1 //===-- XCoreISelLowering.cpp - XCore DAG Lowering Implementation ---------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the XCoreTargetLowering class.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "XCoreISelLowering.h"
15 #include "XCore.h"
16 #include "XCoreMachineFunctionInfo.h"
17 #include "XCoreSubtarget.h"
18 #include "XCoreTargetMachine.h"
19 #include "XCoreTargetObjectFile.h"
20 #include "llvm/CodeGen/CallingConvLower.h"
21 #include "llvm/CodeGen/MachineFrameInfo.h"
22 #include "llvm/CodeGen/MachineFunction.h"
23 #include "llvm/CodeGen/MachineInstrBuilder.h"
24 #include "llvm/CodeGen/MachineJumpTableInfo.h"
25 #include "llvm/CodeGen/MachineRegisterInfo.h"
26 #include "llvm/CodeGen/SelectionDAGISel.h"
27 #include "llvm/CodeGen/ValueTypes.h"
28 #include "llvm/IR/CallingConv.h"
29 #include "llvm/IR/Constants.h"
30 #include "llvm/IR/DerivedTypes.h"
31 #include "llvm/IR/Function.h"
32 #include "llvm/IR/GlobalAlias.h"
33 #include "llvm/IR/GlobalVariable.h"
34 #include "llvm/IR/Intrinsics.h"
35 #include "llvm/Support/Debug.h"
36 #include "llvm/Support/ErrorHandling.h"
37 #include "llvm/Support/raw_ostream.h"
38 #include <algorithm>
39
40 using namespace llvm;
41
42 #define DEBUG_TYPE "xcore-lower"
43
44 const char *XCoreTargetLowering::
getTargetNodeName(unsigned Opcode) const45 getTargetNodeName(unsigned Opcode) const
46 {
47 switch ((XCoreISD::NodeType)Opcode)
48 {
49 case XCoreISD::FIRST_NUMBER : break;
50 case XCoreISD::BL : return "XCoreISD::BL";
51 case XCoreISD::PCRelativeWrapper : return "XCoreISD::PCRelativeWrapper";
52 case XCoreISD::DPRelativeWrapper : return "XCoreISD::DPRelativeWrapper";
53 case XCoreISD::CPRelativeWrapper : return "XCoreISD::CPRelativeWrapper";
54 case XCoreISD::LDWSP : return "XCoreISD::LDWSP";
55 case XCoreISD::STWSP : return "XCoreISD::STWSP";
56 case XCoreISD::RETSP : return "XCoreISD::RETSP";
57 case XCoreISD::LADD : return "XCoreISD::LADD";
58 case XCoreISD::LSUB : return "XCoreISD::LSUB";
59 case XCoreISD::LMUL : return "XCoreISD::LMUL";
60 case XCoreISD::MACCU : return "XCoreISD::MACCU";
61 case XCoreISD::MACCS : return "XCoreISD::MACCS";
62 case XCoreISD::CRC8 : return "XCoreISD::CRC8";
63 case XCoreISD::BR_JT : return "XCoreISD::BR_JT";
64 case XCoreISD::BR_JT32 : return "XCoreISD::BR_JT32";
65 case XCoreISD::FRAME_TO_ARGS_OFFSET : return "XCoreISD::FRAME_TO_ARGS_OFFSET";
66 case XCoreISD::EH_RETURN : return "XCoreISD::EH_RETURN";
67 case XCoreISD::MEMBARRIER : return "XCoreISD::MEMBARRIER";
68 }
69 return nullptr;
70 }
71
XCoreTargetLowering(const TargetMachine & TM,const XCoreSubtarget & Subtarget)72 XCoreTargetLowering::XCoreTargetLowering(const TargetMachine &TM,
73 const XCoreSubtarget &Subtarget)
74 : TargetLowering(TM), TM(TM), Subtarget(Subtarget) {
75
76 // Set up the register classes.
77 addRegisterClass(MVT::i32, &XCore::GRRegsRegClass);
78
79 // Compute derived properties from the register classes
80 computeRegisterProperties(Subtarget.getRegisterInfo());
81
82 setStackPointerRegisterToSaveRestore(XCore::SP);
83
84 setSchedulingPreference(Sched::Source);
85
86 // Use i32 for setcc operations results (slt, sgt, ...).
87 setBooleanContents(ZeroOrOneBooleanContent);
88 setBooleanVectorContents(ZeroOrOneBooleanContent); // FIXME: Is this correct?
89
90 // XCore does not have the NodeTypes below.
91 setOperationAction(ISD::BR_CC, MVT::i32, Expand);
92 setOperationAction(ISD::SELECT_CC, MVT::i32, Expand);
93 setOperationAction(ISD::ADDC, MVT::i32, Expand);
94 setOperationAction(ISD::ADDE, MVT::i32, Expand);
95 setOperationAction(ISD::SUBC, MVT::i32, Expand);
96 setOperationAction(ISD::SUBE, MVT::i32, Expand);
97
98 // 64bit
99 setOperationAction(ISD::ADD, MVT::i64, Custom);
100 setOperationAction(ISD::SUB, MVT::i64, Custom);
101 setOperationAction(ISD::SMUL_LOHI, MVT::i32, Custom);
102 setOperationAction(ISD::UMUL_LOHI, MVT::i32, Custom);
103 setOperationAction(ISD::MULHS, MVT::i32, Expand);
104 setOperationAction(ISD::MULHU, MVT::i32, Expand);
105 setOperationAction(ISD::SHL_PARTS, MVT::i32, Expand);
106 setOperationAction(ISD::SRA_PARTS, MVT::i32, Expand);
107 setOperationAction(ISD::SRL_PARTS, MVT::i32, Expand);
108
109 // Bit Manipulation
110 setOperationAction(ISD::CTPOP, MVT::i32, Expand);
111 setOperationAction(ISD::ROTL , MVT::i32, Expand);
112 setOperationAction(ISD::ROTR , MVT::i32, Expand);
113 setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32, Expand);
114 setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Expand);
115
116 setOperationAction(ISD::TRAP, MVT::Other, Legal);
117
118 // Jump tables.
119 setOperationAction(ISD::BR_JT, MVT::Other, Custom);
120
121 setOperationAction(ISD::GlobalAddress, MVT::i32, Custom);
122 setOperationAction(ISD::BlockAddress, MVT::i32 , Custom);
123
124 // Conversion of i64 -> double produces constantpool nodes
125 setOperationAction(ISD::ConstantPool, MVT::i32, Custom);
126
127 // Loads
128 for (MVT VT : MVT::integer_valuetypes()) {
129 setLoadExtAction(ISD::EXTLOAD, VT, MVT::i1, Promote);
130 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote);
131 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
132
133 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i8, Expand);
134 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i16, Expand);
135 }
136
137 // Custom expand misaligned loads / stores.
138 setOperationAction(ISD::LOAD, MVT::i32, Custom);
139 setOperationAction(ISD::STORE, MVT::i32, Custom);
140
141 // Varargs
142 setOperationAction(ISD::VAEND, MVT::Other, Expand);
143 setOperationAction(ISD::VACOPY, MVT::Other, Expand);
144 setOperationAction(ISD::VAARG, MVT::Other, Custom);
145 setOperationAction(ISD::VASTART, MVT::Other, Custom);
146
147 // Dynamic stack
148 setOperationAction(ISD::STACKSAVE, MVT::Other, Expand);
149 setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand);
150 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Expand);
151
152 // Exception handling
153 setOperationAction(ISD::EH_RETURN, MVT::Other, Custom);
154 setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i32, Custom);
155
156 // Atomic operations
157 // We request a fence for ATOMIC_* instructions, to reduce them to Monotonic.
158 // As we are always Sequential Consistent, an ATOMIC_FENCE becomes a no OP.
159 setInsertFencesForAtomic(true);
160 setOperationAction(ISD::ATOMIC_FENCE, MVT::Other, Custom);
161 setOperationAction(ISD::ATOMIC_LOAD, MVT::i32, Custom);
162 setOperationAction(ISD::ATOMIC_STORE, MVT::i32, Custom);
163
164 // TRAMPOLINE is custom lowered.
165 setOperationAction(ISD::INIT_TRAMPOLINE, MVT::Other, Custom);
166 setOperationAction(ISD::ADJUST_TRAMPOLINE, MVT::Other, Custom);
167
168 // We want to custom lower some of our intrinsics.
169 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
170
171 MaxStoresPerMemset = MaxStoresPerMemsetOptSize = 4;
172 MaxStoresPerMemmove = MaxStoresPerMemmoveOptSize
173 = MaxStoresPerMemcpy = MaxStoresPerMemcpyOptSize = 2;
174
175 // We have target-specific dag combine patterns for the following nodes:
176 setTargetDAGCombine(ISD::STORE);
177 setTargetDAGCombine(ISD::ADD);
178 setTargetDAGCombine(ISD::INTRINSIC_VOID);
179 setTargetDAGCombine(ISD::INTRINSIC_W_CHAIN);
180
181 setMinFunctionAlignment(1);
182 setPrefFunctionAlignment(2);
183 }
184
isZExtFree(SDValue Val,EVT VT2) const185 bool XCoreTargetLowering::isZExtFree(SDValue Val, EVT VT2) const {
186 if (Val.getOpcode() != ISD::LOAD)
187 return false;
188
189 EVT VT1 = Val.getValueType();
190 if (!VT1.isSimple() || !VT1.isInteger() ||
191 !VT2.isSimple() || !VT2.isInteger())
192 return false;
193
194 switch (VT1.getSimpleVT().SimpleTy) {
195 default: break;
196 case MVT::i8:
197 return true;
198 }
199
200 return false;
201 }
202
203 SDValue XCoreTargetLowering::
LowerOperation(SDValue Op,SelectionDAG & DAG) const204 LowerOperation(SDValue Op, SelectionDAG &DAG) const {
205 switch (Op.getOpcode())
206 {
207 case ISD::EH_RETURN: return LowerEH_RETURN(Op, DAG);
208 case ISD::GlobalAddress: return LowerGlobalAddress(Op, DAG);
209 case ISD::BlockAddress: return LowerBlockAddress(Op, DAG);
210 case ISD::ConstantPool: return LowerConstantPool(Op, DAG);
211 case ISD::BR_JT: return LowerBR_JT(Op, DAG);
212 case ISD::LOAD: return LowerLOAD(Op, DAG);
213 case ISD::STORE: return LowerSTORE(Op, DAG);
214 case ISD::VAARG: return LowerVAARG(Op, DAG);
215 case ISD::VASTART: return LowerVASTART(Op, DAG);
216 case ISD::SMUL_LOHI: return LowerSMUL_LOHI(Op, DAG);
217 case ISD::UMUL_LOHI: return LowerUMUL_LOHI(Op, DAG);
218 // FIXME: Remove these when LegalizeDAGTypes lands.
219 case ISD::ADD:
220 case ISD::SUB: return ExpandADDSUB(Op.getNode(), DAG);
221 case ISD::FRAMEADDR: return LowerFRAMEADDR(Op, DAG);
222 case ISD::RETURNADDR: return LowerRETURNADDR(Op, DAG);
223 case ISD::FRAME_TO_ARGS_OFFSET: return LowerFRAME_TO_ARGS_OFFSET(Op, DAG);
224 case ISD::INIT_TRAMPOLINE: return LowerINIT_TRAMPOLINE(Op, DAG);
225 case ISD::ADJUST_TRAMPOLINE: return LowerADJUST_TRAMPOLINE(Op, DAG);
226 case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
227 case ISD::ATOMIC_FENCE: return LowerATOMIC_FENCE(Op, DAG);
228 case ISD::ATOMIC_LOAD: return LowerATOMIC_LOAD(Op, DAG);
229 case ISD::ATOMIC_STORE: return LowerATOMIC_STORE(Op, DAG);
230 default:
231 llvm_unreachable("unimplemented operand");
232 }
233 }
234
235 /// ReplaceNodeResults - Replace the results of node with an illegal result
236 /// type with new values built out of custom code.
