1 //===-- StatepointLowering.cpp - SDAGBuilder's statepoint code -----------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file includes support code use by SelectionDAGBuilder when lowering a
11 // statepoint sequence in SelectionDAG IR.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #include "StatepointLowering.h"
16 #include "SelectionDAGBuilder.h"
17 #include "llvm/ADT/SmallSet.h"
18 #include "llvm/ADT/Statistic.h"
19 #include "llvm/CodeGen/FunctionLoweringInfo.h"
20 #include "llvm/CodeGen/GCMetadata.h"
21 #include "llvm/CodeGen/GCStrategy.h"
22 #include "llvm/CodeGen/SelectionDAG.h"
23 #include "llvm/CodeGen/StackMaps.h"
24 #include "llvm/IR/CallingConv.h"
25 #include "llvm/IR/Instructions.h"
26 #include "llvm/IR/IntrinsicInst.h"
27 #include "llvm/IR/Intrinsics.h"
28 #include "llvm/IR/Statepoint.h"
29 #include "llvm/Target/TargetLowering.h"
30 #include <algorithm>
31 using namespace llvm;
32
33 #define DEBUG_TYPE "statepoint-lowering"
34
35 STATISTIC(NumSlotsAllocatedForStatepoints,
36 "Number of stack slots allocated for statepoints");
37 STATISTIC(NumOfStatepoints, "Number of statepoint nodes encountered");
38 STATISTIC(StatepointMaxSlotsRequired,
39 "Maximum number of stack slots required for a singe statepoint");
40
pushStackMapConstant(SmallVectorImpl<SDValue> & Ops,SelectionDAGBuilder & Builder,uint64_t Value)41 static void pushStackMapConstant(SmallVectorImpl<SDValue>& Ops,
42 SelectionDAGBuilder &Builder, uint64_t Value) {
43 SDLoc L = Builder.getCurSDLoc();
44 Ops.push_back(Builder.DAG.getTargetConstant(StackMaps::ConstantOp, L,
45 MVT::i64));
46 Ops.push_back(Builder.DAG.getTargetConstant(Value, L, MVT::i64));
47 }
48
startNewStatepoint(SelectionDAGBuilder & Builder)49 void StatepointLoweringState::startNewStatepoint(SelectionDAGBuilder &Builder) {
50 // Consistency check
51 assert(PendingGCRelocateCalls.empty() &&
52 "Trying to visit statepoint before finished processing previous one");
53 Locations.clear();
54 NextSlotToAllocate = 0;
55 // Need to resize this on each safepoint - we need the two to stay in
56 // sync and the clear patterns of a SelectionDAGBuilder have no relation
57 // to FunctionLoweringInfo.
58 AllocatedStackSlots.resize(Builder.FuncInfo.StatepointStackSlots.size());
59 for (size_t i = 0; i < AllocatedStackSlots.size(); i++) {
60 AllocatedStackSlots[i] = false;
61 }
62 }
63
clear()64 void StatepointLoweringState::clear() {
65 Locations.clear();
66 AllocatedStackSlots.clear();
67 assert(PendingGCRelocateCalls.empty() &&
68 "cleared before statepoint sequence completed");
69 }
70
71 SDValue
allocateStackSlot(EVT ValueType,SelectionDAGBuilder & Builder)72 StatepointLoweringState::allocateStackSlot(EVT ValueType,
73 SelectionDAGBuilder &Builder) {
74
75 NumSlotsAllocatedForStatepoints++;
76
77 // The basic scheme here is to first look for a previously created stack slot
78 // which is not in use (accounting for the fact arbitrary slots may already
79 // be reserved), or to create a new stack slot and use it.
80
81 // If this doesn't succeed in 40000 iterations, something is seriously wrong
82 for (int i = 0; i < 40000; i++) {
83 assert(Builder.FuncInfo.StatepointStackSlots.size() ==
84 AllocatedStackSlots.size() &&
85 "broken invariant");
86 const size_t NumSlots = AllocatedStackSlots.size();
87 assert(NextSlotToAllocate <= NumSlots && "broken invariant");
88
89 if (NextSlotToAllocate >= NumSlots) {
90 assert(NextSlotToAllocate == NumSlots);
91 // record stats
92 if (NumSlots + 1 > StatepointMaxSlotsRequired) {
93 StatepointMaxSlotsRequired = NumSlots + 1;
94 }
95
96 SDValue SpillSlot = Builder.DAG.CreateStackTemporary(ValueType);
97 const unsigned FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex();
98 Builder.FuncInfo.StatepointStackSlots.push_back(FI);
99 AllocatedStackSlots.push_back(true);
100 return SpillSlot;
101 }
102 if (!AllocatedStackSlots[NextSlotToAllocate]) {
103 const int FI = Builder.FuncInfo.StatepointStackSlots[NextSlotToAllocate];
104 AllocatedStackSlots[NextSlotToAllocate] = true;
105 return Builder.DAG.getFrameIndex(FI, ValueType);
106 }
107 // Note: We deliberately choose to advance this only on the failing path.
108 // Doing so on the succeeding path involves a bit of complexity that caused
109 // a minor bug previously. Unless performance shows this matters, please
110 // keep this code as simple as possible.
