapObject::kMapOffset));
4354     CompareInstanceType(temp, temp, FIRST_NONSTRING_TYPE);
4355     Check(lo, kOperandIsNotAString);
4356   }
4357 }
4358 
4359 
Check(Condition cond,BailoutReason reason)4360 void MacroAssembler::Check(Condition cond, BailoutReason reason) {
4361   Label ok;
4362   B(cond, &ok);
4363   Abort(reason);
4364   // Will not return here.
4365   Bind(&ok);
4366 }
4367 
4368 
CheckRegisterIsClear(Register reg,BailoutReason reason)4369 void MacroAssembler::CheckRegisterIsClear(Register reg, BailoutReason reason) {
4370   Label ok;
4371   Cbz(reg, &ok);
4372   Abort(reason);
4373   // Will not return here.
4374   Bind(&ok);
4375 }
4376 
4377 
Abort(BailoutReason reason)4378 void MacroAssembler::Abort(BailoutReason reason) {
4379 #ifdef DEBUG
4380   RecordComment("Abort message: ");
4381   RecordComment(GetBailoutReason(reason));
4382 
4383   if (FLAG_trap_on_abort) {
4384     Brk(0);
4385     return;
4386   }
4387 #endif
4388 
4389   // Abort is used in some contexts where csp is the stack pointer. In order to
4390   // simplify the CallRuntime code, make sure that jssp is the stack pointer.
4391   // There is no risk of register corruption here because Abort doesn't return.
4392   Register old_stack_pointer = StackPointer();
4393   SetStackPointer(jssp);
4394   Mov(jssp, old_stack_pointer);
4395 
4396   // We need some scratch registers for the MacroAssembler, so make sure we have
4397   // some. This is safe here because Abort never returns.
4398   RegList old_tmp_list = TmpList()->list();
4399   TmpList()->Combine(MacroAssembler::DefaultTmpList());
4400 
4401   if (use_real_aborts()) {
4402     // Avoid infinite recursion; Push contains some assertions that use Abort.
4403     NoUseRealAbortsScope no_real_aborts(this);
4404 
4405     Mov(x0, Smi::FromInt(reason));
4406     Push(x0);
4407 
4408     if (!has_frame_) {
4409       // We don't actually want to generate a pile of code for this, so just
4410       // claim there is a stack frame, without generating one.
4411       FrameScope scope(this, StackFrame::NONE);
4412       CallRuntime(Runtime::kAbort, 1);
4413     } else {
4414       CallRuntime(Runtime::kAbort, 1);
4415     }
4416   } else {
4417     // Load the string to pass to Printf.
4418     Label msg_address;
4419     Adr(x0, &msg_address);
4420 
4421     // Call Printf directly to report the error.
4422     CallPrintf();
4423 
4424     // We need a way to stop execution on both the simulator and real hardware,
4425     // and Unreachable() is the best option.
4426     Unreachable();
4427 
4428     // Emit the message string directly in the instruction stream.
4429     {
4430       BlockPoolsScope scope(this);
4431       Bind(&msg_address);
4432       EmitStringData(GetBailoutReason(reason));
4433     }
4434   }
4435 
4436   SetStackPointer(old_stack_pointer);
4437   TmpList()->set_list(old_tmp_list);
4438 }
4439 
4440 
LoadTransitionedArrayMapConditional(ElementsKind expected_kind,ElementsKind transitioned_kind,Register map_in_out,Register scratch1,Register scratch2,Label * no_map_match)4441 void MacroAssembler::LoadTransitionedArrayMapConditional(
4442     ElementsKind expected_kind,
4443     ElementsKind transitioned_kind,
4444     Register map_in_out,
4445     Register scratch1,
4446     Register scratch2,
4447     Label* no_map_match) {
4448   DCHECK(IsFastElementsKind(expected_kind));
4449   DCHECK(IsFastElementsKind(transitioned_kind));
4450 
4451   // Check that the function's map is the same as the expected cached map.
4452   Ldr(scratch1, NativeContextMemOperand());
4453   Ldr(scratch2,
4454       ContextMemOperand(scratch1, Context::ArrayMapIndex(expected_kind)));
4455   Cmp(map_in_out, scratch2);
4456   B(ne, no_map_match);
4457 
4458   // Use the transitioned cached map.