ReplaceNodeResults(SDNode * N,SmallVectorImpl<SDValue> & Results,SelectionDAG & DAG) const237 void XCoreTargetLowering::ReplaceNodeResults(SDNode *N,
238 SmallVectorImpl<SDValue>&Results,
239 SelectionDAG &DAG) const {
240 switch (N->getOpcode()) {
241 default:
242 llvm_unreachable("Don't know how to custom expand this!");
243 case ISD::ADD:
244 case ISD::SUB:
245 Results.push_back(ExpandADDSUB(N, DAG));
246 return;
247 }
248 }
249
250 //===----------------------------------------------------------------------===//
251 // Misc Lower Operation implementation
252 //===----------------------------------------------------------------------===//
253
getGlobalAddressWrapper(SDValue GA,const GlobalValue * GV,SelectionDAG & DAG) const254 SDValue XCoreTargetLowering::getGlobalAddressWrapper(SDValue GA,
255 const GlobalValue *GV,
256 SelectionDAG &DAG) const {
257 // FIXME there is no actual debug info here
258 SDLoc dl(GA);
259
260 if (GV->getType()->getElementType()->isFunctionTy())
261 return DAG.getNode(XCoreISD::PCRelativeWrapper, dl, MVT::i32, GA);
262
263 const auto *GVar = dyn_cast<GlobalVariable>(GV);
264 if ((GV->hasSection() && StringRef(GV->getSection()).startswith(".cp.")) ||
265 (GVar && GVar->isConstant() && GV->hasLocalLinkage()))
266 return DAG.getNode(XCoreISD::CPRelativeWrapper, dl, MVT::i32, GA);
267
268 return DAG.getNode(XCoreISD::DPRelativeWrapper, dl, MVT::i32, GA);
269 }
270
IsSmallObject(const GlobalValue * GV,const XCoreTargetLowering & XTL)271 static bool IsSmallObject(const GlobalValue *GV, const XCoreTargetLowering &XTL) {
272 if (XTL.getTargetMachine().getCodeModel() == CodeModel::Small)
273 return true;
274
275 Type *ObjType = GV->getType()->getPointerElementType();
276 if (!ObjType->isSized())
277 return false;
278
279 auto &DL = GV->getParent()->getDataLayout();
280 unsigned ObjSize = DL.getTypeAllocSize(ObjType);
281 return ObjSize < CodeModelLargeSize && ObjSize != 0;
282 }
283
284 SDValue XCoreTargetLowering::
LowerGlobalAddress(SDValue Op,SelectionDAG & DAG) const285 LowerGlobalAddress(SDValue Op, SelectionDAG &DAG) const
286 {
287 const GlobalAddressSDNode *GN = cast<GlobalAddressSDNode>(Op);
288 const GlobalValue *GV = GN->getGlobal();
289 SDLoc DL(GN);
290 int64_t Offset = GN->getOffset();
291 if (IsSmallObject(GV, *this)) {
292 // We can only fold positive offsets that are a multiple of the word size.
293 int64_t FoldedOffset = std::max(Offset & ~3, (int64_t)0);
294 SDValue GA = DAG.getTargetGlobalAddress(GV, DL, MVT::i32, FoldedOffset);
295 GA = getGlobalAddressWrapper(GA, GV, DAG);
296 // Handle the rest of the offset.
297 if (Offset != FoldedOffset) {
298 SDValue Remaining = DAG.getConstant(Offset - FoldedOffset, DL, MVT::i32);
299 GA = DAG.getNode(ISD::ADD, DL, MVT::i32, GA, Remaining);
300 }
301 return GA;
302 } else {
303 // Ideally we would not fold in offset with an index <= 11.
304 Type *Ty = Type::getInt8PtrTy(*DAG.getContext());
305 Constant *GA = ConstantExpr::getBitCast(const_cast<GlobalValue*>(GV), Ty);
306 Ty = Type::getInt32Ty(*DAG.getContext());
307 Constant *Idx = ConstantInt::get(Ty, Offset);
308 Constant *GAI = ConstantExpr::getGetElementPtr(
309 Type::getInt8Ty(*DAG.getContext()), GA, Idx);
310 SDValue CP = DAG.getConstantPool(GAI, MVT::i32);
311 return DAG.getLoad(getPointerTy(DAG.getDataLayout()), DL,
312 DAG.getEntryNode(), CP, MachinePointerInfo(), false,
313 false, false, 0);
314 }
315 }
316
317 SDValue XCoreTargetLowering::
LowerBlockAddress(SDValue Op,SelectionDAG & DAG) const318 LowerBlockAddress(SDValue Op, SelectionDAG &DAG) const
319 {
320 SDLoc DL(Op);
321 auto PtrVT = getPointerTy(DAG.getDataLayout());
322 const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
323 SDValue Result = DAG.getTargetBlockAddress(BA, PtrVT);
324
325 return DAG.getNode(XCoreISD::PCRelativeWrapper, DL, PtrVT, Result);
326 }
327
328 SDValue XCoreTargetLowering::
LowerConstantPool(SDValue Op,SelectionDAG & DAG) const329 LowerConstantPool(SDValue Op, SelectionDAG &DAG) const
330 {
331 ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
332 // FIXME there isn't really debug info here
333 SDLoc dl(CP);
334 EVT PtrVT = Op.getValueType();
335 SDValue Res;
336 if (CP->isMachineConstantPoolEntry()) {
337 Res = DAG.getTargetConstantPool(CP->getMachineCPVal(), PtrVT,
338 CP->getAlignment(), CP->getOffset());
339 } else {
340 Res = DAG.getTargetConstantPool(CP->getConstVal(), PtrVT,
341 CP->getAlignment(), CP->getOffset());
342 }
343 return DAG.getNode(XCoreISD::CPRelativeWrapper, dl, MVT::i32, Res);
344 }
345
getJumpTableEncoding() const346 unsigned XCoreTargetLowering::getJumpTableEncoding() const {
347 return MachineJumpTableInfo::EK_Inline;
348 }
349
350 SDValue XCoreTargetLowering::
LowerBR_JT(SDValue Op,SelectionDAG & DAG) const351 LowerBR_JT(SDValue Op, SelectionDAG &DAG) const
352 {
353 SDValue Chain = Op.getOperand(0);
354 SDValue Table = Op.getOperand(1);
355 SDValue Index = Op.getOperand(2);
356 SDLoc dl(Op);
357 JumpTableSDNode *JT = cast<JumpTableSDNode>(Table);
358 unsigned JTI = JT->getIndex();
359 MachineFunction &MF = DAG.getMachineFunction();
360 const MachineJumpTableInfo *MJTI = MF.getJumpTableInfo();
361 SDValue TargetJT = DAG.getTargetJumpTable(JT->getIndex(), MVT::i32);
362
363 unsigned NumEntries = MJTI->getJumpTables()[JTI].MBBs.size();
364 if (NumEntries <= 32) {
365 return DAG.getNode(XCoreISD::BR_JT, dl, MVT::Other, Chain, TargetJT, Index);
366 }
367 assert((NumEntries >> 31) == 0);
368 SDValue ScaledIndex = DAG.getNode(ISD::SHL, dl, MVT::i32, Index,
369 DAG.getConstant(1, dl, MVT::i32));
370 return DAG.getNode(XCoreISD::BR_JT32, dl, MVT::Other, Chain, TargetJT,
371 ScaledIndex);
372 }
373
374 SDValue XCoreTargetLowering::
lowerLoadWordFromAlignedBasePlusOffset(SDLoc DL,SDValue Chain,SDValue Base,int64_t Offset,SelectionDAG & DAG) const375 lowerLoadWordFromAlignedBasePlusOffset(SDLoc DL, SDValue Chain, SDValue Base,
376 int64_t Offset, SelectionDAG &DAG) const
377 {
378 auto PtrVT = getPointerTy(DAG.getDataLayout());
379 if ((Offset & 0x3) == 0) {
380 return DAG.getLoad(PtrVT, DL, Chain, Base, MachinePointerInfo(), false,
381 false, false, 0);
382 }
383 // Lower to pair of consecutive word aligned loads plus some bit shifting.
384 int32_t HighOffset = RoundUpToAlignment(Offset, 4);
385 int32_t LowOffset = HighOffset - 4;
386 SDValue LowAddr, HighAddr;
387 if (GlobalAddressSDNode *GASD =
388 dyn_cast<GlobalAddressSDNode>(Base.getNode())) {
389 LowAddr = DAG.getGlobalAddress(GASD->getGlobal(), DL, Base.getValueType(),
390 LowOffset);
391 HighAddr = DAG.getGlobalAddress(GASD->getGlobal(), DL, Base.getValueType(),
392 HighOffset);
393 } else {
394 LowAddr = DAG.getNode(ISD::ADD, DL, MVT::i32, Base,
395 DAG.getConstant(LowOffset, DL, MVT::i32));
396 HighAddr = DAG.getNode(ISD::ADD, DL, MVT::i32, Base,
397 DAG.getConstant(HighOffset, DL, MVT::i32));
398 }
399 SDValue LowShift = DAG.getConstant((Offset - LowOffset) * 8, DL, MVT::i32);
400 SDValue HighShift = DAG.getConstant((HighOffset - Offset) * 8, DL, MVT::i32);
401
402 SDValue Low = DAG.getLoad(PtrVT, DL, Chain, LowAddr, MachinePointerInfo(),
403 false, false, false, 0);
404 SDValue High = DAG.getLoad(PtrVT, DL, Chain, HighAddr, MachinePointerInfo(),
405 false, false, false, 0);
406 SDValue LowShifted = DAG.getNode(ISD::SRL, DL, MVT::i32, Low, LowShift);
407 SDValue HighShifted = DAG.getNode(ISD::SHL, DL, MVT::i32, High, HighShift);
408 SDValue Result = DAG.getNode(ISD::OR, DL, MVT::i32, LowShifted, HighShifted);
409 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Low.getValue(1),
410 High.getValue(1));
411 SDValue Ops[] = { Result, Chain };
412 return DAG.getMergeValues(Ops, DL);
413 }
414
isWordAligned(SDValue Value,SelectionDAG & DAG)415 static bool isWordAligned(SDValue Value, SelectionDAG &DAG)
416 {
417 APInt KnownZero, KnownOne;
418 DAG.computeKnownBits(Value, KnownZero, KnownOne);
419 return KnownZero.countTrailingOnes() >= 2;
420 }
421
422 SDValue XCoreTargetLowering::
LowerLOAD(SDValue Op,SelectionDAG & DAG) const423 LowerLOAD(SDValue Op, SelectionDAG &DAG) const {
424 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
425 LoadSDNode *LD = cast<LoadSDNode>(Op);
426 assert(LD->getExtensionType() == ISD::NON_EXTLOAD &&
427 "Unexpected extension type");
428 assert(LD->getMemoryVT() == MVT::i32 && "Unexpected load EVT");
429 if (allowsMisalignedMemoryAccesses(LD->getMemoryVT(),
430 LD->getAddressSpace(),
431 LD->getAlignment()))
432 return SDValue();
433
434 auto &TD = DAG.getDataLayout();
435 unsigned ABIAlignment = TD.getABITypeAlignment(
436 LD->getMemoryVT().getTypeForEVT(*DAG.getContext()));
437 // Leave aligned load alone.
