1 //===--- SemaExpr.cpp - Semantic Analysis for Expressions -----------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 //  This file implements semantic analysis for expressions.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "clang/Sema/SemaInternal.h"
15 #include "TreeTransform.h"
16 #include "clang/AST/ASTConsumer.h"
17 #include "clang/AST/ASTContext.h"
18 #include "clang/AST/ASTLambda.h"
19 #include "clang/AST/ASTMutationListener.h"
20 #include "clang/AST/CXXInheritance.h"
21 #include "clang/AST/DeclObjC.h"
22 #include "clang/AST/DeclTemplate.h"
23 #include "clang/AST/EvaluatedExprVisitor.h"
24 #include "clang/AST/Expr.h"
25 #include "clang/AST/ExprCXX.h"
26 #include "clang/AST/ExprObjC.h"
27 #include "clang/AST/ExprOpenMP.h"
28 #include "clang/AST/RecursiveASTVisitor.h"
29 #include "clang/AST/TypeLoc.h"
30 #include "clang/Basic/PartialDiagnostic.h"
31 #include "clang/Basic/SourceManager.h"
32 #include "clang/Basic/TargetInfo.h"
33 #include "clang/Lex/LiteralSupport.h"
34 #include "clang/Lex/Preprocessor.h"
35 #include "clang/Sema/AnalysisBasedWarnings.h"
36 #include "clang/Sema/DeclSpec.h"
37 #include "clang/Sema/DelayedDiagnostic.h"
38 #include "clang/Sema/Designator.h"
39 #include "clang/Sema/Initialization.h"
40 #include "clang/Sema/Lookup.h"
41 #include "clang/Sema/ParsedTemplate.h"
42 #include "clang/Sema/Scope.h"
43 #include "clang/Sema/ScopeInfo.h"
44 #include "clang/Sema/SemaFixItUtils.h"
45 #include "clang/Sema/Template.h"
46 #include "llvm/Support/ConvertUTF.h"
47 using namespace clang;
48 using namespace sema;
49 
50 /// \brief Determine whether the use of this declaration is valid, without
51 /// emitting diagnostics.
CanUseDecl(NamedDecl * D)52 bool Sema::CanUseDecl(NamedDecl *D) {
53   // See if this is an auto-typed variable whose initializer we are parsing.
54   if (ParsingInitForAutoVars.count(D))
55     return false;
56 
57   // See if this is a deleted function.
58   if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
59     if (FD->isDeleted())
60       return false;
61 
62     // If the function has a deduced return type, and we can't deduce it,
63     // then we can't use it either.
64     if (getLangOpts().CPlusPlus14 && FD->getReturnType()->isUndeducedType() &&
65         DeduceReturnType(FD, SourceLocation(), /*Diagnose*/ false))
66       return false;
67   }
68 
69   // See if this function is unavailable.
70   if (D->getAvailability() == AR_Unavailable &&
71       cast<Decl>(CurContext)->getAvailability() != AR_Unavailable)
72     return false;
73 
74   return true;
75 }
76 
DiagnoseUnusedOfDecl(Sema & S,NamedDecl * D,SourceLocation Loc)77 static void DiagnoseUnusedOfDecl(Sema &S, NamedDecl *D, SourceLocation Loc) {
78   // Warn if this is used but marked unused.
79   if (D->hasAttr<UnusedAttr>()) {
80     const Decl *DC = cast_or_null<Decl>(S.getCurObjCLexicalContext());
81     if (DC && !DC->hasAttr<UnusedAttr>())
82       S.Diag(Loc, diag::warn_used_but_marked_unused) << D->getDeclName();
83   }
84 }
85 
HasRedeclarationWithoutAvailabilityInCategory(const Decl * D)86 static bool HasRedeclarationWithoutAvailabilityInCategory(const Decl *D) {
87   const auto *OMD = dyn_cast<ObjCMethodDecl>(D);
88   if (!OMD)
89     return false;
90   const ObjCInterfaceDecl *OID = OMD->getClassInterface();
91   if (!OID)
92     return false;
93 
94   for (const ObjCCategoryDecl *Cat : OID->visible_categories())
95     if (ObjCMethodDecl *CatMeth =
96             Cat->getMethod(OMD->getSelector(), OMD->isInstanceMethod()))
97       if (!CatMeth->hasAttr<AvailabilityAttr>())
98         return true;
99   return false;
100 }
101 
102 static AvailabilityResult
DiagnoseAvailabilityOfDecl(Sema & S,NamedDecl * D,SourceLocation Loc,const ObjCInterfaceDecl * UnknownObjCClass,bool ObjCPropertyAccess)103 DiagnoseAvailabilityOfDecl(Sema &S, NamedDecl *D, SourceLocation Loc,
104                            const ObjCInterfaceDecl *UnknownObjCClass,
105                            bool ObjCPropertyAccess) {
106   // See if this declaration is unavailable or deprecated.
107   std::string Message;
108   AvailabilityResult Result = D->getAvailability(&Message);
109 
110   // For typedefs, if the typedef declaration appears available look
111   // to the underlying type to see if it is more restrictive.
112   while (const TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(D)) {
113     if (Result == AR_Available) {
114       if (const TagType *TT = TD->getUnderlyingType()->getAs<TagType>()) {
115         D = TT->getDecl();
116         Result = D->getAvailability(&Message);
117         continue;
118       }
119     }
120     break;
121   }
122 
123   // Forward class declarations get their attributes from their definition.
124   if (ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(D)) {
125     if (IDecl->getDefinition()) {
126       D = IDecl->getDefinition();
127       Result = D->getAvailability(&Message);
128     }
129   }
130 
131   if (const EnumConstantDecl *ECD = dyn_cast<EnumConstantDecl>(D))
132     if (Result == AR_Available) {
133       const DeclContext *DC = ECD->getDeclContext();
134       if (const EnumDecl *TheEnumDecl = dyn_cast<EnumDecl>(DC))
135         Result = TheEnumDecl->getAvailability(&Message);
136     }
137 
138   const ObjCPropertyDecl *ObjCPDecl = nullptr;
139   if (Result == AR_Deprecated || Result == AR_Unavailable ||
140       AR_NotYetIntroduced) {
141     if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(D)) {
142       if (const ObjCPropertyDecl *PD = MD->findPropertyDecl()) {
143         AvailabilityResult PDeclResult = PD->getAvailability(nullptr);
144         if (PDeclResult == Result)
145           ObjCPDecl = PD;
146       }
147     }
148   }
149 
150   switch (Result) {
151     case AR_Available:
152       break;
153 
154     case AR_Deprecated:
155       if (S.getCurContextAvailability() != AR_Deprecated)
156         S.EmitAvailabilityWarning(Sema::AD_Deprecation,
157                                   D, Message, Loc, UnknownObjCClass, ObjCPDecl,
158                                   ObjCPropertyAccess);
159       break;
160 
161     case AR_NotYetIntroduced: {
162       // Don't do this for enums, they can't be redeclared.
163       if (isa<EnumConstantDecl>(D) || isa<EnumDecl>(D))
164         break;
165 
166       bool Warn = !D->getAttr<AvailabilityAttr>()->isInherited();
167       // Objective-C method declarations in categories are not modelled as
168       // redeclarations, so manually look for a redeclaration in a category
169       // if necessary.
170       if (Warn && HasRedeclarationWithoutAvailabilityInCategory(D))
171         Warn = false;
172       // In general, D will point to the most recent redeclaration. However,
173       // for `@class A;` decls, this isn't true -- manually go through the
174       // redecl chain in that case.
175       if (Warn && isa<ObjCInterfaceDecl>(D))
176         for (Decl *Redecl = D->getMostRecentDecl(); Redecl && Warn;
177              Redecl = Redecl->getPreviousDecl())
178           if (!Redecl->hasAttr<AvailabilityAttr>() ||
179               Redecl->getAttr<AvailabilityAttr>()->isInherited())
180             Warn = false;
181 
182       if (Warn)
183         S.EmitAvailabilityWarning(Sema::AD_Partial, D, Message, Loc,
184                                   UnknownObjCClass, ObjCPDecl,
185                                   ObjCPropertyAccess);
186       break;
187     }
188 
189     case AR_Unavailable:
190       if (S.getCurContextAvailability() != AR_Unavailable)
191         S.EmitAvailabilityWarning(Sema::AD_Unavailable,
192                                   D, Message, Loc, UnknownObjCClass, ObjCPDecl,
193                                   ObjCPropertyAccess);
194       break;
195 
196     }
197     return Result;
198 }
199 
200 /// \brief Emit a note explaining that this function is deleted.
NoteDeletedFunction(FunctionDecl * Decl)201 void Sema::NoteDeletedFunction(FunctionDecl *Decl) {
202   assert(Decl->isDeleted());
203 
204   CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Decl);
205 
206   if (Method && Method->isDeleted() && Method->isDefaulted()) {
207     // If the method was explicitly defaulted, point at that declaration.
208     if (!Method->isImplicit())
209       Diag(Decl->getLocation(), diag::note_implicitly_deleted);
210 
211     // Try to diagnose why this special member function was implicitly
212     // deleted. This might fail, if that reason no longer applies.
213     CXXSpecialMember CSM = getSpecialMember(Method);
214     if (CSM != CXXInvalid)
215       ShouldDeleteSpecialMember(Method, CSM, /*Diagnose=*/true);
216 
217     return;
218   }
219 
220   if (CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(Decl)) {
221     if (CXXConstructorDecl *BaseCD =
222             const_cast<CXXConstructorDecl*>(CD->getInheritedConstructor())) {
223       Diag(Decl->getLocation(), diag::note_inherited_deleted_here);
224       if (BaseCD->isDeleted()) {
225         NoteDeletedFunction(BaseCD);
226       } else {
227         // FIXME: An explanation of why exactly it can't be inherited
228         // would be nice.
229         Diag(BaseCD->getLocation(), diag::note_cannot_inherit);
230       }
231       return;
232     }
233   }
234 
235   Diag(Decl->getLocation(), diag::note_availability_specified_here)
236     << Decl << true;
237 }
238 
239 /// \brief Determine whether a FunctionDecl was ever declared with an
240 /// explicit storage class.
hasAnyExplicitStorageClass(const FunctionDecl * D)241 static bool hasAnyExplicitStorageClass(const FunctionDecl *D) {
242   for (auto I : D->redecls()) {
243     if (I->getStorageClass() != SC_None)
244       return true;
245   }
246   return false;
247 }
248 
249 /// \brief Check whether we're in an extern inline function and referring to a
250 /// variable or function with internal linkage (C11 6.7.4p3).
251 ///
252 /// This is only a warning because we used to silently accept this code, but
253 /// in many cases it will not behave correctly. This is not enabled in C++ mode
254 /// because the restriction language is a bit weaker (C++11 [basic.def.odr]p6)
255 /// and so while there may still be user mistakes, most of the time we can't
256 /// prove that there are errors.
diagnoseUseOfInternalDeclInInlineFunction(Sema & S,const NamedDecl * D,SourceLocation Loc)257 static void diagnoseUseOfInternalDeclInInlineFunction(Sema &S,
258                                                       const NamedDecl *D,
259                                                       SourceLocation Loc) {
260   // This is disabled under C++; there are too many ways for this to fire in
261   // contexts where the warning is a false positive, or where it is technically
262   // correct but benign.
263   if (S.getLangOpts().CPlusPlus)
264     return;
265 
266   // Check if this is an inlined function or method.
267   FunctionDecl *Current = S.getCurFunctionDecl();
268   if (!Current)
269     return;
270   if (!Current->isInlined())
271     return;
272   if (!Current->isExternallyVisible())
273     return;
274 
275   // Check if the decl has internal linkage.
276   if (D->getFormalLinkage() != InternalLinkage)
277     return;
278 
279   // Downgrade from ExtWarn to Extension if
280   //  (1) the supposedly external inline function is in the main file,
281   //      and probably won't be included anywhere else.
282   //  (2) the thing we're referencing is a pure function.
283   //  (3) the thing we're referencing is another inline function.
284   // This last can give us false negatives, but it's better than warning on
285   // wrappers for simple C library functions.
286   const FunctionDecl *UsedFn = dyn_cast<FunctionDecl>(D);
287   bool DowngradeWarning = S.getSourceManager().isInMainFile(Loc);
288   if (!DowngradeWarning && UsedFn)
289     DowngradeWarning = UsedFn->isInlined() || UsedFn->hasAttr<ConstAttr>();
290 
291   S.Diag(Loc, DowngradeWarning ? diag::ext_internal_in_extern_inline_quiet
292                                : diag::ext_internal_in_extern_inline)
293     << /*IsVar=*/!UsedFn << D;
294 
295   S.MaybeSuggestAddingStaticToDecl(Current);
296 
297   S.Diag(D->getCanonicalDecl()->getLocation(), diag::note_entity_declared_at)
298       << D;
299 }
300 
MaybeSuggestAddingStaticToDecl(const FunctionDecl * Cur)301 void Sema::MaybeSuggestAddingStaticToDecl(const FunctionDecl *Cur) {
302   const FunctionDecl *First = Cur->getFirstDecl();
303 
304   // Suggest "static" on the function, if possible.
305   if (!hasAnyExplicitStorageClass(First)) {
306     SourceLocation DeclBegin = First->getSourceRange().getBegin();
307     Diag(DeclBegin, diag::note_convert_inline_to_static)
308       << Cur << FixItHint::CreateInsertion(DeclBegin, "static ");
309   }
310 }
311 
312 /// \brief Determine whether the use of this declaration is valid, and
313 /// emit any corresponding diagnostics.
314 ///
315 /// This routine diagnoses various problems with referencing
316 /// declarations that can occur when using a declaration. For example,
317 /// it might warn if a deprecated or unavailable declaration is being
318 /// used, or produce an error (and return true) if a C++0x deleted
319 /// function is being used.
320 ///
321 /// \returns true if there was an error (this declaration cannot be
322 /// referenced), false otherwise.
323 ///
DiagnoseUseOfDecl(NamedDecl * D,SourceLocation Loc,const ObjCInterfaceDecl * UnknownObjCClass,bool ObjCPropertyAccess)324 bool Sema::DiagnoseUseOfDecl(NamedDecl *D, SourceLocation Loc,
325                              const ObjCInterfaceDecl *UnknownObjCClass,
326                              bool ObjCPropertyAccess) {
327   if (getLangOpts().CPlusPlus && isa<FunctionDecl>(D)) {
328     // If there were any diagnostics suppressed by template argument deduction,
329     // emit them now.
330     auto Pos = SuppressedDiagnostics.find(D->getCanonicalDecl());
331     if (Pos != SuppressedDiagnostics.end()) {
332       for (const PartialDiagnosticAt &Suppressed : Pos->second)
333         Diag(Suppressed.first, Suppressed.second);
334 
335       // Clear out the list of suppressed diagnostics, so that we don't emit
336       // them again for this specialization. However, we don't obsolete this
337       // entry from the table, because we want to avoid ever emitting these
338       // diagnostics again.
339       Pos->second.clear();
340     }
341 
342     // C++ [basic.start.main]p3:
343     //   The function 'main' shall not be used within a program.
344     if (cast<FunctionDecl>(D)->isMain())
345       Diag(Loc, diag::ext_main_used);
346   }
347 
348   // See if this is an auto-typed variable whose initializer we are parsing.
349   if (ParsingInitForAutoVars.count(D)) {
350     const AutoType *AT = cast<VarDecl>(D)->getType()->getContainedAutoType();
351 
352     Diag(Loc, diag::err_auto_variable_cannot_appear_in_own_initializer)
353       << D->getDeclName() << (unsigned)AT->getKeyword();
354     return true;
355   }
356 
357   // See if this is a deleted function.
358   if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
359     if (FD->isDeleted()) {
360       Diag(Loc, diag::err_deleted_function_use);
361       NoteDeletedFunction(FD);
362       return true;
363     }
364 
365     // If the function has a deduced return type, and we can't deduce it,
366     // then we can't use it either.
367     if (getLangOpts().CPlusPlus14 && FD->getReturnType()->isUndeducedType() &&
368         DeduceReturnType(FD, Loc))
369       return true;
370   }
371   DiagnoseAvailabilityOfDecl(*this, D, Loc, UnknownObjCClass,
372                              ObjCPropertyAccess);
373 
374   DiagnoseUnusedOfDecl(*this, D, Loc);
375 
376   diagnoseUseOfInternalDeclInInlineFunction(*this, D, Loc);
377 
378   return false;
379 }
380 
381 /// \brief Retrieve the message suffix that should be added to a
382 /// diagnostic complaining about the given function being deleted or
383 /// unavailable.
getDeletedOrUnavailableSuffix(const FunctionDecl * FD)384 std::string Sema::getDeletedOrUnavailableSuffix(const FunctionDecl *FD) {
385   std::string Message;
386   if (FD->getAvailability(&Message))
387     return ": " + Message;
388 
389   return std::string();
390 }
391 
392 /// DiagnoseSentinelCalls - This routine checks whether a call or
393 /// message-send is to a declaration with the sentinel attribute, and
394 /// if so, it checks that the requirements of the sentinel are
395 /// satisfied.
DiagnoseSentinelCalls(NamedDecl * D,SourceLocation Loc,ArrayRef<Expr * > Args)396 void Sema::DiagnoseSentinelCalls(NamedDecl *D, SourceLocation Loc,
397                                  ArrayRef<Expr *> Args) {
398   const SentinelAttr *attr = D->getAttr<SentinelAttr>();
399   if (!attr)
400     return;
401 
402   // The number of formal parameters of the declaration.
403   unsigned numFormalParams;
404 
405   // The kind of declaration.  This is also an index into a %select in
406   // the diagnostic.
407   enum CalleeType { CT_Function, CT_Method, CT_Block } calleeType;
408 
409   if (ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(D)) {
410     numFormalParams = MD->param_size();
411     calleeType = CT_Method;
412   } else if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
413     numFormalParams = FD->param_size();
414     calleeType = CT_Function;
415   } else if (isa<VarDecl>(D)) {
416     QualType type = cast<ValueDecl>(D)->getType();
417     const FunctionType *fn = nullptr;
418     if (const PointerType *ptr = type->getAs<PointerType>()) {
419       fn = ptr->getPointeeType()->getAs<FunctionType>();
420       if (!fn) return;
421       calleeType = CT_Function;
422     } else if (const BlockPointerType *ptr = type->getAs<BlockPointerType>()) {
423       fn = ptr->getPointeeType()->castAs<FunctionType>();
424       calleeType = CT_Block;
425     } else {
426       return;
427     }
428 
429     if (const FunctionProtoType *proto = dyn_cast<FunctionProtoType>(fn)) {
430       numFormalParams = proto->getNumParams();
431     } else {
432       numFormalParams = 0;
433     }
434   } else {
435     return;
436   }
437 
438   // "nullPos" is the number of formal parameters at the end which
439   // effectively count as part of the variadic arguments.  This is
440   // useful if you would prefer to not have *any* formal parameters,
441   // but the language forces you to have at least one.
442   unsigned nullPos = attr->getNullPos();
443   assert((nullPos == 0 || nullPos == 1) && "invalid null position on sentinel");
444   numFormalParams = (nullPos > numFormalParams ? 0 : numFormalParams - nullPos);
445 
446   // The number of arguments which should follow the sentinel.
447   unsigned numArgsAfterSentinel = attr->getSentinel();
448 
449   // If there aren't enough arguments for all the formal parameters,
450   // the sentinel, and the args after the sentinel, complain.
451   if (Args.size() < numFormalParams + numArgsAfterSentinel + 1) {
452     Diag(Loc, diag::warn_not_enough_argument) << D->getDeclName();
453     Diag(D->getLocation(), diag::note_sentinel_here) << int(calleeType);
454     return;
455   }
456 
457   // Otherwise, find the sentinel expression.
458   Expr *sentinelExpr = Args[Args.size() - numArgsAfterSentinel - 1];
459   if (!sentinelExpr) return;
460   if (sentinelExpr->isValueDependent()) return;
461   if (Context.isSentinelNullExpr(sentinelExpr)) return;
462 
463   // Pick a reasonable string to insert.  Optimistically use 'nil', 'nullptr',
464   // or 'NULL' if those are actually defined in the context.  Only use
465   // 'nil' for ObjC methods, where it's much more likely that the
466   // variadic arguments form a list of object pointers.
467   SourceLocation MissingNilLoc
468     = getLocForEndOfToken(sentinelExpr->getLocEnd());
469   std::string NullValue;
470   if (calleeType == CT_Method && PP.isMacroDefined("nil"))
471     NullValue = "nil";
472   else if (getLangOpts().CPlusPlus11)
473     NullValue = "nullptr";
474   else if (PP.isMacroDefined("NULL"))
475     NullValue = "NULL";
476   else
477     NullValue = "(void*) 0";
478 
479   if (MissingNilLoc.isInvalid())
480     Diag(Loc, diag::warn_missing_sentinel) << int(calleeType);
481   else
482     Diag(MissingNilLoc, diag::warn_missing_sentinel)
483       << int(calleeType)
484       << FixItHint::CreateInsertion(MissingNilLoc, ", " + NullValue);
485   Diag(D->getLocation(), diag::note_sentinel_here) << int(calleeType);
486 }
487 
getExprRange(Expr * E) const488 SourceRange Sema::getExprRange(Expr *E) const {
489   return E ? E->getSourceRange() : SourceRange();
490 }
491 
492 //===----------------------------------------------------------------------===//
493 //  Standard Promotions and Conversions
494 //===----------------------------------------------------------------------===//
495 
496 /// DefaultFunctionArrayConversion (C99 6.3.2.1p3, C99 6.3.2.1p4).
DefaultFunctionArrayConversion(Expr * E,bool Diagnose)497 ExprResult Sema::DefaultFunctionArrayConversion(Expr *E, bool Diagnose) {
498   // Handle any placeholder expressions which made it here.
499   if (E->getType()->isPlaceholderType()) {
500     ExprResult result = CheckPlaceholderExpr(E);
501     if (result.isInvalid()) return ExprError();
502     E = result.get();
503   }
504 
505   QualType Ty = E->getType();
506   assert(!Ty.isNull() && "DefaultFunctionArrayConversion - missing type");
507 
508   if (Ty->isFunctionType()) {
509     // If we are here, we are not calling a function but taking
510     // its address (which is not allowed in OpenCL v1.0 s6.8.a.3).
511     if (getLangOpts().OpenCL) {
512       if (Diagnose)
513         Diag(E->getExprLoc(), diag::err_opencl_taking_function_address);
514       return ExprError();
515     }
516 
517     if (auto *DRE = dyn_cast<DeclRefExpr>(E->IgnoreParenCasts()))
518       if (auto *FD = dyn_cast<FunctionDecl>(DRE->getDecl()))
519         if (!checkAddressOfFunctionIsAvailable(FD, Diagnose, E->getExprLoc()))
520           return ExprError();
521 
522     E = ImpCastExprToType(E, Context.getPointerType(Ty),
523                           CK_FunctionToPointerDecay).get();
524   } else if (Ty->isArrayType()) {
525     // In C90 mode, arrays only promote to pointers if the array expression is
526     // an lvalue.  The relevant legalese is C90 6.2.2.1p3: "an lvalue that has
527     // type 'array of type' is converted to an expression that has type 'pointer
528     // to type'...".  In C99 this was changed to: C99 6.3.2.1p3: "an expression
529     // that has type 'array of type' ...".  The relevant change is "an lvalue"
530     // (C90) to "an expression" (C99).
531     //
532     // C++ 4.2p1:
533     // An lvalue or rvalue of type "array of N T" or "array of unknown bound of
534     // T" can be converted to an rvalue of type "pointer to T".
535     //
536     if (getLangOpts().C99 || getLangOpts().CPlusPlus || E->isLValue())
537       E = ImpCastExprToType(E, Context.getArrayDecayedType(Ty),
538                             CK_ArrayToPointerDecay).get();
539   }
540   return E;
541 }
542 
CheckForNullPointerDereference(Sema & S,Expr * E)543 static void CheckForNullPointerDereference(Sema &S, Expr *E) {
544   // Check to see if we are dereferencing a null pointer.  If so,
545   // and if not volatile-qualified, this is undefined behavior that the
546   // optimizer will delete, so warn about it.  People sometimes try to use this
547   // to get a deterministic trap and are surprised by clang's behavior.  This
548   // only handles the pattern "*null", which is a very syntactic check.
549   if (UnaryOperator *UO = dyn_cast<UnaryOperator>(E->IgnoreParenCasts()))
550     if (UO->getOpcode() == UO_Deref &&
551         UO->getSubExpr()->IgnoreParenCasts()->
552           isNullPointerConstant(S.Context, Expr::NPC_ValueDependentIsNotNull) &&
553         !UO->getType().isVolatileQualified()) {
554     S.DiagRuntimeBehavior(UO->getOperatorLoc(), UO,
555                           S.PDiag(diag::warn_indirection_through_null)
556                             << UO->getSubExpr()->getSourceRange());
557     S.DiagRuntimeBehavior(UO->getOperatorLoc(), UO,
558                         S.PDiag(diag::note_indirection_through_null));
559   }
560 }
561 
DiagnoseDirectIsaAccess(Sema & S,const ObjCIvarRefExpr * OIRE,SourceLocation AssignLoc,const Expr * RHS)562 static void DiagnoseDirectIsaAccess(Sema &S, const ObjCIvarRefExpr *OIRE,
563                                     SourceLocation AssignLoc,
564                                     const Expr* RHS) {
565   const ObjCIvarDecl *IV = OIRE->getDecl();
566   if (!IV)
567     return;
568 
569   DeclarationName MemberName = IV->getDeclName();
570   IdentifierInfo *Member = MemberName.getAsIdentifierInfo();
571   if (!Member || !Member->isStr("isa"))
572     return;
573 
574   const Expr *Base = OIRE->getBase();
575   QualType BaseType = Base->getType();
576   if (OIRE->isArrow())
577     BaseType = BaseType->getPointeeType();
578   if (const ObjCObjectType *OTy = BaseType->getAs<ObjCObjectType>())
579     if (ObjCInterfaceDecl *IDecl = OTy->getInterface()) {
580       ObjCInterfaceDecl *ClassDeclared = nullptr;
581       ObjCIvarDecl *IV = IDecl->lookupInstanceVariable(Member, ClassDeclared);
582       if (!ClassDeclared->getSuperClass()
583           && (*ClassDeclared->ivar_begin()) == IV) {
584         if (RHS) {
585           NamedDecl *ObjectSetClass =
586             S.LookupSingleName(S.TUScope,
587                                &S.Context.Idents.get("object_setClass"),
588                                SourceLocation(), S.LookupOrdinaryName);
589           if (ObjectSetClass) {
590             SourceLocation RHSLocEnd = S.getLocForEndOfToken(RHS->getLocEnd());
591             S.Diag(OIRE->getExprLoc(), diag::warn_objc_isa_assign) <<
592             FixItHint::CreateInsertion(OIRE->getLocStart(), "object_setClass(") <<
593             FixItHint::CreateReplacement(SourceRange(OIRE->getOpLoc(),
594                                                      AssignLoc), ",") <<
595             FixItHint::CreateInsertion(RHSLocEnd, ")");
596           }
597           else
598             S.Diag(OIRE->getLocation(), diag::warn_objc_isa_assign);
599         } else {
600           NamedDecl *ObjectGetClass =
601             S.LookupSingleName(S.TUScope,
602                                &S.Context.Idents.get("object_getClass"),
603                                SourceLocation(), S.LookupOrdinaryName);
604           if (ObjectGetClass)
605             S.Diag(OIRE->getExprLoc(), diag::warn_objc_isa_use) <<
606             FixItHint::CreateInsertion(OIRE->getLocStart(), "object_getClass(") <<
607             FixItHint::CreateReplacement(
608                                          SourceRange(OIRE->getOpLoc(),
609                                                      OIRE->getLocEnd()), ")");
610           else
611             S.Diag(OIRE->getLocation(), diag::warn_objc_isa_use);
612         }
613         S.Diag(IV->getLocation(), diag::note_ivar_decl);
614       }
615     }
616 }
617 
DefaultLvalueConversion(Expr * E)618 ExprResult Sema::DefaultLvalueConversion(Expr *E) {
619   // Handle any placeholder expressions which made it here.
620   if (E->getType()->isPlaceholderType()) {
621     ExprResult result = CheckPlaceholderExpr(E);
622     if (result.isInvalid()) return ExprError();
623     E = result.get();
624   }
625 
626   // C++ [conv.lval]p1:
627   //   A glvalue of a non-function, non-array type T can be
628   //   converted to a prvalue.
629   if (!E->isGLValue()) return E;
630 
631   QualType T = E->getType();
632   assert(!T.isNull() && "r-value conversion on typeless expression?");
633 
634   // We don't want to throw lvalue-to-rvalue casts on top of
635   // expressions of certain types in C++.
636   if (getLangOpts().CPlusPlus &&
637       (E->getType() == Context.OverloadTy ||
638        T->isDependentType() ||
639        T->isRecordType()))
640     return E;
641 
642   // The C standard is actually really unclear on this point, and
643   // DR106 tells us what the result should be but not why.  It's
644   // generally best to say that void types just doesn't undergo
645   // lvalue-to-rvalue at all.  Note that expressions of unqualified
646   // 'void' type are never l-values, but qualified void can be.
647   if (T->isVoidType())
648     return E;
649 
650   // OpenCL usually rejects direct accesses to values of 'half' type.
651   if (getLangOpts().OpenCL && !getOpenCLOptions().cl_khr_fp16 &&
652       T->isHalfType()) {
653     Diag(E->getExprLoc(), diag::err_opencl_half_load_store)
654       << 0 << T;
655     return ExprError();
656   }
657 
658   CheckForNullPointerDereference(*this, E);
659   if (const ObjCIsaExpr *OISA = dyn_cast<ObjCIsaExpr>(E->IgnoreParenCasts())) {
660     NamedDecl *ObjectGetClass = LookupSingleName(TUScope,
661                                      &Context.Idents.get("object_getClass"),
662                                      SourceLocation(), LookupOrdinaryName);
663     if (ObjectGetClass)
664       Diag(E->getExprLoc(), diag::warn_objc_isa_use) <<
665         FixItHint::CreateInsertion(OISA->getLocStart(), "object_getClass(") <<
666         FixItHint::CreateReplacement(
667                     SourceRange(OISA->getOpLoc(), OISA->getIsaMemberLoc()), ")");
668     else
669       Diag(E->getExprLoc(), diag::warn_objc_isa_use);
670   }
671   else if (const ObjCIvarRefExpr *OIRE =
672             dyn_cast<ObjCIvarRefExpr>(E->IgnoreParenCasts()))
673     DiagnoseDirectIsaAccess(*this, OIRE, SourceLocation(), /* Expr*/nullptr);
674 
675   // C++ [conv.lval]p1:
676   //   [...] If T is a non-class type, the type of the prvalue is the
677   //   cv-unqualified version of T. Otherwise, the type of the
678   //   rvalue is T.
679   //
680   // C99 6.3.2.1p2:
681   //   If the lvalue has qualified type, the value has the unqualified
682   //   version of the type of the lvalue; otherwise, the value has the
683   //   type of the lvalue.
684   if (T.hasQualifiers())
685     T = T.getUnqualifiedType();
686 
687   // Under the MS ABI, lock down the inheritance model now.
688   if (T->isMemberPointerType() &&
689       Context.getTargetInfo().getCXXABI().isMicrosoft())
690     (void)isCompleteType(E->getExprLoc(), T);
691 
692   UpdateMarkingForLValueToRValue(E);
693 
694   // Loading a __weak object implicitly retains the value, so we need a cleanup to
695   // balance that.
696   if (getLangOpts().ObjCAutoRefCount &&
697       E->getType().getObjCLifetime() == Qualifiers::OCL_Weak)
698     ExprNeedsCleanups = true;
699 
700   ExprResult Res = ImplicitCastExpr::Create(Context, T, CK_LValueToRValue, E,
701                                             nullptr, VK_RValue);
702 
703   // C11 6.3.2.1p2:
704   //   ... if the lvalue has atomic type, the value has the non-atomic version
705   //   of the type of the lvalue ...
706   if (const AtomicType *Atomic = T->getAs<AtomicType>()) {
707     T = Atomic->getValueType().getUnqualifiedType();
708     Res = ImplicitCastExpr::Create(Context, T, CK_AtomicToNonAtomic, Res.get(),
709                                    nullptr, VK_RValue);
710   }
711 
712   return Res;
713 }
714 
DefaultFunctionArrayLvalueConversion(Expr * E,bool Diagnose)715 ExprResult Sema::DefaultFunctionArrayLvalueConversion(Expr *E, bool Diagnose) {
716   ExprResult Res = DefaultFunctionArrayConversion(E, Diagnose);
717   if (Res.isInvalid())
718     return ExprError();
719   Res = DefaultLvalueConversion(Res.get());
720   if (Res.isInvalid())
721     return ExprError();
722   return Res;
723 }
724 
725 /// CallExprUnaryConversions - a special case of an unary conversion
726 /// performed on a function designator of a call expression.
CallExprUnaryConversions(Expr * E)727 ExprResult Sema::CallExprUnaryConversions(Expr *E) {
728   QualType Ty = E->getType();
729   ExprResult Res = E;
730   // Only do implicit cast for a function type, but not for a pointer
731   // to function type.
732   if (Ty->isFunctionType()) {
733     Res = ImpCastExprToType(E, Context.getPointerType(Ty),
734                             CK_FunctionToPointerDecay).get();
735     if (Res.isInvalid())
736       return ExprError();
737   }
738   Res = DefaultLvalueConversion(Res.get());
739   if (Res.isInvalid())
740     return ExprError();
741   return Res.get();
742 }
743 
744 /// UsualUnaryConversions - Performs various conversions that are common to most
745 /// operators (C99 6.3). The conversions of array and function types are
746 /// sometimes suppressed. For example, the array->pointer conversion doesn't
747 /// apply if the array is an argument to the sizeof or address (&) operators.
748 /// In these instances, this routine should *not* be called.
UsualUnaryConversions(Expr * E)749 ExprResult Sema::UsualUnaryConversions(Expr *E) {
750   // First, convert to an r-value.
751   ExprResult Res = DefaultFunctionArrayLvalueConversion(E);
752   if (Res.isInvalid())
753     return ExprError();
754   E = Res.get();
755 
756   QualType Ty = E->getType();
757   assert(!Ty.isNull() && "UsualUnaryConversions - missing type");
758 
759   // Half FP have to be promoted to float unless it is natively supported
760   if (Ty->isHalfType() && !getLangOpts().NativeHalfType)
761     return ImpCastExprToType(Res.get(), Context.FloatTy, CK_FloatingCast);
762 
763   // Try to perform integral promotions if the object has a theoretically
764   // promotable type.
765   if (Ty->isIntegralOrUnscopedEnumerationType()) {
766     // C99 6.3.1.1p2:
767     //
768     //   The following may be used in an expression wherever an int or
769     //   unsigned int may be used:
770     //     - an object or expression with an integer type whose integer
771     //       conversion rank is less than or equal to the rank of int
772     //       and unsigned int.
773     //     - A bit-field of type _Bool, int, signed int, or unsigned int.
774     //
775     //   If an int can represent all values of the original type, the
776     //   value is converted to an int; otherwise, it is converted to an
777     //   unsigned int. These are called the integer promotions. All
778     //   other types are unchanged by the integer promotions.
779 
780     QualType PTy = Context.isPromotableBitField(E);
781     if (!PTy.isNull()) {
782       E = ImpCastExprToType(E, PTy, CK_IntegralCast).get();
783       return E;
784     }
785     if (Ty->isPromotableIntegerType()) {
786       QualType PT = Context.getPromotedIntegerType(Ty);
787       E = ImpCastExprToType(E, PT, CK_IntegralCast).get();
788       return E;
789     }
790   }
791   return E;
792 }
793 
794 /// DefaultArgumentPromotion (C99 6.5.2.2p6). Used for function calls that
795 /// do not have a prototype. Arguments that have type float or __fp16
796 /// are promoted to double. All other argument types are converted by
797 /// UsualUnaryConversions().
DefaultArgumentPromotion(Expr * E)798 ExprResult Sema::DefaultArgumentPromotion(Expr *E) {
799   QualType Ty = E->getType();
800   assert(!Ty.isNull() && "DefaultArgumentPromotion - missing type");
801 
802   ExprResult Res = UsualUnaryConversions(E);
803   if (Res.isInvalid())
804     return ExprError();
805   E = Res.get();
806 
807   // If this is a 'float' or '__fp16' (CVR qualified or typedef) promote to
808   // double.
809   const BuiltinType *BTy = Ty->getAs<BuiltinType>();
810   if (BTy && (BTy->getKind() == BuiltinType::Half ||
811               BTy->getKind() == BuiltinType::Float))
812     E = ImpCastExprToType(E, Context.DoubleTy, CK_FloatingCast).get();
813 
814   // C++ performs lvalue-to-rvalue conversion as a default argument
815   // promotion, even on class types, but note:
816   //   C++11 [conv.lval]p2:
817   //     When an lvalue-to-rvalue conversion occurs in an unevaluated
818   //     operand or a subexpression thereof the value contained in the
819   //     referenced object is not accessed. Otherwise, if the glvalue
820   //     has a class type, the conversion copy-initializes a temporary
821   //     of type T from the glvalue and the result of the conversion
822   //     is a prvalue for the temporary.
823   // FIXME: add some way to gate this entire thing for correctness in
824   // potentially potentially evaluated contexts.
825   if (getLangOpts().CPlusPlus && E->isGLValue() && !isUnevaluatedContext()) {
826     ExprResult Temp = PerformCopyInitialization(
827                        InitializedEntity::InitializeTemporary(E->getType()),
828                                                 E->getExprLoc(), E);
829     if (Temp.isInvalid())
830       return ExprError();
831     E = Temp.get();
832   }
833 
834   return E;
835 }
836 
837 /// Determine the degree of POD-ness for an expression.
838 /// Incomplete types are considered POD, since this check can be performed
839 /// when we're in an unevaluated context.
isValidVarArgType(const QualType & Ty)840 Sema::VarArgKind Sema::isValidVarArgType(const QualType &Ty) {
841   if (Ty->isIncompleteType()) {
842     // C++11 [expr.call]p7:
843     //   After these conversions, if the argument does not have arithmetic,
844     //   enumeration, pointer, pointer to member, or class type, the program
845     //   is ill-formed.
846     //
847     // Since we've already performed array-to-pointer and function-to-pointer
848     // decay, the only such type in C++ is cv void. This also handles
849     // initializer lists as variadic arguments.
850     if (Ty->isVoidType())
851       return VAK_Invalid;
852 
853     if (Ty->isObjCObjectType())
854       return VAK_Invalid;
855     return VAK_Valid;
856   }
857 
858   if (Ty.isCXX98PODType(Context))
859     return VAK_Valid;
860 
861   // C++11 [expr.call]p7:
862   //   Passing a potentially-evaluated argument of class type (Clause 9)
863   //   having a non-trivial copy constructor, a non-trivial move constructor,
864   //   or a non-trivial destructor, with no corresponding parameter,
865   //   is conditionally-supported with implementation-defined semantics.
866   if (getLangOpts().CPlusPlus11 && !Ty->isDependentType())
867     if (CXXRecordDecl *Record = Ty->getAsCXXRecordDecl())
868       if (!Record->hasNonTrivialCopyConstructor() &&
869           !Record->hasNonTrivialMoveConstructor() &&
870           !Record->hasNonTrivialDestructor())
871         return VAK_ValidInCXX11;
872 
873   if (getLangOpts().ObjCAutoRefCount && Ty->isObjCLifetimeType())
874     return VAK_Valid;
875 
876   if (Ty->isObjCObjectType())
877     return VAK_Invalid;
878 
879   if (getLangOpts().MSVCCompat)
880     return VAK_MSVCUndefined;
881 
882   // FIXME: In C++11, these cases are conditionally-supported, meaning we're
883   // permitted to reject them. We should consider doing so.
884   return VAK_Undefined;
885 }
886 
checkVariadicArgument(const Expr * E,VariadicCallType CT)887 void Sema::checkVariadicArgument(const Expr *E, VariadicCallType CT) {
888   // Don't allow one to pass an Objective-C interface to a vararg.
889   const QualType &Ty = E->getType();
890   VarArgKind VAK = isValidVarArgType(Ty);
891 
892   // Complain about passing non-POD types through varargs.
893   switch (VAK) {
894   case VAK_ValidInCXX11:
895     DiagRuntimeBehavior(
896         E->getLocStart(), nullptr,
897         PDiag(diag::warn_cxx98_compat_pass_non_pod_arg_to_vararg)
898           << Ty << CT);
899     // Fall through.
900   case VAK_Valid:
901     if (Ty->isRecordType()) {
902       // This is unlikely to be what the user intended. If the class has a
903       // 'c_str' member function, the user probably meant to call that.
904       DiagRuntimeBehavior(E->getLocStart(), nullptr,
905                           PDiag(diag::warn_pass_class_arg_to_vararg)
906                             << Ty << CT << hasCStrMethod(E) << ".c_str()");
907     }
908     break;
909 
910   case VAK_Undefined:
911   case VAK_MSVCUndefined:
912     DiagRuntimeBehavior(
913         E->getLocStart(), nullptr,
914         PDiag(diag::warn_cannot_pass_non_pod_arg_to_vararg)
915           << getLangOpts().CPlusPlus11 << Ty << CT);
916     break;
917 
918   case VAK_Invalid:
919     if (Ty->isObjCObjectType())
920       DiagRuntimeBehavior(
921           E->getLocStart(), nullptr,
922           PDiag(diag::err_cannot_pass_objc_interface_to_vararg)
923             << Ty << CT);
924     else
925       Diag(E->getLocStart(), diag::err_cannot_pass_to_vararg)
926         << isa<InitListExpr>(E) << Ty << CT;
927     break;
928   }
929 }
930 
931 /// DefaultVariadicArgumentPromotion - Like DefaultArgumentPromotion, but
932 /// will create a trap if the resulting type is not a POD type.
DefaultVariadicArgumentPromotion(Expr * E,VariadicCallType CT,FunctionDecl * FDecl)933 ExprResult Sema::DefaultVariadicArgumentPromotion(Expr *E, VariadicCallType CT,
934                                                   FunctionDecl *FDecl) {
935   if (const BuiltinType *PlaceholderTy = E->getType()->getAsPlaceholderType()) {
936     // Strip the unbridged-cast placeholder expression off, if applicable.
937     if (PlaceholderTy->getKind() == BuiltinType::ARCUnbridgedCast &&
938         (CT == VariadicMethod ||
939          (FDecl && FDecl->hasAttr<CFAuditedTransferAttr>()))) {
940       E = stripARCUnbridgedCast(E);
941 
942     // Otherwise, do normal placeholder checking.
943     } else {
944       ExprResult ExprRes = CheckPlaceholderExpr(E);
945       if (ExprRes.isInvalid())
946         return ExprError();
947       E = ExprRes.get();
948     }
949   }
950 
951   ExprResult ExprRes = DefaultArgumentPromotion(E);
952   if (ExprRes.isInvalid())
953     return ExprError();
954   E = ExprRes.get();
955 
956   // Diagnostics regarding non-POD argument types are
957   // emitted along with format string checking in Sema::CheckFunctionCall().
958   if (isValidVarArgType(E->getType()) == VAK_Undefined) {
959     // Turn this into a trap.
