1 // Copyright 2013 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4
5 #if V8_TARGET_ARCH_ARM64
6
7 #include "src/base/bits.h"
8 #include "src/base/division-by-constant.h"
9 #include "src/bootstrapper.h"
10 #include "src/codegen.h"
11 #include "src/debug/debug.h"
12 #include "src/register-configuration.h"
13 #include "src/runtime/runtime.h"
14
15 #include "src/arm64/frames-arm64.h"
16 #include "src/arm64/macro-assembler-arm64.h"
17
18 namespace v8 {
19 namespace internal {
20
21 // Define a fake double underscore to use with the ASM_UNIMPLEMENTED macros.
22 #define __
23
24
MacroAssembler(Isolate * arg_isolate,byte * buffer,unsigned buffer_size,CodeObjectRequired create_code_object)25 MacroAssembler::MacroAssembler(Isolate* arg_isolate, byte* buffer,
26 unsigned buffer_size,
27 CodeObjectRequired create_code_object)
28 : Assembler(arg_isolate, buffer, buffer_size),
29 generating_stub_(false),
30 #if DEBUG
31 allow_macro_instructions_(true),
32 #endif
33 has_frame_(false),
34 use_real_aborts_(true),
35 sp_(jssp),
36 tmp_list_(DefaultTmpList()),
37 fptmp_list_(DefaultFPTmpList()) {
38 if (create_code_object == CodeObjectRequired::kYes) {
39 code_object_ =
40 Handle<Object>::New(isolate()->heap()->undefined_value(), isolate());
41 }
42 }
43
44
DefaultTmpList()45 CPURegList MacroAssembler::DefaultTmpList() {
46 return CPURegList(ip0, ip1);
47 }
48
49
DefaultFPTmpList()50 CPURegList MacroAssembler::DefaultFPTmpList() {
51 return CPURegList(fp_scratch1, fp_scratch2);
52 }
53
54
LogicalMacro(const Register & rd,const Register & rn,const Operand & operand,LogicalOp op)55 void MacroAssembler::LogicalMacro(const Register& rd,
56 const Register& rn,
57 const Operand& operand,
58 LogicalOp op) {
59 UseScratchRegisterScope temps(this);
60
61 if (operand.NeedsRelocation(this)) {
62 Register temp = temps.AcquireX();
63 Ldr(temp, operand.immediate());
64 Logical(rd, rn, temp, op);
65
66 } else if (operand.IsImmediate()) {
67 int64_t immediate = operand.ImmediateValue();
68 unsigned reg_size = rd.SizeInBits();
69
70 // If the operation is NOT, invert the operation and immediate.
71 if ((op & NOT) == NOT) {
72 op = static_cast<LogicalOp>(op & ~NOT);
73 immediate = ~immediate;
74 }
75
76 // Ignore the top 32 bits of an immediate if we're moving to a W register.
77 if (rd.Is32Bits()) {
78 // Check that the top 32 bits are consistent.
79 DCHECK(((immediate >> kWRegSizeInBits) == 0) ||
80 ((immediate >> kWRegSizeInBits) == -1));
81 immediate &= kWRegMask;
82 }
83
84 DCHECK(rd.Is64Bits() || is_uint32(immediate));
85
86 // Special cases for all set or all clear immediates.
87 if (immediate == 0) {
88 switch (op) {
89 case AND:
90 Mov(rd, 0);
91 return;
92 case ORR: // Fall through.
93 case EOR:
94 Mov(rd, rn);
95 return;
96 case ANDS: // Fall through.
97 case BICS:
98 break;
99 default:
100 UNREACHABLE();
101 }
102 } else if ((rd.Is64Bits() && (immediate == -1L)) ||
103 (rd.Is32Bits() && (immediate == 0xffffffffL))) {
104 switch (op) {
105 case AND:
106 Mov(rd, rn);
107 return;
108 case ORR:
109 Mov(rd, immediate);
110 return;
111 case EOR:
112 Mvn(rd, rn);
113 return;
114 case ANDS: // Fall through.
115 case BICS:
116 break;
117 default:
118 UNREACHABLE();
119 }
120 }
121
122 unsigned n, imm_s, imm_r;
123 if (IsImmLogical(immediate, reg_size, &n, &imm_s, &imm_r)) {
124 // Immediate can be encoded in the instruction.
125 LogicalImmediate(rd, rn, n, imm_s, imm_r, op);
126 } else {
127 // Immediate can't be encoded: synthesize using move immediate.
128 Register temp = temps.AcquireSameSizeAs(rn);
129 Operand imm_operand = MoveImmediateForShiftedOp(temp, immediate);
130 if (rd.Is(csp)) {
131 // If rd is the stack pointer we cannot use it as the destination
132 // register so we use the temp register as an intermediate again.
133 Logical(temp, rn, imm_operand, op);
134 Mov(csp, temp);
135 AssertStackConsistency();
136 } else {
137 Logical(rd, rn, imm_operand, op);
138 }
139 }
140
141 } else if (operand.IsExtendedRegister()) {
142 DCHECK(operand.reg().SizeInBits() <= rd.SizeInBits());
143 // Add/sub extended supports shift <= 4. We want to support exactly the
144 // same modes here.
145 DCHECK(operand.shift_amount() <= 4);
146 DCHECK(operand.reg().Is64Bits() ||
147 ((operand.extend() != UXTX) && (operand.extend() != SXTX)));
148 Register temp = temps.AcquireSameSizeAs(rn);
149 EmitExtendShift(temp, operand.reg(), operand.extend(),
150 operand.shift_amount());
151 Logical(rd, rn, temp, op);
152
153 } else {
154 // The operand can be encoded in the instruction.
155 DCHECK(operand.IsShiftedRegister());
156 Logical(rd, rn, operand, op);
157 }
158 }
159
160
Mov(const Register & rd,uint64_t imm)161 void MacroAssembler::Mov(const Register& rd, uint64_t imm) {
162 DCHECK(allow_macro_instructions_);
163 DCHECK(is_uint32(imm) || is_int32(imm) || rd.Is64Bits());
164 DCHECK(!rd.IsZero());
165
166 // TODO(all) extend to support more immediates.
167 //
168 // Immediates on Aarch64 can be produced using an initial value, and zero to
169 // three move keep operations.
170 //
171 // Initial values can be generated with:
172 // 1. 64-bit move zero (movz).
173 // 2. 32-bit move inverted (movn).
174 // 3. 64-bit move inverted.
175 // 4. 32-bit orr immediate.
176 // 5. 64-bit orr immediate.
177 // Move-keep may then be used to modify each of the 16-bit half-words.
178 //
179 // The code below supports all five initial value generators, and
180 // applying move-keep operations to move-zero and move-inverted initial
181 // values.
182
183 // Try to move the immediate in one instruction, and if that fails, switch to
184 // using multiple instructions.
185 if (!TryOneInstrMoveImmediate(rd, imm)) {
186 unsigned reg_size = rd.SizeInBits();
187
188 // Generic immediate case. Imm will be represented by
189 // [imm3, imm2, imm1, imm0], where each imm is 16 bits.
190 // A move-zero or move-inverted is generated for the first non-zero or
191 // non-0xffff immX, and a move-keep for subsequent non-zero immX.
192
193 uint64_t ignored_halfword = 0;
194 bool invert_move = false;
195 // If the number of 0xffff halfwords is greater than the number of 0x0000
196 // halfwords, it's more efficient to use move-inverted.
197 if (CountClearHalfWords(~imm, reg_size) >
198 CountClearHalfWords(imm, reg_size)) {
199 ignored_halfword = 0xffffL;
200 invert_move = true;
201 }
202
203 // Mov instructions can't move immediate values into the stack pointer, so
204 // set up a temporary register, if needed.
205 UseScratchRegisterScope temps(this);
206 Register temp = rd.IsSP() ? temps.AcquireSameSizeAs(rd) : rd;
207
208 // Iterate through the halfwords. Use movn/movz for the first non-ignored
209 // halfword, and movk for subsequent halfwords.
210 DCHECK((reg_size % 16) == 0);
211 bool first_mov_done = false;
212 for (int i = 0; i < (rd.SizeInBits() / 16); i++) {
213 uint64_t imm16 = (imm >> (16 * i)) & 0xffffL;
214 if (imm16 != ignored_halfword) {
215 if (!first_mov_done) {
216 if (invert_move) {
217 movn(temp, (~imm16) & 0xffffL, 16 * i);
218 } else {
219 movz(temp, imm16, 16 * i);
220 }
221 first_mov_done = true;
222 } else {
223 // Construct a wider constant.
224 movk(temp, imm16, 16 * i);
225 }
226 }
227 }
228 DCHECK(first_mov_done);
229
230 // Move the temporary if the original destination register was the stack
231 // pointer.
232 if (rd.IsSP()) {
233 mov(rd, temp);
234 AssertStackConsistency();
235 }
236 }
237 }
238
239
Mov(const Register & rd,const Operand & operand,DiscardMoveMode discard_mode)240 void MacroAssembler::Mov(const Register& rd,
241 const Operand& operand,
242 DiscardMoveMode discard_mode) {
243 DCHECK(allow_macro_instructions_);
244 DCHECK(!rd.IsZero());
245
246 // Provide a swap register for instructions that need to write into the
247 // system stack pointer (and can't do this inherently).
248 UseScratchRegisterScope temps(this);
249 Register dst = (rd.IsSP()) ? temps.AcquireSameSizeAs(rd) : rd;
250
251 if (operand.NeedsRelocation(this)) {
252 Ldr(dst, operand.immediate());
253
254 } else if (operand.IsImmediate()) {
255 // Call the macro assembler for generic immediates.
256 Mov(dst, operand.ImmediateValue());
257
258 } else if (operand.IsShiftedRegister() && (operand.shift_amount() != 0)) {
259 // Emit a shift instruction if moving a shifted register. This operation
260 // could also be achieved using an orr instruction (like orn used by Mvn),
261 // but using a shift instruction makes the disassembly clearer.
262 EmitShift(dst, operand.reg(), operand.shift(), operand.shift_amount());
263
264 } else if (operand.IsExtendedRegister()) {
265 // Emit an extend instruction if moving an extended register. This handles
266 // extend with post-shift operations, too.
267 EmitExtendShift(dst, operand.reg(), operand.extend(),
268 operand.shift_amount());
269
270 } else {
271 // Otherwise, emit a register move only if the registers are distinct, or
272 // if they are not X registers.
273 //
274 // Note that mov(w0, w0) is not a no-op because it clears the top word of
275 // x0. A flag is provided (kDiscardForSameWReg) if a move between the same W
276 // registers is not required to clear the top word of the X register. In
277 // this case, the instruction is discarded.
278 //
279 // If csp is an operand, add #0 is emitted, otherwise, orr #0.
280 if (!rd.Is(operand.reg()) || (rd.Is32Bits() &&
281 (discard_mode == kDontDiscardForSameWReg))) {
282 Assembler::mov(rd, operand.reg());
283 }
284 // This case can handle writes into the system stack pointer directly.
285 dst = rd;
286 }
287
288 // Copy the result to the system stack pointer.
289 if (!dst.Is(rd)) {
290 DCHECK(rd.IsSP());
291 Assembler::mov(rd, dst);
292 }
293 }
294
295
Mvn(const Register & rd,const Operand & operand)296 void MacroAssembler::Mvn(const Register& rd, const Operand& operand) {
297 DCHECK(allow_macro_instructions_);
298
299 if (operand.NeedsRelocation(this)) {
300 Ldr(rd, operand.immediate());
301 mvn(rd, rd);
302
303 } else if (operand.IsImmediate()) {
304 // Call the macro assembler for generic immediates.
305 Mov(rd, ~operand.ImmediateValue());
306
307 } else if (operand.IsExtendedRegister()) {
308 // Emit two instructions for the extend case. This differs from Mov, as
309 // the extend and invert can't be achieved in one instruction.
310 EmitExtendShift(rd, operand.reg(), operand.extend(),
311 operand.shift_amount());
312 mvn(rd, rd);
313
314 } else {
315 mvn(rd, operand);
316 }
317 }
318
319
CountClearHalfWords(uint64_t imm,unsigned reg_size)320 unsigned MacroAssembler::CountClearHalfWords(uint64_t imm, unsigned reg_size) {
321 DCHECK((reg_size % 8) == 0);
322 int count = 0;
323 for (unsigned i = 0; i < (reg_size / 16); i++) {
324 if ((imm & 0xffff) == 0) {
325 count++;
326 }
327 imm >>= 16;
328 }
329 return count;
330 }
331
332
333 // The movz instruction can generate immediates containing an arbitrary 16-bit
334 // half-word, with remaining bits clear, eg. 0x00001234, 0x0000123400000000.
IsImmMovz(uint64_t imm,unsigned reg_size)335 bool MacroAssembler::IsImmMovz(uint64_t imm, unsigned reg_size) {
336 DCHECK((reg_size == kXRegSizeInBits) || (reg_size == kWRegSizeInBits));
337 return CountClearHalfWords(imm, reg_size) >= ((reg_size / 16) - 1);
338 }
339
340
341 // The movn instruction can generate immediates containing an arbitrary 16-bit
342 // half-word, with remaining bits set, eg. 0xffff1234, 0xffff1234ffffffff.
IsImmMovn(uint64_t imm,unsigned reg_size)343 bool MacroAssembler::IsImmMovn(uint64_t imm, unsigned reg_size) {
344 return IsImmMovz(~imm, reg_size);
345 }
346
347
ConditionalCompareMacro(const Register & rn,const Operand & operand,StatusFlags nzcv,Condition cond,ConditionalCompareOp op)348 void MacroAssembler::ConditionalCompareMacro(const Register& rn,
349 const Operand& operand,
350 StatusFlags nzcv,
351 Condition cond,
352 ConditionalCompareOp op) {
353 DCHECK((cond != al) && (cond != nv));
354 if (operand.NeedsRelocation(this)) {
355 UseScratchRegisterScope temps(this);
356 Register temp = temps.AcquireX();
357 Ldr(temp, operand.immediate());
358 ConditionalCompareMacro(rn, temp, nzcv, cond, op);
359
360 } else if ((operand.IsShiftedRegister() && (operand.shift_amount() == 0)) ||
361 (operand.IsImmediate() &&
362 IsImmConditionalCompare(operand.ImmediateValue()))) {
363 // The immediate can be encoded in the instruction, or the operand is an
364 // unshifted register: call the assembler.
365 ConditionalCompare(rn, operand, nzcv, cond, op);
366
367 } else {
368 // The operand isn't directly supported by the instruction: perform the
369 // operation on a temporary register.
370 UseScratchRegisterScope temps(this);
371 Register temp = temps.AcquireSameSizeAs(rn);
372 Mov(temp, operand);
373 ConditionalCompare(rn, temp, nzcv, cond, op);
374 }
375 }
376
377
Csel(const Register & rd,const Register & rn,const Operand & operand,Condition cond)378 void MacroAssembler::Csel(const Register& rd,
379 const Register& rn,
380 const Operand& operand,
381 Condition cond) {
382 DCHECK(allow_macro_instructions_);
383 DCHECK(!rd.IsZero());
384 DCHECK((cond != al) && (cond != nv));
385 if (operand.IsImmediate()) {
386 // Immediate argument. Handle special cases of 0, 1 and -1 using zero
387 // register.
388 int64_t imm = operand.ImmediateValue();
389 Register zr = AppropriateZeroRegFor(rn);
390 if (imm == 0) {
391 csel(rd, rn, zr, cond);
392 } else if (imm == 1) {
393 csinc(rd, rn, zr, cond);
394 } else if (imm == -1) {
395 csinv(rd, rn, zr, cond);
396 } else {
397 UseScratchRegisterScope temps(this);
398 Register temp = temps.AcquireSameSizeAs(rn);
399 Mov(temp, imm);
400 csel(rd, rn, temp, cond);
401 }
402 } else if (operand.IsShiftedRegister() && (operand.shift_amount() == 0)) {
403 // Unshifted register argument.
404 csel(rd, rn, operand.reg(), cond);
405 } else {
406 // All other arguments.
407 UseScratchRegisterScope temps(this);
408 Register temp = temps.AcquireSameSizeAs(rn);
409 Mov(temp, operand);
410 csel(rd, rn, temp, cond);
411 }
412 }
413
414
TryOneInstrMoveImmediate(const Register & dst,int64_t imm)415 bool MacroAssembler::TryOneInstrMoveImmediate(const Register& dst,
416 int64_t imm) {
417 unsigned n, imm_s, imm_r;
418 int reg_size = dst.SizeInBits();
419 if (IsImmMovz(imm, reg_size) && !dst.IsSP()) {
420 // Immediate can be represented in a move zero instruction. Movz can't write
421 // to the stack pointer.
422 movz(dst, imm);
423 return true;
424 } else if (IsImmMovn(imm, reg_size) && !dst.IsSP()) {
425 // Immediate can be represented in a move not instruction. Movn can't write
426 // to the stack pointer.
427 movn(dst, dst.Is64Bits() ? ~imm : (~imm & kWRegMask));
428 return true;
429 } else if (IsImmLogical(imm, reg_size, &n, &imm_s, &imm_r)) {
430 // Immediate can be represented in a logical orr instruction.
431 LogicalImmediate(dst, AppropriateZeroRegFor(dst), n, imm_s, imm_r, ORR);
432 return true;
433 }
434 return false;
435 }
436
437
MoveImmediateForShiftedOp(const Register & dst,int64_t imm)438 Operand MacroAssembler::MoveImmediateForShiftedOp(const Register& dst,
439 int64_t imm) {
440 int reg_size = dst.SizeInBits();
441
442 // Encode the immediate in a single move instruction, if possible.
443 if (TryOneInstrMoveImmediate(dst, imm)) {
444 // The move was successful; nothing to do here.
445 } else {
446 // Pre-shift the immediate to the least-significant bits of the register.
447 int shift_low = CountTrailingZeros(imm, reg_size);
448 int64_t imm_low = imm >> shift_low;
449
450 // Pre-shift the immediate to the most-significant bits of the register. We
451 // insert set bits in the least-significant bits, as this creates a
452 // different immediate that may be encodable using movn or orr-immediate.
453 // If this new immediate is encodable, the set bits will be eliminated by
454 // the post shift on the following instruction.
455 int shift_high = CountLeadingZeros(imm, reg_size);
456 int64_t imm_high = (imm << shift_high) | ((1 << shift_high) - 1);
457
458 if (TryOneInstrMoveImmediate(dst, imm_low)) {
459 // The new immediate has been moved into the destination's low bits:
460 // return a new leftward-shifting operand.
461 return Operand(dst, LSL, shift_low);
462 } else if (TryOneInstrMoveImmediate(dst, imm_high)) {
463 // The new immediate has been moved into the destination's high bits:
464 // return a new rightward-shifting operand.
465 return Operand(dst, LSR, shift_high);
466 } else {
467 // Use the generic move operation to set up the immediate.
468 Mov(dst, imm);
469 }
470 }
471 return Operand(dst);
472 }
473
474
AddSubMacro(const Register & rd,const Register & rn,const Operand & operand,FlagsUpdate S,AddSubOp op)475 void MacroAssembler::AddSubMacro(const Register& rd,
476 const Register& rn,
477 const Operand& operand,
478 FlagsUpdate S,
479 AddSubOp op) {
480 if (operand.IsZero() && rd.Is(rn) && rd.Is64Bits() && rn.Is64Bits() &&
481 !operand.NeedsRelocation(this) && (S == LeaveFlags)) {
482 // The instruction would be a nop. Avoid generating useless code.
483 return;
484 }
485
486 if (operand.NeedsRelocation(this)) {
487 UseScratchRegisterScope temps(this);
488 Register temp = temps.AcquireX();
489 Ldr(temp, operand.immediate());
490 AddSubMacro(rd, rn, temp, S, op);
491 } else if ((operand.IsImmediate() &&
492 !IsImmAddSub(operand.ImmediateValue())) ||
493 (rn.IsZero() && !operand.IsShiftedRegister()) ||
494 (operand.IsShiftedRegister() && (operand.shift() == ROR))) {
495 UseScratchRegisterScope temps(this);
496 Register temp = temps.AcquireSameSizeAs(rn);
497 if (operand.IsImmediate()) {
498 Operand imm_operand =
499 MoveImmediateForShiftedOp(temp, operand.ImmediateValue());
500 AddSub(rd, rn, imm_operand, S, op);
501 } else {
502 Mov(temp, operand);
503 AddSub(rd, rn, temp, S, op);
504 }
505 } else {
506 AddSub(rd, rn, operand, S, op);
507 }
508 }
509
510
AddSubWithCarryMacro(const Register & rd,const Register & rn,const Operand & operand,FlagsUpdate S,AddSubWithCarryOp op)511 void MacroAssembler::AddSubWithCarryMacro(const Register& rd,
512 const Register& rn,
513 const Operand& operand,
514 FlagsUpdate S,
515 AddSubWithCarryOp op) {
516 DCHECK(rd.SizeInBits() == rn.SizeInBits());
517 UseScratchRegisterScope temps(this);
518
519 if (operand.NeedsRelocation(this)) {
520 Register temp = temps.AcquireX();
521 Ldr(temp, operand.immediate());
522 AddSubWithCarryMacro(rd, rn, temp, S, op);
523
524 } else if (operand.IsImmediate() ||
525 (operand.IsShiftedRegister() && (operand.shift() == ROR))) {
526 // Add/sub with carry (immediate or ROR shifted register.)
527 Register temp = temps.AcquireSameSizeAs(rn);
528 Mov(temp, operand);
529 AddSubWithCarry(rd, rn, temp, S, op);
530
531 } else if (operand.IsShiftedRegister() && (operand.shift_amount() != 0)) {
532 // Add/sub with carry (shifted register).
533 DCHECK(operand.reg().SizeInBits() == rd.SizeInBits());
534 DCHECK(operand.shift() != ROR);
535 DCHECK(is_uintn(operand.shift_amount(),
536 rd.SizeInBits() == kXRegSizeInBits ? kXRegSizeInBitsLog2
537 : kWRegSizeInBitsLog2));
538 Register temp = temps.AcquireSameSizeAs(rn);
539 EmitShift(temp, operand.reg(), operand.shift(), operand.shift_amount());
540 AddSubWithCarry(rd, rn, temp, S, op);
541
542 } else if (operand.IsExtendedRegister()) {
543 // Add/sub with carry (extended register).
544 DCHECK(operand.reg().SizeInBits() <= rd.SizeInBits());
545 // Add/sub extended supports a shift <= 4. We want to support exactly the
546 // same modes.
547 DCHECK(operand.shift_amount() <= 4);
548 DCHECK(operand.reg().Is64Bits() ||
549 ((operand.extend() != UXTX) && (operand.extend() != SXTX)));
550 Register temp = temps.AcquireSameSizeAs(rn);
551 EmitExtendShift(temp, operand.reg(), operand.extend(),
552 operand.shift_amount());
553 AddSubWithCarry(rd, rn, temp, S, op);
554
555 } else {
556 // The addressing mode is directly supported by the instruction.
557 AddSubWithCarry(rd, rn, operand, S, op);
558 }
559 }
560
561
LoadStoreMacro(const CPURegister & rt,const MemOperand & addr,LoadStoreOp op)562 void MacroAssembler::LoadStoreMacro(const CPURegister& rt,
563 const MemOperand& addr,
564 LoadStoreOp op) {
565 int64_t offset = addr.offset();
566 LSDataSize size = CalcLSDataSize(op);
567
568 // Check if an immediate offset fits in the immediate field of the
569 // appropriate instruction. If not, emit two instructions to perform
570 // the operation.
571 if (addr.IsImmediateOffset() && !IsImmLSScaled(offset, size) &&
572 !IsImmLSUnscaled(offset)) {
573 // Immediate offset that can't be encoded using unsigned or unscaled
574 // addressing modes.
575 UseScratchRegisterScope temps(this);
576 Register temp = temps.AcquireSameSizeAs(addr.base());
577 Mov(temp, addr.offset());
578 LoadStore(rt, MemOperand(addr.base(), temp), op);
579 } else if (addr.IsPostIndex() && !IsImmLSUnscaled(offset)) {
580 // Post-index beyond unscaled addressing range.
581 LoadStore(rt, MemOperand(addr.base()), op);
582 add(addr.base(), addr.base(), offset);
583 } else if (addr.IsPreIndex() && !IsImmLSUnscaled(offset)) {
584 // Pre-index beyond unscaled addressing range.
585 add(addr.base(), addr.base(), offset);
586 LoadStore(rt, MemOperand(addr.base()), op);
587 } else {
588 // Encodable in one load/store instruction.
589 LoadStore(rt, addr, op);
590 }
591 }
592
LoadStorePairMacro(const CPURegister & rt,const CPURegister & rt2,const MemOperand & addr,LoadStorePairOp op)593 void MacroAssembler::LoadStorePairMacro(const CPURegister& rt,
594 const CPURegister& rt2,
595 const MemOperand& addr,
596 LoadStorePairOp op) {
597 // TODO(all): Should we support register offset for load-store-pair?
598 DCHECK(!addr.IsRegisterOffset());
599
600 int64_t offset = addr.offset();
601 LSDataSize size = CalcLSPairDataSize(op);
602
603 // Check if the offset fits in the immediate field of the appropriate
604 // instruction. If not, emit two instructions to perform the operation.
605 if (IsImmLSPair(offset, size)) {
606 // Encodable in one load/store pair instruction.
607 LoadStorePair(rt, rt2, addr, op);
608 } else {
609 Register base = addr.base();
610 if (addr.IsImmediateOffset()) {
611 UseScratchRegisterScope temps(this);
612 Register temp = temps.AcquireSameSizeAs(base);
613 Add(temp, base, offset);
614 LoadStorePair(rt, rt2, MemOperand(temp), op);
615 } else if (addr.IsPostIndex()) {
616 LoadStorePair(rt, rt2, MemOperand(base), op);
617 Add(base, base, offset);
618 } else {
619 DCHECK(addr.IsPreIndex());
620 Add(base, base, offset);
621 LoadStorePair(rt, rt2, MemOperand(base), op);
622 }
623 }
624 }
625
626
Load(const Register & rt,const MemOperand & addr,Representation r)627 void MacroAssembler::Load(const Register& rt,
628 const MemOperand& addr,
629 Representation r) {
630 DCHECK(!r.IsDouble());
631
632 if (r.IsInteger8()) {
633 Ldrsb(rt, addr);
634 } else if (r.IsUInteger8()) {
635 Ldrb(rt, addr);
636 } else if (r.IsInteger16()) {
637 Ldrsh(rt, addr);
638 } else if (r.IsUInteger16()) {
639 Ldrh(rt, addr);
640 } else if (r.IsInteger32()) {
641 Ldr(rt.W(), addr);
642 } else {
643 DCHECK(rt.Is64Bits());
644 Ldr(rt, addr);
645 }
646 }
647
648
Store(const Register & rt,const MemOperand & addr,Representation r)649 void MacroAssembler::Store(const Register& rt,
650 const MemOperand& addr,
651 Representation r) {
652 DCHECK(!r.IsDouble());
653
654 if (r.IsInteger8() || r.IsUInteger8()) {
655 Strb(rt, addr);
656 } else if (r.IsInteger16() || r.IsUInteger16()) {
657 Strh(rt, addr);
658 } else if (r.IsInteger32()) {
659 Str(rt.W(), addr);
660 } else {
661 DCHECK(rt.Is64Bits());
662 if (r.IsHeapObject()) {
663 AssertNotSmi(rt);
664 } else if (r.IsSmi()) {
665 AssertSmi(rt);
666 }
667 Str(rt, addr);
668 }
669 }
670
671
NeedExtraInstructionsOrRegisterBranch(Label * label,ImmBranchType b_type)672 bool MacroAssembler::NeedExtraInstructionsOrRegisterBranch(
673 Label *label, ImmBranchType b_type) {
674 bool need_longer_range = false;
675 // There are two situations in which we care about the offset being out of
676 // range:
677 // - The label is bound but too far away.