4459   Ldr(map_in_out,
4460       ContextMemOperand(scratch1, Context::ArrayMapIndex(transitioned_kind)));
4461 }
4462 
4463 
LoadNativeContextSlot(int index,Register dst)4464 void MacroAssembler::LoadNativeContextSlot(int index, Register dst) {
4465   Ldr(dst, NativeContextMemOperand());
4466   Ldr(dst, ContextMemOperand(dst, index));
4467 }
4468 
4469 
LoadGlobalFunctionInitialMap(Register function,Register map,Register scratch)4470 void MacroAssembler::LoadGlobalFunctionInitialMap(Register function,
4471                                                   Register map,
4472                                                   Register scratch) {
4473   // Load the initial map. The global functions all have initial maps.
4474   Ldr(map, FieldMemOperand(function, JSFunction::kPrototypeOrInitialMapOffset));
4475   if (emit_debug_code()) {
4476     Label ok, fail;
4477     CheckMap(map, scratch, Heap::kMetaMapRootIndex, &fail, DO_SMI_CHECK);
4478     B(&ok);
4479     Bind(&fail);
4480     Abort(kGlobalFunctionsMustHaveInitialMap);
4481     Bind(&ok);
4482   }
4483 }
4484 
4485 
4486 // This is the main Printf implementation. All other Printf variants call
4487 // PrintfNoPreserve after setting up one or more PreserveRegisterScopes.
PrintfNoPreserve(const char * format,const CPURegister & arg0,const CPURegister & arg1,const CPURegister & arg2,const CPURegister & arg3)4488 void MacroAssembler::PrintfNoPreserve(const char * format,
4489                                       const CPURegister& arg0,
4490                                       const CPURegister& arg1,
4491                                       const CPURegister& arg2,
4492                                       const CPURegister& arg3) {
4493   // We cannot handle a caller-saved stack pointer. It doesn't make much sense
4494   // in most cases anyway, so this restriction shouldn't be too serious.
4495   DCHECK(!kCallerSaved.IncludesAliasOf(__ StackPointer()));
4496 
4497   // The provided arguments, and their proper procedure-call standard registers.
4498   CPURegister args[kPrintfMaxArgCount] = {arg0, arg1, arg2, arg3};
4499   CPURegister pcs[kPrintfMaxArgCount] = {NoReg, NoReg, NoReg, NoReg};
4500 
4501   int arg_count = kPrintfMaxArgCount;
4502 
4503   // The PCS varargs registers for printf. Note that x0 is used for the printf
4504   // format string.
4505   static const CPURegList kPCSVarargs =
4506       CPURegList(CPURegister::kRegister, kXRegSizeInBits, 1, arg_count);
4507   static const CPURegList kPCSVarargsFP =
4508       CPURegList(CPURegister::kFPRegister, kDRegSizeInBits, 0, arg_count - 1);
4509 
4510   // We can use caller-saved registers as scratch values, except for the
4511   // arguments and the PCS registers where they might need to go.
4512   CPURegList tmp_list = kCallerSaved;
4513   tmp_list.Remove(x0);      // Used to pass the format string.
4514   tmp_list.Remove(kPCSVarargs);
4515   tmp_list.Remove(arg0, arg1, arg2, arg3);
4516 
4517   CPURegList fp_tmp_list = kCallerSavedFP;
4518   fp_tmp_list.Remove(kPCSVarargsFP);
4519   fp_tmp_list.Remove(arg0, arg1, arg2, arg3);
4520 
4521   // Override the MacroAssembler's scratch register list. The lists will be
4522   // reset automatically at the end of the UseScratchRegisterScope.
4523   UseScratchRegisterScope temps(this);
4524   TmpList()->set_list(tmp_list.list());
4525   FPTmpList()->set_list(fp_tmp_list.list());
4526 
4527   // Copies of the printf vararg registers that we can pop from.
4528   CPURegList pcs_varargs = kPCSVarargs;
4529   CPURegList pcs_varargs_fp = kPCSVarargsFP;
4530 
4531   // Place the arguments. There are lots of clever tricks and optimizations we
4532   // could use here, but Printf is a debug tool so instead we just try to keep
4533   // it simple: Move each input that isn't already in the right place to a
4534   // scratch register, then move everything back.
4535   for (unsigned i = 0; i < kPrintfMaxArgCount; i++) {
4536     // Work out the proper PCS register for this argument.
4537     if (args[i].IsRegister()) {
4538       pcs[i] = pcs_varargs.PopLowestIndex().X();
4539       // We might only need a W register here. We need to know the size of the
4540       // argument so we can properly encode it for the simulator call.