111 NextSlotToAllocate++;
112 }
113 llvm_unreachable("infinite loop?");
114 }
115
116 /// Utility function for reservePreviousStackSlotForValue. Tries to find
117 /// stack slot index to which we have spilled value for previous statepoints.
118 /// LookUpDepth specifies maximum DFS depth this function is allowed to look.
findPreviousSpillSlot(const Value * Val,SelectionDAGBuilder & Builder,int LookUpDepth)119 static Optional<int> findPreviousSpillSlot(const Value *Val,
120 SelectionDAGBuilder &Builder,
121 int LookUpDepth) {
122 // Can not look any further - give up now
123 if (LookUpDepth <= 0)
124 return Optional<int>();
125
126 // Spill location is known for gc relocates
127 if (isGCRelocate(Val)) {
128 GCRelocateOperands RelocOps(cast<Instruction>(Val));
129
130 FunctionLoweringInfo::StatepointSpilledValueMapTy &SpillMap =
131 Builder.FuncInfo.StatepointRelocatedValues[RelocOps.getStatepoint()];
132
133 auto It = SpillMap.find(RelocOps.getDerivedPtr());
134 if (It == SpillMap.end())
135 return Optional<int>();
136
137 return It->second;
138 }
139
140 // Look through bitcast instructions.
141 if (const BitCastInst *Cast = dyn_cast<BitCastInst>(Val)) {
142 return findPreviousSpillSlot(Cast->getOperand(0), Builder, LookUpDepth - 1);
143 }
144
145 // Look through phi nodes
146 // All incoming values should have same known stack slot, otherwise result
147 // is unknown.
148 if (const PHINode *Phi = dyn_cast<PHINode>(Val)) {
149 Optional<int> MergedResult = None;
150
151 for (auto &IncomingValue : Phi->incoming_values()) {
152 Optional<int> SpillSlot =
153 findPreviousSpillSlot(IncomingValue, Builder, LookUpDepth - 1);
154 if (!SpillSlot.hasValue())
155 return Optional<int>();
156
157 if (MergedResult.hasValue() && *MergedResult != *SpillSlot)
158 return Optional<int>();
159
160 MergedResult = SpillSlot;
161 }
162 return MergedResult;
163 }
164
165 // TODO: We can do better for PHI nodes. In cases like this:
166 // ptr = phi(relocated_pointer, not_relocated_pointer)
167 // statepoint(ptr)
168 // We will return that stack slot for ptr is unknown. And later we might
169 // assign different stack slots for ptr and relocated_pointer. This limits
170 // llvm's ability to remove redundant stores.
171 // Unfortunately it's hard to accomplish in current infrastructure.
172 // We use this function to eliminate spill store completely, while
173 // in example we still need to emit store, but instead of any location
174 // we need to use special "preferred" location.
175
176 // TODO: handle simple updates. If a value is modified and the original
177 // value is no longer live, it would be nice to put the modified value in the
178 // same slot. This allows folding of the memory accesses for some
179 // instructions types (like an increment).
180 // statepoint (i)
181 // i1 = i+1
182 // statepoint (i1)
183 // However we need to be careful for cases like this:
184 // statepoint(i)
185 // i1 = i+1
186 // statepoint(i, i1)
187 // Here we want to reserve spill slot for 'i', but not for 'i+1'. If we just
188 // put handling of simple modifications in this function like it's done
189 // for bitcasts we might end up reserving i's slot for 'i+1' because order in
190 // which we visit values is unspecified.
191
192 // Don't know any information about this instruction
193 return Optional<int>();
194 }
195
196 /// Try to find existing copies of the incoming values in stack slots used for
197 /// statepoint spilling. If we can find a spill slot for the incoming value,
198 /// mark that slot as allocated, and reuse the same slot for this safepoint.
199 /// This helps to avoid series of loads and stores that only serve to reshuffle
200 /// values on the stack between calls.
reservePreviousStackSlotForValue(const Value * IncomingValue,SelectionDAGBuilder & Builder)201 static void reservePreviousStackSlotForValue(const Value *IncomingValue,
202 SelectionDAGBuilder &Builder) {
203
204 SDValue Incoming = Builder.getValue(IncomingValue);
205
206 if (isa<ConstantSDNode>(Incoming) || isa<FrameIndexSDNode>(Incoming)) {
207 // We won't need to spill this, so no need to check for previously
208 // allocated stack slots
209 return;
210 }
211
212 SDValue OldLocation = Builder.StatepointLowering.getLocation(Incoming);
213 if (OldLocation.getNode())
214 // duplicates in input
215 return;
216
217 const int LookUpDepth = 6;
218 Optional<int> Index =
219 findPreviousSpillSlot(IncomingValue, Builder, LookUpDepth);
220 if (!Index.hasValue())
221 return;
222
223 auto Itr = std::find(Builder.FuncInfo.StatepointStackSlots.begin(),
224 Builder.FuncInfo.StatepointStackSlots.end(), *Index);
225 assert(Itr != Builder.FuncInfo.StatepointStackSlots.end() &&
226 "value spilled to the unknown stack slot");
227
228 // This is one of our dedicated lowering slots
229 const int Offset =
230 std::distance(Builder.FuncInfo.StatepointStackSlots.begin(), Itr);
231 if (Builder.StatepointLowering.isStackSlotAllocated(Offset)) {
232 // stack slot already assigned to someone else, can't use it!