960     CXXScopeSpec SS;
961     SourceLocation TemplateKWLoc;
962     UnqualifiedId Name;
963     Name.setIdentifier(PP.getIdentifierInfo("__builtin_trap"),
964                        E->getLocStart());
965     ExprResult TrapFn = ActOnIdExpression(TUScope, SS, TemplateKWLoc,
966                                           Name, true, false);
967     if (TrapFn.isInvalid())
968       return ExprError();
969 
970     ExprResult Call = ActOnCallExpr(TUScope, TrapFn.get(),
971                                     E->getLocStart(), None,
972                                     E->getLocEnd());
973     if (Call.isInvalid())
974       return ExprError();
975 
976     ExprResult Comma = ActOnBinOp(TUScope, E->getLocStart(), tok::comma,
977                                   Call.get(), E);
978     if (Comma.isInvalid())
979       return ExprError();
980     return Comma.get();
981   }
982 
983   if (!getLangOpts().CPlusPlus &&
984       RequireCompleteType(E->getExprLoc(), E->getType(),
985                           diag::err_call_incomplete_argument))
986     return ExprError();
987 
988   return E;
989 }
990 
991 /// \brief Converts an integer to complex float type.  Helper function of
992 /// UsualArithmeticConversions()
993 ///
994 /// \return false if the integer expression is an integer type and is
995 /// successfully converted to the complex type.
handleIntegerToComplexFloatConversion(Sema & S,ExprResult & IntExpr,ExprResult & ComplexExpr,QualType IntTy,QualType ComplexTy,bool SkipCast)996 static bool handleIntegerToComplexFloatConversion(Sema &S, ExprResult &IntExpr,
997                                                   ExprResult &ComplexExpr,
998                                                   QualType IntTy,
999                                                   QualType ComplexTy,
1000                                                   bool SkipCast) {
1001   if (IntTy->isComplexType() || IntTy->isRealFloatingType()) return true;
1002   if (SkipCast) return false;
1003   if (IntTy->isIntegerType()) {
1004     QualType fpTy = cast<ComplexType>(ComplexTy)->getElementType();
1005     IntExpr = S.ImpCastExprToType(IntExpr.get(), fpTy, CK_IntegralToFloating);
1006     IntExpr = S.ImpCastExprToType(IntExpr.get(), ComplexTy,
1007                                   CK_FloatingRealToComplex);
1008   } else {
1009     assert(IntTy->isComplexIntegerType());
1010     IntExpr = S.ImpCastExprToType(IntExpr.get(), ComplexTy,
1011                                   CK_IntegralComplexToFloatingComplex);
1012   }
1013   return false;
1014 }
1015 
1016 /// \brief Handle arithmetic conversion with complex types.  Helper function of
1017 /// UsualArithmeticConversions()
handleComplexFloatConversion(Sema & S,ExprResult & LHS,ExprResult & RHS,QualType LHSType,QualType RHSType,bool IsCompAssign)1018 static QualType handleComplexFloatConversion(Sema &S, ExprResult &LHS,
1019                                              ExprResult &RHS, QualType LHSType,
1020                                              QualType RHSType,
1021                                              bool IsCompAssign) {
1022   // if we have an integer operand, the result is the complex type.
1023   if (!handleIntegerToComplexFloatConversion(S, RHS, LHS, RHSType, LHSType,
1024                                              /*skipCast*/false))
1025     return LHSType;
1026   if (!handleIntegerToComplexFloatConversion(S, LHS, RHS, LHSType, RHSType,
1027                                              /*skipCast*/IsCompAssign))
1028     return RHSType;
1029 
1030   // This handles complex/complex, complex/float, or float/complex.
1031   // When both operands are complex, the shorter operand is converted to the
1032   // type of the longer, and that is the type of the result. This corresponds
1033   // to what is done when combining two real floating-point operands.
1034   // The fun begins when size promotion occur across type domains.
1035   // From H&S 6.3.4: When one operand is complex and the other is a real
1036   // floating-point type, the less precise type is converted, within it's
1037   // real or complex domain, to the precision of the other type. For example,
1038   // when combining a "long double" with a "double _Complex", the
1039   // "double _Complex" is promoted to "long double _Complex".
1040 
1041   // Compute the rank of the two types, regardless of whether they are complex.
1042   int Order = S.Context.getFloatingTypeOrder(LHSType, RHSType);
1043 
1044   auto *LHSComplexType = dyn_cast<ComplexType>(LHSType);
1045   auto *RHSComplexType = dyn_cast<ComplexType>(RHSType);
1046   QualType LHSElementType =
1047       LHSComplexType ? LHSComplexType->getElementType() : LHSType;
1048   QualType RHSElementType =
1049       RHSComplexType ? RHSComplexType->getElementType() : RHSType;
1050 
1051   QualType ResultType = S.Context.getComplexType(LHSElementType);
1052   if (Order < 0) {
1053     // Promote the precision of the LHS if not an assignment.
1054     ResultType = S.Context.getComplexType(RHSElementType);
1055     if (!IsCompAssign) {
1056       if (LHSComplexType)
1057         LHS =
1058             S.ImpCastExprToType(LHS.get(), ResultType, CK_FloatingComplexCast);
1059       else
1060         LHS = S.ImpCastExprToType(LHS.get(), RHSElementType, CK_FloatingCast);
1061     }
1062   } else if (Order > 0) {
1063     // Promote the precision of the RHS.
1064     if (RHSComplexType)
1065       RHS = S.ImpCastExprToType(RHS.get(), ResultType, CK_FloatingComplexCast);
1066     else
1067       RHS = S.ImpCastExprToType(RHS.get(), LHSElementType, CK_FloatingCast);
1068   }
1069   return ResultType;
1070 }
1071 
1072 /// \brief Hande arithmetic conversion from integer to float.  Helper function
1073 /// of UsualArithmeticConversions()
handleIntToFloatConversion(Sema & S,ExprResult & FloatExpr,ExprResult & IntExpr,QualType FloatTy,QualType IntTy,bool ConvertFloat,bool ConvertInt)1074 static QualType handleIntToFloatConversion(Sema &S, ExprResult &FloatExpr,
1075                                            ExprResult &IntExpr,
1076                                            QualType FloatTy, QualType IntTy,
1077                                            bool ConvertFloat, bool ConvertInt) {
1078   if (IntTy->isIntegerType()) {
1079     if (ConvertInt)
1080       // Convert intExpr to the lhs floating point type.
1081       IntExpr = S.ImpCastExprToType(IntExpr.get(), FloatTy,
1082                                     CK_IntegralToFloating);
1083     return FloatTy;
1084   }
1085 
1086   // Convert both sides to the appropriate complex float.
1087   assert(IntTy->isComplexIntegerType());
1088   QualType result = S.Context.getComplexType(FloatTy);
1089 
1090   // _Complex int -> _Complex float
1091   if (ConvertInt)
1092     IntExpr = S.ImpCastExprToType(IntExpr.get(), result,
1093                                   CK_IntegralComplexToFloatingComplex);
1094 
1095   // float -> _Complex float
1096   if (ConvertFloat)
1097     FloatExpr = S.ImpCastExprToType(FloatExpr.get(), result,
1098                                     CK_FloatingRealToComplex);
1099 
1100   return result;
1101 }
1102 
1103 /// \brief Handle arithmethic conversion with floating point types.  Helper
1104 /// function of UsualArithmeticConversions()
handleFloatConversion(Sema & S,ExprResult & LHS,ExprResult & RHS,QualType LHSType,QualType RHSType,bool IsCompAssign)1105 static QualType handleFloatConversion(Sema &S, ExprResult &LHS,
1106                                       ExprResult &RHS, QualType LHSType,
1107                                       QualType RHSType, bool IsCompAssign) {
1108   bool LHSFloat = LHSType->isRealFloatingType();
1109   bool RHSFloat = RHSType->isRealFloatingType();
1110 
1111   // If we have two real floating types, convert the smaller operand
1112   // to the bigger result.
1113   if (LHSFloat && RHSFloat) {
1114     int order = S.Context.getFloatingTypeOrder(LHSType, RHSType);
1115     if (order > 0) {
1116       RHS = S.ImpCastExprToType(RHS.get(), LHSType, CK_FloatingCast);
1117       return LHSType;
1118     }
1119 
1120     assert(order < 0 && "illegal float comparison");
1121     if (!IsCompAssign)
1122       LHS = S.ImpCastExprToType(LHS.get(), RHSType, CK_FloatingCast);
1123     return RHSType;
1124   }
1125 
1126   if (LHSFloat) {
1127     // Half FP has to be promoted to float unless it is natively supported
1128     if (LHSType->isHalfType() && !S.getLangOpts().NativeHalfType)
1129       LHSType = S.Context.FloatTy;
1130 
1131     return handleIntToFloatConversion(S, LHS, RHS, LHSType, RHSType,
1132                                       /*convertFloat=*/!IsCompAssign,
1133                                       /*convertInt=*/ true);
1134   }
1135   assert(RHSFloat);
1136   return handleIntToFloatConversion(S, RHS, LHS, RHSType, LHSType,
1137                                     /*convertInt=*/ true,
1138                                     /*convertFloat=*/!IsCompAssign);
1139 }
1140 
1141 typedef ExprResult PerformCastFn(Sema &S, Expr *operand, QualType toType);
1142 
1143 namespace {
1144 /// These helper callbacks are placed in an anonymous namespace to
1145 /// permit their use as function template parameters.
doIntegralCast(Sema & S,Expr * op,QualType toType)1146 ExprResult doIntegralCast(Sema &S, Expr *op, QualType toType) {
1147   return S.ImpCastExprToType(op, toType, CK_IntegralCast);
1148 }
1149 
doComplexIntegralCast(Sema & S,Expr * op,QualType toType)1150 ExprResult doComplexIntegralCast(Sema &S, Expr *op, QualType toType) {
1151   return S.ImpCastExprToType(op, S.Context.getComplexType(toType),
1152                              CK_IntegralComplexCast);
1153 }
1154 }
1155 
1156 /// \brief Handle integer arithmetic conversions.  Helper function of
1157 /// UsualArithmeticConversions()
1158 template <PerformCastFn doLHSCast, PerformCastFn doRHSCast>
handleIntegerConversion(Sema & S,ExprResult & LHS,ExprResult & RHS,QualType LHSType,QualType RHSType,bool IsCompAssign)1159 static QualType handleIntegerConversion(Sema &S, ExprResult &LHS,
1160                                         ExprResult &RHS, QualType LHSType,
1161                                         QualType RHSType, bool IsCompAssign) {
1162   // The rules for this case are in C99 6.3.1.8
1163   int order = S.Context.getIntegerTypeOrder(LHSType, RHSType);
1164   bool LHSSigned = LHSType->hasSignedIntegerRepresentation();
1165   bool RHSSigned = RHSType->hasSignedIntegerRepresentation();
1166   if (LHSSigned == RHSSigned) {
1167     // Same signedness; use the higher-ranked type
1168     if (order >= 0) {
1169       RHS = (*doRHSCast)(S, RHS.get(), LHSType);
1170       return LHSType;
1171     } else if (!IsCompAssign)
1172       LHS = (*doLHSCast)(S, LHS.get(), RHSType);
1173     return RHSType;
1174   } else if (order != (LHSSigned ? 1 : -1)) {
1175     // The unsigned type has greater than or equal rank to the
1176     // signed type, so use the unsigned type
1177     if (RHSSigned) {
1178       RHS = (*doRHSCast)(S, RHS.get(), LHSType);
1179       return LHSType;
1180     } else if (!IsCompAssign)
1181       LHS = (*doLHSCast)(S, LHS.get(), RHSType);
1182     return RHSType;
1183   } else if (S.Context.getIntWidth(LHSType) != S.Context.getIntWidth(RHSType)) {
1184     // The two types are different widths; if we are here, that
1185     // means the signed type is larger than the unsigned type, so
1186     // use the signed type.
1187     if (LHSSigned) {
1188       RHS = (*doRHSCast)(S, RHS.get(), LHSType);
1189       return LHSType;
1190     } else if (!IsCompAssign)
1191       LHS = (*doLHSCast)(S, LHS.get(), RHSType);
1192     return RHSType;
1193   } else {
1194     // The signed type is higher-ranked than the unsigned type,
1195     // but isn't actually any bigger (like unsigned int and long
1196     // on most 32-bit systems).  Use the unsigned type corresponding
1197     // to the signed type.
1198     QualType result =
1199       S.Context.getCorrespondingUnsignedType(LHSSigned ? LHSType : RHSType);
1200     RHS = (*doRHSCast)(S, RHS.get(), result);
1201     if (!IsCompAssign)
1202       LHS = (*doLHSCast)(S, LHS.get(), result);
1203     return result;
1204   }
1205 }
1206 
1207 /// \brief Handle conversions with GCC complex int extension.  Helper function
1208 /// of UsualArithmeticConversions()
handleComplexIntConversion(Sema & S,ExprResult & LHS,ExprResult & RHS,QualType LHSType,QualType RHSType,bool IsCompAssign)1209 static QualType handleComplexIntConversion(Sema &S, ExprResult &LHS,
1210                                            ExprResult &RHS, QualType LHSType,
1211                                            QualType RHSType,
1212                                            bool IsCompAssign) {
1213   const ComplexType *LHSComplexInt = LHSType->getAsComplexIntegerType();
1214   const ComplexType *RHSComplexInt = RHSType->getAsComplexIntegerType();
1215 
1216   if (LHSComplexInt && RHSComplexInt) {
1217     QualType LHSEltType = LHSComplexInt->getElementType();
1218     QualType RHSEltType = RHSComplexInt->getElementType();
1219     QualType ScalarType =
1220       handleIntegerConversion<doComplexIntegralCast, doComplexIntegralCast>
1221         (S, LHS, RHS, LHSEltType, RHSEltType, IsCompAssign);
1222 
1223     return S.Context.getComplexType(ScalarType);
1224   }
1225 
1226   if (LHSComplexInt) {
1227     QualType LHSEltType = LHSComplexInt->getElementType();
1228     QualType ScalarType =
1229       handleIntegerConversion<doComplexIntegralCast, doIntegralCast>
1230         (S, LHS, RHS, LHSEltType, RHSType, IsCompAssign);
1231     QualType ComplexType = S.Context.getComplexType(ScalarType);
1232     RHS = S.ImpCastExprToType(RHS.get(), ComplexType,
1233                               CK_IntegralRealToComplex);
1234 
1235     return ComplexType;
1236   }
1237 
1238   assert(RHSComplexInt);
1239 
1240   QualType RHSEltType = RHSComplexInt->getElementType();
1241   QualType ScalarType =
1242     handleIntegerConversion<doIntegralCast, doComplexIntegralCast>
1243       (S, LHS, RHS, LHSType, RHSEltType, IsCompAssign);
1244   QualType ComplexType = S.Context.getComplexType(ScalarType);
1245 
1246   if (!IsCompAssign)
1247     LHS = S.ImpCastExprToType(LHS.get(), ComplexType,
1248                               CK_IntegralRealToComplex);
1249   return ComplexType;
1250 }
1251 
1252 /// UsualArithmeticConversions - Performs various conversions that are common to
1253 /// binary operators (C99 6.3.1.8). If both operands aren't arithmetic, this
1254 /// routine returns the first non-arithmetic type found. The client is
1255 /// responsible for emitting appropriate error diagnostics.
UsualArithmeticConversions(ExprResult & LHS,ExprResult & RHS,bool IsCompAssign)1256 QualType Sema::UsualArithmeticConversions(ExprResult &LHS, ExprResult &RHS,
1257                                           bool IsCompAssign) {
1258   if (!IsCompAssign) {
1259     LHS = UsualUnaryConversions(LHS.get());
1260     if (LHS.isInvalid())
1261       return QualType();
1262   }
1263 
1264   RHS = UsualUnaryConversions(RHS.get());
1265   if (RHS.isInvalid())
1266     return QualType();
1267 
1268   // For conversion purposes, we ignore any qualifiers.
1269   // For example, "const float" and "float" are equivalent.
1270   QualType LHSType =
1271     Context.getCanonicalType(LHS.get()->getType()).getUnqualifiedType();
1272   QualType RHSType =
1273     Context.getCanonicalType(RHS.get()->getType()).getUnqualifiedType();
1274 
1275   // For conversion purposes, we ignore any atomic qualifier on the LHS.
1276   if (const AtomicType *AtomicLHS = LHSType->getAs<AtomicType>())
1277     LHSType = AtomicLHS->getValueType();
1278 
1279   // If both types are identical, no conversion is needed.
1280   if (LHSType == RHSType)
1281     return LHSType;
1282 
1283   // If either side is a non-arithmetic type (e.g. a pointer), we are done.
1284   // The caller can deal with this (e.g. pointer + int).
1285   if (!LHSType->isArithmeticType() || !RHSType->isArithmeticType())
1286     return QualType();
1287 
1288   // Apply unary and bitfield promotions to the LHS's type.
1289   QualType LHSUnpromotedType = LHSType;
1290   if (LHSType->isPromotableIntegerType())
1291     LHSType = Context.getPromotedIntegerType(LHSType);
1292   QualType LHSBitfieldPromoteTy = Context.isPromotableBitField(LHS.get());
1293   if (!LHSBitfieldPromoteTy.isNull())
1294     LHSType = LHSBitfieldPromoteTy;
1295   if (LHSType != LHSUnpromotedType && !IsCompAssign)
1296     LHS = ImpCastExprToType(LHS.get(), LHSType, CK_IntegralCast);
1297 
1298   // If both types are identical, no conversion is needed.
1299   if (LHSType == RHSType)
1300     return LHSType;
1301 
1302   // At this point, we have two different arithmetic types.
1303 
1304   // Handle complex types first (C99 6.3.1.8p1).
1305   if (LHSType->isComplexType() || RHSType->isComplexType())
1306     return handleComplexFloatConversion(*this, LHS, RHS, LHSType, RHSType,
1307                                         IsCompAssign);
1308 
1309   // Now handle "real" floating types (i.e. float, double, long double).
1310   if (LHSType->isRealFloatingType() || RHSType->isRealFloatingType())
1311     return handleFloatConversion(*this, LHS, RHS, LHSType, RHSType,
1312                                  IsCompAssign);
1313 
1314   // Handle GCC complex int extension.
1315   if (LHSType->isComplexIntegerType() || RHSType->isComplexIntegerType())
1316     return handleComplexIntConversion(*this, LHS, RHS, LHSType, RHSType,
1317                                       IsCompAssign);
1318 
1319   // Finally, we have two differing integer types.
1320   return handleIntegerConversion<doIntegralCast, doIntegralCast>
1321            (*this, LHS, RHS, LHSType, RHSType, IsCompAssign);
1322 }
1323 
1324 
1325 //===----------------------------------------------------------------------===//
1326 //  Semantic Analysis for various Expression Types
1327 //===----------------------------------------------------------------------===//
1328 
1329 
1330 ExprResult
ActOnGenericSelectionExpr(SourceLocation KeyLoc,SourceLocation DefaultLoc,SourceLocation RParenLoc,Expr * ControllingExpr,ArrayRef<ParsedType> ArgTypes,ArrayRef<Expr * > ArgExprs)1331 Sema::ActOnGenericSelectionExpr(SourceLocation KeyLoc,
1332                                 SourceLocation DefaultLoc,
1333                                 SourceLocation RParenLoc,
1334                                 Expr *ControllingExpr,
1335                                 ArrayRef<ParsedType> ArgTypes,
1336                                 ArrayRef<Expr *> ArgExprs) {
1337   unsigned NumAssocs = ArgTypes.size();
1338   assert(NumAssocs == ArgExprs.size());
1339 
1340   TypeSourceInfo **Types = new TypeSourceInfo*[NumAssocs];
1341   for (unsigned i = 0; i < NumAssocs; ++i) {
1342     if (ArgTypes[i])
1343       (void) GetTypeFromParser(ArgTypes[i], &Types[i]);
1344     else
1345       Types[i] = nullptr;
1346   }
1347 
1348   ExprResult ER = CreateGenericSelectionExpr(KeyLoc, DefaultLoc, RParenLoc,
1349                                              ControllingExpr,
1350                                              llvm::makeArrayRef(Types, NumAssocs),
1351                                              ArgExprs);
1352   delete [] Types;
1353   return ER;
1354 }
1355 
1356 ExprResult
CreateGenericSelectionExpr(SourceLocation KeyLoc,SourceLocation DefaultLoc,SourceLocation RParenLoc,Expr * ControllingExpr,ArrayRef<TypeSourceInfo * > Types,ArrayRef<Expr * > Exprs)1357 Sema::CreateGenericSelectionExpr(SourceLocation KeyLoc,
1358                                  SourceLocation DefaultLoc,
1359                                  SourceLocation RParenLoc,
1360                                  Expr *ControllingExpr,
1361                                  ArrayRef<TypeSourceInfo *> Types,
1362                                  ArrayRef<Expr *> Exprs) {
1363   unsigned NumAssocs = Types.size();
1364   assert(NumAssocs == Exprs.size());
1365 
1366   // Decay and strip qualifiers for the controlling expression type, and handle
1367   // placeholder type replacement. See committee discussion from WG14 DR423.
1368   ExprResult R = DefaultFunctionArrayLvalueConversion(ControllingExpr);
1369   if (R.isInvalid())
1370     return ExprError();
1371   ControllingExpr = R.get();
1372 
1373   // The controlling expression is an unevaluated operand, so side effects are
1374   // likely unintended.
1375   if (ActiveTemplateInstantiations.empty() &&
1376       ControllingExpr->HasSideEffects(Context, false))
1377     Diag(ControllingExpr->getExprLoc(),
1378          diag::warn_side_effects_unevaluated_context);
1379 
1380   bool TypeErrorFound = false,
1381        IsResultDependent = ControllingExpr->isTypeDependent(),
1382        ContainsUnexpandedParameterPack
1383          = ControllingExpr->containsUnexpandedParameterPack();
1384 
1385   for (unsigned i = 0; i < NumAssocs; ++i) {
1386     if (Exprs[i]->containsUnexpandedParameterPack())
1387       ContainsUnexpandedParameterPack = true;
1388 
1389     if (Types[i]) {
1390       if (Types[i]->getType()->containsUnexpandedParameterPack())
1391         ContainsUnexpandedParameterPack = true;
1392 
1393       if (Types[i]->getType()->isDependentType()) {
1394         IsResultDependent = true;
1395       } else {
1396         // C11 6.5.1.1p2 "The type name in a generic association shall specify a
1397         // complete object type other than a variably modified type."
1398         unsigned D = 0;
1399         if (Types[i]->getType()->isIncompleteType())
1400           D = diag::err_assoc_type_incomplete;
1401         else if (!Types[i]->getType()->isObjectType())
1402           D = diag::err_assoc_type_nonobject;
1403         else if (Types[i]->getType()->isVariablyModifiedType())
1404           D = diag::err_assoc_type_variably_modified;
1405 
1406         if (D != 0) {
1407           Diag(Types[i]->getTypeLoc().getBeginLoc(), D)
1408             << Types[i]->getTypeLoc().getSourceRange()
1409             << Types[i]->getType();
1410           TypeErrorFound = true;
1411         }
1412 
1413         // C11 6.5.1.1p2 "No two generic associations in the same generic
1414         // selection shall specify compatible types."
1415         for (unsigned j = i+1; j < NumAssocs; ++j)
1416           if (Types[j] && !Types[j]->getType()->isDependentType() &&
1417               Context.typesAreCompatible(Types[i]->getType(),
1418                                          Types[j]->getType())) {
1419             Diag(Types[j]->getTypeLoc().getBeginLoc(),
1420                  diag::err_assoc_compatible_types)
1421               << Types[j]->getTypeLoc().getSourceRange()
1422               << Types[j]->getType()
1423               << Types[i]->getType();
1424             Diag(Types[i]->getTypeLoc().getBeginLoc(),
1425                  diag::note_compat_assoc)
1426               << Types[i]->getTypeLoc().getSourceRange()
1427               << Types[i]->getType();
1428             TypeErrorFound = true;
1429           }
1430       }
1431     }
1432   }
1433   if (TypeErrorFound)
1434     return ExprError();
1435 
1436   // If we determined that the generic selection is result-dependent, don't
1437   // try to compute the result expression.
1438   if (IsResultDependent)
1439     return new (Context) GenericSelectionExpr(
1440         Context, KeyLoc, ControllingExpr, Types, Exprs, DefaultLoc, RParenLoc,
1441         ContainsUnexpandedParameterPack);
1442 
1443   SmallVector<unsigned, 1> CompatIndices;
1444   unsigned DefaultIndex = -1U;
1445   for (unsigned i = 0; i < NumAssocs; ++i) {
1446     if (!Types[i])
1447       DefaultIndex = i;
1448     else if (Context.typesAreCompatible(ControllingExpr->getType(),
1449                                         Types[i]->getType()))
1450       CompatIndices.push_back(i);
1451   }
1452 
1453   // C11 6.5.1.1p2 "The controlling expression of a generic selection shall have
1454   // type compatible with at most one of the types named in its generic
1455   // association list."
1456   if (CompatIndices.size() > 1) {
1457     // We strip parens here because the controlling expression is typically
1458     // parenthesized in macro definitions.
1459     ControllingExpr = ControllingExpr->IgnoreParens();
1460     Diag(ControllingExpr->getLocStart(), diag::err_generic_sel_multi_match)
1461       << ControllingExpr->getSourceRange() << ControllingExpr->getType()
1462       << (unsigned) CompatIndices.size();
1463     for (unsigned I : CompatIndices) {
1464       Diag(Types[I]->getTypeLoc().getBeginLoc(),
1465            diag::note_compat_assoc)
1466         << Types[I]->getTypeLoc().getSourceRange()
1467         << Types[I]->getType();
1468     }
1469     return ExprError();
1470   }
1471 
1472   // C11 6.5.1.1p2 "If a generic selection has no default generic association,
1473   // its controlling expression shall have type compatible with exactly one of
1474   // the types named in its generic association list."
1475   if (DefaultIndex == -1U && CompatIndices.size() == 0) {
1476     // We strip parens here because the controlling expression is typically
1477     // parenthesized in macro definitions.
1478     ControllingExpr = ControllingExpr->IgnoreParens();
1479     Diag(ControllingExpr->getLocStart(), diag::err_generic_sel_no_match)
1480       << ControllingExpr->getSourceRange() << ControllingExpr->getType();
1481     return ExprError();
1482   }
1483 
1484   // C11 6.5.1.1p3 "If a generic selection has a generic association with a
1485   // type name that is compatible with the type of the controlling expression,
1486   // then the result expression of the generic selection is the expression
1487   // in that generic association. Otherwise, the result expression of the
1488   // generic selection is the expression in the default generic association."
1489   unsigned ResultIndex =
1490     CompatIndices.size() ? CompatIndices[0] : DefaultIndex;
1491 
1492   return new (Context) GenericSelectionExpr(
1493       Context, KeyLoc, ControllingExpr, Types, Exprs, DefaultLoc, RParenLoc,
1494       ContainsUnexpandedParameterPack, ResultIndex);
1495 }
1496 
1497 /// getUDSuffixLoc - Create a SourceLocation for a ud-suffix, given the
1498 /// location of the token and the offset of the ud-suffix within it.
getUDSuffixLoc(Sema & S,SourceLocation TokLoc,unsigned Offset)1499 static SourceLocation getUDSuffixLoc(Sema &S, SourceLocation TokLoc,
1500                                      unsigned Offset) {
1501   return Lexer::AdvanceToTokenCharacter(TokLoc, Offset, S.getSourceManager(),
1502                                         S.getLangOpts());
1503 }
1504 
1505 /// BuildCookedLiteralOperatorCall - A user-defined literal was found. Look up
1506 /// the corresponding cooked (non-raw) literal operator, and build a call to it.
BuildCookedLiteralOperatorCall(Sema & S,Scope * Scope,IdentifierInfo * UDSuffix,SourceLocation UDSuffixLoc,ArrayRef<Expr * > Args,SourceLocation LitEndLoc)1507 static ExprResult BuildCookedLiteralOperatorCall(Sema &S, Scope *Scope,
1508                                                  IdentifierInfo *UDSuffix,
1509                                                  SourceLocation UDSuffixLoc,
1510                                                  ArrayRef<Expr*> Args,
1511                                                  SourceLocation LitEndLoc) {
1512   assert(Args.size() <= 2 && "too many arguments for literal operator");
1513 
1514   QualType ArgTy[2];
1515   for (unsigned ArgIdx = 0; ArgIdx != Args.size(); ++ArgIdx) {
1516     ArgTy[ArgIdx] = Args[ArgIdx]->getType();
1517     if (ArgTy[ArgIdx]->isArrayType())
1518       ArgTy[ArgIdx] = S.Context.getArrayDecayedType(ArgTy[ArgIdx]);
1519   }
1520 
1521   DeclarationName OpName =
1522     S.Context.DeclarationNames.getCXXLiteralOperatorName(UDSuffix);
1523   DeclarationNameInfo OpNameInfo(OpName, UDSuffixLoc);
1524   OpNameInfo.setCXXLiteralOperatorNameLoc(UDSuffixLoc);
1525 
1526   LookupResult R(S, OpName, UDSuffixLoc, Sema::LookupOrdinaryName);
1527   if (S.LookupLiteralOperator(Scope, R, llvm::makeArrayRef(ArgTy, Args.size()),
1528                               /*AllowRaw*/false, /*AllowTemplate*/false,
1529                               /*AllowStringTemplate*/false) == Sema::LOLR_Error)
1530     return ExprError();
1531 
1532   return S.BuildLiteralOperatorCall(R, OpNameInfo, Args, LitEndLoc);
1533 }
1534 
1535 /// ActOnStringLiteral - The specified tokens were lexed as pasted string
1536 /// fragments (e.g. "foo" "bar" L"baz").  The result string has to handle string
1537 /// concatenation ([C99 5.1.1.2, translation phase #6]), so it may come from
1538 /// multiple tokens.  However, the common case is that StringToks points to one
1539 /// string.
1540 ///
1541 ExprResult
ActOnStringLiteral(ArrayRef<Token> StringToks,Scope * UDLScope)1542 Sema::ActOnStringLiteral(ArrayRef<Token> StringToks, Scope *UDLScope) {
1543   assert(!StringToks.empty() && "Must have at least one string!");
1544 
1545   StringLiteralParser Literal(StringToks, PP);
1546   if (Literal.hadError)
1547     return ExprError();
1548 
1549   SmallVector<SourceLocation, 4> StringTokLocs;
1550   for (const Token &Tok : StringToks)
1551     StringTokLocs.push_back(Tok.getLocation());
1552 
1553   QualType CharTy = Context.CharTy;
1554   StringLiteral::StringKind Kind = StringLiteral::Ascii;
1555   if (Literal.isWide()) {
1556     CharTy = Context.getWideCharType();
1557     Kind = StringLiteral::Wide;
1558   } else if (Literal.isUTF8()) {
1559     Kind = StringLiteral::UTF8;
1560   } else if (Literal.isUTF16()) {
1561     CharTy = Context.Char16Ty;
1562     Kind = StringLiteral::UTF16;
1563   } else if (Literal.isUTF32()) {
1564     CharTy = Context.Char32Ty;
1565     Kind = StringLiteral::UTF32;
1566   } else if (Literal.isPascal()) {
1567     CharTy = Context.UnsignedCharTy;
1568   }
1569 
1570   QualType CharTyConst = CharTy;
1571   // A C++ string literal has a const-qualified element type (C++ 2.13.4p1).
1572   if (getLangOpts().CPlusPlus || getLangOpts().ConstStrings)
1573     CharTyConst.addConst();
1574 
1575   // Get an array type for the string, according to C99 6.4.5.  This includes
1576   // the nul terminator character as well as the string length for pascal
1577   // strings.
1578   QualType StrTy = Context.getConstantArrayType(CharTyConst,
1579                                  llvm::APInt(32, Literal.GetNumStringChars()+1),
1580                                  ArrayType::Normal, 0);
1581 
1582   // OpenCL v1.1 s6.5.3: a string literal is in the constant address space.
1583   if (getLangOpts().OpenCL) {
1584     StrTy = Context.getAddrSpaceQualType(StrTy, LangAS::opencl_constant);
1585   }
1586 
1587   // Pass &StringTokLocs[0], StringTokLocs.size() to factory!
1588   StringLiteral *Lit = StringLiteral::Create(Context, Literal.GetString(),
1589                                              Kind, Literal.Pascal, StrTy,
1590                                              &StringTokLocs[0],
1591                                              StringTokLocs.size());
1592   if (Literal.getUDSuffix().empty())
1593     return Lit;
1594 
1595   // We're building a user-defined literal.
1596   IdentifierInfo *UDSuffix = &Context.Idents.get(Literal.getUDSuffix());
1597   SourceLocation UDSuffixLoc =
1598     getUDSuffixLoc(*this, StringTokLocs[Literal.getUDSuffixToken()],
1599                    Literal.getUDSuffixOffset());
1600 
1601   // Make sure we're allowed user-defined literals here.
1602   if (!UDLScope)
1603     return ExprError(Diag(UDSuffixLoc, diag::err_invalid_string_udl));
1604 
1605   // C++11 [lex.ext]p5: The literal L is treated as a call of the form
1606   //   operator "" X (str, len)
1607   QualType SizeType = Context.getSizeType();
1608 
1609   DeclarationName OpName =
1610     Context.DeclarationNames.getCXXLiteralOperatorName(UDSuffix);
1611   DeclarationNameInfo OpNameInfo(OpName, UDSuffixLoc);
1612   OpNameInfo.setCXXLiteralOperatorNameLoc(UDSuffixLoc);
1613 
1614   QualType ArgTy[] = {
1615     Context.getArrayDecayedType(StrTy), SizeType
1616   };
1617 
1618   LookupResult R(*this, OpName, UDSuffixLoc, LookupOrdinaryName);
1619   switch (LookupLiteralOperator(UDLScope, R, ArgTy,
1620                                 /*AllowRaw*/false, /*AllowTemplate*/false,
1621                                 /*AllowStringTemplate*/true)) {
1622 
1623   case LOLR_Cooked: {
1624     llvm::APInt Len(Context.getIntWidth(SizeType), Literal.GetNumStringChars());
1625     IntegerLiteral *LenArg = IntegerLiteral::Create(Context, Len, SizeType,
1626                                                     StringTokLocs[0]);
1627     Expr *Args[] = { Lit, LenArg };
1628 
1629     return BuildLiteralOperatorCall(R, OpNameInfo, Args, StringTokLocs.back());
1630   }
1631 
1632   case LOLR_StringTemplate: {
1633     TemplateArgumentListInfo ExplicitArgs;
1634 
1635     unsigned CharBits = Context.getIntWidth(CharTy);
1636     bool CharIsUnsigned = CharTy->isUnsignedIntegerType();
1637     llvm::APSInt Value(CharBits, CharIsUnsigned);
1638 
1639     TemplateArgument TypeArg(CharTy);
1640     TemplateArgumentLocInfo TypeArgInfo(Context.getTrivialTypeSourceInfo(CharTy));
1641     ExplicitArgs.addArgument(TemplateArgumentLoc(TypeArg, TypeArgInfo));
1642 
1643     for (unsigned I = 0, N = Lit->getLength(); I != N; ++I) {
1644       Value = Lit->getCodeUnit(I);
1645       TemplateArgument Arg(Context, Value, CharTy);
1646       TemplateArgumentLocInfo ArgInfo;
1647       ExplicitArgs.addArgument(TemplateArgumentLoc(Arg, ArgInfo));
1648     }
1649     return BuildLiteralOperatorCall(R, OpNameInfo, None, StringTokLocs.back(),
1650                                     &ExplicitArgs);
1651   }
1652   case LOLR_Raw:
1653   case LOLR_Template:
1654     llvm_unreachable("unexpected literal operator lookup result");
1655   case LOLR_Error:
1656     return ExprError();
1657   }
1658   llvm_unreachable("unexpected literal operator lookup result");
1659 }
1660 
1661 ExprResult
BuildDeclRefExpr(ValueDecl * D,QualType Ty,ExprValueKind VK,SourceLocation Loc,const CXXScopeSpec * SS)1662 Sema::BuildDeclRefExpr(ValueDecl *D, QualType Ty, ExprValueKind VK,
1663                        SourceLocation Loc,
1664                        const CXXScopeSpec *SS) {
1665   DeclarationNameInfo NameInfo(D->getDeclName(), Loc);
1666   return BuildDeclRefExpr(D, Ty, VK, NameInfo, SS);
1667 }
1668 
1669 /// BuildDeclRefExpr - Build an expression that references a
1670 /// declaration that does not require a closure capture.
1671 ExprResult
BuildDeclRefExpr(ValueDecl * D,QualType Ty,ExprValueKind VK,const DeclarationNameInfo & NameInfo,const CXXScopeSpec * SS,NamedDecl * FoundD,const TemplateArgumentListInfo * TemplateArgs)1672 Sema::BuildDeclRefExpr(ValueDecl *D, QualType Ty, ExprValueKind VK,
1673                        const DeclarationNameInfo &NameInfo,
1674                        const CXXScopeSpec *SS, NamedDecl *FoundD,
1675                        const TemplateArgumentListInfo *TemplateArgs) {
1676   if (getLangOpts().CUDA)
1677     if (const FunctionDecl *Caller = dyn_cast<FunctionDecl>(CurContext))
1678       if (const FunctionDecl *Callee = dyn_cast<FunctionDecl>(D)) {
1679         if (CheckCUDATarget(Caller, Callee)) {
1680           Diag(NameInfo.getLoc(), diag::err_ref_bad_target)
1681             << IdentifyCUDATarget(Callee) << D->getIdentifier()
1682             << IdentifyCUDATarget(Caller);
1683           Diag(D->getLocation(), diag::note_previous_decl)
1684             << D->getIdentifier();
1685           return ExprError();
1686         }
1687       }
1688 
1689   bool RefersToCapturedVariable =
1690       isa<VarDecl>(D) &&
1691       NeedToCaptureVariable(cast<VarDecl>(D), NameInfo.getLoc());
1692 
1693   DeclRefExpr *E;
1694   if (isa<VarTemplateSpecializationDecl>(D)) {
1695     VarTemplateSpecializationDecl *VarSpec =
1696         cast<VarTemplateSpecializationDecl>(D);
1697 
1698     E = DeclRefExpr::Create(Context, SS ? SS->getWithLocInContext(Context)
1699                                         : NestedNameSpecifierLoc(),
1700                             VarSpec->getTemplateKeywordLoc(), D,
1701                             RefersToCapturedVariable, NameInfo.getLoc(), Ty, VK,
1702                             FoundD, TemplateArgs);
1703   } else {
1704     assert(!TemplateArgs && "No template arguments for non-variable"
1705                             " template specialization references");
1706     E = DeclRefExpr::Create(Context, SS ? SS->getWithLocInContext(Context)
1707                                         : NestedNameSpecifierLoc(),
1708                             SourceLocation(), D, RefersToCapturedVariable,
1709                             NameInfo, Ty, VK, FoundD);
1710   }
1711 
1712   MarkDeclRefReferenced(E);
1713 
1714   if (getLangOpts().ObjCWeak && isa<VarDecl>(D) &&
1715       Ty.getObjCLifetime() == Qualifiers::OCL_Weak &&
1716       !Diags.isIgnored(diag::warn_arc_repeated_use_of_weak, E->getLocStart()))
1717       recordUseOfEvaluatedWeak(E);
1718 
1719   // Just in case we're building an illegal pointer-to-member.
1720   FieldDecl *FD = dyn_cast<FieldDecl>(D);
1721   if (FD && FD->isBitField())
1722     E->setObjectKind(OK_BitField);
1723 
1724   return E;
1725 }
1726 
1727 /// Decomposes the given name into a DeclarationNameInfo, its location, and
1728 /// possibly a list of template arguments.
1729 ///
1730 /// If this produces template arguments, it is permitted to call
1731 /// DecomposeTemplateName.
1732 ///
1733 /// This actually loses a lot of source location information for
1734 /// non-standard name kinds; we should consider preserving that in
1735 /// some way.
1736 void
DecomposeUnqualifiedId(const UnqualifiedId & Id,TemplateArgumentListInfo & Buffer,DeclarationNameInfo & NameInfo,const TemplateArgumentListInfo * & TemplateArgs)1737 Sema::DecomposeUnqualifiedId(const UnqualifiedId &Id,
1738                              TemplateArgumentListInfo &Buffer,
1739                              DeclarationNameInfo &NameInfo,
1740                              const TemplateArgumentListInfo *&TemplateArgs) {
1741   if (Id.getKind() == UnqualifiedId::IK_TemplateId) {
1742     Buffer.setLAngleLoc(Id.TemplateId->LAngleLoc);
1743     Buffer.setRAngleLoc(Id.TemplateId->RAngleLoc);
1744 
1745     ASTTemplateArgsPtr TemplateArgsPtr(Id.TemplateId->getTemplateArgs(),
1746                                        Id.TemplateId->NumArgs);
1747     translateTemplateArguments(TemplateArgsPtr, Buffer);
1748 
1749     TemplateName TName = Id.TemplateId->Template.get();
1750     SourceLocation TNameLoc = Id.TemplateId->TemplateNameLoc;
1751     NameInfo = Context.getNameForTemplate(TName, TNameLoc);
1752     TemplateArgs = &Buffer;
1753   } else {
1754     NameInfo = GetNameFromUnqualifiedId(Id);
1755     TemplateArgs = nullptr;
1756   }
1757 }
1758 
emitEmptyLookupTypoDiagnostic(const TypoCorrection & TC,Sema & SemaRef,const CXXScopeSpec & SS,DeclarationName Typo,SourceLocation TypoLoc,ArrayRef<Expr * > Args,unsigned DiagnosticID,unsigned DiagnosticSuggestID)1759 static void emitEmptyLookupTypoDiagnostic(
1760     const TypoCorrection &TC, Sema &SemaRef, const CXXScopeSpec &SS,
1761     DeclarationName Typo, SourceLocation TypoLoc, ArrayRef<Expr *> Args,
1762     unsigned DiagnosticID, unsigned DiagnosticSuggestID) {
1763   DeclContext *Ctx =
1764       SS.isEmpty() ? nullptr : SemaRef.computeDeclContext(SS, false);
1765   if (!TC) {
1766     // Emit a special diagnostic for failed member lookups.
1767     // FIXME: computing the declaration context might fail here (?)
1768     if (Ctx)
1769       SemaRef.Diag(TypoLoc, diag::err_no_member) << Typo << Ctx
1770                                                  << SS.getRange();
1771     else
1772       SemaRef.Diag(TypoLoc, DiagnosticID) << Typo;
1773     return;
1774   }
1775 
1776   std::string CorrectedStr = TC.getAsString(SemaRef.getLangOpts());
1777   bool DroppedSpecifier =
1778       TC.WillReplaceSpecifier() && Typo.getAsString() == CorrectedStr;
1779   unsigned NoteID =
1780       (TC.getCorrectionDecl() && isa<ImplicitParamDecl>(TC.getCorrectionDecl()))
1781           ? diag::note_implicit_param_decl
1782           : diag::note_previous_decl;
1783   if (!Ctx)
1784     SemaRef.diagnoseTypo(TC, SemaRef.PDiag(DiagnosticSuggestID) << Typo,
1785                          SemaRef.PDiag(NoteID));
1786   else
1787     SemaRef.diagnoseTypo(TC, SemaRef.PDiag(diag::err_no_member_suggest)
1788                                  << Typo << Ctx << DroppedSpecifier
1789                                  << SS.getRange(),
1790                          SemaRef.PDiag(NoteID));
1791 }
1792 
1793 /// Diagnose an empty lookup.
1794 ///
1795 /// \return false if new lookup candidates were found
1796 bool
DiagnoseEmptyLookup(Scope * S,CXXScopeSpec & SS,LookupResult & R,std::unique_ptr<CorrectionCandidateCallback> CCC,TemplateArgumentListInfo * ExplicitTemplateArgs,ArrayRef<Expr * > Args,TypoExpr ** Out)1797 Sema::DiagnoseEmptyLookup(Scope *S, CXXScopeSpec &SS, LookupResult &R,
1798                           std::unique_ptr<CorrectionCandidateCallback> CCC,
1799                           TemplateArgumentListInfo *ExplicitTemplateArgs,
1800                           ArrayRef<Expr *> Args, TypoExpr **Out) {
1801   DeclarationName Name = R.getLookupName();
1802 
1803   unsigned diagnostic = diag::err_undeclared_var_use;
1804   unsigned diagnostic_suggest = diag::err_undeclared_var_use_suggest;
1805   if (Name.getNameKind() == DeclarationName::CXXOperatorName ||
1806       Name.getNameKind() == DeclarationName::CXXLiteralOperatorName ||
1807       Name.getNameKind() == DeclarationName::CXXConversionFunctionName) {
1808     diagnostic = diag::err_undeclared_use;
1809     diagnostic_suggest = diag::err_undeclared_use_suggest;
1810   }
1811 
1812   // If the original lookup was an unqualified lookup, fake an
1813   // unqualified lookup.  This is useful when (for example) the
1814   // original lookup would not have found something because it was a
1815   // dependent name.