678 // - The label is not bound but linked, and the previous branch
679 // instruction in the chain is too far away.
680 if (label->is_bound() || label->is_linked()) {
681 need_longer_range =
682 !Instruction::IsValidImmPCOffset(b_type, label->pos() - pc_offset());
683 }
684 if (!need_longer_range && !label->is_bound()) {
685 int max_reachable_pc = pc_offset() + Instruction::ImmBranchRange(b_type);
686 unresolved_branches_.insert(
687 std::pair<int, FarBranchInfo>(max_reachable_pc,
688 FarBranchInfo(pc_offset(), label)));
689 // Also maintain the next pool check.
690 next_veneer_pool_check_ =
691 Min(next_veneer_pool_check_,
692 max_reachable_pc - kVeneerDistanceCheckMargin);
693 }
694 return need_longer_range;
695 }
696
697
Adr(const Register & rd,Label * label,AdrHint hint)698 void MacroAssembler::Adr(const Register& rd, Label* label, AdrHint hint) {
699 DCHECK(allow_macro_instructions_);
700 DCHECK(!rd.IsZero());
701
702 if (hint == kAdrNear) {
703 adr(rd, label);
704 return;
705 }
706
707 DCHECK(hint == kAdrFar);
708 if (label->is_bound()) {
709 int label_offset = label->pos() - pc_offset();
710 if (Instruction::IsValidPCRelOffset(label_offset)) {
711 adr(rd, label);
712 } else {
713 DCHECK(label_offset <= 0);
714 int min_adr_offset = -(1 << (Instruction::ImmPCRelRangeBitwidth - 1));
715 adr(rd, min_adr_offset);
716 Add(rd, rd, label_offset - min_adr_offset);
717 }
718 } else {
719 UseScratchRegisterScope temps(this);
720 Register scratch = temps.AcquireX();
721
722 InstructionAccurateScope scope(
723 this, PatchingAssembler::kAdrFarPatchableNInstrs);
724 adr(rd, label);
725 for (int i = 0; i < PatchingAssembler::kAdrFarPatchableNNops; ++i) {
726 nop(ADR_FAR_NOP);
727 }
728 movz(scratch, 0);
729 }
730 }
731
732
B(Label * label,BranchType type,Register reg,int bit)733 void MacroAssembler::B(Label* label, BranchType type, Register reg, int bit) {
734 DCHECK((reg.Is(NoReg) || type >= kBranchTypeFirstUsingReg) &&
735 (bit == -1 || type >= kBranchTypeFirstUsingBit));
736 if (kBranchTypeFirstCondition <= type && type <= kBranchTypeLastCondition) {
737 B(static_cast<Condition>(type), label);
738 } else {
739 switch (type) {
740 case always: B(label); break;
741 case never: break;
742 case reg_zero: Cbz(reg, label); break;
743 case reg_not_zero: Cbnz(reg, label); break;
744 case reg_bit_clear: Tbz(reg, bit, label); break;
745 case reg_bit_set: Tbnz(reg, bit, label); break;
746 default:
747 UNREACHABLE();
748 }
749 }
750 }
751
752
B(Label * label,Condition cond)753 void MacroAssembler::B(Label* label, Condition cond) {
754 DCHECK(allow_macro_instructions_);
755 DCHECK((cond != al) && (cond != nv));
756
757 Label done;
758 bool need_extra_instructions =
759 NeedExtraInstructionsOrRegisterBranch(label, CondBranchType);
760
761 if (need_extra_instructions) {
762 b(&done, NegateCondition(cond));
763 B(label);
764 } else {
765 b(label, cond);
766 }
767 bind(&done);
768 }
769
770
Tbnz(const Register & rt,unsigned bit_pos,Label * label)771 void MacroAssembler::Tbnz(const Register& rt, unsigned bit_pos, Label* label) {
772 DCHECK(allow_macro_instructions_);
773
774 Label done;
775 bool need_extra_instructions =
776 NeedExtraInstructionsOrRegisterBranch(label, TestBranchType);
777
778 if (need_extra_instructions) {
779 tbz(rt, bit_pos, &done);
780 B(label);
781 } else {
782 tbnz(rt, bit_pos, label);
783 }
784 bind(&done);
785 }
786
787
Tbz(const Register & rt,unsigned bit_pos,Label * label)788 void MacroAssembler::Tbz(const Register& rt, unsigned bit_pos, Label* label) {
789 DCHECK(allow_macro_instructions_);
790
791 Label done;
792 bool need_extra_instructions =
793 NeedExtraInstructionsOrRegisterBranch(label, TestBranchType);
794
795 if (need_extra_instructions) {
796 tbnz(rt, bit_pos, &done);
797 B(label);
798 } else {
799 tbz(rt, bit_pos, label);
800 }
801 bind(&done);
802 }
803
804
Cbnz(const Register & rt,Label * label)805 void MacroAssembler::Cbnz(const Register& rt, Label* label) {
806 DCHECK(allow_macro_instructions_);
807
808 Label done;
809 bool need_extra_instructions =
810 NeedExtraInstructionsOrRegisterBranch(label, CompareBranchType);
811
812 if (need_extra_instructions) {
813 cbz(rt, &done);
814 B(label);
815 } else {
816 cbnz(rt, label);
817 }
818 bind(&done);
819 }
820
821
Cbz(const Register & rt,Label * label)822 void MacroAssembler::Cbz(const Register& rt, Label* label) {
823 DCHECK(allow_macro_instructions_);
824
825 Label done;
826 bool need_extra_instructions =
827 NeedExtraInstructionsOrRegisterBranch(label, CompareBranchType);
828
829 if (need_extra_instructions) {
830 cbnz(rt, &done);
831 B(label);
832 } else {
833 cbz(rt, label);
834 }
835 bind(&done);
836 }
837
838
839 // Pseudo-instructions.
840
841
Abs(const Register & rd,const Register & rm,Label * is_not_representable,Label * is_representable)842 void MacroAssembler::Abs(const Register& rd, const Register& rm,
843 Label* is_not_representable,
844 Label* is_representable) {
845 DCHECK(allow_macro_instructions_);
846 DCHECK(AreSameSizeAndType(rd, rm));
847
848 Cmp(rm, 1);
849 Cneg(rd, rm, lt);
850
851 // If the comparison sets the v flag, the input was the smallest value
852 // representable by rm, and the mathematical result of abs(rm) is not
853 // representable using two's complement.
854 if ((is_not_representable != NULL) && (is_representable != NULL)) {
855 B(is_not_representable, vs);
856 B(is_representable);
857 } else if (is_not_representable != NULL) {
858 B(is_not_representable, vs);
859 } else if (is_representable != NULL) {
860 B(is_representable, vc);
861 }
862 }
863
864
865 // Abstracted stack operations.
866
867
Push(const CPURegister & src0,const CPURegister & src1,const CPURegister & src2,const CPURegister & src3)868 void MacroAssembler::Push(const CPURegister& src0, const CPURegister& src1,
869 const CPURegister& src2, const CPURegister& src3) {
870 DCHECK(AreSameSizeAndType(src0, src1, src2, src3));
871
872 int count = 1 + src1.IsValid() + src2.IsValid() + src3.IsValid();
873 int size = src0.SizeInBytes();
874
875 PushPreamble(count, size);
876 PushHelper(count, size, src0, src1, src2, src3);
877 }
878
879
Push(const CPURegister & src0,const CPURegister & src1,const CPURegister & src2,const CPURegister & src3,const CPURegister & src4,const CPURegister & src5,const CPURegister & src6,const CPURegister & src7)880 void MacroAssembler::Push(const CPURegister& src0, const CPURegister& src1,
881 const CPURegister& src2, const CPURegister& src3,
882 const CPURegister& src4, const CPURegister& src5,
883 const CPURegister& src6, const CPURegister& src7) {
884 DCHECK(AreSameSizeAndType(src0, src1, src2, src3, src4, src5, src6, src7));
885
886 int count = 5 + src5.IsValid() + src6.IsValid() + src6.IsValid();
887 int size = src0.SizeInBytes();
888
889 PushPreamble(count, size);
890 PushHelper(4, size, src0, src1, src2, src3);
891 PushHelper(count - 4, size, src4, src5, src6, src7);
892 }
893
894
Pop(const CPURegister & dst0,const CPURegister & dst1,const CPURegister & dst2,const CPURegister & dst3)895 void MacroAssembler::Pop(const CPURegister& dst0, const CPURegister& dst1,
896 const CPURegister& dst2, const CPURegister& dst3) {
897 // It is not valid to pop into the same register more than once in one
898 // instruction, not even into the zero register.
899 DCHECK(!AreAliased(dst0, dst1, dst2, dst3));
900 DCHECK(AreSameSizeAndType(dst0, dst1, dst2, dst3));
901 DCHECK(dst0.IsValid());
902
903 int count = 1 + dst1.IsValid() + dst2.IsValid() + dst3.IsValid();
904 int size = dst0.SizeInBytes();
905
906 PopHelper(count, size, dst0, dst1, dst2, dst3);
907 PopPostamble(count, size);
908 }
909
910
Pop(const CPURegister & dst0,const CPURegister & dst1,const CPURegister & dst2,const CPURegister & dst3,const CPURegister & dst4,const CPURegister & dst5,const CPURegister & dst6,const CPURegister & dst7)911 void MacroAssembler::Pop(const CPURegister& dst0, const CPURegister& dst1,
912 const CPURegister& dst2, const CPURegister& dst3,
913 const CPURegister& dst4, const CPURegister& dst5,
914 const CPURegister& dst6, const CPURegister& dst7) {
915 // It is not valid to pop into the same register more than once in one
916 // instruction, not even into the zero register.
917 DCHECK(!AreAliased(dst0, dst1, dst2, dst3, dst4, dst5, dst6, dst7));
918 DCHECK(AreSameSizeAndType(dst0, dst1, dst2, dst3, dst4, dst5, dst6, dst7));
919 DCHECK(dst0.IsValid());
920
921 int count = 5 + dst5.IsValid() + dst6.IsValid() + dst7.IsValid();
922 int size = dst0.SizeInBytes();
923
924 PopHelper(4, size, dst0, dst1, dst2, dst3);
925 PopHelper(count - 4, size, dst4, dst5, dst6, dst7);
926 PopPostamble(count, size);
927 }
928
929
Push(const Register & src0,const FPRegister & src1)930 void MacroAssembler::Push(const Register& src0, const FPRegister& src1) {
931 int size = src0.SizeInBytes() + src1.SizeInBytes();
932
933 PushPreamble(size);
934 // Reserve room for src0 and push src1.
935 str(src1, MemOperand(StackPointer(), -size, PreIndex));
936 // Fill the gap with src0.
937 str(src0, MemOperand(StackPointer(), src1.SizeInBytes()));
938 }
939
940
PushQueued(PreambleDirective preamble_directive)941 void MacroAssembler::PushPopQueue::PushQueued(
942 PreambleDirective preamble_directive) {
943 if (queued_.empty()) return;
944
945 if (preamble_directive == WITH_PREAMBLE) {
946 masm_->PushPreamble(size_);
947 }
948
949 size_t count = queued_.size();
950 size_t index = 0;
951 while (index < count) {
952 // PushHelper can only handle registers with the same size and type, and it
953 // can handle only four at a time. Batch them up accordingly.
954 CPURegister batch[4] = {NoReg, NoReg, NoReg, NoReg};
955 int batch_index = 0;
956 do {
957 batch[batch_index++] = queued_[index++];
958 } while ((batch_index < 4) && (index < count) &&
959 batch[0].IsSameSizeAndType(queued_[index]));
960
961 masm_->PushHelper(batch_index, batch[0].SizeInBytes(),
962 batch[0], batch[1], batch[2], batch[3]);
963 }
964
965 queued_.clear();
966 }
967
968
PopQueued()969 void MacroAssembler::PushPopQueue::PopQueued() {
970 if (queued_.empty()) return;
971
972 size_t count = queued_.size();
973 size_t index = 0;
974 while (index < count) {
975 // PopHelper can only handle registers with the same size and type, and it
976 // can handle only four at a time. Batch them up accordingly.
977 CPURegister batch[4] = {NoReg, NoReg, NoReg, NoReg};
978 int batch_index = 0;
979 do {
980 batch[batch_index++] = queued_[index++];
981 } while ((batch_index < 4) && (index < count) &&
982 batch[0].IsSameSizeAndType(queued_[index]));
983
984 masm_->PopHelper(batch_index, batch[0].SizeInBytes(),
985 batch[0], batch[1], batch[2], batch[3]);
986 }
987
988 masm_->PopPostamble(size_);
989 queued_.clear();
990 }
991
992
PushCPURegList(CPURegList registers)993 void MacroAssembler::PushCPURegList(CPURegList registers) {
994 int size = registers.RegisterSizeInBytes();
995
996 PushPreamble(registers.Count(), size);
997 // Push up to four registers at a time because if the current stack pointer is
998 // csp and reg_size is 32, registers must be pushed in blocks of four in order
999 // to maintain the 16-byte alignment for csp.
1000 while (!registers.IsEmpty()) {
1001 int count_before = registers.Count();
1002 const CPURegister& src0 = registers.PopHighestIndex();
1003 const CPURegister& src1 = registers.PopHighestIndex();
1004 const CPURegister& src2 = registers.PopHighestIndex();
1005 const CPURegister& src3 = registers.PopHighestIndex();
1006 int count = count_before - registers.Count();
1007 PushHelper(count, size, src0, src1, src2, src3);
1008 }
1009 }
1010
1011
PopCPURegList(CPURegList registers)1012 void MacroAssembler::PopCPURegList(CPURegList registers) {
1013 int size = registers.RegisterSizeInBytes();
1014
1015 // Pop up to four registers at a time because if the current stack pointer is
1016 // csp and reg_size is 32, registers must be pushed in blocks of four in
1017 // order to maintain the 16-byte alignment for csp.
1018 while (!registers.IsEmpty()) {
1019 int count_before = registers.Count();
1020 const CPURegister& dst0 = registers.PopLowestIndex();
1021 const CPURegister& dst1 = registers.PopLowestIndex();
1022 const CPURegister& dst2 = registers.PopLowestIndex();
1023 const CPURegister& dst3 = registers.PopLowestIndex();
1024 int count = count_before - registers.Count();
1025 PopHelper(count, size, dst0, dst1, dst2, dst3);
1026 }
1027 PopPostamble(registers.Count(), size);
1028 }
1029
1030
PushMultipleTimes(CPURegister src,int count)1031 void MacroAssembler::PushMultipleTimes(CPURegister src, int count) {
1032 int size = src.SizeInBytes();
1033
1034 PushPreamble(count, size);
1035
1036 if (FLAG_optimize_for_size && count > 8) {
1037 UseScratchRegisterScope temps(this);
1038 Register temp = temps.AcquireX();
1039
1040 Label loop;
1041 __ Mov(temp, count / 2);
1042 __ Bind(&loop);
1043 PushHelper(2, size, src, src, NoReg, NoReg);
1044 __ Subs(temp, temp, 1);
1045 __ B(ne, &loop);
1046
1047 count %= 2;
1048 }
1049
1050 // Push up to four registers at a time if possible because if the current
1051 // stack pointer is csp and the register size is 32, registers must be pushed
1052 // in blocks of four in order to maintain the 16-byte alignment for csp.
1053 while (count >= 4) {
1054 PushHelper(4, size, src, src, src, src);
1055 count -= 4;
1056 }
1057 if (count >= 2) {
1058 PushHelper(2, size, src, src, NoReg, NoReg);
1059 count -= 2;
1060 }
1061 if (count == 1) {
1062 PushHelper(1, size, src, NoReg, NoReg, NoReg);
1063 count -= 1;
1064 }
1065 DCHECK(count == 0);
1066 }
1067
1068
PushMultipleTimes(CPURegister src,Register count)1069 void MacroAssembler::PushMultipleTimes(CPURegister src, Register count) {
1070 PushPreamble(Operand(count, UXTW, WhichPowerOf2(src.SizeInBytes())));
1071
1072 UseScratchRegisterScope temps(this);
1073 Register temp = temps.AcquireSameSizeAs(count);
1074
1075 if (FLAG_optimize_for_size) {
1076 Label loop, done;
1077
1078 Subs(temp, count, 1);
1079 B(mi, &done);
1080
1081 // Push all registers individually, to save code size.
1082 Bind(&loop);
1083 Subs(temp, temp, 1);
1084 PushHelper(1, src.SizeInBytes(), src, NoReg, NoReg, NoReg);
1085 B(pl, &loop);
1086
1087 Bind(&done);
1088 } else {
1089 Label loop, leftover2, leftover1, done;
1090
1091 Subs(temp, count, 4);
1092 B(mi, &leftover2);
1093
1094 // Push groups of four first.
1095 Bind(&loop);
1096 Subs(temp, temp, 4);
1097 PushHelper(4, src.SizeInBytes(), src, src, src, src);
1098 B(pl, &loop);
1099
1100 // Push groups of two.
1101 Bind(&leftover2);
1102 Tbz(count, 1, &leftover1);
1103 PushHelper(2, src.SizeInBytes(), src, src, NoReg, NoReg);
1104
1105 // Push the last one (if required).
1106 Bind(&leftover1);
1107 Tbz(count, 0, &done);
1108 PushHelper(1, src.SizeInBytes(), src, NoReg, NoReg, NoReg);
1109
1110 Bind(&done);
1111 }
1112 }
1113
1114
PushHelper(int count,int size,const CPURegister & src0,const CPURegister & src1,const CPURegister & src2,const CPURegister & src3)1115 void MacroAssembler::PushHelper(int count, int size,
1116 const CPURegister& src0,
1117 const CPURegister& src1,
1118 const CPURegister& src2,
1119 const CPURegister& src3) {
1120 // Ensure that we don't unintentially modify scratch or debug registers.
1121 InstructionAccurateScope scope(this);
1122
1123 DCHECK(AreSameSizeAndType(src0, src1, src2, src3));
1124 DCHECK(size == src0.SizeInBytes());
1125
1126 // When pushing multiple registers, the store order is chosen such that
1127 // Push(a, b) is equivalent to Push(a) followed by Push(b).
1128 switch (count) {
1129 case 1:
1130 DCHECK(src1.IsNone() && src2.IsNone() && src3.IsNone());
1131 str(src0, MemOperand(StackPointer(), -1 * size, PreIndex));
1132 break;
1133 case 2:
1134 DCHECK(src2.IsNone() && src3.IsNone());
1135 stp(src1, src0, MemOperand(StackPointer(), -2 * size, PreIndex));
1136 break;
1137 case 3:
1138 DCHECK(src3.IsNone());
1139 stp(src2, src1, MemOperand(StackPointer(), -3 * size, PreIndex));
1140 str(src0, MemOperand(StackPointer(), 2 * size));
1141 break;
1142 case 4:
1143 // Skip over 4 * size, then fill in the gap. This allows four W registers
1144 // to be pushed using csp, whilst maintaining 16-byte alignment for csp
1145 // at all times.
1146 stp(src3, src2, MemOperand(StackPointer(), -4 * size, PreIndex));
1147 stp(src1, src0, MemOperand(StackPointer(), 2 * size));
1148 break;
1149 default:
1150 UNREACHABLE();
1151 }
1152 }
1153
1154
PopHelper(int count,int size,const CPURegister & dst0,const CPURegister & dst1,const CPURegister & dst2,const CPURegister & dst3)1155 void MacroAssembler::PopHelper(int count, int size,
1156 const CPURegister& dst0,
1157 const CPURegister& dst1,
1158 const CPURegister& dst2,
1159 const CPURegister& dst3) {
1160 // Ensure that we don't unintentially modify scratch or debug registers.
1161 InstructionAccurateScope scope(this);
1162
1163 DCHECK(AreSameSizeAndType(dst0, dst1, dst2, dst3));
1164 DCHECK(size == dst0.SizeInBytes());
1165
1166 // When popping multiple registers, the load order is chosen such that
1167 // Pop(a, b) is equivalent to Pop(a) followed by Pop(b).
1168 switch (count) {
1169 case 1:
1170 DCHECK(dst1.IsNone() && dst2.IsNone() && dst3.IsNone());
1171 ldr(dst0, MemOperand(StackPointer(), 1 * size, PostIndex));
1172 break;
1173 case 2:
1174 DCHECK(dst2.IsNone() && dst3.IsNone());
1175 ldp(dst0, dst1, MemOperand(StackPointer(), 2 * size, PostIndex));
1176 break;
1177 case 3:
1178 DCHECK(dst3.IsNone());
1179 ldr(dst2, MemOperand(StackPointer(), 2 * size));
1180 ldp(dst0, dst1, MemOperand(StackPointer(), 3 * size, PostIndex));
1181 break;
1182 case 4:
1183 // Load the higher addresses first, then load the lower addresses and
1184 // skip the whole block in the second instruction. This allows four W
1185 // registers to be popped using csp, whilst maintaining 16-byte alignment
1186 // for csp at all times.
1187 ldp(dst2, dst3, MemOperand(StackPointer(), 2 * size));
1188 ldp(dst0, dst1, MemOperand(StackPointer(), 4 * size, PostIndex));
1189 break;
1190 default:
1191 UNREACHABLE();
1192 }
1193 }
1194
1195
PushPreamble(Operand total_size)1196 void MacroAssembler::PushPreamble(Operand total_size) {
1197 if (csp.Is(StackPointer())) {
1198 // If the current stack pointer is csp, then it must be aligned to 16 bytes
1199 // on entry and the total size of the specified registers must also be a
1200 // multiple of 16 bytes.
1201 if (total_size.IsImmediate()) {
1202 DCHECK((total_size.ImmediateValue() % 16) == 0);
1203 }
1204
1205 // Don't check access size for non-immediate sizes. It's difficult to do
1206 // well, and it will be caught by hardware (or the simulator) anyway.
1207 } else {
1208 // Even if the current stack pointer is not the system stack pointer (csp),
1209 // the system stack pointer will still be modified in order to comply with
1210 // ABI rules about accessing memory below the system stack pointer.
1211 BumpSystemStackPointer(total_size);
1212 }
1213 }
1214
1215
PopPostamble(Operand total_size)1216 void MacroAssembler::PopPostamble(Operand total_size) {
1217 if (csp.Is(StackPointer())) {
1218 // If the current stack pointer is csp, then it must be aligned to 16 bytes
1219 // on entry and the total size of the specified registers must also be a
1220 // multiple of 16 bytes.
1221 if (total_size.IsImmediate()) {
1222 DCHECK((total_size.ImmediateValue() % 16) == 0);
1223 }
1224
1225 // Don't check access size for non-immediate sizes. It's difficult to do
1226 // well, and it will be caught by hardware (or the simulator) anyway.
1227 } else if (emit_debug_code()) {
1228 // It is safe to leave csp where it is when unwinding the JavaScript stack,
1229 // but if we keep it matching StackPointer, the simulator can detect memory
1230 // accesses in the now-free part of the stack.
1231 SyncSystemStackPointer();
1232 }
1233 }
1234
1235
Poke(const CPURegister & src,const Operand & offset)1236 void MacroAssembler::Poke(const CPURegister& src, const Operand& offset) {
1237 if (offset.IsImmediate()) {
1238 DCHECK(offset.ImmediateValue() >= 0);
1239 } else if (emit_debug_code()) {
1240 Cmp(xzr, offset);
1241 Check(le, kStackAccessBelowStackPointer);
1242 }
1243
1244 Str(src, MemOperand(StackPointer(), offset));
1245 }
1246
1247
Peek(const CPURegister & dst,const Operand & offset)1248 void MacroAssembler::Peek(const CPURegister& dst, const Operand& offset) {
1249 if (offset.IsImmediate()) {
1250 DCHECK(offset.ImmediateValue() >= 0);
1251 } else if (emit_debug_code()) {
1252 Cmp(xzr, offset);
1253 Check(le, kStackAccessBelowStackPointer);
1254 }
1255
1256 Ldr(dst, MemOperand(StackPointer(), offset));
1257 }
1258
1259
PokePair(const CPURegister & src1,const CPURegister & src2,int offset)1260 void MacroAssembler::PokePair(const CPURegister& src1,
1261 const CPURegister& src2,
1262 int offset) {
1263 DCHECK(AreSameSizeAndType(src1, src2));
1264 DCHECK((offset >= 0) && ((offset % src1.SizeInBytes()) == 0));
1265 Stp(src1, src2, MemOperand(StackPointer(), offset));
1266 }
1267
1268
PeekPair(const CPURegister & dst1,const CPURegister & dst2,int offset)1269 void MacroAssembler::PeekPair(const CPURegister& dst1,
1270 const CPURegister& dst2,
1271 int offset) {
1272 DCHECK(AreSameSizeAndType(dst1, dst2));
1273 DCHECK((offset >= 0) && ((offset % dst1.SizeInBytes()) == 0));
1274 Ldp(dst1, dst2, MemOperand(StackPointer(), offset));
1275 }
1276
1277
PushCalleeSavedRegisters()1278 void MacroAssembler::PushCalleeSavedRegisters() {
1279 // Ensure that the macro-assembler doesn't use any scratch registers.
1280 InstructionAccurateScope scope(this);
1281
1282 // This method must not be called unless the current stack pointer is the
1283 // system stack pointer (csp).
1284 DCHECK(csp.Is(StackPointer()));
1285
1286 MemOperand tos(csp, -2 * static_cast<int>(kXRegSize), PreIndex);
1287
1288 stp(d14, d15, tos);
1289 stp(d12, d13, tos);
1290 stp(d10, d11, tos);
1291 stp(d8, d9, tos);
1292
1293 stp(x29, x30, tos);
1294 stp(x27, x28, tos); // x28 = jssp
1295 stp(x25, x26, tos);
1296 stp(x23, x24, tos);
1297 stp(x21, x22, tos);
1298 stp(x19, x20, tos);
1299 }
1300
1301
PopCalleeSavedRegisters()1302 void MacroAssembler::PopCalleeSavedRegisters() {
1303 // Ensure that the macro-assembler doesn't use any scratch registers.
1304 InstructionAccurateScope scope(this);
1305
1306 // This method must not be called unless the current stack pointer is the
1307 // system stack pointer (csp).