233 // TODO: currently we reserve space for gc arguments after doing
234 // normal allocation for deopt arguments. We should reserve for
235 // _all_ deopt and gc arguments, then start allocating. This
236 // will prevent some moves being inserted when vm state changes,
237 // but gc state doesn't between two calls.
238 return;
239 }
240 // Reserve this stack slot
241 Builder.StatepointLowering.reserveStackSlot(Offset);
242
243 // Cache this slot so we find it when going through the normal
244 // assignment loop.
245 SDValue Loc = Builder.DAG.getTargetFrameIndex(*Index, Incoming.getValueType());
246 Builder.StatepointLowering.setLocation(Incoming, Loc);
247 }
248
249 /// Remove any duplicate (as SDValues) from the derived pointer pairs. This
250 /// is not required for correctness. It's purpose is to reduce the size of
251 /// StackMap section. It has no effect on the number of spill slots required
252 /// or the actual lowering.
removeDuplicatesGCPtrs(SmallVectorImpl<const Value * > & Bases,SmallVectorImpl<const Value * > & Ptrs,SmallVectorImpl<const Value * > & Relocs,SelectionDAGBuilder & Builder)253 static void removeDuplicatesGCPtrs(SmallVectorImpl<const Value *> &Bases,
254 SmallVectorImpl<const Value *> &Ptrs,
255 SmallVectorImpl<const Value *> &Relocs,
256 SelectionDAGBuilder &Builder) {
257
258 // This is horribly inefficient, but I don't care right now
259 SmallSet<SDValue, 64> Seen;
260
261 SmallVector<const Value *, 64> NewBases, NewPtrs, NewRelocs;
262 for (size_t i = 0; i < Ptrs.size(); i++) {
263 SDValue SD = Builder.getValue(Ptrs[i]);
264 // Only add non-duplicates
265 if (Seen.count(SD) == 0) {
266 NewBases.push_back(Bases[i]);
267 NewPtrs.push_back(Ptrs[i]);
268 NewRelocs.push_back(Relocs[i]);
269 }
270 Seen.insert(SD);
271 }
272 assert(Bases.size() >= NewBases.size());
273 assert(Ptrs.size() >= NewPtrs.size());
274 assert(Relocs.size() >= NewRelocs.size());
275 Bases = NewBases;
276 Ptrs = NewPtrs;
277 Relocs = NewRelocs;
278 assert(Ptrs.size() == Bases.size());
279 assert(Ptrs.size() == Relocs.size());
280 }
281
282 /// Extract call from statepoint, lower it and return pointer to the
283 /// call node. Also update NodeMap so that getValue(statepoint) will
284 /// reference lowered call result
285 static SDNode *
lowerCallFromStatepoint(ImmutableStatepoint ISP,const BasicBlock * EHPadBB,SelectionDAGBuilder & Builder,SmallVectorImpl<SDValue> & PendingExports)286 lowerCallFromStatepoint(ImmutableStatepoint ISP, const BasicBlock *EHPadBB,
287 SelectionDAGBuilder &Builder,
288 SmallVectorImpl<SDValue> &PendingExports) {
289
290 ImmutableCallSite CS(ISP.getCallSite());
291
292 SDValue ActualCallee;
293
294 if (ISP.getNumPatchBytes() > 0) {
295 // If we've been asked to emit a nop sequence instead of a call instruction
296 // for this statepoint then don't lower the call target, but use a constant
297 // `null` instead. Not lowering the call target lets statepoint clients get
298 // away without providing a physical address for the symbolic call target at
299 // link time.
300
301 const auto &TLI = Builder.DAG.getTargetLoweringInfo();
302 const auto &DL = Builder.DAG.getDataLayout();
303
304 unsigned AS = ISP.getCalledValue()->getType()->getPointerAddressSpace();
305 ActualCallee = Builder.DAG.getConstant(0, Builder.getCurSDLoc(),
306 TLI.getPointerTy(DL, AS));
307 } else
308 ActualCallee = Builder.getValue(ISP.getCalledValue());
309
310 assert(CS.getCallingConv() != CallingConv::AnyReg &&
311 "anyregcc is not supported on statepoints!");
312
313 Type *DefTy = ISP.getActualReturnType();
314 bool HasDef = !DefTy->isVoidTy();
315
316 SDValue ReturnValue, CallEndVal;
317 std::tie(ReturnValue, CallEndVal) = Builder.lowerCallOperands(
318 ISP.getCallSite(), ImmutableStatepoint::CallArgsBeginPos,
319 ISP.getNumCallArgs(), ActualCallee, DefTy, EHPadBB,
320 false /* IsPatchPoint */);
321
322 SDNode *CallEnd = CallEndVal.getNode();
323
324 // Get a call instruction from the call sequence chain. Tail calls are not
325 // allowed. The following code is essentially reverse engineering X86's
326 // LowerCallTo.
327 //
328 // We are expecting DAG to have the following form:
329 //
330 // ch = eh_label (only in case of invoke statepoint)
331 // ch, glue = callseq_start ch
332 // ch, glue = X86::Call ch, glue
333 // ch, glue = callseq_end ch, glue
334 // get_return_value ch, glue
335 //
336 // get_return_value can either be a sequence of CopyFromReg instructions
337 // to grab the return value from the return register(s), or it can be a LOAD
338 // to load a value returned by reference via a stack slot.