1816   DeclContext *DC = SS.isEmpty() ? CurContext : nullptr;
1817   while (DC) {
1818     if (isa<CXXRecordDecl>(DC)) {
1819       LookupQualifiedName(R, DC);
1820 
1821       if (!R.empty()) {
1822         // Don't give errors about ambiguities in this lookup.
1823         R.suppressDiagnostics();
1824 
1825         // During a default argument instantiation the CurContext points
1826         // to a CXXMethodDecl; but we can't apply a this-> fixit inside a
1827         // function parameter list, hence add an explicit check.
1828         bool isDefaultArgument = !ActiveTemplateInstantiations.empty() &&
1829                               ActiveTemplateInstantiations.back().Kind ==
1830             ActiveTemplateInstantiation::DefaultFunctionArgumentInstantiation;
1831         CXXMethodDecl *CurMethod = dyn_cast<CXXMethodDecl>(CurContext);
1832         bool isInstance = CurMethod &&
1833                           CurMethod->isInstance() &&
1834                           DC == CurMethod->getParent() && !isDefaultArgument;
1835 
1836         // Give a code modification hint to insert 'this->'.
1837         // TODO: fixit for inserting 'Base<T>::' in the other cases.
1838         // Actually quite difficult!
1839         if (getLangOpts().MSVCCompat)
1840           diagnostic = diag::ext_found_via_dependent_bases_lookup;
1841         if (isInstance) {
1842           Diag(R.getNameLoc(), diagnostic) << Name
1843             << FixItHint::CreateInsertion(R.getNameLoc(), "this->");
1844           CheckCXXThisCapture(R.getNameLoc());
1845         } else {
1846           Diag(R.getNameLoc(), diagnostic) << Name;
1847         }
1848 
1849         // Do we really want to note all of these?
1850         for (NamedDecl *D : R)
1851           Diag(D->getLocation(), diag::note_dependent_var_use);
1852 
1853         // Return true if we are inside a default argument instantiation
1854         // and the found name refers to an instance member function, otherwise
1855         // the function calling DiagnoseEmptyLookup will try to create an
1856         // implicit member call and this is wrong for default argument.
1857         if (isDefaultArgument && ((*R.begin())->isCXXInstanceMember())) {
1858           Diag(R.getNameLoc(), diag::err_member_call_without_object);
1859           return true;
1860         }
1861 
1862         // Tell the callee to try to recover.
1863         return false;
1864       }
1865 
1866       R.clear();
1867     }
1868 
1869     // In Microsoft mode, if we are performing lookup from within a friend
1870     // function definition declared at class scope then we must set
1871     // DC to the lexical parent to be able to search into the parent
1872     // class.
1873     if (getLangOpts().MSVCCompat && isa<FunctionDecl>(DC) &&
1874         cast<FunctionDecl>(DC)->getFriendObjectKind() &&
1875         DC->getLexicalParent()->isRecord())
1876       DC = DC->getLexicalParent();
1877     else
1878       DC = DC->getParent();
1879   }
1880 
1881   // We didn't find anything, so try to correct for a typo.
1882   TypoCorrection Corrected;
1883   if (S && Out) {
1884     SourceLocation TypoLoc = R.getNameLoc();
1885     assert(!ExplicitTemplateArgs &&
1886            "Diagnosing an empty lookup with explicit template args!");
1887     *Out = CorrectTypoDelayed(
1888         R.getLookupNameInfo(), R.getLookupKind(), S, &SS, std::move(CCC),
1889         [=](const TypoCorrection &TC) {
1890           emitEmptyLookupTypoDiagnostic(TC, *this, SS, Name, TypoLoc, Args,
1891                                         diagnostic, diagnostic_suggest);
1892         },
1893         nullptr, CTK_ErrorRecovery);
1894     if (*Out)
1895       return true;
1896   } else if (S && (Corrected =
1897                        CorrectTypo(R.getLookupNameInfo(), R.getLookupKind(), S,
1898                                    &SS, std::move(CCC), CTK_ErrorRecovery))) {
1899     std::string CorrectedStr(Corrected.getAsString(getLangOpts()));
1900     bool DroppedSpecifier =
1901         Corrected.WillReplaceSpecifier() && Name.getAsString() == CorrectedStr;
1902     R.setLookupName(Corrected.getCorrection());
1903 
1904     bool AcceptableWithRecovery = false;
1905     bool AcceptableWithoutRecovery = false;
1906     NamedDecl *ND = Corrected.getCorrectionDecl();
1907     if (ND) {
1908       if (Corrected.isOverloaded()) {
1909         OverloadCandidateSet OCS(R.getNameLoc(),
1910                                  OverloadCandidateSet::CSK_Normal);
1911         OverloadCandidateSet::iterator Best;
1912         for (NamedDecl *CD : Corrected) {
1913           if (FunctionTemplateDecl *FTD =
1914                    dyn_cast<FunctionTemplateDecl>(CD))
1915             AddTemplateOverloadCandidate(
1916                 FTD, DeclAccessPair::make(FTD, AS_none), ExplicitTemplateArgs,
1917                 Args, OCS);
1918           else if (FunctionDecl *FD = dyn_cast<FunctionDecl>(CD))
1919             if (!ExplicitTemplateArgs || ExplicitTemplateArgs->size() == 0)
1920               AddOverloadCandidate(FD, DeclAccessPair::make(FD, AS_none),
1921                                    Args, OCS);
1922         }
1923         switch (OCS.BestViableFunction(*this, R.getNameLoc(), Best)) {
1924         case OR_Success:
1925           ND = Best->Function;
1926           Corrected.setCorrectionDecl(ND);
1927           break;
1928         default:
1929           // FIXME: Arbitrarily pick the first declaration for the note.
1930           Corrected.setCorrectionDecl(ND);
1931           break;
1932         }
1933       }
1934       R.addDecl(ND);
1935       if (getLangOpts().CPlusPlus && ND->isCXXClassMember()) {
1936         CXXRecordDecl *Record = nullptr;
1937         if (Corrected.getCorrectionSpecifier()) {
1938           const Type *Ty = Corrected.getCorrectionSpecifier()->getAsType();
1939           Record = Ty->getAsCXXRecordDecl();
1940         }
1941         if (!Record)
1942           Record = cast<CXXRecordDecl>(
1943               ND->getDeclContext()->getRedeclContext());
1944         R.setNamingClass(Record);
1945       }
1946 
1947       AcceptableWithRecovery =
1948           isa<ValueDecl>(ND) || isa<FunctionTemplateDecl>(ND);
1949       // FIXME: If we ended up with a typo for a type name or
1950       // Objective-C class name, we're in trouble because the parser
1951       // is in the wrong place to recover. Suggest the typo
1952       // correction, but don't make it a fix-it since we're not going
1953       // to recover well anyway.
1954       AcceptableWithoutRecovery =
1955           isa<TypeDecl>(ND) || isa<ObjCInterfaceDecl>(ND);
1956     } else {
1957       // FIXME: We found a keyword. Suggest it, but don't provide a fix-it
1958       // because we aren't able to recover.
1959       AcceptableWithoutRecovery = true;
1960     }
1961 
1962     if (AcceptableWithRecovery || AcceptableWithoutRecovery) {
1963       unsigned NoteID = (Corrected.getCorrectionDecl() &&
1964                          isa<ImplicitParamDecl>(Corrected.getCorrectionDecl()))
1965                             ? diag::note_implicit_param_decl
1966                             : diag::note_previous_decl;
1967       if (SS.isEmpty())
1968         diagnoseTypo(Corrected, PDiag(diagnostic_suggest) << Name,
1969                      PDiag(NoteID), AcceptableWithRecovery);
1970       else
1971         diagnoseTypo(Corrected, PDiag(diag::err_no_member_suggest)
1972                                   << Name << computeDeclContext(SS, false)
1973                                   << DroppedSpecifier << SS.getRange(),
1974                      PDiag(NoteID), AcceptableWithRecovery);
1975 
1976       // Tell the callee whether to try to recover.
1977       return !AcceptableWithRecovery;
1978     }
1979   }
1980   R.clear();
1981 
1982   // Emit a special diagnostic for failed member lookups.
1983   // FIXME: computing the declaration context might fail here (?)
1984   if (!SS.isEmpty()) {
1985     Diag(R.getNameLoc(), diag::err_no_member)
1986       << Name << computeDeclContext(SS, false)
1987       << SS.getRange();
1988     return true;
1989   }
1990 
1991   // Give up, we can't recover.
1992   Diag(R.getNameLoc(), diagnostic) << Name;
1993   return true;
1994 }
1995 
1996 /// In Microsoft mode, if we are inside a template class whose parent class has
1997 /// dependent base classes, and we can't resolve an unqualified identifier, then
1998 /// assume the identifier is a member of a dependent base class.  We can only
1999 /// recover successfully in static methods, instance methods, and other contexts
2000 /// where 'this' is available.  This doesn't precisely match MSVC's
2001 /// instantiation model, but it's close enough.
2002 static Expr *
recoverFromMSUnqualifiedLookup(Sema & S,ASTContext & Context,DeclarationNameInfo & NameInfo,SourceLocation TemplateKWLoc,const TemplateArgumentListInfo * TemplateArgs)2003 recoverFromMSUnqualifiedLookup(Sema &S, ASTContext &Context,
2004                                DeclarationNameInfo &NameInfo,
2005                                SourceLocation TemplateKWLoc,
2006                                const TemplateArgumentListInfo *TemplateArgs) {
2007   // Only try to recover from lookup into dependent bases in static methods or
2008   // contexts where 'this' is available.
2009   QualType ThisType = S.getCurrentThisType();
2010   const CXXRecordDecl *RD = nullptr;
2011   if (!ThisType.isNull())
2012     RD = ThisType->getPointeeType()->getAsCXXRecordDecl();
2013   else if (auto *MD = dyn_cast<CXXMethodDecl>(S.CurContext))
2014     RD = MD->getParent();
2015   if (!RD || !RD->hasAnyDependentBases())
2016     return nullptr;
2017 
2018   // Diagnose this as unqualified lookup into a dependent base class.  If 'this'
2019   // is available, suggest inserting 'this->' as a fixit.
2020   SourceLocation Loc = NameInfo.getLoc();
2021   auto DB = S.Diag(Loc, diag::ext_undeclared_unqual_id_with_dependent_base);
2022   DB << NameInfo.getName() << RD;
2023 
2024   if (!ThisType.isNull()) {
2025     DB << FixItHint::CreateInsertion(Loc, "this->");
2026     return CXXDependentScopeMemberExpr::Create(
2027         Context, /*This=*/nullptr, ThisType, /*IsArrow=*/true,
2028         /*Op=*/SourceLocation(), NestedNameSpecifierLoc(), TemplateKWLoc,
2029         /*FirstQualifierInScope=*/nullptr, NameInfo, TemplateArgs);
2030   }
2031 
2032   // Synthesize a fake NNS that points to the derived class.  This will
2033   // perform name lookup during template instantiation.
2034   CXXScopeSpec SS;
2035   auto *NNS =
2036       NestedNameSpecifier::Create(Context, nullptr, true, RD->getTypeForDecl());
2037   SS.MakeTrivial(Context, NNS, SourceRange(Loc, Loc));
2038   return DependentScopeDeclRefExpr::Create(
2039       Context, SS.getWithLocInContext(Context), TemplateKWLoc, NameInfo,
2040       TemplateArgs);
2041 }
2042 
2043 ExprResult
ActOnIdExpression(Scope * S,CXXScopeSpec & SS,SourceLocation TemplateKWLoc,UnqualifiedId & Id,bool HasTrailingLParen,bool IsAddressOfOperand,std::unique_ptr<CorrectionCandidateCallback> CCC,bool IsInlineAsmIdentifier,Token * KeywordReplacement)2044 Sema::ActOnIdExpression(Scope *S, CXXScopeSpec &SS,
2045                         SourceLocation TemplateKWLoc, UnqualifiedId &Id,
2046                         bool HasTrailingLParen, bool IsAddressOfOperand,
2047                         std::unique_ptr<CorrectionCandidateCallback> CCC,
2048                         bool IsInlineAsmIdentifier, Token *KeywordReplacement) {
2049   assert(!(IsAddressOfOperand && HasTrailingLParen) &&
2050          "cannot be direct & operand and have a trailing lparen");
2051   if (SS.isInvalid())
2052     return ExprError();
2053 
2054   TemplateArgumentListInfo TemplateArgsBuffer;
2055 
2056   // Decompose the UnqualifiedId into the following data.
2057   DeclarationNameInfo NameInfo;
2058   const TemplateArgumentListInfo *TemplateArgs;
2059   DecomposeUnqualifiedId(Id, TemplateArgsBuffer, NameInfo, TemplateArgs);
2060 
2061   DeclarationName Name = NameInfo.getName();
2062   IdentifierInfo *II = Name.getAsIdentifierInfo();
2063   SourceLocation NameLoc = NameInfo.getLoc();
2064 
2065   // C++ [temp.dep.expr]p3:
2066   //   An id-expression is type-dependent if it contains:
2067   //     -- an identifier that was declared with a dependent type,
2068   //        (note: handled after lookup)
2069   //     -- a template-id that is dependent,
2070   //        (note: handled in BuildTemplateIdExpr)
2071   //     -- a conversion-function-id that specifies a dependent type,
2072   //     -- a nested-name-specifier that contains a class-name that
2073   //        names a dependent type.
2074   // Determine whether this is a member of an unknown specialization;
2075   // we need to handle these differently.
2076   bool DependentID = false;
2077   if (Name.getNameKind() == DeclarationName::CXXConversionFunctionName &&
2078       Name.getCXXNameType()->isDependentType()) {
2079     DependentID = true;
2080   } else if (SS.isSet()) {
2081     if (DeclContext *DC = computeDeclContext(SS, false)) {
2082       if (RequireCompleteDeclContext(SS, DC))
2083         return ExprError();
2084     } else {
2085       DependentID = true;
2086     }
2087   }
2088 
2089   if (DependentID)
2090     return ActOnDependentIdExpression(SS, TemplateKWLoc, NameInfo,
2091                                       IsAddressOfOperand, TemplateArgs);
2092 
2093   // Perform the required lookup.
2094   LookupResult R(*this, NameInfo,
2095                  (Id.getKind() == UnqualifiedId::IK_ImplicitSelfParam)
2096                   ? LookupObjCImplicitSelfParam : LookupOrdinaryName);
2097   if (TemplateArgs) {
2098     // Lookup the template name again to correctly establish the context in
2099     // which it was found. This is really unfortunate as we already did the
2100     // lookup to determine that it was a template name in the first place. If
2101     // this becomes a performance hit, we can work harder to preserve those
2102     // results until we get here but it's likely not worth it.
2103     bool MemberOfUnknownSpecialization;
2104     LookupTemplateName(R, S, SS, QualType(), /*EnteringContext=*/false,
2105                        MemberOfUnknownSpecialization);
2106 
2107     if (MemberOfUnknownSpecialization ||
2108         (R.getResultKind() == LookupResult::NotFoundInCurrentInstantiation))
2109       return ActOnDependentIdExpression(SS, TemplateKWLoc, NameInfo,
2110                                         IsAddressOfOperand, TemplateArgs);
2111   } else {
2112     bool IvarLookupFollowUp = II && !SS.isSet() && getCurMethodDecl();
2113     LookupParsedName(R, S, &SS, !IvarLookupFollowUp);
2114 
2115     // If the result might be in a dependent base class, this is a dependent
2116     // id-expression.
2117     if (R.getResultKind() == LookupResult::NotFoundInCurrentInstantiation)
2118       return ActOnDependentIdExpression(SS, TemplateKWLoc, NameInfo,
2119                                         IsAddressOfOperand, TemplateArgs);
2120 
2121     // If this reference is in an Objective-C method, then we need to do
2122     // some special Objective-C lookup, too.
2123     if (IvarLookupFollowUp) {
2124       ExprResult E(LookupInObjCMethod(R, S, II, true));
2125       if (E.isInvalid())
2126         return ExprError();
2127 
2128       if (Expr *Ex = E.getAs<Expr>())
2129         return Ex;
2130     }
2131   }
2132 
2133   if (R.isAmbiguous())
2134     return ExprError();
2135 
2136   // This could be an implicitly declared function reference (legal in C90,
2137   // extension in C99, forbidden in C++).
2138   if (R.empty() && HasTrailingLParen && II && !getLangOpts().CPlusPlus) {
2139     NamedDecl *D = ImplicitlyDefineFunction(NameLoc, *II, S);
2140     if (D) R.addDecl(D);
2141   }
2142 
2143   // Determine whether this name might be a candidate for
2144   // argument-dependent lookup.
2145   bool ADL = UseArgumentDependentLookup(SS, R, HasTrailingLParen);
2146 
2147   if (R.empty() && !ADL) {
2148     if (SS.isEmpty() && getLangOpts().MSVCCompat) {
2149       if (Expr *E = recoverFromMSUnqualifiedLookup(*this, Context, NameInfo,
2150                                                    TemplateKWLoc, TemplateArgs))
2151         return E;
2152     }
2153 
2154     // Don't diagnose an empty lookup for inline assembly.
2155     if (IsInlineAsmIdentifier)
2156       return ExprError();
2157 
2158     // If this name wasn't predeclared and if this is not a function
2159     // call, diagnose the problem.
2160     TypoExpr *TE = nullptr;
2161     auto DefaultValidator = llvm::make_unique<CorrectionCandidateCallback>(
2162         II, SS.isValid() ? SS.getScopeRep() : nullptr);
2163     DefaultValidator->IsAddressOfOperand = IsAddressOfOperand;
2164     assert((!CCC || CCC->IsAddressOfOperand == IsAddressOfOperand) &&
2165            "Typo correction callback misconfigured");
2166     if (CCC) {
2167       // Make sure the callback knows what the typo being diagnosed is.
2168       CCC->setTypoName(II);
2169       if (SS.isValid())
2170         CCC->setTypoNNS(SS.getScopeRep());
2171     }
2172     if (DiagnoseEmptyLookup(S, SS, R,
2173                             CCC ? std::move(CCC) : std::move(DefaultValidator),
2174                             nullptr, None, &TE)) {
2175       if (TE && KeywordReplacement) {
2176         auto &State = getTypoExprState(TE);
2177         auto BestTC = State.Consumer->getNextCorrection();
2178         if (BestTC.isKeyword()) {
2179           auto *II = BestTC.getCorrectionAsIdentifierInfo();
2180           if (State.DiagHandler)
2181             State.DiagHandler(BestTC);
2182           KeywordReplacement->startToken();
2183           KeywordReplacement->setKind(II->getTokenID());
2184           KeywordReplacement->setIdentifierInfo(II);
2185           KeywordReplacement->setLocation(BestTC.getCorrectionRange().getBegin());
2186           // Clean up the state associated with the TypoExpr, since it has
2187           // now been diagnosed (without a call to CorrectDelayedTyposInExpr).
2188           clearDelayedTypo(TE);
2189           // Signal that a correction to a keyword was performed by returning a
2190           // valid-but-null ExprResult.
2191           return (Expr*)nullptr;
2192         }
2193         State.Consumer->resetCorrectionStream();
2194       }
2195       return TE ? TE : ExprError();
2196     }
2197 
2198     assert(!R.empty() &&
2199            "DiagnoseEmptyLookup returned false but added no results");
2200 
2201     // If we found an Objective-C instance variable, let
2202     // LookupInObjCMethod build the appropriate expression to
2203     // reference the ivar.
2204     if (ObjCIvarDecl *Ivar = R.getAsSingle<ObjCIvarDecl>()) {
2205       R.clear();
2206       ExprResult E(LookupInObjCMethod(R, S, Ivar->getIdentifier()));
2207       // In a hopelessly buggy code, Objective-C instance variable
2208       // lookup fails and no expression will be built to reference it.
2209       if (!E.isInvalid() && !E.get())
2210         return ExprError();
2211       return E;
2212     }
2213   }
2214 
2215   // This is guaranteed from this point on.
2216   assert(!R.empty() || ADL);
2217 
2218   // Check whether this might be a C++ implicit instance member access.
2219   // C++ [class.mfct.non-static]p3:
2220   //   When an id-expression that is not part of a class member access
2221   //   syntax and not used to form a pointer to member is used in the
2222   //   body of a non-static member function of class X, if name lookup
2223   //   resolves the name in the id-expression to a non-static non-type
2224   //   member of some class C, the id-expression is transformed into a
2225   //   class member access expression using (*this) as the
2226   //   postfix-expression to the left of the . operator.
2227   //
2228   // But we don't actually need to do this for '&' operands if R
2229   // resolved to a function or overloaded function set, because the
2230   // expression is ill-formed if it actually works out to be a
2231   // non-static member function:
2232   //
2233   // C++ [expr.ref]p4:
2234   //   Otherwise, if E1.E2 refers to a non-static member function. . .
2235   //   [t]he expression can be used only as the left-hand operand of a
2236   //   member function call.
2237   //
2238   // There are other safeguards against such uses, but it's important
2239   // to get this right here so that we don't end up making a
2240   // spuriously dependent expression if we're inside a dependent
2241   // instance method.
2242   if (!R.empty() && (*R.begin())->isCXXClassMember()) {
2243     bool MightBeImplicitMember;
2244     if (!IsAddressOfOperand)
2245       MightBeImplicitMember = true;
2246     else if (!SS.isEmpty())
2247       MightBeImplicitMember = false;
2248     else if (R.isOverloadedResult())
2249       MightBeImplicitMember = false;
2250     else if (R.isUnresolvableResult())
2251       MightBeImplicitMember = true;
2252     else
2253       MightBeImplicitMember = isa<FieldDecl>(R.getFoundDecl()) ||
2254                               isa<IndirectFieldDecl>(R.getFoundDecl()) ||
2255                               isa<MSPropertyDecl>(R.getFoundDecl());
2256 
2257     if (MightBeImplicitMember)
2258       return BuildPossibleImplicitMemberExpr(SS, TemplateKWLoc,
2259                                              R, TemplateArgs, S);
2260   }
2261 
2262   if (TemplateArgs || TemplateKWLoc.isValid()) {
2263 
2264     // In C++1y, if this is a variable template id, then check it
2265     // in BuildTemplateIdExpr().
2266     // The single lookup result must be a variable template declaration.
2267     if (Id.getKind() == UnqualifiedId::IK_TemplateId && Id.TemplateId &&
2268         Id.TemplateId->Kind == TNK_Var_template) {
2269       assert(R.getAsSingle<VarTemplateDecl>() &&
2270              "There should only be one declaration found.");
2271     }
2272 
2273     return BuildTemplateIdExpr(SS, TemplateKWLoc, R, ADL, TemplateArgs);
2274   }
2275 
2276   return BuildDeclarationNameExpr(SS, R, ADL);
2277 }
2278 
2279 /// BuildQualifiedDeclarationNameExpr - Build a C++ qualified
2280 /// declaration name, generally during template instantiation.
2281 /// There's a large number of things which don't need to be done along
2282 /// this path.
BuildQualifiedDeclarationNameExpr(CXXScopeSpec & SS,const DeclarationNameInfo & NameInfo,bool IsAddressOfOperand,const Scope * S,TypeSourceInfo ** RecoveryTSI)2283 ExprResult Sema::BuildQualifiedDeclarationNameExpr(
2284     CXXScopeSpec &SS, const DeclarationNameInfo &NameInfo,
2285     bool IsAddressOfOperand, const Scope *S, TypeSourceInfo **RecoveryTSI) {
2286   DeclContext *DC = computeDeclContext(SS, false);
2287   if (!DC)
2288     return BuildDependentDeclRefExpr(SS, /*TemplateKWLoc=*/SourceLocation(),
2289                                      NameInfo, /*TemplateArgs=*/nullptr);
2290 
2291   if (RequireCompleteDeclContext(SS, DC))
2292     return ExprError();
2293 
2294   LookupResult R(*this, NameInfo, LookupOrdinaryName);
2295   LookupQualifiedName(R, DC);
2296 
2297   if (R.isAmbiguous())
2298     return ExprError();
2299 
2300   if (R.getResultKind() == LookupResult::NotFoundInCurrentInstantiation)
2301     return BuildDependentDeclRefExpr(SS, /*TemplateKWLoc=*/SourceLocation(),
2302                                      NameInfo, /*TemplateArgs=*/nullptr);
2303 
2304   if (R.empty()) {
2305     Diag(NameInfo.getLoc(), diag::err_no_member)
2306       << NameInfo.getName() << DC << SS.getRange();
2307     return ExprError();
2308   }
2309 
2310   if (const TypeDecl *TD = R.getAsSingle<TypeDecl>()) {
2311     // Diagnose a missing typename if this resolved unambiguously to a type in
2312     // a dependent context.  If we can recover with a type, downgrade this to
2313     // a warning in Microsoft compatibility mode.
2314     unsigned DiagID = diag::err_typename_missing;
2315     if (RecoveryTSI && getLangOpts().MSVCCompat)
2316       DiagID = diag::ext_typename_missing;
2317     SourceLocation Loc = SS.getBeginLoc();
2318     auto D = Diag(Loc, DiagID);
2319     D << SS.getScopeRep() << NameInfo.getName().getAsString()
2320       << SourceRange(Loc, NameInfo.getEndLoc());
2321 
2322     // Don't recover if the caller isn't expecting us to or if we're in a SFINAE
2323     // context.
2324     if (!RecoveryTSI)
2325       return ExprError();
2326 
2327     // Only issue the fixit if we're prepared to recover.
2328     D << FixItHint::CreateInsertion(Loc, "typename ");
2329 
2330     // Recover by pretending this was an elaborated type.
2331     QualType Ty = Context.getTypeDeclType(TD);
2332     TypeLocBuilder TLB;
2333     TLB.pushTypeSpec(Ty).setNameLoc(NameInfo.getLoc());
2334 
2335     QualType ET = getElaboratedType(ETK_None, SS, Ty);
2336     ElaboratedTypeLoc QTL = TLB.push<ElaboratedTypeLoc>(ET);
2337     QTL.setElaboratedKeywordLoc(SourceLocation());
2338     QTL.setQualifierLoc(SS.getWithLocInContext(Context));
2339 
2340     *RecoveryTSI = TLB.getTypeSourceInfo(Context, ET);
2341 
2342     return ExprEmpty();
2343   }
2344 
2345   // Defend against this resolving to an implicit member access. We usually
2346   // won't get here if this might be a legitimate a class member (we end up in
2347   // BuildMemberReferenceExpr instead), but this can be valid if we're forming
2348   // a pointer-to-member or in an unevaluated context in C++11.
2349   if (!R.empty() && (*R.begin())->isCXXClassMember() && !IsAddressOfOperand)
2350     return BuildPossibleImplicitMemberExpr(SS,
2351                                            /*TemplateKWLoc=*/SourceLocation(),
2352                                            R, /*TemplateArgs=*/nullptr, S);
2353 
2354   return BuildDeclarationNameExpr(SS, R, /* ADL */ false);
2355 }
2356 
2357 /// LookupInObjCMethod - The parser has read a name in, and Sema has
2358 /// detected that we're currently inside an ObjC method.  Perform some
2359 /// additional lookup.
2360 ///
2361 /// Ideally, most of this would be done by lookup, but there's
2362 /// actually quite a lot of extra work involved.
2363 ///
2364 /// Returns a null sentinel to indicate trivial success.
2365 ExprResult
LookupInObjCMethod(LookupResult & Lookup,Scope * S,IdentifierInfo * II,bool AllowBuiltinCreation)2366 Sema::LookupInObjCMethod(LookupResult &Lookup, Scope *S,
2367                          IdentifierInfo *II, bool AllowBuiltinCreation) {
2368   SourceLocation Loc = Lookup.getNameLoc();
2369   ObjCMethodDecl *CurMethod = getCurMethodDecl();
2370 
2371   // Check for error condition which is already reported.
2372   if (!CurMethod)
2373     return ExprError();
2374 
2375   // There are two cases to handle here.  1) scoped lookup could have failed,
2376   // in which case we should look for an ivar.  2) scoped lookup could have
2377   // found a decl, but that decl is outside the current instance method (i.e.
2378   // a global variable).  In these two cases, we do a lookup for an ivar with
2379   // this name, if the lookup sucedes, we replace it our current decl.
2380 
2381   // If we're in a class method, we don't normally want to look for
2382   // ivars.  But if we don't find anything else, and there's an
2383   // ivar, that's an error.
2384   bool IsClassMethod = CurMethod->isClassMethod();
2385 
2386   bool LookForIvars;
2387   if (Lookup.empty())
2388     LookForIvars = true;
2389   else if (IsClassMethod)
2390     LookForIvars = false;
2391   else
2392     LookForIvars = (Lookup.isSingleResult() &&
2393                     Lookup.getFoundDecl()->isDefinedOutsideFunctionOrMethod());
2394   ObjCInterfaceDecl *IFace = nullptr;
2395   if (LookForIvars) {
2396     IFace = CurMethod->getClassInterface();
2397     ObjCInterfaceDecl *ClassDeclared;
2398     ObjCIvarDecl *IV = nullptr;
2399     if (IFace && (IV = IFace->lookupInstanceVariable(II, ClassDeclared))) {
2400       // Diagnose using an ivar in a class method.
2401       if (IsClassMethod)
2402         return ExprError(Diag(Loc, diag::error_ivar_use_in_class_method)
2403                          << IV->getDeclName());
2404 
2405       // If we're referencing an invalid decl, just return this as a silent
2406       // error node.  The error diagnostic was already emitted on the decl.
2407       if (IV->isInvalidDecl())
2408         return ExprError();
2409 
2410       // Check if referencing a field with __attribute__((deprecated)).
2411       if (DiagnoseUseOfDecl(IV, Loc))
2412         return ExprError();
2413 
2414       // Diagnose the use of an ivar outside of the declaring class.
2415       if (IV->getAccessControl() == ObjCIvarDecl::Private &&
2416           !declaresSameEntity(ClassDeclared, IFace) &&
2417           !getLangOpts().DebuggerSupport)
2418         Diag(Loc, diag::error_private_ivar_access) << IV->getDeclName();
2419 
2420       // FIXME: This should use a new expr for a direct reference, don't
2421       // turn this into Self->ivar, just return a BareIVarExpr or something.
2422       IdentifierInfo &II = Context.Idents.get("self");
2423       UnqualifiedId SelfName;
2424       SelfName.setIdentifier(&II, SourceLocation());
2425       SelfName.setKind(UnqualifiedId::IK_ImplicitSelfParam);
2426       CXXScopeSpec SelfScopeSpec;
2427       SourceLocation TemplateKWLoc;
2428       ExprResult SelfExpr = ActOnIdExpression(S, SelfScopeSpec, TemplateKWLoc,
2429                                               SelfName, false, false);
2430       if (SelfExpr.isInvalid())
2431         return ExprError();
2432 
2433       SelfExpr = DefaultLvalueConversion(SelfExpr.get());
2434       if (SelfExpr.isInvalid())
2435         return ExprError();
2436 
2437       MarkAnyDeclReferenced(Loc, IV, true);
2438 
2439       ObjCMethodFamily MF = CurMethod->getMethodFamily();
2440       if (MF != OMF_init && MF != OMF_dealloc && MF != OMF_finalize &&
2441           !IvarBacksCurrentMethodAccessor(IFace, CurMethod, IV))
2442         Diag(Loc, diag::warn_direct_ivar_access) << IV->getDeclName();
2443 
2444       ObjCIvarRefExpr *Result = new (Context)
2445           ObjCIvarRefExpr(IV, IV->getUsageType(SelfExpr.get()->getType()), Loc,
2446                           IV->getLocation(), SelfExpr.get(), true, true);
2447 
2448       if (getLangOpts().ObjCAutoRefCount) {
2449         if (IV->getType().getObjCLifetime() == Qualifiers::OCL_Weak) {
2450           if (!Diags.isIgnored(diag::warn_arc_repeated_use_of_weak, Loc))
2451             recordUseOfEvaluatedWeak(Result);
2452         }
2453         if (CurContext->isClosure())
2454           Diag(Loc, diag::warn_implicitly_retains_self)
2455             << FixItHint::CreateInsertion(Loc, "self->");
2456       }
2457 
2458       return Result;
2459     }
2460   } else if (CurMethod->isInstanceMethod()) {
2461     // We should warn if a local variable hides an ivar.
2462     if (ObjCInterfaceDecl *IFace = CurMethod->getClassInterface()) {
2463       ObjCInterfaceDecl *ClassDeclared;
2464       if (ObjCIvarDecl *IV = IFace->lookupInstanceVariable(II, ClassDeclared)) {
2465         if (IV->getAccessControl() != ObjCIvarDecl::Private ||
2466             declaresSameEntity(IFace, ClassDeclared))
2467           Diag(Loc, diag::warn_ivar_use_hidden) << IV->getDeclName();
2468       }
2469     }
2470   } else if (Lookup.isSingleResult() &&
2471              Lookup.getFoundDecl()->isDefinedOutsideFunctionOrMethod()) {
2472     // If accessing a stand-alone ivar in a class method, this is an error.
2473     if (const ObjCIvarDecl *IV = dyn_cast<ObjCIvarDecl>(Lookup.getFoundDecl()))
2474       return ExprError(Diag(Loc, diag::error_ivar_use_in_class_method)
2475                        << IV->getDeclName());
2476   }
2477 
2478   if (Lookup.empty() && II && AllowBuiltinCreation) {
2479     // FIXME. Consolidate this with similar code in LookupName.
2480     if (unsigned BuiltinID = II->getBuiltinID()) {
2481       if (!(getLangOpts().CPlusPlus &&
2482             Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID))) {
2483         NamedDecl *D = LazilyCreateBuiltin((IdentifierInfo *)II, BuiltinID,
2484                                            S, Lookup.isForRedeclaration(),
2485                                            Lookup.getNameLoc());
2486         if (D) Lookup.addDecl(D);
2487       }
2488     }
2489   }
2490   // Sentinel value saying that we didn't do anything special.
2491   return ExprResult((Expr *)nullptr);
2492 }
2493 
2494 /// \brief Cast a base object to a member's actual type.
2495 ///
2496 /// Logically this happens in three phases:
2497 ///
2498 /// * First we cast from the base type to the naming class.
2499 ///   The naming class is the class into which we were looking
2500 ///   when we found the member;  it's the qualifier type if a
2501 ///   qualifier was provided, and otherwise it's the base type.
2502 ///
2503 /// * Next we cast from the naming class to the declaring class.
2504 ///   If the member we found was brought into a class's scope by
2505 ///   a using declaration, this is that class;  otherwise it's
2506 ///   the class declaring the member.
2507 ///
2508 /// * Finally we cast from the declaring class to the "true"
2509 ///   declaring class of the member.  This conversion does not
2510 ///   obey access control.
2511 ExprResult
PerformObjectMemberConversion(Expr * From,NestedNameSpecifier * Qualifier,NamedDecl * FoundDecl,NamedDecl * Member)2512 Sema::PerformObjectMemberConversion(Expr *From,
2513                                     NestedNameSpecifier *Qualifier,
2514                                     NamedDecl *FoundDecl,
2515                                     NamedDecl *Member) {
2516   CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Member->getDeclContext());
2517   if (!RD)
2518     return From;
2519 
2520   QualType DestRecordType;
2521   QualType DestType;
2522   QualType FromRecordType;
2523   QualType FromType = From->getType();
2524   bool PointerConversions = false;
2525   if (isa<FieldDecl>(Member)) {
2526     DestRecordType = Context.getCanonicalType(Context.getTypeDeclType(RD));
2527 
2528     if (FromType->getAs<PointerType>()) {
2529       DestType = Context.getPointerType(DestRecordType);
2530       FromRecordType = FromType->getPointeeType();
2531       PointerConversions = true;
2532     } else {
2533       DestType = DestRecordType;
2534       FromRecordType = FromType;
2535     }
2536   } else if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Member)) {
2537     if (Method->isStatic())
2538       return From;
2539 
2540     DestType = Method->getThisType(Context);
2541     DestRecordType = DestType->getPointeeType();
2542 
2543     if (FromType->getAs<PointerType>()) {
2544       FromRecordType = FromType->getPointeeType();
2545       PointerConversions = true;
2546     } else {
2547       FromRecordType = FromType;
2548       DestType = DestRecordType;
2549     }
2550   } else {
2551     // No conversion necessary.
2552     return From;
2553   }
2554 
2555   if (DestType->isDependentType() || FromType->isDependentType())
2556     return From;
2557 
2558   // If the unqualified types are the same, no conversion is necessary.
2559   if (Context.hasSameUnqualifiedType(FromRecordType, DestRecordType))
2560     return From;
2561 
2562   SourceRange FromRange = From->getSourceRange();
2563   SourceLocation FromLoc = FromRange.getBegin();
2564 
2565   ExprValueKind VK = From->getValueKind();
2566 
2567   // C++ [class.member.lookup]p8:
2568   //   [...] Ambiguities can often be resolved by qualifying a name with its
2569   //   class name.
2570   //
2571   // If the member was a qualified name and the qualified referred to a
2572   // specific base subobject type, we'll cast to that intermediate type
2573   // first and then to the object in which the member is declared. That allows
2574   // one to resolve ambiguities in, e.g., a diamond-shaped hierarchy such as:
2575   //
2576   //   class Base { public: int x; };
2577   //   class Derived1 : public Base { };
2578   //   class Derived2 : public Base { };
2579   //   class VeryDerived : public Derived1, public Derived2 { void f(); };
2580   //
2581   //   void VeryDerived::f() {
2582   //     x = 17; // error: ambiguous base subobjects
2583   //     Derived1::x = 17; // okay, pick the Base subobject of Derived1
2584   //   }
2585   if (Qualifier && Qualifier->getAsType()) {
2586     QualType QType = QualType(Qualifier->getAsType(), 0);
2587     assert(QType->isRecordType() && "lookup done with non-record type");
2588 
2589     QualType QRecordType = QualType(QType->getAs<RecordType>(), 0);
2590 
2591     // In C++98, the qualifier type doesn't actually have to be a base
2592     // type of the object type, in which case we just ignore it.
2593     // Otherwise build the appropriate casts.
2594     if (IsDerivedFrom(FromLoc, FromRecordType, QRecordType)) {
2595       CXXCastPath BasePath;
2596       if (CheckDerivedToBaseConversion(FromRecordType, QRecordType,
2597                                        FromLoc, FromRange, &BasePath))
2598         return ExprError();
2599 
2600       if (PointerConversions)
2601         QType = Context.getPointerType(QType);
2602       From = ImpCastExprToType(From, QType, CK_UncheckedDerivedToBase,
2603                                VK, &BasePath).get();
2604 
2605       FromType = QType;
2606       FromRecordType = QRecordType;
2607 
2608       // If the qualifier type was the same as the destination type,
2609       // we're done.
2610       if (Context.hasSameUnqualifiedType(FromRecordType, DestRecordType))
2611         return From;
2612     }
2613   }
2614 
2615   bool IgnoreAccess = false;
2616 
2617   // If we actually found the member through a using declaration, cast
2618   // down to the using declaration's type.
2619   //
2620   // Pointer equality is fine here because only one declaration of a
2621   // class ever has member declarations.
2622   if (FoundDecl->getDeclContext() != Member->getDeclContext()) {
2623     assert(isa<UsingShadowDecl>(FoundDecl));
2624     QualType URecordType = Context.getTypeDeclType(
2625                            cast<CXXRecordDecl>(FoundDecl->getDeclContext()));
2626 
2627     // We only need to do this if the naming-class to declaring-class
2628     // conversion is non-trivial.
2629     if (!Context.hasSameUnqualifiedType(FromRecordType, URecordType)) {
2630       assert(IsDerivedFrom(FromLoc, FromRecordType, URecordType));
2631       CXXCastPath BasePath;
2632       if (CheckDerivedToBaseConversion(FromRecordType, URecordType,
2633                                        FromLoc, FromRange, &BasePath))
2634         return ExprError();
2635 
2636       QualType UType = URecordType;
2637       if (PointerConversions)
2638         UType = Context.getPointerType(UType);
2639       From = ImpCastExprToType(From, UType, CK_UncheckedDerivedToBase,
2640                                VK, &BasePath).get();
2641       FromType = UType;
2642       FromRecordType = URecordType;
2643     }
2644 
2645     // We don't do access control for the conversion from the
2646     // declaring class to the true declaring class.
2647     IgnoreAccess = true;
2648   }
2649 
2650   CXXCastPath BasePath;
2651   if (CheckDerivedToBaseConversion(FromRecordType, DestRecordType,
2652                                    FromLoc, FromRange, &BasePath,
2653                                    IgnoreAccess))
2654     return ExprError();
2655 
2656   return ImpCastExprToType(From, DestType, CK_UncheckedDerivedToBase,
2657                            VK, &BasePath);
2658 }
2659 
UseArgumentDependentLookup(const CXXScopeSpec & SS,const LookupResult & R,bool HasTrailingLParen)2660 bool Sema::UseArgumentDependentLookup(const CXXScopeSpec &SS,
2661                                       const LookupResult &R,
2662                                       bool HasTrailingLParen) {
2663   // Only when used directly as the postfix-expression of a call.
2664   if (!HasTrailingLParen)
2665     return false;
2666 
2667   // Never if a scope specifier was provided.
2668   if (SS.isSet())
2669     return false;
2670 
2671   // Only in C++ or ObjC++.
2672   if (!getLangOpts().CPlusPlus)
2673     return false;
2674 
2675   // Turn off ADL when we find certain kinds of declarations during
2676   // normal lookup:
2677   for (NamedDecl *D : R) {
2678     // C++0x [basic.lookup.argdep]p3:
2679     //     -- a declaration of a class member
2680     // Since using decls preserve this property, we check this on the
2681     // original decl.
2682     if (D->isCXXClassMember())
2683       return false;
2684 
2685     // C++0x [basic.lookup.argdep]p3:
2686     //     -- a block-scope function declaration that is not a
2687     //        using-declaration
2688     // NOTE: we also trigger this for function templates (in fact, we
2689     // don't check the decl type at all, since all other decl types
2690     // turn off ADL anyway).
2691     if (isa<UsingShadowDecl>(D))
2692       D = cast<UsingShadowDecl>(D)->getTargetDecl();
2693     else if (D->getLexicalDeclContext()->isFunctionOrMethod())
2694       return false;
2695 
2696     // C++0x [basic.lookup.argdep]p3:
2697     //     -- a declaration that is neither a function or a function
2698     //        template
2699     // And also for builtin functions.
2700     if (isa<FunctionDecl>(D)) {
2701       FunctionDecl *FDecl = cast<FunctionDecl>(D);
2702 
2703       // But also builtin functions.
2704       if (FDecl->getBuiltinID() && FDecl->isImplicit())
2705         return false;
2706     } else if (!isa<FunctionTemplateDecl>(D))
2707       return false;
2708   }
2709 
2710   return true;
2711 }
2712 
2713 
2714 /// Diagnoses obvious problems with the use of the given declaration
2715 /// as an expression.  This is only actually called for lookups that
2716 /// were not overloaded, and it doesn't promise that the declaration
2717 /// will in fact be used.