438 if (LD->getAlignment() >= ABIAlignment)
439 return SDValue();
440
441 SDValue Chain = LD->getChain();
442 SDValue BasePtr = LD->getBasePtr();
443 SDLoc DL(Op);
444
445 if (!LD->isVolatile()) {
446 const GlobalValue *GV;
447 int64_t Offset = 0;
448 if (DAG.isBaseWithConstantOffset(BasePtr) &&
449 isWordAligned(BasePtr->getOperand(0), DAG)) {
450 SDValue NewBasePtr = BasePtr->getOperand(0);
451 Offset = cast<ConstantSDNode>(BasePtr->getOperand(1))->getSExtValue();
452 return lowerLoadWordFromAlignedBasePlusOffset(DL, Chain, NewBasePtr,
453 Offset, DAG);
454 }
455 if (TLI.isGAPlusOffset(BasePtr.getNode(), GV, Offset) &&
456 MinAlign(GV->getAlignment(), 4) == 4) {
457 SDValue NewBasePtr = DAG.getGlobalAddress(GV, DL,
458 BasePtr->getValueType(0));
459 return lowerLoadWordFromAlignedBasePlusOffset(DL, Chain, NewBasePtr,
460 Offset, DAG);
461 }
462 }
463
464 if (LD->getAlignment() == 2) {
465 SDValue Low = DAG.getExtLoad(ISD::ZEXTLOAD, DL, MVT::i32, Chain,
466 BasePtr, LD->getPointerInfo(), MVT::i16,
467 LD->isVolatile(), LD->isNonTemporal(),
468 LD->isInvariant(), 2);
469 SDValue HighAddr = DAG.getNode(ISD::ADD, DL, MVT::i32, BasePtr,
470 DAG.getConstant(2, DL, MVT::i32));
471 SDValue High = DAG.getExtLoad(ISD::EXTLOAD, DL, MVT::i32, Chain,
472 HighAddr,
473 LD->getPointerInfo().getWithOffset(2),
474 MVT::i16, LD->isVolatile(),
475 LD->isNonTemporal(), LD->isInvariant(), 2);
476 SDValue HighShifted = DAG.getNode(ISD::SHL, DL, MVT::i32, High,
477 DAG.getConstant(16, DL, MVT::i32));
478 SDValue Result = DAG.getNode(ISD::OR, DL, MVT::i32, Low, HighShifted);
479 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Low.getValue(1),
480 High.getValue(1));
481 SDValue Ops[] = { Result, Chain };
482 return DAG.getMergeValues(Ops, DL);
483 }
484
485 // Lower to a call to __misaligned_load(BasePtr).
486 Type *IntPtrTy = TD.getIntPtrType(*DAG.getContext());
487 TargetLowering::ArgListTy Args;
488 TargetLowering::ArgListEntry Entry;
489
490 Entry.Ty = IntPtrTy;
491 Entry.Node = BasePtr;
492 Args.push_back(Entry);
493
494 TargetLowering::CallLoweringInfo CLI(DAG);
495 CLI.setDebugLoc(DL).setChain(Chain).setCallee(
496 CallingConv::C, IntPtrTy,
497 DAG.getExternalSymbol("__misaligned_load",
498 getPointerTy(DAG.getDataLayout())),
499 std::move(Args), 0);
500
501 std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
502 SDValue Ops[] = { CallResult.first, CallResult.second };
503 return DAG.getMergeValues(Ops, DL);
504 }
505
506 SDValue XCoreTargetLowering::
LowerSTORE(SDValue Op,SelectionDAG & DAG) const507 LowerSTORE(SDValue Op, SelectionDAG &DAG) const
508 {
509 StoreSDNode *ST = cast<StoreSDNode>(Op);
510 assert(!ST->isTruncatingStore() && "Unexpected store type");
511 assert(ST->getMemoryVT() == MVT::i32 && "Unexpected store EVT");
512 if (allowsMisalignedMemoryAccesses(ST->getMemoryVT(),
513 ST->getAddressSpace(),
514 ST->getAlignment())) {
515 return SDValue();
516 }
517 unsigned ABIAlignment = DAG.getDataLayout().getABITypeAlignment(
518 ST->getMemoryVT().getTypeForEVT(*DAG.getContext()));
519 // Leave aligned store alone.
520 if (ST->getAlignment() >= ABIAlignment) {
521 return SDValue();
522 }
523 SDValue Chain = ST->getChain();
524 SDValue BasePtr = ST->getBasePtr();
525 SDValue Value = ST->getValue();
526 SDLoc dl(Op);
527
528 if (ST->getAlignment() == 2) {
529 SDValue Low = Value;
530 SDValue High = DAG.getNode(ISD::SRL, dl, MVT::i32, Value,
531 DAG.getConstant(16, dl, MVT::i32));
532 SDValue StoreLow = DAG.getTruncStore(Chain, dl, Low, BasePtr,
533 ST->getPointerInfo(), MVT::i16,
534 ST->isVolatile(), ST->isNonTemporal(),
535 2);
536 SDValue HighAddr = DAG.getNode(ISD::ADD, dl, MVT::i32, BasePtr,
537 DAG.getConstant(2, dl, MVT::i32));
538 SDValue StoreHigh = DAG.getTruncStore(Chain, dl, High, HighAddr,
539 ST->getPointerInfo().getWithOffset(2),
540 MVT::i16, ST->isVolatile(),
541 ST->isNonTemporal(), 2);
542 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, StoreLow, StoreHigh);
543 }
544
545 // Lower to a call to __misaligned_store(BasePtr, Value).
546 Type *IntPtrTy = DAG.getDataLayout().getIntPtrType(*DAG.getContext());
547 TargetLowering::ArgListTy Args;
548 TargetLowering::ArgListEntry Entry;
549
550 Entry.Ty = IntPtrTy;
551 Entry.Node = BasePtr;
552 Args.push_back(Entry);
553
554 Entry.Node = Value;
555 Args.push_back(Entry);
556
557 TargetLowering::CallLoweringInfo CLI(DAG);
558 CLI.setDebugLoc(dl).setChain(Chain).setCallee(
559 CallingConv::C, Type::getVoidTy(*DAG.getContext()),
560 DAG.getExternalSymbol("__misaligned_store",
561 getPointerTy(DAG.getDataLayout())),
562 std::move(Args), 0);
563
564 std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
565 return CallResult.second;
566 }
567
568 SDValue XCoreTargetLowering::
LowerSMUL_LOHI(SDValue Op,SelectionDAG & DAG) const569 LowerSMUL_LOHI(SDValue Op, SelectionDAG &DAG) const
570 {
571 assert(Op.getValueType() == MVT::i32 && Op.getOpcode() == ISD::SMUL_LOHI &&
572 "Unexpected operand to lower!");
573 SDLoc dl(Op);
574 SDValue LHS = Op.getOperand(0);
575 SDValue RHS = Op.getOperand(1);
576 SDValue Zero = DAG.getConstant(0, dl, MVT::i32);
577 SDValue Hi = DAG.getNode(XCoreISD::MACCS, dl,
578 DAG.getVTList(MVT::i32, MVT::i32), Zero, Zero,
579 LHS, RHS);
580 SDValue Lo(Hi.getNode(), 1);
581 SDValue Ops[] = { Lo, Hi };
582 return DAG.getMergeValues(Ops, dl);
583 }
584
585 SDValue XCoreTargetLowering::
LowerUMUL_LOHI(SDValue Op,SelectionDAG & DAG) const586 LowerUMUL_LOHI(SDValue Op, SelectionDAG &DAG) const
587 {
588 assert(Op.getValueType() == MVT::i32 && Op.getOpcode() == ISD::UMUL_LOHI &&
589 "Unexpected operand to lower!");
590 SDLoc dl(Op);
591 SDValue LHS = Op.getOperand(0);
592 SDValue RHS = Op.getOperand(1);
593 SDValue Zero = DAG.getConstant(0, dl, MVT::i32);
594 SDValue Hi = DAG.getNode(XCoreISD::LMUL, dl,
595 DAG.getVTList(MVT::i32, MVT::i32), LHS, RHS,
596 Zero, Zero);
597 SDValue Lo(Hi.getNode(), 1);
598 SDValue Ops[] = { Lo, Hi };
599 return DAG.getMergeValues(Ops, dl);
600 }
601
602 /// isADDADDMUL - Return whether Op is in a form that is equivalent to
603 /// add(add(mul(x,y),a),b). If requireIntermediatesHaveOneUse is true then
604 /// each intermediate result in the calculation must also have a single use.
605 /// If the Op is in the correct form the constituent parts are written to Mul0,
606 /// Mul1, Addend0 and Addend1.
607 static bool
isADDADDMUL(SDValue Op,SDValue & Mul0,SDValue & Mul1,SDValue & Addend0,SDValue & Addend1,bool requireIntermediatesHaveOneUse)608 isADDADDMUL(SDValue Op, SDValue &Mul0, SDValue &Mul1, SDValue &Addend0,
609 SDValue &Addend1, bool requireIntermediatesHaveOneUse)
610 {
611 if (Op.getOpcode() != ISD::ADD)
612 return false;
613 SDValue N0 = Op.getOperand(0);
614 SDValue N1 = Op.getOperand(1);
615 SDValue AddOp;
616 SDValue OtherOp;
617 if (N0.getOpcode() == ISD::ADD) {
618 AddOp = N0;
619 OtherOp = N1;
620 } else if (N1.getOpcode() == ISD::ADD) {
621 AddOp = N1;
622 OtherOp = N0;
623 } else {
624 return false;
625 }
626 if (requireIntermediatesHaveOneUse && !AddOp.hasOneUse())
627 return false;
628 if (OtherOp.getOpcode() == ISD::MUL) {
629 // add(add(a,b),mul(x,y))
630 if (requireIntermediatesHaveOneUse && !OtherOp.hasOneUse())
631 return false;
632 Mul0 = OtherOp.getOperand(0);
633 Mul1 = OtherOp.getOperand(1);
634 Addend0 = AddOp.getOperand(0);
635 Addend1 = AddOp.getOperand(1);
636 return true;
637 }
638 if (AddOp.getOperand(0).getOpcode() == ISD::MUL) {
639 // add(add(mul(x,y),a),b)
640 if (requireIntermediatesHaveOneUse && !AddOp.getOperand(0).hasOneUse())
641 return false;
642 Mul0 = AddOp.getOperand(0).getOperand(0);
643 Mul1 = AddOp.getOperand(0).getOperand(1);
644 Addend0 = AddOp.getOperand(1);
645 Addend1 = OtherOp;
646 return true;
647 }
648 if (AddOp.getOperand(1).getOpcode() == ISD::MUL) {
649 // add(add(a,mul(x,y)),b)
650 if (requireIntermediatesHaveOneUse && !AddOp.getOperand(1).hasOneUse())
651 return false;
652 Mul0 = AddOp.getOperand(1).getOperand(0);
653 Mul1 = AddOp.getOperand(1).getOperand(1);
654 Addend0 = AddOp.getOperand(0);
655 Addend1 = OtherOp;
656 return true;
657 }
658 return false;
659 }
660
661 SDValue XCoreTargetLowering::
TryExpandADDWithMul(SDNode * N,SelectionDAG & DAG) const662 TryExpandADDWithMul(SDNode *N, SelectionDAG &DAG) const
663 {
664 SDValue Mul;
665 SDValue Other;
666 if (N->getOperand(0).getOpcode() == ISD::MUL) {
667 Mul = N->getOperand(0);
668 Other = N->getOperand(1);
669 } else if (N->getOperand(1).getOpcode() == ISD::MUL) {
670 Mul = N->getOperand(1);
671 Other = N->getOperand(0);
672 } else {
673 return SDValue();
674 }
675 SDLoc dl(N);
676 SDValue LL, RL, AddendL, AddendH;
677 LL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
678 Mul.getOperand(0), DAG.getConstant(0, dl, MVT::i32));
679 RL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
680 Mul.getOperand(1), DAG.getConstant(0, dl, MVT::i32));
681 AddendL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
682 Other, DAG.getConstant(0, dl, MVT::i32));
683 AddendH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
684 Other, DAG.getConstant(1, dl, MVT::i32));
685 APInt HighMask = APInt::getHighBitsSet(64, 32);
686 unsigned LHSSB = DAG.ComputeNumSignBits(Mul.getOperand(0));
687 unsigned RHSSB = DAG.ComputeNumSignBits(Mul.getOperand(1));
688 if (DAG.MaskedValueIsZero(Mul.getOperand(0), HighMask) &&
689 DAG.MaskedValueIsZero(Mul.getOperand(1), HighMask)) {
690 // The inputs are both zero-extended.
691 SDValue Hi = DAG.getNode(XCoreISD::MACCU, dl,
692 DAG.getVTList(MVT::i32, MVT::i32), AddendH,
693 AddendL, LL, RL);
694 SDValue Lo(Hi.getNode(), 1);
695 return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi);
696 }
697 if (LHSSB > 32 && RHSSB > 32) {
698 // The inputs are both sign-extended.