339
340 if (HasDef) {
341 if (CallEnd->getOpcode() == ISD::LOAD)
342 CallEnd = CallEnd->getOperand(0).getNode();
343 else
344 while (CallEnd->getOpcode() == ISD::CopyFromReg)
345 CallEnd = CallEnd->getOperand(0).getNode();
346 }
347
348 assert(CallEnd->getOpcode() == ISD::CALLSEQ_END && "expected!");
349
350 // Export the result value if needed
351 const Instruction *GCResult = ISP.getGCResult();
352 if (HasDef && GCResult) {
353 if (GCResult->getParent() != CS.getParent()) {
354 // Result value will be used in a different basic block so we need to
355 // export it now.
356 // Default exporting mechanism will not work here because statepoint call
357 // has a different type than the actual call. It means that by default
358 // llvm will create export register of the wrong type (always i32 in our
359 // case). So instead we need to create export register with correct type
360 // manually.
361 // TODO: To eliminate this problem we can remove gc.result intrinsics
362 // completely and make statepoint call to return a tuple.
363 unsigned Reg = Builder.FuncInfo.CreateRegs(ISP.getActualReturnType());
364 RegsForValue RFV(
365 *Builder.DAG.getContext(), Builder.DAG.getTargetLoweringInfo(),
366 Builder.DAG.getDataLayout(), Reg, ISP.getActualReturnType());
367 SDValue Chain = Builder.DAG.getEntryNode();
368
369 RFV.getCopyToRegs(ReturnValue, Builder.DAG, Builder.getCurSDLoc(), Chain,
370 nullptr);
371 PendingExports.push_back(Chain);
372 Builder.FuncInfo.ValueMap[CS.getInstruction()] = Reg;
373 } else {
374 // Result value will be used in a same basic block. Don't export it or
375 // perform any explicit register copies.
376 // We'll replace the actuall call node shortly. gc_result will grab
377 // this value.
378 Builder.setValue(CS.getInstruction(), ReturnValue);
379 }
380 } else {
381 // The token value is never used from here on, just generate a poison value
382 Builder.setValue(CS.getInstruction(),
383 Builder.DAG.getIntPtrConstant(-1, Builder.getCurSDLoc()));
384 }
385
386 return CallEnd->getOperand(0).getNode();
387 }
388
389 /// Callect all gc pointers coming into statepoint intrinsic, clean them up,
390 /// and return two arrays:
391 /// Bases - base pointers incoming to this statepoint
392 /// Ptrs - derived pointers incoming to this statepoint
393 /// Relocs - the gc_relocate corresponding to each base/ptr pair
394 /// Elements of this arrays should be in one-to-one correspondence with each
395 /// other i.e Bases[i], Ptrs[i] are from the same gcrelocate call
getIncomingStatepointGCValues(SmallVectorImpl<const Value * > & Bases,SmallVectorImpl<const Value * > & Ptrs,SmallVectorImpl<const Value * > & Relocs,ImmutableStatepoint StatepointSite,SelectionDAGBuilder & Builder)396 static void getIncomingStatepointGCValues(
397 SmallVectorImpl<const Value *> &Bases, SmallVectorImpl<const Value *> &Ptrs,
398 SmallVectorImpl<const Value *> &Relocs, ImmutableStatepoint StatepointSite,
399 SelectionDAGBuilder &Builder) {
400 for (GCRelocateOperands relocateOpers : StatepointSite.getRelocates()) {
401 Relocs.push_back(relocateOpers.getUnderlyingCallSite().getInstruction());
402 Bases.push_back(relocateOpers.getBasePtr());
403 Ptrs.push_back(relocateOpers.getDerivedPtr());
404 }
405
406 // Remove any redundant llvm::Values which map to the same SDValue as another
407 // input. Also has the effect of removing duplicates in the original
408 // llvm::Value input list as well. This is a useful optimization for
409 // reducing the size of the StackMap section. It has no other impact.
410 removeDuplicatesGCPtrs(Bases, Ptrs, Relocs, Builder);
411
412 assert(Bases.size() == Ptrs.size() && Ptrs.size() == Relocs.size());
413 }
414
415 /// Spill a value incoming to the statepoint. It might be either part of
416 /// vmstate
417 /// or gcstate. In both cases unconditionally spill it on the stack unless it
418 /// is a null constant. Return pair with first element being frame index
419 /// containing saved value and second element with outgoing chain from the
420 /// emitted store
421 static std::pair<SDValue, SDValue>
spillIncomingStatepointValue(SDValue Incoming,SDValue Chain,SelectionDAGBuilder & Builder)422 spillIncomingStatepointValue(SDValue Incoming, SDValue Chain,
423 SelectionDAGBuilder &Builder) {
424 SDValue Loc = Builder.StatepointLowering.getLocation(Incoming);
425
426 // Emit new store if we didn't do it for this ptr before
427 if (!Loc.getNode()) {
428 Loc = Builder.StatepointLowering.allocateStackSlot(Incoming.getValueType(),
429 Builder);
430 assert(isa<FrameIndexSDNode>(Loc));
431 int Index = cast<FrameIndexSDNode>(Loc)->getIndex();
432 // We use TargetFrameIndex so that isel will not select it into LEA
433 Loc = Builder.DAG.getTargetFrameIndex(Index, Incoming.getValueType());
434
435 // TODO: We can create TokenFactor node instead of
436 // chaining stores one after another, this may allow
437 // a bit more optimal scheduling for them
438 Chain = Builder.DAG.getStore(Chain, Builder.getCurSDLoc(), Incoming, Loc,
439 MachinePointerInfo::getFixedStack(
440 Builder.DAG.getMachineFunction(), Index),
441 false, false, 0);
442
443 Builder.StatepointLowering.setLocation(Incoming, Loc);
444 }
445
446 assert(Loc.getNode());
447 return std::make_pair(Loc, Chain);
448 }
449
450 /// Lower a single value incoming to a statepoint node. This value can be
451 /// either a deopt value or a gc value, the handling is the same. We special
452 /// case constants and allocas, then fall back to spilling if required.