1308 DCHECK(csp.Is(StackPointer()));
1309
1310 MemOperand tos(csp, 2 * kXRegSize, PostIndex);
1311
1312 ldp(x19, x20, tos);
1313 ldp(x21, x22, tos);
1314 ldp(x23, x24, tos);
1315 ldp(x25, x26, tos);
1316 ldp(x27, x28, tos); // x28 = jssp
1317 ldp(x29, x30, tos);
1318
1319 ldp(d8, d9, tos);
1320 ldp(d10, d11, tos);
1321 ldp(d12, d13, tos);
1322 ldp(d14, d15, tos);
1323 }
1324
1325
AssertStackConsistency()1326 void MacroAssembler::AssertStackConsistency() {
1327 // Avoid emitting code when !use_real_abort() since non-real aborts cause too
1328 // much code to be generated.
1329 if (emit_debug_code() && use_real_aborts()) {
1330 if (csp.Is(StackPointer())) {
1331 // Always check the alignment of csp if ALWAYS_ALIGN_CSP is true. We
1332 // can't check the alignment of csp without using a scratch register (or
1333 // clobbering the flags), but the processor (or simulator) will abort if
1334 // it is not properly aligned during a load.
1335 ldr(xzr, MemOperand(csp, 0));
1336 }
1337 if (FLAG_enable_slow_asserts && !csp.Is(StackPointer())) {
1338 Label ok;
1339 // Check that csp <= StackPointer(), preserving all registers and NZCV.
1340 sub(StackPointer(), csp, StackPointer());
1341 cbz(StackPointer(), &ok); // Ok if csp == StackPointer().
1342 tbnz(StackPointer(), kXSignBit, &ok); // Ok if csp < StackPointer().
1343
1344 // Avoid generating AssertStackConsistency checks for the Push in Abort.
1345 { DontEmitDebugCodeScope dont_emit_debug_code_scope(this);
1346 // Restore StackPointer().
1347 sub(StackPointer(), csp, StackPointer());
1348 Abort(kTheCurrentStackPointerIsBelowCsp);
1349 }
1350
1351 bind(&ok);
1352 // Restore StackPointer().
1353 sub(StackPointer(), csp, StackPointer());
1354 }
1355 }
1356 }
1357
1358
AssertFPCRState(Register fpcr)1359 void MacroAssembler::AssertFPCRState(Register fpcr) {
1360 if (emit_debug_code()) {
1361 Label unexpected_mode, done;
1362 UseScratchRegisterScope temps(this);
1363 if (fpcr.IsNone()) {
1364 fpcr = temps.AcquireX();
1365 Mrs(fpcr, FPCR);
1366 }
1367
1368 // Settings overridden by ConfiugreFPCR():
1369 // - Assert that default-NaN mode is set.
1370 Tbz(fpcr, DN_offset, &unexpected_mode);
1371
1372 // Settings left to their default values:
1373 // - Assert that flush-to-zero is not set.
1374 Tbnz(fpcr, FZ_offset, &unexpected_mode);
1375 // - Assert that the rounding mode is nearest-with-ties-to-even.
1376 STATIC_ASSERT(FPTieEven == 0);
1377 Tst(fpcr, RMode_mask);
1378 B(eq, &done);
1379
1380 Bind(&unexpected_mode);
1381 Abort(kUnexpectedFPCRMode);
1382
1383 Bind(&done);
1384 }
1385 }
1386
1387
ConfigureFPCR()1388 void MacroAssembler::ConfigureFPCR() {
1389 UseScratchRegisterScope temps(this);
1390 Register fpcr = temps.AcquireX();
1391 Mrs(fpcr, FPCR);
1392
1393 // If necessary, enable default-NaN mode. The default values of the other FPCR
1394 // options should be suitable, and AssertFPCRState will verify that.
1395 Label no_write_required;
1396 Tbnz(fpcr, DN_offset, &no_write_required);
1397
1398 Orr(fpcr, fpcr, DN_mask);
1399 Msr(FPCR, fpcr);
1400
1401 Bind(&no_write_required);
1402 AssertFPCRState(fpcr);
1403 }
1404
1405
CanonicalizeNaN(const FPRegister & dst,const FPRegister & src)1406 void MacroAssembler::CanonicalizeNaN(const FPRegister& dst,
1407 const FPRegister& src) {
1408 AssertFPCRState();
1409
1410 // With DN=1 and RMode=FPTieEven, subtracting 0.0 preserves all inputs except
1411 // for NaNs, which become the default NaN. We use fsub rather than fadd
1412 // because sub preserves -0.0 inputs: -0.0 + 0.0 = 0.0, but -0.0 - 0.0 = -0.0.
1413 Fsub(dst, src, fp_zero);
1414 }
1415
1416
LoadRoot(CPURegister destination,Heap::RootListIndex index)1417 void MacroAssembler::LoadRoot(CPURegister destination,
1418 Heap::RootListIndex index) {
1419 // TODO(jbramley): Most root values are constants, and can be synthesized
1420 // without a load. Refer to the ARM back end for details.
1421 Ldr(destination, MemOperand(root, index << kPointerSizeLog2));
1422 }
1423
1424
StoreRoot(Register source,Heap::RootListIndex index)1425 void MacroAssembler::StoreRoot(Register source,
1426 Heap::RootListIndex index) {
1427 DCHECK(Heap::RootCanBeWrittenAfterInitialization(index));
1428 Str(source, MemOperand(root, index << kPointerSizeLog2));
1429 }
1430
1431
LoadTrueFalseRoots(Register true_root,Register false_root)1432 void MacroAssembler::LoadTrueFalseRoots(Register true_root,
1433 Register false_root) {
1434 STATIC_ASSERT((Heap::kTrueValueRootIndex + 1) == Heap::kFalseValueRootIndex);
1435 Ldp(true_root, false_root,
1436 MemOperand(root, Heap::kTrueValueRootIndex << kPointerSizeLog2));
1437 }
1438
1439
LoadHeapObject(Register result,Handle<HeapObject> object)1440 void MacroAssembler::LoadHeapObject(Register result,
1441 Handle<HeapObject> object) {
1442 AllowDeferredHandleDereference using_raw_address;
1443 if (isolate()->heap()->InNewSpace(*object)) {
1444 Handle<Cell> cell = isolate()->factory()->NewCell(object);
1445 Mov(result, Operand(cell));
1446 Ldr(result, FieldMemOperand(result, Cell::kValueOffset));
1447 } else {
1448 Mov(result, Operand(object));
1449 }
1450 }
1451
1452
LoadInstanceDescriptors(Register map,Register descriptors)1453 void MacroAssembler::LoadInstanceDescriptors(Register map,
1454 Register descriptors) {
1455 Ldr(descriptors, FieldMemOperand(map, Map::kDescriptorsOffset));
1456 }
1457
1458
NumberOfOwnDescriptors(Register dst,Register map)1459 void MacroAssembler::NumberOfOwnDescriptors(Register dst, Register map) {
1460 Ldr(dst, FieldMemOperand(map, Map::kBitField3Offset));
1461 DecodeField<Map::NumberOfOwnDescriptorsBits>(dst);
1462 }
1463
1464
EnumLengthUntagged(Register dst,Register map)1465 void MacroAssembler::EnumLengthUntagged(Register dst, Register map) {
1466 STATIC_ASSERT(Map::EnumLengthBits::kShift == 0);
1467 Ldrsw(dst, FieldMemOperand(map, Map::kBitField3Offset));
1468 And(dst, dst, Map::EnumLengthBits::kMask);
1469 }
1470
1471
EnumLengthSmi(Register dst,Register map)1472 void MacroAssembler::EnumLengthSmi(Register dst, Register map) {
1473 EnumLengthUntagged(dst, map);
1474 SmiTag(dst, dst);
1475 }
1476
1477
LoadAccessor(Register dst,Register holder,int accessor_index,AccessorComponent accessor)1478 void MacroAssembler::LoadAccessor(Register dst, Register holder,
1479 int accessor_index,
1480 AccessorComponent accessor) {
1481 Ldr(dst, FieldMemOperand(holder, HeapObject::kMapOffset));
1482 LoadInstanceDescriptors(dst, dst);
1483 Ldr(dst,
1484 FieldMemOperand(dst, DescriptorArray::GetValueOffset(accessor_index)));
1485 int offset = accessor == ACCESSOR_GETTER ? AccessorPair::kGetterOffset
1486 : AccessorPair::kSetterOffset;
1487 Ldr(dst, FieldMemOperand(dst, offset));
1488 }
1489
1490
CheckEnumCache(Register object,Register null_value,Register scratch0,Register scratch1,Register scratch2,Register scratch3,Label * call_runtime)1491 void MacroAssembler::CheckEnumCache(Register object,
1492 Register null_value,
1493 Register scratch0,
1494 Register scratch1,
1495 Register scratch2,
1496 Register scratch3,
1497 Label* call_runtime) {
1498 DCHECK(!AreAliased(object, null_value, scratch0, scratch1, scratch2,
1499 scratch3));
1500
1501 Register empty_fixed_array_value = scratch0;
1502 Register current_object = scratch1;
1503
1504 LoadRoot(empty_fixed_array_value, Heap::kEmptyFixedArrayRootIndex);
1505 Label next, start;
1506
1507 Mov(current_object, object);
1508
1509 // Check if the enum length field is properly initialized, indicating that
1510 // there is an enum cache.
1511 Register map = scratch2;
1512 Register enum_length = scratch3;
1513 Ldr(map, FieldMemOperand(current_object, HeapObject::kMapOffset));
1514
1515 EnumLengthUntagged(enum_length, map);
1516 Cmp(enum_length, kInvalidEnumCacheSentinel);
1517 B(eq, call_runtime);
1518
1519 B(&start);
1520
1521 Bind(&next);
1522 Ldr(map, FieldMemOperand(current_object, HeapObject::kMapOffset));
1523
1524 // For all objects but the receiver, check that the cache is empty.
1525 EnumLengthUntagged(enum_length, map);
1526 Cbnz(enum_length, call_runtime);
1527
1528 Bind(&start);
1529
1530 // Check that there are no elements. Register current_object contains the
1531 // current JS object we've reached through the prototype chain.
1532 Label no_elements;
1533 Ldr(current_object, FieldMemOperand(current_object,
1534 JSObject::kElementsOffset));
1535 Cmp(current_object, empty_fixed_array_value);
1536 B(eq, &no_elements);
1537
1538 // Second chance, the object may be using the empty slow element dictionary.
1539 CompareRoot(current_object, Heap::kEmptySlowElementDictionaryRootIndex);
1540 B(ne, call_runtime);
1541
1542 Bind(&no_elements);
1543 Ldr(current_object, FieldMemOperand(map, Map::kPrototypeOffset));
1544 Cmp(current_object, null_value);
1545 B(ne, &next);
1546 }
1547
1548
TestJSArrayForAllocationMemento(Register receiver,Register scratch1,Register scratch2,Label * no_memento_found)1549 void MacroAssembler::TestJSArrayForAllocationMemento(Register receiver,
1550 Register scratch1,
1551 Register scratch2,
1552 Label* no_memento_found) {
1553 ExternalReference new_space_start =
1554 ExternalReference::new_space_start(isolate());
1555 ExternalReference new_space_allocation_top =
1556 ExternalReference::new_space_allocation_top_address(isolate());
1557
1558 Add(scratch1, receiver,
1559 JSArray::kSize + AllocationMemento::kSize - kHeapObjectTag);
1560 Cmp(scratch1, new_space_start);
1561 B(lt, no_memento_found);
1562
1563 Mov(scratch2, new_space_allocation_top);
1564 Ldr(scratch2, MemOperand(scratch2));
1565 Cmp(scratch1, scratch2);
1566 B(gt, no_memento_found);
1567
1568 Ldr(scratch1, MemOperand(scratch1, -AllocationMemento::kSize));
1569 Cmp(scratch1,
1570 Operand(isolate()->factory()->allocation_memento_map()));
1571 }
1572
1573
InNewSpace(Register object,Condition cond,Label * branch)1574 void MacroAssembler::InNewSpace(Register object,
1575 Condition cond,
1576 Label* branch) {
1577 DCHECK(cond == eq || cond == ne);
1578 UseScratchRegisterScope temps(this);
1579 Register temp = temps.AcquireX();
1580 And(temp, object, ExternalReference::new_space_mask(isolate()));
1581 Cmp(temp, ExternalReference::new_space_start(isolate()));
1582 B(cond, branch);
1583 }
1584
1585
AssertSmi(Register object,BailoutReason reason)1586 void MacroAssembler::AssertSmi(Register object, BailoutReason reason) {
1587 if (emit_debug_code()) {
1588 STATIC_ASSERT(kSmiTag == 0);
1589 Tst(object, kSmiTagMask);
1590 Check(eq, reason);
1591 }
1592 }
1593
1594
AssertNotSmi(Register object,BailoutReason reason)1595 void MacroAssembler::AssertNotSmi(Register object, BailoutReason reason) {
1596 if (emit_debug_code()) {
1597 STATIC_ASSERT(kSmiTag == 0);
1598 Tst(object, kSmiTagMask);
1599 Check(ne, reason);
1600 }
1601 }
1602
1603
AssertName(Register object)1604 void MacroAssembler::AssertName(Register object) {
1605 if (emit_debug_code()) {
1606 AssertNotSmi(object, kOperandIsASmiAndNotAName);
1607
1608 UseScratchRegisterScope temps(this);
1609 Register temp = temps.AcquireX();
1610
1611 Ldr(temp, FieldMemOperand(object, HeapObject::kMapOffset));
1612 CompareInstanceType(temp, temp, LAST_NAME_TYPE);
1613 Check(ls, kOperandIsNotAName);
1614 }
1615 }
1616
1617
AssertFunction(Register object)1618 void MacroAssembler::AssertFunction(Register object) {
1619 if (emit_debug_code()) {
1620 AssertNotSmi(object, kOperandIsASmiAndNotAFunction);
1621
1622 UseScratchRegisterScope temps(this);
1623 Register temp = temps.AcquireX();
1624
1625 CompareObjectType(object, temp, temp, JS_FUNCTION_TYPE);
1626 Check(eq, kOperandIsNotAFunction);
1627 }
1628 }
1629
1630
AssertBoundFunction(Register object)1631 void MacroAssembler::AssertBoundFunction(Register object) {
1632 if (emit_debug_code()) {
1633 AssertNotSmi(object, kOperandIsASmiAndNotABoundFunction);
1634
1635 UseScratchRegisterScope temps(this);
1636 Register temp = temps.AcquireX();
1637
1638 CompareObjectType(object, temp, temp, JS_BOUND_FUNCTION_TYPE);
1639 Check(eq, kOperandIsNotABoundFunction);
1640 }
1641 }
1642
1643
AssertUndefinedOrAllocationSite(Register object,Register scratch)1644 void MacroAssembler::AssertUndefinedOrAllocationSite(Register object,
1645 Register scratch) {
1646 if (emit_debug_code()) {
1647 Label done_checking;
1648 AssertNotSmi(object);
1649 JumpIfRoot(object, Heap::kUndefinedValueRootIndex, &done_checking);
1650 Ldr(scratch, FieldMemOperand(object, HeapObject::kMapOffset));
1651 CompareRoot(scratch, Heap::kAllocationSiteMapRootIndex);
1652 Assert(eq, kExpectedUndefinedOrCell);
1653 Bind(&done_checking);
1654 }
1655 }
1656
1657
AssertString(Register object)1658 void MacroAssembler::AssertString(Register object) {
1659 if (emit_debug_code()) {
1660 UseScratchRegisterScope temps(this);
1661 Register temp = temps.AcquireX();
1662 STATIC_ASSERT(kSmiTag == 0);
1663 Tst(object, kSmiTagMask);
1664 Check(ne, kOperandIsASmiAndNotAString);
1665 Ldr(temp, FieldMemOperand(object, HeapObject::kMapOffset));
1666 CompareInstanceType(temp, temp, FIRST_NONSTRING_TYPE);
1667 Check(lo, kOperandIsNotAString);
1668 }
1669 }
1670
1671
AssertPositiveOrZero(Register value)1672 void MacroAssembler::AssertPositiveOrZero(Register value) {
1673 if (emit_debug_code()) {
1674 Label done;
1675 int sign_bit = value.Is64Bits() ? kXSignBit : kWSignBit;
1676 Tbz(value, sign_bit, &done);
1677 Abort(kUnexpectedNegativeValue);
1678 Bind(&done);
1679 }
1680 }
1681
1682
CallStub(CodeStub * stub,TypeFeedbackId ast_id)1683 void MacroAssembler::CallStub(CodeStub* stub, TypeFeedbackId ast_id) {
1684 DCHECK(AllowThisStubCall(stub)); // Stub calls are not allowed in some stubs.
1685 Call(stub->GetCode(), RelocInfo::CODE_TARGET, ast_id);
1686 }
1687
1688
TailCallStub(CodeStub * stub)1689 void MacroAssembler::TailCallStub(CodeStub* stub) {
1690 Jump(stub->GetCode(), RelocInfo::CODE_TARGET);
1691 }
1692
1693
CallRuntime(const Runtime::Function * f,int num_arguments,SaveFPRegsMode save_doubles)1694 void MacroAssembler::CallRuntime(const Runtime::Function* f,
1695 int num_arguments,
1696 SaveFPRegsMode save_doubles) {
1697 // All arguments must be on the stack before this function is called.
1698 // x0 holds the return value after the call.
1699
1700 // Check that the number of arguments matches what the function expects.
1701 // If f->nargs is -1, the function can accept a variable number of arguments.
1702 CHECK(f->nargs < 0 || f->nargs == num_arguments);
1703
1704 // Place the necessary arguments.
1705 Mov(x0, num_arguments);
1706 Mov(x1, ExternalReference(f, isolate()));
1707
1708 CEntryStub stub(isolate(), 1, save_doubles);
1709 CallStub(&stub);
1710 }
1711
1712
CallExternalReference(const ExternalReference & ext,int num_arguments)1713 void MacroAssembler::CallExternalReference(const ExternalReference& ext,
1714 int num_arguments) {
1715 Mov(x0, num_arguments);
1716 Mov(x1, ext);
1717
1718 CEntryStub stub(isolate(), 1);
1719 CallStub(&stub);
1720 }
1721
1722
JumpToExternalReference(const ExternalReference & builtin)1723 void MacroAssembler::JumpToExternalReference(const ExternalReference& builtin) {
1724 Mov(x1, builtin);
1725 CEntryStub stub(isolate(), 1);
1726 Jump(stub.GetCode(), RelocInfo::CODE_TARGET);
1727 }
1728
1729
InvokeBuiltin(int native_context_index,InvokeFlag flag,const CallWrapper & call_wrapper)1730 void MacroAssembler::InvokeBuiltin(int native_context_index, InvokeFlag flag,
1731 const CallWrapper& call_wrapper) {
1732 ASM_LOCATION("MacroAssembler::InvokeBuiltin");
1733 // You can't call a builtin without a valid frame.
1734 DCHECK(flag == JUMP_FUNCTION || has_frame());
1735
1736 // Fake a parameter count to avoid emitting code to do the check.
1737 ParameterCount expected(0);
1738 LoadNativeContextSlot(native_context_index, x1);
1739 InvokeFunctionCode(x1, no_reg, expected, expected, flag, call_wrapper);
1740 }
1741
1742
TailCallRuntime(Runtime::FunctionId fid)1743 void MacroAssembler::TailCallRuntime(Runtime::FunctionId fid) {
1744 const Runtime::Function* function = Runtime::FunctionForId(fid);
1745 DCHECK_EQ(1, function->result_size);
1746 if (function->nargs >= 0) {
1747 // TODO(1236192): Most runtime routines don't need the number of
1748 // arguments passed in because it is constant. At some point we
1749 // should remove this need and make the runtime routine entry code
1750 // smarter.
1751 Mov(x0, function->nargs);
1752 }
1753 JumpToExternalReference(ExternalReference(fid, isolate()));
1754 }
1755
1756
InitializeNewString(Register string,Register length,Heap::RootListIndex map_index,Register scratch1,Register scratch2)1757 void MacroAssembler::InitializeNewString(Register string,
1758 Register length,
1759 Heap::RootListIndex map_index,
1760 Register scratch1,
1761 Register scratch2) {
1762 DCHECK(!AreAliased(string, length, scratch1, scratch2));
1763 LoadRoot(scratch2, map_index);
1764 SmiTag(scratch1, length);
1765 Str(scratch2, FieldMemOperand(string, HeapObject::kMapOffset));
1766
1767 Mov(scratch2, String::kEmptyHashField);
1768 Str(scratch1, FieldMemOperand(string, String::kLengthOffset));
1769 Str(scratch2, FieldMemOperand(string, String::kHashFieldOffset));
1770 }
1771
1772
ActivationFrameAlignment()1773 int MacroAssembler::ActivationFrameAlignment() {
1774 #if V8_HOST_ARCH_ARM64
1775 // Running on the real platform. Use the alignment as mandated by the local
1776 // environment.
1777 // Note: This will break if we ever start generating snapshots on one ARM
1778 // platform for another ARM platform with a different alignment.
1779 return base::OS::ActivationFrameAlignment();
1780 #else // V8_HOST_ARCH_ARM64
1781 // If we are using the simulator then we should always align to the expected
1782 // alignment. As the simulator is used to generate snapshots we do not know
1783 // if the target platform will need alignment, so this is controlled from a
1784 // flag.
1785 return FLAG_sim_stack_alignment;
1786 #endif // V8_HOST_ARCH_ARM64
1787 }
1788
1789
CallCFunction(ExternalReference function,int num_of_reg_args)1790 void MacroAssembler::CallCFunction(ExternalReference function,
1791 int num_of_reg_args) {
1792 CallCFunction(function, num_of_reg_args, 0);
1793 }
1794
1795
CallCFunction(ExternalReference function,int num_of_reg_args,int num_of_double_args)1796 void MacroAssembler::CallCFunction(ExternalReference function,
1797 int num_of_reg_args,
1798 int num_of_double_args) {
1799 UseScratchRegisterScope temps(this);
1800 Register temp = temps.AcquireX();
1801 Mov(temp, function);
1802 CallCFunction(temp, num_of_reg_args, num_of_double_args);
1803 }
1804
1805
CallCFunction(Register function,int num_of_reg_args,int num_of_double_args)1806 void MacroAssembler::CallCFunction(Register function,
1807 int num_of_reg_args,
1808 int num_of_double_args) {
1809 DCHECK(has_frame());
1810 // We can pass 8 integer arguments in registers. If we need to pass more than
1811 // that, we'll need to implement support for passing them on the stack.
1812 DCHECK(num_of_reg_args <= 8);
1813
1814 // If we're passing doubles, we're limited to the following prototypes
1815 // (defined by ExternalReference::Type):
1816 // BUILTIN_COMPARE_CALL: int f(double, double)
1817 // BUILTIN_FP_FP_CALL: double f(double, double)
1818 // BUILTIN_FP_CALL: double f(double)
1819 // BUILTIN_FP_INT_CALL: double f(double, int)
1820 if (num_of_double_args > 0) {
1821 DCHECK(num_of_reg_args <= 1);
1822 DCHECK((num_of_double_args + num_of_reg_args) <= 2);
1823 }
1824
1825
1826 // If the stack pointer is not csp, we need to derive an aligned csp from the
1827 // current stack pointer.
1828 const Register old_stack_pointer = StackPointer();
1829 if (!csp.Is(old_stack_pointer)) {
1830 AssertStackConsistency();
1831
1832 int sp_alignment = ActivationFrameAlignment();
1833 // The ABI mandates at least 16-byte alignment.
1834 DCHECK(sp_alignment >= 16);
1835 DCHECK(base::bits::IsPowerOfTwo32(sp_alignment));
1836
1837 // The current stack pointer is a callee saved register, and is preserved
1838 // across the call.
1839 DCHECK(kCalleeSaved.IncludesAliasOf(old_stack_pointer));
1840
1841 // Align and synchronize the system stack pointer with jssp.
1842 Bic(csp, old_stack_pointer, sp_alignment - 1);
1843 SetStackPointer(csp);
1844 }
1845
1846 // Call directly. The function called cannot cause a GC, or allow preemption,
1847 // so the return address in the link register stays correct.
1848 Call(function);
1849
1850 if (!csp.Is(old_stack_pointer)) {
1851 if (emit_debug_code()) {
1852 // Because the stack pointer must be aligned on a 16-byte boundary, the
1853 // aligned csp can be up to 12 bytes below the jssp. This is the case
1854 // where we only pushed one W register on top of an aligned jssp.
1855 UseScratchRegisterScope temps(this);
1856 Register temp = temps.AcquireX();
1857 DCHECK(ActivationFrameAlignment() == 16);
1858 Sub(temp, csp, old_stack_pointer);
1859 // We want temp <= 0 && temp >= -12.
1860 Cmp(temp, 0);
1861 Ccmp(temp, -12, NFlag, le);
1862 Check(ge, kTheStackWasCorruptedByMacroAssemblerCall);
1863 }
1864 SetStackPointer(old_stack_pointer);
1865 }
1866 }
1867
1868
Jump(Register target)1869 void MacroAssembler::Jump(Register target) {
1870 Br(target);
1871 }
1872
1873
Jump(intptr_t target,RelocInfo::Mode rmode,Condition cond)1874 void MacroAssembler::Jump(intptr_t target, RelocInfo::Mode rmode,
1875 Condition cond) {
1876 if (cond == nv) return;
1877 UseScratchRegisterScope temps(this);
1878 Register temp = temps.AcquireX();
1879 Label done;
1880 if (cond != al) B(NegateCondition(cond), &done);
1881 Mov(temp, Operand(target, rmode));
1882 Br(temp);
1883 Bind(&done);
1884 }
1885
1886
Jump(Address target,RelocInfo::Mode rmode,Condition cond)1887 void MacroAssembler::Jump(Address target, RelocInfo::Mode rmode,
1888 Condition cond) {
1889 DCHECK(!RelocInfo::IsCodeTarget(rmode));
1890 Jump(reinterpret_cast<intptr_t>(target), rmode, cond);
1891 }
1892
1893
Jump(Handle<Code> code,RelocInfo::Mode rmode,Condition cond)1894 void MacroAssembler::Jump(Handle<Code> code, RelocInfo::Mode rmode,
1895 Condition cond) {
1896 DCHECK(RelocInfo::IsCodeTarget(rmode));
1897 AllowDeferredHandleDereference embedding_raw_address;
1898 Jump(reinterpret_cast<intptr_t>(code.location()), rmode, cond);
1899 }
1900
1901
Call(Register target)1902 void MacroAssembler::Call(Register target) {
1903 BlockPoolsScope scope(this);
1904 #ifdef DEBUG
1905 Label start_call;
1906 Bind(&start_call);
1907 #endif
1908
1909 Blr(target);
1910
1911 #ifdef DEBUG
1912 AssertSizeOfCodeGeneratedSince(&start_call, CallSize(target));
1913 #endif
1914 }
1915
1916
Call(Label * target)1917 void MacroAssembler::Call(Label* target) {
1918 BlockPoolsScope scope(this);
1919 #ifdef DEBUG
1920 Label start_call;
1921 Bind(&start_call);
1922 #endif
1923
1924 Bl(target);
1925
1926 #ifdef DEBUG
1927 AssertSizeOfCodeGeneratedSince(&start_call, CallSize(target));
1928 #endif
1929 }
1930
1931
1932 // MacroAssembler::CallSize is sensitive to changes in this function, as it
1933 // requires to know how many instructions are used to branch to the target.