4541       if (args[i].Is32Bits()) pcs[i] = pcs[i].W();
4542     } else if (args[i].IsFPRegister()) {
4543       // In C, floats are always cast to doubles for varargs calls.
4544       pcs[i] = pcs_varargs_fp.PopLowestIndex().D();
4545     } else {
4546       DCHECK(args[i].IsNone());
4547       arg_count = i;
4548       break;
4549     }
4550 
4551     // If the argument is already in the right place, leave it where it is.
4552     if (args[i].Aliases(pcs[i])) continue;
4553 
4554     // Otherwise, if the argument is in a PCS argument register, allocate an
4555     // appropriate scratch register and then move it out of the way.
4556     if (kPCSVarargs.IncludesAliasOf(args[i]) ||
4557         kPCSVarargsFP.IncludesAliasOf(args[i])) {
4558       if (args[i].IsRegister()) {
4559         Register old_arg = Register(args[i]);
4560         Register new_arg = temps.AcquireSameSizeAs(old_arg);
4561         Mov(new_arg, old_arg);
4562         args[i] = new_arg;
4563       } else {
4564         FPRegister old_arg = FPRegister(args[i]);
4565         FPRegister new_arg = temps.AcquireSameSizeAs(old_arg);
4566         Fmov(new_arg, old_arg);
4567         args[i] = new_arg;
4568       }
4569     }
4570   }
4571 
4572   // Do a second pass to move values into their final positions and perform any
4573   // conversions that may be required.
4574   for (int i = 0; i < arg_count; i++) {
4575     DCHECK(pcs[i].type() == args[i].type());
4576     if (pcs[i].IsRegister()) {
4577       Mov(Register(pcs[i]), Register(args[i]), kDiscardForSameWReg);
4578     } else {
4579       DCHECK(pcs[i].IsFPRegister());
4580       if (pcs[i].SizeInBytes() == args[i].SizeInBytes()) {
4581         Fmov(FPRegister(pcs[i]), FPRegister(args[i]));
4582       } else {
4583         Fcvt(FPRegister(pcs[i]), FPRegister(args[i]));
4584       }
4585     }
4586   }
4587 
4588   // Load the format string into x0, as per the procedure-call standard.
4589   //
4590   // To make the code as portable as possible, the format string is encoded
4591   // directly in the instruction stream. It might be cleaner to encode it in a
4592   // literal pool, but since Printf is usually used for debugging, it is
4593   // beneficial for it to be minimally dependent on other features.
4594   Label format_address;
4595   Adr(x0, &format_address);
4596 
4597   // Emit the format string directly in the instruction stream.
4598   { BlockPoolsScope scope(this);
4599     Label after_data;
4600     B(&after_data);
4601     Bind(&format_address);
4602     EmitStringData(format);
4603     Unreachable();
4604     Bind(&after_data);
4605   }
4606 
4607   // We don't pass any arguments on the stack, but we still need to align the C
4608   // stack pointer to a 16-byte boundary for PCS compliance.
4609   if (!csp.Is(StackPointer())) {
4610     Bic(csp, StackPointer(), 0xf);
4611   }
4612 
4613   CallPrintf(arg_count, pcs);
4614 }
4615 
4616 
CallPrintf(int arg_count,const CPURegister * args)4617 void MacroAssembler::CallPrintf(int arg_count, const CPURegister * args) {
4618   // A call to printf needs special handling for the simulator, since the system
4619   // printf function will use a different instruction set and the procedure-call
4620   // standard will not be compatible.
4621 #ifdef USE_SIMULATOR
4622   { InstructionAccurateScope scope(this, kPrintfLength / kInstructionSize);
4623     hlt(kImmExceptionIsPrintf);
4624     dc32(arg_count);          // kPrintfArgCountOffset
4625 
4626     // Determine the argument pattern.
4627     uint32_t arg_pattern_list = 0;
4628     for (int i = 0; i < arg_count; i++) {
4629       uint32_t arg_pattern;
4630       if (args[i].IsRegister()) {
4631         arg_pattern = args[i].Is32Bits() ? kPrintfArgW : kPrintfArgX;
4632       } else {
4633         DCHECK(args[i].Is64Bits());
4634         arg_pattern = kPrintfArgD;
4635       }
4636       DCHECK(arg_pattern < (1 << kPrintfArgPatternBits));
4637       arg_pattern_list |= (arg_pattern << (kPrintfArgPatternBits * i));
4638     }
4639     dc32(arg_pattern_list);   // kPrintfArgPatternListOffset
4640   }
4641 #else
4642   Call(FUNCTION_ADDR(printf), RelocInfo::EXTERNAL_REFERENCE);
4643 #endif
4644 }
4645 
4646 
Printf(const char * format,CPURegister arg0,CPURegister arg1,CPURegister arg2,CPURegister arg3)4647 void MacroAssembler::Printf(const char * format,
4648                             CPURegister arg0,
4649                             CPURegister arg1,
4650                             CPURegister arg2,
4651                             CPURegister arg3) {
4652   // We can only print sp if it is the current stack pointer.