lowerIncomingStatepointValue(SDValue Incoming,SmallVectorImpl<SDValue> & Ops,SelectionDAGBuilder & Builder)453 static void lowerIncomingStatepointValue(SDValue Incoming,
454 SmallVectorImpl<SDValue> &Ops,
455 SelectionDAGBuilder &Builder) {
456 SDValue Chain = Builder.getRoot();
457
458 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Incoming)) {
459 // If the original value was a constant, make sure it gets recorded as
460 // such in the stackmap. This is required so that the consumer can
461 // parse any internal format to the deopt state. It also handles null
462 // pointers and other constant pointers in GC states
463 pushStackMapConstant(Ops, Builder, C->getSExtValue());
464 } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Incoming)) {
465 // This handles allocas as arguments to the statepoint (this is only
466 // really meaningful for a deopt value. For GC, we'd be trying to
467 // relocate the address of the alloca itself?)
468 Ops.push_back(Builder.DAG.getTargetFrameIndex(FI->getIndex(),
469 Incoming.getValueType()));
470 } else {
471 // Otherwise, locate a spill slot and explicitly spill it so it
472 // can be found by the runtime later. We currently do not support
473 // tracking values through callee saved registers to their eventual
474 // spill location. This would be a useful optimization, but would
475 // need to be optional since it requires a lot of complexity on the
476 // runtime side which not all would support.
477 std::pair<SDValue, SDValue> Res =
478 spillIncomingStatepointValue(Incoming, Chain, Builder);
479 Ops.push_back(Res.first);
480 Chain = Res.second;
481 }
482
483 Builder.DAG.setRoot(Chain);
484 }
485
486 /// Lower deopt state and gc pointer arguments of the statepoint. The actual
487 /// lowering is described in lowerIncomingStatepointValue. This function is
488 /// responsible for lowering everything in the right position and playing some
489 /// tricks to avoid redundant stack manipulation where possible. On
490 /// completion, 'Ops' will contain ready to use operands for machine code
491 /// statepoint. The chain nodes will have already been created and the DAG root
492 /// will be set to the last value spilled (if any were).
lowerStatepointMetaArgs(SmallVectorImpl<SDValue> & Ops,ImmutableStatepoint StatepointSite,SelectionDAGBuilder & Builder)493 static void lowerStatepointMetaArgs(SmallVectorImpl<SDValue> &Ops,
494 ImmutableStatepoint StatepointSite,
495 SelectionDAGBuilder &Builder) {
496
497 // Lower the deopt and gc arguments for this statepoint. Layout will
498 // be: deopt argument length, deopt arguments.., gc arguments...
499
500 SmallVector<const Value *, 64> Bases, Ptrs, Relocations;
501 getIncomingStatepointGCValues(Bases, Ptrs, Relocations, StatepointSite,
502 Builder);
503
504 #ifndef NDEBUG
505 // Check that each of the gc pointer and bases we've gotten out of the
506 // safepoint is something the strategy thinks might be a pointer into the GC
507 // heap. This is basically just here to help catch errors during statepoint
508 // insertion. TODO: This should actually be in the Verifier, but we can't get
509 // to the GCStrategy from there (yet).
510 GCStrategy &S = Builder.GFI->getStrategy();
511 for (const Value *V : Bases) {
512 auto Opt = S.isGCManagedPointer(V);
513 if (Opt.hasValue()) {
514 assert(Opt.getValue() &&
515 "non gc managed base pointer found in statepoint");
516 }
517 }
518 for (const Value *V : Ptrs) {
519 auto Opt = S.isGCManagedPointer(V);
520 if (Opt.hasValue()) {
521 assert(Opt.getValue() &&
522 "non gc managed derived pointer found in statepoint");
523 }
524 }
525 for (const Value *V : Relocations) {
526 auto Opt = S.isGCManagedPointer(V);
527 if (Opt.hasValue()) {
528 assert(Opt.getValue() && "non gc managed pointer relocated");
529 }
530 }
531 #endif
532
533 // Before we actually start lowering (and allocating spill slots for values),
534 // reserve any stack slots which we judge to be profitable to reuse for a
535 // particular value. This is purely an optimization over the code below and
536 // doesn't change semantics at all. It is important for performance that we
537 // reserve slots for both deopt and gc values before lowering either.