699 SDValue Hi = DAG.getNode(XCoreISD::MACCS, dl,
700 DAG.getVTList(MVT::i32, MVT::i32), AddendH,
701 AddendL, LL, RL);
702 SDValue Lo(Hi.getNode(), 1);
703 return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi);
704 }
705 SDValue LH, RH;
706 LH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
707 Mul.getOperand(0), DAG.getConstant(1, dl, MVT::i32));
708 RH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
709 Mul.getOperand(1), DAG.getConstant(1, dl, MVT::i32));
710 SDValue Hi = DAG.getNode(XCoreISD::MACCU, dl,
711 DAG.getVTList(MVT::i32, MVT::i32), AddendH,
712 AddendL, LL, RL);
713 SDValue Lo(Hi.getNode(), 1);
714 RH = DAG.getNode(ISD::MUL, dl, MVT::i32, LL, RH);
715 LH = DAG.getNode(ISD::MUL, dl, MVT::i32, LH, RL);
716 Hi = DAG.getNode(ISD::ADD, dl, MVT::i32, Hi, RH);
717 Hi = DAG.getNode(ISD::ADD, dl, MVT::i32, Hi, LH);
718 return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi);
719 }
720
721 SDValue XCoreTargetLowering::
ExpandADDSUB(SDNode * N,SelectionDAG & DAG) const722 ExpandADDSUB(SDNode *N, SelectionDAG &DAG) const
723 {
724 assert(N->getValueType(0) == MVT::i64 &&
725 (N->getOpcode() == ISD::ADD || N->getOpcode() == ISD::SUB) &&
726 "Unknown operand to lower!");
727
728 if (N->getOpcode() == ISD::ADD) {
729 SDValue Result = TryExpandADDWithMul(N, DAG);
730 if (Result.getNode())
731 return Result;
732 }
733
734 SDLoc dl(N);
735
736 // Extract components
737 SDValue LHSL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
738 N->getOperand(0),
739 DAG.getConstant(0, dl, MVT::i32));
740 SDValue LHSH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
741 N->getOperand(0),
742 DAG.getConstant(1, dl, MVT::i32));
743 SDValue RHSL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
744 N->getOperand(1),
745 DAG.getConstant(0, dl, MVT::i32));
746 SDValue RHSH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
747 N->getOperand(1),
748 DAG.getConstant(1, dl, MVT::i32));
749
750 // Expand
751 unsigned Opcode = (N->getOpcode() == ISD::ADD) ? XCoreISD::LADD :
752 XCoreISD::LSUB;
753 SDValue Zero = DAG.getConstant(0, dl, MVT::i32);
754 SDValue Lo = DAG.getNode(Opcode, dl, DAG.getVTList(MVT::i32, MVT::i32),
755 LHSL, RHSL, Zero);
756 SDValue Carry(Lo.getNode(), 1);
757
758 SDValue Hi = DAG.getNode(Opcode, dl, DAG.getVTList(MVT::i32, MVT::i32),
759 LHSH, RHSH, Carry);
760 SDValue Ignored(Hi.getNode(), 1);
761 // Merge the pieces
762 return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi);
763 }
764
765 SDValue XCoreTargetLowering::
LowerVAARG(SDValue Op,SelectionDAG & DAG) const766 LowerVAARG(SDValue Op, SelectionDAG &DAG) const
767 {
768 // Whist llvm does not support aggregate varargs we can ignore
769 // the possibility of the ValueType being an implicit byVal vararg.
770 SDNode *Node = Op.getNode();
771 EVT VT = Node->getValueType(0); // not an aggregate
772 SDValue InChain = Node->getOperand(0);
773 SDValue VAListPtr = Node->getOperand(1);
774 EVT PtrVT = VAListPtr.getValueType();
775 const Value *SV = cast<SrcValueSDNode>(Node->getOperand(2))->getValue();
776 SDLoc dl(Node);
777 SDValue VAList = DAG.getLoad(PtrVT, dl, InChain,
778 VAListPtr, MachinePointerInfo(SV),
779 false, false, false, 0);
780 // Increment the pointer, VAList, to the next vararg
781 SDValue nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAList,
782 DAG.getIntPtrConstant(VT.getSizeInBits() / 8,
783 dl));
784 // Store the incremented VAList to the legalized pointer
785 InChain = DAG.getStore(VAList.getValue(1), dl, nextPtr, VAListPtr,
786 MachinePointerInfo(SV), false, false, 0);
787 // Load the actual argument out of the pointer VAList
788 return DAG.getLoad(VT, dl, InChain, VAList, MachinePointerInfo(),
789 false, false, false, 0);
790 }
791
792 SDValue XCoreTargetLowering::
LowerVASTART(SDValue Op,SelectionDAG & DAG) const793 LowerVASTART(SDValue Op, SelectionDAG &DAG) const
794 {
795 SDLoc dl(Op);
796 // vastart stores the address of the VarArgsFrameIndex slot into the
797 // memory location argument
798 MachineFunction &MF = DAG.getMachineFunction();
799 XCoreFunctionInfo *XFI = MF.getInfo<XCoreFunctionInfo>();
800 SDValue Addr = DAG.getFrameIndex(XFI->getVarArgsFrameIndex(), MVT::i32);
801 return DAG.getStore(Op.getOperand(0), dl, Addr, Op.getOperand(1),
802 MachinePointerInfo(), false, false, 0);
803 }
804
LowerFRAMEADDR(SDValue Op,SelectionDAG & DAG) const805 SDValue XCoreTargetLowering::LowerFRAMEADDR(SDValue Op,
806 SelectionDAG &DAG) const {
807 // This nodes represent llvm.frameaddress on the DAG.
808 // It takes one operand, the index of the frame address to return.
809 // An index of zero corresponds to the current function's frame address.
810 // An index of one to the parent's frame address, and so on.
811 // Depths > 0 not supported yet!
812 if (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue() > 0)
813 return SDValue();
814
815 MachineFunction &MF = DAG.getMachineFunction();
816 const TargetRegisterInfo *RegInfo = Subtarget.getRegisterInfo();
817 return DAG.getCopyFromReg(DAG.getEntryNode(), SDLoc(Op),
818 RegInfo->getFrameRegister(MF), MVT::i32);
819 }
820
821 SDValue XCoreTargetLowering::
LowerRETURNADDR(SDValue Op,SelectionDAG & DAG) const822 LowerRETURNADDR(SDValue Op, SelectionDAG &DAG) const {
823 // This nodes represent llvm.returnaddress on the DAG.
824 // It takes one operand, the index of the return address to return.
825 // An index of zero corresponds to the current function's return address.
826 // An index of one to the parent's return address, and so on.
827 // Depths > 0 not supported yet!
828 if (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue() > 0)
829 return SDValue();
830
831 MachineFunction &MF = DAG.getMachineFunction();
832 XCoreFunctionInfo *XFI = MF.getInfo<XCoreFunctionInfo>();
833 int FI = XFI->createLRSpillSlot(MF);
834 SDValue FIN = DAG.getFrameIndex(FI, MVT::i32);
835 return DAG.getLoad(
836 getPointerTy(DAG.getDataLayout()), SDLoc(Op), DAG.getEntryNode(), FIN,
837 MachinePointerInfo::getFixedStack(MF, FI), false, false, false, 0);
838 }
839
840 SDValue XCoreTargetLowering::
LowerFRAME_TO_ARGS_OFFSET(SDValue Op,SelectionDAG & DAG) const841 LowerFRAME_TO_ARGS_OFFSET(SDValue Op, SelectionDAG &DAG) const {
842 // This node represents offset from frame pointer to first on-stack argument.
843 // This is needed for correct stack adjustment during unwind.
844 // However, we don't know the offset until after the frame has be finalised.
845 // This is done during the XCoreFTAOElim pass.
846 return DAG.getNode(XCoreISD::FRAME_TO_ARGS_OFFSET, SDLoc(Op), MVT::i32);
847 }
848
849 SDValue XCoreTargetLowering::
LowerEH_RETURN(SDValue Op,SelectionDAG & DAG) const850 LowerEH_RETURN(SDValue Op, SelectionDAG &DAG) const {
851 // OUTCHAIN = EH_RETURN(INCHAIN, OFFSET, HANDLER)
852 // This node represents 'eh_return' gcc dwarf builtin, which is used to
853 // return from exception. The general meaning is: adjust stack by OFFSET and
854 // pass execution to HANDLER.
855 MachineFunction &MF = DAG.getMachineFunction();
856 SDValue Chain = Op.getOperand(0);
857 SDValue Offset = Op.getOperand(1);
858 SDValue Handler = Op.getOperand(2);
859 SDLoc dl(Op);
860
861 // Absolute SP = (FP + FrameToArgs) + Offset
862 const TargetRegisterInfo *RegInfo = Subtarget.getRegisterInfo();
863 SDValue Stack = DAG.getCopyFromReg(DAG.getEntryNode(), dl,
864 RegInfo->getFrameRegister(MF), MVT::i32);
865 SDValue FrameToArgs = DAG.getNode(XCoreISD::FRAME_TO_ARGS_OFFSET, dl,
866 MVT::i32);
867 Stack = DAG.getNode(ISD::ADD, dl, MVT::i32, Stack, FrameToArgs);
868 Stack = DAG.getNode(ISD::ADD, dl, MVT::i32, Stack, Offset);
869
870 // R0=ExceptionPointerRegister R1=ExceptionSelectorRegister
871 // which leaves 2 caller saved registers, R2 & R3 for us to use.