Call(Address target,RelocInfo::Mode rmode)1934 void MacroAssembler::Call(Address target, RelocInfo::Mode rmode) {
1935 BlockPoolsScope scope(this);
1936 #ifdef DEBUG
1937 Label start_call;
1938 Bind(&start_call);
1939 #endif
1940 // Statement positions are expected to be recorded when the target
1941 // address is loaded.
1942 positions_recorder()->WriteRecordedPositions();
1943
1944 // Addresses always have 64 bits, so we shouldn't encounter NONE32.
1945 DCHECK(rmode != RelocInfo::NONE32);
1946
1947 UseScratchRegisterScope temps(this);
1948 Register temp = temps.AcquireX();
1949
1950 if (rmode == RelocInfo::NONE64) {
1951 // Addresses are 48 bits so we never need to load the upper 16 bits.
1952 uint64_t imm = reinterpret_cast<uint64_t>(target);
1953 // If we don't use ARM tagged addresses, the 16 higher bits must be 0.
1954 DCHECK(((imm >> 48) & 0xffff) == 0);
1955 movz(temp, (imm >> 0) & 0xffff, 0);
1956 movk(temp, (imm >> 16) & 0xffff, 16);
1957 movk(temp, (imm >> 32) & 0xffff, 32);
1958 } else {
1959 Ldr(temp, Immediate(reinterpret_cast<intptr_t>(target), rmode));
1960 }
1961 Blr(temp);
1962 #ifdef DEBUG
1963 AssertSizeOfCodeGeneratedSince(&start_call, CallSize(target, rmode));
1964 #endif
1965 }
1966
1967
Call(Handle<Code> code,RelocInfo::Mode rmode,TypeFeedbackId ast_id)1968 void MacroAssembler::Call(Handle<Code> code,
1969 RelocInfo::Mode rmode,
1970 TypeFeedbackId ast_id) {
1971 #ifdef DEBUG
1972 Label start_call;
1973 Bind(&start_call);
1974 #endif
1975
1976 if ((rmode == RelocInfo::CODE_TARGET) && (!ast_id.IsNone())) {
1977 SetRecordedAstId(ast_id);
1978 rmode = RelocInfo::CODE_TARGET_WITH_ID;
1979 }
1980
1981 AllowDeferredHandleDereference embedding_raw_address;
1982 Call(reinterpret_cast<Address>(code.location()), rmode);
1983
1984 #ifdef DEBUG
1985 // Check the size of the code generated.
1986 AssertSizeOfCodeGeneratedSince(&start_call, CallSize(code, rmode, ast_id));
1987 #endif
1988 }
1989
1990
CallSize(Register target)1991 int MacroAssembler::CallSize(Register target) {
1992 USE(target);
1993 return kInstructionSize;
1994 }
1995
1996
CallSize(Label * target)1997 int MacroAssembler::CallSize(Label* target) {
1998 USE(target);
1999 return kInstructionSize;
2000 }
2001
2002
CallSize(Address target,RelocInfo::Mode rmode)2003 int MacroAssembler::CallSize(Address target, RelocInfo::Mode rmode) {
2004 USE(target);
2005
2006 // Addresses always have 64 bits, so we shouldn't encounter NONE32.
2007 DCHECK(rmode != RelocInfo::NONE32);
2008
2009 if (rmode == RelocInfo::NONE64) {
2010 return kCallSizeWithoutRelocation;
2011 } else {
2012 return kCallSizeWithRelocation;
2013 }
2014 }
2015
2016
CallSize(Handle<Code> code,RelocInfo::Mode rmode,TypeFeedbackId ast_id)2017 int MacroAssembler::CallSize(Handle<Code> code,
2018 RelocInfo::Mode rmode,
2019 TypeFeedbackId ast_id) {
2020 USE(code);
2021 USE(ast_id);
2022
2023 // Addresses always have 64 bits, so we shouldn't encounter NONE32.
2024 DCHECK(rmode != RelocInfo::NONE32);
2025
2026 if (rmode == RelocInfo::NONE64) {
2027 return kCallSizeWithoutRelocation;
2028 } else {
2029 return kCallSizeWithRelocation;
2030 }
2031 }
2032
2033
JumpIfHeapNumber(Register object,Label * on_heap_number,SmiCheckType smi_check_type)2034 void MacroAssembler::JumpIfHeapNumber(Register object, Label* on_heap_number,
2035 SmiCheckType smi_check_type) {
2036 Label on_not_heap_number;
2037
2038 if (smi_check_type == DO_SMI_CHECK) {
2039 JumpIfSmi(object, &on_not_heap_number);
2040 }
2041
2042 AssertNotSmi(object);
2043
2044 UseScratchRegisterScope temps(this);
2045 Register temp = temps.AcquireX();
2046 Ldr(temp, FieldMemOperand(object, HeapObject::kMapOffset));
2047 JumpIfRoot(temp, Heap::kHeapNumberMapRootIndex, on_heap_number);
2048
2049 Bind(&on_not_heap_number);
2050 }
2051
2052
JumpIfNotHeapNumber(Register object,Label * on_not_heap_number,SmiCheckType smi_check_type)2053 void MacroAssembler::JumpIfNotHeapNumber(Register object,
2054 Label* on_not_heap_number,
2055 SmiCheckType smi_check_type) {
2056 if (smi_check_type == DO_SMI_CHECK) {
2057 JumpIfSmi(object, on_not_heap_number);
2058 }
2059
2060 AssertNotSmi(object);
2061
2062 UseScratchRegisterScope temps(this);
2063 Register temp = temps.AcquireX();
2064 Ldr(temp, FieldMemOperand(object, HeapObject::kMapOffset));
2065 JumpIfNotRoot(temp, Heap::kHeapNumberMapRootIndex, on_not_heap_number);
2066 }
2067
2068
TryRepresentDoubleAsInt(Register as_int,FPRegister value,FPRegister scratch_d,Label * on_successful_conversion,Label * on_failed_conversion)2069 void MacroAssembler::TryRepresentDoubleAsInt(Register as_int,
2070 FPRegister value,
2071 FPRegister scratch_d,
2072 Label* on_successful_conversion,
2073 Label* on_failed_conversion) {
2074 // Convert to an int and back again, then compare with the original value.
2075 Fcvtzs(as_int, value);
2076 Scvtf(scratch_d, as_int);
2077 Fcmp(value, scratch_d);
2078
2079 if (on_successful_conversion) {
2080 B(on_successful_conversion, eq);
2081 }
2082 if (on_failed_conversion) {
2083 B(on_failed_conversion, ne);
2084 }
2085 }
2086
2087
TestForMinusZero(DoubleRegister input)2088 void MacroAssembler::TestForMinusZero(DoubleRegister input) {
2089 UseScratchRegisterScope temps(this);
2090 Register temp = temps.AcquireX();
2091 // Floating point -0.0 is kMinInt as an integer, so subtracting 1 (cmp) will
2092 // cause overflow.
2093 Fmov(temp, input);
2094 Cmp(temp, 1);
2095 }
2096
2097
JumpIfMinusZero(DoubleRegister input,Label * on_negative_zero)2098 void MacroAssembler::JumpIfMinusZero(DoubleRegister input,
2099 Label* on_negative_zero) {
2100 TestForMinusZero(input);
2101 B(vs, on_negative_zero);
2102 }
2103
2104
JumpIfMinusZero(Register input,Label * on_negative_zero)2105 void MacroAssembler::JumpIfMinusZero(Register input,
2106 Label* on_negative_zero) {
2107 DCHECK(input.Is64Bits());
2108 // Floating point value is in an integer register. Detect -0.0 by subtracting
2109 // 1 (cmp), which will cause overflow.
2110 Cmp(input, 1);
2111 B(vs, on_negative_zero);
2112 }
2113
2114
ClampInt32ToUint8(Register output,Register input)2115 void MacroAssembler::ClampInt32ToUint8(Register output, Register input) {
2116 // Clamp the value to [0..255].
2117 Cmp(input.W(), Operand(input.W(), UXTB));
2118 // If input < input & 0xff, it must be < 0, so saturate to 0.
2119 Csel(output.W(), wzr, input.W(), lt);
2120 // If input <= input & 0xff, it must be <= 255. Otherwise, saturate to 255.
2121 Csel(output.W(), output.W(), 255, le);
2122 }
2123
2124
ClampInt32ToUint8(Register in_out)2125 void MacroAssembler::ClampInt32ToUint8(Register in_out) {
2126 ClampInt32ToUint8(in_out, in_out);
2127 }
2128
2129
ClampDoubleToUint8(Register output,DoubleRegister input,DoubleRegister dbl_scratch)2130 void MacroAssembler::ClampDoubleToUint8(Register output,
2131 DoubleRegister input,
2132 DoubleRegister dbl_scratch) {
2133 // This conversion follows the WebIDL "[Clamp]" rules for PIXEL types:
2134 // - Inputs lower than 0 (including -infinity) produce 0.
2135 // - Inputs higher than 255 (including +infinity) produce 255.
2136 // Also, it seems that PIXEL types use round-to-nearest rather than
2137 // round-towards-zero.
2138
2139 // Squash +infinity before the conversion, since Fcvtnu will normally
2140 // convert it to 0.
2141 Fmov(dbl_scratch, 255);
2142 Fmin(dbl_scratch, dbl_scratch, input);
2143
2144 // Convert double to unsigned integer. Values less than zero become zero.
2145 // Values greater than 255 have already been clamped to 255.
2146 Fcvtnu(output, dbl_scratch);
2147 }
2148
2149
CopyBytes(Register dst,Register src,Register length,Register scratch,CopyHint hint)2150 void MacroAssembler::CopyBytes(Register dst,
2151 Register src,
2152 Register length,
2153 Register scratch,
2154 CopyHint hint) {
2155 UseScratchRegisterScope temps(this);
2156 Register tmp1 = temps.AcquireX();
2157 Register tmp2 = temps.AcquireX();
2158 DCHECK(!AreAliased(src, dst, length, scratch, tmp1, tmp2));
2159 DCHECK(!AreAliased(src, dst, csp));
2160
2161 if (emit_debug_code()) {
2162 // Check copy length.
2163 Cmp(length, 0);
2164 Assert(ge, kUnexpectedNegativeValue);
2165
2166 // Check src and dst buffers don't overlap.
2167 Add(scratch, src, length); // Calculate end of src buffer.
2168 Cmp(scratch, dst);
2169 Add(scratch, dst, length); // Calculate end of dst buffer.
2170 Ccmp(scratch, src, ZFlag, gt);
2171 Assert(le, kCopyBuffersOverlap);
2172 }
2173
2174 Label short_copy, short_loop, bulk_loop, done;
2175
2176 if ((hint == kCopyLong || hint == kCopyUnknown) && !FLAG_optimize_for_size) {
2177 Register bulk_length = scratch;
2178 int pair_size = 2 * kXRegSize;
2179 int pair_mask = pair_size - 1;
2180
2181 Bic(bulk_length, length, pair_mask);
2182 Cbz(bulk_length, &short_copy);
2183 Bind(&bulk_loop);
2184 Sub(bulk_length, bulk_length, pair_size);
2185 Ldp(tmp1, tmp2, MemOperand(src, pair_size, PostIndex));
2186 Stp(tmp1, tmp2, MemOperand(dst, pair_size, PostIndex));
2187 Cbnz(bulk_length, &bulk_loop);
2188
2189 And(length, length, pair_mask);
2190 }
2191
2192 Bind(&short_copy);
2193 Cbz(length, &done);
2194 Bind(&short_loop);
2195 Sub(length, length, 1);
2196 Ldrb(tmp1, MemOperand(src, 1, PostIndex));
2197 Strb(tmp1, MemOperand(dst, 1, PostIndex));
2198 Cbnz(length, &short_loop);
2199
2200
2201 Bind(&done);
2202 }
2203
2204
InitializeFieldsWithFiller(Register current_address,Register end_address,Register filler)2205 void MacroAssembler::InitializeFieldsWithFiller(Register current_address,
2206 Register end_address,
2207 Register filler) {
2208 DCHECK(!current_address.Is(csp));
2209 UseScratchRegisterScope temps(this);
2210 Register distance_in_words = temps.AcquireX();
2211 Label done;
2212
2213 // Calculate the distance. If it's <= zero then there's nothing to do.
2214 Subs(distance_in_words, end_address, current_address);
2215 B(le, &done);
2216
2217 // There's at least one field to fill, so do this unconditionally.
2218 Str(filler, MemOperand(current_address));
2219
2220 // If the distance_in_words consists of odd number of words we advance
2221 // start_address by one word, otherwise the pairs loop will ovwerite the
2222 // field that was stored above.
2223 And(distance_in_words, distance_in_words, kPointerSize);
2224 Add(current_address, current_address, distance_in_words);
2225
2226 // Store filler to memory in pairs.
2227 Label loop, entry;
2228 B(&entry);
2229 Bind(&loop);
2230 Stp(filler, filler, MemOperand(current_address, 2 * kPointerSize, PostIndex));
2231 Bind(&entry);
2232 Cmp(current_address, end_address);
2233 B(lo, &loop);
2234
2235 Bind(&done);
2236 }
2237
2238
JumpIfEitherIsNotSequentialOneByteStrings(Register first,Register second,Register scratch1,Register scratch2,Label * failure,SmiCheckType smi_check)2239 void MacroAssembler::JumpIfEitherIsNotSequentialOneByteStrings(
2240 Register first, Register second, Register scratch1, Register scratch2,
2241 Label* failure, SmiCheckType smi_check) {
2242 if (smi_check == DO_SMI_CHECK) {
2243 JumpIfEitherSmi(first, second, failure);
2244 } else if (emit_debug_code()) {
2245 DCHECK(smi_check == DONT_DO_SMI_CHECK);
2246 Label not_smi;
2247 JumpIfEitherSmi(first, second, NULL, ¬_smi);
2248
2249 // At least one input is a smi, but the flags indicated a smi check wasn't
2250 // needed.
2251 Abort(kUnexpectedSmi);
2252
2253 Bind(¬_smi);
2254 }
2255
2256 // Test that both first and second are sequential one-byte strings.
2257 Ldr(scratch1, FieldMemOperand(first, HeapObject::kMapOffset));
2258 Ldr(scratch2, FieldMemOperand(second, HeapObject::kMapOffset));
2259 Ldrb(scratch1, FieldMemOperand(scratch1, Map::kInstanceTypeOffset));
2260 Ldrb(scratch2, FieldMemOperand(scratch2, Map::kInstanceTypeOffset));
2261
2262 JumpIfEitherInstanceTypeIsNotSequentialOneByte(scratch1, scratch2, scratch1,
2263 scratch2, failure);
2264 }
2265
2266
JumpIfEitherInstanceTypeIsNotSequentialOneByte(Register first,Register second,Register scratch1,Register scratch2,Label * failure)2267 void MacroAssembler::JumpIfEitherInstanceTypeIsNotSequentialOneByte(
2268 Register first, Register second, Register scratch1, Register scratch2,
2269 Label* failure) {
2270 DCHECK(!AreAliased(scratch1, second));
2271 DCHECK(!AreAliased(scratch1, scratch2));
2272 const int kFlatOneByteStringMask =
2273 kIsNotStringMask | kStringEncodingMask | kStringRepresentationMask;
2274 const int kFlatOneByteStringTag =
2275 kStringTag | kOneByteStringTag | kSeqStringTag;
2276 And(scratch1, first, kFlatOneByteStringMask);
2277 And(scratch2, second, kFlatOneByteStringMask);
2278 Cmp(scratch1, kFlatOneByteStringTag);
2279 Ccmp(scratch2, kFlatOneByteStringTag, NoFlag, eq);
2280 B(ne, failure);
2281 }
2282
2283
JumpIfInstanceTypeIsNotSequentialOneByte(Register type,Register scratch,Label * failure)2284 void MacroAssembler::JumpIfInstanceTypeIsNotSequentialOneByte(Register type,
2285 Register scratch,
2286 Label* failure) {
2287 const int kFlatOneByteStringMask =
2288 kIsNotStringMask | kStringEncodingMask | kStringRepresentationMask;
2289 const int kFlatOneByteStringTag =
2290 kStringTag | kOneByteStringTag | kSeqStringTag;
2291 And(scratch, type, kFlatOneByteStringMask);
2292 Cmp(scratch, kFlatOneByteStringTag);
2293 B(ne, failure);
2294 }
2295
2296
JumpIfBothInstanceTypesAreNotSequentialOneByte(Register first,Register second,Register scratch1,Register scratch2,Label * failure)2297 void MacroAssembler::JumpIfBothInstanceTypesAreNotSequentialOneByte(
2298 Register first, Register second, Register scratch1, Register scratch2,
2299 Label* failure) {
2300 DCHECK(!AreAliased(first, second, scratch1, scratch2));
2301 const int kFlatOneByteStringMask =
2302 kIsNotStringMask | kStringEncodingMask | kStringRepresentationMask;
2303 const int kFlatOneByteStringTag =
2304 kStringTag | kOneByteStringTag | kSeqStringTag;
2305 And(scratch1, first, kFlatOneByteStringMask);
2306 And(scratch2, second, kFlatOneByteStringMask);
2307 Cmp(scratch1, kFlatOneByteStringTag);
2308 Ccmp(scratch2, kFlatOneByteStringTag, NoFlag, eq);
2309 B(ne, failure);
2310 }
2311
2312
JumpIfNotUniqueNameInstanceType(Register type,Label * not_unique_name)2313 void MacroAssembler::JumpIfNotUniqueNameInstanceType(Register type,
2314 Label* not_unique_name) {
2315 STATIC_ASSERT((kInternalizedTag == 0) && (kStringTag == 0));
2316 // if ((type is string && type is internalized) || type == SYMBOL_TYPE) {
2317 // continue
2318 // } else {
2319 // goto not_unique_name
2320 // }
2321 Tst(type, kIsNotStringMask | kIsNotInternalizedMask);
2322 Ccmp(type, SYMBOL_TYPE, ZFlag, ne);
2323 B(ne, not_unique_name);
2324 }
2325
2326
InvokePrologue(const ParameterCount & expected,const ParameterCount & actual,Label * done,InvokeFlag flag,bool * definitely_mismatches,const CallWrapper & call_wrapper)2327 void MacroAssembler::InvokePrologue(const ParameterCount& expected,
2328 const ParameterCount& actual,
2329 Label* done,
2330 InvokeFlag flag,
2331 bool* definitely_mismatches,
2332 const CallWrapper& call_wrapper) {
2333 bool definitely_matches = false;
2334 *definitely_mismatches = false;
2335 Label regular_invoke;
2336
2337 // Check whether the expected and actual arguments count match. If not,
2338 // setup registers according to contract with ArgumentsAdaptorTrampoline:
2339 // x0: actual arguments count.
2340 // x1: function (passed through to callee).
2341 // x2: expected arguments count.
2342
2343 // The code below is made a lot easier because the calling code already sets
2344 // up actual and expected registers according to the contract if values are
2345 // passed in registers.
2346 DCHECK(actual.is_immediate() || actual.reg().is(x0));
2347 DCHECK(expected.is_immediate() || expected.reg().is(x2));
2348
2349 if (expected.is_immediate()) {
2350 DCHECK(actual.is_immediate());
2351 Mov(x0, actual.immediate());
2352 if (expected.immediate() == actual.immediate()) {
2353 definitely_matches = true;
2354
2355 } else {
2356 if (expected.immediate() ==
2357 SharedFunctionInfo::kDontAdaptArgumentsSentinel) {
2358 // Don't worry about adapting arguments for builtins that
2359 // don't want that done. Skip adaption code by making it look
2360 // like we have a match between expected and actual number of
2361 // arguments.
2362 definitely_matches = true;
2363 } else {
2364 *definitely_mismatches = true;
2365 // Set up x2 for the argument adaptor.
2366 Mov(x2, expected.immediate());
2367 }
2368 }
2369
2370 } else { // expected is a register.
2371 Operand actual_op = actual.is_immediate() ? Operand(actual.immediate())
2372 : Operand(actual.reg());
2373 Mov(x0, actual_op);
2374 // If actual == expected perform a regular invocation.
2375 Cmp(expected.reg(), actual_op);
2376 B(eq, ®ular_invoke);
2377 }
2378
2379 // If the argument counts may mismatch, generate a call to the argument
2380 // adaptor.
2381 if (!definitely_matches) {
2382 Handle<Code> adaptor =
2383 isolate()->builtins()->ArgumentsAdaptorTrampoline();
2384 if (flag == CALL_FUNCTION) {
2385 call_wrapper.BeforeCall(CallSize(adaptor));
2386 Call(adaptor);
2387 call_wrapper.AfterCall();
2388 if (!*definitely_mismatches) {
2389 // If the arg counts don't match, no extra code is emitted by
2390 // MAsm::InvokeFunctionCode and we can just fall through.
2391 B(done);
2392 }
2393 } else {
2394 Jump(adaptor, RelocInfo::CODE_TARGET);
2395 }
2396 }
2397 Bind(®ular_invoke);
2398 }
2399
2400
FloodFunctionIfStepping(Register fun,Register new_target,const ParameterCount & expected,const ParameterCount & actual)2401 void MacroAssembler::FloodFunctionIfStepping(Register fun, Register new_target,
2402 const ParameterCount& expected,
2403 const ParameterCount& actual) {
2404 Label skip_flooding;
2405 ExternalReference step_in_enabled =
2406 ExternalReference::debug_step_in_enabled_address(isolate());
2407 Mov(x4, Operand(step_in_enabled));
2408 ldrb(x4, MemOperand(x4));
2409 CompareAndBranch(x4, Operand(0), eq, &skip_flooding);
2410 {
2411 FrameScope frame(this,
2412 has_frame() ? StackFrame::NONE : StackFrame::INTERNAL);
2413 if (expected.is_reg()) {
2414 SmiTag(expected.reg());
2415 Push(expected.reg());
2416 }
2417 if (actual.is_reg()) {
2418 SmiTag(actual.reg());
2419 Push(actual.reg());
2420 }
2421 if (new_target.is_valid()) {
2422 Push(new_target);
2423 }
2424 Push(fun);
2425 Push(fun);
2426 CallRuntime(Runtime::kDebugPrepareStepInIfStepping, 1);
2427 Pop(fun);
2428 if (new_target.is_valid()) {
2429 Pop(new_target);
2430 }
2431 if (actual.is_reg()) {
2432 Pop(actual.reg());
2433 SmiUntag(actual.reg());
2434 }
2435 if (expected.is_reg()) {
2436 Pop(expected.reg());
2437 SmiUntag(expected.reg());
2438 }
2439 }
2440 bind(&skip_flooding);
2441 }
2442
2443
InvokeFunctionCode(Register function,Register new_target,const ParameterCount & expected,const ParameterCount & actual,InvokeFlag flag,const CallWrapper & call_wrapper)2444 void MacroAssembler::InvokeFunctionCode(Register function, Register new_target,
2445 const ParameterCount& expected,
2446 const ParameterCount& actual,
2447 InvokeFlag flag,
2448 const CallWrapper& call_wrapper) {
2449 // You can't call a function without a valid frame.
2450 DCHECK(flag == JUMP_FUNCTION || has_frame());
2451 DCHECK(function.is(x1));
2452 DCHECK_IMPLIES(new_target.is_valid(), new_target.is(x3));
2453
2454 FloodFunctionIfStepping(function, new_target, expected, actual);
2455
2456 // Clear the new.target register if not given.
2457 if (!new_target.is_valid()) {
2458 LoadRoot(x3, Heap::kUndefinedValueRootIndex);
2459 }
2460
2461 Label done;
2462 bool definitely_mismatches = false;
2463 InvokePrologue(expected, actual, &done, flag, &definitely_mismatches,
2464 call_wrapper);
2465
2466 // If we are certain that actual != expected, then we know InvokePrologue will
2467 // have handled the call through the argument adaptor mechanism.
2468 // The called function expects the call kind in x5.
2469 if (!definitely_mismatches) {
2470 // We call indirectly through the code field in the function to
2471 // allow recompilation to take effect without changing any of the
2472 // call sites.
2473 Register code = x4;
2474 Ldr(code, FieldMemOperand(function, JSFunction::kCodeEntryOffset));
2475 if (flag == CALL_FUNCTION) {
2476 call_wrapper.BeforeCall(CallSize(code));
2477 Call(code);
2478 call_wrapper.AfterCall();
2479 } else {
2480 DCHECK(flag == JUMP_FUNCTION);
2481 Jump(code);
2482 }
2483 }
2484
2485 // Continue here if InvokePrologue does handle the invocation due to
2486 // mismatched parameter counts.
2487 Bind(&done);
2488 }
2489
2490
InvokeFunction(Register function,Register new_target,const ParameterCount & actual,InvokeFlag flag,const CallWrapper & call_wrapper)2491 void MacroAssembler::InvokeFunction(Register function,
2492 Register new_target,
2493 const ParameterCount& actual,
2494 InvokeFlag flag,
2495 const CallWrapper& call_wrapper) {
2496 // You can't call a function without a valid frame.
2497 DCHECK(flag == JUMP_FUNCTION || has_frame());
2498
2499 // Contract with called JS functions requires that function is passed in x1.
2500 // (See FullCodeGenerator::Generate().)
2501 DCHECK(function.is(x1));
2502
2503 Register expected_reg = x2;
2504
2505 Ldr(cp, FieldMemOperand(function, JSFunction::kContextOffset));
2506 // The number of arguments is stored as an int32_t, and -1 is a marker
2507 // (SharedFunctionInfo::kDontAdaptArgumentsSentinel), so we need sign
2508 // extension to correctly handle it.
2509 Ldr(expected_reg, FieldMemOperand(function,
2510 JSFunction::kSharedFunctionInfoOffset));
2511 Ldrsw(expected_reg,
2512 FieldMemOperand(expected_reg,
2513 SharedFunctionInfo::kFormalParameterCountOffset));
2514
2515 ParameterCount expected(expected_reg);
2516 InvokeFunctionCode(function, new_target, expected, actual, flag,
2517 call_wrapper);
2518 }
2519
2520
InvokeFunction(Register function,const ParameterCount & expected,const ParameterCount & actual,InvokeFlag flag,const CallWrapper & call_wrapper)2521 void MacroAssembler::InvokeFunction(Register function,
2522 const ParameterCount& expected,
2523 const ParameterCount& actual,
2524 InvokeFlag flag,
2525 const CallWrapper& call_wrapper) {
2526 // You can't call a function without a valid frame.
2527 DCHECK(flag == JUMP_FUNCTION || has_frame());
2528
2529 // Contract with called JS functions requires that function is passed in x1.
2530 // (See FullCodeGenerator::Generate().)
2531 DCHECK(function.Is(x1));
2532
2533 // Set up the context.