538 for (const Value *V : StatepointSite.vm_state_args()) {
539 reservePreviousStackSlotForValue(V, Builder);
540 }
541 for (unsigned i = 0; i < Bases.size(); ++i) {
542 reservePreviousStackSlotForValue(Bases[i], Builder);
543 reservePreviousStackSlotForValue(Ptrs[i], Builder);
544 }
545
546 // First, prefix the list with the number of unique values to be
547 // lowered. Note that this is the number of *Values* not the
548 // number of SDValues required to lower them.
549 const int NumVMSArgs = StatepointSite.getNumTotalVMSArgs();
550 pushStackMapConstant(Ops, Builder, NumVMSArgs);
551
552 assert(NumVMSArgs == std::distance(StatepointSite.vm_state_begin(),
553 StatepointSite.vm_state_end()));
554
555 // The vm state arguments are lowered in an opaque manner. We do
556 // not know what type of values are contained within. We skip the
557 // first one since that happens to be the total number we lowered
558 // explicitly just above. We could have left it in the loop and
559 // not done it explicitly, but it's far easier to understand this
560 // way.
561 for (const Value *V : StatepointSite.vm_state_args()) {
562 SDValue Incoming = Builder.getValue(V);
563 lowerIncomingStatepointValue(Incoming, Ops, Builder);
564 }
565
566 // Finally, go ahead and lower all the gc arguments. There's no prefixed
567 // length for this one. After lowering, we'll have the base and pointer
568 // arrays interwoven with each (lowered) base pointer immediately followed by
569 // it's (lowered) derived pointer. i.e
570 // (base[0], ptr[0], base[1], ptr[1], ...)
571 for (unsigned i = 0; i < Bases.size(); ++i) {
572 const Value *Base = Bases[i];
573 lowerIncomingStatepointValue(Builder.getValue(Base), Ops, Builder);
574
575 const Value *Ptr = Ptrs[i];
576 lowerIncomingStatepointValue(Builder.getValue(Ptr), Ops, Builder);
577 }
578
579 // If there are any explicit spill slots passed to the statepoint, record
580 // them, but otherwise do not do anything special. These are user provided
581 // allocas and give control over placement to the consumer. In this case,
582 // it is the contents of the slot which may get updated, not the pointer to
583 // the alloca
584 for (Value *V : StatepointSite.gc_args()) {
585 SDValue Incoming = Builder.getValue(V);
586 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Incoming)) {
587 // This handles allocas as arguments to the statepoint
588 Ops.push_back(Builder.DAG.getTargetFrameIndex(FI->getIndex(),
589 Incoming.getValueType()));
590 }
591 }
592
593 // Record computed locations for all lowered values.
594 // This can not be embedded in lowering loops as we need to record *all*
595 // values, while previous loops account only values with unique SDValues.
596 const Instruction *StatepointInstr =
597 StatepointSite.getCallSite().getInstruction();
598 FunctionLoweringInfo::StatepointSpilledValueMapTy &SpillMap =
599 Builder.FuncInfo.StatepointRelocatedValues[StatepointInstr];
600
601 for (GCRelocateOperands RelocateOpers : StatepointSite.getRelocates()) {
602 const Value *V = RelocateOpers.getDerivedPtr();
603 SDValue SDV = Builder.getValue(V);
604 SDValue Loc = Builder.StatepointLowering.getLocation(SDV);
605
606 if (Loc.getNode()) {
607 SpillMap[V] = cast<FrameIndexSDNode>(Loc)->getIndex();
608 } else {
609 // Record value as visited, but not spilled. This is case for allocas
610 // and constants. For this values we can avoid emitting spill load while
611 // visiting corresponding gc_relocate.
612 // Actually we do not need to record them in this map at all.
613 // We do this only to check that we are not relocating any unvisited
614 // value.
615 SpillMap[V] = None;
616
617 // Default llvm mechanisms for exporting values which are used in
618 // different basic blocks does not work for gc relocates.
619 // Note that it would be incorrect to teach llvm that all relocates are
620 // uses of the corresponding values so that it would automatically
621 // export them. Relocates of the spilled values does not use original
622 // value.
623 if (RelocateOpers.getUnderlyingCallSite().getParent() !=
624 StatepointInstr->getParent())
625 Builder.ExportFromCurrentBlock(V);
626 }
627 }
628 }
629
visitStatepoint(const CallInst & CI)630 void SelectionDAGBuilder::visitStatepoint(const CallInst &CI) {
631 // Check some preconditions for sanity
632 assert(isStatepoint(&CI) &&
633 "function called must be the statepoint function");
634
635 LowerStatepoint(ImmutableStatepoint(&CI));
636 }
637
LowerStatepoint(ImmutableStatepoint ISP,const BasicBlock * EHPadBB)638 void SelectionDAGBuilder::LowerStatepoint(
639 ImmutableStatepoint ISP, const BasicBlock *EHPadBB /*= nullptr*/) {
640 // The basic scheme here is that information about both the original call and
641 // the safepoint is encoded in the CallInst. We create a temporary call and
642 // lower it, then reverse engineer the calling sequence.
643
644 NumOfStatepoints++;
645 // Clear state
646 StatepointLowering.startNewStatepoint(*this);
647
648 ImmutableCallSite CS(ISP.getCallSite());
649
650 #ifndef NDEBUG
651 // Consistency check. Check only relocates in the same basic block as thier
652 // statepoint.