CheckDeclInExpr(Sema & S,SourceLocation Loc,NamedDecl * D)2718 static bool CheckDeclInExpr(Sema &S, SourceLocation Loc, NamedDecl *D) {
2719   if (isa<TypedefNameDecl>(D)) {
2720     S.Diag(Loc, diag::err_unexpected_typedef) << D->getDeclName();
2721     return true;
2722   }
2723 
2724   if (isa<ObjCInterfaceDecl>(D)) {
2725     S.Diag(Loc, diag::err_unexpected_interface) << D->getDeclName();
2726     return true;
2727   }
2728 
2729   if (isa<NamespaceDecl>(D)) {
2730     S.Diag(Loc, diag::err_unexpected_namespace) << D->getDeclName();
2731     return true;
2732   }
2733 
2734   return false;
2735 }
2736 
BuildDeclarationNameExpr(const CXXScopeSpec & SS,LookupResult & R,bool NeedsADL,bool AcceptInvalidDecl)2737 ExprResult Sema::BuildDeclarationNameExpr(const CXXScopeSpec &SS,
2738                                           LookupResult &R, bool NeedsADL,
2739                                           bool AcceptInvalidDecl) {
2740   // If this is a single, fully-resolved result and we don't need ADL,
2741   // just build an ordinary singleton decl ref.
2742   if (!NeedsADL && R.isSingleResult() && !R.getAsSingle<FunctionTemplateDecl>())
2743     return BuildDeclarationNameExpr(SS, R.getLookupNameInfo(), R.getFoundDecl(),
2744                                     R.getRepresentativeDecl(), nullptr,
2745                                     AcceptInvalidDecl);
2746 
2747   // We only need to check the declaration if there's exactly one
2748   // result, because in the overloaded case the results can only be
2749   // functions and function templates.
2750   if (R.isSingleResult() &&
2751       CheckDeclInExpr(*this, R.getNameLoc(), R.getFoundDecl()))
2752     return ExprError();
2753 
2754   // Otherwise, just build an unresolved lookup expression.  Suppress
2755   // any lookup-related diagnostics; we'll hash these out later, when
2756   // we've picked a target.
2757   R.suppressDiagnostics();
2758 
2759   UnresolvedLookupExpr *ULE
2760     = UnresolvedLookupExpr::Create(Context, R.getNamingClass(),
2761                                    SS.getWithLocInContext(Context),
2762                                    R.getLookupNameInfo(),
2763                                    NeedsADL, R.isOverloadedResult(),
2764                                    R.begin(), R.end());
2765 
2766   return ULE;
2767 }
2768 
2769 /// \brief Complete semantic analysis for a reference to the given declaration.
BuildDeclarationNameExpr(const CXXScopeSpec & SS,const DeclarationNameInfo & NameInfo,NamedDecl * D,NamedDecl * FoundD,const TemplateArgumentListInfo * TemplateArgs,bool AcceptInvalidDecl)2770 ExprResult Sema::BuildDeclarationNameExpr(
2771     const CXXScopeSpec &SS, const DeclarationNameInfo &NameInfo, NamedDecl *D,
2772     NamedDecl *FoundD, const TemplateArgumentListInfo *TemplateArgs,
2773     bool AcceptInvalidDecl) {
2774   assert(D && "Cannot refer to a NULL declaration");
2775   assert(!isa<FunctionTemplateDecl>(D) &&
2776          "Cannot refer unambiguously to a function template");
2777 
2778   SourceLocation Loc = NameInfo.getLoc();
2779   if (CheckDeclInExpr(*this, Loc, D))
2780     return ExprError();
2781 
2782   if (TemplateDecl *Template = dyn_cast<TemplateDecl>(D)) {
2783     // Specifically diagnose references to class templates that are missing
2784     // a template argument list.
2785     Diag(Loc, diag::err_template_decl_ref) << (isa<VarTemplateDecl>(D) ? 1 : 0)
2786                                            << Template << SS.getRange();
2787     Diag(Template->getLocation(), diag::note_template_decl_here);
2788     return ExprError();
2789   }
2790 
2791   // Make sure that we're referring to a value.
2792   ValueDecl *VD = dyn_cast<ValueDecl>(D);
2793   if (!VD) {
2794     Diag(Loc, diag::err_ref_non_value)
2795       << D << SS.getRange();
2796     Diag(D->getLocation(), diag::note_declared_at);
2797     return ExprError();
2798   }
2799 
2800   // Check whether this declaration can be used. Note that we suppress
2801   // this check when we're going to perform argument-dependent lookup
2802   // on this function name, because this might not be the function
2803   // that overload resolution actually selects.
2804   if (DiagnoseUseOfDecl(VD, Loc))
2805     return ExprError();
2806 
2807   // Only create DeclRefExpr's for valid Decl's.
2808   if (VD->isInvalidDecl() && !AcceptInvalidDecl)
2809     return ExprError();
2810 
2811   // Handle members of anonymous structs and unions.  If we got here,
2812   // and the reference is to a class member indirect field, then this
2813   // must be the subject of a pointer-to-member expression.
2814   if (IndirectFieldDecl *indirectField = dyn_cast<IndirectFieldDecl>(VD))
2815     if (!indirectField->isCXXClassMember())
2816       return BuildAnonymousStructUnionMemberReference(SS, NameInfo.getLoc(),
2817                                                       indirectField);
2818 
2819   {
2820     QualType type = VD->getType();
2821     ExprValueKind valueKind = VK_RValue;
2822 
2823     switch (D->getKind()) {
2824     // Ignore all the non-ValueDecl kinds.
2825 #define ABSTRACT_DECL(kind)
2826 #define VALUE(type, base)
2827 #define DECL(type, base) \
2828     case Decl::type:
2829 #include "clang/AST/DeclNodes.inc"
2830       llvm_unreachable("invalid value decl kind");
2831 
2832     // These shouldn't make it here.
2833     case Decl::ObjCAtDefsField:
2834     case Decl::ObjCIvar:
2835       llvm_unreachable("forming non-member reference to ivar?");
2836 
2837     // Enum constants are always r-values and never references.
2838     // Unresolved using declarations are dependent.
2839     case Decl::EnumConstant:
2840     case Decl::UnresolvedUsingValue:
2841       valueKind = VK_RValue;
2842       break;
2843 
2844     // Fields and indirect fields that got here must be for
2845     // pointer-to-member expressions; we just call them l-values for
2846     // internal consistency, because this subexpression doesn't really
2847     // exist in the high-level semantics.
2848     case Decl::Field:
2849     case Decl::IndirectField:
2850       assert(getLangOpts().CPlusPlus &&
2851              "building reference to field in C?");
2852 
2853       // These can't have reference type in well-formed programs, but
2854       // for internal consistency we do this anyway.
2855       type = type.getNonReferenceType();
2856       valueKind = VK_LValue;
2857       break;
2858 
2859     // Non-type template parameters are either l-values or r-values
2860     // depending on the type.
2861     case Decl::NonTypeTemplateParm: {
2862       if (const ReferenceType *reftype = type->getAs<ReferenceType>()) {
2863         type = reftype->getPointeeType();
2864         valueKind = VK_LValue; // even if the parameter is an r-value reference
2865         break;
2866       }
2867 
2868       // For non-references, we need to strip qualifiers just in case
2869       // the template parameter was declared as 'const int' or whatever.
2870       valueKind = VK_RValue;
2871       type = type.getUnqualifiedType();
2872       break;
2873     }
2874 
2875     case Decl::Var:
2876     case Decl::VarTemplateSpecialization:
2877     case Decl::VarTemplatePartialSpecialization:
2878       // In C, "extern void blah;" is valid and is an r-value.
2879       if (!getLangOpts().CPlusPlus &&
2880           !type.hasQualifiers() &&
2881           type->isVoidType()) {
2882         valueKind = VK_RValue;
2883         break;
2884       }
2885       // fallthrough
2886 
2887     case Decl::ImplicitParam:
2888     case Decl::ParmVar: {
2889       // These are always l-values.
2890       valueKind = VK_LValue;
2891       type = type.getNonReferenceType();
2892 
2893       // FIXME: Does the addition of const really only apply in
2894       // potentially-evaluated contexts? Since the variable isn't actually
2895       // captured in an unevaluated context, it seems that the answer is no.
2896       if (!isUnevaluatedContext()) {
2897         QualType CapturedType = getCapturedDeclRefType(cast<VarDecl>(VD), Loc);
2898         if (!CapturedType.isNull())
2899           type = CapturedType;
2900       }
2901 
2902       break;
2903     }
2904 
2905     case Decl::Function: {
2906       if (unsigned BID = cast<FunctionDecl>(VD)->getBuiltinID()) {
2907         if (!Context.BuiltinInfo.isPredefinedLibFunction(BID)) {
2908           type = Context.BuiltinFnTy;
2909           valueKind = VK_RValue;
2910           break;
2911         }
2912       }
2913 
2914       const FunctionType *fty = type->castAs<FunctionType>();
2915 
2916       // If we're referring to a function with an __unknown_anytype
2917       // result type, make the entire expression __unknown_anytype.
2918       if (fty->getReturnType() == Context.UnknownAnyTy) {
2919         type = Context.UnknownAnyTy;
2920         valueKind = VK_RValue;
2921         break;
2922       }
2923 
2924       // Functions are l-values in C++.
2925       if (getLangOpts().CPlusPlus) {
2926         valueKind = VK_LValue;
2927         break;
2928       }
2929 
2930       // C99 DR 316 says that, if a function type comes from a
2931       // function definition (without a prototype), that type is only
2932       // used for checking compatibility. Therefore, when referencing
2933       // the function, we pretend that we don't have the full function
2934       // type.
2935       if (!cast<FunctionDecl>(VD)->hasPrototype() &&
2936           isa<FunctionProtoType>(fty))
2937         type = Context.getFunctionNoProtoType(fty->getReturnType(),
2938                                               fty->getExtInfo());
2939 
2940       // Functions are r-values in C.
2941       valueKind = VK_RValue;
2942       break;
2943     }
2944 
2945     case Decl::MSProperty:
2946       valueKind = VK_LValue;
2947       break;
2948 
2949     case Decl::CXXMethod:
2950       // If we're referring to a method with an __unknown_anytype
2951       // result type, make the entire expression __unknown_anytype.
2952       // This should only be possible with a type written directly.
2953       if (const FunctionProtoType *proto
2954             = dyn_cast<FunctionProtoType>(VD->getType()))
2955         if (proto->getReturnType() == Context.UnknownAnyTy) {
2956           type = Context.UnknownAnyTy;
2957           valueKind = VK_RValue;
2958           break;
2959         }
2960 
2961       // C++ methods are l-values if static, r-values if non-static.
2962       if (cast<CXXMethodDecl>(VD)->isStatic()) {
2963         valueKind = VK_LValue;
2964         break;
2965       }
2966       // fallthrough
2967 
2968     case Decl::CXXConversion:
2969     case Decl::CXXDestructor:
2970     case Decl::CXXConstructor:
2971       valueKind = VK_RValue;
2972       break;
2973     }
2974 
2975     return BuildDeclRefExpr(VD, type, valueKind, NameInfo, &SS, FoundD,
2976                             TemplateArgs);
2977   }
2978 }
2979 
ConvertUTF8ToWideString(unsigned CharByteWidth,StringRef Source,SmallString<32> & Target)2980 static void ConvertUTF8ToWideString(unsigned CharByteWidth, StringRef Source,
2981                                     SmallString<32> &Target) {
2982   Target.resize(CharByteWidth * (Source.size() + 1));
2983   char *ResultPtr = &Target[0];
2984   const UTF8 *ErrorPtr;
2985   bool success = ConvertUTF8toWide(CharByteWidth, Source, ResultPtr, ErrorPtr);
2986   (void)success;
2987   assert(success);
2988   Target.resize(ResultPtr - &Target[0]);
2989 }
2990 
BuildPredefinedExpr(SourceLocation Loc,PredefinedExpr::IdentType IT)2991 ExprResult Sema::BuildPredefinedExpr(SourceLocation Loc,
2992                                      PredefinedExpr::IdentType IT) {
2993   // Pick the current block, lambda, captured statement or function.
2994   Decl *currentDecl = nullptr;
2995   if (const BlockScopeInfo *BSI = getCurBlock())
2996     currentDecl = BSI->TheDecl;
2997   else if (const LambdaScopeInfo *LSI = getCurLambda())
2998     currentDecl = LSI->CallOperator;
2999   else if (const CapturedRegionScopeInfo *CSI = getCurCapturedRegion())
3000     currentDecl = CSI->TheCapturedDecl;
3001   else
3002     currentDecl = getCurFunctionOrMethodDecl();
3003 
3004   if (!currentDecl) {
3005     Diag(Loc, diag::ext_predef_outside_function);
3006     currentDecl = Context.getTranslationUnitDecl();
3007   }
3008 
3009   QualType ResTy;
3010   StringLiteral *SL = nullptr;
3011   if (cast<DeclContext>(currentDecl)->isDependentContext())
3012     ResTy = Context.DependentTy;
3013   else {
3014     // Pre-defined identifiers are of type char[x], where x is the length of
3015     // the string.
3016     auto Str = PredefinedExpr::ComputeName(IT, currentDecl);
3017     unsigned Length = Str.length();
3018 
3019     llvm::APInt LengthI(32, Length + 1);
3020     if (IT == PredefinedExpr::LFunction) {
3021       ResTy = Context.WideCharTy.withConst();
3022       SmallString<32> RawChars;
3023       ConvertUTF8ToWideString(Context.getTypeSizeInChars(ResTy).getQuantity(),
3024                               Str, RawChars);
3025       ResTy = Context.getConstantArrayType(ResTy, LengthI, ArrayType::Normal,
3026                                            /*IndexTypeQuals*/ 0);
3027       SL = StringLiteral::Create(Context, RawChars, StringLiteral::Wide,
3028                                  /*Pascal*/ false, ResTy, Loc);
3029     } else {
3030       ResTy = Context.CharTy.withConst();
3031       ResTy = Context.getConstantArrayType(ResTy, LengthI, ArrayType::Normal,
3032                                            /*IndexTypeQuals*/ 0);
3033       SL = StringLiteral::Create(Context, Str, StringLiteral::Ascii,
3034                                  /*Pascal*/ false, ResTy, Loc);
3035     }
3036   }
3037 
3038   return new (Context) PredefinedExpr(Loc, ResTy, IT, SL);
3039 }
3040 
ActOnPredefinedExpr(SourceLocation Loc,tok::TokenKind Kind)3041 ExprResult Sema::ActOnPredefinedExpr(SourceLocation Loc, tok::TokenKind Kind) {
3042   PredefinedExpr::IdentType IT;
3043 
3044   switch (Kind) {
3045   default: llvm_unreachable("Unknown simple primary expr!");
3046   case tok::kw___func__: IT = PredefinedExpr::Func; break; // [C99 6.4.2.2]
3047   case tok::kw___FUNCTION__: IT = PredefinedExpr::Function; break;
3048   case tok::kw___FUNCDNAME__: IT = PredefinedExpr::FuncDName; break; // [MS]
3049   case tok::kw___FUNCSIG__: IT = PredefinedExpr::FuncSig; break; // [MS]
3050   case tok::kw_L__FUNCTION__: IT = PredefinedExpr::LFunction; break;
3051   case tok::kw___PRETTY_FUNCTION__: IT = PredefinedExpr::PrettyFunction; break;
3052   }
3053 
3054   return BuildPredefinedExpr(Loc, IT);
3055 }
3056 
ActOnCharacterConstant(const Token & Tok,Scope * UDLScope)3057 ExprResult Sema::ActOnCharacterConstant(const Token &Tok, Scope *UDLScope) {
3058   SmallString<16> CharBuffer;
3059   bool Invalid = false;
3060   StringRef ThisTok = PP.getSpelling(Tok, CharBuffer, &Invalid);
3061   if (Invalid)
3062     return ExprError();
3063 
3064   CharLiteralParser Literal(ThisTok.begin(), ThisTok.end(), Tok.getLocation(),
3065                             PP, Tok.getKind());
3066   if (Literal.hadError())
3067     return ExprError();
3068 
3069   QualType Ty;
3070   if (Literal.isWide())
3071     Ty = Context.WideCharTy; // L'x' -> wchar_t in C and C++.
3072   else if (Literal.isUTF16())
3073     Ty = Context.Char16Ty; // u'x' -> char16_t in C11 and C++11.
3074   else if (Literal.isUTF32())
3075     Ty = Context.Char32Ty; // U'x' -> char32_t in C11 and C++11.
3076   else if (!getLangOpts().CPlusPlus || Literal.isMultiChar())
3077     Ty = Context.IntTy;   // 'x' -> int in C, 'wxyz' -> int in C++.
3078   else
3079     Ty = Context.CharTy;  // 'x' -> char in C++
3080 
3081   CharacterLiteral::CharacterKind Kind = CharacterLiteral::Ascii;
3082   if (Literal.isWide())
3083     Kind = CharacterLiteral::Wide;
3084   else if (Literal.isUTF16())
3085     Kind = CharacterLiteral::UTF16;
3086   else if (Literal.isUTF32())
3087     Kind = CharacterLiteral::UTF32;
3088 
3089   Expr *Lit = new (Context) CharacterLiteral(Literal.getValue(), Kind, Ty,
3090                                              Tok.getLocation());
3091 
3092   if (Literal.getUDSuffix().empty())
3093     return Lit;
3094 
3095   // We're building a user-defined literal.
3096   IdentifierInfo *UDSuffix = &Context.Idents.get(Literal.getUDSuffix());
3097   SourceLocation UDSuffixLoc =
3098     getUDSuffixLoc(*this, Tok.getLocation(), Literal.getUDSuffixOffset());
3099 
3100   // Make sure we're allowed user-defined literals here.
3101   if (!UDLScope)
3102     return ExprError(Diag(UDSuffixLoc, diag::err_invalid_character_udl));
3103 
3104   // C++11 [lex.ext]p6: The literal L is treated as a call of the form
3105   //   operator "" X (ch)
3106   return BuildCookedLiteralOperatorCall(*this, UDLScope, UDSuffix, UDSuffixLoc,
3107                                         Lit, Tok.getLocation());
3108 }
3109 
ActOnIntegerConstant(SourceLocation Loc,uint64_t Val)3110 ExprResult Sema::ActOnIntegerConstant(SourceLocation Loc, uint64_t Val) {
3111   unsigned IntSize = Context.getTargetInfo().getIntWidth();
3112   return IntegerLiteral::Create(Context, llvm::APInt(IntSize, Val),
3113                                 Context.IntTy, Loc);
3114 }
3115 
BuildFloatingLiteral(Sema & S,NumericLiteralParser & Literal,QualType Ty,SourceLocation Loc)3116 static Expr *BuildFloatingLiteral(Sema &S, NumericLiteralParser &Literal,
3117                                   QualType Ty, SourceLocation Loc) {
3118   const llvm::fltSemantics &Format = S.Context.getFloatTypeSemantics(Ty);
3119 
3120   using llvm::APFloat;
3121   APFloat Val(Format);
3122 
3123   APFloat::opStatus result = Literal.GetFloatValue(Val);
3124 
3125   // Overflow is always an error, but underflow is only an error if
3126   // we underflowed to zero (APFloat reports denormals as underflow).
3127   if ((result & APFloat::opOverflow) ||
3128       ((result & APFloat::opUnderflow) && Val.isZero())) {
3129     unsigned diagnostic;
3130     SmallString<20> buffer;
3131     if (result & APFloat::opOverflow) {
3132       diagnostic = diag::warn_float_overflow;
3133       APFloat::getLargest(Format).toString(buffer);
3134     } else {
3135       diagnostic = diag::warn_float_underflow;
3136       APFloat::getSmallest(Format).toString(buffer);
3137     }
3138 
3139     S.Diag(Loc, diagnostic)
3140       << Ty
3141       << StringRef(buffer.data(), buffer.size());
3142   }
3143 
3144   bool isExact = (result == APFloat::opOK);
3145   return FloatingLiteral::Create(S.Context, Val, isExact, Ty, Loc);
3146 }
3147 
CheckLoopHintExpr(Expr * E,SourceLocation Loc)3148 bool Sema::CheckLoopHintExpr(Expr *E, SourceLocation Loc) {
3149   assert(E && "Invalid expression");
3150 
3151   if (E->isValueDependent())
3152     return false;
3153 
3154   QualType QT = E->getType();
3155   if (!QT->isIntegerType() || QT->isBooleanType() || QT->isCharType()) {
3156     Diag(E->getExprLoc(), diag::err_pragma_loop_invalid_argument_type) << QT;
3157     return true;
3158   }
3159 
3160   llvm::APSInt ValueAPS;
3161   ExprResult R = VerifyIntegerConstantExpression(E, &ValueAPS);
3162 
3163   if (R.isInvalid())
3164     return true;
3165 
3166   bool ValueIsPositive = ValueAPS.isStrictlyPositive();
3167   if (!ValueIsPositive || ValueAPS.getActiveBits() > 31) {
3168     Diag(E->getExprLoc(), diag::err_pragma_loop_invalid_argument_value)
3169         << ValueAPS.toString(10) << ValueIsPositive;
3170     return true;
3171   }
3172 
3173   return false;
3174 }
3175 
ActOnNumericConstant(const Token & Tok,Scope * UDLScope)3176 ExprResult Sema::ActOnNumericConstant(const Token &Tok, Scope *UDLScope) {
3177   // Fast path for a single digit (which is quite common).  A single digit
3178   // cannot have a trigraph, escaped newline, radix prefix, or suffix.
3179   if (Tok.getLength() == 1) {
3180     const char Val = PP.getSpellingOfSingleCharacterNumericConstant(Tok);
3181     return ActOnIntegerConstant(Tok.getLocation(), Val-'0');
3182   }
3183 
3184   SmallString<128> SpellingBuffer;
3185   // NumericLiteralParser wants to overread by one character.  Add padding to
3186   // the buffer in case the token is copied to the buffer.  If getSpelling()
3187   // returns a StringRef to the memory buffer, it should have a null char at
3188   // the EOF, so it is also safe.
3189   SpellingBuffer.resize(Tok.getLength() + 1);
3190 
3191   // Get the spelling of the token, which eliminates trigraphs, etc.
3192   bool Invalid = false;
3193   StringRef TokSpelling = PP.getSpelling(Tok, SpellingBuffer, &Invalid);
3194   if (Invalid)
3195     return ExprError();
3196 
3197   NumericLiteralParser Literal(TokSpelling, Tok.getLocation(), PP);
3198   if (Literal.hadError)
3199     return ExprError();
3200 
3201   if (Literal.hasUDSuffix()) {
3202     // We're building a user-defined literal.
3203     IdentifierInfo *UDSuffix = &Context.Idents.get(Literal.getUDSuffix());
3204     SourceLocation UDSuffixLoc =
3205       getUDSuffixLoc(*this, Tok.getLocation(), Literal.getUDSuffixOffset());
3206 
3207     // Make sure we're allowed user-defined literals here.
3208     if (!UDLScope)
3209       return ExprError(Diag(UDSuffixLoc, diag::err_invalid_numeric_udl));
3210 
3211     QualType CookedTy;
3212     if (Literal.isFloatingLiteral()) {
3213       // C++11 [lex.ext]p4: If S contains a literal operator with parameter type
3214       // long double, the literal is treated as a call of the form
3215       //   operator "" X (f L)
3216       CookedTy = Context.LongDoubleTy;
3217     } else {
3218       // C++11 [lex.ext]p3: If S contains a literal operator with parameter type
3219       // unsigned long long, the literal is treated as a call of the form
3220       //   operator "" X (n ULL)
3221       CookedTy = Context.UnsignedLongLongTy;
3222     }
3223 
3224     DeclarationName OpName =
3225       Context.DeclarationNames.getCXXLiteralOperatorName(UDSuffix);
3226     DeclarationNameInfo OpNameInfo(OpName, UDSuffixLoc);
3227     OpNameInfo.setCXXLiteralOperatorNameLoc(UDSuffixLoc);
3228 
3229     SourceLocation TokLoc = Tok.getLocation();
3230 
3231     // Perform literal operator lookup to determine if we're building a raw
3232     // literal or a cooked one.
3233     LookupResult R(*this, OpName, UDSuffixLoc, LookupOrdinaryName);
3234     switch (LookupLiteralOperator(UDLScope, R, CookedTy,
3235                                   /*AllowRaw*/true, /*AllowTemplate*/true,
3236                                   /*AllowStringTemplate*/false)) {
3237     case LOLR_Error:
3238       return ExprError();
3239 
3240     case LOLR_Cooked: {
3241       Expr *Lit;
3242       if (Literal.isFloatingLiteral()) {
3243         Lit = BuildFloatingLiteral(*this, Literal, CookedTy, Tok.getLocation());
3244       } else {
3245         llvm::APInt ResultVal(Context.getTargetInfo().getLongLongWidth(), 0);
3246         if (Literal.GetIntegerValue(ResultVal))
3247           Diag(Tok.getLocation(), diag::err_integer_literal_too_large)
3248               << /* Unsigned */ 1;
3249         Lit = IntegerLiteral::Create(Context, ResultVal, CookedTy,
3250                                      Tok.getLocation());
3251       }
3252       return BuildLiteralOperatorCall(R, OpNameInfo, Lit, TokLoc);
3253     }
3254 
3255     case LOLR_Raw: {
3256       // C++11 [lit.ext]p3, p4: If S contains a raw literal operator, the
3257       // literal is treated as a call of the form
3258       //   operator "" X ("n")
3259       unsigned Length = Literal.getUDSuffixOffset();
3260       QualType StrTy = Context.getConstantArrayType(
3261           Context.CharTy.withConst(), llvm::APInt(32, Length + 1),
3262           ArrayType::Normal, 0);
3263       Expr *Lit = StringLiteral::Create(
3264           Context, StringRef(TokSpelling.data(), Length), StringLiteral::Ascii,
3265           /*Pascal*/false, StrTy, &TokLoc, 1);
3266       return BuildLiteralOperatorCall(R, OpNameInfo, Lit, TokLoc);
3267     }
3268 
3269     case LOLR_Template: {
3270       // C++11 [lit.ext]p3, p4: Otherwise (S contains a literal operator
3271       // template), L is treated as a call fo the form
3272       //   operator "" X <'c1', 'c2', ... 'ck'>()
3273       // where n is the source character sequence c1 c2 ... ck.
3274       TemplateArgumentListInfo ExplicitArgs;
3275       unsigned CharBits = Context.getIntWidth(Context.CharTy);
3276       bool CharIsUnsigned = Context.CharTy->isUnsignedIntegerType();
3277       llvm::APSInt Value(CharBits, CharIsUnsigned);
3278       for (unsigned I = 0, N = Literal.getUDSuffixOffset(); I != N; ++I) {
3279         Value = TokSpelling[I];
3280         TemplateArgument Arg(Context, Value, Context.CharTy);
3281         TemplateArgumentLocInfo ArgInfo;
3282         ExplicitArgs.addArgument(TemplateArgumentLoc(Arg, ArgInfo));
3283       }
3284       return BuildLiteralOperatorCall(R, OpNameInfo, None, TokLoc,
3285                                       &ExplicitArgs);
3286     }
3287     case LOLR_StringTemplate:
3288       llvm_unreachable("unexpected literal operator lookup result");
3289     }
3290   }
3291 
3292   Expr *Res;
3293 
3294   if (Literal.isFloatingLiteral()) {
3295     QualType Ty;
3296     if (Literal.isFloat)
3297       Ty = Context.FloatTy;
3298     else if (!Literal.isLong)
3299       Ty = Context.DoubleTy;
3300     else
3301       Ty = Context.LongDoubleTy;
3302 
3303     Res = BuildFloatingLiteral(*this, Literal, Ty, Tok.getLocation());
3304 
3305     if (Ty == Context.DoubleTy) {
3306       if (getLangOpts().SinglePrecisionConstants) {
3307         Res = ImpCastExprToType(Res, Context.FloatTy, CK_FloatingCast).get();
3308       } else if (getLangOpts().OpenCL &&
3309                  !((getLangOpts().OpenCLVersion >= 120) ||
3310                    getOpenCLOptions().cl_khr_fp64)) {
3311         Diag(Tok.getLocation(), diag::warn_double_const_requires_fp64);
3312         Res = ImpCastExprToType(Res, Context.FloatTy, CK_FloatingCast).get();
3313       }
3314     }
3315   } else if (!Literal.isIntegerLiteral()) {
3316     return ExprError();
3317   } else {
3318     QualType Ty;
3319 
3320     // 'long long' is a C99 or C++11 feature.
3321     if (!getLangOpts().C99 && Literal.isLongLong) {
3322       if (getLangOpts().CPlusPlus)
3323         Diag(Tok.getLocation(),
3324              getLangOpts().CPlusPlus11 ?
3325              diag::warn_cxx98_compat_longlong : diag::ext_cxx11_longlong);
3326       else
3327         Diag(Tok.getLocation(), diag::ext_c99_longlong);
3328     }
3329 
3330     // Get the value in the widest-possible width.
3331     unsigned MaxWidth = Context.getTargetInfo().getIntMaxTWidth();
3332     llvm::APInt ResultVal(MaxWidth, 0);
3333 
3334     if (Literal.GetIntegerValue(ResultVal)) {
3335       // If this value didn't fit into uintmax_t, error and force to ull.
3336       Diag(Tok.getLocation(), diag::err_integer_literal_too_large)
3337           << /* Unsigned */ 1;
3338       Ty = Context.UnsignedLongLongTy;
3339       assert(Context.getTypeSize(Ty) == ResultVal.getBitWidth() &&
3340              "long long is not intmax_t?");
3341     } else {
3342       // If this value fits into a ULL, try to figure out what else it fits into
3343       // according to the rules of C99 6.4.4.1p5.
3344 
3345       // Octal, Hexadecimal, and integers with a U suffix are allowed to
3346       // be an unsigned int.
3347       bool AllowUnsigned = Literal.isUnsigned || Literal.getRadix() != 10;
3348 
3349       // Check from smallest to largest, picking the smallest type we can.
3350       unsigned Width = 0;
3351 
3352       // Microsoft specific integer suffixes are explicitly sized.
3353       if (Literal.MicrosoftInteger) {
3354         if (Literal.MicrosoftInteger == 8 && !Literal.isUnsigned) {
3355           Width = 8;
3356           Ty = Context.CharTy;
3357         } else {
3358           Width = Literal.MicrosoftInteger;
3359           Ty = Context.getIntTypeForBitwidth(Width,
3360                                              /*Signed=*/!Literal.isUnsigned);
3361         }
3362       }
3363 
3364       if (Ty.isNull() && !Literal.isLong && !Literal.isLongLong) {
3365         // Are int/unsigned possibilities?
3366         unsigned IntSize = Context.getTargetInfo().getIntWidth();
3367 
3368         // Does it fit in a unsigned int?
3369         if (ResultVal.isIntN(IntSize)) {
3370           // Does it fit in a signed int?
3371           if (!Literal.isUnsigned && ResultVal[IntSize-1] == 0)
3372             Ty = Context.IntTy;
3373           else if (AllowUnsigned)
3374             Ty = Context.UnsignedIntTy;
3375           Width = IntSize;
3376         }
3377       }
3378 
3379       // Are long/unsigned long possibilities?
3380       if (Ty.isNull() && !Literal.isLongLong) {
3381         unsigned LongSize = Context.getTargetInfo().getLongWidth();
3382 
3383         // Does it fit in a unsigned long?
3384         if (ResultVal.isIntN(LongSize)) {
3385           // Does it fit in a signed long?
3386           if (!Literal.isUnsigned && ResultVal[LongSize-1] == 0)
3387             Ty = Context.LongTy;
3388           else if (AllowUnsigned)
3389             Ty = Context.UnsignedLongTy;
3390           // Check according to the rules of C90 6.1.3.2p5. C++03 [lex.icon]p2
3391           // is compatible.
3392           else if (!getLangOpts().C99 && !getLangOpts().CPlusPlus11) {
3393             const unsigned LongLongSize =
3394                 Context.getTargetInfo().getLongLongWidth();
3395             Diag(Tok.getLocation(),
3396                  getLangOpts().CPlusPlus
3397                      ? Literal.isLong
3398                            ? diag::warn_old_implicitly_unsigned_long_cxx
3399                            : /*C++98 UB*/ diag::
3400                                  ext_old_implicitly_unsigned_long_cxx
3401                      : diag::warn_old_implicitly_unsigned_long)
3402                 << (LongLongSize > LongSize ? /*will have type 'long long'*/ 0
3403                                             : /*will be ill-formed*/ 1);
3404             Ty = Context.UnsignedLongTy;
3405           }
3406           Width = LongSize;
3407         }
3408       }
3409 
3410       // Check long long if needed.
3411       if (Ty.isNull()) {
3412         unsigned LongLongSize = Context.getTargetInfo().getLongLongWidth();
3413 
3414         // Does it fit in a unsigned long long?
3415         if (ResultVal.isIntN(LongLongSize)) {
3416           // Does it fit in a signed long long?
3417           // To be compatible with MSVC, hex integer literals ending with the
3418           // LL or i64 suffix are always signed in Microsoft mode.
3419           if (!Literal.isUnsigned && (ResultVal[LongLongSize-1] == 0 ||
3420               (getLangOpts().MicrosoftExt && Literal.isLongLong)))
3421             Ty = Context.LongLongTy;
3422           else if (AllowUnsigned)
3423             Ty = Context.UnsignedLongLongTy;
3424           Width = LongLongSize;
3425         }
3426       }
3427 
3428       // If we still couldn't decide a type, we probably have something that
3429       // does not fit in a signed long long, but has no U suffix.
3430       if (Ty.isNull()) {
3431         Diag(Tok.getLocation(), diag::ext_integer_literal_too_large_for_signed);
3432         Ty = Context.UnsignedLongLongTy;
3433         Width = Context.getTargetInfo().getLongLongWidth();
3434       }
3435 
3436       if (ResultVal.getBitWidth() != Width)
3437         ResultVal = ResultVal.trunc(Width);
3438     }
3439     Res = IntegerLiteral::Create(Context, ResultVal, Ty, Tok.getLocation());
3440   }
3441 
3442   // If this is an imaginary literal, create the ImaginaryLiteral wrapper.
3443   if (Literal.isImaginary)
3444     Res = new (Context) ImaginaryLiteral(Res,
3445                                         Context.getComplexType(Res->getType()));
3446 
3447   return Res;
3448 }
3449 
ActOnParenExpr(SourceLocation L,SourceLocation R,Expr * E)3450 ExprResult Sema::ActOnParenExpr(SourceLocation L, SourceLocation R, Expr *E) {
3451   assert(E && "ActOnParenExpr() missing expr");
3452   return new (Context) ParenExpr(L, R, E);
3453 }
3454 
CheckVecStepTraitOperandType(Sema & S,QualType T,SourceLocation Loc,SourceRange ArgRange)3455 static bool CheckVecStepTraitOperandType(Sema &S, QualType T,
3456                                          SourceLocation Loc,
3457                                          SourceRange ArgRange) {
3458   // [OpenCL 1.1 6.11.12] "The vec_step built-in function takes a built-in
3459   // scalar or vector data type argument..."
3460   // Every built-in scalar type (OpenCL 1.1 6.1.1) is either an arithmetic
3461   // type (C99 6.2.5p18) or void.
3462   if (!(T->isArithmeticType() || T->isVoidType() || T->isVectorType())) {
3463     S.Diag(Loc, diag::err_vecstep_non_scalar_vector_type)
3464       << T << ArgRange;
3465     return true;
3466   }
3467 
3468   assert((T->isVoidType() || !T->isIncompleteType()) &&
3469          "Scalar types should always be complete");
3470   return false;
3471 }
3472 
CheckExtensionTraitOperandType(Sema & S,QualType T,SourceLocation Loc,SourceRange ArgRange,UnaryExprOrTypeTrait TraitKind)3473 static bool CheckExtensionTraitOperandType(Sema &S, QualType T,
3474                                            SourceLocation Loc,
3475                                            SourceRange ArgRange,
3476                                            UnaryExprOrTypeTrait TraitKind) {
3477   // Invalid types must be hard errors for SFINAE in C++.
3478   if (S.LangOpts.CPlusPlus)
3479     return true;
3480 
3481   // C99 6.5.3.4p1:
3482   if (T->isFunctionType() &&
3483       (TraitKind == UETT_SizeOf || TraitKind == UETT_AlignOf)) {
3484     // sizeof(function)/alignof(function) is allowed as an extension.
3485     S.Diag(Loc, diag::ext_sizeof_alignof_function_type)
3486       << TraitKind << ArgRange;
3487     return false;
3488   }
3489 
3490   // Allow sizeof(void)/alignof(void) as an extension, unless in OpenCL where
3491   // this is an error (OpenCL v1.1 s6.3.k)
3492   if (T->isVoidType()) {
3493     unsigned DiagID = S.LangOpts.OpenCL ? diag::err_opencl_sizeof_alignof_type
3494                                         : diag::ext_sizeof_alignof_void_type;
3495     S.Diag(Loc, DiagID) << TraitKind << ArgRange;
3496     return false;
3497   }
3498 
3499   return true;
3500 }
3501 
CheckObjCTraitOperandConstraints(Sema & S,QualType T,SourceLocation Loc,SourceRange ArgRange,UnaryExprOrTypeTrait TraitKind)3502 static bool CheckObjCTraitOperandConstraints(Sema &S, QualType T,
3503                                              SourceLocation Loc,
3504                                              SourceRange ArgRange,
3505                                              UnaryExprOrTypeTrait TraitKind) {
3506   // Reject sizeof(interface) and sizeof(interface<proto>) if the
3507   // runtime doesn't allow it.
3508   if (!S.LangOpts.ObjCRuntime.allowsSizeofAlignof() && T->isObjCObjectType()) {
3509     S.Diag(Loc, diag::err_sizeof_nonfragile_interface)
3510       << T << (TraitKind == UETT_SizeOf)
3511       << ArgRange;
3512     return true;
3513   }
3514 
3515   return false;
3516 }
3517 
3518 /// \brief Check whether E is a pointer from a decayed array type (the decayed
3519 /// pointer type is equal to T) and emit a warning if it is.
warnOnSizeofOnArrayDecay(Sema & S,SourceLocation Loc,QualType T,Expr * E)3520 static void warnOnSizeofOnArrayDecay(Sema &S, SourceLocation Loc, QualType T,
3521                                      Expr *E) {
3522   // Don't warn if the operation changed the type.
3523   if (T != E->getType())
3524     return;
3525 
3526   // Now look for array decays.
3527   ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E);
3528   if (!ICE || ICE->getCastKind() != CK_ArrayToPointerDecay)
3529     return;
3530 
3531   S.Diag(Loc, diag::warn_sizeof_array_decay) << ICE->getSourceRange()
3532                                              << ICE->getType()
3533                                              << ICE->getSubExpr()->getType();
3534 }
3535 
3536 /// \brief Check the constraints on expression operands to unary type expression
3537 /// and type traits.
3538 ///
3539 /// Completes any types necessary and validates the constraints on the operand
3540 /// expression. The logic mostly mirrors the type-based overload, but may modify
3541 /// the expression as it completes the type for that expression through template
3542 /// instantiation, etc.
CheckUnaryExprOrTypeTraitOperand(Expr * E,UnaryExprOrTypeTrait ExprKind)3543 bool Sema::CheckUnaryExprOrTypeTraitOperand(Expr *E,
3544                                             UnaryExprOrTypeTrait ExprKind) {
3545   QualType ExprTy = E->getType();
3546   assert(!ExprTy->isReferenceType());
3547 
3548   if (ExprKind == UETT_VecStep)
3549     return CheckVecStepTraitOperandType(*this, ExprTy, E->getExprLoc(),
3550                                         E->getSourceRange());
3551 
3552   // Whitelist some types as extensions
3553   if (!CheckExtensionTraitOperandType(*this, ExprTy, E->getExprLoc(),
3554                                       E->getSourceRange(), ExprKind))
3555     return false;
3556 
3557   // 'alignof' applied to an expression only requires the base element type of
3558   // the expression to be complete. 'sizeof' requires the expression's type to
3559   // be complete (and will attempt to complete it if it's an array of unknown
3560   // bound).
3561   if (ExprKind == UETT_AlignOf) {
3562     if (RequireCompleteType(E->getExprLoc(),
3563                             Context.getBaseElementType(E->getType()),
3564                             diag::err_sizeof_alignof_incomplete_type, ExprKind,
3565                             E->getSourceRange()))
3566       return true;
3567   } else {
3568     if (RequireCompleteExprType(E, diag::err_sizeof_alignof_incomplete_type,
3569                                 ExprKind, E->getSourceRange()))
3570       return true;
3571   }
3572 
3573   // Completing the expression's type may have changed it.
3574   ExprTy = E->getType();
3575   assert(!ExprTy->isReferenceType());
3576 
3577   if (ExprTy->isFunctionType()) {
3578     Diag(E->getExprLoc(), diag::err_sizeof_alignof_function_type)
3579       << ExprKind << E->getSourceRange();
3580     return true;
3581   }
3582 
3583   // The operand for sizeof and alignof is in an unevaluated expression context,
3584   // so side effects could result in unintended consequences.
3585   if ((ExprKind == UETT_SizeOf || ExprKind == UETT_AlignOf) &&
3586       ActiveTemplateInstantiations.empty() && E->HasSideEffects(Context, false))
3587     Diag(E->getExprLoc(), diag::warn_side_effects_unevaluated_context);
3588 
3589   if (CheckObjCTraitOperandConstraints(*this, ExprTy, E->getExprLoc(),
3590                                        E->getSourceRange(), ExprKind))
3591     return true;
3592 
3593   if (ExprKind == UETT_SizeOf) {
3594     if (DeclRefExpr *DeclRef = dyn_cast<DeclRefExpr>(E->IgnoreParens())) {
3595       if (ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(DeclRef->getFoundDecl())) {
3596         QualType OType = PVD->getOriginalType();
3597         QualType Type = PVD->getType();
3598         if (Type->isPointerType() && OType->isArrayType()) {
3599           Diag(E->getExprLoc(), diag::warn_sizeof_array_param)
3600             << Type << OType;
3601           Diag(PVD->getLocation(), diag::note_declared_at);
3602         }
3603       }
3604     }
3605 
3606     // Warn on "sizeof(array op x)" and "sizeof(x op array)", where the array
3607     // decays into a pointer and returns an unintended result. This is most
3608     // likely a typo for "sizeof(array) op x".
3609     if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E->IgnoreParens())) {
3610       warnOnSizeofOnArrayDecay(*this, BO->getOperatorLoc(), BO->getType(),
3611                                BO->getLHS());
3612       warnOnSizeofOnArrayDecay(*this, BO->getOperatorLoc(), BO->getType(),
3613                                BO->getRHS());
3614     }
3615   }
3616 
3617   return false;
3618 }
3619 
3620 /// \brief Check the constraints on operands to unary expression and type
3621 /// traits.
3622 ///
3623 /// This will complete any types necessary, and validate the various constraints
3624 /// on those operands.
3625 ///
3626 /// The UsualUnaryConversions() function is *not* called by this routine.
3627 /// C99 6.3.2.1p[2-4] all state:
3628 ///   Except when it is the operand of the sizeof operator ...
3629 ///
3630 /// C++ [expr.sizeof]p4
3631 ///   The lvalue-to-rvalue, array-to-pointer, and function-to-pointer
3632 ///   standard conversions are not applied to the operand of sizeof.
3633 ///
3634 /// This policy is followed for all of the unary trait expressions.
CheckUnaryExprOrTypeTraitOperand(QualType ExprType,SourceLocation OpLoc,SourceRange ExprRange,UnaryExprOrTypeTrait ExprKind)3635 bool Sema::CheckUnaryExprOrTypeTraitOperand(QualType ExprType,
3636                                             SourceLocation OpLoc,
3637                                             SourceRange ExprRange,
3638                                             UnaryExprOrTypeTrait ExprKind) {
3639   if (ExprType->isDependentType())
3640     return false;
3641 
3642   // C++ [expr.sizeof]p2:
3643   //     When applied to a reference or a reference type, the result
3644   //     is the size of the referenced type.
3645   // C++11 [expr.alignof]p3:
3646   //     When alignof is applied to a reference type, the result
3647   //     shall be the alignment of the referenced type.