4653   if (!csp.Is(StackPointer())) {
4654     DCHECK(!csp.Aliases(arg0));
4655     DCHECK(!csp.Aliases(arg1));
4656     DCHECK(!csp.Aliases(arg2));
4657     DCHECK(!csp.Aliases(arg3));
4658   }
4659 
4660   // Printf is expected to preserve all registers, so make sure that none are
4661   // available as scratch registers until we've preserved them.
4662   RegList old_tmp_list = TmpList()->list();
4663   RegList old_fp_tmp_list = FPTmpList()->list();
4664   TmpList()->set_list(0);
4665   FPTmpList()->set_list(0);
4666 
4667   // Preserve all caller-saved registers as well as NZCV.
4668   // If csp is the stack pointer, PushCPURegList asserts that the size of each
4669   // list is a multiple of 16 bytes.
4670   PushCPURegList(kCallerSaved);
4671   PushCPURegList(kCallerSavedFP);
4672 
4673   // We can use caller-saved registers as scratch values (except for argN).
4674   CPURegList tmp_list = kCallerSaved;
4675   CPURegList fp_tmp_list = kCallerSavedFP;
4676   tmp_list.Remove(arg0, arg1, arg2, arg3);
4677   fp_tmp_list.Remove(arg0, arg1, arg2, arg3);
4678   TmpList()->set_list(tmp_list.list());
4679   FPTmpList()->set_list(fp_tmp_list.list());
4680 
4681   { UseScratchRegisterScope temps(this);
4682     // If any of the arguments are the current stack pointer, allocate a new
4683     // register for them, and adjust the value to compensate for pushing the
4684     // caller-saved registers.
4685     bool arg0_sp = StackPointer().Aliases(arg0);
4686     bool arg1_sp = StackPointer().Aliases(arg1);
4687     bool arg2_sp = StackPointer().Aliases(arg2);
4688     bool arg3_sp = StackPointer().Aliases(arg3);
4689     if (arg0_sp || arg1_sp || arg2_sp || arg3_sp) {
4690       // Allocate a register to hold the original stack pointer value, to pass
4691       // to PrintfNoPreserve as an argument.
4692       Register arg_sp = temps.AcquireX();
4693       Add(arg_sp, StackPointer(),
4694           kCallerSaved.TotalSizeInBytes() + kCallerSavedFP.TotalSizeInBytes());
4695       if (arg0_sp) arg0 = Register::Create(arg_sp.code(), arg0.SizeInBits());
4696       if (arg1_sp) arg1 = Register::Create(arg_sp.code(), arg1.SizeInBits());
4697       if (arg2_sp) arg2 = Register::Create(arg_sp.code(), arg2.SizeInBits());
4698       if (arg3_sp) arg3 = Register::Create(arg_sp.code(), arg3.SizeInBits());
4699     }
4700 
4701     // Preserve NZCV.
4702     { UseScratchRegisterScope temps(this);
4703       Register tmp = temps.AcquireX();
4704       Mrs(tmp, NZCV);
4705       Push(tmp, xzr);
4706     }
4707 
4708     PrintfNoPreserve(format, arg0, arg1, arg2, arg3);
4709 
4710     // Restore NZCV.
4711     { UseScratchRegisterScope temps(this);
4712       Register tmp = temps.AcquireX();
4713       Pop(xzr, tmp);
4714       Msr(NZCV, tmp);
4715     }
4716   }
4717 
4718   PopCPURegList(kCallerSavedFP);
4719   PopCPURegList(kCallerSaved);
4720 
4721   TmpList()->set_list(old_tmp_list);
4722   FPTmpList()->set_list(old_fp_tmp_list);
4723 }
4724 
4725 
EmitFrameSetupForCodeAgePatching()4726 void MacroAssembler::EmitFrameSetupForCodeAgePatching() {
4727   // TODO(jbramley): Other architectures use the internal memcpy to copy the
4728   // sequence. If this is a performance bottleneck, we should consider caching
4729   // the sequence and copying it in the same way.