653 for (const User *U : CS->users()) {
654 const CallInst *Call = cast<CallInst>(U);
655 if (isGCRelocate(Call) && Call->getParent() == CS.getParent())
656 StatepointLowering.scheduleRelocCall(*Call);
657 }
658 #endif
659
660 #ifndef NDEBUG
661 // If this is a malformed statepoint, report it early to simplify debugging.
662 // This should catch any IR level mistake that's made when constructing or
663 // transforming statepoints.
664 ISP.verify();
665
666 // Check that the associated GCStrategy expects to encounter statepoints.
667 assert(GFI->getStrategy().useStatepoints() &&
668 "GCStrategy does not expect to encounter statepoints");
669 #endif
670
671 // Lower statepoint vmstate and gcstate arguments
672 SmallVector<SDValue, 10> LoweredMetaArgs;
673 lowerStatepointMetaArgs(LoweredMetaArgs, ISP, *this);
674
675 // Get call node, we will replace it later with statepoint
676 SDNode *CallNode =
677 lowerCallFromStatepoint(ISP, EHPadBB, *this, PendingExports);
678
679 // Construct the actual GC_TRANSITION_START, STATEPOINT, and GC_TRANSITION_END
680 // nodes with all the appropriate arguments and return values.
681
682 // Call Node: Chain, Target, {Args}, RegMask, [Glue]
683 SDValue Chain = CallNode->getOperand(0);
684
685 SDValue Glue;
686 bool CallHasIncomingGlue = CallNode->getGluedNode();
687 if (CallHasIncomingGlue) {
688 // Glue is always last operand
689 Glue = CallNode->getOperand(CallNode->getNumOperands() - 1);
690 }
691
692 // Build the GC_TRANSITION_START node if necessary.
693 //
694 // The operands to the GC_TRANSITION_{START,END} nodes are laid out in the
695 // order in which they appear in the call to the statepoint intrinsic. If
696 // any of the operands is a pointer-typed, that operand is immediately
697 // followed by a SRCVALUE for the pointer that may be used during lowering
698 // (e.g. to form MachinePointerInfo values for loads/stores).
699 const bool IsGCTransition =
700 (ISP.getFlags() & (uint64_t)StatepointFlags::GCTransition) ==
701 (uint64_t)StatepointFlags::GCTransition;
702 if (IsGCTransition) {
703 SmallVector<SDValue, 8> TSOps;
704
705 // Add chain
706 TSOps.push_back(Chain);
707
708 // Add GC transition arguments
709 for (const Value *V : ISP.gc_transition_args()) {
710 TSOps.push_back(getValue(V));
711 if (V->getType()->isPointerTy())
712 TSOps.push_back(DAG.getSrcValue(V));
713 }
714
715 // Add glue if necessary
716 if (CallHasIncomingGlue)
717 TSOps.push_back(Glue);
718
719 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
720
721 SDValue GCTransitionStart =
722 DAG.getNode(ISD::GC_TRANSITION_START, getCurSDLoc(), NodeTys, TSOps);
723
724 Chain = GCTransitionStart.getValue(0);
725 Glue = GCTransitionStart.getValue(1);
726 }
727
728 // TODO: Currently, all of these operands are being marked as read/write in
729 // PrologEpilougeInserter.cpp, we should special case the VMState arguments
730 // and flags to be read-only.
731 SmallVector<SDValue, 40> Ops;
732
733 // Add the <id> and <numBytes> constants.
734 Ops.push_back(DAG.getTargetConstant(ISP.getID(), getCurSDLoc(), MVT::i64));
735 Ops.push_back(
736 DAG.getTargetConstant(ISP.getNumPatchBytes(), getCurSDLoc(), MVT::i32));
737
738 // Calculate and push starting position of vmstate arguments
739 // Get number of arguments incoming directly into call node
740 unsigned NumCallRegArgs =
741 CallNode->getNumOperands() - (CallHasIncomingGlue ? 4 : 3);
742 Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, getCurSDLoc(), MVT::i32));
743
744 // Add call target
745 SDValue CallTarget = SDValue(CallNode->getOperand(1).getNode(), 0);
746 Ops.push_back(CallTarget);
747
748 // Add call arguments
749 // Get position of register mask in the call
750 SDNode::op_iterator RegMaskIt;
751 if (CallHasIncomingGlue)
752 RegMaskIt = CallNode->op_end() - 2;
753 else
754 RegMaskIt = CallNode->op_end() - 1;
755 Ops.insert(Ops.end(), CallNode->op_begin() + 2, RegMaskIt);
756
757 // Add a constant argument for the calling convention
758 pushStackMapConstant(Ops, *this, CS.getCallingConv());
759
760 // Add a constant argument for the flags
761 uint64_t Flags = ISP.getFlags();
762 assert(
763 ((Flags & ~(uint64_t)StatepointFlags::MaskAll) == 0)
764 && "unknown flag used");
765 pushStackMapConstant(Ops, *this, Flags);
766
767 // Insert all vmstate and gcstate arguments
768 Ops.insert(Ops.end(), LoweredMetaArgs.begin(), LoweredMetaArgs.end());
769
770 // Add register mask from call node
771 Ops.push_back(*RegMaskIt);
772
773 // Add chain
774 Ops.push_back(Chain);
775
776 // Same for the glue, but we add it only if original call had it
777 if (Glue.getNode())
778 Ops.push_back(Glue);
779
780 // Compute return values. Provide a glue output since we consume one as
781 // input. This allows someone else to chain off us as needed.