3648   if (const ReferenceType *Ref = ExprType->getAs<ReferenceType>())
3649     ExprType = Ref->getPointeeType();
3650 
3651   // C11 6.5.3.4/3, C++11 [expr.alignof]p3:
3652   //   When alignof or _Alignof is applied to an array type, the result
3653   //   is the alignment of the element type.
3654   if (ExprKind == UETT_AlignOf || ExprKind == UETT_OpenMPRequiredSimdAlign)
3655     ExprType = Context.getBaseElementType(ExprType);
3656 
3657   if (ExprKind == UETT_VecStep)
3658     return CheckVecStepTraitOperandType(*this, ExprType, OpLoc, ExprRange);
3659 
3660   // Whitelist some types as extensions
3661   if (!CheckExtensionTraitOperandType(*this, ExprType, OpLoc, ExprRange,
3662                                       ExprKind))
3663     return false;
3664 
3665   if (RequireCompleteType(OpLoc, ExprType,
3666                           diag::err_sizeof_alignof_incomplete_type,
3667                           ExprKind, ExprRange))
3668     return true;
3669 
3670   if (ExprType->isFunctionType()) {
3671     Diag(OpLoc, diag::err_sizeof_alignof_function_type)
3672       << ExprKind << ExprRange;
3673     return true;
3674   }
3675 
3676   if (CheckObjCTraitOperandConstraints(*this, ExprType, OpLoc, ExprRange,
3677                                        ExprKind))
3678     return true;
3679 
3680   return false;
3681 }
3682 
CheckAlignOfExpr(Sema & S,Expr * E)3683 static bool CheckAlignOfExpr(Sema &S, Expr *E) {
3684   E = E->IgnoreParens();
3685 
3686   // Cannot know anything else if the expression is dependent.
3687   if (E->isTypeDependent())
3688     return false;
3689 
3690   if (E->getObjectKind() == OK_BitField) {
3691     S.Diag(E->getExprLoc(), diag::err_sizeof_alignof_typeof_bitfield)
3692        << 1 << E->getSourceRange();
3693     return true;
3694   }
3695 
3696   ValueDecl *D = nullptr;
3697   if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) {
3698     D = DRE->getDecl();
3699   } else if (MemberExpr *ME = dyn_cast<MemberExpr>(E)) {
3700     D = ME->getMemberDecl();
3701   }
3702 
3703   // If it's a field, require the containing struct to have a
3704   // complete definition so that we can compute the layout.
3705   //
3706   // This can happen in C++11 onwards, either by naming the member
3707   // in a way that is not transformed into a member access expression
3708   // (in an unevaluated operand, for instance), or by naming the member
3709   // in a trailing-return-type.
3710   //
3711   // For the record, since __alignof__ on expressions is a GCC
3712   // extension, GCC seems to permit this but always gives the
3713   // nonsensical answer 0.
3714   //
3715   // We don't really need the layout here --- we could instead just
3716   // directly check for all the appropriate alignment-lowing
3717   // attributes --- but that would require duplicating a lot of
3718   // logic that just isn't worth duplicating for such a marginal
3719   // use-case.
3720   if (FieldDecl *FD = dyn_cast_or_null<FieldDecl>(D)) {
3721     // Fast path this check, since we at least know the record has a
3722     // definition if we can find a member of it.
3723     if (!FD->getParent()->isCompleteDefinition()) {
3724       S.Diag(E->getExprLoc(), diag::err_alignof_member_of_incomplete_type)
3725         << E->getSourceRange();
3726       return true;
3727     }
3728 
3729     // Otherwise, if it's a field, and the field doesn't have
3730     // reference type, then it must have a complete type (or be a
3731     // flexible array member, which we explicitly want to
3732     // white-list anyway), which makes the following checks trivial.
3733     if (!FD->getType()->isReferenceType())
3734       return false;
3735   }
3736 
3737   return S.CheckUnaryExprOrTypeTraitOperand(E, UETT_AlignOf);
3738 }
3739 
CheckVecStepExpr(Expr * E)3740 bool Sema::CheckVecStepExpr(Expr *E) {
3741   E = E->IgnoreParens();
3742 
3743   // Cannot know anything else if the expression is dependent.
3744   if (E->isTypeDependent())
3745     return false;
3746 
3747   return CheckUnaryExprOrTypeTraitOperand(E, UETT_VecStep);
3748 }
3749 
3750 /// \brief Build a sizeof or alignof expression given a type operand.
3751 ExprResult
CreateUnaryExprOrTypeTraitExpr(TypeSourceInfo * TInfo,SourceLocation OpLoc,UnaryExprOrTypeTrait ExprKind,SourceRange R)3752 Sema::CreateUnaryExprOrTypeTraitExpr(TypeSourceInfo *TInfo,
3753                                      SourceLocation OpLoc,
3754                                      UnaryExprOrTypeTrait ExprKind,
3755                                      SourceRange R) {
3756   if (!TInfo)
3757     return ExprError();
3758 
3759   QualType T = TInfo->getType();
3760 
3761   if (!T->isDependentType() &&
3762       CheckUnaryExprOrTypeTraitOperand(T, OpLoc, R, ExprKind))
3763     return ExprError();
3764 
3765   // C99 6.5.3.4p4: the type (an unsigned integer type) is size_t.
3766   return new (Context) UnaryExprOrTypeTraitExpr(
3767       ExprKind, TInfo, Context.getSizeType(), OpLoc, R.getEnd());
3768 }
3769 
3770 /// \brief Build a sizeof or alignof expression given an expression
3771 /// operand.
3772 ExprResult
CreateUnaryExprOrTypeTraitExpr(Expr * E,SourceLocation OpLoc,UnaryExprOrTypeTrait ExprKind)3773 Sema::CreateUnaryExprOrTypeTraitExpr(Expr *E, SourceLocation OpLoc,
3774                                      UnaryExprOrTypeTrait ExprKind) {
3775   ExprResult PE = CheckPlaceholderExpr(E);
3776   if (PE.isInvalid())
3777     return ExprError();
3778 
3779   E = PE.get();
3780 
3781   // Verify that the operand is valid.
3782   bool isInvalid = false;
3783   if (E->isTypeDependent()) {
3784     // Delay type-checking for type-dependent expressions.
3785   } else if (ExprKind == UETT_AlignOf) {
3786     isInvalid = CheckAlignOfExpr(*this, E);
3787   } else if (ExprKind == UETT_VecStep) {
3788     isInvalid = CheckVecStepExpr(E);
3789   } else if (ExprKind == UETT_OpenMPRequiredSimdAlign) {
3790       Diag(E->getExprLoc(), diag::err_openmp_default_simd_align_expr);
3791       isInvalid = true;
3792   } else if (E->refersToBitField()) {  // C99 6.5.3.4p1.
3793     Diag(E->getExprLoc(), diag::err_sizeof_alignof_typeof_bitfield) << 0;
3794     isInvalid = true;
3795   } else {
3796     isInvalid = CheckUnaryExprOrTypeTraitOperand(E, UETT_SizeOf);
3797   }
3798 
3799   if (isInvalid)
3800     return ExprError();
3801 
3802   if (ExprKind == UETT_SizeOf && E->getType()->isVariableArrayType()) {
3803     PE = TransformToPotentiallyEvaluated(E);
3804     if (PE.isInvalid()) return ExprError();
3805     E = PE.get();
3806   }
3807 
3808   // C99 6.5.3.4p4: the type (an unsigned integer type) is size_t.
3809   return new (Context) UnaryExprOrTypeTraitExpr(
3810       ExprKind, E, Context.getSizeType(), OpLoc, E->getSourceRange().getEnd());
3811 }
3812 
3813 /// ActOnUnaryExprOrTypeTraitExpr - Handle @c sizeof(type) and @c sizeof @c
3814 /// expr and the same for @c alignof and @c __alignof
3815 /// Note that the ArgRange is invalid if isType is false.
3816 ExprResult
ActOnUnaryExprOrTypeTraitExpr(SourceLocation OpLoc,UnaryExprOrTypeTrait ExprKind,bool IsType,void * TyOrEx,SourceRange ArgRange)3817 Sema::ActOnUnaryExprOrTypeTraitExpr(SourceLocation OpLoc,
3818                                     UnaryExprOrTypeTrait ExprKind, bool IsType,
3819                                     void *TyOrEx, SourceRange ArgRange) {
3820   // If error parsing type, ignore.
3821   if (!TyOrEx) return ExprError();
3822 
3823   if (IsType) {
3824     TypeSourceInfo *TInfo;
3825     (void) GetTypeFromParser(ParsedType::getFromOpaquePtr(TyOrEx), &TInfo);
3826     return CreateUnaryExprOrTypeTraitExpr(TInfo, OpLoc, ExprKind, ArgRange);
3827   }
3828 
3829   Expr *ArgEx = (Expr *)TyOrEx;
3830   ExprResult Result = CreateUnaryExprOrTypeTraitExpr(ArgEx, OpLoc, ExprKind);
3831   return Result;
3832 }
3833 
CheckRealImagOperand(Sema & S,ExprResult & V,SourceLocation Loc,bool IsReal)3834 static QualType CheckRealImagOperand(Sema &S, ExprResult &V, SourceLocation Loc,
3835                                      bool IsReal) {
3836   if (V.get()->isTypeDependent())
3837     return S.Context.DependentTy;
3838 
3839   // _Real and _Imag are only l-values for normal l-values.
3840   if (V.get()->getObjectKind() != OK_Ordinary) {
3841     V = S.DefaultLvalueConversion(V.get());
3842     if (V.isInvalid())
3843       return QualType();
3844   }
3845 
3846   // These operators return the element type of a complex type.
3847   if (const ComplexType *CT = V.get()->getType()->getAs<ComplexType>())
3848     return CT->getElementType();
3849 
3850   // Otherwise they pass through real integer and floating point types here.
3851   if (V.get()->getType()->isArithmeticType())
3852     return V.get()->getType();
3853 
3854   // Test for placeholders.
3855   ExprResult PR = S.CheckPlaceholderExpr(V.get());
3856   if (PR.isInvalid()) return QualType();
3857   if (PR.get() != V.get()) {
3858     V = PR;
3859     return CheckRealImagOperand(S, V, Loc, IsReal);
3860   }
3861 
3862   // Reject anything else.
3863   S.Diag(Loc, diag::err_realimag_invalid_type) << V.get()->getType()
3864     << (IsReal ? "__real" : "__imag");
3865   return QualType();
3866 }
3867 
3868 
3869 
3870 ExprResult
ActOnPostfixUnaryOp(Scope * S,SourceLocation OpLoc,tok::TokenKind Kind,Expr * Input)3871 Sema::ActOnPostfixUnaryOp(Scope *S, SourceLocation OpLoc,
3872                           tok::TokenKind Kind, Expr *Input) {
3873   UnaryOperatorKind Opc;
3874   switch (Kind) {
3875   default: llvm_unreachable("Unknown unary op!");
3876   case tok::plusplus:   Opc = UO_PostInc; break;
3877   case tok::minusminus: Opc = UO_PostDec; break;
3878   }
3879 
3880   // Since this might is a postfix expression, get rid of ParenListExprs.
3881   ExprResult Result = MaybeConvertParenListExprToParenExpr(S, Input);
3882   if (Result.isInvalid()) return ExprError();
3883   Input = Result.get();
3884 
3885   return BuildUnaryOp(S, OpLoc, Opc, Input);
3886 }
3887 
3888 /// \brief Diagnose if arithmetic on the given ObjC pointer is illegal.
3889 ///
3890 /// \return true on error
checkArithmeticOnObjCPointer(Sema & S,SourceLocation opLoc,Expr * op)3891 static bool checkArithmeticOnObjCPointer(Sema &S,
3892                                          SourceLocation opLoc,
3893                                          Expr *op) {
3894   assert(op->getType()->isObjCObjectPointerType());
3895   if (S.LangOpts.ObjCRuntime.allowsPointerArithmetic() &&
3896       !S.LangOpts.ObjCSubscriptingLegacyRuntime)
3897     return false;
3898 
3899   S.Diag(opLoc, diag::err_arithmetic_nonfragile_interface)
3900     << op->getType()->castAs<ObjCObjectPointerType>()->getPointeeType()
3901     << op->getSourceRange();
3902   return true;
3903 }
3904 
isMSPropertySubscriptExpr(Sema & S,Expr * Base)3905 static bool isMSPropertySubscriptExpr(Sema &S, Expr *Base) {
3906   auto *BaseNoParens = Base->IgnoreParens();
3907   if (auto *MSProp = dyn_cast<MSPropertyRefExpr>(BaseNoParens))
3908     return MSProp->getPropertyDecl()->getType()->isArrayType();
3909   return isa<MSPropertySubscriptExpr>(BaseNoParens);
3910 }
3911 
3912 ExprResult
ActOnArraySubscriptExpr(Scope * S,Expr * base,SourceLocation lbLoc,Expr * idx,SourceLocation rbLoc)3913 Sema::ActOnArraySubscriptExpr(Scope *S, Expr *base, SourceLocation lbLoc,
3914                               Expr *idx, SourceLocation rbLoc) {
3915   if (base && !base->getType().isNull() &&
3916       base->getType()->isSpecificPlaceholderType(BuiltinType::OMPArraySection))
3917     return ActOnOMPArraySectionExpr(base, lbLoc, idx, SourceLocation(),
3918                                     /*Length=*/nullptr, rbLoc);
3919 
3920   // Since this might be a postfix expression, get rid of ParenListExprs.
3921   if (isa<ParenListExpr>(base)) {
3922     ExprResult result = MaybeConvertParenListExprToParenExpr(S, base);
3923     if (result.isInvalid()) return ExprError();
3924     base = result.get();
3925   }
3926 
3927   // Handle any non-overload placeholder types in the base and index
3928   // expressions.  We can't handle overloads here because the other
3929   // operand might be an overloadable type, in which case the overload
3930   // resolution for the operator overload should get the first crack
3931   // at the overload.
3932   bool IsMSPropertySubscript = false;
3933   if (base->getType()->isNonOverloadPlaceholderType()) {
3934     IsMSPropertySubscript = isMSPropertySubscriptExpr(*this, base);
3935     if (!IsMSPropertySubscript) {
3936       ExprResult result = CheckPlaceholderExpr(base);
3937       if (result.isInvalid())
3938         return ExprError();
3939       base = result.get();
3940     }
3941   }
3942   if (idx->getType()->isNonOverloadPlaceholderType()) {
3943     ExprResult result = CheckPlaceholderExpr(idx);
3944     if (result.isInvalid()) return ExprError();
3945     idx = result.get();
3946   }
3947 
3948   // Build an unanalyzed expression if either operand is type-dependent.
3949   if (getLangOpts().CPlusPlus &&
3950       (base->isTypeDependent() || idx->isTypeDependent())) {
3951     return new (Context) ArraySubscriptExpr(base, idx, Context.DependentTy,
3952                                             VK_LValue, OK_Ordinary, rbLoc);
3953   }
3954 
3955   // MSDN, property (C++)
3956   // https://msdn.microsoft.com/en-us/library/yhfk0thd(v=vs.120).aspx
3957   // This attribute can also be used in the declaration of an empty array in a
3958   // class or structure definition. For example:
3959   // __declspec(property(get=GetX, put=PutX)) int x[];
3960   // The above statement indicates that x[] can be used with one or more array
3961   // indices. In this case, i=p->x[a][b] will be turned into i=p->GetX(a, b),
3962   // and p->x[a][b] = i will be turned into p->PutX(a, b, i);
3963   if (IsMSPropertySubscript) {
3964     // Build MS property subscript expression if base is MS property reference
3965     // or MS property subscript.
3966     return new (Context) MSPropertySubscriptExpr(
3967         base, idx, Context.PseudoObjectTy, VK_LValue, OK_Ordinary, rbLoc);
3968   }
3969 
3970   // Use C++ overloaded-operator rules if either operand has record
3971   // type.  The spec says to do this if either type is *overloadable*,
3972   // but enum types can't declare subscript operators or conversion
3973   // operators, so there's nothing interesting for overload resolution
3974   // to do if there aren't any record types involved.
3975   //
3976   // ObjC pointers have their own subscripting logic that is not tied
3977   // to overload resolution and so should not take this path.
3978   if (getLangOpts().CPlusPlus &&
3979       (base->getType()->isRecordType() ||
3980        (!base->getType()->isObjCObjectPointerType() &&
3981         idx->getType()->isRecordType()))) {
3982     return CreateOverloadedArraySubscriptExpr(lbLoc, rbLoc, base, idx);
3983   }
3984 
3985   return CreateBuiltinArraySubscriptExpr(base, lbLoc, idx, rbLoc);
3986 }
3987 
ActOnOMPArraySectionExpr(Expr * Base,SourceLocation LBLoc,Expr * LowerBound,SourceLocation ColonLoc,Expr * Length,SourceLocation RBLoc)3988 ExprResult Sema::ActOnOMPArraySectionExpr(Expr *Base, SourceLocation LBLoc,
3989                                           Expr *LowerBound,
3990                                           SourceLocation ColonLoc, Expr *Length,
3991                                           SourceLocation RBLoc) {
3992   if (Base->getType()->isPlaceholderType() &&
3993       !Base->getType()->isSpecificPlaceholderType(
3994           BuiltinType::OMPArraySection)) {
3995     ExprResult Result = CheckPlaceholderExpr(Base);
3996     if (Result.isInvalid())
3997       return ExprError();
3998     Base = Result.get();
3999   }
4000   if (LowerBound && LowerBound->getType()->isNonOverloadPlaceholderType()) {
4001     ExprResult Result = CheckPlaceholderExpr(LowerBound);
4002     if (Result.isInvalid())
4003       return ExprError();
4004     LowerBound = Result.get();
4005   }
4006   if (Length && Length->getType()->isNonOverloadPlaceholderType()) {
4007     ExprResult Result = CheckPlaceholderExpr(Length);
4008     if (Result.isInvalid())
4009       return ExprError();
4010     Length = Result.get();
4011   }
4012 
4013   // Build an unanalyzed expression if either operand is type-dependent.
4014   if (Base->isTypeDependent() ||
4015       (LowerBound &&
4016        (LowerBound->isTypeDependent() || LowerBound->isValueDependent())) ||
4017       (Length && (Length->isTypeDependent() || Length->isValueDependent()))) {
4018     return new (Context)
4019         OMPArraySectionExpr(Base, LowerBound, Length, Context.DependentTy,
4020                             VK_LValue, OK_Ordinary, ColonLoc, RBLoc);
4021   }
4022 
4023   // Perform default conversions.
4024   QualType OriginalTy = OMPArraySectionExpr::getBaseOriginalType(Base);
4025   QualType ResultTy;
4026   if (OriginalTy->isAnyPointerType()) {
4027     ResultTy = OriginalTy->getPointeeType();
4028   } else if (OriginalTy->isArrayType()) {
4029     ResultTy = OriginalTy->getAsArrayTypeUnsafe()->getElementType();
4030   } else {
4031     return ExprError(
4032         Diag(Base->getExprLoc(), diag::err_omp_typecheck_section_value)
4033         << Base->getSourceRange());
4034   }
4035   // C99 6.5.2.1p1
4036   if (LowerBound) {
4037     auto Res = PerformOpenMPImplicitIntegerConversion(LowerBound->getExprLoc(),
4038                                                       LowerBound);
4039     if (Res.isInvalid())
4040       return ExprError(Diag(LowerBound->getExprLoc(),
4041                             diag::err_omp_typecheck_section_not_integer)
4042                        << 0 << LowerBound->getSourceRange());
4043     LowerBound = Res.get();
4044 
4045     if (LowerBound->getType()->isSpecificBuiltinType(BuiltinType::Char_S) ||
4046         LowerBound->getType()->isSpecificBuiltinType(BuiltinType::Char_U))
4047       Diag(LowerBound->getExprLoc(), diag::warn_omp_section_is_char)
4048           << 0 << LowerBound->getSourceRange();
4049   }
4050   if (Length) {
4051     auto Res =
4052         PerformOpenMPImplicitIntegerConversion(Length->getExprLoc(), Length);
4053     if (Res.isInvalid())
4054       return ExprError(Diag(Length->getExprLoc(),
4055                             diag::err_omp_typecheck_section_not_integer)
4056                        << 1 << Length->getSourceRange());
4057     Length = Res.get();
4058 
4059     if (Length->getType()->isSpecificBuiltinType(BuiltinType::Char_S) ||
4060         Length->getType()->isSpecificBuiltinType(BuiltinType::Char_U))
4061       Diag(Length->getExprLoc(), diag::warn_omp_section_is_char)
4062           << 1 << Length->getSourceRange();
4063   }
4064 
4065   // C99 6.5.2.1p1: "shall have type "pointer to *object* type". Similarly,
4066   // C++ [expr.sub]p1: The type "T" shall be a completely-defined object
4067   // type. Note that functions are not objects, and that (in C99 parlance)
4068   // incomplete types are not object types.
4069   if (ResultTy->isFunctionType()) {
4070     Diag(Base->getExprLoc(), diag::err_omp_section_function_type)
4071         << ResultTy << Base->getSourceRange();
4072     return ExprError();
4073   }
4074 
4075   if (RequireCompleteType(Base->getExprLoc(), ResultTy,
4076                           diag::err_omp_section_incomplete_type, Base))
4077     return ExprError();
4078 
4079   if (LowerBound) {
4080     llvm::APSInt LowerBoundValue;
4081     if (LowerBound->EvaluateAsInt(LowerBoundValue, Context)) {
4082       // OpenMP 4.0, [2.4 Array Sections]
4083       // The lower-bound and length must evaluate to non-negative integers.
4084       if (LowerBoundValue.isNegative()) {
4085         Diag(LowerBound->getExprLoc(), diag::err_omp_section_negative)
4086             << 0 << LowerBoundValue.toString(/*Radix=*/10, /*Signed=*/true)
4087             << LowerBound->getSourceRange();
4088         return ExprError();
4089       }
4090     }
4091   }
4092 
4093   if (Length) {
4094     llvm::APSInt LengthValue;
4095     if (Length->EvaluateAsInt(LengthValue, Context)) {
4096       // OpenMP 4.0, [2.4 Array Sections]
4097       // The lower-bound and length must evaluate to non-negative integers.
4098       if (LengthValue.isNegative()) {
4099         Diag(Length->getExprLoc(), diag::err_omp_section_negative)
4100             << 1 << LengthValue.toString(/*Radix=*/10, /*Signed=*/true)
4101             << Length->getSourceRange();
4102         return ExprError();
4103       }
4104     }
4105   } else if (ColonLoc.isValid() &&
4106              (OriginalTy.isNull() || (!OriginalTy->isConstantArrayType() &&
4107                                       !OriginalTy->isVariableArrayType()))) {
4108     // OpenMP 4.0, [2.4 Array Sections]
4109     // When the size of the array dimension is not known, the length must be
4110     // specified explicitly.
4111     Diag(ColonLoc, diag::err_omp_section_length_undefined)
4112         << (!OriginalTy.isNull() && OriginalTy->isArrayType());
4113     return ExprError();
4114   }
4115 
4116   return new (Context)
4117       OMPArraySectionExpr(Base, LowerBound, Length, Context.OMPArraySectionTy,
4118                           VK_LValue, OK_Ordinary, ColonLoc, RBLoc);
4119 }
4120 
4121 ExprResult
CreateBuiltinArraySubscriptExpr(Expr * Base,SourceLocation LLoc,Expr * Idx,SourceLocation RLoc)4122 Sema::CreateBuiltinArraySubscriptExpr(Expr *Base, SourceLocation LLoc,
4123                                       Expr *Idx, SourceLocation RLoc) {
4124   Expr *LHSExp = Base;
4125   Expr *RHSExp = Idx;
4126 
4127   // Perform default conversions.
4128   if (!LHSExp->getType()->getAs<VectorType>()) {
4129     ExprResult Result = DefaultFunctionArrayLvalueConversion(LHSExp);
4130     if (Result.isInvalid())
4131       return ExprError();
4132     LHSExp = Result.get();
4133   }
4134   ExprResult Result = DefaultFunctionArrayLvalueConversion(RHSExp);
4135   if (Result.isInvalid())
4136     return ExprError();
4137   RHSExp = Result.get();
4138 
4139   QualType LHSTy = LHSExp->getType(), RHSTy = RHSExp->getType();
4140   ExprValueKind VK = VK_LValue;
4141   ExprObjectKind OK = OK_Ordinary;
4142 
4143   // C99 6.5.2.1p2: the expression e1[e2] is by definition precisely equivalent
4144   // to the expression *((e1)+(e2)). This means the array "Base" may actually be
4145   // in the subscript position. As a result, we need to derive the array base
4146   // and index from the expression types.
4147   Expr *BaseExpr, *IndexExpr;
4148   QualType ResultType;
4149   if (LHSTy->isDependentType() || RHSTy->isDependentType()) {
4150     BaseExpr = LHSExp;
4151     IndexExpr = RHSExp;
4152     ResultType = Context.DependentTy;
4153   } else if (const PointerType *PTy = LHSTy->getAs<PointerType>()) {
4154     BaseExpr = LHSExp;
4155     IndexExpr = RHSExp;
4156     ResultType = PTy->getPointeeType();
4157   } else if (const ObjCObjectPointerType *PTy =
4158                LHSTy->getAs<ObjCObjectPointerType>()) {
4159     BaseExpr = LHSExp;
4160     IndexExpr = RHSExp;
4161 
4162     // Use custom logic if this should be the pseudo-object subscript
4163     // expression.
4164     if (!LangOpts.isSubscriptPointerArithmetic())
4165       return BuildObjCSubscriptExpression(RLoc, BaseExpr, IndexExpr, nullptr,
4166                                           nullptr);
4167 
4168     ResultType = PTy->getPointeeType();
4169   } else if (const PointerType *PTy = RHSTy->getAs<PointerType>()) {
4170      // Handle the uncommon case of "123[Ptr]".
4171     BaseExpr = RHSExp;
4172     IndexExpr = LHSExp;
4173     ResultType = PTy->getPointeeType();
4174   } else if (const ObjCObjectPointerType *PTy =
4175                RHSTy->getAs<ObjCObjectPointerType>()) {
4176      // Handle the uncommon case of "123[Ptr]".
4177     BaseExpr = RHSExp;
4178     IndexExpr = LHSExp;
4179     ResultType = PTy->getPointeeType();
4180     if (!LangOpts.isSubscriptPointerArithmetic()) {
4181       Diag(LLoc, diag::err_subscript_nonfragile_interface)
4182         << ResultType << BaseExpr->getSourceRange();
4183       return ExprError();
4184     }
4185   } else if (const VectorType *VTy = LHSTy->getAs<VectorType>()) {
4186     BaseExpr = LHSExp;    // vectors: V[123]
4187     IndexExpr = RHSExp;
4188     VK = LHSExp->getValueKind();
4189     if (VK != VK_RValue)
4190       OK = OK_VectorComponent;
4191 
4192     // FIXME: need to deal with const...
4193     ResultType = VTy->getElementType();
4194   } else if (LHSTy->isArrayType()) {
4195     // If we see an array that wasn't promoted by
4196     // DefaultFunctionArrayLvalueConversion, it must be an array that
4197     // wasn't promoted because of the C90 rule that doesn't
4198     // allow promoting non-lvalue arrays.  Warn, then
4199     // force the promotion here.
4200     Diag(LHSExp->getLocStart(), diag::ext_subscript_non_lvalue) <<
4201         LHSExp->getSourceRange();
4202     LHSExp = ImpCastExprToType(LHSExp, Context.getArrayDecayedType(LHSTy),
4203                                CK_ArrayToPointerDecay).get();
4204     LHSTy = LHSExp->getType();
4205 
4206     BaseExpr = LHSExp;
4207     IndexExpr = RHSExp;
4208     ResultType = LHSTy->getAs<PointerType>()->getPointeeType();
4209   } else if (RHSTy->isArrayType()) {
4210     // Same as previous, except for 123[f().a] case
4211     Diag(RHSExp->getLocStart(), diag::ext_subscript_non_lvalue) <<
4212         RHSExp->getSourceRange();
4213     RHSExp = ImpCastExprToType(RHSExp, Context.getArrayDecayedType(RHSTy),
4214                                CK_ArrayToPointerDecay).get();
4215     RHSTy = RHSExp->getType();
4216 
4217     BaseExpr = RHSExp;
4218     IndexExpr = LHSExp;
4219     ResultType = RHSTy->getAs<PointerType>()->getPointeeType();
4220   } else {
4221     return ExprError(Diag(LLoc, diag::err_typecheck_subscript_value)
4222        << LHSExp->getSourceRange() << RHSExp->getSourceRange());
4223   }
4224   // C99 6.5.2.1p1
4225   if (!IndexExpr->getType()->isIntegerType() && !IndexExpr->isTypeDependent())
4226     return ExprError(Diag(LLoc, diag::err_typecheck_subscript_not_integer)
4227                      << IndexExpr->getSourceRange());
4228 
4229   if ((IndexExpr->getType()->isSpecificBuiltinType(BuiltinType::Char_S) ||
4230        IndexExpr->getType()->isSpecificBuiltinType(BuiltinType::Char_U))
4231          && !IndexExpr->isTypeDependent())
4232     Diag(LLoc, diag::warn_subscript_is_char) << IndexExpr->getSourceRange();
4233 
4234   // C99 6.5.2.1p1: "shall have type "pointer to *object* type". Similarly,
4235   // C++ [expr.sub]p1: The type "T" shall be a completely-defined object
4236   // type. Note that Functions are not objects, and that (in C99 parlance)
4237   // incomplete types are not object types.
4238   if (ResultType->isFunctionType()) {
4239     Diag(BaseExpr->getLocStart(), diag::err_subscript_function_type)
4240       << ResultType << BaseExpr->getSourceRange();
4241     return ExprError();
4242   }
4243 
4244   if (ResultType->isVoidType() && !getLangOpts().CPlusPlus) {
4245     // GNU extension: subscripting on pointer to void
4246     Diag(LLoc, diag::ext_gnu_subscript_void_type)
4247       << BaseExpr->getSourceRange();
4248 
4249     // C forbids expressions of unqualified void type from being l-values.
4250     // See IsCForbiddenLValueType.
4251     if (!ResultType.hasQualifiers()) VK = VK_RValue;
4252   } else if (!ResultType->isDependentType() &&
4253       RequireCompleteType(LLoc, ResultType,
4254                           diag::err_subscript_incomplete_type, BaseExpr))
4255     return ExprError();
4256 
4257   assert(VK == VK_RValue || LangOpts.CPlusPlus ||
4258          !ResultType.isCForbiddenLValueType());
4259 
4260   return new (Context)
4261       ArraySubscriptExpr(LHSExp, RHSExp, ResultType, VK, OK, RLoc);
4262 }
4263 
BuildCXXDefaultArgExpr(SourceLocation CallLoc,FunctionDecl * FD,ParmVarDecl * Param)4264 ExprResult Sema::BuildCXXDefaultArgExpr(SourceLocation CallLoc,
4265                                         FunctionDecl *FD,
4266                                         ParmVarDecl *Param) {
4267   if (Param->hasUnparsedDefaultArg()) {
4268     Diag(CallLoc,
4269          diag::err_use_of_default_argument_to_function_declared_later) <<
4270       FD << cast<CXXRecordDecl>(FD->getDeclContext())->getDeclName();
4271     Diag(UnparsedDefaultArgLocs[Param],
4272          diag::note_default_argument_declared_here);
4273     return ExprError();
4274   }
4275 
4276   if (Param->hasUninstantiatedDefaultArg()) {
4277     Expr *UninstExpr = Param->getUninstantiatedDefaultArg();
4278 
4279     EnterExpressionEvaluationContext EvalContext(*this, PotentiallyEvaluated,
4280                                                  Param);
4281 
4282     // Instantiate the expression.
4283     MultiLevelTemplateArgumentList MutiLevelArgList
4284       = getTemplateInstantiationArgs(FD, nullptr, /*RelativeToPrimary=*/true);
4285 
4286     InstantiatingTemplate Inst(*this, CallLoc, Param,
4287                                MutiLevelArgList.getInnermost());
4288     if (Inst.isInvalid())
4289       return ExprError();
4290 
4291     ExprResult Result;
4292     {
4293       // C++ [dcl.fct.default]p5:
4294       //   The names in the [default argument] expression are bound, and
4295       //   the semantic constraints are checked, at the point where the
4296       //   default argument expression appears.
4297       ContextRAII SavedContext(*this, FD);
4298       LocalInstantiationScope Local(*this);
4299       Result = SubstExpr(UninstExpr, MutiLevelArgList);
4300     }
4301     if (Result.isInvalid())
4302       return ExprError();
4303 
4304     // Check the expression as an initializer for the parameter.
4305     InitializedEntity Entity
4306       = InitializedEntity::InitializeParameter(Context, Param);
4307     InitializationKind Kind
4308       = InitializationKind::CreateCopy(Param->getLocation(),
4309              /*FIXME:EqualLoc*/UninstExpr->getLocStart());
4310     Expr *ResultE = Result.getAs<Expr>();
4311 
4312     InitializationSequence InitSeq(*this, Entity, Kind, ResultE);
4313     Result = InitSeq.Perform(*this, Entity, Kind, ResultE);
4314     if (Result.isInvalid())
4315       return ExprError();
4316 
4317     Expr *Arg = Result.getAs<Expr>();
4318     CheckCompletedExpr(Arg, Param->getOuterLocStart());
4319     // Build the default argument expression.
4320     return CXXDefaultArgExpr::Create(Context, CallLoc, Param, Arg);
4321   }
4322 
4323   // If the default expression creates temporaries, we need to
4324   // push them to the current stack of expression temporaries so they'll
4325   // be properly destroyed.
4326   // FIXME: We should really be rebuilding the default argument with new
4327   // bound temporaries; see the comment in PR5810.
4328   // We don't need to do that with block decls, though, because
4329   // blocks in default argument expression can never capture anything.
4330   if (isa<ExprWithCleanups>(Param->getInit())) {
4331     // Set the "needs cleanups" bit regardless of whether there are
4332     // any explicit objects.
4333     ExprNeedsCleanups = true;
4334 
4335     // Append all the objects to the cleanup list.  Right now, this
4336     // should always be a no-op, because blocks in default argument
4337     // expressions should never be able to capture anything.
4338     assert(!cast<ExprWithCleanups>(Param->getInit())->getNumObjects() &&
4339            "default argument expression has capturing blocks?");
4340   }
4341 
4342   // We already type-checked the argument, so we know it works.
4343   // Just mark all of the declarations in this potentially-evaluated expression
4344   // as being "referenced".
4345   MarkDeclarationsReferencedInExpr(Param->getDefaultArg(),
4346                                    /*SkipLocalVariables=*/true);
4347   return CXXDefaultArgExpr::Create(Context, CallLoc, Param);
4348 }
4349 
4350 
4351 Sema::VariadicCallType
getVariadicCallType(FunctionDecl * FDecl,const FunctionProtoType * Proto,Expr * Fn)4352 Sema::getVariadicCallType(FunctionDecl *FDecl, const FunctionProtoType *Proto,
4353                           Expr *Fn) {
4354   if (Proto && Proto->isVariadic()) {
4355     if (dyn_cast_or_null<CXXConstructorDecl>(FDecl))
4356       return VariadicConstructor;
4357     else if (Fn && Fn->getType()->isBlockPointerType())
4358       return VariadicBlock;
4359     else if (FDecl) {
4360       if (CXXMethodDecl *Method = dyn_cast_or_null<CXXMethodDecl>(FDecl))
4361         if (Method->isInstance())
4362           return VariadicMethod;
4363     } else if (Fn && Fn->getType() == Context.BoundMemberTy)
4364       return VariadicMethod;
4365     return VariadicFunction;
4366   }
4367   return VariadicDoesNotApply;
4368 }
4369 
4370 namespace {
4371 class FunctionCallCCC : public FunctionCallFilterCCC {
4372 public:
FunctionCallCCC(Sema & SemaRef,const IdentifierInfo * FuncName,unsigned NumArgs,MemberExpr * ME)4373   FunctionCallCCC(Sema &SemaRef, const IdentifierInfo *FuncName,
4374                   unsigned NumArgs, MemberExpr *ME)
4375       : FunctionCallFilterCCC(SemaRef, NumArgs, false, ME),
4376         FunctionName(FuncName) {}
4377 
ValidateCandidate(const TypoCorrection & candidate)4378   bool ValidateCandidate(const TypoCorrection &candidate) override {
4379     if (!candidate.getCorrectionSpecifier() ||
4380         candidate.getCorrectionAsIdentifierInfo() != FunctionName) {
4381       return false;
4382     }
4383 
4384     return FunctionCallFilterCCC::ValidateCandidate(candidate);
4385   }
4386 
4387 private:
4388   const IdentifierInfo *const FunctionName;
4389 };
4390 }
4391 
TryTypoCorrectionForCall(Sema & S,Expr * Fn,FunctionDecl * FDecl,ArrayRef<Expr * > Args)4392 static TypoCorrection TryTypoCorrectionForCall(Sema &S, Expr *Fn,
4393                                                FunctionDecl *FDecl,
4394                                                ArrayRef<Expr *> Args) {
4395   MemberExpr *ME = dyn_cast<MemberExpr>(Fn);
4396   DeclarationName FuncName = FDecl->getDeclName();
4397   SourceLocation NameLoc = ME ? ME->getMemberLoc() : Fn->getLocStart();
4398 
4399   if (TypoCorrection Corrected = S.CorrectTypo(
4400           DeclarationNameInfo(FuncName, NameLoc), Sema::LookupOrdinaryName,
4401           S.getScopeForContext(S.CurContext), nullptr,
4402           llvm::make_unique<FunctionCallCCC>(S, FuncName.getAsIdentifierInfo(),
4403                                              Args.size(), ME),
4404           Sema::CTK_ErrorRecovery)) {
4405     if (NamedDecl *ND = Corrected.getCorrectionDecl()) {
4406       if (Corrected.isOverloaded()) {
4407         OverloadCandidateSet OCS(NameLoc, OverloadCandidateSet::CSK_Normal);
4408         OverloadCandidateSet::iterator Best;
4409         for (NamedDecl *CD : Corrected) {
4410           if (FunctionDecl *FD = dyn_cast<FunctionDecl>(CD))
4411             S.AddOverloadCandidate(FD, DeclAccessPair::make(FD, AS_none), Args,
4412                                    OCS);
4413         }
4414         switch (OCS.BestViableFunction(S, NameLoc, Best)) {
4415         case OR_Success:
4416           ND = Best->Function;
4417           Corrected.setCorrectionDecl(ND);
4418           break;
4419         default:
4420           break;
4421         }
4422       }
4423       if (isa<ValueDecl>(ND) || isa<FunctionTemplateDecl>(ND)) {
4424         return Corrected;
4425       }
4426     }
4427   }
4428   return TypoCorrection();
4429 }
4430 
4431 /// ConvertArgumentsForCall - Converts the arguments specified in
4432 /// Args/NumArgs to the parameter types of the function FDecl with
4433 /// function prototype Proto. Call is the call expression itself, and
4434 /// Fn is the function expression. For a C++ member function, this
4435 /// routine does not attempt to convert the object argument. Returns
4436 /// true if the call is ill-formed.
4437 bool
ConvertArgumentsForCall(CallExpr * Call,Expr * Fn,FunctionDecl * FDecl,const FunctionProtoType * Proto,ArrayRef<Expr * > Args,SourceLocation RParenLoc,bool IsExecConfig)4438 Sema::ConvertArgumentsForCall(CallExpr *Call, Expr *Fn,
4439                               FunctionDecl *FDecl,
4440                               const FunctionProtoType *Proto,
4441                               ArrayRef<Expr *> Args,
4442                               SourceLocation RParenLoc,
4443                               bool IsExecConfig) {
4444   // Bail out early if calling a builtin with custom typechecking.
4445   if (FDecl)
4446     if (unsigned ID = FDecl->getBuiltinID())
4447       if (Context.BuiltinInfo.hasCustomTypechecking(ID))
4448         return false;
4449 
4450   // C99 6.5.2.2p7 - the arguments are implicitly converted, as if by
4451   // assignment, to the types of the corresponding parameter, ...
4452   unsigned NumParams = Proto->getNumParams();
4453   bool Invalid = false;
4454   unsigned MinArgs = FDecl ? FDecl->getMinRequiredArguments() : NumParams;
4455   unsigned FnKind = Fn->getType()->isBlockPointerType()
4456                        ? 1 /* block */
4457                        : (IsExecConfig ? 3 /* kernel function (exec config) */
4458                                        : 0 /* function */);
4459 
4460   // If too few arguments are available (and we don't have default
4461   // arguments for the remaining parameters), don't make the call.
4462   if (Args.size() < NumParams) {
4463     if (Args.size() < MinArgs) {
4464       TypoCorrection TC;
4465       if (FDecl && (TC = TryTypoCorrectionForCall(*this, Fn, FDecl, Args))) {
4466         unsigned diag_id =
4467             MinArgs == NumParams && !Proto->isVariadic()
4468                 ? diag::err_typecheck_call_too_few_args_suggest
4469                 : diag::err_typecheck_call_too_few_args_at_least_suggest;
4470         diagnoseTypo(TC, PDiag(diag_id) << FnKind << MinArgs
4471                                         << static_cast<unsigned>(Args.size())
4472                                         << TC.getCorrectionRange());
4473       } else if (MinArgs == 1 && FDecl && FDecl->getParamDecl(0)->getDeclName())
4474         Diag(RParenLoc,
4475              MinArgs == NumParams && !Proto->isVariadic()
4476                  ? diag::err_typecheck_call_too_few_args_one
4477                  : diag::err_typecheck_call_too_few_args_at_least_one)
4478             << FnKind << FDecl->getParamDecl(0) << Fn->getSourceRange();
4479       else
4480         Diag(RParenLoc, MinArgs == NumParams && !Proto->isVariadic()
4481                             ? diag::err_typecheck_call_too_few_args
4482                             : diag::err_typecheck_call_too_few_args_at_least)
4483             << FnKind << MinArgs << static_cast<unsigned>(Args.size())
4484             << Fn->getSourceRange();
4485 
4486       // Emit the location of the prototype.
4487       if (!TC && FDecl && !FDecl->getBuiltinID() && !IsExecConfig)
4488         Diag(FDecl->getLocStart(), diag::note_callee_decl)
4489           << FDecl;
4490 
4491       return true;
4492     }
4493     Call->setNumArgs(Context, NumParams);
4494   }
4495 
4496   // If too many are passed and not variadic, error on the extras and drop
4497   // them.
4498   if (Args.size() > NumParams) {
4499     if (!Proto->isVariadic()) {
4500       TypoCorrection TC;
4501       if (FDecl && (TC = TryTypoCorrectionForCall(*this, Fn, FDecl, Args))) {
4502         unsigned diag_id =
4503             MinArgs == NumParams && !Proto->isVariadic()
4504                 ? diag::err_typecheck_call_too_many_args_suggest
4505                 : diag::err_typecheck_call_too_many_args_at_most_suggest;
4506         diagnoseTypo(TC, PDiag(diag_id) << FnKind << NumParams
4507                                         << static_cast<unsigned>(Args.size())
4508                                         << TC.getCorrectionRange());
4509       } else if (NumParams == 1 && FDecl &&
4510                  FDecl->getParamDecl(0)->getDeclName())
4511         Diag(Args[NumParams]->getLocStart(),
4512              MinArgs == NumParams
4513                  ? diag::err_typecheck_call_too_many_args_one
4514                  : diag::err_typecheck_call_too_many_args_at_most_one)
4515             << FnKind << FDecl->getParamDecl(0)
4516             << static_cast<unsigned>(Args.size()) << Fn->getSourceRange()
4517             << SourceRange(Args[NumParams]->getLocStart(),
4518                            Args.back()->getLocEnd());
4519       else
4520         Diag(Args[NumParams]->getLocStart(),
4521              MinArgs == NumParams
4522                  ? diag::err_typecheck_call_too_many_args
4523                  : diag::err_typecheck_call_too_many_args_at_most)
4524             << FnKind << NumParams << static_cast<unsigned>(Args.size())
4525             << Fn->getSourceRange()
4526             << SourceRange(Args[NumParams]->getLocStart(),
4527                            Args.back()->getLocEnd());
4528 
4529       // Emit the location of the prototype.