4730   InstructionAccurateScope scope(this,
4731                                  kNoCodeAgeSequenceLength / kInstructionSize);
4732   DCHECK(jssp.Is(StackPointer()));
4733   EmitFrameSetupForCodeAgePatching(this);
4734 }
4735 
4736 
4737 
EmitCodeAgeSequence(Code * stub)4738 void MacroAssembler::EmitCodeAgeSequence(Code* stub) {
4739   InstructionAccurateScope scope(this,
4740                                  kNoCodeAgeSequenceLength / kInstructionSize);
4741   DCHECK(jssp.Is(StackPointer()));
4742   EmitCodeAgeSequence(this, stub);
4743 }
4744 
4745 
4746 #undef __
4747 #define __ assm->
4748 
4749 
EmitFrameSetupForCodeAgePatching(Assembler * assm)4750 void MacroAssembler::EmitFrameSetupForCodeAgePatching(Assembler * assm) {
4751   Label start;
4752   __ bind(&start);
4753 
4754   // We can do this sequence using four instructions, but the code ageing
4755   // sequence that patches it needs five, so we use the extra space to try to
4756   // simplify some addressing modes and remove some dependencies (compared to
4757   // using two stp instructions with write-back).
4758   __ sub(jssp, jssp, 4 * kXRegSize);
4759   __ sub(csp, csp, 4 * kXRegSize);
4760   __ stp(x1, cp, MemOperand(jssp, 0 * kXRegSize));
4761   __ stp(fp, lr, MemOperand(jssp, 2 * kXRegSize));
4762   __ add(fp, jssp, StandardFrameConstants::kFixedFrameSizeFromFp);
4763 
4764   __ AssertSizeOfCodeGeneratedSince(&start, kNoCodeAgeSequenceLength);
4765 }
4766 
4767 
EmitCodeAgeSequence(Assembler * assm,Code * stub)4768 void MacroAssembler::EmitCodeAgeSequence(Assembler * assm,
4769                                          Code * stub) {
4770   Label start;
4771   __ bind(&start);
4772   // When the stub is called, the sequence is replaced with the young sequence
4773   // (as in EmitFrameSetupForCodeAgePatching). After the code is replaced, the
4774   // stub jumps to &start, stored in x0. The young sequence does not call the
4775   // stub so there is no infinite loop here.
4776   //
4777   // A branch (br) is used rather than a call (blr) because this code replaces
4778   // the frame setup code that would normally preserve lr.
4779   __ ldr_pcrel(ip0, kCodeAgeStubEntryOffset >> kLoadLiteralScaleLog2);
4780   __ adr(x0, &start);
4781   __ br(ip0);
4782   // IsCodeAgeSequence in codegen-arm64.cc assumes that the code generated up
4783   // until now (kCodeAgeStubEntryOffset) is the same for all code age sequences.
4784   __ AssertSizeOfCodeGeneratedSince(&start, kCodeAgeStubEntryOffset);
4785   if (stub) {
4786     __ dc64(reinterpret_cast<uint64_t>(stub->instruction_start()));
4787     __ AssertSizeOfCodeGeneratedSince(&start, kNoCodeAgeSequenceLength);
4788   }
4789 }
4790 
4791 
IsYoungSequence(Isolate * isolate,byte * sequence)4792 bool MacroAssembler::IsYoungSequence(Isolate* isolate, byte* sequence) {
4793   bool is_young = isolate->code_aging_helper()->IsYoung(sequence);
4794   DCHECK(is_young ||
4795          isolate->code_aging_helper()->IsOld(sequence));
4796   return is_young;
4797 }
4798 
4799 
TruncatingDiv(Register result,Register dividend,int32_t divisor)4800 void MacroAssembler::TruncatingDiv(Register result,
4801                                    Register dividend,
4802                                    int32_t divisor) {
4803   DCHECK(!AreAliased(result, dividend));
4804   DCHECK(result.Is32Bits() && dividend.Is32Bits());
4805   base::MagicNumbersForDivision<uint32_t> mag =
4806       base::SignedDivisionByConstant(static_cast<uint32_t>(divisor));
4807   Mov(result, mag.multiplier);
4808   Smull(result.X(), dividend, result);
4809   Asr(result.X(), result.X(), 32);
4810   bool neg = (mag.multiplier & (static_cast<uint32_t>(1) << 31)) != 0;