872 unsigned StackReg = XCore::R2;
873 unsigned HandlerReg = XCore::R3;
874
875 SDValue OutChains[] = {
876 DAG.getCopyToReg(Chain, dl, StackReg, Stack),
877 DAG.getCopyToReg(Chain, dl, HandlerReg, Handler)
878 };
879
880 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
881
882 return DAG.getNode(XCoreISD::EH_RETURN, dl, MVT::Other, Chain,
883 DAG.getRegister(StackReg, MVT::i32),
884 DAG.getRegister(HandlerReg, MVT::i32));
885
886 }
887
888 SDValue XCoreTargetLowering::
LowerADJUST_TRAMPOLINE(SDValue Op,SelectionDAG & DAG) const889 LowerADJUST_TRAMPOLINE(SDValue Op, SelectionDAG &DAG) const {
890 return Op.getOperand(0);
891 }
892
893 SDValue XCoreTargetLowering::
LowerINIT_TRAMPOLINE(SDValue Op,SelectionDAG & DAG) const894 LowerINIT_TRAMPOLINE(SDValue Op, SelectionDAG &DAG) const {
895 SDValue Chain = Op.getOperand(0);
896 SDValue Trmp = Op.getOperand(1); // trampoline
897 SDValue FPtr = Op.getOperand(2); // nested function
898 SDValue Nest = Op.getOperand(3); // 'nest' parameter value
899
900 const Value *TrmpAddr = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
901
902 // .align 4
903 // LDAPF_u10 r11, nest
904 // LDW_2rus r11, r11[0]
905 // STWSP_ru6 r11, sp[0]
906 // LDAPF_u10 r11, fptr
907 // LDW_2rus r11, r11[0]
908 // BAU_1r r11
909 // nest:
910 // .word nest
911 // fptr:
912 // .word fptr
913 SDValue OutChains[5];
914
915 SDValue Addr = Trmp;
916
917 SDLoc dl(Op);
918 OutChains[0] = DAG.getStore(Chain, dl,
919 DAG.getConstant(0x0a3cd805, dl, MVT::i32), Addr,
920 MachinePointerInfo(TrmpAddr), false, false, 0);
921
922 Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
923 DAG.getConstant(4, dl, MVT::i32));
924 OutChains[1] = DAG.getStore(Chain, dl,
925 DAG.getConstant(0xd80456c0, dl, MVT::i32), Addr,
926 MachinePointerInfo(TrmpAddr, 4), false, false, 0);
927
928 Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
929 DAG.getConstant(8, dl, MVT::i32));
930 OutChains[2] = DAG.getStore(Chain, dl,
931 DAG.getConstant(0x27fb0a3c, dl, MVT::i32), Addr,
932 MachinePointerInfo(TrmpAddr, 8), false, false, 0);
933
934 Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
935 DAG.getConstant(12, dl, MVT::i32));
936 OutChains[3] = DAG.getStore(Chain, dl, Nest, Addr,
937 MachinePointerInfo(TrmpAddr, 12), false, false,
938 0);
939
940 Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
941 DAG.getConstant(16, dl, MVT::i32));
942 OutChains[4] = DAG.getStore(Chain, dl, FPtr, Addr,
943 MachinePointerInfo(TrmpAddr, 16), false, false,
944 0);
945
946 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
947 }
948
949 SDValue XCoreTargetLowering::
LowerINTRINSIC_WO_CHAIN(SDValue Op,SelectionDAG & DAG) const950 LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG) const {
951 SDLoc DL(Op);
952 unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
953 switch (IntNo) {
954 case Intrinsic::xcore_crc8:
955 EVT VT = Op.getValueType();
956 SDValue Data =
957 DAG.getNode(XCoreISD::CRC8, DL, DAG.getVTList(VT, VT),
958 Op.getOperand(1), Op.getOperand(2) , Op.getOperand(3));
959 SDValue Crc(Data.getNode(), 1);
960 SDValue Results[] = { Crc, Data };
961 return DAG.getMergeValues(Results, DL);
962 }
963 return SDValue();
964 }
965
966 SDValue XCoreTargetLowering::
LowerATOMIC_FENCE(SDValue Op,SelectionDAG & DAG) const967 LowerATOMIC_FENCE(SDValue Op, SelectionDAG &DAG) const {
968 SDLoc DL(Op);
969 return DAG.getNode(XCoreISD::MEMBARRIER, DL, MVT::Other, Op.getOperand(0));
970 }
971
972 SDValue XCoreTargetLowering::
LowerATOMIC_LOAD(SDValue Op,SelectionDAG & DAG) const973 LowerATOMIC_LOAD(SDValue Op, SelectionDAG &DAG) const {
974 AtomicSDNode *N = cast<AtomicSDNode>(Op);
975 assert(N->getOpcode() == ISD::ATOMIC_LOAD && "Bad Atomic OP");
976 assert(N->getOrdering() <= Monotonic &&
977 "setInsertFencesForAtomic(true) and yet greater than Monotonic");
978 if (N->getMemoryVT() == MVT::i32) {
979 if (N->getAlignment() < 4)
980 report_fatal_error("atomic load must be aligned");
981 return DAG.getLoad(getPointerTy(DAG.getDataLayout()), SDLoc(Op),
982 N->getChain(), N->getBasePtr(), N->getPointerInfo(),
983 N->isVolatile(), N->isNonTemporal(), N->isInvariant(),
984 N->getAlignment(), N->getAAInfo(), N->getRanges());
985 }
986 if (N->getMemoryVT() == MVT::i16) {
987 if (N->getAlignment() < 2)
988 report_fatal_error("atomic load must be aligned");
989 return DAG.getExtLoad(ISD::EXTLOAD, SDLoc(Op), MVT::i32, N->getChain(),
990 N->getBasePtr(), N->getPointerInfo(), MVT::i16,
991 N->isVolatile(), N->isNonTemporal(),
992 N->isInvariant(), N->getAlignment(), N->getAAInfo());
993 }
994 if (N->getMemoryVT() == MVT::i8)
995 return DAG.getExtLoad(ISD::EXTLOAD, SDLoc(Op), MVT::i32, N->getChain(),
996 N->getBasePtr(), N->getPointerInfo(), MVT::i8,
997 N->isVolatile(), N->isNonTemporal(),
998 N->isInvariant(), N->getAlignment(), N->getAAInfo());
999 return SDValue();
1000 }
1001
1002 SDValue XCoreTargetLowering::
LowerATOMIC_STORE(SDValue Op,SelectionDAG & DAG) const1003 LowerATOMIC_STORE(SDValue Op, SelectionDAG &DAG) const {
1004 AtomicSDNode *N = cast<AtomicSDNode>(Op);
1005 assert(N->getOpcode() == ISD::ATOMIC_STORE && "Bad Atomic OP");
1006 assert(N->getOrdering() <= Monotonic &&
1007 "setInsertFencesForAtomic(true) and yet greater than Monotonic");
1008 if (N->getMemoryVT() == MVT::i32) {
1009 if (N->getAlignment() < 4)
1010 report_fatal_error("atomic store must be aligned");
1011 return DAG.getStore(N->getChain(), SDLoc(Op), N->getVal(),
1012 N->getBasePtr(), N->getPointerInfo(),
1013 N->isVolatile(), N->isNonTemporal(),
1014 N->getAlignment(), N->getAAInfo());
1015 }
1016 if (N->getMemoryVT() == MVT::i16) {
1017 if (N->getAlignment() < 2)
1018 report_fatal_error("atomic store must be aligned");
1019 return DAG.getTruncStore(N->getChain(), SDLoc(Op), N->getVal(),
1020 N->getBasePtr(), N->getPointerInfo(), MVT::i16,
1021 N->isVolatile(), N->isNonTemporal(),
1022 N->getAlignment(), N->getAAInfo());
1023 }
1024 if (N->getMemoryVT() == MVT::i8)
1025 return DAG.getTruncStore(N->getChain(), SDLoc(Op), N->getVal(),
1026 N->getBasePtr(), N->getPointerInfo(), MVT::i8,
1027 N->isVolatile(), N->isNonTemporal(),
1028 N->getAlignment(), N->getAAInfo());
1029 return SDValue();
1030 }
1031
1032 //===----------------------------------------------------------------------===//
1033 // Calling Convention Implementation
1034 //===----------------------------------------------------------------------===//
1035
1036 #include "XCoreGenCallingConv.inc"
1037
1038 //===----------------------------------------------------------------------===//
1039 // Call Calling Convention Implementation
1040 //===----------------------------------------------------------------------===//
1041
1042 /// XCore call implementation
1043 SDValue
LowerCall(TargetLowering::CallLoweringInfo & CLI,SmallVectorImpl<SDValue> & InVals) const1044 XCoreTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
1045 SmallVectorImpl<SDValue> &InVals) const {
1046 SelectionDAG &DAG = CLI.DAG;
1047 SDLoc &dl = CLI.DL;
1048 SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
1049 SmallVectorImpl<SDValue> &OutVals = CLI.OutVals;
1050 SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins;
1051 SDValue Chain = CLI.Chain;
1052 SDValue Callee = CLI.Callee;
1053 bool &isTailCall = CLI.IsTailCall;
1054 CallingConv::ID CallConv = CLI.CallConv;
1055 bool isVarArg = CLI.IsVarArg;
1056
1057 // XCore target does not yet support tail call optimization.
1058 isTailCall = false;
1059
1060 // For now, only CallingConv::C implemented
1061 switch (CallConv)
1062 {
1063 default:
1064 llvm_unreachable("Unsupported calling convention");
1065 case CallingConv::Fast:
1066 case CallingConv::C:
1067 return LowerCCCCallTo(Chain, Callee, CallConv, isVarArg, isTailCall,
1068 Outs, OutVals, Ins, dl, DAG, InVals);
1069 }
1070 }
1071
1072 /// LowerCallResult - Lower the result values of a call into the
1073 /// appropriate copies out of appropriate physical registers / memory locations.
1074 static SDValue
LowerCallResult(SDValue Chain,SDValue InFlag,const SmallVectorImpl<CCValAssign> & RVLocs,SDLoc dl,SelectionDAG & DAG,SmallVectorImpl<SDValue> & InVals)1075 LowerCallResult(SDValue Chain, SDValue InFlag,
1076 const SmallVectorImpl<CCValAssign> &RVLocs,
1077 SDLoc dl, SelectionDAG &DAG,
1078 SmallVectorImpl<SDValue> &InVals) {
1079 SmallVector<std::pair<int, unsigned>, 4> ResultMemLocs;
1080 // Copy results out of physical registers.
1081 for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
1082 const CCValAssign &VA = RVLocs[i];
1083 if (VA.isRegLoc()) {
1084 Chain = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), VA.getValVT(),
1085 InFlag).getValue(1);
1086 InFlag = Chain.getValue(2);
1087 InVals.push_back(Chain.getValue(0));
1088 } else {
1089 assert(VA.isMemLoc());
1090 ResultMemLocs.push_back(std::make_pair(VA.getLocMemOffset(),
1091 InVals.size()));
1092 // Reserve space for this result.
1093 InVals.push_back(SDValue());
1094 }
1095 }
1096
1097 // Copy results out of memory.
1098 SmallVector<SDValue, 4> MemOpChains;
1099 for (unsigned i = 0, e = ResultMemLocs.size(); i != e; ++i) {
1100 int offset = ResultMemLocs[i].first;
1101 unsigned index = ResultMemLocs[i].second;
1102 SDVTList VTs = DAG.getVTList(MVT::i32, MVT::Other);
1103 SDValue Ops[] = { Chain, DAG.getConstant(offset / 4, dl, MVT::i32) };
1104 SDValue load = DAG.getNode(XCoreISD::LDWSP, dl, VTs, Ops);
1105 InVals[index] = load;
1106 MemOpChains.push_back(load.getValue(1));
1107 }
1108
1109 // Transform all loads nodes into one single node because
1110 // all load nodes are independent of each other.
1111 if (!MemOpChains.empty())
1112 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
1113
1114 return Chain;
1115 }
1116
1117 /// LowerCCCCallTo - functions arguments are copied from virtual
1118 /// regs to (physical regs)/(stack frame), CALLSEQ_START and
1119 /// CALLSEQ_END are emitted.
1120 /// TODO: isTailCall, sret.
1121 SDValue
LowerCCCCallTo(SDValue Chain,SDValue Callee,CallingConv::ID CallConv,bool isVarArg,bool isTailCall,const SmallVectorImpl<ISD::OutputArg> & Outs,const SmallVectorImpl<SDValue> & OutVals,const SmallVectorImpl<ISD::InputArg> & Ins,SDLoc dl,SelectionDAG & DAG,SmallVectorImpl<SDValue> & InVals) const1122 XCoreTargetLowering::LowerCCCCallTo(SDValue Chain, SDValue Callee,
1123 CallingConv::ID CallConv, bool isVarArg,
1124 bool isTailCall,
1125 const SmallVectorImpl<ISD::OutputArg> &Outs,
1126 const SmallVectorImpl<SDValue> &OutVals,
1127 const SmallVectorImpl<ISD::InputArg> &Ins,
1128 SDLoc dl, SelectionDAG &DAG,
1129 SmallVectorImpl<SDValue> &InVals) const {
1130
1131 // Analyze operands of the call, assigning locations to each operand.
1132 SmallVector<CCValAssign, 16> ArgLocs;
1133 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
1134 *DAG.getContext());
1135
1136 // The ABI dictates there should be one stack slot available to the callee
1137 // on function entry (for saving lr).
1138 CCInfo.AllocateStack(4, 4);
1139
1140 CCInfo.AnalyzeCallOperands(Outs, CC_XCore);
1141
1142 SmallVector<CCValAssign, 16> RVLocs;
1143 // Analyze return values to determine the number of bytes of stack required.
1144 CCState RetCCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
1145 *DAG.getContext());
1146 RetCCInfo.AllocateStack(CCInfo.getNextStackOffset(), 4);
1147 RetCCInfo.AnalyzeCallResult(Ins, RetCC_XCore);
1148
1149 // Get a count of how many bytes are to be pushed on the stack.
1150 unsigned NumBytes = RetCCInfo.getNextStackOffset();
1151 auto PtrVT = getPointerTy(DAG.getDataLayout());
1152
1153 Chain = DAG.getCALLSEQ_START(Chain,
1154 DAG.getConstant(NumBytes, dl, PtrVT, true), dl);
1155
1156 SmallVector<std::pair<unsigned, SDValue>, 4> RegsToPass;
1157 SmallVector<SDValue, 12> MemOpChains;
1158
1159 // Walk the register/memloc assignments, inserting copies/loads.
1160 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1161 CCValAssign &VA = ArgLocs[i];
1162 SDValue Arg = OutVals[i];
1163
1164 // Promote the value if needed.
1165 switch (VA.getLocInfo()) {
1166 default: llvm_unreachable("Unknown loc info!");
1167 case CCValAssign::Full: break;
1168 case CCValAssign::SExt:
1169 Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg);
1170 break;
1171 case CCValAssign::ZExt:
1172 Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg);
1173 break;
1174 case CCValAssign::AExt:
1175 Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg);
1176 break;
1177 }
1178
1179 // Arguments that can be passed on register must be kept at
1180 // RegsToPass vector
1181 if (VA.isRegLoc()) {
1182 RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
1183 } else {
1184 assert(VA.isMemLoc());
1185
1186 int Offset = VA.getLocMemOffset();
1187
1188 MemOpChains.push_back(DAG.getNode(XCoreISD::STWSP, dl, MVT::Other,
1189 Chain, Arg,
1190 DAG.getConstant(Offset/4, dl,
1191 MVT::i32)));
1192 }
1193 }
1194
1195 // Transform all store nodes into one single node because
1196 // all store nodes are independent of each other.