4530       if (!TC && FDecl && !FDecl->getBuiltinID() && !IsExecConfig)
4531         Diag(FDecl->getLocStart(), diag::note_callee_decl)
4532           << FDecl;
4533 
4534       // This deletes the extra arguments.
4535       Call->setNumArgs(Context, NumParams);
4536       return true;
4537     }
4538   }
4539   SmallVector<Expr *, 8> AllArgs;
4540   VariadicCallType CallType = getVariadicCallType(FDecl, Proto, Fn);
4541 
4542   Invalid = GatherArgumentsForCall(Call->getLocStart(), FDecl,
4543                                    Proto, 0, Args, AllArgs, CallType);
4544   if (Invalid)
4545     return true;
4546   unsigned TotalNumArgs = AllArgs.size();
4547   for (unsigned i = 0; i < TotalNumArgs; ++i)
4548     Call->setArg(i, AllArgs[i]);
4549 
4550   return false;
4551 }
4552 
GatherArgumentsForCall(SourceLocation CallLoc,FunctionDecl * FDecl,const FunctionProtoType * Proto,unsigned FirstParam,ArrayRef<Expr * > Args,SmallVectorImpl<Expr * > & AllArgs,VariadicCallType CallType,bool AllowExplicit,bool IsListInitialization)4553 bool Sema::GatherArgumentsForCall(SourceLocation CallLoc, FunctionDecl *FDecl,
4554                                   const FunctionProtoType *Proto,
4555                                   unsigned FirstParam, ArrayRef<Expr *> Args,
4556                                   SmallVectorImpl<Expr *> &AllArgs,
4557                                   VariadicCallType CallType, bool AllowExplicit,
4558                                   bool IsListInitialization) {
4559   unsigned NumParams = Proto->getNumParams();
4560   bool Invalid = false;
4561   size_t ArgIx = 0;
4562   // Continue to check argument types (even if we have too few/many args).
4563   for (unsigned i = FirstParam; i < NumParams; i++) {
4564     QualType ProtoArgType = Proto->getParamType(i);
4565 
4566     Expr *Arg;
4567     ParmVarDecl *Param = FDecl ? FDecl->getParamDecl(i) : nullptr;
4568     if (ArgIx < Args.size()) {
4569       Arg = Args[ArgIx++];
4570 
4571       if (RequireCompleteType(Arg->getLocStart(),
4572                               ProtoArgType,
4573                               diag::err_call_incomplete_argument, Arg))
4574         return true;
4575 
4576       // Strip the unbridged-cast placeholder expression off, if applicable.
4577       bool CFAudited = false;
4578       if (Arg->getType() == Context.ARCUnbridgedCastTy &&
4579           FDecl && FDecl->hasAttr<CFAuditedTransferAttr>() &&
4580           (!Param || !Param->hasAttr<CFConsumedAttr>()))
4581         Arg = stripARCUnbridgedCast(Arg);
4582       else if (getLangOpts().ObjCAutoRefCount &&
4583                FDecl && FDecl->hasAttr<CFAuditedTransferAttr>() &&
4584                (!Param || !Param->hasAttr<CFConsumedAttr>()))
4585         CFAudited = true;
4586 
4587       InitializedEntity Entity =
4588           Param ? InitializedEntity::InitializeParameter(Context, Param,
4589                                                          ProtoArgType)
4590                 : InitializedEntity::InitializeParameter(
4591                       Context, ProtoArgType, Proto->isParamConsumed(i));
4592 
4593       // Remember that parameter belongs to a CF audited API.
4594       if (CFAudited)
4595         Entity.setParameterCFAudited();
4596 
4597       ExprResult ArgE = PerformCopyInitialization(
4598           Entity, SourceLocation(), Arg, IsListInitialization, AllowExplicit);
4599       if (ArgE.isInvalid())
4600         return true;
4601 
4602       Arg = ArgE.getAs<Expr>();
4603     } else {
4604       assert(Param && "can't use default arguments without a known callee");
4605 
4606       ExprResult ArgExpr =
4607         BuildCXXDefaultArgExpr(CallLoc, FDecl, Param);
4608       if (ArgExpr.isInvalid())
4609         return true;
4610 
4611       Arg = ArgExpr.getAs<Expr>();
4612     }
4613 
4614     // Check for array bounds violations for each argument to the call. This
4615     // check only triggers warnings when the argument isn't a more complex Expr
4616     // with its own checking, such as a BinaryOperator.
4617     CheckArrayAccess(Arg);
4618 
4619     // Check for violations of C99 static array rules (C99 6.7.5.3p7).
4620     CheckStaticArrayArgument(CallLoc, Param, Arg);
4621 
4622     AllArgs.push_back(Arg);
4623   }
4624 
4625   // If this is a variadic call, handle args passed through "...".
4626   if (CallType != VariadicDoesNotApply) {
4627     // Assume that extern "C" functions with variadic arguments that
4628     // return __unknown_anytype aren't *really* variadic.
4629     if (Proto->getReturnType() == Context.UnknownAnyTy && FDecl &&
4630         FDecl->isExternC()) {
4631       for (Expr *A : Args.slice(ArgIx)) {
4632         QualType paramType; // ignored
4633         ExprResult arg = checkUnknownAnyArg(CallLoc, A, paramType);
4634         Invalid |= arg.isInvalid();
4635         AllArgs.push_back(arg.get());
4636       }
4637 
4638     // Otherwise do argument promotion, (C99 6.5.2.2p7).
4639     } else {
4640       for (Expr *A : Args.slice(ArgIx)) {
4641         ExprResult Arg = DefaultVariadicArgumentPromotion(A, CallType, FDecl);
4642         Invalid |= Arg.isInvalid();
4643         AllArgs.push_back(Arg.get());
4644       }
4645     }
4646 
4647     // Check for array bounds violations.
4648     for (Expr *A : Args.slice(ArgIx))
4649       CheckArrayAccess(A);
4650   }
4651   return Invalid;
4652 }
4653 
DiagnoseCalleeStaticArrayParam(Sema & S,ParmVarDecl * PVD)4654 static void DiagnoseCalleeStaticArrayParam(Sema &S, ParmVarDecl *PVD) {
4655   TypeLoc TL = PVD->getTypeSourceInfo()->getTypeLoc();
4656   if (DecayedTypeLoc DTL = TL.getAs<DecayedTypeLoc>())
4657     TL = DTL.getOriginalLoc();
4658   if (ArrayTypeLoc ATL = TL.getAs<ArrayTypeLoc>())
4659     S.Diag(PVD->getLocation(), diag::note_callee_static_array)
4660       << ATL.getLocalSourceRange();
4661 }
4662 
4663 /// CheckStaticArrayArgument - If the given argument corresponds to a static
4664 /// array parameter, check that it is non-null, and that if it is formed by
4665 /// array-to-pointer decay, the underlying array is sufficiently large.
4666 ///
4667 /// C99 6.7.5.3p7: If the keyword static also appears within the [ and ] of the
4668 /// array type derivation, then for each call to the function, the value of the
4669 /// corresponding actual argument shall provide access to the first element of
4670 /// an array with at least as many elements as specified by the size expression.
4671 void
CheckStaticArrayArgument(SourceLocation CallLoc,ParmVarDecl * Param,const Expr * ArgExpr)4672 Sema::CheckStaticArrayArgument(SourceLocation CallLoc,
4673                                ParmVarDecl *Param,
4674                                const Expr *ArgExpr) {
4675   // Static array parameters are not supported in C++.
4676   if (!Param || getLangOpts().CPlusPlus)
4677     return;
4678 
4679   QualType OrigTy = Param->getOriginalType();
4680 
4681   const ArrayType *AT = Context.getAsArrayType(OrigTy);
4682   if (!AT || AT->getSizeModifier() != ArrayType::Static)
4683     return;
4684 
4685   if (ArgExpr->isNullPointerConstant(Context,
4686                                      Expr::NPC_NeverValueDependent)) {
4687     Diag(CallLoc, diag::warn_null_arg) << ArgExpr->getSourceRange();
4688     DiagnoseCalleeStaticArrayParam(*this, Param);
4689     return;
4690   }
4691 
4692   const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT);
4693   if (!CAT)
4694     return;
4695 
4696   const ConstantArrayType *ArgCAT =
4697     Context.getAsConstantArrayType(ArgExpr->IgnoreParenImpCasts()->getType());
4698   if (!ArgCAT)
4699     return;
4700 
4701   if (ArgCAT->getSize().ult(CAT->getSize())) {
4702     Diag(CallLoc, diag::warn_static_array_too_small)
4703       << ArgExpr->getSourceRange()
4704       << (unsigned) ArgCAT->getSize().getZExtValue()
4705       << (unsigned) CAT->getSize().getZExtValue();
4706     DiagnoseCalleeStaticArrayParam(*this, Param);
4707   }
4708 }
4709 
4710 /// Given a function expression of unknown-any type, try to rebuild it
4711 /// to have a function type.
4712 static ExprResult rebuildUnknownAnyFunction(Sema &S, Expr *fn);
4713 
4714 /// Is the given type a placeholder that we need to lower out
4715 /// immediately during argument processing?
isPlaceholderToRemoveAsArg(QualType type)4716 static bool isPlaceholderToRemoveAsArg(QualType type) {
4717   // Placeholders are never sugared.
4718   const BuiltinType *placeholder = dyn_cast<BuiltinType>(type);
4719   if (!placeholder) return false;
4720 
4721   switch (placeholder->getKind()) {
4722   // Ignore all the non-placeholder types.
4723 #define PLACEHOLDER_TYPE(ID, SINGLETON_ID)
4724 #define BUILTIN_TYPE(ID, SINGLETON_ID) case BuiltinType::ID:
4725 #include "clang/AST/BuiltinTypes.def"
4726     return false;
4727 
4728   // We cannot lower out overload sets; they might validly be resolved
4729   // by the call machinery.
4730   case BuiltinType::Overload:
4731     return false;
4732 
4733   // Unbridged casts in ARC can be handled in some call positions and
4734   // should be left in place.
4735   case BuiltinType::ARCUnbridgedCast:
4736     return false;
4737 
4738   // Pseudo-objects should be converted as soon as possible.
4739   case BuiltinType::PseudoObject:
4740     return true;
4741 
4742   // The debugger mode could theoretically but currently does not try
4743   // to resolve unknown-typed arguments based on known parameter types.
4744   case BuiltinType::UnknownAny:
4745     return true;
4746 
4747   // These are always invalid as call arguments and should be reported.
4748   case BuiltinType::BoundMember:
4749   case BuiltinType::BuiltinFn:
4750   case BuiltinType::OMPArraySection:
4751     return true;
4752 
4753   }
4754   llvm_unreachable("bad builtin type kind");
4755 }
4756 
4757 /// Check an argument list for placeholders that we won't try to
4758 /// handle later.
checkArgsForPlaceholders(Sema & S,MultiExprArg args)4759 static bool checkArgsForPlaceholders(Sema &S, MultiExprArg args) {
4760   // Apply this processing to all the arguments at once instead of
4761   // dying at the first failure.
4762   bool hasInvalid = false;
4763   for (size_t i = 0, e = args.size(); i != e; i++) {
4764     if (isPlaceholderToRemoveAsArg(args[i]->getType())) {
4765       ExprResult result = S.CheckPlaceholderExpr(args[i]);
4766       if (result.isInvalid()) hasInvalid = true;
4767       else args[i] = result.get();
4768     } else if (hasInvalid) {
4769       (void)S.CorrectDelayedTyposInExpr(args[i]);
4770     }
4771   }
4772   return hasInvalid;
4773 }
4774 
4775 /// If a builtin function has a pointer argument with no explicit address
4776 /// space, than it should be able to accept a pointer to any address
4777 /// space as input.  In order to do this, we need to replace the
4778 /// standard builtin declaration with one that uses the same address space
4779 /// as the call.
4780 ///
4781 /// \returns nullptr If this builtin is not a candidate for a rewrite i.e.
4782 ///                  it does not contain any pointer arguments without
4783 ///                  an address space qualifer.  Otherwise the rewritten
4784 ///                  FunctionDecl is returned.
4785 /// TODO: Handle pointer return types.
rewriteBuiltinFunctionDecl(Sema * Sema,ASTContext & Context,const FunctionDecl * FDecl,MultiExprArg ArgExprs)4786 static FunctionDecl *rewriteBuiltinFunctionDecl(Sema *Sema, ASTContext &Context,
4787                                                 const FunctionDecl *FDecl,
4788                                                 MultiExprArg ArgExprs) {
4789 
4790   QualType DeclType = FDecl->getType();
4791   const FunctionProtoType *FT = dyn_cast<FunctionProtoType>(DeclType);
4792 
4793   if (!Context.BuiltinInfo.hasPtrArgsOrResult(FDecl->getBuiltinID()) ||
4794       !FT || FT->isVariadic() || ArgExprs.size() != FT->getNumParams())
4795     return nullptr;
4796 
4797   bool NeedsNewDecl = false;
4798   unsigned i = 0;
4799   SmallVector<QualType, 8> OverloadParams;
4800 
4801   for (QualType ParamType : FT->param_types()) {
4802 
4803     // Convert array arguments to pointer to simplify type lookup.
4804     Expr *Arg = Sema->DefaultFunctionArrayLvalueConversion(ArgExprs[i++]).get();
4805     QualType ArgType = Arg->getType();
4806     if (!ParamType->isPointerType() ||
4807         ParamType.getQualifiers().hasAddressSpace() ||
4808         !ArgType->isPointerType() ||
4809         !ArgType->getPointeeType().getQualifiers().hasAddressSpace()) {
4810       OverloadParams.push_back(ParamType);
4811       continue;
4812     }
4813 
4814     NeedsNewDecl = true;
4815     unsigned AS = ArgType->getPointeeType().getQualifiers().getAddressSpace();
4816 
4817     QualType PointeeType = ParamType->getPointeeType();
4818     PointeeType = Context.getAddrSpaceQualType(PointeeType, AS);
4819     OverloadParams.push_back(Context.getPointerType(PointeeType));
4820   }
4821 
4822   if (!NeedsNewDecl)
4823     return nullptr;
4824 
4825   FunctionProtoType::ExtProtoInfo EPI;
4826   QualType OverloadTy = Context.getFunctionType(FT->getReturnType(),
4827                                                 OverloadParams, EPI);
4828   DeclContext *Parent = Context.getTranslationUnitDecl();
4829   FunctionDecl *OverloadDecl = FunctionDecl::Create(Context, Parent,
4830                                                     FDecl->getLocation(),
4831                                                     FDecl->getLocation(),
4832                                                     FDecl->getIdentifier(),
4833                                                     OverloadTy,
4834                                                     /*TInfo=*/nullptr,
4835                                                     SC_Extern, false,
4836                                                     /*hasPrototype=*/true);
4837   SmallVector<ParmVarDecl*, 16> Params;
4838   FT = cast<FunctionProtoType>(OverloadTy);
4839   for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) {
4840     QualType ParamType = FT->getParamType(i);
4841     ParmVarDecl *Parm =
4842         ParmVarDecl::Create(Context, OverloadDecl, SourceLocation(),
4843                                 SourceLocation(), nullptr, ParamType,
4844                                 /*TInfo=*/nullptr, SC_None, nullptr);
4845     Parm->setScopeInfo(0, i);
4846     Params.push_back(Parm);
4847   }
4848   OverloadDecl->setParams(Params);
4849   return OverloadDecl;
4850 }
4851 
4852 /// ActOnCallExpr - Handle a call to Fn with the specified array of arguments.
4853 /// This provides the location of the left/right parens and a list of comma
4854 /// locations.
4855 ExprResult
ActOnCallExpr(Scope * S,Expr * Fn,SourceLocation LParenLoc,MultiExprArg ArgExprs,SourceLocation RParenLoc,Expr * ExecConfig,bool IsExecConfig)4856 Sema::ActOnCallExpr(Scope *S, Expr *Fn, SourceLocation LParenLoc,
4857                     MultiExprArg ArgExprs, SourceLocation RParenLoc,
4858                     Expr *ExecConfig, bool IsExecConfig) {
4859   // Since this might be a postfix expression, get rid of ParenListExprs.
4860   ExprResult Result = MaybeConvertParenListExprToParenExpr(S, Fn);
4861   if (Result.isInvalid()) return ExprError();
4862   Fn = Result.get();
4863 
4864   if (checkArgsForPlaceholders(*this, ArgExprs))
4865     return ExprError();
4866 
4867   if (getLangOpts().CPlusPlus) {
4868     // If this is a pseudo-destructor expression, build the call immediately.
4869     if (isa<CXXPseudoDestructorExpr>(Fn)) {
4870       if (!ArgExprs.empty()) {
4871         // Pseudo-destructor calls should not have any arguments.
4872         Diag(Fn->getLocStart(), diag::err_pseudo_dtor_call_with_args)
4873           << FixItHint::CreateRemoval(
4874                                     SourceRange(ArgExprs.front()->getLocStart(),
4875                                                 ArgExprs.back()->getLocEnd()));
4876       }
4877 
4878       return new (Context)
4879           CallExpr(Context, Fn, None, Context.VoidTy, VK_RValue, RParenLoc);
4880     }
4881     if (Fn->getType() == Context.PseudoObjectTy) {
4882       ExprResult result = CheckPlaceholderExpr(Fn);
4883       if (result.isInvalid()) return ExprError();
4884       Fn = result.get();
4885     }
4886 
4887     // Determine whether this is a dependent call inside a C++ template,
4888     // in which case we won't do any semantic analysis now.
4889     // FIXME: Will need to cache the results of name lookup (including ADL) in
4890     // Fn.
4891     bool Dependent = false;
4892     if (Fn->isTypeDependent())
4893       Dependent = true;
4894     else if (Expr::hasAnyTypeDependentArguments(ArgExprs))
4895       Dependent = true;
4896 
4897     if (Dependent) {
4898       if (ExecConfig) {
4899         return new (Context) CUDAKernelCallExpr(
4900             Context, Fn, cast<CallExpr>(ExecConfig), ArgExprs,
4901             Context.DependentTy, VK_RValue, RParenLoc);
4902       } else {
4903         return new (Context) CallExpr(
4904             Context, Fn, ArgExprs, Context.DependentTy, VK_RValue, RParenLoc);
4905       }
4906     }
4907 
4908     // Determine whether this is a call to an object (C++ [over.call.object]).
4909     if (Fn->getType()->isRecordType())
4910       return BuildCallToObjectOfClassType(S, Fn, LParenLoc, ArgExprs,
4911                                           RParenLoc);
4912 
4913     if (Fn->getType() == Context.UnknownAnyTy) {
4914       ExprResult result = rebuildUnknownAnyFunction(*this, Fn);
4915       if (result.isInvalid()) return ExprError();
4916       Fn = result.get();
4917     }
4918 
4919     if (Fn->getType() == Context.BoundMemberTy) {
4920       return BuildCallToMemberFunction(S, Fn, LParenLoc, ArgExprs, RParenLoc);
4921     }
4922   }
4923 
4924   // Check for overloaded calls.  This can happen even in C due to extensions.
4925   if (Fn->getType() == Context.OverloadTy) {
4926     OverloadExpr::FindResult find = OverloadExpr::find(Fn);
4927 
4928     // We aren't supposed to apply this logic for if there's an '&' involved.
4929     if (!find.HasFormOfMemberPointer) {
4930       OverloadExpr *ovl = find.Expression;
4931       if (isa<UnresolvedLookupExpr>(ovl)) {
4932         UnresolvedLookupExpr *ULE = cast<UnresolvedLookupExpr>(ovl);
4933         return BuildOverloadedCallExpr(S, Fn, ULE, LParenLoc, ArgExprs,
4934                                        RParenLoc, ExecConfig);
4935       } else {
4936         return BuildCallToMemberFunction(S, Fn, LParenLoc, ArgExprs,
4937                                          RParenLoc);
4938       }
4939     }
4940   }
4941 
4942   // If we're directly calling a function, get the appropriate declaration.
4943   if (Fn->getType() == Context.UnknownAnyTy) {
4944     ExprResult result = rebuildUnknownAnyFunction(*this, Fn);
4945     if (result.isInvalid()) return ExprError();
4946     Fn = result.get();
4947   }
4948 
4949   Expr *NakedFn = Fn->IgnoreParens();
4950 
4951   NamedDecl *NDecl = nullptr;
4952   if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(NakedFn))
4953     if (UnOp->getOpcode() == UO_AddrOf)
4954       NakedFn = UnOp->getSubExpr()->IgnoreParens();
4955 
4956   if (isa<DeclRefExpr>(NakedFn)) {
4957     NDecl = cast<DeclRefExpr>(NakedFn)->getDecl();
4958 
4959     FunctionDecl *FDecl = dyn_cast<FunctionDecl>(NDecl);
4960     if (FDecl && FDecl->getBuiltinID()) {
4961       // Rewrite the function decl for this builtin by replacing paramaters
4962       // with no explicit address space with the address space of the arguments
4963       // in ArgExprs.
4964       if ((FDecl = rewriteBuiltinFunctionDecl(this, Context, FDecl, ArgExprs))) {
4965         NDecl = FDecl;
4966         Fn = DeclRefExpr::Create(Context, FDecl->getQualifierLoc(),
4967                            SourceLocation(), FDecl, false,
4968                            SourceLocation(), FDecl->getType(),
4969                            Fn->getValueKind(), FDecl);
4970       }
4971     }
4972   } else if (isa<MemberExpr>(NakedFn))
4973     NDecl = cast<MemberExpr>(NakedFn)->getMemberDecl();
4974 
4975   if (FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(NDecl)) {
4976     if (FD->hasAttr<EnableIfAttr>()) {
4977       if (const EnableIfAttr *Attr = CheckEnableIf(FD, ArgExprs, true)) {
4978         Diag(Fn->getLocStart(),
4979              isa<CXXMethodDecl>(FD) ?
4980                  diag::err_ovl_no_viable_member_function_in_call :
4981                  diag::err_ovl_no_viable_function_in_call)
4982           << FD << FD->getSourceRange();
4983         Diag(FD->getLocation(),
4984              diag::note_ovl_candidate_disabled_by_enable_if_attr)
4985             << Attr->getCond()->getSourceRange() << Attr->getMessage();
4986       }
4987     }
4988   }
4989 
4990   return BuildResolvedCallExpr(Fn, NDecl, LParenLoc, ArgExprs, RParenLoc,
4991                                ExecConfig, IsExecConfig);
4992 }
4993 
4994 /// ActOnAsTypeExpr - create a new asType (bitcast) from the arguments.
4995 ///
4996 /// __builtin_astype( value, dst type )
4997 ///
ActOnAsTypeExpr(Expr * E,ParsedType ParsedDestTy,SourceLocation BuiltinLoc,SourceLocation RParenLoc)4998 ExprResult Sema::ActOnAsTypeExpr(Expr *E, ParsedType ParsedDestTy,
4999                                  SourceLocation BuiltinLoc,
5000                                  SourceLocation RParenLoc) {
5001   ExprValueKind VK = VK_RValue;
5002   ExprObjectKind OK = OK_Ordinary;
5003   QualType DstTy = GetTypeFromParser(ParsedDestTy);
5004   QualType SrcTy = E->getType();
5005   if (Context.getTypeSize(DstTy) != Context.getTypeSize(SrcTy))
5006     return ExprError(Diag(BuiltinLoc,
5007                           diag::err_invalid_astype_of_different_size)
5008                      << DstTy
5009                      << SrcTy
5010                      << E->getSourceRange());
5011   return new (Context) AsTypeExpr(E, DstTy, VK, OK, BuiltinLoc, RParenLoc);
5012 }
5013 
5014 /// ActOnConvertVectorExpr - create a new convert-vector expression from the
5015 /// provided arguments.
5016 ///
5017 /// __builtin_convertvector( value, dst type )
5018 ///
ActOnConvertVectorExpr(Expr * E,ParsedType ParsedDestTy,SourceLocation BuiltinLoc,SourceLocation RParenLoc)5019 ExprResult Sema::ActOnConvertVectorExpr(Expr *E, ParsedType ParsedDestTy,
5020                                         SourceLocation BuiltinLoc,
5021                                         SourceLocation RParenLoc) {
5022   TypeSourceInfo *TInfo;
5023   GetTypeFromParser(ParsedDestTy, &TInfo);
5024   return SemaConvertVectorExpr(E, TInfo, BuiltinLoc, RParenLoc);
5025 }
5026 
5027 /// BuildResolvedCallExpr - Build a call to a resolved expression,
5028 /// i.e. an expression not of \p OverloadTy.  The expression should
5029 /// unary-convert to an expression of function-pointer or
5030 /// block-pointer type.
5031 ///
5032 /// \param NDecl the declaration being called, if available
5033 ExprResult
BuildResolvedCallExpr(Expr * Fn,NamedDecl * NDecl,SourceLocation LParenLoc,ArrayRef<Expr * > Args,SourceLocation RParenLoc,Expr * Config,bool IsExecConfig)5034 Sema::BuildResolvedCallExpr(Expr *Fn, NamedDecl *NDecl,
5035                             SourceLocation LParenLoc,
5036                             ArrayRef<Expr *> Args,
5037                             SourceLocation RParenLoc,
5038                             Expr *Config, bool IsExecConfig) {
5039   FunctionDecl *FDecl = dyn_cast_or_null<FunctionDecl>(NDecl);
5040   unsigned BuiltinID = (FDecl ? FDecl->getBuiltinID() : 0);
5041 
5042   // Promote the function operand.
5043   // We special-case function promotion here because we only allow promoting
5044   // builtin functions to function pointers in the callee of a call.
5045   ExprResult Result;
5046   if (BuiltinID &&
5047       Fn->getType()->isSpecificBuiltinType(BuiltinType::BuiltinFn)) {
5048     Result = ImpCastExprToType(Fn, Context.getPointerType(FDecl->getType()),
5049                                CK_BuiltinFnToFnPtr).get();
5050   } else {
5051     Result = CallExprUnaryConversions(Fn);
5052   }
5053   if (Result.isInvalid())
5054     return ExprError();
5055   Fn = Result.get();
5056 
5057   // Make the call expr early, before semantic checks.  This guarantees cleanup
5058   // of arguments and function on error.
5059   CallExpr *TheCall;
5060   if (Config)
5061     TheCall = new (Context) CUDAKernelCallExpr(Context, Fn,
5062                                                cast<CallExpr>(Config), Args,
5063                                                Context.BoolTy, VK_RValue,
5064                                                RParenLoc);
5065   else
5066     TheCall = new (Context) CallExpr(Context, Fn, Args, Context.BoolTy,
5067                                      VK_RValue, RParenLoc);
5068 
5069   if (!getLangOpts().CPlusPlus) {
5070     // C cannot always handle TypoExpr nodes in builtin calls and direct
5071     // function calls as their argument checking don't necessarily handle
5072     // dependent types properly, so make sure any TypoExprs have been
5073     // dealt with.
5074     ExprResult Result = CorrectDelayedTyposInExpr(TheCall);
5075     if (!Result.isUsable()) return ExprError();
5076     TheCall = dyn_cast<CallExpr>(Result.get());
5077     if (!TheCall) return Result;
5078     Args = llvm::makeArrayRef(TheCall->getArgs(), TheCall->getNumArgs());
5079   }
5080 
5081   // Bail out early if calling a builtin with custom typechecking.
5082   if (BuiltinID && Context.BuiltinInfo.hasCustomTypechecking(BuiltinID))
5083     return CheckBuiltinFunctionCall(FDecl, BuiltinID, TheCall);
5084 
5085  retry:
5086   const FunctionType *FuncT;
5087   if (const PointerType *PT = Fn->getType()->getAs<PointerType>()) {
5088     // C99 6.5.2.2p1 - "The expression that denotes the called function shall
5089     // have type pointer to function".
5090     FuncT = PT->getPointeeType()->getAs<FunctionType>();
5091     if (!FuncT)
5092       return ExprError(Diag(LParenLoc, diag::err_typecheck_call_not_function)
5093                          << Fn->getType() << Fn->getSourceRange());
5094   } else if (const BlockPointerType *BPT =
5095                Fn->getType()->getAs<BlockPointerType>()) {
5096     FuncT = BPT->getPointeeType()->castAs<FunctionType>();
5097   } else {
5098     // Handle calls to expressions of unknown-any type.
5099     if (Fn->getType() == Context.UnknownAnyTy) {
5100       ExprResult rewrite = rebuildUnknownAnyFunction(*this, Fn);
5101       if (rewrite.isInvalid()) return ExprError();
5102       Fn = rewrite.get();
5103       TheCall->setCallee(Fn);
5104       goto retry;
5105     }
5106 
5107     return ExprError(Diag(LParenLoc, diag::err_typecheck_call_not_function)
5108       << Fn->getType() << Fn->getSourceRange());
5109   }
5110 
5111   if (getLangOpts().CUDA) {
5112     if (Config) {
5113       // CUDA: Kernel calls must be to global functions
5114       if (FDecl && !FDecl->hasAttr<CUDAGlobalAttr>())
5115         return ExprError(Diag(LParenLoc,diag::err_kern_call_not_global_function)
5116             << FDecl->getName() << Fn->getSourceRange());
5117 
5118       // CUDA: Kernel function must have 'void' return type
5119       if (!FuncT->getReturnType()->isVoidType())
5120         return ExprError(Diag(LParenLoc, diag::err_kern_type_not_void_return)
5121             << Fn->getType() << Fn->getSourceRange());
5122     } else {
5123       // CUDA: Calls to global functions must be configured
5124       if (FDecl && FDecl->hasAttr<CUDAGlobalAttr>())
5125         return ExprError(Diag(LParenLoc, diag::err_global_call_not_config)
5126             << FDecl->getName() << Fn->getSourceRange());
5127     }
5128   }
5129 
5130   // Check for a valid return type
5131   if (CheckCallReturnType(FuncT->getReturnType(), Fn->getLocStart(), TheCall,
5132                           FDecl))
5133     return ExprError();
5134 
5135   // We know the result type of the call, set it.
5136   TheCall->setType(FuncT->getCallResultType(Context));
5137   TheCall->setValueKind(Expr::getValueKindForType(FuncT->getReturnType()));
5138 
5139   const FunctionProtoType *Proto = dyn_cast<FunctionProtoType>(FuncT);
5140   if (Proto) {
5141     if (ConvertArgumentsForCall(TheCall, Fn, FDecl, Proto, Args, RParenLoc,
5142                                 IsExecConfig))
5143       return ExprError();
5144   } else {
5145     assert(isa<FunctionNoProtoType>(FuncT) && "Unknown FunctionType!");
5146 
5147     if (FDecl) {
5148       // Check if we have too few/too many template arguments, based
5149       // on our knowledge of the function definition.
5150       const FunctionDecl *Def = nullptr;
5151       if (FDecl->hasBody(Def) && Args.size() != Def->param_size()) {
5152         Proto = Def->getType()->getAs<FunctionProtoType>();
5153        if (!Proto || !(Proto->isVariadic() && Args.size() >= Def->param_size()))
5154           Diag(RParenLoc, diag::warn_call_wrong_number_of_arguments)
5155           << (Args.size() > Def->param_size()) << FDecl << Fn->getSourceRange();
5156       }
5157 
5158       // If the function we're calling isn't a function prototype, but we have
5159       // a function prototype from a prior declaratiom, use that prototype.
5160       if (!FDecl->hasPrototype())
5161         Proto = FDecl->getType()->getAs<FunctionProtoType>();
5162     }
5163 
5164     // Promote the arguments (C99 6.5.2.2p6).
5165     for (unsigned i = 0, e = Args.size(); i != e; i++) {
5166       Expr *Arg = Args[i];
5167 
5168       if (Proto && i < Proto->getNumParams()) {
5169         InitializedEntity Entity = InitializedEntity::InitializeParameter(
5170             Context, Proto->getParamType(i), Proto->isParamConsumed(i));
5171         ExprResult ArgE =
5172             PerformCopyInitialization(Entity, SourceLocation(), Arg);
5173         if (ArgE.isInvalid())
5174           return true;
5175 
5176         Arg = ArgE.getAs<Expr>();
5177 
5178       } else {
5179         ExprResult ArgE = DefaultArgumentPromotion(Arg);
5180 
5181         if (ArgE.isInvalid())
5182           return true;
5183 
5184         Arg = ArgE.getAs<Expr>();
5185       }
5186 
5187       if (RequireCompleteType(Arg->getLocStart(),
5188                               Arg->getType(),
5189                               diag::err_call_incomplete_argument, Arg))
5190         return ExprError();
5191 
5192       TheCall->setArg(i, Arg);
5193     }
5194   }
5195 
5196   if (CXXMethodDecl *Method = dyn_cast_or_null<CXXMethodDecl>(FDecl))
5197     if (!Method->isStatic())
5198       return ExprError(Diag(LParenLoc, diag::err_member_call_without_object)
5199         << Fn->getSourceRange());
5200 
5201   // Check for sentinels
5202   if (NDecl)
5203     DiagnoseSentinelCalls(NDecl, LParenLoc, Args);
5204 
5205   // Do special checking on direct calls to functions.
5206   if (FDecl) {
5207     if (CheckFunctionCall(FDecl, TheCall, Proto))
5208       return ExprError();
5209 
5210     if (BuiltinID)
5211       return CheckBuiltinFunctionCall(FDecl, BuiltinID, TheCall);
5212   } else if (NDecl) {
5213     if (CheckPointerCall(NDecl, TheCall, Proto))
5214       return ExprError();
5215   } else {
5216     if (CheckOtherCall(TheCall, Proto))
5217       return ExprError();
5218   }
5219 
5220   return MaybeBindToTemporary(TheCall);
5221 }
5222 
5223 ExprResult
ActOnCompoundLiteral(SourceLocation LParenLoc,ParsedType Ty,SourceLocation RParenLoc,Expr * InitExpr)5224 Sema::ActOnCompoundLiteral(SourceLocation LParenLoc, ParsedType Ty,
5225                            SourceLocation RParenLoc, Expr *InitExpr) {
5226   assert(Ty && "ActOnCompoundLiteral(): missing type");
5227   assert(InitExpr && "ActOnCompoundLiteral(): missing expression");
5228 
5229   TypeSourceInfo *TInfo;
5230   QualType literalType = GetTypeFromParser(Ty, &TInfo);
5231   if (!TInfo)
5232     TInfo = Context.getTrivialTypeSourceInfo(literalType);
5233 
5234   return BuildCompoundLiteralExpr(LParenLoc, TInfo, RParenLoc, InitExpr);
5235 }
5236 
5237 ExprResult
BuildCompoundLiteralExpr(SourceLocation LParenLoc,TypeSourceInfo * TInfo,SourceLocation RParenLoc,Expr * LiteralExpr)5238 Sema::BuildCompoundLiteralExpr(SourceLocation LParenLoc, TypeSourceInfo *TInfo,
5239                                SourceLocation RParenLoc, Expr *LiteralExpr) {
5240   QualType literalType = TInfo->getType();
5241 
5242   if (literalType->isArrayType()) {
5243     if (RequireCompleteType(LParenLoc, Context.getBaseElementType(literalType),
5244           diag::err_illegal_decl_array_incomplete_type,
5245           SourceRange(LParenLoc,
5246                       LiteralExpr->getSourceRange().getEnd())))
5247       return ExprError();
5248     if (literalType->isVariableArrayType())
5249       return ExprError(Diag(LParenLoc, diag::err_variable_object_no_init)
5250         << SourceRange(LParenLoc, LiteralExpr->getSourceRange().getEnd()));
5251   } else if (!literalType->isDependentType() &&
5252              RequireCompleteType(LParenLoc, literalType,
5253                diag::err_typecheck_decl_incomplete_type,
5254                SourceRange(LParenLoc, LiteralExpr->getSourceRange().getEnd())))
5255     return ExprError();
5256 
5257   InitializedEntity Entity
5258     = InitializedEntity::InitializeCompoundLiteralInit(TInfo);
5259   InitializationKind Kind
5260     = InitializationKind::CreateCStyleCast(LParenLoc,
5261                                            SourceRange(LParenLoc, RParenLoc),
5262                                            /*InitList=*/true);
5263   InitializationSequence InitSeq(*this, Entity, Kind, LiteralExpr);
5264   ExprResult Result = InitSeq.Perform(*this, Entity, Kind, LiteralExpr,
5265                                       &literalType);
5266   if (Result.isInvalid())
5267     return ExprError();
5268   LiteralExpr = Result.get();
5269 
5270   bool isFileScope = getCurFunctionOrMethodDecl() == nullptr;
5271   if (isFileScope &&
5272       !LiteralExpr->isTypeDependent() &&
5273       !LiteralExpr->isValueDependent() &&
5274       !literalType->isDependentType()) { // 6.5.2.5p3
5275     if (CheckForConstantInitializer(LiteralExpr, literalType))
5276       return ExprError();
5277   }
5278 
5279   // In C, compound literals are l-values for some reason.
5280   ExprValueKind VK = getLangOpts().CPlusPlus ? VK_RValue : VK_LValue;
5281 
5282   return MaybeBindToTemporary(
5283            new (Context) CompoundLiteralExpr(LParenLoc, TInfo, literalType,
5284                                              VK, LiteralExpr, isFileScope));
5285 }
5286 
5287 ExprResult
ActOnInitList(SourceLocation LBraceLoc,MultiExprArg InitArgList,SourceLocation RBraceLoc)5288 Sema::ActOnInitList(SourceLocation LBraceLoc, MultiExprArg InitArgList,
5289                     SourceLocation RBraceLoc) {
5290   // Immediately handle non-overload placeholders.  Overloads can be
5291   // resolved contextually, but everything else here can't.
5292   for (unsigned I = 0, E = InitArgList.size(); I != E; ++I) {
5293     if (InitArgList[I]->getType()->isNonOverloadPlaceholderType()) {
5294       ExprResult result = CheckPlaceholderExpr(InitArgList[I]);
5295 
5296       // Ignore failures; dropping the entire initializer list because
5297       // of one failure would be terrible for indexing/etc.
5298       if (result.isInvalid()) continue;
5299 
5300       InitArgList[I] = result.get();
5301     }
5302   }
5303 
5304   // Semantic analysis for initializers is done by ActOnDeclarator() and
5305   // CheckInitializer() - it requires knowledge of the object being intialized.
5306 
5307   InitListExpr *E = new (Context) InitListExpr(Context, LBraceLoc, InitArgList,
5308                                                RBraceLoc);
5309   E->setType(Context.VoidTy); // FIXME: just a place holder for now.
5310   return E;
5311 }
5312 
5313 /// Do an explicit extend of the given block pointer if we're in ARC.
maybeExtendBlockObject(ExprResult & E)5314 void Sema::maybeExtendBlockObject(ExprResult &E) {
5315   assert(E.get()->getType()->isBlockPointerType());
5316   assert(E.get()->isRValue());
5317 
5318   // Only do this in an r-value context.
5319   if (!getLangOpts().ObjCAutoRefCount) return;
5320 
5321   E = ImplicitCastExpr::Create(Context, E.get()->getType(),
5322                                CK_ARCExtendBlockObject, E.get(),
5323                                /*base path*/ nullptr, VK_RValue);
5324   ExprNeedsCleanups = true;
5325 }
5326 
5327 /// Prepare a conversion of the given expression to an ObjC object
5328 /// pointer type.
PrepareCastToObjCObjectPointer(ExprResult & E)5329 CastKind Sema::PrepareCastToObjCObjectPointer(ExprResult &E) {
5330   QualType type = E.get()->getType();
5331   if (type->isObjCObjectPointerType()) {
5332     return CK_BitCast;
5333   } else if (type->isBlockPointerType()) {
5334     maybeExtendBlockObject(E);
5335     return CK_BlockPointerToObjCPointerCast;
5336   } else {
5337     assert(type->isPointerType());
5338     return CK_CPointerToObjCPointerCast;
5339   }
5340 }
5341 
5342 /// Prepares for a scalar cast, performing all the necessary stages
5343 /// except the final cast and returning the kind required.
PrepareScalarCast(ExprResult & Src,QualType DestTy)5344 CastKind Sema::PrepareScalarCast(ExprResult &Src, QualType DestTy) {
5345   // Both Src and Dest are scalar types, i.e. arithmetic or pointer.
5346   // Also, callers should have filtered out the invalid cases with
5347   // pointers.  Everything else should be possible.