782 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
783
784 SDNode *StatepointMCNode =
785 DAG.getMachineNode(TargetOpcode::STATEPOINT, getCurSDLoc(), NodeTys, Ops);
786
787 SDNode *SinkNode = StatepointMCNode;
788
789 // Build the GC_TRANSITION_END node if necessary.
790 //
791 // See the comment above regarding GC_TRANSITION_START for the layout of
792 // the operands to the GC_TRANSITION_END node.
793 if (IsGCTransition) {
794 SmallVector<SDValue, 8> TEOps;
795
796 // Add chain
797 TEOps.push_back(SDValue(StatepointMCNode, 0));
798
799 // Add GC transition arguments
800 for (const Value *V : ISP.gc_transition_args()) {
801 TEOps.push_back(getValue(V));
802 if (V->getType()->isPointerTy())
803 TEOps.push_back(DAG.getSrcValue(V));
804 }
805
806 // Add glue
807 TEOps.push_back(SDValue(StatepointMCNode, 1));
808
809 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
810
811 SDValue GCTransitionStart =
812 DAG.getNode(ISD::GC_TRANSITION_END, getCurSDLoc(), NodeTys, TEOps);
813
814 SinkNode = GCTransitionStart.getNode();
815 }
816
817 // Replace original call
818 DAG.ReplaceAllUsesWith(CallNode, SinkNode); // This may update Root
819 // Remove original call node
820 DAG.DeleteNode(CallNode);
821
822 // DON'T set the root - under the assumption that it's already set past the
823 // inserted node we created.
824
825 // TODO: A better future implementation would be to emit a single variable
826 // argument, variable return value STATEPOINT node here and then hookup the
827 // return value of each gc.relocate to the respective output of the
828 // previously emitted STATEPOINT value. Unfortunately, this doesn't appear
829 // to actually be possible today.
830 }
831
visitGCResult(const CallInst & CI)832 void SelectionDAGBuilder::visitGCResult(const CallInst &CI) {
833 // The result value of the gc_result is simply the result of the actual
834 // call. We've already emitted this, so just grab the value.
835 Instruction *I = cast<Instruction>(CI.getArgOperand(0));
836 assert(isStatepoint(I) && "first argument must be a statepoint token");
837
838 if (I->getParent() != CI.getParent()) {
839 // Statepoint is in different basic block so we should have stored call
840 // result in a virtual register.
841 // We can not use default getValue() functionality to copy value from this
842 // register because statepoint and actuall call return types can be
843 // different, and getValue() will use CopyFromReg of the wrong type,
844 // which is always i32 in our case.
845 PointerType *CalleeType = cast<PointerType>(
846 ImmutableStatepoint(I).getCalledValue()->getType());
847 Type *RetTy =
848 cast<FunctionType>(CalleeType->getElementType())->getReturnType();
849 SDValue CopyFromReg = getCopyFromRegs(I, RetTy);
850
851 assert(CopyFromReg.getNode());
852 setValue(&CI, CopyFromReg);
853 } else {
854 setValue(&CI, getValue(I));
855 }
856 }
857
visitGCRelocate(const CallInst & CI)858 void SelectionDAGBuilder::visitGCRelocate(const CallInst &CI) {
859 GCRelocateOperands RelocateOpers(&CI);
860
861 #ifndef NDEBUG
862 // Consistency check
863 // We skip this check for relocates not in the same basic block as thier
864 // statepoint. It would be too expensive to preserve validation info through
865 // different basic blocks.
866 if (RelocateOpers.getStatepoint()->getParent() == CI.getParent()) {
867 StatepointLowering.relocCallVisited(CI);
868 }
869 #endif
870
871 const Value *DerivedPtr = RelocateOpers.getDerivedPtr();
872 SDValue SD = getValue(DerivedPtr);
873
874 FunctionLoweringInfo::StatepointSpilledValueMapTy &SpillMap =
875 FuncInfo.StatepointRelocatedValues[RelocateOpers.getStatepoint()];
876
877 // We should have recorded location for this pointer
878 assert(SpillMap.count(DerivedPtr) && "Relocating not lowered gc value");
879 Optional<int> DerivedPtrLocation = SpillMap[DerivedPtr];
880
881 // We didn't need to spill these special cases (constants and allocas).
882 // See the handling in spillIncomingValueForStatepoint for detail.
883 if (!DerivedPtrLocation) {
884 setValue(&CI, SD);
885 return;
886 }
887
888 SDValue SpillSlot = DAG.getTargetFrameIndex(*DerivedPtrLocation,
889 SD.getValueType());
890
891 // Be conservative: flush all pending loads
892 // TODO: Probably we can be less restrictive on this,
893 // it may allow more scheduling opportunities.
894 SDValue Chain = getRoot();
895
896 SDValue SpillLoad =
897 DAG.getLoad(SpillSlot.getValueType(), getCurSDLoc(), Chain, SpillSlot,
898 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(),
899 *DerivedPtrLocation),
900 false, false, false, 0);
901
902 // Again, be conservative, don't emit pending loads
903 DAG.setRoot(SpillLoad.getValue(1));
904
905 assert(SpillLoad.getNode());
906 setValue(&CI, SpillLoad);
907 }
908