2534 Ldr(cp, FieldMemOperand(function, JSFunction::kContextOffset));
2535
2536 InvokeFunctionCode(function, no_reg, expected, actual, flag, call_wrapper);
2537 }
2538
2539
InvokeFunction(Handle<JSFunction> function,const ParameterCount & expected,const ParameterCount & actual,InvokeFlag flag,const CallWrapper & call_wrapper)2540 void MacroAssembler::InvokeFunction(Handle<JSFunction> function,
2541 const ParameterCount& expected,
2542 const ParameterCount& actual,
2543 InvokeFlag flag,
2544 const CallWrapper& call_wrapper) {
2545 // Contract with called JS functions requires that function is passed in x1.
2546 // (See FullCodeGenerator::Generate().)
2547 __ LoadObject(x1, function);
2548 InvokeFunction(x1, expected, actual, flag, call_wrapper);
2549 }
2550
2551
TryConvertDoubleToInt64(Register result,DoubleRegister double_input,Label * done)2552 void MacroAssembler::TryConvertDoubleToInt64(Register result,
2553 DoubleRegister double_input,
2554 Label* done) {
2555 // Try to convert with an FPU convert instruction. It's trivial to compute
2556 // the modulo operation on an integer register so we convert to a 64-bit
2557 // integer.
2558 //
2559 // Fcvtzs will saturate to INT64_MIN (0x800...00) or INT64_MAX (0x7ff...ff)
2560 // when the double is out of range. NaNs and infinities will be converted to 0
2561 // (as ECMA-262 requires).
2562 Fcvtzs(result.X(), double_input);
2563
2564 // The values INT64_MIN (0x800...00) or INT64_MAX (0x7ff...ff) are not
2565 // representable using a double, so if the result is one of those then we know
2566 // that saturation occured, and we need to manually handle the conversion.
2567 //
2568 // It is easy to detect INT64_MIN and INT64_MAX because adding or subtracting
2569 // 1 will cause signed overflow.
2570 Cmp(result.X(), 1);
2571 Ccmp(result.X(), -1, VFlag, vc);
2572
2573 B(vc, done);
2574 }
2575
2576
TruncateDoubleToI(Register result,DoubleRegister double_input)2577 void MacroAssembler::TruncateDoubleToI(Register result,
2578 DoubleRegister double_input) {
2579 Label done;
2580
2581 // Try to convert the double to an int64. If successful, the bottom 32 bits
2582 // contain our truncated int32 result.
2583 TryConvertDoubleToInt64(result, double_input, &done);
2584
2585 const Register old_stack_pointer = StackPointer();
2586 if (csp.Is(old_stack_pointer)) {
2587 // This currently only happens during compiler-unittest. If it arises
2588 // during regular code generation the DoubleToI stub should be updated to
2589 // cope with csp and have an extra parameter indicating which stack pointer
2590 // it should use.
2591 Push(jssp, xzr); // Push xzr to maintain csp required 16-bytes alignment.
2592 Mov(jssp, csp);
2593 SetStackPointer(jssp);
2594 }
2595
2596 // If we fell through then inline version didn't succeed - call stub instead.
2597 Push(lr, double_input);
2598
2599 DoubleToIStub stub(isolate(),
2600 jssp,
2601 result,
2602 0,
2603 true, // is_truncating
2604 true); // skip_fastpath
2605 CallStub(&stub); // DoubleToIStub preserves any registers it needs to clobber
2606
2607 DCHECK_EQ(xzr.SizeInBytes(), double_input.SizeInBytes());
2608 Pop(xzr, lr); // xzr to drop the double input on the stack.
2609
2610 if (csp.Is(old_stack_pointer)) {
2611 Mov(csp, jssp);
2612 SetStackPointer(csp);
2613 AssertStackConsistency();
2614 Pop(xzr, jssp);
2615 }
2616
2617 Bind(&done);
2618 }
2619
2620
TruncateHeapNumberToI(Register result,Register object)2621 void MacroAssembler::TruncateHeapNumberToI(Register result,
2622 Register object) {
2623 Label done;
2624 DCHECK(!result.is(object));
2625 DCHECK(jssp.Is(StackPointer()));
2626
2627 Ldr(fp_scratch, FieldMemOperand(object, HeapNumber::kValueOffset));
2628
2629 // Try to convert the double to an int64. If successful, the bottom 32 bits
2630 // contain our truncated int32 result.
2631 TryConvertDoubleToInt64(result, fp_scratch, &done);
2632
2633 // If we fell through then inline version didn't succeed - call stub instead.
2634 Push(lr);
2635 DoubleToIStub stub(isolate(),
2636 object,
2637 result,
2638 HeapNumber::kValueOffset - kHeapObjectTag,
2639 true, // is_truncating
2640 true); // skip_fastpath
2641 CallStub(&stub); // DoubleToIStub preserves any registers it needs to clobber
2642 Pop(lr);
2643
2644 Bind(&done);
2645 }
2646
2647
StubPrologue()2648 void MacroAssembler::StubPrologue() {
2649 UseScratchRegisterScope temps(this);
2650 Register temp = temps.AcquireX();
2651 __ Mov(temp, Smi::FromInt(StackFrame::STUB));
2652 // Compiled stubs don't age, and so they don't need the predictable code
2653 // ageing sequence.
2654 __ Push(lr, fp, cp, temp);
2655 __ Add(fp, StackPointer(), StandardFrameConstants::kFixedFrameSizeFromFp);
2656 }
2657
2658
Prologue(bool code_pre_aging)2659 void MacroAssembler::Prologue(bool code_pre_aging) {
2660 if (code_pre_aging) {
2661 Code* stub = Code::GetPreAgedCodeAgeStub(isolate());
2662 __ EmitCodeAgeSequence(stub);
2663 } else {
2664 __ EmitFrameSetupForCodeAgePatching();
2665 }
2666 }
2667
2668
EmitLoadTypeFeedbackVector(Register vector)2669 void MacroAssembler::EmitLoadTypeFeedbackVector(Register vector) {
2670 Ldr(vector, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset));
2671 Ldr(vector, FieldMemOperand(vector, JSFunction::kSharedFunctionInfoOffset));
2672 Ldr(vector,
2673 FieldMemOperand(vector, SharedFunctionInfo::kFeedbackVectorOffset));
2674 }
2675
2676
EnterFrame(StackFrame::Type type,bool load_constant_pool_pointer_reg)2677 void MacroAssembler::EnterFrame(StackFrame::Type type,
2678 bool load_constant_pool_pointer_reg) {
2679 // Out-of-line constant pool not implemented on arm64.
2680 UNREACHABLE();
2681 }
2682
2683
EnterFrame(StackFrame::Type type)2684 void MacroAssembler::EnterFrame(StackFrame::Type type) {
2685 DCHECK(jssp.Is(StackPointer()));
2686 UseScratchRegisterScope temps(this);
2687 Register type_reg = temps.AcquireX();
2688 Register code_reg = temps.AcquireX();
2689
2690 Push(lr, fp, cp);
2691 Mov(type_reg, Smi::FromInt(type));
2692 Mov(code_reg, Operand(CodeObject()));
2693 Push(type_reg, code_reg);
2694 // jssp[4] : lr
2695 // jssp[3] : fp
2696 // jssp[2] : cp
2697 // jssp[1] : type
2698 // jssp[0] : code object
2699
2700 // Adjust FP to point to saved FP.
2701 Add(fp, jssp, StandardFrameConstants::kFixedFrameSizeFromFp + kPointerSize);
2702 }
2703
2704
LeaveFrame(StackFrame::Type type)2705 void MacroAssembler::LeaveFrame(StackFrame::Type type) {
2706 DCHECK(jssp.Is(StackPointer()));
2707 // Drop the execution stack down to the frame pointer and restore
2708 // the caller frame pointer and return address.
2709 Mov(jssp, fp);
2710 AssertStackConsistency();
2711 Pop(fp, lr);
2712 }
2713
2714
ExitFramePreserveFPRegs()2715 void MacroAssembler::ExitFramePreserveFPRegs() {
2716 PushCPURegList(kCallerSavedFP);
2717 }
2718
2719
ExitFrameRestoreFPRegs()2720 void MacroAssembler::ExitFrameRestoreFPRegs() {
2721 // Read the registers from the stack without popping them. The stack pointer
2722 // will be reset as part of the unwinding process.
2723 CPURegList saved_fp_regs = kCallerSavedFP;
2724 DCHECK(saved_fp_regs.Count() % 2 == 0);
2725
2726 int offset = ExitFrameConstants::kLastExitFrameField;
2727 while (!saved_fp_regs.IsEmpty()) {
2728 const CPURegister& dst0 = saved_fp_regs.PopHighestIndex();
2729 const CPURegister& dst1 = saved_fp_regs.PopHighestIndex();
2730 offset -= 2 * kDRegSize;
2731 Ldp(dst1, dst0, MemOperand(fp, offset));
2732 }
2733 }
2734
2735
EnterExitFrame(bool save_doubles,const Register & scratch,int extra_space)2736 void MacroAssembler::EnterExitFrame(bool save_doubles,
2737 const Register& scratch,
2738 int extra_space) {
2739 DCHECK(jssp.Is(StackPointer()));
2740
2741 // Set up the new stack frame.
2742 Mov(scratch, Operand(CodeObject()));
2743 Push(lr, fp);
2744 Mov(fp, StackPointer());
2745 Push(xzr, scratch);
2746 // fp[8]: CallerPC (lr)
2747 // fp -> fp[0]: CallerFP (old fp)
2748 // fp[-8]: Space reserved for SPOffset.
2749 // jssp -> fp[-16]: CodeObject()
2750 STATIC_ASSERT((2 * kPointerSize) ==
2751 ExitFrameConstants::kCallerSPDisplacement);
2752 STATIC_ASSERT((1 * kPointerSize) == ExitFrameConstants::kCallerPCOffset);
2753 STATIC_ASSERT((0 * kPointerSize) == ExitFrameConstants::kCallerFPOffset);
2754 STATIC_ASSERT((-1 * kPointerSize) == ExitFrameConstants::kSPOffset);
2755 STATIC_ASSERT((-2 * kPointerSize) == ExitFrameConstants::kCodeOffset);
2756
2757 // Save the frame pointer and context pointer in the top frame.
2758 Mov(scratch, Operand(ExternalReference(Isolate::kCEntryFPAddress,
2759 isolate())));
2760 Str(fp, MemOperand(scratch));
2761 Mov(scratch, Operand(ExternalReference(Isolate::kContextAddress,
2762 isolate())));
2763 Str(cp, MemOperand(scratch));
2764
2765 STATIC_ASSERT((-2 * kPointerSize) ==
2766 ExitFrameConstants::kLastExitFrameField);
2767 if (save_doubles) {
2768 ExitFramePreserveFPRegs();
2769 }
2770
2771 // Reserve space for the return address and for user requested memory.
2772 // We do this before aligning to make sure that we end up correctly
2773 // aligned with the minimum of wasted space.
2774 Claim(extra_space + 1, kXRegSize);
2775 // fp[8]: CallerPC (lr)
2776 // fp -> fp[0]: CallerFP (old fp)
2777 // fp[-8]: Space reserved for SPOffset.
2778 // fp[-16]: CodeObject()
2779 // fp[-16 - fp_size]: Saved doubles (if save_doubles is true).
2780 // jssp[8]: Extra space reserved for caller (if extra_space != 0).
2781 // jssp -> jssp[0]: Space reserved for the return address.
2782
2783 // Align and synchronize the system stack pointer with jssp.
2784 AlignAndSetCSPForFrame();
2785 DCHECK(csp.Is(StackPointer()));
2786
2787 // fp[8]: CallerPC (lr)
2788 // fp -> fp[0]: CallerFP (old fp)
2789 // fp[-8]: Space reserved for SPOffset.
2790 // fp[-16]: CodeObject()
2791 // fp[-16 - fp_size]: Saved doubles (if save_doubles is true).
2792 // csp[8]: Memory reserved for the caller if extra_space != 0.
2793 // Alignment padding, if necessary.
2794 // csp -> csp[0]: Space reserved for the return address.
2795
2796 // ExitFrame::GetStateForFramePointer expects to find the return address at
2797 // the memory address immediately below the pointer stored in SPOffset.
2798 // It is not safe to derive much else from SPOffset, because the size of the
2799 // padding can vary.
2800 Add(scratch, csp, kXRegSize);
2801 Str(scratch, MemOperand(fp, ExitFrameConstants::kSPOffset));
2802 }
2803
2804
2805 // Leave the current exit frame.
LeaveExitFrame(bool restore_doubles,const Register & scratch,bool restore_context)2806 void MacroAssembler::LeaveExitFrame(bool restore_doubles,
2807 const Register& scratch,
2808 bool restore_context) {
2809 DCHECK(csp.Is(StackPointer()));
2810
2811 if (restore_doubles) {
2812 ExitFrameRestoreFPRegs();
2813 }
2814
2815 // Restore the context pointer from the top frame.
2816 if (restore_context) {
2817 Mov(scratch, Operand(ExternalReference(Isolate::kContextAddress,
2818 isolate())));
2819 Ldr(cp, MemOperand(scratch));
2820 }
2821
2822 if (emit_debug_code()) {
2823 // Also emit debug code to clear the cp in the top frame.
2824 Mov(scratch, Operand(ExternalReference(Isolate::kContextAddress,
2825 isolate())));
2826 Str(xzr, MemOperand(scratch));
2827 }
2828 // Clear the frame pointer from the top frame.
2829 Mov(scratch, Operand(ExternalReference(Isolate::kCEntryFPAddress,
2830 isolate())));
2831 Str(xzr, MemOperand(scratch));
2832
2833 // Pop the exit frame.
2834 // fp[8]: CallerPC (lr)
2835 // fp -> fp[0]: CallerFP (old fp)
2836 // fp[...]: The rest of the frame.
2837 Mov(jssp, fp);
2838 SetStackPointer(jssp);
2839 AssertStackConsistency();
2840 Pop(fp, lr);
2841 }
2842
2843
SetCounter(StatsCounter * counter,int value,Register scratch1,Register scratch2)2844 void MacroAssembler::SetCounter(StatsCounter* counter, int value,
2845 Register scratch1, Register scratch2) {
2846 if (FLAG_native_code_counters && counter->Enabled()) {
2847 Mov(scratch1, value);
2848 Mov(scratch2, ExternalReference(counter));
2849 Str(scratch1, MemOperand(scratch2));
2850 }
2851 }
2852
2853
IncrementCounter(StatsCounter * counter,int value,Register scratch1,Register scratch2)2854 void MacroAssembler::IncrementCounter(StatsCounter* counter, int value,
2855 Register scratch1, Register scratch2) {
2856 DCHECK(value != 0);
2857 if (FLAG_native_code_counters && counter->Enabled()) {
2858 Mov(scratch2, ExternalReference(counter));
2859 Ldr(scratch1, MemOperand(scratch2));
2860 Add(scratch1, scratch1, value);
2861 Str(scratch1, MemOperand(scratch2));
2862 }
2863 }
2864
2865
DecrementCounter(StatsCounter * counter,int value,Register scratch1,Register scratch2)2866 void MacroAssembler::DecrementCounter(StatsCounter* counter, int value,
2867 Register scratch1, Register scratch2) {
2868 IncrementCounter(counter, -value, scratch1, scratch2);
2869 }
2870
2871
LoadContext(Register dst,int context_chain_length)2872 void MacroAssembler::LoadContext(Register dst, int context_chain_length) {
2873 if (context_chain_length > 0) {
2874 // Move up the chain of contexts to the context containing the slot.
2875 Ldr(dst, MemOperand(cp, Context::SlotOffset(Context::PREVIOUS_INDEX)));
2876 for (int i = 1; i < context_chain_length; i++) {
2877 Ldr(dst, MemOperand(dst, Context::SlotOffset(Context::PREVIOUS_INDEX)));
2878 }
2879 } else {
2880 // Slot is in the current function context. Move it into the
2881 // destination register in case we store into it (the write barrier
2882 // cannot be allowed to destroy the context in cp).
2883 Mov(dst, cp);
2884 }
2885 }
2886
2887
DebugBreak()2888 void MacroAssembler::DebugBreak() {
2889 Mov(x0, 0);
2890 Mov(x1, ExternalReference(Runtime::kHandleDebuggerStatement, isolate()));
2891 CEntryStub ces(isolate(), 1);
2892 DCHECK(AllowThisStubCall(&ces));
2893 Call(ces.GetCode(), RelocInfo::DEBUGGER_STATEMENT);
2894 }
2895
2896
PushStackHandler()2897 void MacroAssembler::PushStackHandler() {
2898 DCHECK(jssp.Is(StackPointer()));
2899 // Adjust this code if the asserts don't hold.
2900 STATIC_ASSERT(StackHandlerConstants::kSize == 1 * kPointerSize);
2901 STATIC_ASSERT(StackHandlerConstants::kNextOffset == 0 * kPointerSize);
2902
2903 // For the JSEntry handler, we must preserve the live registers x0-x4.
2904 // (See JSEntryStub::GenerateBody().)
2905
2906 // Link the current handler as the next handler.
2907 Mov(x11, ExternalReference(Isolate::kHandlerAddress, isolate()));
2908 Ldr(x10, MemOperand(x11));
2909 Push(x10);
2910
2911 // Set this new handler as the current one.
2912 Str(jssp, MemOperand(x11));
2913 }
2914
2915
PopStackHandler()2916 void MacroAssembler::PopStackHandler() {
2917 STATIC_ASSERT(StackHandlerConstants::kNextOffset == 0);
2918 Pop(x10);
2919 Mov(x11, ExternalReference(Isolate::kHandlerAddress, isolate()));
2920 Drop(StackHandlerConstants::kSize - kXRegSize, kByteSizeInBytes);
2921 Str(x10, MemOperand(x11));
2922 }
2923
2924
Allocate(int object_size,Register result,Register scratch1,Register scratch2,Label * gc_required,AllocationFlags flags)2925 void MacroAssembler::Allocate(int object_size,
2926 Register result,
2927 Register scratch1,
2928 Register scratch2,
2929 Label* gc_required,
2930 AllocationFlags flags) {
2931 DCHECK(object_size <= Page::kMaxRegularHeapObjectSize);
2932 if (!FLAG_inline_new) {
2933 if (emit_debug_code()) {
2934 // Trash the registers to simulate an allocation failure.
2935 // We apply salt to the original zap value to easily spot the values.
2936 Mov(result, (kDebugZapValue & ~0xffL) | 0x11L);
2937 Mov(scratch1, (kDebugZapValue & ~0xffL) | 0x21L);
2938 Mov(scratch2, (kDebugZapValue & ~0xffL) | 0x21L);
2939 }
2940 B(gc_required);
2941 return;
2942 }
2943
2944 UseScratchRegisterScope temps(this);
2945 Register scratch3 = temps.AcquireX();
2946
2947 DCHECK(!AreAliased(result, scratch1, scratch2, scratch3));
2948 DCHECK(result.Is64Bits() && scratch1.Is64Bits() && scratch2.Is64Bits());
2949
2950 // Make object size into bytes.
2951 if ((flags & SIZE_IN_WORDS) != 0) {
2952 object_size *= kPointerSize;
2953 }
2954 DCHECK(0 == (object_size & kObjectAlignmentMask));
2955
2956 // Check relative positions of allocation top and limit addresses.
2957 // The values must be adjacent in memory to allow the use of LDP.
2958 ExternalReference heap_allocation_top =
2959 AllocationUtils::GetAllocationTopReference(isolate(), flags);
2960 ExternalReference heap_allocation_limit =
2961 AllocationUtils::GetAllocationLimitReference(isolate(), flags);
2962 intptr_t top = reinterpret_cast<intptr_t>(heap_allocation_top.address());
2963 intptr_t limit = reinterpret_cast<intptr_t>(heap_allocation_limit.address());
2964 DCHECK((limit - top) == kPointerSize);
2965
2966 // Set up allocation top address and allocation limit registers.
2967 Register top_address = scratch1;
2968 Register alloc_limit = scratch2;
2969 Register result_end = scratch3;
2970 Mov(top_address, Operand(heap_allocation_top));
2971
2972 if ((flags & RESULT_CONTAINS_TOP) == 0) {
2973 // Load allocation top into result and allocation limit into alloc_limit.
2974 Ldp(result, alloc_limit, MemOperand(top_address));
2975 } else {
2976 if (emit_debug_code()) {
2977 // Assert that result actually contains top on entry.
2978 Ldr(alloc_limit, MemOperand(top_address));
2979 Cmp(result, alloc_limit);
2980 Check(eq, kUnexpectedAllocationTop);
2981 }
2982 // Load allocation limit. Result already contains allocation top.
2983 Ldr(alloc_limit, MemOperand(top_address, limit - top));
2984 }
2985
2986 // We can ignore DOUBLE_ALIGNMENT flags here because doubles and pointers have
2987 // the same alignment on ARM64.
2988 STATIC_ASSERT(kPointerAlignment == kDoubleAlignment);
2989
2990 // Calculate new top and bail out if new space is exhausted.
2991 Adds(result_end, result, object_size);
2992 Ccmp(result_end, alloc_limit, CFlag, cc);
2993 B(hi, gc_required);
2994 Str(result_end, MemOperand(top_address));
2995
2996 // Tag the object if requested.
2997 if ((flags & TAG_OBJECT) != 0) {
2998 ObjectTag(result, result);
2999 }
3000 }
3001
3002
Allocate(Register object_size,Register result,Register result_end,Register scratch,Label * gc_required,AllocationFlags flags)3003 void MacroAssembler::Allocate(Register object_size, Register result,
3004 Register result_end, Register scratch,
3005 Label* gc_required, AllocationFlags flags) {
3006 if (!FLAG_inline_new) {
3007 if (emit_debug_code()) {
3008 // Trash the registers to simulate an allocation failure.
3009 // We apply salt to the original zap value to easily spot the values.
3010 Mov(result, (kDebugZapValue & ~0xffL) | 0x11L);
3011 Mov(scratch, (kDebugZapValue & ~0xffL) | 0x21L);
3012 Mov(result_end, (kDebugZapValue & ~0xffL) | 0x21L);
3013 }
3014 B(gc_required);
3015 return;
3016 }
3017
3018 UseScratchRegisterScope temps(this);
3019 Register scratch2 = temps.AcquireX();
3020
3021 // |object_size| and |result_end| may overlap, other registers must not.
3022 DCHECK(!AreAliased(object_size, result, scratch, scratch2));
3023 DCHECK(!AreAliased(result_end, result, scratch, scratch2));
3024 DCHECK(object_size.Is64Bits() && result.Is64Bits() && scratch.Is64Bits() &&
3025 result_end.Is64Bits());
3026
3027 // Check relative positions of allocation top and limit addresses.
3028 // The values must be adjacent in memory to allow the use of LDP.
3029 ExternalReference heap_allocation_top =
3030 AllocationUtils::GetAllocationTopReference(isolate(), flags);
3031 ExternalReference heap_allocation_limit =
3032 AllocationUtils::GetAllocationLimitReference(isolate(), flags);
3033 intptr_t top = reinterpret_cast<intptr_t>(heap_allocation_top.address());
3034 intptr_t limit = reinterpret_cast<intptr_t>(heap_allocation_limit.address());
3035 DCHECK((limit - top) == kPointerSize);
3036
3037 // Set up allocation top address and allocation limit registers.
3038 Register top_address = scratch;
3039 Register alloc_limit = scratch2;
3040 Mov(top_address, heap_allocation_top);
3041
3042 if ((flags & RESULT_CONTAINS_TOP) == 0) {
3043 // Load allocation top into result and allocation limit into alloc_limit.
3044 Ldp(result, alloc_limit, MemOperand(top_address));
3045 } else {
3046 if (emit_debug_code()) {
3047 // Assert that result actually contains top on entry.
3048 Ldr(alloc_limit, MemOperand(top_address));
3049 Cmp(result, alloc_limit);
3050 Check(eq, kUnexpectedAllocationTop);
3051 }
3052 // Load allocation limit. Result already contains allocation top.
3053 Ldr(alloc_limit, MemOperand(top_address, limit - top));
3054 }
3055
3056 // We can ignore DOUBLE_ALIGNMENT flags here because doubles and pointers have
3057 // the same alignment on ARM64.
3058 STATIC_ASSERT(kPointerAlignment == kDoubleAlignment);
3059
3060 // Calculate new top and bail out if new space is exhausted
3061 if ((flags & SIZE_IN_WORDS) != 0) {
3062 Adds(result_end, result, Operand(object_size, LSL, kPointerSizeLog2));
3063 } else {
3064 Adds(result_end, result, object_size);
3065 }
3066
3067 if (emit_debug_code()) {
3068 Tst(result_end, kObjectAlignmentMask);
3069 Check(eq, kUnalignedAllocationInNewSpace);
3070 }
3071
3072 Ccmp(result_end, alloc_limit, CFlag, cc);
3073 B(hi, gc_required);
3074 Str(result_end, MemOperand(top_address));
3075
3076 // Tag the object if requested.
3077 if ((flags & TAG_OBJECT) != 0) {
3078 ObjectTag(result, result);
3079 }
3080 }
3081
3082
AllocateTwoByteString(Register result,Register length,Register scratch1,Register scratch2,Register scratch3,Label * gc_required)3083 void MacroAssembler::AllocateTwoByteString(Register result,
3084 Register length,
3085 Register scratch1,
3086 Register scratch2,
3087 Register scratch3,
3088 Label* gc_required) {
3089 DCHECK(!AreAliased(result, length, scratch1, scratch2, scratch3));
3090 // Calculate the number of bytes needed for the characters in the string while
3091 // observing object alignment.
3092 STATIC_ASSERT((SeqTwoByteString::kHeaderSize & kObjectAlignmentMask) == 0);
3093 Add(scratch1, length, length); // Length in bytes, not chars.
3094 Add(scratch1, scratch1, kObjectAlignmentMask + SeqTwoByteString::kHeaderSize);
3095 Bic(scratch1, scratch1, kObjectAlignmentMask);
3096
3097 // Allocate two-byte string in new space.
3098 Allocate(scratch1,
3099 result,
3100 scratch2,
3101 scratch3,
3102 gc_required,
3103 TAG_OBJECT);
3104
3105 // Set the map, length and hash field.
3106 InitializeNewString(result,
3107 length,
3108 Heap::kStringMapRootIndex,
3109 scratch1,
3110 scratch2);
3111 }
3112
3113
AllocateOneByteString(Register result,Register length,Register scratch1,Register scratch2,Register scratch3,Label * gc_required)3114 void MacroAssembler::AllocateOneByteString(Register result, Register length,
3115 Register scratch1, Register scratch2,
3116 Register scratch3,
3117 Label* gc_required) {
3118 DCHECK(!AreAliased(result, length, scratch1, scratch2, scratch3));
3119 // Calculate the number of bytes needed for the characters in the string while
3120 // observing object alignment.
3121 STATIC_ASSERT((SeqOneByteString::kHeaderSize & kObjectAlignmentMask) == 0);
3122 STATIC_ASSERT(kCharSize == 1);
3123 Add(scratch1, length, kObjectAlignmentMask + SeqOneByteString::kHeaderSize);
3124 Bic(scratch1, scratch1, kObjectAlignmentMask);
3125
3126 // Allocate one-byte string in new space.