5348 
5349   QualType SrcTy = Src.get()->getType();
5350   if (Context.hasSameUnqualifiedType(SrcTy, DestTy))
5351     return CK_NoOp;
5352 
5353   switch (Type::ScalarTypeKind SrcKind = SrcTy->getScalarTypeKind()) {
5354   case Type::STK_MemberPointer:
5355     llvm_unreachable("member pointer type in C");
5356 
5357   case Type::STK_CPointer:
5358   case Type::STK_BlockPointer:
5359   case Type::STK_ObjCObjectPointer:
5360     switch (DestTy->getScalarTypeKind()) {
5361     case Type::STK_CPointer: {
5362       unsigned SrcAS = SrcTy->getPointeeType().getAddressSpace();
5363       unsigned DestAS = DestTy->getPointeeType().getAddressSpace();
5364       if (SrcAS != DestAS)
5365         return CK_AddressSpaceConversion;
5366       return CK_BitCast;
5367     }
5368     case Type::STK_BlockPointer:
5369       return (SrcKind == Type::STK_BlockPointer
5370                 ? CK_BitCast : CK_AnyPointerToBlockPointerCast);
5371     case Type::STK_ObjCObjectPointer:
5372       if (SrcKind == Type::STK_ObjCObjectPointer)
5373         return CK_BitCast;
5374       if (SrcKind == Type::STK_CPointer)
5375         return CK_CPointerToObjCPointerCast;
5376       maybeExtendBlockObject(Src);
5377       return CK_BlockPointerToObjCPointerCast;
5378     case Type::STK_Bool:
5379       return CK_PointerToBoolean;
5380     case Type::STK_Integral:
5381       return CK_PointerToIntegral;
5382     case Type::STK_Floating:
5383     case Type::STK_FloatingComplex:
5384     case Type::STK_IntegralComplex:
5385     case Type::STK_MemberPointer:
5386       llvm_unreachable("illegal cast from pointer");
5387     }
5388     llvm_unreachable("Should have returned before this");
5389 
5390   case Type::STK_Bool: // casting from bool is like casting from an integer
5391   case Type::STK_Integral:
5392     switch (DestTy->getScalarTypeKind()) {
5393     case Type::STK_CPointer:
5394     case Type::STK_ObjCObjectPointer:
5395     case Type::STK_BlockPointer:
5396       if (Src.get()->isNullPointerConstant(Context,
5397                                            Expr::NPC_ValueDependentIsNull))
5398         return CK_NullToPointer;
5399       return CK_IntegralToPointer;
5400     case Type::STK_Bool:
5401       return CK_IntegralToBoolean;
5402     case Type::STK_Integral:
5403       return CK_IntegralCast;
5404     case Type::STK_Floating:
5405       return CK_IntegralToFloating;
5406     case Type::STK_IntegralComplex:
5407       Src = ImpCastExprToType(Src.get(),
5408                       DestTy->castAs<ComplexType>()->getElementType(),
5409                       CK_IntegralCast);
5410       return CK_IntegralRealToComplex;
5411     case Type::STK_FloatingComplex:
5412       Src = ImpCastExprToType(Src.get(),
5413                       DestTy->castAs<ComplexType>()->getElementType(),
5414                       CK_IntegralToFloating);
5415       return CK_FloatingRealToComplex;
5416     case Type::STK_MemberPointer:
5417       llvm_unreachable("member pointer type in C");
5418     }
5419     llvm_unreachable("Should have returned before this");
5420 
5421   case Type::STK_Floating:
5422     switch (DestTy->getScalarTypeKind()) {
5423     case Type::STK_Floating:
5424       return CK_FloatingCast;
5425     case Type::STK_Bool:
5426       return CK_FloatingToBoolean;
5427     case Type::STK_Integral:
5428       return CK_FloatingToIntegral;
5429     case Type::STK_FloatingComplex:
5430       Src = ImpCastExprToType(Src.get(),
5431                               DestTy->castAs<ComplexType>()->getElementType(),
5432                               CK_FloatingCast);
5433       return CK_FloatingRealToComplex;
5434     case Type::STK_IntegralComplex:
5435       Src = ImpCastExprToType(Src.get(),
5436                               DestTy->castAs<ComplexType>()->getElementType(),
5437                               CK_FloatingToIntegral);
5438       return CK_IntegralRealToComplex;
5439     case Type::STK_CPointer:
5440     case Type::STK_ObjCObjectPointer:
5441     case Type::STK_BlockPointer:
5442       llvm_unreachable("valid float->pointer cast?");
5443     case Type::STK_MemberPointer:
5444       llvm_unreachable("member pointer type in C");
5445     }
5446     llvm_unreachable("Should have returned before this");
5447 
5448   case Type::STK_FloatingComplex:
5449     switch (DestTy->getScalarTypeKind()) {
5450     case Type::STK_FloatingComplex:
5451       return CK_FloatingComplexCast;
5452     case Type::STK_IntegralComplex:
5453       return CK_FloatingComplexToIntegralComplex;
5454     case Type::STK_Floating: {
5455       QualType ET = SrcTy->castAs<ComplexType>()->getElementType();
5456       if (Context.hasSameType(ET, DestTy))
5457         return CK_FloatingComplexToReal;
5458       Src = ImpCastExprToType(Src.get(), ET, CK_FloatingComplexToReal);
5459       return CK_FloatingCast;
5460     }
5461     case Type::STK_Bool:
5462       return CK_FloatingComplexToBoolean;
5463     case Type::STK_Integral:
5464       Src = ImpCastExprToType(Src.get(),
5465                               SrcTy->castAs<ComplexType>()->getElementType(),
5466                               CK_FloatingComplexToReal);
5467       return CK_FloatingToIntegral;
5468     case Type::STK_CPointer:
5469     case Type::STK_ObjCObjectPointer:
5470     case Type::STK_BlockPointer:
5471       llvm_unreachable("valid complex float->pointer cast?");
5472     case Type::STK_MemberPointer:
5473       llvm_unreachable("member pointer type in C");
5474     }
5475     llvm_unreachable("Should have returned before this");
5476 
5477   case Type::STK_IntegralComplex:
5478     switch (DestTy->getScalarTypeKind()) {
5479     case Type::STK_FloatingComplex:
5480       return CK_IntegralComplexToFloatingComplex;
5481     case Type::STK_IntegralComplex:
5482       return CK_IntegralComplexCast;
5483     case Type::STK_Integral: {
5484       QualType ET = SrcTy->castAs<ComplexType>()->getElementType();
5485       if (Context.hasSameType(ET, DestTy))
5486         return CK_IntegralComplexToReal;
5487       Src = ImpCastExprToType(Src.get(), ET, CK_IntegralComplexToReal);
5488       return CK_IntegralCast;
5489     }
5490     case Type::STK_Bool:
5491       return CK_IntegralComplexToBoolean;
5492     case Type::STK_Floating:
5493       Src = ImpCastExprToType(Src.get(),
5494                               SrcTy->castAs<ComplexType>()->getElementType(),
5495                               CK_IntegralComplexToReal);
5496       return CK_IntegralToFloating;
5497     case Type::STK_CPointer:
5498     case Type::STK_ObjCObjectPointer:
5499     case Type::STK_BlockPointer:
5500       llvm_unreachable("valid complex int->pointer cast?");
5501     case Type::STK_MemberPointer:
5502       llvm_unreachable("member pointer type in C");
5503     }
5504     llvm_unreachable("Should have returned before this");
5505   }
5506 
5507   llvm_unreachable("Unhandled scalar cast");
5508 }
5509 
breakDownVectorType(QualType type,uint64_t & len,QualType & eltType)5510 static bool breakDownVectorType(QualType type, uint64_t &len,
5511                                 QualType &eltType) {
5512   // Vectors are simple.
5513   if (const VectorType *vecType = type->getAs<VectorType>()) {
5514     len = vecType->getNumElements();
5515     eltType = vecType->getElementType();
5516     assert(eltType->isScalarType());
5517     return true;
5518   }
5519 
5520   // We allow lax conversion to and from non-vector types, but only if
5521   // they're real types (i.e. non-complex, non-pointer scalar types).
5522   if (!type->isRealType()) return false;
5523 
5524   len = 1;
5525   eltType = type;
5526   return true;
5527 }
5528 
5529 /// Are the two types lax-compatible vector types?  That is, given
5530 /// that one of them is a vector, do they have equal storage sizes,
5531 /// where the storage size is the number of elements times the element
5532 /// size?
5533 ///
5534 /// This will also return false if either of the types is neither a
5535 /// vector nor a real type.
areLaxCompatibleVectorTypes(QualType srcTy,QualType destTy)5536 bool Sema::areLaxCompatibleVectorTypes(QualType srcTy, QualType destTy) {
5537   assert(destTy->isVectorType() || srcTy->isVectorType());
5538 
5539   // Disallow lax conversions between scalars and ExtVectors (these
5540   // conversions are allowed for other vector types because common headers
5541   // depend on them).  Most scalar OP ExtVector cases are handled by the
5542   // splat path anyway, which does what we want (convert, not bitcast).
5543   // What this rules out for ExtVectors is crazy things like char4*float.
5544   if (srcTy->isScalarType() && destTy->isExtVectorType()) return false;
5545   if (destTy->isScalarType() && srcTy->isExtVectorType()) return false;
5546 
5547   uint64_t srcLen, destLen;
5548   QualType srcEltTy, destEltTy;
5549   if (!breakDownVectorType(srcTy, srcLen, srcEltTy)) return false;
5550   if (!breakDownVectorType(destTy, destLen, destEltTy)) return false;
5551 
5552   // ASTContext::getTypeSize will return the size rounded up to a
5553   // power of 2, so instead of using that, we need to use the raw
5554   // element size multiplied by the element count.
5555   uint64_t srcEltSize = Context.getTypeSize(srcEltTy);
5556   uint64_t destEltSize = Context.getTypeSize(destEltTy);
5557 
5558   return (srcLen * srcEltSize == destLen * destEltSize);
5559 }
5560 
5561 /// Is this a legal conversion between two types, one of which is
5562 /// known to be a vector type?
isLaxVectorConversion(QualType srcTy,QualType destTy)5563 bool Sema::isLaxVectorConversion(QualType srcTy, QualType destTy) {
5564   assert(destTy->isVectorType() || srcTy->isVectorType());
5565 
5566   if (!Context.getLangOpts().LaxVectorConversions)
5567     return false;
5568   return areLaxCompatibleVectorTypes(srcTy, destTy);
5569 }
5570 
CheckVectorCast(SourceRange R,QualType VectorTy,QualType Ty,CastKind & Kind)5571 bool Sema::CheckVectorCast(SourceRange R, QualType VectorTy, QualType Ty,
5572                            CastKind &Kind) {
5573   assert(VectorTy->isVectorType() && "Not a vector type!");
5574 
5575   if (Ty->isVectorType() || Ty->isIntegralType(Context)) {
5576     if (!areLaxCompatibleVectorTypes(Ty, VectorTy))
5577       return Diag(R.getBegin(),
5578                   Ty->isVectorType() ?
5579                   diag::err_invalid_conversion_between_vectors :
5580                   diag::err_invalid_conversion_between_vector_and_integer)
5581         << VectorTy << Ty << R;
5582   } else
5583     return Diag(R.getBegin(),
5584                 diag::err_invalid_conversion_between_vector_and_scalar)
5585       << VectorTy << Ty << R;
5586 
5587   Kind = CK_BitCast;
5588   return false;
5589 }
5590 
CheckExtVectorCast(SourceRange R,QualType DestTy,Expr * CastExpr,CastKind & Kind)5591 ExprResult Sema::CheckExtVectorCast(SourceRange R, QualType DestTy,
5592                                     Expr *CastExpr, CastKind &Kind) {
5593   assert(DestTy->isExtVectorType() && "Not an extended vector type!");
5594 
5595   QualType SrcTy = CastExpr->getType();
5596 
5597   // If SrcTy is a VectorType, the total size must match to explicitly cast to
5598   // an ExtVectorType.
5599   // In OpenCL, casts between vectors of different types are not allowed.
5600   // (See OpenCL 6.2).
5601   if (SrcTy->isVectorType()) {
5602     if (!areLaxCompatibleVectorTypes(SrcTy, DestTy)
5603         || (getLangOpts().OpenCL &&
5604             (DestTy.getCanonicalType() != SrcTy.getCanonicalType()))) {
5605       Diag(R.getBegin(),diag::err_invalid_conversion_between_ext_vectors)
5606         << DestTy << SrcTy << R;
5607       return ExprError();
5608     }
5609     Kind = CK_BitCast;
5610     return CastExpr;
5611   }
5612 
5613   // All non-pointer scalars can be cast to ExtVector type.  The appropriate
5614   // conversion will take place first from scalar to elt type, and then
5615   // splat from elt type to vector.
5616   if (SrcTy->isPointerType())
5617     return Diag(R.getBegin(),
5618                 diag::err_invalid_conversion_between_vector_and_scalar)
5619       << DestTy << SrcTy << R;
5620 
5621   QualType DestElemTy = DestTy->getAs<ExtVectorType>()->getElementType();
5622   ExprResult CastExprRes = CastExpr;
5623   CastKind CK = PrepareScalarCast(CastExprRes, DestElemTy);
5624   if (CastExprRes.isInvalid())
5625     return ExprError();
5626   CastExpr = ImpCastExprToType(CastExprRes.get(), DestElemTy, CK).get();
5627 
5628   Kind = CK_VectorSplat;
5629   return CastExpr;
5630 }
5631 
5632 ExprResult
ActOnCastExpr(Scope * S,SourceLocation LParenLoc,Declarator & D,ParsedType & Ty,SourceLocation RParenLoc,Expr * CastExpr)5633 Sema::ActOnCastExpr(Scope *S, SourceLocation LParenLoc,
5634                     Declarator &D, ParsedType &Ty,
5635                     SourceLocation RParenLoc, Expr *CastExpr) {
5636   assert(!D.isInvalidType() && (CastExpr != nullptr) &&
5637          "ActOnCastExpr(): missing type or expr");
5638 
5639   TypeSourceInfo *castTInfo = GetTypeForDeclaratorCast(D, CastExpr->getType());
5640   if (D.isInvalidType())
5641     return ExprError();
5642 
5643   if (getLangOpts().CPlusPlus) {
5644     // Check that there are no default arguments (C++ only).
5645     CheckExtraCXXDefaultArguments(D);
5646   } else {
5647     // Make sure any TypoExprs have been dealt with.
5648     ExprResult Res = CorrectDelayedTyposInExpr(CastExpr);
5649     if (!Res.isUsable())
5650       return ExprError();
5651     CastExpr = Res.get();
5652   }
5653 
5654   checkUnusedDeclAttributes(D);
5655 
5656   QualType castType = castTInfo->getType();
5657   Ty = CreateParsedType(castType, castTInfo);
5658 
5659   bool isVectorLiteral = false;
5660 
5661   // Check for an altivec or OpenCL literal,
5662   // i.e. all the elements are integer constants.
5663   ParenExpr *PE = dyn_cast<ParenExpr>(CastExpr);
5664   ParenListExpr *PLE = dyn_cast<ParenListExpr>(CastExpr);
5665   if ((getLangOpts().AltiVec || getLangOpts().ZVector || getLangOpts().OpenCL)
5666        && castType->isVectorType() && (PE || PLE)) {
5667     if (PLE && PLE->getNumExprs() == 0) {
5668       Diag(PLE->getExprLoc(), diag::err_altivec_empty_initializer);
5669       return ExprError();
5670     }
5671     if (PE || PLE->getNumExprs() == 1) {
5672       Expr *E = (PE ? PE->getSubExpr() : PLE->getExpr(0));
5673       if (!E->getType()->isVectorType())
5674         isVectorLiteral = true;
5675     }
5676     else
5677       isVectorLiteral = true;
5678   }
5679 
5680   // If this is a vector initializer, '(' type ')' '(' init, ..., init ')'
5681   // then handle it as such.
5682   if (isVectorLiteral)
5683     return BuildVectorLiteral(LParenLoc, RParenLoc, CastExpr, castTInfo);
5684 
5685   // If the Expr being casted is a ParenListExpr, handle it specially.
5686   // This is not an AltiVec-style cast, so turn the ParenListExpr into a
5687   // sequence of BinOp comma operators.
5688   if (isa<ParenListExpr>(CastExpr)) {
5689     ExprResult Result = MaybeConvertParenListExprToParenExpr(S, CastExpr);
5690     if (Result.isInvalid()) return ExprError();
5691     CastExpr = Result.get();
5692   }
5693 
5694   if (getLangOpts().CPlusPlus && !castType->isVoidType() &&
5695       !getSourceManager().isInSystemMacro(LParenLoc))
5696     Diag(LParenLoc, diag::warn_old_style_cast) << CastExpr->getSourceRange();
5697 
5698   CheckTollFreeBridgeCast(castType, CastExpr);
5699 
5700   CheckObjCBridgeRelatedCast(castType, CastExpr);
5701 
5702   return BuildCStyleCastExpr(LParenLoc, castTInfo, RParenLoc, CastExpr);
5703 }
5704 
BuildVectorLiteral(SourceLocation LParenLoc,SourceLocation RParenLoc,Expr * E,TypeSourceInfo * TInfo)5705 ExprResult Sema::BuildVectorLiteral(SourceLocation LParenLoc,
5706                                     SourceLocation RParenLoc, Expr *E,
5707                                     TypeSourceInfo *TInfo) {
5708   assert((isa<ParenListExpr>(E) || isa<ParenExpr>(E)) &&
5709          "Expected paren or paren list expression");
5710 
5711   Expr **exprs;
5712   unsigned numExprs;
5713   Expr *subExpr;
5714   SourceLocation LiteralLParenLoc, LiteralRParenLoc;
5715   if (ParenListExpr *PE = dyn_cast<ParenListExpr>(E)) {
5716     LiteralLParenLoc = PE->getLParenLoc();
5717     LiteralRParenLoc = PE->getRParenLoc();
5718     exprs = PE->getExprs();
5719     numExprs = PE->getNumExprs();
5720   } else { // isa<ParenExpr> by assertion at function entrance
5721     LiteralLParenLoc = cast<ParenExpr>(E)->getLParen();
5722     LiteralRParenLoc = cast<ParenExpr>(E)->getRParen();
5723     subExpr = cast<ParenExpr>(E)->getSubExpr();
5724     exprs = &subExpr;
5725     numExprs = 1;
5726   }
5727 
5728   QualType Ty = TInfo->getType();
5729   assert(Ty->isVectorType() && "Expected vector type");
5730 
5731   SmallVector<Expr *, 8> initExprs;
5732   const VectorType *VTy = Ty->getAs<VectorType>();
5733   unsigned numElems = Ty->getAs<VectorType>()->getNumElements();
5734 
5735   // '(...)' form of vector initialization in AltiVec: the number of
5736   // initializers must be one or must match the size of the vector.
5737   // If a single value is specified in the initializer then it will be
5738   // replicated to all the components of the vector
5739   if (VTy->getVectorKind() == VectorType::AltiVecVector) {
5740     // The number of initializers must be one or must match the size of the
5741     // vector. If a single value is specified in the initializer then it will
5742     // be replicated to all the components of the vector
5743     if (numExprs == 1) {
5744       QualType ElemTy = Ty->getAs<VectorType>()->getElementType();
5745       ExprResult Literal = DefaultLvalueConversion(exprs[0]);
5746       if (Literal.isInvalid())
5747         return ExprError();
5748       Literal = ImpCastExprToType(Literal.get(), ElemTy,
5749                                   PrepareScalarCast(Literal, ElemTy));
5750       return BuildCStyleCastExpr(LParenLoc, TInfo, RParenLoc, Literal.get());
5751     }
5752     else if (numExprs < numElems) {
5753       Diag(E->getExprLoc(),
5754            diag::err_incorrect_number_of_vector_initializers);
5755       return ExprError();
5756     }
5757     else
5758       initExprs.append(exprs, exprs + numExprs);
5759   }
5760   else {
5761     // For OpenCL, when the number of initializers is a single value,
5762     // it will be replicated to all components of the vector.
5763     if (getLangOpts().OpenCL &&
5764         VTy->getVectorKind() == VectorType::GenericVector &&
5765         numExprs == 1) {
5766         QualType ElemTy = Ty->getAs<VectorType>()->getElementType();
5767         ExprResult Literal = DefaultLvalueConversion(exprs[0]);
5768         if (Literal.isInvalid())
5769           return ExprError();
5770         Literal = ImpCastExprToType(Literal.get(), ElemTy,
5771                                     PrepareScalarCast(Literal, ElemTy));
5772         return BuildCStyleCastExpr(LParenLoc, TInfo, RParenLoc, Literal.get());
5773     }
5774 
5775     initExprs.append(exprs, exprs + numExprs);
5776   }
5777   // FIXME: This means that pretty-printing the final AST will produce curly
5778   // braces instead of the original commas.
5779   InitListExpr *initE = new (Context) InitListExpr(Context, LiteralLParenLoc,
5780                                                    initExprs, LiteralRParenLoc);
5781   initE->setType(Ty);
5782   return BuildCompoundLiteralExpr(LParenLoc, TInfo, RParenLoc, initE);
5783 }
5784 
5785 /// This is not an AltiVec-style cast or or C++ direct-initialization, so turn
5786 /// the ParenListExpr into a sequence of comma binary operators.
5787 ExprResult
MaybeConvertParenListExprToParenExpr(Scope * S,Expr * OrigExpr)5788 Sema::MaybeConvertParenListExprToParenExpr(Scope *S, Expr *OrigExpr) {
5789   ParenListExpr *E = dyn_cast<ParenListExpr>(OrigExpr);
5790   if (!E)
5791     return OrigExpr;
5792 
5793   ExprResult Result(E->getExpr(0));
5794 
5795   for (unsigned i = 1, e = E->getNumExprs(); i != e && !Result.isInvalid(); ++i)
5796     Result = ActOnBinOp(S, E->getExprLoc(), tok::comma, Result.get(),
5797                         E->getExpr(i));
5798 
5799   if (Result.isInvalid()) return ExprError();
5800 
5801   return ActOnParenExpr(E->getLParenLoc(), E->getRParenLoc(), Result.get());
5802 }
5803 
ActOnParenListExpr(SourceLocation L,SourceLocation R,MultiExprArg Val)5804 ExprResult Sema::ActOnParenListExpr(SourceLocation L,
5805                                     SourceLocation R,
5806                                     MultiExprArg Val) {
5807   Expr *expr = new (Context) ParenListExpr(Context, L, Val, R);
5808   return expr;
5809 }
5810 
5811 /// \brief Emit a specialized diagnostic when one expression is a null pointer
5812 /// constant and the other is not a pointer.  Returns true if a diagnostic is
5813 /// emitted.
DiagnoseConditionalForNull(Expr * LHSExpr,Expr * RHSExpr,SourceLocation QuestionLoc)5814 bool Sema::DiagnoseConditionalForNull(Expr *LHSExpr, Expr *RHSExpr,
5815                                       SourceLocation QuestionLoc) {
5816   Expr *NullExpr = LHSExpr;
5817   Expr *NonPointerExpr = RHSExpr;
5818   Expr::NullPointerConstantKind NullKind =
5819       NullExpr->isNullPointerConstant(Context,
5820                                       Expr::NPC_ValueDependentIsNotNull);
5821 
5822   if (NullKind == Expr::NPCK_NotNull) {
5823     NullExpr = RHSExpr;
5824     NonPointerExpr = LHSExpr;
5825     NullKind =
5826         NullExpr->isNullPointerConstant(Context,
5827                                         Expr::NPC_ValueDependentIsNotNull);
5828   }
5829 
5830   if (NullKind == Expr::NPCK_NotNull)
5831     return false;
5832 
5833   if (NullKind == Expr::NPCK_ZeroExpression)
5834     return false;
5835 
5836   if (NullKind == Expr::NPCK_ZeroLiteral) {
5837     // In this case, check to make sure that we got here from a "NULL"
5838     // string in the source code.
5839     NullExpr = NullExpr->IgnoreParenImpCasts();
5840     SourceLocation loc = NullExpr->getExprLoc();
5841     if (!findMacroSpelling(loc, "NULL"))
5842       return false;
5843   }
5844 
5845   int DiagType = (NullKind == Expr::NPCK_CXX11_nullptr);
5846   Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands_null)
5847       << NonPointerExpr->getType() << DiagType
5848       << NonPointerExpr->getSourceRange();
5849   return true;
5850 }
5851 
5852 /// \brief Return false if the condition expression is valid, true otherwise.
checkCondition(Sema & S,Expr * Cond,SourceLocation QuestionLoc)5853 static bool checkCondition(Sema &S, Expr *Cond, SourceLocation QuestionLoc) {
5854   QualType CondTy = Cond->getType();
5855 
5856   // OpenCL v1.1 s6.3.i says the condition cannot be a floating point type.
5857   if (S.getLangOpts().OpenCL && CondTy->isFloatingType()) {
5858     S.Diag(QuestionLoc, diag::err_typecheck_cond_expect_nonfloat)
5859       << CondTy << Cond->getSourceRange();
5860     return true;
5861   }
5862 
5863   // C99 6.5.15p2
5864   if (CondTy->isScalarType()) return false;
5865 
5866   S.Diag(QuestionLoc, diag::err_typecheck_cond_expect_scalar)
5867     << CondTy << Cond->getSourceRange();
5868   return true;
5869 }
5870 
5871 /// \brief Handle when one or both operands are void type.
checkConditionalVoidType(Sema & S,ExprResult & LHS,ExprResult & RHS)5872 static QualType checkConditionalVoidType(Sema &S, ExprResult &LHS,
5873                                          ExprResult &RHS) {
5874     Expr *LHSExpr = LHS.get();
5875     Expr *RHSExpr = RHS.get();
5876 
5877     if (!LHSExpr->getType()->isVoidType())
5878       S.Diag(RHSExpr->getLocStart(), diag::ext_typecheck_cond_one_void)
5879         << RHSExpr->getSourceRange();
5880     if (!RHSExpr->getType()->isVoidType())
5881       S.Diag(LHSExpr->getLocStart(), diag::ext_typecheck_cond_one_void)
5882         << LHSExpr->getSourceRange();
5883     LHS = S.ImpCastExprToType(LHS.get(), S.Context.VoidTy, CK_ToVoid);
5884     RHS = S.ImpCastExprToType(RHS.get(), S.Context.VoidTy, CK_ToVoid);
5885     return S.Context.VoidTy;
5886 }
5887 
5888 /// \brief Return false if the NullExpr can be promoted to PointerTy,
5889 /// true otherwise.
checkConditionalNullPointer(Sema & S,ExprResult & NullExpr,QualType PointerTy)5890 static bool checkConditionalNullPointer(Sema &S, ExprResult &NullExpr,
5891                                         QualType PointerTy) {
5892   if ((!PointerTy->isAnyPointerType() && !PointerTy->isBlockPointerType()) ||
5893       !NullExpr.get()->isNullPointerConstant(S.Context,
5894                                             Expr::NPC_ValueDependentIsNull))
5895     return true;
5896 
5897   NullExpr = S.ImpCastExprToType(NullExpr.get(), PointerTy, CK_NullToPointer);
5898   return false;
5899 }
5900 
5901 /// \brief Checks compatibility between two pointers and return the resulting
5902 /// type.
checkConditionalPointerCompatibility(Sema & S,ExprResult & LHS,ExprResult & RHS,SourceLocation Loc)5903 static QualType checkConditionalPointerCompatibility(Sema &S, ExprResult &LHS,
5904                                                      ExprResult &RHS,
5905                                                      SourceLocation Loc) {
5906   QualType LHSTy = LHS.get()->getType();
5907   QualType RHSTy = RHS.get()->getType();
5908 
5909   if (S.Context.hasSameType(LHSTy, RHSTy)) {
5910     // Two identical pointers types are always compatible.
5911     return LHSTy;
5912   }
5913 
5914   QualType lhptee, rhptee;
5915 
5916   // Get the pointee types.
5917   bool IsBlockPointer = false;
5918   if (const BlockPointerType *LHSBTy = LHSTy->getAs<BlockPointerType>()) {
5919     lhptee = LHSBTy->getPointeeType();
5920     rhptee = RHSTy->castAs<BlockPointerType>()->getPointeeType();
5921     IsBlockPointer = true;
5922   } else {
5923     lhptee = LHSTy->castAs<PointerType>()->getPointeeType();
5924     rhptee = RHSTy->castAs<PointerType>()->getPointeeType();
5925   }
5926 
5927   // C99 6.5.15p6: If both operands are pointers to compatible types or to
5928   // differently qualified versions of compatible types, the result type is
5929   // a pointer to an appropriately qualified version of the composite
5930   // type.
5931 
5932   // Only CVR-qualifiers exist in the standard, and the differently-qualified
5933   // clause doesn't make sense for our extensions. E.g. address space 2 should
5934   // be incompatible with address space 3: they may live on different devices or
5935   // anything.
5936   Qualifiers lhQual = lhptee.getQualifiers();
5937   Qualifiers rhQual = rhptee.getQualifiers();
5938 
5939   unsigned MergedCVRQual = lhQual.getCVRQualifiers() | rhQual.getCVRQualifiers();
5940   lhQual.removeCVRQualifiers();
5941   rhQual.removeCVRQualifiers();
5942 
5943   lhptee = S.Context.getQualifiedType(lhptee.getUnqualifiedType(), lhQual);
5944   rhptee = S.Context.getQualifiedType(rhptee.getUnqualifiedType(), rhQual);
5945 
5946   QualType CompositeTy = S.Context.mergeTypes(lhptee, rhptee);
5947 
5948   if (CompositeTy.isNull()) {
5949     S.Diag(Loc, diag::ext_typecheck_cond_incompatible_pointers)
5950       << LHSTy << RHSTy << LHS.get()->getSourceRange()
5951       << RHS.get()->getSourceRange();
5952     // In this situation, we assume void* type. No especially good
5953     // reason, but this is what gcc does, and we do have to pick
5954     // to get a consistent AST.
5955     QualType incompatTy = S.Context.getPointerType(S.Context.VoidTy);
5956     LHS = S.ImpCastExprToType(LHS.get(), incompatTy, CK_BitCast);
5957     RHS = S.ImpCastExprToType(RHS.get(), incompatTy, CK_BitCast);
5958     return incompatTy;
5959   }
5960 
5961   // The pointer types are compatible.
5962   QualType ResultTy = CompositeTy.withCVRQualifiers(MergedCVRQual);
5963   if (IsBlockPointer)
5964     ResultTy = S.Context.getBlockPointerType(ResultTy);
5965   else
5966     ResultTy = S.Context.getPointerType(ResultTy);
5967 
5968   LHS = S.ImpCastExprToType(LHS.get(), ResultTy, CK_BitCast);
5969   RHS = S.ImpCastExprToType(RHS.get(), ResultTy, CK_BitCast);
5970   return ResultTy;
5971 }
5972 
5973 /// \brief Return the resulting type when the operands are both block pointers.
checkConditionalBlockPointerCompatibility(Sema & S,ExprResult & LHS,ExprResult & RHS,SourceLocation Loc)5974 static QualType checkConditionalBlockPointerCompatibility(Sema &S,
5975                                                           ExprResult &LHS,
5976                                                           ExprResult &RHS,
5977                                                           SourceLocation Loc) {
5978   QualType LHSTy = LHS.get()->getType();
5979   QualType RHSTy = RHS.get()->getType();
5980 
5981   if (!LHSTy->isBlockPointerType() || !RHSTy->isBlockPointerType()) {
5982     if (LHSTy->isVoidPointerType() || RHSTy->isVoidPointerType()) {
5983       QualType destType = S.Context.getPointerType(S.Context.VoidTy);
5984       LHS = S.ImpCastExprToType(LHS.get(), destType, CK_BitCast);
5985       RHS = S.ImpCastExprToType(RHS.get(), destType, CK_BitCast);
5986       return destType;
5987     }
5988     S.Diag(Loc, diag::err_typecheck_cond_incompatible_operands)
5989       << LHSTy << RHSTy << LHS.get()->getSourceRange()
5990       << RHS.get()->getSourceRange();
5991     return QualType();
5992   }
5993 
5994   // We have 2 block pointer types.
5995   return checkConditionalPointerCompatibility(S, LHS, RHS, Loc);
5996 }
5997 
5998 /// \brief Return the resulting type when the operands are both pointers.
5999 static QualType
checkConditionalObjectPointersCompatibility(Sema & S,ExprResult & LHS,ExprResult & RHS,SourceLocation Loc)6000 checkConditionalObjectPointersCompatibility(Sema &S, ExprResult &LHS,
6001                                             ExprResult &RHS,
6002                                             SourceLocation Loc) {
6003   // get the pointer types
6004   QualType LHSTy = LHS.get()->getType();
6005   QualType RHSTy = RHS.get()->getType();
6006 
6007   // get the "pointed to" types
6008   QualType lhptee = LHSTy->getAs<PointerType>()->getPointeeType();
6009   QualType rhptee = RHSTy->getAs<PointerType>()->getPointeeType();
6010 
6011   // ignore qualifiers on void (C99 6.5.15p3, clause 6)
6012   if (lhptee->isVoidType() && rhptee->isIncompleteOrObjectType()) {
6013     // Figure out necessary qualifiers (C99 6.5.15p6)
6014     QualType destPointee
6015       = S.Context.getQualifiedType(lhptee, rhptee.getQualifiers());
6016     QualType destType = S.Context.getPointerType(destPointee);
6017     // Add qualifiers if necessary.
6018     LHS = S.ImpCastExprToType(LHS.get(), destType, CK_NoOp);
6019     // Promote to void*.
6020     RHS = S.ImpCastExprToType(RHS.get(), destType, CK_BitCast);
6021     return destType;
6022   }
6023   if (rhptee->isVoidType() && lhptee->isIncompleteOrObjectType()) {
6024     QualType destPointee
6025       = S.Context.getQualifiedType(rhptee, lhptee.getQualifiers());
6026     QualType destType = S.Context.getPointerType(destPointee);
6027     // Add qualifiers if necessary.
6028     RHS = S.ImpCastExprToType(RHS.get(), destType, CK_NoOp);
6029     // Promote to void*.
6030     LHS = S.ImpCastExprToType(LHS.get(), destType, CK_BitCast);
6031     return destType;
6032   }
6033 
6034   return checkConditionalPointerCompatibility(S, LHS, RHS, Loc);
6035 }
6036 
6037 /// \brief Return false if the first expression is not an integer and the second
6038 /// expression is not a pointer, true otherwise.
checkPointerIntegerMismatch(Sema & S,ExprResult & Int,Expr * PointerExpr,SourceLocation Loc,bool IsIntFirstExpr)6039 static bool checkPointerIntegerMismatch(Sema &S, ExprResult &Int,
6040                                         Expr* PointerExpr, SourceLocation Loc,
6041                                         bool IsIntFirstExpr) {
6042   if (!PointerExpr->getType()->isPointerType() ||
6043       !Int.get()->getType()->isIntegerType())
6044     return false;
6045 
6046   Expr *Expr1 = IsIntFirstExpr ? Int.get() : PointerExpr;
6047   Expr *Expr2 = IsIntFirstExpr ? PointerExpr : Int.get();
6048 
6049   S.Diag(Loc, diag::ext_typecheck_cond_pointer_integer_mismatch)
6050     << Expr1->getType() << Expr2->getType()
6051     << Expr1->getSourceRange() << Expr2->getSourceRange();
6052   Int = S.ImpCastExprToType(Int.get(), PointerExpr->getType(),
6053                             CK_IntegralToPointer);
6054   return true;
6055 }
6056 
6057 /// \brief Simple conversion between integer and floating point types.
6058 ///
6059 /// Used when handling the OpenCL conditional operator where the
6060 /// condition is a vector while the other operands are scalar.
6061 ///
6062 /// OpenCL v1.1 s6.3.i and s6.11.6 together require that the scalar
6063 /// types are either integer or floating type. Between the two
6064 /// operands, the type with the higher rank is defined as the "result
6065 /// type". The other operand needs to be promoted to the same type. No
6066 /// other type promotion is allowed. We cannot use
6067 /// UsualArithmeticConversions() for this purpose, since it always
6068 /// promotes promotable types.
OpenCLArithmeticConversions(Sema & S,ExprResult & LHS,ExprResult & RHS,SourceLocation QuestionLoc)6069 static QualType OpenCLArithmeticConversions(Sema &S, ExprResult &LHS,
6070                                             ExprResult &RHS,
6071                                             SourceLocation QuestionLoc) {
6072   LHS = S.DefaultFunctionArrayLvalueConversion(LHS.get());
6073   if (LHS.isInvalid())
6074     return QualType();
6075   RHS = S.DefaultFunctionArrayLvalueConversion(RHS.get());
6076   if (RHS.isInvalid())
6077     return QualType();
6078 
6079   // For conversion purposes, we ignore any qualifiers.
6080   // For example, "const float" and "float" are equivalent.
6081   QualType LHSType =
6082     S.Context.getCanonicalType(LHS.get()->getType()).getUnqualifiedType();
6083   QualType RHSType =
6084     S.Context.getCanonicalType(RHS.get()->getType()).getUnqualifiedType();
6085 
6086   if (!LHSType->isIntegerType() && !LHSType->isRealFloatingType()) {
6087     S.Diag(QuestionLoc, diag::err_typecheck_cond_expect_int_float)
6088       << LHSType << LHS.get()->getSourceRange();
6089     return QualType();
6090   }
6091 
6092   if (!RHSType->isIntegerType() && !RHSType->isRealFloatingType()) {
6093     S.Diag(QuestionLoc, diag::err_typecheck_cond_expect_int_float)
6094       << RHSType << RHS.get()->getSourceRange();
6095     return QualType();
6096   }
6097 
6098   // If both types are identical, no conversion is needed.
6099   if (LHSType == RHSType)
6100     return LHSType;
6101 
6102   // Now handle "real" floating types (i.e. float, double, long double).
6103   if (LHSType->isRealFloatingType() || RHSType->isRealFloatingType())
6104     return handleFloatConversion(S, LHS, RHS, LHSType, RHSType,
6105                                  /*IsCompAssign = */ false);
6106 
6107   // Finally, we have two differing integer types.
6108   return handleIntegerConversion<doIntegralCast, doIntegralCast>
6109   (S, LHS, RHS, LHSType, RHSType, /*IsCompAssign = */ false);
6110 }
6111 
6112 /// \brief Convert scalar operands to a vector that matches the
6113 ///        condition in length.
6114 ///
6115 /// Used when handling the OpenCL conditional operator where the
6116 /// condition is a vector while the other operands are scalar.
6117 ///
6118 /// We first compute the "result type" for the scalar operands
6119 /// according to OpenCL v1.1 s6.3.i. Both operands are then converted
6120 /// into a vector of that type where the length matches the condition
6121 /// vector type. s6.11.6 requires that the element types of the result
6122 /// and the condition must have the same number of bits.
6123 static QualType
OpenCLConvertScalarsToVectors(Sema & S,ExprResult & LHS,ExprResult & RHS,QualType CondTy,SourceLocation QuestionLoc)6124 OpenCLConvertScalarsToVectors(Sema &S, ExprResult &LHS, ExprResult &RHS,
6125                               QualType CondTy, SourceLocation QuestionLoc) {
6126   QualType ResTy = OpenCLArithmeticConversions(S, LHS, RHS, QuestionLoc);
6127   if (ResTy.isNull()) return QualType();
6128 
6129   const VectorType *CV = CondTy->getAs<VectorType>();
6130   assert(CV);
6131 
6132   // Determine the vector result type
6133   unsigned NumElements = CV->getNumElements();
6134   QualType VectorTy = S.Context.getExtVectorType(ResTy, NumElements);
6135 
6136   // Ensure that all types have the same number of bits
6137   if (S.Context.getTypeSize(CV->getElementType())
6138       != S.Context.getTypeSize(ResTy)) {
6139     // Since VectorTy is created internally, it does not pretty print
6140     // with an OpenCL name. Instead, we just print a description.
6141     std::string EleTyName = ResTy.getUnqualifiedType().getAsString();
6142     SmallString<64> Str;
6143     llvm::raw_svector_ostream OS(Str);
6144     OS << "(vector of " << NumElements << " '" << EleTyName << "' values)";
6145     S.Diag(QuestionLoc, diag::err_conditional_vector_element_size)
6146       << CondTy << OS.str();
6147     return QualType();
6148   }
6149 
6150   // Convert operands to the vector result type
6151   LHS = S.ImpCastExprToType(LHS.get(), VectorTy, CK_VectorSplat);
6152   RHS = S.ImpCastExprToType(RHS.get(), VectorTy, CK_VectorSplat);
6153 
6154   return VectorTy;
6155 }
6156 
6157 /// \brief Return false if this is a valid OpenCL condition vector
checkOpenCLConditionVector(Sema & S,Expr * Cond,SourceLocation QuestionLoc)6158 static bool checkOpenCLConditionVector(Sema &S, Expr *Cond,
6159                                        SourceLocation QuestionLoc) {
6160   // OpenCL v1.1 s6.11.6 says the elements of the vector must be of
6161   // integral type.
6162   const VectorType *CondTy = Cond->getType()->getAs<VectorType>();
6163   assert(CondTy);
6164   QualType EleTy = CondTy->getElementType();
6165   if (EleTy->isIntegerType()) return false;
6166 
6167   S.Diag(QuestionLoc, diag::err_typecheck_cond_expect_nonfloat)
6168     << Cond->getType() << Cond->getSourceRange();
6169   return true;
6170 }
6171 
6172 /// \brief Return false if the vector condition type and the vector
6173 ///        result type are compatible.
6174 ///
6175 /// OpenCL v1.1 s6.11.6 requires that both vector types have the same
6176 /// number of elements, and their element types have the same number
6177 /// of bits.
checkVectorResult(Sema & S,QualType CondTy,QualType VecResTy,SourceLocation QuestionLoc)6178 static bool checkVectorResult(Sema &S, QualType CondTy, QualType VecResTy,
6179                               SourceLocation QuestionLoc) {
6180   const VectorType *CV = CondTy->getAs<VectorType>();
6181   const VectorType *RV = VecResTy->getAs<VectorType>();
6182   assert(CV && RV);
6183 
6184   if (CV->getNumElements() != RV->getNumElements()) {
6185     S.Diag(QuestionLoc, diag::err_conditional_vector_size)
6186       << CondTy << VecResTy;
6187     return true;
6188   }
6189 
6190   QualType CVE = CV->getElementType();
6191   QualType RVE = RV->getElementType();
6192 
6193   if (S.Context.getTypeSize(CVE) != S.Context.getTypeSize(RVE)) {
6194     S.Diag(QuestionLoc, diag::err_conditional_vector_element_size)
6195       << CondTy << VecResTy;
6196     return true;
6197   }
6198 
6199   return false;
6200 }
6201 
6202 /// \brief Return the resulting type for the conditional operator in
6203 ///        OpenCL (aka "ternary selection operator", OpenCL v1.1
6204 ///        s6.3.i) when the condition is a vector type.
6205 static QualType
OpenCLCheckVectorConditional(Sema & S,ExprResult & Cond,ExprResult & LHS,ExprResult & RHS,SourceLocation QuestionLoc)6206 OpenCLCheckVectorConditional(Sema &S, ExprResult &Cond,
6207                              ExprResult &LHS, ExprResult &RHS,
6208                              SourceLocation QuestionLoc) {
6209   Cond = S.DefaultFunctionArrayLvalueConversion(Cond.get());
6210   if (Cond.isInvalid())
6211     return QualType();
6212   QualType CondTy = Cond.get()->getType();
6213 
6214   if (checkOpenCLConditionVector(S, Cond.get(), QuestionLoc))
6215     return QualType();
6216 
6217   // If either operand is a vector then find the vector type of the
6218   // result as specified in OpenCL v1.1 s6.3.i.
6219   if (LHS.get()->getType()->isVectorType() ||
6220       RHS.get()->getType()->isVectorType()) {
6221     QualType VecResTy = S.CheckVectorOperands(LHS, RHS, QuestionLoc,
6222                                               /*isCompAssign*/false,
6223                                               /*AllowBothBool*/true,
6224                                               /*AllowBoolConversions*/false);
6225     if (VecResTy.isNull()) return QualType();
6226     // The result type must match the condition type as specified in
6227     // OpenCL v1.1 s6.11.6.
6228     if (checkVectorResult(S, CondTy, VecResTy, QuestionLoc))
6229       return QualType();
6230     return VecResTy;
6231   }
6232 
6233   // Both operands are scalar.
6234   return OpenCLConvertScalarsToVectors(S, LHS, RHS, CondTy, QuestionLoc);
6235 }
6236 
6237 /// Note that LHS is not null here, even if this is the gnu "x ?: y" extension.
6238 /// In that case, LHS = cond.
6239 /// C99 6.5.15
CheckConditionalOperands(ExprResult & Cond,ExprResult & LHS,ExprResult & RHS,ExprValueKind & VK,ExprObjectKind & OK,SourceLocation QuestionLoc)6240 QualType Sema::CheckConditionalOperands(ExprResult &Cond, ExprResult &LHS,
6241                                         ExprResult &RHS, ExprValueKind &VK,
6242                                         ExprObjectKind &OK,
6243                                         SourceLocation QuestionLoc) {
6244 
6245   ExprResult LHSResult = CheckPlaceholderExpr(LHS.get());
6246   if (!LHSResult.isUsable()) return QualType();
6247   LHS = LHSResult;
6248 
6249   ExprResult RHSResult = CheckPlaceholderExpr(RHS.get());
6250   if (!RHSResult.isUsable()) return QualType();
6251   RHS = RHSResult;
6252 
6253   // C++ is sufficiently different to merit its own checker.
6254   if (getLangOpts().CPlusPlus)
6255     return CXXCheckConditionalOperands(Cond, LHS, RHS, VK, OK, QuestionLoc);
6256 
6257   VK = VK_RValue;
6258   OK = OK_Ordinary;
6259 
6260   // The OpenCL operator with a vector condition is sufficiently
6261   // different to merit its own checker.
6262   if (getLangOpts().OpenCL && Cond.get()->getType()->isVectorType())
6263     return OpenCLCheckVectorConditional(*this, Cond, LHS, RHS, QuestionLoc);
6264 
6265   // First, check the condition.
6266   Cond = UsualUnaryConversions(Cond.get());
6267   if (Cond.isInvalid())
6268     return QualType();
6269   if (checkCondition(*this, Cond.get(), QuestionLoc))
6270     return QualType();
6271 
6272   // Now check the two expressions.
6273   if (LHS.get()->getType()->isVectorType() ||
6274       RHS.get()->getType()->isVectorType())
6275     return CheckVectorOperands(LHS, RHS, QuestionLoc, /*isCompAssign*/false,
6276                                /*AllowBothBool*/true,
6277                                /*AllowBoolConversions*/false);
6278 
6279   QualType ResTy = UsualArithmeticConversions(LHS, RHS);
6280   if (LHS.isInvalid() || RHS.isInvalid())
6281     return QualType();
6282 
6283   QualType LHSTy = LHS.get()->getType();
6284   QualType RHSTy = RHS.get()->getType();
6285 
6286   // If both operands have arithmetic type, do the usual arithmetic conversions
6287   // to find a common type: C99 6.5.15p3,5.