1197 if (!MemOpChains.empty())
1198 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
1199
1200 // Build a sequence of copy-to-reg nodes chained together with token
1201 // chain and flag operands which copy the outgoing args into registers.
1202 // The InFlag in necessary since all emitted instructions must be
1203 // stuck together.
1204 SDValue InFlag;
1205 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
1206 Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
1207 RegsToPass[i].second, InFlag);
1208 InFlag = Chain.getValue(1);
1209 }
1210
1211 // If the callee is a GlobalAddress node (quite common, every direct call is)
1212 // turn it into a TargetGlobalAddress node so that legalize doesn't hack it.
1213 // Likewise ExternalSymbol -> TargetExternalSymbol.
1214 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
1215 Callee = DAG.getTargetGlobalAddress(G->getGlobal(), dl, MVT::i32);
1216 else if (ExternalSymbolSDNode *E = dyn_cast<ExternalSymbolSDNode>(Callee))
1217 Callee = DAG.getTargetExternalSymbol(E->getSymbol(), MVT::i32);
1218
1219 // XCoreBranchLink = #chain, #target_address, #opt_in_flags...
1220 // = Chain, Callee, Reg#1, Reg#2, ...
1221 //
1222 // Returns a chain & a flag for retval copy to use.
1223 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
1224 SmallVector<SDValue, 8> Ops;
1225 Ops.push_back(Chain);
1226 Ops.push_back(Callee);
1227
1228 // Add argument registers to the end of the list so that they are
1229 // known live into the call.
1230 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
1231 Ops.push_back(DAG.getRegister(RegsToPass[i].first,
1232 RegsToPass[i].second.getValueType()));
1233
1234 if (InFlag.getNode())
1235 Ops.push_back(InFlag);
1236
1237 Chain = DAG.getNode(XCoreISD::BL, dl, NodeTys, Ops);
1238 InFlag = Chain.getValue(1);
1239
1240 // Create the CALLSEQ_END node.
1241 Chain = DAG.getCALLSEQ_END(Chain, DAG.getConstant(NumBytes, dl, PtrVT, true),
1242 DAG.getConstant(0, dl, PtrVT, true), InFlag, dl);
1243 InFlag = Chain.getValue(1);
1244
1245 // Handle result values, copying them out of physregs into vregs that we
1246 // return.
1247 return LowerCallResult(Chain, InFlag, RVLocs, dl, DAG, InVals);
1248 }
1249
1250 //===----------------------------------------------------------------------===//
1251 // Formal Arguments Calling Convention Implementation
1252 //===----------------------------------------------------------------------===//
1253
1254 namespace {
1255 struct ArgDataPair { SDValue SDV; ISD::ArgFlagsTy Flags; };
1256 }
1257
1258 /// XCore formal arguments implementation
1259 SDValue
LowerFormalArguments(SDValue Chain,CallingConv::ID CallConv,bool isVarArg,const SmallVectorImpl<ISD::InputArg> & Ins,SDLoc dl,SelectionDAG & DAG,SmallVectorImpl<SDValue> & InVals) const1260 XCoreTargetLowering::LowerFormalArguments(SDValue Chain,
1261 CallingConv::ID CallConv,
1262 bool isVarArg,
1263 const SmallVectorImpl<ISD::InputArg> &Ins,
1264 SDLoc dl,
1265 SelectionDAG &DAG,
1266 SmallVectorImpl<SDValue> &InVals)
1267 const {
1268 switch (CallConv)
1269 {
1270 default:
1271 llvm_unreachable("Unsupported calling convention");
1272 case CallingConv::C:
1273 case CallingConv::Fast:
1274 return LowerCCCArguments(Chain, CallConv, isVarArg,
1275 Ins, dl, DAG, InVals);
1276 }
1277 }
1278
1279 /// LowerCCCArguments - transform physical registers into
1280 /// virtual registers and generate load operations for
1281 /// arguments places on the stack.
1282 /// TODO: sret
1283 SDValue
LowerCCCArguments(SDValue Chain,CallingConv::ID CallConv,bool isVarArg,const SmallVectorImpl<ISD::InputArg> & Ins,SDLoc dl,SelectionDAG & DAG,SmallVectorImpl<SDValue> & InVals) const1284 XCoreTargetLowering::LowerCCCArguments(SDValue Chain,
1285 CallingConv::ID CallConv,
1286 bool isVarArg,
1287 const SmallVectorImpl<ISD::InputArg>
1288 &Ins,
1289 SDLoc dl,
1290 SelectionDAG &DAG,
1291 SmallVectorImpl<SDValue> &InVals) const {
1292 MachineFunction &MF = DAG.getMachineFunction();
1293 MachineFrameInfo *MFI = MF.getFrameInfo();
1294 MachineRegisterInfo &RegInfo = MF.getRegInfo();
1295 XCoreFunctionInfo *XFI = MF.getInfo<XCoreFunctionInfo>();
1296
1297 // Assign locations to all of the incoming arguments.
1298 SmallVector<CCValAssign, 16> ArgLocs;
1299 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
1300 *DAG.getContext());
1301
1302 CCInfo.AnalyzeFormalArguments(Ins, CC_XCore);
1303
1304 unsigned StackSlotSize = XCoreFrameLowering::stackSlotSize();
1305
1306 unsigned LRSaveSize = StackSlotSize;
1307
1308 if (!isVarArg)
1309 XFI->setReturnStackOffset(CCInfo.getNextStackOffset() + LRSaveSize);
1310
1311 // All getCopyFromReg ops must precede any getMemcpys to prevent the
1312 // scheduler clobbering a register before it has been copied.
1313 // The stages are:
1314 // 1. CopyFromReg (and load) arg & vararg registers.
1315 // 2. Chain CopyFromReg nodes into a TokenFactor.
1316 // 3. Memcpy 'byVal' args & push final InVals.
1317 // 4. Chain mem ops nodes into a TokenFactor.
1318 SmallVector<SDValue, 4> CFRegNode;
1319 SmallVector<ArgDataPair, 4> ArgData;
1320 SmallVector<SDValue, 4> MemOps;
1321
1322 // 1a. CopyFromReg (and load) arg registers.
1323 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1324
1325 CCValAssign &VA = ArgLocs[i];
1326 SDValue ArgIn;
1327
1328 if (VA.isRegLoc()) {
1329 // Arguments passed in registers
1330 EVT RegVT = VA.getLocVT();
1331 switch (RegVT.getSimpleVT().SimpleTy) {
1332 default:
1333 {
1334 #ifndef NDEBUG
1335 errs() << "LowerFormalArguments Unhandled argument type: "
1336 << RegVT.getSimpleVT().SimpleTy << "\n";
1337 #endif
1338 llvm_unreachable(nullptr);
1339 }
1340 case MVT::i32:
1341 unsigned VReg = RegInfo.createVirtualRegister(&XCore::GRRegsRegClass);
1342 RegInfo.addLiveIn(VA.getLocReg(), VReg);
1343 ArgIn = DAG.getCopyFromReg(Chain, dl, VReg, RegVT);
1344 CFRegNode.push_back(ArgIn.getValue(ArgIn->getNumValues() - 1));
1345 }
1346 } else {
1347 // sanity check
1348 assert(VA.isMemLoc());
1349 // Load the argument to a virtual register
1350 unsigned ObjSize = VA.getLocVT().getSizeInBits()/8;
1351 if (ObjSize > StackSlotSize) {
1352 errs() << "LowerFormalArguments Unhandled argument type: "
1353 << EVT(VA.getLocVT()).getEVTString()
1354 << "\n";
1355 }
1356 // Create the frame index object for this incoming parameter...
1357 int FI = MFI->CreateFixedObject(ObjSize,
1358 LRSaveSize + VA.getLocMemOffset(),
1359 true);
1360
1361 // Create the SelectionDAG nodes corresponding to a load
1362 //from this parameter
1363 SDValue FIN = DAG.getFrameIndex(FI, MVT::i32);
1364 ArgIn = DAG.getLoad(VA.getLocVT(), dl, Chain, FIN,
1365 MachinePointerInfo::getFixedStack(MF, FI), false,
1366 false, false, 0);
1367 }
1368 const ArgDataPair ADP = { ArgIn, Ins[i].Flags };
1369 ArgData.push_back(ADP);
1370 }
1371
1372 // 1b. CopyFromReg vararg registers.
1373 if (isVarArg) {
1374 // Argument registers
1375 static const MCPhysReg ArgRegs[] = {
1376 XCore::R0, XCore::R1, XCore::R2, XCore::R3
1377 };
1378 XCoreFunctionInfo *XFI = MF.getInfo<XCoreFunctionInfo>();
1379 unsigned FirstVAReg = CCInfo.getFirstUnallocated(ArgRegs);
1380 if (FirstVAReg < array_lengthof(ArgRegs)) {
1381 int offset = 0;
1382 // Save remaining registers, storing higher register numbers at a higher
1383 // address
1384 for (int i = array_lengthof(ArgRegs) - 1; i >= (int)FirstVAReg; --i) {
1385 // Create a stack slot
1386 int FI = MFI->CreateFixedObject(4, offset, true);
1387 if (i == (int)FirstVAReg) {
1388 XFI->setVarArgsFrameIndex(FI);
1389 }
1390 offset -= StackSlotSize;
1391 SDValue FIN = DAG.getFrameIndex(FI, MVT::i32);
1392 // Move argument from phys reg -> virt reg
1393 unsigned VReg = RegInfo.createVirtualRegister(&XCore::GRRegsRegClass);
1394 RegInfo.addLiveIn(ArgRegs[i], VReg);
1395 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i32);
1396 CFRegNode.push_back(Val.getValue(Val->getNumValues() - 1));
1397 // Move argument from virt reg -> stack
1398 SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
1399 MachinePointerInfo(), false, false, 0);
1400 MemOps.push_back(Store);
1401 }
1402 } else {
1403 // This will point to the next argument passed via stack.
1404 XFI->setVarArgsFrameIndex(
1405 MFI->CreateFixedObject(4, LRSaveSize + CCInfo.getNextStackOffset(),
1406 true));
1407 }
1408 }
1409
1410 // 2. chain CopyFromReg nodes into a TokenFactor.
1411 if (!CFRegNode.empty())
1412 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, CFRegNode);
1413
1414 // 3. Memcpy 'byVal' args & push final InVals.
1415 // Aggregates passed "byVal" need to be copied by the callee.
1416 // The callee will use a pointer to this copy, rather than the original
1417 // pointer.
1418 for (SmallVectorImpl<ArgDataPair>::const_iterator ArgDI = ArgData.begin(),
1419 ArgDE = ArgData.end();
1420 ArgDI != ArgDE; ++ArgDI) {
1421 if (ArgDI->Flags.isByVal() && ArgDI->Flags.getByValSize()) {
1422 unsigned Size = ArgDI->Flags.getByValSize();
1423 unsigned Align = std::max(StackSlotSize, ArgDI->Flags.getByValAlign());
1424 // Create a new object on the stack and copy the pointee into it.
1425 int FI = MFI->CreateStackObject(Size, Align, false);
1426 SDValue FIN = DAG.getFrameIndex(FI, MVT::i32);
1427 InVals.push_back(FIN);
1428 MemOps.push_back(DAG.getMemcpy(Chain, dl, FIN, ArgDI->SDV,
1429 DAG.getConstant(Size, dl, MVT::i32),
1430 Align, false, false, false,
1431 MachinePointerInfo(),
1432 MachinePointerInfo()));
1433 } else {
1434 InVals.push_back(ArgDI->SDV);
1435 }
1436 }
1437
1438 // 4, chain mem ops nodes into a TokenFactor.