3127 Allocate(scratch1,
3128 result,
3129 scratch2,
3130 scratch3,
3131 gc_required,
3132 TAG_OBJECT);
3133
3134 // Set the map, length and hash field.
3135 InitializeNewString(result, length, Heap::kOneByteStringMapRootIndex,
3136 scratch1, scratch2);
3137 }
3138
3139
AllocateTwoByteConsString(Register result,Register length,Register scratch1,Register scratch2,Label * gc_required)3140 void MacroAssembler::AllocateTwoByteConsString(Register result,
3141 Register length,
3142 Register scratch1,
3143 Register scratch2,
3144 Label* gc_required) {
3145 Allocate(ConsString::kSize, result, scratch1, scratch2, gc_required,
3146 TAG_OBJECT);
3147
3148 InitializeNewString(result,
3149 length,
3150 Heap::kConsStringMapRootIndex,
3151 scratch1,
3152 scratch2);
3153 }
3154
3155
AllocateOneByteConsString(Register result,Register length,Register scratch1,Register scratch2,Label * gc_required)3156 void MacroAssembler::AllocateOneByteConsString(Register result, Register length,
3157 Register scratch1,
3158 Register scratch2,
3159 Label* gc_required) {
3160 Allocate(ConsString::kSize,
3161 result,
3162 scratch1,
3163 scratch2,
3164 gc_required,
3165 TAG_OBJECT);
3166
3167 InitializeNewString(result, length, Heap::kConsOneByteStringMapRootIndex,
3168 scratch1, scratch2);
3169 }
3170
3171
AllocateTwoByteSlicedString(Register result,Register length,Register scratch1,Register scratch2,Label * gc_required)3172 void MacroAssembler::AllocateTwoByteSlicedString(Register result,
3173 Register length,
3174 Register scratch1,
3175 Register scratch2,
3176 Label* gc_required) {
3177 DCHECK(!AreAliased(result, length, scratch1, scratch2));
3178 Allocate(SlicedString::kSize, result, scratch1, scratch2, gc_required,
3179 TAG_OBJECT);
3180
3181 InitializeNewString(result,
3182 length,
3183 Heap::kSlicedStringMapRootIndex,
3184 scratch1,
3185 scratch2);
3186 }
3187
3188
AllocateOneByteSlicedString(Register result,Register length,Register scratch1,Register scratch2,Label * gc_required)3189 void MacroAssembler::AllocateOneByteSlicedString(Register result,
3190 Register length,
3191 Register scratch1,
3192 Register scratch2,
3193 Label* gc_required) {
3194 DCHECK(!AreAliased(result, length, scratch1, scratch2));
3195 Allocate(SlicedString::kSize, result, scratch1, scratch2, gc_required,
3196 TAG_OBJECT);
3197
3198 InitializeNewString(result, length, Heap::kSlicedOneByteStringMapRootIndex,
3199 scratch1, scratch2);
3200 }
3201
3202
3203 // Allocates a heap number or jumps to the need_gc label if the young space
3204 // is full and a scavenge is needed.
AllocateHeapNumber(Register result,Label * gc_required,Register scratch1,Register scratch2,CPURegister value,CPURegister heap_number_map,MutableMode mode)3205 void MacroAssembler::AllocateHeapNumber(Register result,
3206 Label* gc_required,
3207 Register scratch1,
3208 Register scratch2,
3209 CPURegister value,
3210 CPURegister heap_number_map,
3211 MutableMode mode) {
3212 DCHECK(!value.IsValid() || value.Is64Bits());
3213 UseScratchRegisterScope temps(this);
3214
3215 // Allocate an object in the heap for the heap number and tag it as a heap
3216 // object.
3217 Allocate(HeapNumber::kSize, result, scratch1, scratch2, gc_required,
3218 NO_ALLOCATION_FLAGS);
3219
3220 Heap::RootListIndex map_index = mode == MUTABLE
3221 ? Heap::kMutableHeapNumberMapRootIndex
3222 : Heap::kHeapNumberMapRootIndex;
3223
3224 // Prepare the heap number map.
3225 if (!heap_number_map.IsValid()) {
3226 // If we have a valid value register, use the same type of register to store
3227 // the map so we can use STP to store both in one instruction.
3228 if (value.IsValid() && value.IsFPRegister()) {
3229 heap_number_map = temps.AcquireD();
3230 } else {
3231 heap_number_map = scratch1;
3232 }
3233 LoadRoot(heap_number_map, map_index);
3234 }
3235 if (emit_debug_code()) {
3236 Register map;
3237 if (heap_number_map.IsFPRegister()) {
3238 map = scratch1;
3239 Fmov(map, DoubleRegister(heap_number_map));
3240 } else {
3241 map = Register(heap_number_map);
3242 }
3243 AssertRegisterIsRoot(map, map_index);
3244 }
3245
3246 // Store the heap number map and the value in the allocated object.
3247 if (value.IsSameSizeAndType(heap_number_map)) {
3248 STATIC_ASSERT(HeapObject::kMapOffset + kPointerSize ==
3249 HeapNumber::kValueOffset);
3250 Stp(heap_number_map, value, MemOperand(result, HeapObject::kMapOffset));
3251 } else {
3252 Str(heap_number_map, MemOperand(result, HeapObject::kMapOffset));
3253 if (value.IsValid()) {
3254 Str(value, MemOperand(result, HeapNumber::kValueOffset));
3255 }
3256 }
3257 ObjectTag(result, result);
3258 }
3259
3260
JumpIfObjectType(Register object,Register map,Register type_reg,InstanceType type,Label * if_cond_pass,Condition cond)3261 void MacroAssembler::JumpIfObjectType(Register object,
3262 Register map,
3263 Register type_reg,
3264 InstanceType type,
3265 Label* if_cond_pass,
3266 Condition cond) {
3267 CompareObjectType(object, map, type_reg, type);
3268 B(cond, if_cond_pass);
3269 }
3270
3271
AllocateJSValue(Register result,Register constructor,Register value,Register scratch1,Register scratch2,Label * gc_required)3272 void MacroAssembler::AllocateJSValue(Register result, Register constructor,
3273 Register value, Register scratch1,
3274 Register scratch2, Label* gc_required) {
3275 DCHECK(!result.is(constructor));
3276 DCHECK(!result.is(scratch1));
3277 DCHECK(!result.is(scratch2));
3278 DCHECK(!result.is(value));
3279
3280 // Allocate JSValue in new space.
3281 Allocate(JSValue::kSize, result, scratch1, scratch2, gc_required, TAG_OBJECT);
3282
3283 // Initialize the JSValue.
3284 LoadGlobalFunctionInitialMap(constructor, scratch1, scratch2);
3285 Str(scratch1, FieldMemOperand(result, HeapObject::kMapOffset));
3286 LoadRoot(scratch1, Heap::kEmptyFixedArrayRootIndex);
3287 Str(scratch1, FieldMemOperand(result, JSObject::kPropertiesOffset));
3288 Str(scratch1, FieldMemOperand(result, JSObject::kElementsOffset));
3289 Str(value, FieldMemOperand(result, JSValue::kValueOffset));
3290 STATIC_ASSERT(JSValue::kSize == 4 * kPointerSize);
3291 }
3292
3293
JumpIfNotObjectType(Register object,Register map,Register type_reg,InstanceType type,Label * if_not_object)3294 void MacroAssembler::JumpIfNotObjectType(Register object,
3295 Register map,
3296 Register type_reg,
3297 InstanceType type,
3298 Label* if_not_object) {
3299 JumpIfObjectType(object, map, type_reg, type, if_not_object, ne);
3300 }
3301
3302
3303 // Sets condition flags based on comparison, and returns type in type_reg.
CompareObjectType(Register object,Register map,Register type_reg,InstanceType type)3304 void MacroAssembler::CompareObjectType(Register object,
3305 Register map,
3306 Register type_reg,
3307 InstanceType type) {
3308 Ldr(map, FieldMemOperand(object, HeapObject::kMapOffset));
3309 CompareInstanceType(map, type_reg, type);
3310 }
3311
3312
3313 // Sets condition flags based on comparison, and returns type in type_reg.
CompareInstanceType(Register map,Register type_reg,InstanceType type)3314 void MacroAssembler::CompareInstanceType(Register map,
3315 Register type_reg,
3316 InstanceType type) {
3317 Ldrb(type_reg, FieldMemOperand(map, Map::kInstanceTypeOffset));
3318 Cmp(type_reg, type);
3319 }
3320
3321
CompareObjectMap(Register obj,Heap::RootListIndex index)3322 void MacroAssembler::CompareObjectMap(Register obj, Heap::RootListIndex index) {
3323 UseScratchRegisterScope temps(this);
3324 Register obj_map = temps.AcquireX();
3325 Ldr(obj_map, FieldMemOperand(obj, HeapObject::kMapOffset));
3326 CompareRoot(obj_map, index);
3327 }
3328
3329
CompareObjectMap(Register obj,Register scratch,Handle<Map> map)3330 void MacroAssembler::CompareObjectMap(Register obj, Register scratch,
3331 Handle<Map> map) {
3332 Ldr(scratch, FieldMemOperand(obj, HeapObject::kMapOffset));
3333 CompareMap(scratch, map);
3334 }
3335
3336
CompareMap(Register obj_map,Handle<Map> map)3337 void MacroAssembler::CompareMap(Register obj_map,
3338 Handle<Map> map) {
3339 Cmp(obj_map, Operand(map));
3340 }
3341
3342
CheckMap(Register obj,Register scratch,Handle<Map> map,Label * fail,SmiCheckType smi_check_type)3343 void MacroAssembler::CheckMap(Register obj,
3344 Register scratch,
3345 Handle<Map> map,
3346 Label* fail,
3347 SmiCheckType smi_check_type) {
3348 if (smi_check_type == DO_SMI_CHECK) {
3349 JumpIfSmi(obj, fail);
3350 }
3351
3352 CompareObjectMap(obj, scratch, map);
3353 B(ne, fail);
3354 }
3355
3356
CheckMap(Register obj,Register scratch,Heap::RootListIndex index,Label * fail,SmiCheckType smi_check_type)3357 void MacroAssembler::CheckMap(Register obj,
3358 Register scratch,
3359 Heap::RootListIndex index,
3360 Label* fail,
3361 SmiCheckType smi_check_type) {
3362 if (smi_check_type == DO_SMI_CHECK) {
3363 JumpIfSmi(obj, fail);
3364 }
3365 Ldr(scratch, FieldMemOperand(obj, HeapObject::kMapOffset));
3366 JumpIfNotRoot(scratch, index, fail);
3367 }
3368
3369
CheckMap(Register obj_map,Handle<Map> map,Label * fail,SmiCheckType smi_check_type)3370 void MacroAssembler::CheckMap(Register obj_map,
3371 Handle<Map> map,
3372 Label* fail,
3373 SmiCheckType smi_check_type) {
3374 if (smi_check_type == DO_SMI_CHECK) {
3375 JumpIfSmi(obj_map, fail);
3376 }
3377
3378 CompareMap(obj_map, map);
3379 B(ne, fail);
3380 }
3381
3382
DispatchWeakMap(Register obj,Register scratch1,Register scratch2,Handle<WeakCell> cell,Handle<Code> success,SmiCheckType smi_check_type)3383 void MacroAssembler::DispatchWeakMap(Register obj, Register scratch1,
3384 Register scratch2, Handle<WeakCell> cell,
3385 Handle<Code> success,
3386 SmiCheckType smi_check_type) {
3387 Label fail;
3388 if (smi_check_type == DO_SMI_CHECK) {
3389 JumpIfSmi(obj, &fail);
3390 }
3391 Ldr(scratch1, FieldMemOperand(obj, HeapObject::kMapOffset));
3392 CmpWeakValue(scratch1, cell, scratch2);
3393 B(ne, &fail);
3394 Jump(success, RelocInfo::CODE_TARGET);
3395 Bind(&fail);
3396 }
3397
3398
CmpWeakValue(Register value,Handle<WeakCell> cell,Register scratch)3399 void MacroAssembler::CmpWeakValue(Register value, Handle<WeakCell> cell,
3400 Register scratch) {
3401 Mov(scratch, Operand(cell));
3402 Ldr(scratch, FieldMemOperand(scratch, WeakCell::kValueOffset));
3403 Cmp(value, scratch);
3404 }
3405
3406
GetWeakValue(Register value,Handle<WeakCell> cell)3407 void MacroAssembler::GetWeakValue(Register value, Handle<WeakCell> cell) {
3408 Mov(value, Operand(cell));
3409 Ldr(value, FieldMemOperand(value, WeakCell::kValueOffset));
3410 }
3411
3412
LoadWeakValue(Register value,Handle<WeakCell> cell,Label * miss)3413 void MacroAssembler::LoadWeakValue(Register value, Handle<WeakCell> cell,
3414 Label* miss) {
3415 GetWeakValue(value, cell);
3416 JumpIfSmi(value, miss);
3417 }
3418
3419
TestMapBitfield(Register object,uint64_t mask)3420 void MacroAssembler::TestMapBitfield(Register object, uint64_t mask) {
3421 UseScratchRegisterScope temps(this);
3422 Register temp = temps.AcquireX();
3423 Ldr(temp, FieldMemOperand(object, HeapObject::kMapOffset));
3424 Ldrb(temp, FieldMemOperand(temp, Map::kBitFieldOffset));
3425 Tst(temp, mask);
3426 }
3427
3428
LoadElementsKindFromMap(Register result,Register map)3429 void MacroAssembler::LoadElementsKindFromMap(Register result, Register map) {
3430 // Load the map's "bit field 2".
3431 __ Ldrb(result, FieldMemOperand(map, Map::kBitField2Offset));
3432 // Retrieve elements_kind from bit field 2.
3433 DecodeField<Map::ElementsKindBits>(result);
3434 }
3435
3436
GetMapConstructor(Register result,Register map,Register temp,Register temp2)3437 void MacroAssembler::GetMapConstructor(Register result, Register map,
3438 Register temp, Register temp2) {
3439 Label done, loop;
3440 Ldr(result, FieldMemOperand(map, Map::kConstructorOrBackPointerOffset));
3441 Bind(&loop);
3442 JumpIfSmi(result, &done);
3443 CompareObjectType(result, temp, temp2, MAP_TYPE);
3444 B(ne, &done);
3445 Ldr(result, FieldMemOperand(result, Map::kConstructorOrBackPointerOffset));
3446 B(&loop);
3447 Bind(&done);
3448 }
3449
3450
TryGetFunctionPrototype(Register function,Register result,Register scratch,Label * miss)3451 void MacroAssembler::TryGetFunctionPrototype(Register function, Register result,
3452 Register scratch, Label* miss) {
3453 DCHECK(!AreAliased(function, result, scratch));
3454
3455 // Get the prototype or initial map from the function.
3456 Ldr(result,
3457 FieldMemOperand(function, JSFunction::kPrototypeOrInitialMapOffset));
3458
3459 // If the prototype or initial map is the hole, don't return it and simply
3460 // miss the cache instead. This will allow us to allocate a prototype object
3461 // on-demand in the runtime system.
3462 JumpIfRoot(result, Heap::kTheHoleValueRootIndex, miss);
3463
3464 // If the function does not have an initial map, we're done.
3465 Label done;
3466 JumpIfNotObjectType(result, scratch, scratch, MAP_TYPE, &done);
3467
3468 // Get the prototype from the initial map.
3469 Ldr(result, FieldMemOperand(result, Map::kPrototypeOffset));
3470
3471 // All done.
3472 Bind(&done);
3473 }
3474
3475
PushRoot(Heap::RootListIndex index)3476 void MacroAssembler::PushRoot(Heap::RootListIndex index) {
3477 UseScratchRegisterScope temps(this);
3478 Register temp = temps.AcquireX();
3479 LoadRoot(temp, index);
3480 Push(temp);
3481 }
3482
3483
CompareRoot(const Register & obj,Heap::RootListIndex index)3484 void MacroAssembler::CompareRoot(const Register& obj,
3485 Heap::RootListIndex index) {
3486 UseScratchRegisterScope temps(this);
3487 Register temp = temps.AcquireX();
3488 DCHECK(!AreAliased(obj, temp));
3489 LoadRoot(temp, index);
3490 Cmp(obj, temp);
3491 }
3492
3493
JumpIfRoot(const Register & obj,Heap::RootListIndex index,Label * if_equal)3494 void MacroAssembler::JumpIfRoot(const Register& obj,
3495 Heap::RootListIndex index,
3496 Label* if_equal) {
3497 CompareRoot(obj, index);
3498 B(eq, if_equal);
3499 }
3500
3501
JumpIfNotRoot(const Register & obj,Heap::RootListIndex index,Label * if_not_equal)3502 void MacroAssembler::JumpIfNotRoot(const Register& obj,
3503 Heap::RootListIndex index,
3504 Label* if_not_equal) {
3505 CompareRoot(obj, index);
3506 B(ne, if_not_equal);
3507 }
3508
3509
CompareAndSplit(const Register & lhs,const Operand & rhs,Condition cond,Label * if_true,Label * if_false,Label * fall_through)3510 void MacroAssembler::CompareAndSplit(const Register& lhs,
3511 const Operand& rhs,
3512 Condition cond,
3513 Label* if_true,
3514 Label* if_false,
3515 Label* fall_through) {
3516 if ((if_true == if_false) && (if_false == fall_through)) {
3517 // Fall through.
3518 } else if (if_true == if_false) {
3519 B(if_true);
3520 } else if (if_false == fall_through) {
3521 CompareAndBranch(lhs, rhs, cond, if_true);
3522 } else if (if_true == fall_through) {
3523 CompareAndBranch(lhs, rhs, NegateCondition(cond), if_false);
3524 } else {
3525 CompareAndBranch(lhs, rhs, cond, if_true);
3526 B(if_false);
3527 }
3528 }
3529
3530
TestAndSplit(const Register & reg,uint64_t bit_pattern,Label * if_all_clear,Label * if_any_set,Label * fall_through)3531 void MacroAssembler::TestAndSplit(const Register& reg,
3532 uint64_t bit_pattern,
3533 Label* if_all_clear,
3534 Label* if_any_set,
3535 Label* fall_through) {
3536 if ((if_all_clear == if_any_set) && (if_any_set == fall_through)) {
3537 // Fall through.
3538 } else if (if_all_clear == if_any_set) {
3539 B(if_all_clear);
3540 } else if (if_all_clear == fall_through) {
3541 TestAndBranchIfAnySet(reg, bit_pattern, if_any_set);
3542 } else if (if_any_set == fall_through) {
3543 TestAndBranchIfAllClear(reg, bit_pattern, if_all_clear);
3544 } else {
3545 TestAndBranchIfAnySet(reg, bit_pattern, if_any_set);
3546 B(if_all_clear);
3547 }
3548 }
3549
3550
CheckFastElements(Register map,Register scratch,Label * fail)3551 void MacroAssembler::CheckFastElements(Register map,
3552 Register scratch,
3553 Label* fail) {
3554 STATIC_ASSERT(FAST_SMI_ELEMENTS == 0);
3555 STATIC_ASSERT(FAST_HOLEY_SMI_ELEMENTS == 1);
3556 STATIC_ASSERT(FAST_ELEMENTS == 2);
3557 STATIC_ASSERT(FAST_HOLEY_ELEMENTS == 3);
3558 Ldrb(scratch, FieldMemOperand(map, Map::kBitField2Offset));
3559 Cmp(scratch, Map::kMaximumBitField2FastHoleyElementValue);
3560 B(hi, fail);
3561 }
3562
3563
CheckFastObjectElements(Register map,Register scratch,Label * fail)3564 void MacroAssembler::CheckFastObjectElements(Register map,
3565 Register scratch,
3566 Label* fail) {
3567 STATIC_ASSERT(FAST_SMI_ELEMENTS == 0);
3568 STATIC_ASSERT(FAST_HOLEY_SMI_ELEMENTS == 1);
3569 STATIC_ASSERT(FAST_ELEMENTS == 2);
3570 STATIC_ASSERT(FAST_HOLEY_ELEMENTS == 3);
3571 Ldrb(scratch, FieldMemOperand(map, Map::kBitField2Offset));
3572 Cmp(scratch, Operand(Map::kMaximumBitField2FastHoleySmiElementValue));
3573 // If cond==ls, set cond=hi, otherwise compare.
3574 Ccmp(scratch,
3575 Operand(Map::kMaximumBitField2FastHoleyElementValue), CFlag, hi);
3576 B(hi, fail);
3577 }
3578
3579
3580 // Note: The ARM version of this clobbers elements_reg, but this version does
3581 // not. Some uses of this in ARM64 assume that elements_reg will be preserved.
StoreNumberToDoubleElements(Register value_reg,Register key_reg,Register elements_reg,Register scratch1,FPRegister fpscratch1,Label * fail,int elements_offset)3582 void MacroAssembler::StoreNumberToDoubleElements(Register value_reg,
3583 Register key_reg,
3584 Register elements_reg,
3585 Register scratch1,
3586 FPRegister fpscratch1,
3587 Label* fail,
3588 int elements_offset) {
3589 DCHECK(!AreAliased(value_reg, key_reg, elements_reg, scratch1));
3590 Label store_num;
3591
3592 // Speculatively convert the smi to a double - all smis can be exactly
3593 // represented as a double.
3594 SmiUntagToDouble(fpscratch1, value_reg, kSpeculativeUntag);
3595
3596 // If value_reg is a smi, we're done.
3597 JumpIfSmi(value_reg, &store_num);
3598
3599 // Ensure that the object is a heap number.
3600 JumpIfNotHeapNumber(value_reg, fail);
3601
3602 Ldr(fpscratch1, FieldMemOperand(value_reg, HeapNumber::kValueOffset));
3603
3604 // Canonicalize NaNs.
3605 CanonicalizeNaN(fpscratch1);
3606
3607 // Store the result.
3608 Bind(&store_num);
3609 Add(scratch1, elements_reg,
3610 Operand::UntagSmiAndScale(key_reg, kDoubleSizeLog2));
3611 Str(fpscratch1,
3612 FieldMemOperand(scratch1,
3613 FixedDoubleArray::kHeaderSize - elements_offset));
3614 }
3615
3616
AllowThisStubCall(CodeStub * stub)3617 bool MacroAssembler::AllowThisStubCall(CodeStub* stub) {
3618 return has_frame_ || !stub->SometimesSetsUpAFrame();
3619 }
3620
3621
IndexFromHash(Register hash,Register index)3622 void MacroAssembler::IndexFromHash(Register hash, Register index) {
3623 // If the hash field contains an array index pick it out. The assert checks
3624 // that the constants for the maximum number of digits for an array index
3625 // cached in the hash field and the number of bits reserved for it does not
3626 // conflict.
3627 DCHECK(TenToThe(String::kMaxCachedArrayIndexLength) <
3628 (1 << String::kArrayIndexValueBits));
3629 DecodeField<String::ArrayIndexValueBits>(index, hash);
3630 SmiTag(index, index);
3631 }
3632
3633
EmitSeqStringSetCharCheck(Register string,Register index,SeqStringSetCharCheckIndexType index_type,Register scratch,uint32_t encoding_mask)3634 void MacroAssembler::EmitSeqStringSetCharCheck(
3635 Register string,
3636 Register index,
3637 SeqStringSetCharCheckIndexType index_type,
3638 Register scratch,
3639 uint32_t encoding_mask) {
3640 DCHECK(!AreAliased(string, index, scratch));
3641
3642 if (index_type == kIndexIsSmi) {
3643 AssertSmi(index);
3644 }
3645
3646 // Check that string is an object.
3647 AssertNotSmi(string, kNonObject);
3648
3649 // Check that string has an appropriate map.
3650 Ldr(scratch, FieldMemOperand(string, HeapObject::kMapOffset));
3651 Ldrb(scratch, FieldMemOperand(scratch, Map::kInstanceTypeOffset));
3652
3653 And(scratch, scratch, kStringRepresentationMask | kStringEncodingMask);
3654 Cmp(scratch, encoding_mask);
3655 Check(eq, kUnexpectedStringType);
3656
3657 Ldr(scratch, FieldMemOperand(string, String::kLengthOffset));
3658 Cmp(index, index_type == kIndexIsSmi ? scratch : Operand::UntagSmi(scratch));
3659 Check(lt, kIndexIsTooLarge);
3660
3661 DCHECK_EQ(static_cast<Smi*>(0), Smi::FromInt(0));
3662 Cmp(index, 0);
3663 Check(ge, kIndexIsNegative);
3664 }
3665
3666
CheckAccessGlobalProxy(Register holder_reg,Register scratch1,Register scratch2,Label * miss)3667 void MacroAssembler::CheckAccessGlobalProxy(Register holder_reg,
3668 Register scratch1,
3669 Register scratch2,
3670 Label* miss) {
3671 DCHECK(!AreAliased(holder_reg, scratch1, scratch2));
3672 Label same_contexts;
3673
3674 // Load current lexical context from the stack frame.
3675 Ldr(scratch1, MemOperand(fp, StandardFrameConstants::kContextOffset));
3676 // In debug mode, make sure the lexical context is set.
3677 #ifdef DEBUG
3678 Cmp(scratch1, 0);
3679 Check(ne, kWeShouldNotHaveAnEmptyLexicalContext);
3680 #endif
3681
3682 // Load the native context of the current context.
3683 Ldr(scratch1, ContextMemOperand(scratch1, Context::NATIVE_CONTEXT_INDEX));
3684
3685 // Check the context is a native context.
3686 if (emit_debug_code()) {
3687 // Read the first word and compare to the native_context_map.
3688 Ldr(scratch2, FieldMemOperand(scratch1, HeapObject::kMapOffset));
3689 CompareRoot(scratch2, Heap::kNativeContextMapRootIndex);
3690 Check(eq, kExpectedNativeContext);
3691 }
3692
3693 // Check if both contexts are the same.
3694 Ldr(scratch2, FieldMemOperand(holder_reg,
3695 JSGlobalProxy::kNativeContextOffset));
3696 Cmp(scratch1, scratch2);
3697 B(&same_contexts, eq);
3698
3699 // Check the context is a native context.
3700 if (emit_debug_code()) {
3701 // We're short on scratch registers here, so use holder_reg as a scratch.
3702 Push(holder_reg);
3703 Register scratch3 = holder_reg;
3704
3705 CompareRoot(scratch2, Heap::kNullValueRootIndex);
3706 Check(ne, kExpectedNonNullContext);
3707
3708 Ldr(scratch3, FieldMemOperand(scratch2, HeapObject::kMapOffset));
3709 CompareRoot(scratch3, Heap::kNativeContextMapRootIndex);
3710 Check(eq, kExpectedNativeContext);
3711 Pop(holder_reg);
3712 }
3713
3714 // Check that the security token in the calling global object is
3715 // compatible with the security token in the receiving global
3716 // object.