4811   if (divisor > 0 && neg) Add(result, result, dividend);
4812   if (divisor < 0 && !neg && mag.multiplier > 0) Sub(result, result, dividend);
4813   if (mag.shift > 0) Asr(result, result, mag.shift);
4814   Add(result, result, Operand(dividend, LSR, 31));
4815 }
4816 
4817 
4818 #undef __
4819 
4820 
~UseScratchRegisterScope()4821 UseScratchRegisterScope::~UseScratchRegisterScope() {
4822   available_->set_list(old_available_);
4823   availablefp_->set_list(old_availablefp_);
4824 }
4825 
4826 
AcquireSameSizeAs(const Register & reg)4827 Register UseScratchRegisterScope::AcquireSameSizeAs(const Register& reg) {
4828   int code = AcquireNextAvailable(available_).code();
4829   return Register::Create(code, reg.SizeInBits());
4830 }
4831 
4832 
AcquireSameSizeAs(const FPRegister & reg)4833 FPRegister UseScratchRegisterScope::AcquireSameSizeAs(const FPRegister& reg) {
4834   int code = AcquireNextAvailable(availablefp_).code();
4835   return FPRegister::Create(code, reg.SizeInBits());
4836 }
4837 
4838 
AcquireNextAvailable(CPURegList * available)4839 CPURegister UseScratchRegisterScope::AcquireNextAvailable(
4840     CPURegList* available) {
4841   CHECK(!available->IsEmpty());
4842   CPURegister result = available->PopLowestIndex();
4843   DCHECK(!AreAliased(result, xzr, csp));
4844   return result;
4845 }
4846 
4847 
UnsafeAcquire(CPURegList * available,const CPURegister & reg)4848 CPURegister UseScratchRegisterScope::UnsafeAcquire(CPURegList* available,
4849                                                    const CPURegister& reg) {
4850   DCHECK(available->IncludesAliasOf(reg));
4851   available->Remove(reg);
4852   return reg;
4853 }
4854 
4855 
4856 #define __ masm->
4857 
4858 
Emit(MacroAssembler * masm,const Register & reg,const Label * smi_check)4859 void InlineSmiCheckInfo::Emit(MacroAssembler* masm, const Register& reg,
4860                               const Label* smi_check) {
4861   Assembler::BlockPoolsScope scope(masm);
4862   if (reg.IsValid()) {
4863     DCHECK(smi_check->is_bound());
4864     DCHECK(reg.Is64Bits());
4865 
4866     // Encode the register (x0-x30) in the lowest 5 bits, then the offset to
4867     // 'check' in the other bits. The possible offset is limited in that we
4868     // use BitField to pack the data, and the underlying data type is a
4869     // uint32_t.
4870     uint32_t delta =
4871         static_cast<uint32_t>(__ InstructionsGeneratedSince(smi_check));
4872     __ InlineData(RegisterBits::encode(reg.code()) | DeltaBits::encode(delta));
4873   } else {
4874     DCHECK(!smi_check->is_bound());
4875 
4876     // An offset of 0 indicates that there is no patch site.
4877     __ InlineData(0);
4878   }
4879 }
4880 
4881 
InlineSmiCheckInfo(Address info)4882 InlineSmiCheckInfo::InlineSmiCheckInfo(Address info)
4883     : reg_(NoReg), smi_check_(NULL) {
4884   InstructionSequence* inline_data = InstructionSequence::At(info);
4885   DCHECK(inline_data->IsInlineData());
4886   if (inline_data->IsInlineData()) {
4887     uint64_t payload = inline_data->InlineData();
4888     // We use BitField to decode the payload, and BitField can only handle
4889     // 32-bit values.
4890     DCHECK(is_uint32(payload));
4891     if (payload != 0) {
4892       uint32_t payload32 = static_cast<uint32_t>(payload);
4893       int reg_code = RegisterBits::decode(payload32);
4894       reg_ = Register::XRegFromCode(reg_code);
4895       int smi_check_delta = DeltaBits::decode(payload32);
4896       DCHECK(smi_check_delta != 0);
4897       smi_check_ = inline_data->preceding(smi_check_delta);
4898     }
4899   }
4900 }
4901 
4902 
4903 #undef __
4904 
4905 
4906 }  // namespace internal
4907 }  // namespace v8
4908 
4909 #endif  // V8_TARGET_ARCH_ARM64
4910