1439 if (!MemOps.empty()) {
1440 MemOps.push_back(Chain);
1441 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps);
1442 }
1443
1444 return Chain;
1445 }
1446
1447 //===----------------------------------------------------------------------===//
1448 // Return Value Calling Convention Implementation
1449 //===----------------------------------------------------------------------===//
1450
1451 bool XCoreTargetLowering::
CanLowerReturn(CallingConv::ID CallConv,MachineFunction & MF,bool isVarArg,const SmallVectorImpl<ISD::OutputArg> & Outs,LLVMContext & Context) const1452 CanLowerReturn(CallingConv::ID CallConv, MachineFunction &MF,
1453 bool isVarArg,
1454 const SmallVectorImpl<ISD::OutputArg> &Outs,
1455 LLVMContext &Context) const {
1456 SmallVector<CCValAssign, 16> RVLocs;
1457 CCState CCInfo(CallConv, isVarArg, MF, RVLocs, Context);
1458 if (!CCInfo.CheckReturn(Outs, RetCC_XCore))
1459 return false;
1460 if (CCInfo.getNextStackOffset() != 0 && isVarArg)
1461 return false;
1462 return true;
1463 }
1464
1465 SDValue
LowerReturn(SDValue Chain,CallingConv::ID CallConv,bool isVarArg,const SmallVectorImpl<ISD::OutputArg> & Outs,const SmallVectorImpl<SDValue> & OutVals,SDLoc dl,SelectionDAG & DAG) const1466 XCoreTargetLowering::LowerReturn(SDValue Chain,
1467 CallingConv::ID CallConv, bool isVarArg,
1468 const SmallVectorImpl<ISD::OutputArg> &Outs,
1469 const SmallVectorImpl<SDValue> &OutVals,
1470 SDLoc dl, SelectionDAG &DAG) const {
1471
1472 XCoreFunctionInfo *XFI =
1473 DAG.getMachineFunction().getInfo<XCoreFunctionInfo>();
1474 MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
1475
1476 // CCValAssign - represent the assignment of
1477 // the return value to a location
1478 SmallVector<CCValAssign, 16> RVLocs;
1479
1480 // CCState - Info about the registers and stack slot.
1481 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
1482 *DAG.getContext());
1483
1484 // Analyze return values.
1485 if (!isVarArg)
1486 CCInfo.AllocateStack(XFI->getReturnStackOffset(), 4);
1487
1488 CCInfo.AnalyzeReturn(Outs, RetCC_XCore);
1489
1490 SDValue Flag;
1491 SmallVector<SDValue, 4> RetOps(1, Chain);
1492
1493 // Return on XCore is always a "retsp 0"
1494 RetOps.push_back(DAG.getConstant(0, dl, MVT::i32));
1495
1496 SmallVector<SDValue, 4> MemOpChains;
1497 // Handle return values that must be copied to memory.
1498 for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
1499 CCValAssign &VA = RVLocs[i];
1500 if (VA.isRegLoc())
1501 continue;
1502 assert(VA.isMemLoc());
1503 if (isVarArg) {
1504 report_fatal_error("Can't return value from vararg function in memory");
1505 }
1506
1507 int Offset = VA.getLocMemOffset();
1508 unsigned ObjSize = VA.getLocVT().getSizeInBits() / 8;
1509 // Create the frame index object for the memory location.
1510 int FI = MFI->CreateFixedObject(ObjSize, Offset, false);
1511
1512 // Create a SelectionDAG node corresponding to a store
1513 // to this memory location.
1514 SDValue FIN = DAG.getFrameIndex(FI, MVT::i32);
1515 MemOpChains.push_back(DAG.getStore(
1516 Chain, dl, OutVals[i], FIN,
1517 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), false,
1518 false, 0));
1519 }
1520
1521 // Transform all store nodes into one single node because
1522 // all stores are independent of each other.
1523 if (!MemOpChains.empty())
1524 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
1525
1526 // Now handle return values copied to registers.
1527 for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
1528 CCValAssign &VA = RVLocs[i];
1529 if (!VA.isRegLoc())
1530 continue;
1531 // Copy the result values into the output registers.
1532 Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), OutVals[i], Flag);
1533
1534 // guarantee that all emitted copies are
1535 // stuck together, avoiding something bad
1536 Flag = Chain.getValue(1);
1537 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
1538 }
1539
1540 RetOps[0] = Chain; // Update chain.
1541
1542 // Add the flag if we have it.
1543 if (Flag.getNode())
1544 RetOps.push_back(Flag);
1545
1546 return DAG.getNode(XCoreISD::RETSP, dl, MVT::Other, RetOps);
1547 }
1548
1549 //===----------------------------------------------------------------------===//
1550 // Other Lowering Code
1551 //===----------------------------------------------------------------------===//
1552
1553 MachineBasicBlock *
EmitInstrWithCustomInserter(MachineInstr * MI,MachineBasicBlock * BB) const1554 XCoreTargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
1555 MachineBasicBlock *BB) const {
1556 const TargetInstrInfo &TII = *Subtarget.getInstrInfo();
1557 DebugLoc dl = MI->getDebugLoc();
1558 assert((MI->getOpcode() == XCore::SELECT_CC) &&
1559 "Unexpected instr type to insert");
1560
1561 // To "insert" a SELECT_CC instruction, we actually have to insert the diamond
1562 // control-flow pattern. The incoming instruction knows the destination vreg
1563 // to set, the condition code register to branch on, the true/false values to
1564 // select between, and a branch opcode to use.
1565 const BasicBlock *LLVM_BB = BB->getBasicBlock();
1566 MachineFunction::iterator It = ++BB->getIterator();
1567
1568 // thisMBB:
1569 // ...
1570 // TrueVal = ...
1571 // cmpTY ccX, r1, r2
1572 // bCC copy1MBB
1573 // fallthrough --> copy0MBB
1574 MachineBasicBlock *thisMBB = BB;
1575 MachineFunction *F = BB->getParent();
1576 MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
1577 MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
1578 F->insert(It, copy0MBB);
1579 F->insert(It, sinkMBB);
1580
1581 // Transfer the remainder of BB and its successor edges to sinkMBB.
1582 sinkMBB->splice(sinkMBB->begin(), BB,
1583 std::next(MachineBasicBlock::iterator(MI)), BB->end());
1584 sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
1585
1586 // Next, add the true and fallthrough blocks as its successors.
1587 BB->addSuccessor(copy0MBB);
1588 BB->addSuccessor(sinkMBB);
1589
1590 BuildMI(BB, dl, TII.get(XCore::BRFT_lru6))
1591 .addReg(MI->getOperand(1).getReg()).addMBB(sinkMBB);
1592
1593 // copy0MBB:
1594 // %FalseValue = ...
1595 // # fallthrough to sinkMBB
1596 BB = copy0MBB;
1597
1598 // Update machine-CFG edges
1599 BB->addSuccessor(sinkMBB);
1600
1601 // sinkMBB:
1602 // %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
1603 // ...
1604 BB = sinkMBB;
1605 BuildMI(*BB, BB->begin(), dl,
1606 TII.get(XCore::PHI), MI->getOperand(0).getReg())
1607 .addReg(MI->getOperand(3).getReg()).addMBB(copy0MBB)
1608 .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
1609
1610 MI->eraseFromParent(); // The pseudo instruction is gone now.
1611 return BB;
1612 }
1613
1614 //===----------------------------------------------------------------------===//
1615 // Target Optimization Hooks
1616 //===----------------------------------------------------------------------===//
1617
PerformDAGCombine(SDNode * N,DAGCombinerInfo & DCI) const1618 SDValue XCoreTargetLowering::PerformDAGCombine(SDNode *N,
1619 DAGCombinerInfo &DCI) const {
1620 SelectionDAG &DAG = DCI.DAG;
1621 SDLoc dl(N);
1622 switch (N->getOpcode()) {
1623 default: break;
1624 case ISD::INTRINSIC_VOID:
1625 switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
1626 case Intrinsic::xcore_outt:
1627 case Intrinsic::xcore_outct:
1628 case Intrinsic::xcore_chkct: {
1629 SDValue OutVal = N->getOperand(3);
1630 // These instructions ignore the high bits.
1631 if (OutVal.hasOneUse()) {
1632 unsigned BitWidth = OutVal.getValueSizeInBits();
1633 APInt DemandedMask = APInt::getLowBitsSet(BitWidth, 8);
1634 APInt KnownZero, KnownOne;
1635 TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
1636 !DCI.isBeforeLegalizeOps());
1637 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1638 if (TLO.ShrinkDemandedConstant(OutVal, DemandedMask) ||
1639 TLI.SimplifyDemandedBits(OutVal, DemandedMask, KnownZero, KnownOne,
1640 TLO))
1641 DCI.CommitTargetLoweringOpt(TLO);
1642 }
1643 break;
1644 }
1645 case Intrinsic::xcore_setpt: {
1646 SDValue Time = N->getOperand(3);
1647 // This instruction ignores the high bits.
1648 if (Time.hasOneUse()) {
1649 unsigned BitWidth = Time.getValueSizeInBits();
1650 APInt DemandedMask = APInt::getLowBitsSet(BitWidth, 16);
1651 APInt KnownZero, KnownOne;
1652 TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
1653 !DCI.isBeforeLegalizeOps());
1654 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1655 if (TLO.ShrinkDemandedConstant(Time, DemandedMask) ||
1656 TLI.SimplifyDemandedBits(Time, DemandedMask, KnownZero, KnownOne,
1657 TLO))
1658 DCI.CommitTargetLoweringOpt(TLO);
1659 }
1660 break;
1661 }
1662 }
1663 break;
1664 case XCoreISD::LADD: {
1665 SDValue N0 = N->getOperand(0);
1666 SDValue N1 = N->getOperand(1);
1667 SDValue N2 = N->getOperand(2);
1668 ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
1669 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
1670 EVT VT = N0.getValueType();
1671
1672 // canonicalize constant to RHS
1673 if (N0C && !N1C)
1674 return DAG.getNode(XCoreISD::LADD, dl, DAG.getVTList(VT, VT), N1, N0, N2);
1675
1676 // fold (ladd 0, 0, x) -> 0, x & 1
1677 if (N0C && N0C->isNullValue() && N1C && N1C->isNullValue()) {
1678 SDValue Carry = DAG.getConstant(0, dl, VT);
1679 SDValue Result = DAG.getNode(ISD::AND, dl, VT, N2,
1680 DAG.getConstant(1, dl, VT));
1681 SDValue Ops[] = { Result, Carry };
1682 return DAG.getMergeValues(Ops, dl);
1683 }
1684
1685 // fold (ladd x, 0, y) -> 0, add x, y iff carry is unused and y has only the
1686 // low bit set
1687 if (N1C && N1C->isNullValue() && N->hasNUsesOfValue(0, 1)) {
1688 APInt KnownZero, KnownOne;
1689 APInt Mask = APInt::getHighBitsSet(VT.getSizeInBits(),
1690 VT.getSizeInBits() - 1);
1691 DAG.computeKnownBits(N2, KnownZero, KnownOne);
1692 if ((KnownZero & Mask) == Mask) {
1693 SDValue Carry = DAG.getConstant(0, dl, VT);
1694 SDValue Result = DAG.getNode(ISD::ADD, dl, VT, N0, N2);
1695 SDValue Ops[] = { Result, Carry };
1696 return DAG.getMergeValues(Ops, dl);
1697 }
1698 }
1699 }
1700 break;
1701 case XCoreISD::LSUB: {
1702 SDValue N0 = N->getOperand(0);
1703 SDValue N1 = N->getOperand(1);
1704 SDValue N2 = N->getOperand(2);
1705 ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
1706 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
1707 EVT VT = N0.getValueType();
1708
1709 // fold (lsub 0, 0, x) -> x, -x iff x has only the low bit set
1710 if (N0C && N0C->isNullValue() && N1C && N1C->isNullValue()) {
1711 APInt KnownZero, KnownOne;
1712 APInt Mask = APInt::getHighBitsSet(VT.getSizeInBits(),
1713 VT.getSizeInBits() - 1);
1714 DAG.computeKnownBits(N2, KnownZero, KnownOne);
1715 if ((KnownZero & Mask) == Mask) {
1716 SDValue Borrow = N2;
1717 SDValue Result = DAG.getNode(ISD::SUB, dl, VT,
1718 DAG.getConstant(0, dl, VT), N2);
1719 SDValue Ops[] = { Result, Borrow };
1720 return DAG.getMergeValues(Ops, dl);
1721 }
1722 }
1723
1724 // fold (lsub x, 0, y) -> 0, sub x, y iff borrow is unused and y has only the
1725 // low bit set
1726 if (N1C && N1C->isNullValue() && N->hasNUsesOfValue(0, 1)) {
1727 APInt KnownZero, KnownOne;
1728 APInt Mask = APInt::getHighBitsSet(VT.getSizeInBits(),
1729 VT.getSizeInBits() - 1);
1730 DAG.computeKnownBits(N2, KnownZero, KnownOne);
1731 if ((KnownZero & Mask) == Mask) {
1732 SDValue Borrow = DAG.getConstant(0, dl, VT);
1733 SDValue Result = DAG.getNode(ISD::SUB, dl, VT, N0, N2);
1734 SDValue Ops[] = { Result, Borrow };
1735 return DAG.getMergeValues(Ops, dl);
1736 }
1737 }
1738 }
1739 break;
1740 case XCoreISD::LMUL: {
1741 SDValue N0 = N->getOperand(0);
1742 SDValue N1 = N->getOperand(1);
1743 SDValue N2 = N->getOperand(2);
1744 SDValue N3 = N->getOperand(3);
1745 ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
1746 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
1747 EVT VT = N0.getValueType();
1748 // Canonicalize multiplicative constant to RHS. If both multiplicative
1749 // operands are constant canonicalize smallest to RHS.