3717 int token_offset = Context::kHeaderSize +
3718 Context::SECURITY_TOKEN_INDEX * kPointerSize;
3719
3720 Ldr(scratch1, FieldMemOperand(scratch1, token_offset));
3721 Ldr(scratch2, FieldMemOperand(scratch2, token_offset));
3722 Cmp(scratch1, scratch2);
3723 B(miss, ne);
3724
3725 Bind(&same_contexts);
3726 }
3727
3728
3729 // Compute the hash code from the untagged key. This must be kept in sync with
3730 // ComputeIntegerHash in utils.h and KeyedLoadGenericStub in
3731 // code-stub-hydrogen.cc
GetNumberHash(Register key,Register scratch)3732 void MacroAssembler::GetNumberHash(Register key, Register scratch) {
3733 DCHECK(!AreAliased(key, scratch));
3734
3735 // Xor original key with a seed.
3736 LoadRoot(scratch, Heap::kHashSeedRootIndex);
3737 Eor(key, key, Operand::UntagSmi(scratch));
3738
3739 // The algorithm uses 32-bit integer values.
3740 key = key.W();
3741 scratch = scratch.W();
3742
3743 // Compute the hash code from the untagged key. This must be kept in sync
3744 // with ComputeIntegerHash in utils.h.
3745 //
3746 // hash = ~hash + (hash <<1 15);
3747 Mvn(scratch, key);
3748 Add(key, scratch, Operand(key, LSL, 15));
3749 // hash = hash ^ (hash >> 12);
3750 Eor(key, key, Operand(key, LSR, 12));
3751 // hash = hash + (hash << 2);
3752 Add(key, key, Operand(key, LSL, 2));
3753 // hash = hash ^ (hash >> 4);
3754 Eor(key, key, Operand(key, LSR, 4));
3755 // hash = hash * 2057;
3756 Mov(scratch, Operand(key, LSL, 11));
3757 Add(key, key, Operand(key, LSL, 3));
3758 Add(key, key, scratch);
3759 // hash = hash ^ (hash >> 16);
3760 Eor(key, key, Operand(key, LSR, 16));
3761 Bic(key, key, Operand(0xc0000000u));
3762 }
3763
3764
LoadFromNumberDictionary(Label * miss,Register elements,Register key,Register result,Register scratch0,Register scratch1,Register scratch2,Register scratch3)3765 void MacroAssembler::LoadFromNumberDictionary(Label* miss,
3766 Register elements,
3767 Register key,
3768 Register result,
3769 Register scratch0,
3770 Register scratch1,
3771 Register scratch2,
3772 Register scratch3) {
3773 DCHECK(!AreAliased(elements, key, scratch0, scratch1, scratch2, scratch3));
3774
3775 Label done;
3776
3777 SmiUntag(scratch0, key);
3778 GetNumberHash(scratch0, scratch1);
3779
3780 // Compute the capacity mask.
3781 Ldrsw(scratch1,
3782 UntagSmiFieldMemOperand(elements,
3783 SeededNumberDictionary::kCapacityOffset));
3784 Sub(scratch1, scratch1, 1);
3785
3786 // Generate an unrolled loop that performs a few probes before giving up.
3787 for (int i = 0; i < kNumberDictionaryProbes; i++) {
3788 // Compute the masked index: (hash + i + i * i) & mask.
3789 if (i > 0) {
3790 Add(scratch2, scratch0, SeededNumberDictionary::GetProbeOffset(i));
3791 } else {
3792 Mov(scratch2, scratch0);
3793 }
3794 And(scratch2, scratch2, scratch1);
3795
3796 // Scale the index by multiplying by the element size.
3797 DCHECK(SeededNumberDictionary::kEntrySize == 3);
3798 Add(scratch2, scratch2, Operand(scratch2, LSL, 1));
3799
3800 // Check if the key is identical to the name.
3801 Add(scratch2, elements, Operand(scratch2, LSL, kPointerSizeLog2));
3802 Ldr(scratch3,
3803 FieldMemOperand(scratch2,
3804 SeededNumberDictionary::kElementsStartOffset));
3805 Cmp(key, scratch3);
3806 if (i != (kNumberDictionaryProbes - 1)) {
3807 B(eq, &done);
3808 } else {
3809 B(ne, miss);
3810 }
3811 }
3812
3813 Bind(&done);
3814 // Check that the value is a field property.
3815 const int kDetailsOffset =
3816 SeededNumberDictionary::kElementsStartOffset + 2 * kPointerSize;
3817 Ldrsw(scratch1, UntagSmiFieldMemOperand(scratch2, kDetailsOffset));
3818 DCHECK_EQ(DATA, 0);
3819 TestAndBranchIfAnySet(scratch1, PropertyDetails::TypeField::kMask, miss);
3820
3821 // Get the value at the masked, scaled index and return.
3822 const int kValueOffset =
3823 SeededNumberDictionary::kElementsStartOffset + kPointerSize;
3824 Ldr(result, FieldMemOperand(scratch2, kValueOffset));
3825 }
3826
3827
RememberedSetHelper(Register object,Register address,Register scratch1,SaveFPRegsMode fp_mode,RememberedSetFinalAction and_then)3828 void MacroAssembler::RememberedSetHelper(Register object, // For debug tests.
3829 Register address,
3830 Register scratch1,
3831 SaveFPRegsMode fp_mode,
3832 RememberedSetFinalAction and_then) {
3833 DCHECK(!AreAliased(object, address, scratch1));
3834 Label done, store_buffer_overflow;
3835 if (emit_debug_code()) {
3836 Label ok;
3837 JumpIfNotInNewSpace(object, &ok);
3838 Abort(kRememberedSetPointerInNewSpace);
3839 bind(&ok);
3840 }
3841 UseScratchRegisterScope temps(this);
3842 Register scratch2 = temps.AcquireX();
3843
3844 // Load store buffer top.
3845 Mov(scratch2, ExternalReference::store_buffer_top(isolate()));
3846 Ldr(scratch1, MemOperand(scratch2));
3847 // Store pointer to buffer and increment buffer top.
3848 Str(address, MemOperand(scratch1, kPointerSize, PostIndex));
3849 // Write back new top of buffer.
3850 Str(scratch1, MemOperand(scratch2));
3851 // Call stub on end of buffer.
3852 // Check for end of buffer.
3853 DCHECK(StoreBuffer::kStoreBufferOverflowBit ==
3854 (1 << (14 + kPointerSizeLog2)));
3855 if (and_then == kFallThroughAtEnd) {
3856 Tbz(scratch1, (14 + kPointerSizeLog2), &done);
3857 } else {
3858 DCHECK(and_then == kReturnAtEnd);
3859 Tbnz(scratch1, (14 + kPointerSizeLog2), &store_buffer_overflow);
3860 Ret();
3861 }
3862
3863 Bind(&store_buffer_overflow);
3864 Push(lr);
3865 StoreBufferOverflowStub store_buffer_overflow_stub(isolate(), fp_mode);
3866 CallStub(&store_buffer_overflow_stub);
3867 Pop(lr);
3868
3869 Bind(&done);
3870 if (and_then == kReturnAtEnd) {
3871 Ret();
3872 }
3873 }
3874
3875
PopSafepointRegisters()3876 void MacroAssembler::PopSafepointRegisters() {
3877 const int num_unsaved = kNumSafepointRegisters - kNumSafepointSavedRegisters;
3878 PopXRegList(kSafepointSavedRegisters);
3879 Drop(num_unsaved);
3880 }
3881
3882
PushSafepointRegisters()3883 void MacroAssembler::PushSafepointRegisters() {
3884 // Safepoints expect a block of kNumSafepointRegisters values on the stack, so
3885 // adjust the stack for unsaved registers.
3886 const int num_unsaved = kNumSafepointRegisters - kNumSafepointSavedRegisters;
3887 DCHECK(num_unsaved >= 0);
3888 Claim(num_unsaved);
3889 PushXRegList(kSafepointSavedRegisters);
3890 }
3891
3892
PushSafepointRegistersAndDoubles()3893 void MacroAssembler::PushSafepointRegistersAndDoubles() {
3894 PushSafepointRegisters();
3895 PushCPURegList(CPURegList(
3896 CPURegister::kFPRegister, kDRegSizeInBits,
3897 RegisterConfiguration::ArchDefault(RegisterConfiguration::CRANKSHAFT)
3898 ->allocatable_double_codes_mask()));
3899 }
3900
3901
PopSafepointRegistersAndDoubles()3902 void MacroAssembler::PopSafepointRegistersAndDoubles() {
3903 PopCPURegList(CPURegList(
3904 CPURegister::kFPRegister, kDRegSizeInBits,
3905 RegisterConfiguration::ArchDefault(RegisterConfiguration::CRANKSHAFT)
3906 ->allocatable_double_codes_mask()));
3907 PopSafepointRegisters();
3908 }
3909
3910
SafepointRegisterStackIndex(int reg_code)3911 int MacroAssembler::SafepointRegisterStackIndex(int reg_code) {
3912 // Make sure the safepoint registers list is what we expect.
3913 DCHECK(CPURegList::GetSafepointSavedRegisters().list() == 0x6ffcffff);
3914
3915 // Safepoint registers are stored contiguously on the stack, but not all the
3916 // registers are saved. The following registers are excluded:
3917 // - x16 and x17 (ip0 and ip1) because they shouldn't be preserved outside of
3918 // the macro assembler.
3919 // - x28 (jssp) because JS stack pointer doesn't need to be included in
3920 // safepoint registers.
3921 // - x31 (csp) because the system stack pointer doesn't need to be included
3922 // in safepoint registers.
3923 //
3924 // This function implements the mapping of register code to index into the
3925 // safepoint register slots.
3926 if ((reg_code >= 0) && (reg_code <= 15)) {
3927 return reg_code;
3928 } else if ((reg_code >= 18) && (reg_code <= 27)) {
3929 // Skip ip0 and ip1.
3930 return reg_code - 2;
3931 } else if ((reg_code == 29) || (reg_code == 30)) {
3932 // Also skip jssp.
3933 return reg_code - 3;
3934 } else {
3935 // This register has no safepoint register slot.
3936 UNREACHABLE();
3937 return -1;
3938 }
3939 }
3940
3941
CheckPageFlagSet(const Register & object,const Register & scratch,int mask,Label * if_any_set)3942 void MacroAssembler::CheckPageFlagSet(const Register& object,
3943 const Register& scratch,
3944 int mask,
3945 Label* if_any_set) {
3946 And(scratch, object, ~Page::kPageAlignmentMask);
3947 Ldr(scratch, MemOperand(scratch, MemoryChunk::kFlagsOffset));
3948 TestAndBranchIfAnySet(scratch, mask, if_any_set);
3949 }
3950
3951
CheckPageFlagClear(const Register & object,const Register & scratch,int mask,Label * if_all_clear)3952 void MacroAssembler::CheckPageFlagClear(const Register& object,
3953 const Register& scratch,
3954 int mask,
3955 Label* if_all_clear) {
3956 And(scratch, object, ~Page::kPageAlignmentMask);
3957 Ldr(scratch, MemOperand(scratch, MemoryChunk::kFlagsOffset));
3958 TestAndBranchIfAllClear(scratch, mask, if_all_clear);
3959 }
3960
3961
RecordWriteField(Register object,int offset,Register value,Register scratch,LinkRegisterStatus lr_status,SaveFPRegsMode save_fp,RememberedSetAction remembered_set_action,SmiCheck smi_check,PointersToHereCheck pointers_to_here_check_for_value)3962 void MacroAssembler::RecordWriteField(
3963 Register object,
3964 int offset,
3965 Register value,
3966 Register scratch,
3967 LinkRegisterStatus lr_status,
3968 SaveFPRegsMode save_fp,
3969 RememberedSetAction remembered_set_action,
3970 SmiCheck smi_check,
3971 PointersToHereCheck pointers_to_here_check_for_value) {
3972 // First, check if a write barrier is even needed. The tests below
3973 // catch stores of Smis.
3974 Label done;
3975
3976 // Skip the barrier if writing a smi.
3977 if (smi_check == INLINE_SMI_CHECK) {
3978 JumpIfSmi(value, &done);
3979 }
3980
3981 // Although the object register is tagged, the offset is relative to the start
3982 // of the object, so offset must be a multiple of kPointerSize.
3983 DCHECK(IsAligned(offset, kPointerSize));
3984
3985 Add(scratch, object, offset - kHeapObjectTag);
3986 if (emit_debug_code()) {
3987 Label ok;
3988 Tst(scratch, (1 << kPointerSizeLog2) - 1);
3989 B(eq, &ok);
3990 Abort(kUnalignedCellInWriteBarrier);
3991 Bind(&ok);
3992 }
3993
3994 RecordWrite(object,
3995 scratch,
3996 value,
3997 lr_status,
3998 save_fp,
3999 remembered_set_action,
4000 OMIT_SMI_CHECK,
4001 pointers_to_here_check_for_value);
4002
4003 Bind(&done);
4004
4005 // Clobber clobbered input registers when running with the debug-code flag
4006 // turned on to provoke errors.
4007 if (emit_debug_code()) {
4008 Mov(value, Operand(bit_cast<int64_t>(kZapValue + 4)));
4009 Mov(scratch, Operand(bit_cast<int64_t>(kZapValue + 8)));
4010 }
4011 }
4012
4013
4014 // Will clobber: object, map, dst.
4015 // If lr_status is kLRHasBeenSaved, lr will also be clobbered.
RecordWriteForMap(Register object,Register map,Register dst,LinkRegisterStatus lr_status,SaveFPRegsMode fp_mode)4016 void MacroAssembler::RecordWriteForMap(Register object,
4017 Register map,
4018 Register dst,
4019 LinkRegisterStatus lr_status,
4020 SaveFPRegsMode fp_mode) {
4021 ASM_LOCATION("MacroAssembler::RecordWrite");
4022 DCHECK(!AreAliased(object, map));
4023
4024 if (emit_debug_code()) {
4025 UseScratchRegisterScope temps(this);
4026 Register temp = temps.AcquireX();
4027
4028 CompareObjectMap(map, temp, isolate()->factory()->meta_map());
4029 Check(eq, kWrongAddressOrValuePassedToRecordWrite);
4030 }
4031
4032 if (!FLAG_incremental_marking) {
4033 return;
4034 }
4035
4036 if (emit_debug_code()) {
4037 UseScratchRegisterScope temps(this);
4038 Register temp = temps.AcquireX();
4039
4040 Ldr(temp, FieldMemOperand(object, HeapObject::kMapOffset));
4041 Cmp(temp, map);
4042 Check(eq, kWrongAddressOrValuePassedToRecordWrite);
4043 }
4044
4045 // First, check if a write barrier is even needed. The tests below
4046 // catch stores of smis and stores into the young generation.
4047 Label done;
4048
4049 // A single check of the map's pages interesting flag suffices, since it is
4050 // only set during incremental collection, and then it's also guaranteed that
4051 // the from object's page's interesting flag is also set. This optimization
4052 // relies on the fact that maps can never be in new space.
4053 CheckPageFlagClear(map,
4054 map, // Used as scratch.
4055 MemoryChunk::kPointersToHereAreInterestingMask,
4056 &done);
4057
4058 // Record the actual write.
4059 if (lr_status == kLRHasNotBeenSaved) {
4060 Push(lr);
4061 }
4062 Add(dst, object, HeapObject::kMapOffset - kHeapObjectTag);
4063 RecordWriteStub stub(isolate(), object, map, dst, OMIT_REMEMBERED_SET,
4064 fp_mode);
4065 CallStub(&stub);
4066 if (lr_status == kLRHasNotBeenSaved) {
4067 Pop(lr);
4068 }
4069
4070 Bind(&done);
4071
4072 // Count number of write barriers in generated code.
4073 isolate()->counters()->write_barriers_static()->Increment();
4074 IncrementCounter(isolate()->counters()->write_barriers_dynamic(), 1, map,
4075 dst);
4076
4077 // Clobber clobbered registers when running with the debug-code flag
4078 // turned on to provoke errors.
4079 if (emit_debug_code()) {
4080 Mov(dst, Operand(bit_cast<int64_t>(kZapValue + 12)));
4081 Mov(map, Operand(bit_cast<int64_t>(kZapValue + 16)));
4082 }
4083 }
4084
4085
4086 // Will clobber: object, address, value.
4087 // If lr_status is kLRHasBeenSaved, lr will also be clobbered.
4088 //
4089 // The register 'object' contains a heap object pointer. The heap object tag is
4090 // shifted away.
RecordWrite(Register object,Register address,Register value,LinkRegisterStatus lr_status,SaveFPRegsMode fp_mode,RememberedSetAction remembered_set_action,SmiCheck smi_check,PointersToHereCheck pointers_to_here_check_for_value)4091 void MacroAssembler::RecordWrite(
4092 Register object,
4093 Register address,
4094 Register value,
4095 LinkRegisterStatus lr_status,
4096 SaveFPRegsMode fp_mode,
4097 RememberedSetAction remembered_set_action,
4098 SmiCheck smi_check,
4099 PointersToHereCheck pointers_to_here_check_for_value) {
4100 ASM_LOCATION("MacroAssembler::RecordWrite");
4101 DCHECK(!AreAliased(object, value));
4102
4103 if (emit_debug_code()) {
4104 UseScratchRegisterScope temps(this);
4105 Register temp = temps.AcquireX();
4106
4107 Ldr(temp, MemOperand(address));
4108 Cmp(temp, value);
4109 Check(eq, kWrongAddressOrValuePassedToRecordWrite);
4110 }
4111
4112 // First, check if a write barrier is even needed. The tests below
4113 // catch stores of smis and stores into the young generation.
4114 Label done;
4115
4116 if (smi_check == INLINE_SMI_CHECK) {
4117 DCHECK_EQ(0, kSmiTag);
4118 JumpIfSmi(value, &done);
4119 }
4120
4121 if (pointers_to_here_check_for_value != kPointersToHereAreAlwaysInteresting) {
4122 CheckPageFlagClear(value,
4123 value, // Used as scratch.
4124 MemoryChunk::kPointersToHereAreInterestingMask,
4125 &done);
4126 }
4127 CheckPageFlagClear(object,
4128 value, // Used as scratch.
4129 MemoryChunk::kPointersFromHereAreInterestingMask,
4130 &done);
4131
4132 // Record the actual write.
4133 if (lr_status == kLRHasNotBeenSaved) {
4134 Push(lr);
4135 }
4136 RecordWriteStub stub(isolate(), object, value, address, remembered_set_action,
4137 fp_mode);
4138 CallStub(&stub);
4139 if (lr_status == kLRHasNotBeenSaved) {
4140 Pop(lr);
4141 }
4142
4143 Bind(&done);
4144
4145 // Count number of write barriers in generated code.
4146 isolate()->counters()->write_barriers_static()->Increment();
4147 IncrementCounter(isolate()->counters()->write_barriers_dynamic(), 1, address,
4148 value);
4149
4150 // Clobber clobbered registers when running with the debug-code flag
4151 // turned on to provoke errors.
4152 if (emit_debug_code()) {
4153 Mov(address, Operand(bit_cast<int64_t>(kZapValue + 12)));
4154 Mov(value, Operand(bit_cast<int64_t>(kZapValue + 16)));
4155 }
4156 }
4157
4158
AssertHasValidColor(const Register & reg)4159 void MacroAssembler::AssertHasValidColor(const Register& reg) {
4160 if (emit_debug_code()) {
4161 // The bit sequence is backward. The first character in the string
4162 // represents the least significant bit.
4163 DCHECK(strcmp(Marking::kImpossibleBitPattern, "01") == 0);
4164
4165 Label color_is_valid;
4166 Tbnz(reg, 0, &color_is_valid);
4167 Tbz(reg, 1, &color_is_valid);
4168 Abort(kUnexpectedColorFound);
4169 Bind(&color_is_valid);
4170 }
4171 }
4172
4173
GetMarkBits(Register addr_reg,Register bitmap_reg,Register shift_reg)4174 void MacroAssembler::GetMarkBits(Register addr_reg,
4175 Register bitmap_reg,
4176 Register shift_reg) {
4177 DCHECK(!AreAliased(addr_reg, bitmap_reg, shift_reg));
4178 DCHECK(addr_reg.Is64Bits() && bitmap_reg.Is64Bits() && shift_reg.Is64Bits());
4179 // addr_reg is divided into fields:
4180 // |63 page base 20|19 high 8|7 shift 3|2 0|
4181 // 'high' gives the index of the cell holding color bits for the object.
4182 // 'shift' gives the offset in the cell for this object's color.
4183 const int kShiftBits = kPointerSizeLog2 + Bitmap::kBitsPerCellLog2;
4184 UseScratchRegisterScope temps(this);
4185 Register temp = temps.AcquireX();
4186 Ubfx(temp, addr_reg, kShiftBits, kPageSizeBits - kShiftBits);
4187 Bic(bitmap_reg, addr_reg, Page::kPageAlignmentMask);
4188 Add(bitmap_reg, bitmap_reg, Operand(temp, LSL, Bitmap::kBytesPerCellLog2));
4189 // bitmap_reg:
4190 // |63 page base 20|19 zeros 15|14 high 3|2 0|
4191 Ubfx(shift_reg, addr_reg, kPointerSizeLog2, Bitmap::kBitsPerCellLog2);
4192 }
4193
4194
HasColor(Register object,Register bitmap_scratch,Register shift_scratch,Label * has_color,int first_bit,int second_bit)4195 void MacroAssembler::HasColor(Register object,
4196 Register bitmap_scratch,
4197 Register shift_scratch,
4198 Label* has_color,
4199 int first_bit,
4200 int second_bit) {
4201 // See mark-compact.h for color definitions.
4202 DCHECK(!AreAliased(object, bitmap_scratch, shift_scratch));
4203
4204 GetMarkBits(object, bitmap_scratch, shift_scratch);
4205 Ldr(bitmap_scratch, MemOperand(bitmap_scratch, MemoryChunk::kHeaderSize));
4206 // Shift the bitmap down to get the color of the object in bits [1:0].
4207 Lsr(bitmap_scratch, bitmap_scratch, shift_scratch);
4208
4209 AssertHasValidColor(bitmap_scratch);
4210
4211 // These bit sequences are backwards. The first character in the string
4212 // represents the least significant bit.
4213 DCHECK(strcmp(Marking::kWhiteBitPattern, "00") == 0);
4214 DCHECK(strcmp(Marking::kBlackBitPattern, "11") == 0);
4215 DCHECK(strcmp(Marking::kGreyBitPattern, "10") == 0);
4216
4217 // Check for the color.
4218 if (first_bit == 0) {
4219 // Checking for white.
4220 DCHECK(second_bit == 0);
4221 // We only need to test the first bit.
4222 Tbz(bitmap_scratch, 0, has_color);
4223 } else {
4224 Label other_color;
4225 // Checking for grey or black.
4226 Tbz(bitmap_scratch, 0, &other_color);
4227 if (second_bit == 0) {
4228 Tbz(bitmap_scratch, 1, has_color);
4229 } else {
4230 Tbnz(bitmap_scratch, 1, has_color);
4231 }
4232 Bind(&other_color);
4233 }
4234
4235 // Fall through if it does not have the right color.
4236 }
4237
4238
JumpIfBlack(Register object,Register scratch0,Register scratch1,Label * on_black)4239 void MacroAssembler::JumpIfBlack(Register object,
4240 Register scratch0,
4241 Register scratch1,
4242 Label* on_black) {
4243 DCHECK(strcmp(Marking::kBlackBitPattern, "11") == 0);
4244 HasColor(object, scratch0, scratch1, on_black, 1, 1); // kBlackBitPattern.
4245 }
4246
4247
JumpIfDictionaryInPrototypeChain(Register object,Register scratch0,Register scratch1,Label * found)4248 void MacroAssembler::JumpIfDictionaryInPrototypeChain(
4249 Register object,
4250 Register scratch0,
4251 Register scratch1,
4252 Label* found) {
4253 DCHECK(!AreAliased(object, scratch0, scratch1));
4254 Register current = scratch0;
4255 Label loop_again, end;
4256
4257 // Scratch contains elements pointer.
4258 Mov(current, object);
4259 Ldr(current, FieldMemOperand(current, HeapObject::kMapOffset));
4260 Ldr(current, FieldMemOperand(current, Map::kPrototypeOffset));
4261 CompareAndBranch(current, Heap::kNullValueRootIndex, eq, &end);
4262
4263 // Loop based on the map going up the prototype chain.
4264 Bind(&loop_again);
4265 Ldr(current, FieldMemOperand(current, HeapObject::kMapOffset));
4266 STATIC_ASSERT(JS_PROXY_TYPE < JS_OBJECT_TYPE);
4267 STATIC_ASSERT(JS_VALUE_TYPE < JS_OBJECT_TYPE);
4268 CompareInstanceType(current, scratch1, JS_OBJECT_TYPE);
4269 B(lo, found);
4270 Ldrb(scratch1, FieldMemOperand(current, Map::kBitField2Offset));
4271 DecodeField<Map::ElementsKindBits>(scratch1);
4272 CompareAndBranch(scratch1, DICTIONARY_ELEMENTS, eq, found);
4273 Ldr(current, FieldMemOperand(current, Map::kPrototypeOffset));
4274 CompareAndBranch(current, Heap::kNullValueRootIndex, ne, &loop_again);
4275
4276 Bind(&end);
4277 }
4278
4279
JumpIfWhite(Register value,Register bitmap_scratch,Register shift_scratch,Register load_scratch,Register length_scratch,Label * value_is_white)4280 void MacroAssembler::JumpIfWhite(Register value, Register bitmap_scratch,
4281 Register shift_scratch, Register load_scratch,
4282 Register length_scratch,
4283 Label* value_is_white) {
4284 DCHECK(!AreAliased(
4285 value, bitmap_scratch, shift_scratch, load_scratch, length_scratch));
4286
4287 // These bit sequences are backwards. The first character in the string
4288 // represents the least significant bit.
4289 DCHECK(strcmp(Marking::kWhiteBitPattern, "00") == 0);
4290 DCHECK(strcmp(Marking::kBlackBitPattern, "11") == 0);
4291 DCHECK(strcmp(Marking::kGreyBitPattern, "10") == 0);
4292
4293 GetMarkBits(value, bitmap_scratch, shift_scratch);
4294 Ldr(load_scratch, MemOperand(bitmap_scratch, MemoryChunk::kHeaderSize));
4295 Lsr(load_scratch, load_scratch, shift_scratch);
4296
4297 AssertHasValidColor(load_scratch);
4298
4299 // If the value is black or grey we don't need to do anything.
4300 // Since both black and grey have a 1 in the first position and white does
4301 // not have a 1 there we only need to check one bit.
4302 Tbz(load_scratch, 0, value_is_white);
4303 }
4304
4305
Assert(Condition cond,BailoutReason reason)4306 void MacroAssembler::Assert(Condition cond, BailoutReason reason) {
4307 if (emit_debug_code()) {
4308 Check(cond, reason);
4309 }
4310 }
4311
4312
4313
AssertRegisterIsClear(Register reg,BailoutReason reason)4314 void MacroAssembler::AssertRegisterIsClear(Register reg, BailoutReason reason) {
4315 if (emit_debug_code()) {
4316 CheckRegisterIsClear(reg, reason);
4317 }
4318 }
4319
4320
AssertRegisterIsRoot(Register reg,Heap::RootListIndex index,BailoutReason reason)4321 void MacroAssembler::AssertRegisterIsRoot(Register reg,
4322 Heap::RootListIndex index,
4323 BailoutReason reason) {
4324 if (emit_debug_code()) {
4325 CompareRoot(reg, index);
4326 Check(eq, reason);
4327 }
4328 }
4329
4330
AssertFastElements(Register elements)4331 void MacroAssembler::AssertFastElements(Register elements) {
4332 if (emit_debug_code()) {
4333 UseScratchRegisterScope temps(this);
4334 Register temp = temps.AcquireX();
4335 Label ok;
4336 Ldr(temp, FieldMemOperand(elements, HeapObject::kMapOffset));
4337 JumpIfRoot(temp, Heap::kFixedArrayMapRootIndex, &ok);
4338 JumpIfRoot(temp, Heap::kFixedDoubleArrayMapRootIndex, &ok);
4339 JumpIfRoot(temp, Heap::kFixedCOWArrayMapRootIndex, &ok);
4340 Abort(kJSObjectWithFastElementsMapHasSlowElements);
4341 Bind(&ok);
4342 }
4343 }
4344
4345
AssertIsString(const Register & object)4346 void MacroAssembler::AssertIsString(const Register& object) {
4347 if (emit_debug_code()) {
4348 UseScratchRegisterScope temps(this);
4349 Register temp = temps.AcquireX();
4350 STATIC_ASSERT(kSmiTag == 0);
4351 Tst(object, kSmiTagMask);
4352 Check(ne, kOperandIsNotAString);
4353 Ldr(temp, FieldMemOperand(object, HeapObject::kMapOffset));
4354 CompareInstanceType(temp, temp, FIRST_NONSTRING_TYPE);
4355 Check(lo, kOperandIsNotAString);
4356 }
4357 }
4358
4359
Check(Condition cond,BailoutReason reason)4360 void MacroAssembler::Check(Condition cond, BailoutReason reason) {
4361 Label ok;
4362 B(cond, &ok);
4363 Abort(reason);
4364 // Will not return here.
4365 Bind(&ok);
4366 }
4367
4368
CheckRegisterIsClear(Register reg,BailoutReason reason)4369 void MacroAssembler::CheckRegisterIsClear(Register reg, BailoutReason reason) {
4370 Label ok;
4371 Cbz(reg, &ok);
4372 Abort(reason);
4373 // Will not return here.
4374 Bind(&ok);
4375 }
4376
4377
Abort(BailoutReason reason)4378 void MacroAssembler::Abort(BailoutReason reason) {
4379 #ifdef DEBUG
4380 RecordComment("Abort message: ");
4381 RecordComment(GetBailoutReason(reason));
4382
4383 if (FLAG_trap_on_abort) {
4384 Brk(0);
4385 return;
4386 }
4387 #endif
4388
4389 // Abort is used in some contexts where csp is the stack pointer. In order to
4390 // simplify the CallRuntime code, make sure that jssp is the stack pointer.
4391 // There is no risk of register corruption here because Abort doesn't return.
4392 Register old_stack_pointer = StackPointer();
4393 SetStackPointer(jssp);
4394 Mov(jssp, old_stack_pointer);
4395
4396 // We need some scratch registers for the MacroAssembler, so make sure we have
4397 // some. This is safe here because Abort never returns.
4398 RegList old_tmp_list = TmpList()->list();
4399 TmpList()->Combine(MacroAssembler::DefaultTmpList());
4400
4401 if (use_real_aborts()) {
4402 // Avoid infinite recursion; Push contains some assertions that use Abort.
4403 NoUseRealAbortsScope no_real_aborts(this);
4404
4405 Mov(x0, Smi::FromInt(reason));
4406 Push(x0);
4407
4408 if (!has_frame_) {
4409 // We don't actually want to generate a pile of code for this, so just
4410 // claim there is a stack frame, without generating one.
4411 FrameScope scope(this, StackFrame::NONE);
4412 CallRuntime(Runtime::kAbort, 1);
4413 } else {
4414 CallRuntime(Runtime::kAbort, 1);
4415 }
4416 } else {
4417 // Load the string to pass to Printf.
4418 Label msg_address;
4419 Adr(x0, &msg_address);
4420
4421 // Call Printf directly to report the error.
4422 CallPrintf();
4423
4424 // We need a way to stop execution on both the simulator and real hardware,
4425 // and Unreachable() is the best option.
4426 Unreachable();
4427
4428 // Emit the message string directly in the instruction stream.
4429 {
4430 BlockPoolsScope scope(this);
4431 Bind(&msg_address);
4432 EmitStringData(GetBailoutReason(reason));
4433 }
4434 }
4435
4436 SetStackPointer(old_stack_pointer);
4437 TmpList()->set_list(old_tmp_list);
4438 }
4439
4440
LoadTransitionedArrayMapConditional(ElementsKind expected_kind,ElementsKind transitioned_kind,Register map_in_out,Register scratch1,Register scratch2,Label * no_map_match)4441 void MacroAssembler::LoadTransitionedArrayMapConditional(
4442 ElementsKind expected_kind,
4443 ElementsKind transitioned_kind,
4444 Register map_in_out,
4445 Register scratch1,
4446 Register scratch2,
4447 Label* no_map_match) {
4448 DCHECK(IsFastElementsKind(expected_kind));
4449 DCHECK(IsFastElementsKind(transitioned_kind));
4450
4451 // Check that the function's map is the same as the expected cached map.
4452 Ldr(scratch1, NativeContextMemOperand());
4453 Ldr(scratch2,
4454 ContextMemOperand(scratch1, Context::ArrayMapIndex(expected_kind)));
4455 Cmp(map_in_out, scratch2);
4456 B(ne, no_map_match);
4457
4458 // Use the transitioned cached map.
4459 Ldr(map_in_out,
4460 ContextMemOperand(scratch1, Context::ArrayMapIndex(transitioned_kind)));
4461 }
4462
4463
LoadNativeContextSlot(int index,Register dst)4464 void MacroAssembler::LoadNativeContextSlot(int index, Register dst) {
4465 Ldr(dst, NativeContextMemOperand());
4466 Ldr(dst, ContextMemOperand(dst, index));
4467 }
4468
4469
LoadGlobalFunctionInitialMap(Register function,Register map,Register scratch)4470 void MacroAssembler::LoadGlobalFunctionInitialMap(Register function,
4471 Register map,
4472 Register scratch) {
4473 // Load the initial map. The global functions all have initial maps.
4474 Ldr(map, FieldMemOperand(function, JSFunction::kPrototypeOrInitialMapOffset));
4475 if (emit_debug_code()) {
4476 Label ok, fail;
4477 CheckMap(map, scratch, Heap::kMetaMapRootIndex, &fail, DO_SMI_CHECK);
4478 B(&ok);
4479 Bind(&fail);
4480 Abort(kGlobalFunctionsMustHaveInitialMap);
4481 Bind(&ok);
4482 }
4483 }
4484
4485
4486 // This is the main Printf implementation. All other Printf variants call
4487 // PrintfNoPreserve after setting up one or more PreserveRegisterScopes.
PrintfNoPreserve(const char * format,const CPURegister & arg0,const CPURegister & arg1,const CPURegister & arg2,const CPURegister & arg3)4488 void MacroAssembler::PrintfNoPreserve(const char * format,
4489 const CPURegister& arg0,
4490 const CPURegister& arg1,
4491 const CPURegister& arg2,
4492 const CPURegister& arg3) {
4493 // We cannot handle a caller-saved stack pointer. It doesn't make much sense
4494 // in most cases anyway, so this restriction shouldn't be too serious.
4495 DCHECK(!kCallerSaved.IncludesAliasOf(__ StackPointer()));
4496
4497 // The provided arguments, and their proper procedure-call standard registers.
4498 CPURegister args[kPrintfMaxArgCount] = {arg0, arg1, arg2, arg3};
4499 CPURegister pcs[kPrintfMaxArgCount] = {NoReg, NoReg, NoReg, NoReg};
4500
4501 int arg_count = kPrintfMaxArgCount;
4502
4503 // The PCS varargs registers for printf. Note that x0 is used for the printf
4504 // format string.
4505 static const CPURegList kPCSVarargs =
4506 CPURegList(CPURegister::kRegister, kXRegSizeInBits, 1, arg_count);
4507 static const CPURegList kPCSVarargsFP =
4508 CPURegList(CPURegister::kFPRegister, kDRegSizeInBits, 0, arg_count - 1);
4509
4510 // We can use caller-saved registers as scratch values, except for the
4511 // arguments and the PCS registers where they might need to go.
4512 CPURegList tmp_list = kCallerSaved;
4513 tmp_list.Remove(x0); // Used to pass the format string.
4514 tmp_list.Remove(kPCSVarargs);
4515 tmp_list.Remove(arg0, arg1, arg2, arg3);
4516
4517 CPURegList fp_tmp_list = kCallerSavedFP;
4518 fp_tmp_list.Remove(kPCSVarargsFP);
4519 fp_tmp_list.Remove(arg0, arg1, arg2, arg3);
4520
4521 // Override the MacroAssembler's scratch register list. The lists will be
4522 // reset automatically at the end of the UseScratchRegisterScope.
4523 UseScratchRegisterScope temps(this);
4524 TmpList()->set_list(tmp_list.list());
4525 FPTmpList()->set_list(fp_tmp_list.list());
4526
4527 // Copies of the printf vararg registers that we can pop from.
4528 CPURegList pcs_varargs = kPCSVarargs;
4529 CPURegList pcs_varargs_fp = kPCSVarargsFP;
4530
4531 // Place the arguments. There are lots of clever tricks and optimizations we
4532 // could use here, but Printf is a debug tool so instead we just try to keep
4533 // it simple: Move each input that isn't already in the right place to a
4534 // scratch register, then move everything back.
4535 for (unsigned i = 0; i < kPrintfMaxArgCount; i++) {
4536 // Work out the proper PCS register for this argument.
4537 if (args[i].IsRegister()) {
4538 pcs[i] = pcs_varargs.PopLowestIndex().X();
4539 // We might only need a W register here. We need to know the size of the
4540 // argument so we can properly encode it for the simulator call.
4541 if (args[i].Is32Bits()) pcs[i] = pcs[i].W();
4542 } else if (args[i].IsFPRegister()) {
4543 // In C, floats are always cast to doubles for varargs calls.
4544 pcs[i] = pcs_varargs_fp.PopLowestIndex().D();
4545 } else {
4546 DCHECK(args[i].IsNone());
4547 arg_count = i;
4548 break;
4549 }
4550
4551 // If the argument is already in the right place, leave it where it is.
4552 if (args[i].Aliases(pcs[i])) continue;
4553
4554 // Otherwise, if the argument is in a PCS argument register, allocate an
4555 // appropriate scratch register and then move it out of the way.
4556 if (kPCSVarargs.IncludesAliasOf(args[i]) ||
4557 kPCSVarargsFP.IncludesAliasOf(args[i])) {
4558 if (args[i].IsRegister()) {
4559 Register old_arg = Register(args[i]);
4560 Register new_arg = temps.AcquireSameSizeAs(old_arg);
4561 Mov(new_arg, old_arg);
4562 args[i] = new_arg;
4563 } else {
4564 FPRegister old_arg = FPRegister(args[i]);
4565 FPRegister new_arg = temps.AcquireSameSizeAs(old_arg);
4566 Fmov(new_arg, old_arg);
4567 args[i] = new_arg;
4568 }
4569 }
4570 }
4571
4572 // Do a second pass to move values into their final positions and perform any
4573 // conversions that may be required.
4574 for (int i = 0; i < arg_count; i++) {
4575 DCHECK(pcs[i].type() == args[i].type());
4576 if (pcs[i].IsRegister()) {
4577 Mov(Register(pcs[i]), Register(args[i]), kDiscardForSameWReg);
4578 } else {
4579 DCHECK(pcs[i].IsFPRegister());
4580 if (pcs[i].SizeInBytes() == args[i].SizeInBytes()) {
4581 Fmov(FPRegister(pcs[i]), FPRegister(args[i]));
4582 } else {
4583 Fcvt(FPRegister(pcs[i]), FPRegister(args[i]));
4584 }
4585 }
4586 }
4587
4588 // Load the format string into x0, as per the procedure-call standard.
4589 //
4590 // To make the code as portable as possible, the format string is encoded
4591 // directly in the instruction stream. It might be cleaner to encode it in a
4592 // literal pool, but since Printf is usually used for debugging, it is
4593 // beneficial for it to be minimally dependent on other features.
4594 Label format_address;
4595 Adr(x0, &format_address);
4596
4597 // Emit the format string directly in the instruction stream.
4598 { BlockPoolsScope scope(this);
4599 Label after_data;
4600 B(&after_data);
4601 Bind(&format_address);
4602 EmitStringData(format);
4603 Unreachable();
4604 Bind(&after_data);
4605 }
4606
4607 // We don't pass any arguments on the stack, but we still need to align the C
4608 // stack pointer to a 16-byte boundary for PCS compliance.
4609 if (!csp.Is(StackPointer())) {
4610 Bic(csp, StackPointer(), 0xf);
4611 }
4612
4613 CallPrintf(arg_count, pcs);
4614 }
4615
4616
CallPrintf(int arg_count,const CPURegister * args)4617 void MacroAssembler::CallPrintf(int arg_count, const CPURegister * args) {
4618 // A call to printf needs special handling for the simulator, since the system
4619 // printf function will use a different instruction set and the procedure-call
4620 // standard will not be compatible.
4621 #ifdef USE_SIMULATOR
4622 { InstructionAccurateScope scope(this, kPrintfLength / kInstructionSize);
4623 hlt(kImmExceptionIsPrintf);
4624 dc32(arg_count); // kPrintfArgCountOffset
4625
4626 // Determine the argument pattern.
4627 uint32_t arg_pattern_list = 0;
4628 for (int i = 0; i < arg_count; i++) {
4629 uint32_t arg_pattern;
4630 if (args[i].IsRegister()) {
4631 arg_pattern = args[i].Is32Bits() ? kPrintfArgW : kPrintfArgX;
4632 } else {
4633 DCHECK(args[i].Is64Bits());
4634 arg_pattern = kPrintfArgD;
4635 }
4636 DCHECK(arg_pattern < (1 << kPrintfArgPatternBits));
4637 arg_pattern_list |= (arg_pattern << (kPrintfArgPatternBits * i));
4638 }
4639 dc32(arg_pattern_list); // kPrintfArgPatternListOffset
4640 }
4641 #else
4642 Call(FUNCTION_ADDR(printf), RelocInfo::EXTERNAL_REFERENCE);
4643 #endif
4644 }
4645
4646
Printf(const char * format,CPURegister arg0,CPURegister arg1,CPURegister arg2,CPURegister arg3)4647 void MacroAssembler::Printf(const char * format,
4648 CPURegister arg0,
4649 CPURegister arg1,
4650 CPURegister arg2,
4651 CPURegister arg3) {
4652 // We can only print sp if it is the current stack pointer.
4653 if (!csp.Is(StackPointer())) {
4654 DCHECK(!csp.Aliases(arg0));
4655 DCHECK(!csp.Aliases(arg1));
4656 DCHECK(!csp.Aliases(arg2));
4657 DCHECK(!csp.Aliases(arg3));
4658 }
4659
4660 // Printf is expected to preserve all registers, so make sure that none are
4661 // available as scratch registers until we've preserved them.
4662 RegList old_tmp_list = TmpList()->list();
4663 RegList old_fp_tmp_list = FPTmpList()->list();
4664 TmpList()->set_list(0);
4665 FPTmpList()->set_list(0);
4666
4667 // Preserve all caller-saved registers as well as NZCV.
4668 // If csp is the stack pointer, PushCPURegList asserts that the size of each
4669 // list is a multiple of 16 bytes.
4670 PushCPURegList(kCallerSaved);
4671 PushCPURegList(kCallerSavedFP);
4672
4673 // We can use caller-saved registers as scratch values (except for argN).
4674 CPURegList tmp_list = kCallerSaved;
4675 CPURegList fp_tmp_list = kCallerSavedFP;
4676 tmp_list.Remove(arg0, arg1, arg2, arg3);
4677 fp_tmp_list.Remove(arg0, arg1, arg2, arg3);
4678 TmpList()->set_list(tmp_list.list());
4679 FPTmpList()->set_list(fp_tmp_list.list());
4680
4681 { UseScratchRegisterScope temps(this);
4682 // If any of the arguments are the current stack pointer, allocate a new
4683 // register for them, and adjust the value to compensate for pushing the
4684 // caller-saved registers.
4685 bool arg0_sp = StackPointer().Aliases(arg0);
4686 bool arg1_sp = StackPointer().Aliases(arg1);
4687 bool arg2_sp = StackPointer().Aliases(arg2);
4688 bool arg3_sp = StackPointer().Aliases(arg3);
4689 if (arg0_sp || arg1_sp || arg2_sp || arg3_sp) {
4690 // Allocate a register to hold the original stack pointer value, to pass
4691 // to PrintfNoPreserve as an argument.
4692 Register arg_sp = temps.AcquireX();
4693 Add(arg_sp, StackPointer(),
4694 kCallerSaved.TotalSizeInBytes() + kCallerSavedFP.TotalSizeInBytes());
4695 if (arg0_sp) arg0 = Register::Create(arg_sp.code(), arg0.SizeInBits());
4696 if (arg1_sp) arg1 = Register::Create(arg_sp.code(), arg1.SizeInBits());
4697 if (arg2_sp) arg2 = Register::Create(arg_sp.code(), arg2.SizeInBits());
4698 if (arg3_sp) arg3 = Register::Create(arg_sp.code(), arg3.SizeInBits());
4699 }
4700
4701 // Preserve NZCV.
4702 { UseScratchRegisterScope temps(this);
4703 Register tmp = temps.AcquireX();
4704 Mrs(tmp, NZCV);
4705 Push(tmp, xzr);
4706 }
4707
4708 PrintfNoPreserve(format, arg0, arg1, arg2, arg3);
4709
4710 // Restore NZCV.
4711 { UseScratchRegisterScope temps(this);
4712 Register tmp = temps.AcquireX();
4713 Pop(xzr, tmp);
4714 Msr(NZCV, tmp);
4715 }
4716 }
4717
4718 PopCPURegList(kCallerSavedFP);
4719 PopCPURegList(kCallerSaved);
4720
4721 TmpList()->set_list(old_tmp_list);
4722 FPTmpList()->set_list(old_fp_tmp_list);
4723 }
4724
4725
EmitFrameSetupForCodeAgePatching()4726 void MacroAssembler::EmitFrameSetupForCodeAgePatching() {
4727 // TODO(jbramley): Other architectures use the internal memcpy to copy the
4728 // sequence. If this is a performance bottleneck, we should consider caching
4729 // the sequence and copying it in the same way.
4730 InstructionAccurateScope scope(this,
4731 kNoCodeAgeSequenceLength / kInstructionSize);
4732 DCHECK(jssp.Is(StackPointer()));
4733 EmitFrameSetupForCodeAgePatching(this);
4734 }
4735
4736
4737
EmitCodeAgeSequence(Code * stub)4738 void MacroAssembler::EmitCodeAgeSequence(Code* stub) {
4739 InstructionAccurateScope scope(this,
4740 kNoCodeAgeSequenceLength / kInstructionSize);
4741 DCHECK(jssp.Is(StackPointer()));
4742 EmitCodeAgeSequence(this, stub);
4743 }
4744
4745
4746 #undef __
4747 #define __ assm->
4748
4749
EmitFrameSetupForCodeAgePatching(Assembler * assm)4750 void MacroAssembler::EmitFrameSetupForCodeAgePatching(Assembler * assm) {
4751 Label start;
4752 __ bind(&start);
4753
4754 // We can do this sequence using four instructions, but the code ageing
4755 // sequence that patches it needs five, so we use the extra space to try to
4756 // simplify some addressing modes and remove some dependencies (compared to
4757 // using two stp instructions with write-back).
4758 __ sub(jssp, jssp, 4 * kXRegSize);
4759 __ sub(csp, csp, 4 * kXRegSize);
4760 __ stp(x1, cp, MemOperand(jssp, 0 * kXRegSize));
4761 __ stp(fp, lr, MemOperand(jssp, 2 * kXRegSize));
4762 __ add(fp, jssp, StandardFrameConstants::kFixedFrameSizeFromFp);
4763
4764 __ AssertSizeOfCodeGeneratedSince(&start, kNoCodeAgeSequenceLength);
4765 }
4766
4767
EmitCodeAgeSequence(Assembler * assm,Code * stub)4768 void MacroAssembler::EmitCodeAgeSequence(Assembler * assm,
4769 Code * stub) {
4770 Label start;
4771 __ bind(&start);
4772 // When the stub is called, the sequence is replaced with the young sequence
4773 // (as in EmitFrameSetupForCodeAgePatching). After the code is replaced, the
4774 // stub jumps to &start, stored in x0. The young sequence does not call the
4775 // stub so there is no infinite loop here.
4776 //
4777 // A branch (br) is used rather than a call (blr) because this code replaces
4778 // the frame setup code that would normally preserve lr.
4779 __ ldr_pcrel(ip0, kCodeAgeStubEntryOffset >> kLoadLiteralScaleLog2);
4780 __ adr(x0, &start);
4781 __ br(ip0);
4782 // IsCodeAgeSequence in codegen-arm64.cc assumes that the code generated up
4783 // until now (kCodeAgeStubEntryOffset) is the same for all code age sequences.
4784 __ AssertSizeOfCodeGeneratedSince(&start, kCodeAgeStubEntryOffset);
4785 if (stub) {
4786 __ dc64(reinterpret_cast<uint64_t>(stub->instruction_start()));
4787 __ AssertSizeOfCodeGeneratedSince(&start, kNoCodeAgeSequenceLength);
4788 }
4789 }
4790
4791
IsYoungSequence(Isolate * isolate,byte * sequence)4792 bool MacroAssembler::IsYoungSequence(Isolate* isolate, byte* sequence) {
4793 bool is_young = isolate->code_aging_helper()->IsYoung(sequence);
4794 DCHECK(is_young ||
4795 isolate->code_aging_helper()->IsOld(sequence));
4796 return is_young;
4797 }
4798
4799
TruncatingDiv(Register result,Register dividend,int32_t divisor)4800 void MacroAssembler::TruncatingDiv(Register result,
4801 Register dividend,
4802 int32_t divisor) {
4803 DCHECK(!AreAliased(result, dividend));
4804 DCHECK(result.Is32Bits() && dividend.Is32Bits());
4805 base::MagicNumbersForDivision<uint32_t> mag =
4806 base::SignedDivisionByConstant(static_cast<uint32_t>(divisor));
4807 Mov(result, mag.multiplier);
4808 Smull(result.X(), dividend, result);
4809 Asr(result.X(), result.X(), 32);
4810 bool neg = (mag.multiplier & (static_cast<uint32_t>(1) << 31)) != 0;
4811 if (divisor > 0 && neg) Add(result, result, dividend);
4812 if (divisor < 0 && !neg && mag.multiplier > 0) Sub(result, result, dividend);
4813 if (mag.shift > 0) Asr(result, result, mag.shift);
4814 Add(result, result, Operand(dividend, LSR, 31));
4815 }
4816
4817
4818 #undef __
4819
4820
~UseScratchRegisterScope()4821 UseScratchRegisterScope::~UseScratchRegisterScope() {
4822 available_->set_list(old_available_);
4823 availablefp_->set_list(old_availablefp_);
4824 }
4825
4826
AcquireSameSizeAs(const Register & reg)4827 Register UseScratchRegisterScope::AcquireSameSizeAs(const Register& reg) {
4828 int code = AcquireNextAvailable(available_).code();
4829 return Register::Create(code, reg.SizeInBits());
4830 }
4831
4832
AcquireSameSizeAs(const FPRegister & reg)4833 FPRegister UseScratchRegisterScope::AcquireSameSizeAs(const FPRegister& reg) {
4834 int code = AcquireNextAvailable(availablefp_).code();
4835 return FPRegister::Create(code, reg.SizeInBits());
4836 }
4837
4838
AcquireNextAvailable(CPURegList * available)4839 CPURegister UseScratchRegisterScope::AcquireNextAvailable(
4840 CPURegList* available) {
4841 CHECK(!available->IsEmpty());
4842 CPURegister result = available->PopLowestIndex();
4843 DCHECK(!AreAliased(result, xzr, csp));
4844 return result;
4845 }
4846
4847
UnsafeAcquire(CPURegList * available,const CPURegister & reg)4848 CPURegister UseScratchRegisterScope::UnsafeAcquire(CPURegList* available,
4849 const CPURegister& reg) {
4850 DCHECK(available->IncludesAliasOf(reg));
4851 available->Remove(reg);
4852 return reg;
4853 }
4854
4855
4856 #define __ masm->
4857
4858
Emit(MacroAssembler * masm,const Register & reg,const Label * smi_check)4859 void InlineSmiCheckInfo::Emit(MacroAssembler* masm, const Register& reg,
4860 const Label* smi_check) {
4861 Assembler::BlockPoolsScope scope(masm);
4862 if (reg.IsValid()) {
4863 DCHECK(smi_check->is_bound());
4864 DCHECK(reg.Is64Bits());
4865
4866 // Encode the register (x0-x30) in the lowest 5 bits, then the offset to
4867 // 'check' in the other bits. The possible offset is limited in that we
4868 // use BitField to pack the data, and the underlying data type is a
4869 // uint32_t.
4870 uint32_t delta =
4871 static_cast<uint32_t>(__ InstructionsGeneratedSince(smi_check));
4872 __ InlineData(RegisterBits::encode(reg.code()) | DeltaBits::encode(delta));
4873 } else {
4874 DCHECK(!smi_check->is_bound());
4875
4876 // An offset of 0 indicates that there is no patch site.
4877 __ InlineData(0);
4878 }
4879 }
4880
4881
InlineSmiCheckInfo(Address info)4882 InlineSmiCheckInfo::InlineSmiCheckInfo(Address info)
4883 : reg_(NoReg), smi_check_(NULL) {
4884 InstructionSequence* inline_data = InstructionSequence::At(info);
4885 DCHECK(inline_data->IsInlineData());
4886 if (inline_data->IsInlineData()) {
4887 uint64_t payload = inline_data->InlineData();
4888 // We use BitField to decode the payload, and BitField can only handle
4889 // 32-bit values.
4890 DCHECK(is_uint32(payload));
4891 if (payload != 0) {
4892 uint32_t payload32 = static_cast<uint32_t>(payload);
4893 int reg_code = RegisterBits::decode(payload32);
4894 reg_ = Register::XRegFromCode(reg_code);
4895 int smi_check_delta = DeltaBits::decode(payload32);
4896 DCHECK(smi_check_delta != 0);
4897 smi_check_ = inline_data->preceding(smi_check_delta);
4898 }
4899 }
4900 }
4901
4902
4903 #undef __
4904
4905
4906 } // namespace internal
4907 } // namespace v8
4908
4909 #endif // V8_TARGET_ARCH_ARM64
4910