1750 if ((N0C && !N1C) ||
1751 (N0C && N1C && N0C->getZExtValue() < N1C->getZExtValue()))
1752 return DAG.getNode(XCoreISD::LMUL, dl, DAG.getVTList(VT, VT),
1753 N1, N0, N2, N3);
1754
1755 // lmul(x, 0, a, b)
1756 if (N1C && N1C->isNullValue()) {
1757 // If the high result is unused fold to add(a, b)
1758 if (N->hasNUsesOfValue(0, 0)) {
1759 SDValue Lo = DAG.getNode(ISD::ADD, dl, VT, N2, N3);
1760 SDValue Ops[] = { Lo, Lo };
1761 return DAG.getMergeValues(Ops, dl);
1762 }
1763 // Otherwise fold to ladd(a, b, 0)
1764 SDValue Result =
1765 DAG.getNode(XCoreISD::LADD, dl, DAG.getVTList(VT, VT), N2, N3, N1);
1766 SDValue Carry(Result.getNode(), 1);
1767 SDValue Ops[] = { Carry, Result };
1768 return DAG.getMergeValues(Ops, dl);
1769 }
1770 }
1771 break;
1772 case ISD::ADD: {
1773 // Fold 32 bit expressions such as add(add(mul(x,y),a),b) ->
1774 // lmul(x, y, a, b). The high result of lmul will be ignored.
1775 // This is only profitable if the intermediate results are unused
1776 // elsewhere.
1777 SDValue Mul0, Mul1, Addend0, Addend1;
1778 if (N->getValueType(0) == MVT::i32 &&
1779 isADDADDMUL(SDValue(N, 0), Mul0, Mul1, Addend0, Addend1, true)) {
1780 SDValue Ignored = DAG.getNode(XCoreISD::LMUL, dl,
1781 DAG.getVTList(MVT::i32, MVT::i32), Mul0,
1782 Mul1, Addend0, Addend1);
1783 SDValue Result(Ignored.getNode(), 1);
1784 return Result;
1785 }
1786 APInt HighMask = APInt::getHighBitsSet(64, 32);
1787 // Fold 64 bit expression such as add(add(mul(x,y),a),b) ->
1788 // lmul(x, y, a, b) if all operands are zero-extended. We do this
1789 // before type legalization as it is messy to match the operands after
1790 // that.
1791 if (N->getValueType(0) == MVT::i64 &&
1792 isADDADDMUL(SDValue(N, 0), Mul0, Mul1, Addend0, Addend1, false) &&
1793 DAG.MaskedValueIsZero(Mul0, HighMask) &&
1794 DAG.MaskedValueIsZero(Mul1, HighMask) &&
1795 DAG.MaskedValueIsZero(Addend0, HighMask) &&
1796 DAG.MaskedValueIsZero(Addend1, HighMask)) {
1797 SDValue Mul0L = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
1798 Mul0, DAG.getConstant(0, dl, MVT::i32));
1799 SDValue Mul1L = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
1800 Mul1, DAG.getConstant(0, dl, MVT::i32));
1801 SDValue Addend0L = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
1802 Addend0, DAG.getConstant(0, dl, MVT::i32));
1803 SDValue Addend1L = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
1804 Addend1, DAG.getConstant(0, dl, MVT::i32));
1805 SDValue Hi = DAG.getNode(XCoreISD::LMUL, dl,
1806 DAG.getVTList(MVT::i32, MVT::i32), Mul0L, Mul1L,
1807 Addend0L, Addend1L);
1808 SDValue Lo(Hi.getNode(), 1);
1809 return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi);
1810 }
1811 }
1812 break;
1813 case ISD::STORE: {
1814 // Replace unaligned store of unaligned load with memmove.
1815 StoreSDNode *ST = cast<StoreSDNode>(N);
1816 if (!DCI.isBeforeLegalize() ||
1817 allowsMisalignedMemoryAccesses(ST->getMemoryVT(),
1818 ST->getAddressSpace(),
1819 ST->getAlignment()) ||
1820 ST->isVolatile() || ST->isIndexed()) {
1821 break;
1822 }
1823 SDValue Chain = ST->getChain();
1824
1825 unsigned StoreBits = ST->getMemoryVT().getStoreSizeInBits();
1826 assert((StoreBits % 8) == 0 &&
1827 "Store size in bits must be a multiple of 8");
1828 unsigned ABIAlignment = DAG.getDataLayout().getABITypeAlignment(
1829 ST->getMemoryVT().getTypeForEVT(*DCI.DAG.getContext()));
1830 unsigned Alignment = ST->getAlignment();
1831 if (Alignment >= ABIAlignment) {
1832 break;
1833 }
1834
1835 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(ST->getValue())) {
1836 if (LD->hasNUsesOfValue(1, 0) && ST->getMemoryVT() == LD->getMemoryVT() &&
1837 LD->getAlignment() == Alignment &&
1838 !LD->isVolatile() && !LD->isIndexed() &&
1839 Chain.reachesChainWithoutSideEffects(SDValue(LD, 1))) {
1840 bool isTail = isInTailCallPosition(DAG, ST, Chain);
1841 return DAG.getMemmove(Chain, dl, ST->getBasePtr(),
1842 LD->getBasePtr(),
1843 DAG.getConstant(StoreBits/8, dl, MVT::i32),
1844 Alignment, false, isTail, ST->getPointerInfo(),
1845 LD->getPointerInfo());
1846 }
1847 }
1848 break;
1849 }
1850 }
1851 return SDValue();
1852 }
1853
computeKnownBitsForTargetNode(const SDValue Op,APInt & KnownZero,APInt & KnownOne,const SelectionDAG & DAG,unsigned Depth) const1854 void XCoreTargetLowering::computeKnownBitsForTargetNode(const SDValue Op,
1855 APInt &KnownZero,
1856 APInt &KnownOne,
1857 const SelectionDAG &DAG,
1858 unsigned Depth) const {
1859 KnownZero = KnownOne = APInt(KnownZero.getBitWidth(), 0);
1860 switch (Op.getOpcode()) {
1861 default: break;
1862 case XCoreISD::LADD:
1863 case XCoreISD::LSUB:
1864 if (Op.getResNo() == 1) {
1865 // Top bits of carry / borrow are clear.
1866 KnownZero = APInt::getHighBitsSet(KnownZero.getBitWidth(),
1867 KnownZero.getBitWidth() - 1);
1868 }
1869 break;
1870 case ISD::INTRINSIC_W_CHAIN:
1871 {
1872 unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
1873 switch (IntNo) {
1874 case Intrinsic::xcore_getts:
1875 // High bits are known to be zero.
1876 KnownZero = APInt::getHighBitsSet(KnownZero.getBitWidth(),
1877 KnownZero.getBitWidth() - 16);
1878 break;
1879 case Intrinsic::xcore_int:
1880 case Intrinsic::xcore_inct:
1881 // High bits are known to be zero.
1882 KnownZero = APInt::getHighBitsSet(KnownZero.getBitWidth(),
1883 KnownZero.getBitWidth() - 8);
1884 break;
1885 case Intrinsic::xcore_testct:
1886 // Result is either 0 or 1.
1887 KnownZero = APInt::getHighBitsSet(KnownZero.getBitWidth(),
1888 KnownZero.getBitWidth() - 1);
1889 break;
1890 case Intrinsic::xcore_testwct:
1891 // Result is in the range 0 - 4.
1892 KnownZero = APInt::getHighBitsSet(KnownZero.getBitWidth(),
1893 KnownZero.getBitWidth() - 3);
1894 break;
1895 }
1896 }
1897 break;
1898 }
1899 }
1900
1901 //===----------------------------------------------------------------------===//
1902 // Addressing mode description hooks
1903 //===----------------------------------------------------------------------===//
1904
isImmUs(int64_t val)1905 static inline bool isImmUs(int64_t val)
1906 {
1907 return (val >= 0 && val <= 11);
1908 }
1909
isImmUs2(int64_t val)1910 static inline bool isImmUs2(int64_t val)
1911 {
1912 return (val%2 == 0 && isImmUs(val/2));
1913 }
1914
isImmUs4(int64_t val)1915 static inline bool isImmUs4(int64_t val)
1916 {
1917 return (val%4 == 0 && isImmUs(val/4));
1918 }
1919
1920 /// isLegalAddressingMode - Return true if the addressing mode represented
1921 /// by AM is legal for this target, for a load/store of the specified type.
isLegalAddressingMode(const DataLayout & DL,const AddrMode & AM,Type * Ty,unsigned AS) const1922 bool XCoreTargetLowering::isLegalAddressingMode(const DataLayout &DL,
1923 const AddrMode &AM, Type *Ty,
1924 unsigned AS) const {
1925 if (Ty->getTypeID() == Type::VoidTyID)
1926 return AM.Scale == 0 && isImmUs(AM.BaseOffs) && isImmUs4(AM.BaseOffs);
1927
1928 unsigned Size = DL.getTypeAllocSize(Ty);
1929 if (AM.BaseGV) {
1930 return Size >= 4 && !AM.HasBaseReg && AM.Scale == 0 &&
1931 AM.BaseOffs%4 == 0;
1932 }
1933
1934 switch (Size) {
1935 case 1:
1936 // reg + imm
1937 if (AM.Scale == 0) {
1938 return isImmUs(AM.BaseOffs);
1939 }
1940 // reg + reg
1941 return AM.Scale == 1 && AM.BaseOffs == 0;
1942 case 2:
1943 case 3:
1944 // reg + imm
1945 if (AM.Scale == 0) {
1946 return isImmUs2(AM.BaseOffs);
1947 }
1948 // reg + reg<<1
1949 return AM.Scale == 2 && AM.BaseOffs == 0;
1950 default:
1951 // reg + imm
1952 if (AM.Scale == 0) {
1953 return isImmUs4(AM.BaseOffs);
1954 }
1955 // reg + reg<<2
1956 return AM.Scale == 4 && AM.BaseOffs == 0;
1957 }
1958 }
1959
1960 //===----------------------------------------------------------------------===//
1961 // XCore Inline Assembly Support
1962 //===----------------------------------------------------------------------===//
1963
1964 std::pair<unsigned, const TargetRegisterClass *>
getRegForInlineAsmConstraint(const TargetRegisterInfo * TRI,StringRef Constraint,MVT VT) const1965 XCoreTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI,
1966 StringRef Constraint,
1967 MVT VT) const {
1968 if (Constraint.size() == 1) {
1969 switch (Constraint[0]) {
1970 default : break;
1971 case 'r':
1972 return std::make_pair(0U, &XCore::GRRegsRegClass);
1973 }
1974 }
1975 // Use the default implementation in TargetLowering to convert the register
1976 // constraint into a member of a register class.
1977 return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
1978 }
1979