6288   if (LHSTy->isArithmeticType() && RHSTy->isArithmeticType()) {
6289     LHS = ImpCastExprToType(LHS.get(), ResTy, PrepareScalarCast(LHS, ResTy));
6290     RHS = ImpCastExprToType(RHS.get(), ResTy, PrepareScalarCast(RHS, ResTy));
6291 
6292     return ResTy;
6293   }
6294 
6295   // If both operands are the same structure or union type, the result is that
6296   // type.
6297   if (const RecordType *LHSRT = LHSTy->getAs<RecordType>()) {    // C99 6.5.15p3
6298     if (const RecordType *RHSRT = RHSTy->getAs<RecordType>())
6299       if (LHSRT->getDecl() == RHSRT->getDecl())
6300         // "If both the operands have structure or union type, the result has
6301         // that type."  This implies that CV qualifiers are dropped.
6302         return LHSTy.getUnqualifiedType();
6303     // FIXME: Type of conditional expression must be complete in C mode.
6304   }
6305 
6306   // C99 6.5.15p5: "If both operands have void type, the result has void type."
6307   // The following || allows only one side to be void (a GCC-ism).
6308   if (LHSTy->isVoidType() || RHSTy->isVoidType()) {
6309     return checkConditionalVoidType(*this, LHS, RHS);
6310   }
6311 
6312   // C99 6.5.15p6 - "if one operand is a null pointer constant, the result has
6313   // the type of the other operand."
6314   if (!checkConditionalNullPointer(*this, RHS, LHSTy)) return LHSTy;
6315   if (!checkConditionalNullPointer(*this, LHS, RHSTy)) return RHSTy;
6316 
6317   // All objective-c pointer type analysis is done here.
6318   QualType compositeType = FindCompositeObjCPointerType(LHS, RHS,
6319                                                         QuestionLoc);
6320   if (LHS.isInvalid() || RHS.isInvalid())
6321     return QualType();
6322   if (!compositeType.isNull())
6323     return compositeType;
6324 
6325 
6326   // Handle block pointer types.
6327   if (LHSTy->isBlockPointerType() || RHSTy->isBlockPointerType())
6328     return checkConditionalBlockPointerCompatibility(*this, LHS, RHS,
6329                                                      QuestionLoc);
6330 
6331   // Check constraints for C object pointers types (C99 6.5.15p3,6).
6332   if (LHSTy->isPointerType() && RHSTy->isPointerType())
6333     return checkConditionalObjectPointersCompatibility(*this, LHS, RHS,
6334                                                        QuestionLoc);
6335 
6336   // GCC compatibility: soften pointer/integer mismatch.  Note that
6337   // null pointers have been filtered out by this point.
6338   if (checkPointerIntegerMismatch(*this, LHS, RHS.get(), QuestionLoc,
6339       /*isIntFirstExpr=*/true))
6340     return RHSTy;
6341   if (checkPointerIntegerMismatch(*this, RHS, LHS.get(), QuestionLoc,
6342       /*isIntFirstExpr=*/false))
6343     return LHSTy;
6344 
6345   // Emit a better diagnostic if one of the expressions is a null pointer
6346   // constant and the other is not a pointer type. In this case, the user most
6347   // likely forgot to take the address of the other expression.
6348   if (DiagnoseConditionalForNull(LHS.get(), RHS.get(), QuestionLoc))
6349     return QualType();
6350 
6351   // Otherwise, the operands are not compatible.
6352   Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands)
6353     << LHSTy << RHSTy << LHS.get()->getSourceRange()
6354     << RHS.get()->getSourceRange();
6355   return QualType();
6356 }
6357 
6358 /// FindCompositeObjCPointerType - Helper method to find composite type of
6359 /// two objective-c pointer types of the two input expressions.
FindCompositeObjCPointerType(ExprResult & LHS,ExprResult & RHS,SourceLocation QuestionLoc)6360 QualType Sema::FindCompositeObjCPointerType(ExprResult &LHS, ExprResult &RHS,
6361                                             SourceLocation QuestionLoc) {
6362   QualType LHSTy = LHS.get()->getType();
6363   QualType RHSTy = RHS.get()->getType();
6364 
6365   // Handle things like Class and struct objc_class*.  Here we case the result
6366   // to the pseudo-builtin, because that will be implicitly cast back to the
6367   // redefinition type if an attempt is made to access its fields.
6368   if (LHSTy->isObjCClassType() &&
6369       (Context.hasSameType(RHSTy, Context.getObjCClassRedefinitionType()))) {
6370     RHS = ImpCastExprToType(RHS.get(), LHSTy, CK_CPointerToObjCPointerCast);
6371     return LHSTy;
6372   }
6373   if (RHSTy->isObjCClassType() &&
6374       (Context.hasSameType(LHSTy, Context.getObjCClassRedefinitionType()))) {
6375     LHS = ImpCastExprToType(LHS.get(), RHSTy, CK_CPointerToObjCPointerCast);
6376     return RHSTy;
6377   }
6378   // And the same for struct objc_object* / id
6379   if (LHSTy->isObjCIdType() &&
6380       (Context.hasSameType(RHSTy, Context.getObjCIdRedefinitionType()))) {
6381     RHS = ImpCastExprToType(RHS.get(), LHSTy, CK_CPointerToObjCPointerCast);
6382     return LHSTy;
6383   }
6384   if (RHSTy->isObjCIdType() &&
6385       (Context.hasSameType(LHSTy, Context.getObjCIdRedefinitionType()))) {
6386     LHS = ImpCastExprToType(LHS.get(), RHSTy, CK_CPointerToObjCPointerCast);
6387     return RHSTy;
6388   }
6389   // And the same for struct objc_selector* / SEL
6390   if (Context.isObjCSelType(LHSTy) &&
6391       (Context.hasSameType(RHSTy, Context.getObjCSelRedefinitionType()))) {
6392     RHS = ImpCastExprToType(RHS.get(), LHSTy, CK_BitCast);
6393     return LHSTy;
6394   }
6395   if (Context.isObjCSelType(RHSTy) &&
6396       (Context.hasSameType(LHSTy, Context.getObjCSelRedefinitionType()))) {
6397     LHS = ImpCastExprToType(LHS.get(), RHSTy, CK_BitCast);
6398     return RHSTy;
6399   }
6400   // Check constraints for Objective-C object pointers types.
6401   if (LHSTy->isObjCObjectPointerType() && RHSTy->isObjCObjectPointerType()) {
6402 
6403     if (Context.getCanonicalType(LHSTy) == Context.getCanonicalType(RHSTy)) {
6404       // Two identical object pointer types are always compatible.
6405       return LHSTy;
6406     }
6407     const ObjCObjectPointerType *LHSOPT = LHSTy->castAs<ObjCObjectPointerType>();
6408     const ObjCObjectPointerType *RHSOPT = RHSTy->castAs<ObjCObjectPointerType>();
6409     QualType compositeType = LHSTy;
6410 
6411     // If both operands are interfaces and either operand can be
6412     // assigned to the other, use that type as the composite
6413     // type. This allows
6414     //   xxx ? (A*) a : (B*) b
6415     // where B is a subclass of A.
6416     //
6417     // Additionally, as for assignment, if either type is 'id'
6418     // allow silent coercion. Finally, if the types are
6419     // incompatible then make sure to use 'id' as the composite
6420     // type so the result is acceptable for sending messages to.
6421 
6422     // FIXME: Consider unifying with 'areComparableObjCPointerTypes'.
6423     // It could return the composite type.
6424     if (!(compositeType =
6425           Context.areCommonBaseCompatible(LHSOPT, RHSOPT)).isNull()) {
6426       // Nothing more to do.
6427     } else if (Context.canAssignObjCInterfaces(LHSOPT, RHSOPT)) {
6428       compositeType = RHSOPT->isObjCBuiltinType() ? RHSTy : LHSTy;
6429     } else if (Context.canAssignObjCInterfaces(RHSOPT, LHSOPT)) {
6430       compositeType = LHSOPT->isObjCBuiltinType() ? LHSTy : RHSTy;
6431     } else if ((LHSTy->isObjCQualifiedIdType() ||
6432                 RHSTy->isObjCQualifiedIdType()) &&
6433                Context.ObjCQualifiedIdTypesAreCompatible(LHSTy, RHSTy, true)) {
6434       // Need to handle "id<xx>" explicitly.
6435       // GCC allows qualified id and any Objective-C type to devolve to
6436       // id. Currently localizing to here until clear this should be
6437       // part of ObjCQualifiedIdTypesAreCompatible.
6438       compositeType = Context.getObjCIdType();
6439     } else if (LHSTy->isObjCIdType() || RHSTy->isObjCIdType()) {
6440       compositeType = Context.getObjCIdType();
6441     } else {
6442       Diag(QuestionLoc, diag::ext_typecheck_cond_incompatible_operands)
6443       << LHSTy << RHSTy
6444       << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
6445       QualType incompatTy = Context.getObjCIdType();
6446       LHS = ImpCastExprToType(LHS.get(), incompatTy, CK_BitCast);
6447       RHS = ImpCastExprToType(RHS.get(), incompatTy, CK_BitCast);
6448       return incompatTy;
6449     }
6450     // The object pointer types are compatible.
6451     LHS = ImpCastExprToType(LHS.get(), compositeType, CK_BitCast);
6452     RHS = ImpCastExprToType(RHS.get(), compositeType, CK_BitCast);
6453     return compositeType;
6454   }
6455   // Check Objective-C object pointer types and 'void *'
6456   if (LHSTy->isVoidPointerType() && RHSTy->isObjCObjectPointerType()) {
6457     if (getLangOpts().ObjCAutoRefCount) {
6458       // ARC forbids the implicit conversion of object pointers to 'void *',
6459       // so these types are not compatible.
6460       Diag(QuestionLoc, diag::err_cond_voidptr_arc) << LHSTy << RHSTy
6461           << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
6462       LHS = RHS = true;
6463       return QualType();
6464     }
6465     QualType lhptee = LHSTy->getAs<PointerType>()->getPointeeType();
6466     QualType rhptee = RHSTy->getAs<ObjCObjectPointerType>()->getPointeeType();
6467     QualType destPointee
6468     = Context.getQualifiedType(lhptee, rhptee.getQualifiers());
6469     QualType destType = Context.getPointerType(destPointee);
6470     // Add qualifiers if necessary.
6471     LHS = ImpCastExprToType(LHS.get(), destType, CK_NoOp);
6472     // Promote to void*.
6473     RHS = ImpCastExprToType(RHS.get(), destType, CK_BitCast);
6474     return destType;
6475   }
6476   if (LHSTy->isObjCObjectPointerType() && RHSTy->isVoidPointerType()) {
6477     if (getLangOpts().ObjCAutoRefCount) {
6478       // ARC forbids the implicit conversion of object pointers to 'void *',
6479       // so these types are not compatible.
6480       Diag(QuestionLoc, diag::err_cond_voidptr_arc) << LHSTy << RHSTy
6481           << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
6482       LHS = RHS = true;
6483       return QualType();
6484     }
6485     QualType lhptee = LHSTy->getAs<ObjCObjectPointerType>()->getPointeeType();
6486     QualType rhptee = RHSTy->getAs<PointerType>()->getPointeeType();
6487     QualType destPointee
6488     = Context.getQualifiedType(rhptee, lhptee.getQualifiers());
6489     QualType destType = Context.getPointerType(destPointee);
6490     // Add qualifiers if necessary.
6491     RHS = ImpCastExprToType(RHS.get(), destType, CK_NoOp);
6492     // Promote to void*.
6493     LHS = ImpCastExprToType(LHS.get(), destType, CK_BitCast);
6494     return destType;
6495   }
6496   return QualType();
6497 }
6498 
6499 /// SuggestParentheses - Emit a note with a fixit hint that wraps
6500 /// ParenRange in parentheses.
SuggestParentheses(Sema & Self,SourceLocation Loc,const PartialDiagnostic & Note,SourceRange ParenRange)6501 static void SuggestParentheses(Sema &Self, SourceLocation Loc,
6502                                const PartialDiagnostic &Note,
6503                                SourceRange ParenRange) {
6504   SourceLocation EndLoc = Self.getLocForEndOfToken(ParenRange.getEnd());
6505   if (ParenRange.getBegin().isFileID() && ParenRange.getEnd().isFileID() &&
6506       EndLoc.isValid()) {
6507     Self.Diag(Loc, Note)
6508       << FixItHint::CreateInsertion(ParenRange.getBegin(), "(")
6509       << FixItHint::CreateInsertion(EndLoc, ")");
6510   } else {
6511     // We can't display the parentheses, so just show the bare note.
6512     Self.Diag(Loc, Note) << ParenRange;
6513   }
6514 }
6515 
IsArithmeticOp(BinaryOperatorKind Opc)6516 static bool IsArithmeticOp(BinaryOperatorKind Opc) {
6517   return BinaryOperator::isAdditiveOp(Opc) ||
6518          BinaryOperator::isMultiplicativeOp(Opc) ||
6519          BinaryOperator::isShiftOp(Opc);
6520 }
6521 
6522 /// IsArithmeticBinaryExpr - Returns true if E is an arithmetic binary
6523 /// expression, either using a built-in or overloaded operator,
6524 /// and sets *OpCode to the opcode and *RHSExprs to the right-hand side
6525 /// expression.
IsArithmeticBinaryExpr(Expr * E,BinaryOperatorKind * Opcode,Expr ** RHSExprs)6526 static bool IsArithmeticBinaryExpr(Expr *E, BinaryOperatorKind *Opcode,
6527                                    Expr **RHSExprs) {
6528   // Don't strip parenthesis: we should not warn if E is in parenthesis.
6529   E = E->IgnoreImpCasts();
6530   E = E->IgnoreConversionOperator();
6531   E = E->IgnoreImpCasts();
6532 
6533   // Built-in binary operator.
6534   if (BinaryOperator *OP = dyn_cast<BinaryOperator>(E)) {
6535     if (IsArithmeticOp(OP->getOpcode())) {
6536       *Opcode = OP->getOpcode();
6537       *RHSExprs = OP->getRHS();
6538       return true;
6539     }
6540   }
6541 
6542   // Overloaded operator.
6543   if (CXXOperatorCallExpr *Call = dyn_cast<CXXOperatorCallExpr>(E)) {
6544     if (Call->getNumArgs() != 2)
6545       return false;
6546 
6547     // Make sure this is really a binary operator that is safe to pass into
6548     // BinaryOperator::getOverloadedOpcode(), e.g. it's not a subscript op.
6549     OverloadedOperatorKind OO = Call->getOperator();
6550     if (OO < OO_Plus || OO > OO_Arrow ||
6551         OO == OO_PlusPlus || OO == OO_MinusMinus)
6552       return false;
6553 
6554     BinaryOperatorKind OpKind = BinaryOperator::getOverloadedOpcode(OO);
6555     if (IsArithmeticOp(OpKind)) {
6556       *Opcode = OpKind;
6557       *RHSExprs = Call->getArg(1);
6558       return true;
6559     }
6560   }
6561 
6562   return false;
6563 }
6564 
6565 /// ExprLooksBoolean - Returns true if E looks boolean, i.e. it has boolean type
6566 /// or is a logical expression such as (x==y) which has int type, but is
6567 /// commonly interpreted as boolean.
ExprLooksBoolean(Expr * E)6568 static bool ExprLooksBoolean(Expr *E) {
6569   E = E->IgnoreParenImpCasts();
6570 
6571   if (E->getType()->isBooleanType())
6572     return true;
6573   if (BinaryOperator *OP = dyn_cast<BinaryOperator>(E))
6574     return OP->isComparisonOp() || OP->isLogicalOp();
6575   if (UnaryOperator *OP = dyn_cast<UnaryOperator>(E))
6576     return OP->getOpcode() == UO_LNot;
6577   if (E->getType()->isPointerType())
6578     return true;
6579 
6580   return false;
6581 }
6582 
6583 /// DiagnoseConditionalPrecedence - Emit a warning when a conditional operator
6584 /// and binary operator are mixed in a way that suggests the programmer assumed
6585 /// the conditional operator has higher precedence, for example:
6586 /// "int x = a + someBinaryCondition ? 1 : 2".
DiagnoseConditionalPrecedence(Sema & Self,SourceLocation OpLoc,Expr * Condition,Expr * LHSExpr,Expr * RHSExpr)6587 static void DiagnoseConditionalPrecedence(Sema &Self,
6588                                           SourceLocation OpLoc,
6589                                           Expr *Condition,
6590                                           Expr *LHSExpr,
6591                                           Expr *RHSExpr) {
6592   BinaryOperatorKind CondOpcode;
6593   Expr *CondRHS;
6594 
6595   if (!IsArithmeticBinaryExpr(Condition, &CondOpcode, &CondRHS))
6596     return;
6597   if (!ExprLooksBoolean(CondRHS))
6598     return;
6599 
6600   // The condition is an arithmetic binary expression, with a right-
6601   // hand side that looks boolean, so warn.
6602 
6603   Self.Diag(OpLoc, diag::warn_precedence_conditional)
6604       << Condition->getSourceRange()
6605       << BinaryOperator::getOpcodeStr(CondOpcode);
6606 
6607   SuggestParentheses(Self, OpLoc,
6608     Self.PDiag(diag::note_precedence_silence)
6609       << BinaryOperator::getOpcodeStr(CondOpcode),
6610     SourceRange(Condition->getLocStart(), Condition->getLocEnd()));
6611 
6612   SuggestParentheses(Self, OpLoc,
6613     Self.PDiag(diag::note_precedence_conditional_first),
6614     SourceRange(CondRHS->getLocStart(), RHSExpr->getLocEnd()));
6615 }
6616 
6617 /// ActOnConditionalOp - Parse a ?: operation.  Note that 'LHS' may be null
6618 /// in the case of a the GNU conditional expr extension.
ActOnConditionalOp(SourceLocation QuestionLoc,SourceLocation ColonLoc,Expr * CondExpr,Expr * LHSExpr,Expr * RHSExpr)6619 ExprResult Sema::ActOnConditionalOp(SourceLocation QuestionLoc,
6620                                     SourceLocation ColonLoc,
6621                                     Expr *CondExpr, Expr *LHSExpr,
6622                                     Expr *RHSExpr) {
6623   if (!getLangOpts().CPlusPlus) {
6624     // C cannot handle TypoExpr nodes in the condition because it
6625     // doesn't handle dependent types properly, so make sure any TypoExprs have
6626     // been dealt with before checking the operands.
6627     ExprResult CondResult = CorrectDelayedTyposInExpr(CondExpr);
6628     if (!CondResult.isUsable()) return ExprError();
6629     CondExpr = CondResult.get();
6630   }
6631 
6632   // If this is the gnu "x ?: y" extension, analyze the types as though the LHS
6633   // was the condition.
6634   OpaqueValueExpr *opaqueValue = nullptr;
6635   Expr *commonExpr = nullptr;
6636   if (!LHSExpr) {
6637     commonExpr = CondExpr;
6638     // Lower out placeholder types first.  This is important so that we don't
6639     // try to capture a placeholder. This happens in few cases in C++; such
6640     // as Objective-C++'s dictionary subscripting syntax.
6641     if (commonExpr->hasPlaceholderType()) {
6642       ExprResult result = CheckPlaceholderExpr(commonExpr);
6643       if (!result.isUsable()) return ExprError();
6644       commonExpr = result.get();
6645     }
6646     // We usually want to apply unary conversions *before* saving, except
6647     // in the special case of a C++ l-value conditional.
6648     if (!(getLangOpts().CPlusPlus
6649           && !commonExpr->isTypeDependent()
6650           && commonExpr->getValueKind() == RHSExpr->getValueKind()
6651           && commonExpr->isGLValue()
6652           && commonExpr->isOrdinaryOrBitFieldObject()
6653           && RHSExpr->isOrdinaryOrBitFieldObject()
6654           && Context.hasSameType(commonExpr->getType(), RHSExpr->getType()))) {
6655       ExprResult commonRes = UsualUnaryConversions(commonExpr);
6656       if (commonRes.isInvalid())
6657         return ExprError();
6658       commonExpr = commonRes.get();
6659     }
6660 
6661     opaqueValue = new (Context) OpaqueValueExpr(commonExpr->getExprLoc(),
6662                                                 commonExpr->getType(),
6663                                                 commonExpr->getValueKind(),
6664                                                 commonExpr->getObjectKind(),
6665                                                 commonExpr);
6666     LHSExpr = CondExpr = opaqueValue;
6667   }
6668 
6669   ExprValueKind VK = VK_RValue;
6670   ExprObjectKind OK = OK_Ordinary;
6671   ExprResult Cond = CondExpr, LHS = LHSExpr, RHS = RHSExpr;
6672   QualType result = CheckConditionalOperands(Cond, LHS, RHS,
6673                                              VK, OK, QuestionLoc);
6674   if (result.isNull() || Cond.isInvalid() || LHS.isInvalid() ||
6675       RHS.isInvalid())
6676     return ExprError();
6677 
6678   DiagnoseConditionalPrecedence(*this, QuestionLoc, Cond.get(), LHS.get(),
6679                                 RHS.get());
6680 
6681   CheckBoolLikeConversion(Cond.get(), QuestionLoc);
6682 
6683   if (!commonExpr)
6684     return new (Context)
6685         ConditionalOperator(Cond.get(), QuestionLoc, LHS.get(), ColonLoc,
6686                             RHS.get(), result, VK, OK);
6687 
6688   return new (Context) BinaryConditionalOperator(
6689       commonExpr, opaqueValue, Cond.get(), LHS.get(), RHS.get(), QuestionLoc,
6690       ColonLoc, result, VK, OK);
6691 }
6692 
6693 // checkPointerTypesForAssignment - This is a very tricky routine (despite
6694 // being closely modeled after the C99 spec:-). The odd characteristic of this
6695 // routine is it effectively iqnores the qualifiers on the top level pointee.
6696 // This circumvents the usual type rules specified in 6.2.7p1 & 6.7.5.[1-3].
6697 // FIXME: add a couple examples in this comment.
6698 static Sema::AssignConvertType
checkPointerTypesForAssignment(Sema & S,QualType LHSType,QualType RHSType)6699 checkPointerTypesForAssignment(Sema &S, QualType LHSType, QualType RHSType) {
6700   assert(LHSType.isCanonical() && "LHS not canonicalized!");
6701   assert(RHSType.isCanonical() && "RHS not canonicalized!");
6702 
6703   // get the "pointed to" type (ignoring qualifiers at the top level)
6704   const Type *lhptee, *rhptee;
6705   Qualifiers lhq, rhq;
6706   std::tie(lhptee, lhq) =
6707       cast<PointerType>(LHSType)->getPointeeType().split().asPair();
6708   std::tie(rhptee, rhq) =
6709       cast<PointerType>(RHSType)->getPointeeType().split().asPair();
6710 
6711   Sema::AssignConvertType ConvTy = Sema::Compatible;
6712 
6713   // C99 6.5.16.1p1: This following citation is common to constraints
6714   // 3 & 4 (below). ...and the type *pointed to* by the left has all the
6715   // qualifiers of the type *pointed to* by the right;
6716 
6717   // As a special case, 'non-__weak A *' -> 'non-__weak const *' is okay.
6718   if (lhq.getObjCLifetime() != rhq.getObjCLifetime() &&
6719       lhq.compatiblyIncludesObjCLifetime(rhq)) {
6720     // Ignore lifetime for further calculation.
6721     lhq.removeObjCLifetime();
6722     rhq.removeObjCLifetime();
6723   }
6724 
6725   if (!lhq.compatiblyIncludes(rhq)) {
6726     // Treat address-space mismatches as fatal.  TODO: address subspaces
6727     if (!lhq.isAddressSpaceSupersetOf(rhq))
6728       ConvTy = Sema::IncompatiblePointerDiscardsQualifiers;
6729 
6730     // It's okay to add or remove GC or lifetime qualifiers when converting to
6731     // and from void*.
6732     else if (lhq.withoutObjCGCAttr().withoutObjCLifetime()
6733                         .compatiblyIncludes(
6734                                 rhq.withoutObjCGCAttr().withoutObjCLifetime())
6735              && (lhptee->isVoidType() || rhptee->isVoidType()))
6736       ; // keep old
6737 
6738     // Treat lifetime mismatches as fatal.
6739     else if (lhq.getObjCLifetime() != rhq.getObjCLifetime())
6740       ConvTy = Sema::IncompatiblePointerDiscardsQualifiers;
6741 
6742     // For GCC compatibility, other qualifier mismatches are treated
6743     // as still compatible in C.
6744     else ConvTy = Sema::CompatiblePointerDiscardsQualifiers;
6745   }
6746 
6747   // C99 6.5.16.1p1 (constraint 4): If one operand is a pointer to an object or
6748   // incomplete type and the other is a pointer to a qualified or unqualified
6749   // version of void...
6750   if (lhptee->isVoidType()) {
6751     if (rhptee->isIncompleteOrObjectType())
6752       return ConvTy;
6753 
6754     // As an extension, we allow cast to/from void* to function pointer.
6755     assert(rhptee->isFunctionType());
6756     return Sema::FunctionVoidPointer;
6757   }
6758 
6759   if (rhptee->isVoidType()) {
6760     if (lhptee->isIncompleteOrObjectType())
6761       return ConvTy;
6762 
6763     // As an extension, we allow cast to/from void* to function pointer.
6764     assert(lhptee->isFunctionType());
6765     return Sema::FunctionVoidPointer;
6766   }
6767 
6768   // C99 6.5.16.1p1 (constraint 3): both operands are pointers to qualified or
6769   // unqualified versions of compatible types, ...
6770   QualType ltrans = QualType(lhptee, 0), rtrans = QualType(rhptee, 0);
6771   if (!S.Context.typesAreCompatible(ltrans, rtrans)) {
6772     // Check if the pointee types are compatible ignoring the sign.
6773     // We explicitly check for char so that we catch "char" vs
6774     // "unsigned char" on systems where "char" is unsigned.
6775     if (lhptee->isCharType())
6776       ltrans = S.Context.UnsignedCharTy;
6777     else if (lhptee->hasSignedIntegerRepresentation())
6778       ltrans = S.Context.getCorrespondingUnsignedType(ltrans);
6779 
6780     if (rhptee->isCharType())
6781       rtrans = S.Context.UnsignedCharTy;
6782     else if (rhptee->hasSignedIntegerRepresentation())
6783       rtrans = S.Context.getCorrespondingUnsignedType(rtrans);
6784 
6785     if (ltrans == rtrans) {
6786       // Types are compatible ignoring the sign. Qualifier incompatibility
6787       // takes priority over sign incompatibility because the sign
6788       // warning can be disabled.
6789       if (ConvTy != Sema::Compatible)
6790         return ConvTy;
6791 
6792       return Sema::IncompatiblePointerSign;
6793     }
6794 
6795     // If we are a multi-level pointer, it's possible that our issue is simply
6796     // one of qualification - e.g. char ** -> const char ** is not allowed. If
6797     // the eventual target type is the same and the pointers have the same
6798     // level of indirection, this must be the issue.
6799     if (isa<PointerType>(lhptee) && isa<PointerType>(rhptee)) {
6800       do {
6801         lhptee = cast<PointerType>(lhptee)->getPointeeType().getTypePtr();
6802         rhptee = cast<PointerType>(rhptee)->getPointeeType().getTypePtr();
6803       } while (isa<PointerType>(lhptee) && isa<PointerType>(rhptee));
6804 
6805       if (lhptee == rhptee)
6806         return Sema::IncompatibleNestedPointerQualifiers;
6807     }
6808 
6809     // General pointer incompatibility takes priority over qualifiers.
6810     return Sema::IncompatiblePointer;
6811   }
6812   if (!S.getLangOpts().CPlusPlus &&
6813       S.IsNoReturnConversion(ltrans, rtrans, ltrans))
6814     return Sema::IncompatiblePointer;
6815   return ConvTy;
6816 }
6817 
6818 /// checkBlockPointerTypesForAssignment - This routine determines whether two
6819 /// block pointer types are compatible or whether a block and normal pointer
6820 /// are compatible. It is more restrict than comparing two function pointer
6821 // types.
6822 static Sema::AssignConvertType
checkBlockPointerTypesForAssignment(Sema & S,QualType LHSType,QualType RHSType)6823 checkBlockPointerTypesForAssignment(Sema &S, QualType LHSType,
6824                                     QualType RHSType) {
6825   assert(LHSType.isCanonical() && "LHS not canonicalized!");
6826   assert(RHSType.isCanonical() && "RHS not canonicalized!");
6827 
6828   QualType lhptee, rhptee;
6829 
6830   // get the "pointed to" type (ignoring qualifiers at the top level)
6831   lhptee = cast<BlockPointerType>(LHSType)->getPointeeType();
6832   rhptee = cast<BlockPointerType>(RHSType)->getPointeeType();
6833 
6834   // In C++, the types have to match exactly.
6835   if (S.getLangOpts().CPlusPlus)
6836     return Sema::IncompatibleBlockPointer;
6837 
6838   Sema::AssignConvertType ConvTy = Sema::Compatible;
6839 
6840   // For blocks we enforce that qualifiers are identical.
6841   if (lhptee.getLocalQualifiers() != rhptee.getLocalQualifiers())
6842     ConvTy = Sema::CompatiblePointerDiscardsQualifiers;
6843 
6844   if (!S.Context.typesAreBlockPointerCompatible(LHSType, RHSType))
6845     return Sema::IncompatibleBlockPointer;
6846 
6847   return ConvTy;
6848 }
6849 
6850 /// checkObjCPointerTypesForAssignment - Compares two objective-c pointer types
6851 /// for assignment compatibility.
6852 static Sema::AssignConvertType
checkObjCPointerTypesForAssignment(Sema & S,QualType LHSType,QualType RHSType)6853 checkObjCPointerTypesForAssignment(Sema &S, QualType LHSType,
6854                                    QualType RHSType) {
6855   assert(LHSType.isCanonical() && "LHS was not canonicalized!");
6856   assert(RHSType.isCanonical() && "RHS was not canonicalized!");
6857 
6858   if (LHSType->isObjCBuiltinType()) {
6859     // Class is not compatible with ObjC object pointers.
6860     if (LHSType->isObjCClassType() && !RHSType->isObjCBuiltinType() &&
6861         !RHSType->isObjCQualifiedClassType())
6862       return Sema::IncompatiblePointer;
6863     return Sema::Compatible;
6864   }
6865   if (RHSType->isObjCBuiltinType()) {
6866     if (RHSType->isObjCClassType() && !LHSType->isObjCBuiltinType() &&
6867         !LHSType->isObjCQualifiedClassType())
6868       return Sema::IncompatiblePointer;
6869     return Sema::Compatible;
6870   }
6871   QualType lhptee = LHSType->getAs<ObjCObjectPointerType>()->getPointeeType();
6872   QualType rhptee = RHSType->getAs<ObjCObjectPointerType>()->getPointeeType();
6873 
6874   if (!lhptee.isAtLeastAsQualifiedAs(rhptee) &&
6875       // make an exception for id<P>
6876       !LHSType->isObjCQualifiedIdType())
6877     return Sema::CompatiblePointerDiscardsQualifiers;
6878 
6879   if (S.Context.typesAreCompatible(LHSType, RHSType))
6880     return Sema::Compatible;
6881   if (LHSType->isObjCQualifiedIdType() || RHSType->isObjCQualifiedIdType())
6882     return Sema::IncompatibleObjCQualifiedId;
6883   return Sema::IncompatiblePointer;
6884 }
6885 
6886 Sema::AssignConvertType
CheckAssignmentConstraints(SourceLocation Loc,QualType LHSType,QualType RHSType)6887 Sema::CheckAssignmentConstraints(SourceLocation Loc,
6888                                  QualType LHSType, QualType RHSType) {
6889   // Fake up an opaque expression.  We don't actually care about what
6890   // cast operations are required, so if CheckAssignmentConstraints
6891   // adds casts to this they'll be wasted, but fortunately that doesn't
6892   // usually happen on valid code.
6893   OpaqueValueExpr RHSExpr(Loc, RHSType, VK_RValue);
6894   ExprResult RHSPtr = &RHSExpr;
6895   CastKind K = CK_Invalid;
6896 
6897   return CheckAssignmentConstraints(LHSType, RHSPtr, K, /*ConvertRHS=*/false);
6898 }
6899 
6900 /// CheckAssignmentConstraints (C99 6.5.16) - This routine currently
6901 /// has code to accommodate several GCC extensions when type checking
6902 /// pointers. Here are some objectionable examples that GCC considers warnings:
6903 ///
6904 ///  int a, *pint;
6905 ///  short *pshort;
6906 ///  struct foo *pfoo;
6907 ///
6908 ///  pint = pshort; // warning: assignment from incompatible pointer type
6909 ///  a = pint; // warning: assignment makes integer from pointer without a cast
6910 ///  pint = a; // warning: assignment makes pointer from integer without a cast
6911 ///  pint = pfoo; // warning: assignment from incompatible pointer type
6912 ///
6913 /// As a result, the code for dealing with pointers is more complex than the
6914 /// C99 spec dictates.
6915 ///
6916 /// Sets 'Kind' for any result kind except Incompatible.
6917 Sema::AssignConvertType
CheckAssignmentConstraints(QualType LHSType,ExprResult & RHS,CastKind & Kind,bool ConvertRHS)6918 Sema::CheckAssignmentConstraints(QualType LHSType, ExprResult &RHS,
6919                                  CastKind &Kind, bool ConvertRHS) {
6920   QualType RHSType = RHS.get()->getType();
6921   QualType OrigLHSType = LHSType;
6922 
6923   // Get canonical types.  We're not formatting these types, just comparing
6924   // them.
6925   LHSType = Context.getCanonicalType(LHSType).getUnqualifiedType();
6926   RHSType = Context.getCanonicalType(RHSType).getUnqualifiedType();
6927 
6928   // Common case: no conversion required.
6929   if (LHSType == RHSType) {
6930     Kind = CK_NoOp;
6931     return Compatible;
6932   }
6933 
6934   // If we have an atomic type, try a non-atomic assignment, then just add an
6935   // atomic qualification step.
6936   if (const AtomicType *AtomicTy = dyn_cast<AtomicType>(LHSType)) {
6937     Sema::AssignConvertType result =
6938       CheckAssignmentConstraints(AtomicTy->getValueType(), RHS, Kind);
6939     if (result != Compatible)
6940       return result;
6941     if (Kind != CK_NoOp && ConvertRHS)
6942       RHS = ImpCastExprToType(RHS.get(), AtomicTy->getValueType(), Kind);
6943     Kind = CK_NonAtomicToAtomic;
6944     return Compatible;
6945   }
6946 
6947   // If the left-hand side is a reference type, then we are in a
6948   // (rare!) case where we've allowed the use of references in C,
6949   // e.g., as a parameter type in a built-in function. In this case,
6950   // just make sure that the type referenced is compatible with the
6951   // right-hand side type. The caller is responsible for adjusting
6952   // LHSType so that the resulting expression does not have reference
6953   // type.
6954   if (const ReferenceType *LHSTypeRef = LHSType->getAs<ReferenceType>()) {
6955     if (Context.typesAreCompatible(LHSTypeRef->getPointeeType(), RHSType)) {
6956       Kind = CK_LValueBitCast;
6957       return Compatible;
6958     }
6959     return Incompatible;
6960   }
6961 
6962   // Allow scalar to ExtVector assignments, and assignments of an ExtVector type
6963   // to the same ExtVector type.
6964   if (LHSType->isExtVectorType()) {
6965     if (RHSType->isExtVectorType())
6966       return Incompatible;
6967     if (RHSType->isArithmeticType()) {
6968       // CK_VectorSplat does T -> vector T, so first cast to the
6969       // element type.
6970       QualType elType = cast<ExtVectorType>(LHSType)->getElementType();
6971       if (elType != RHSType && ConvertRHS) {
6972         Kind = PrepareScalarCast(RHS, elType);
6973         RHS = ImpCastExprToType(RHS.get(), elType, Kind);
6974       }
6975       Kind = CK_VectorSplat;
6976       return Compatible;
6977     }
6978   }
6979 
6980   // Conversions to or from vector type.
6981   if (LHSType->isVectorType() || RHSType->isVectorType()) {
6982     if (LHSType->isVectorType() && RHSType->isVectorType()) {
6983       // Allow assignments of an AltiVec vector type to an equivalent GCC
6984       // vector type and vice versa
6985       if (Context.areCompatibleVectorTypes(LHSType, RHSType)) {
6986         Kind = CK_BitCast;
6987         return Compatible;
6988       }
6989 
6990       // If we are allowing lax vector conversions, and LHS and RHS are both
6991       // vectors, the total size only needs to be the same. This is a bitcast;
6992       // no bits are changed but the result type is different.
6993       if (isLaxVectorConversion(RHSType, LHSType)) {
6994         Kind = CK_BitCast;
6995         return IncompatibleVectors;
6996       }
6997     }
6998     return Incompatible;
6999   }
7000 
7001   // Arithmetic conversions.
7002   if (LHSType->isArithmeticType() && RHSType->isArithmeticType() &&
7003       !(getLangOpts().CPlusPlus && LHSType->isEnumeralType())) {
7004     if (ConvertRHS)
7005       Kind = PrepareScalarCast(RHS, LHSType);
7006     return Compatible;
7007   }
7008 
7009   // Conversions to normal pointers.
7010   if (const PointerType *LHSPointer = dyn_cast<PointerType>(LHSType)) {
7011     // U* -> T*
7012     if (isa<PointerType>(RHSType)) {
7013       unsigned AddrSpaceL = LHSPointer->getPointeeType().getAddressSpace();
7014       unsigned AddrSpaceR = RHSType->getPointeeType().getAddressSpace();
7015       Kind = AddrSpaceL != AddrSpaceR ? CK_AddressSpaceConversion : CK_BitCast;
7016       return checkPointerTypesForAssignment(*this, LHSType, RHSType);
7017     }
7018 
7019     // int -> T*
7020     if (RHSType->isIntegerType()) {
7021       Kind = CK_IntegralToPointer; // FIXME: null?
7022       return IntToPointer;
7023     }
7024 
7025     // C pointers are not compatible with ObjC object pointers,
7026     // with two exceptions:
7027     if (isa<ObjCObjectPointerType>(RHSType)) {
7028       //  - conversions to void*
7029       if (LHSPointer->getPointeeType()->isVoidType()) {
7030         Kind = CK_BitCast;
7031         return Compatible;
7032       }
7033 
7034       //  - conversions from 'Class' to the redefinition type
7035       if (RHSType->isObjCClassType() &&
7036           Context.hasSameType(LHSType,
7037                               Context.getObjCClassRedefinitionType())) {
7038         Kind = CK_BitCast;
7039         return Compatible;
7040       }
7041 
7042       Kind = CK_BitCast;
7043       return IncompatiblePointer;
7044     }
7045 
7046     // U^ -> void*
7047     if (RHSType->getAs<BlockPointerType>()) {
7048       if (LHSPointer->getPointeeType()->isVoidType()) {
7049         Kind = CK_BitCast;
7050         return Compatible;
7051       }
7052     }
7053 
7054     return Incompatible;
7055   }
7056 
7057   // Conversions to block pointers.
7058   if (isa<BlockPointerType>(LHSType)) {
7059     // U^ -> T^
7060     if (RHSType->isBlockPointerType()) {
7061       Kind = CK_BitCast;
7062       return checkBlockPointerTypesForAssignment(*this, LHSType, RHSType);
7063     }
7064 
7065     // int or null -> T^
7066     if (RHSType->isIntegerType()) {
7067       Kind = CK_IntegralToPointer; // FIXME: null
7068       return IntToBlockPointer;
7069     }
7070 
7071     // id -> T^
7072     if (getLangOpts().ObjC1 && RHSType->isObjCIdType()) {
7073       Kind = CK_AnyPointerToBlockPointerCast;
7074       return Compatible;
7075     }
7076 
7077     // void* -> T^
7078     if (const PointerType *RHSPT = RHSType->getAs<PointerType>())
7079       if (RHSPT->getPointeeType()->isVoidType()) {
7080         Kind = CK_AnyPointerToBlockPointerCast;
7081         return Compatible;
7082       }
7083 
7084     return Incompatible;
7085   }
7086 
7087   // Conversions to Objective-C pointers.
7088   if (isa<ObjCObjectPointerType>(LHSType)) {
7089     // A* -> B*
7090     if (RHSType->isObjCObjectPointerType()) {
7091       Kind = CK_BitCast;
7092       Sema::AssignConvertType result =
7093         checkObjCPointerTypesForAssignment(*this, LHSType, RHSType);
7094       if (getLangOpts().ObjCAutoRefCount &&
7095           result == Compatible &&
7096           !CheckObjCARCUnavailableWeakConversion(OrigLHSType, RHSType))
7097         result = IncompatibleObjCWeakRef;
7098       return result;
7099     }
7100 
7101     // int or null -> A*
7102     if (RHSType->isIntegerType()) {
7103       Kind = CK_IntegralToPointer; // FIXME: null
7104       return IntToPointer;
7105     }
7106 
7107     // In general, C pointers are not compatible with ObjC object pointers,
7108     // with two exceptions:
7109     if (isa<PointerType>(RHSType)) {
7110       Kind = CK_CPointerToObjCPointerCast;
7111 
7112       //  - conversions from 'void*'
7113       if (RHSType->isVoidPointerType()) {
7114         return Compatible;
7115       }
7116 
7117       //  - conversions to 'Class' from its redefinition type
7118       if (LHSType->isObjCClassType() &&
7119           Context.hasSameType(RHSType,
7120                               Context.getObjCClassRedefinitionType())) {
7121         return Compatible;
7122       }
7123 
7124       return IncompatiblePointer;
7125     }
7126 
7127     // Only under strict condition T^ is compatible with an Objective-C pointer.
7128     if (RHSType->isBlockPointerType() &&
7129         LHSType->isBlockCompatibleObjCPointerType(Context)) {
7130       if (ConvertRHS)
7131         maybeExtendBlockObject(RHS);
7132       Kind = CK_BlockPointerToObjCPointerCast;
7133       return Compatible;
7134     }
7135 
7136     return Incompatible;
7137   }
7138 
7139   // Conversions from pointers that are not covered by the above.
7140   if (isa<PointerType>(RHSType)) {
7141     // T* -> _Bool
7142     if (LHSType == Context.BoolTy) {
7143       Kind = CK_PointerToBoolean;
7144       return Compatible;
7145     }
7146 
7147     // T* -> int
7148     if (LHSType->isIntegerType()) {
7149       Kind = CK_PointerToIntegral;
7150       return PointerToInt;
7151     }
7152 
7153     return Incompatible;
7154   }
7155 
7156   // Conversions from Objective-C pointers that are not covered by the above.
7157   if (isa<ObjCObjectPointerType>(RHSType)) {
7158     // T* -> _Bool
7159     if (LHSType == Context.BoolTy) {
7160       Kind = CK_PointerToBoolean;
7161       return Compatible;
7162     }
7163 
7164     // T* -> int
7165     if (LHSType->isIntegerType()) {
7166       Kind = CK_PointerToIntegral;
7167       return PointerToInt;
7168     }
7169 
7170     return Incompatible;
7171   }
7172 
7173   // struct A -> struct B
7174   if (isa<TagType>(LHSType) && isa<TagType>(RHSType)) {
7175     if (Context.typesAreCompatible(LHSType, RHSType)) {
7176       Kind = CK_NoOp;
7177       return Compatible;
7178     }
7179   }
7180 
7181   return Incompatible;
7182 }
7183 
7184 /// \brief Constructs a transparent union from an expression that is
7185 /// used to initialize the transparent union.
ConstructTransparentUnion(Sema & S,ASTContext & C,ExprResult & EResult,QualType UnionType,FieldDecl * Field)7186 static void ConstructTransparentUnion(Sema &S, ASTContext &C,
7187                                       ExprResult &EResult, QualType UnionType,
7188                                       FieldDecl *Field) {
7189   // Build an initializer list that designates the appropriate member
7190   // of the transparent union.
7191   Expr *E = EResult.get();
7192   InitListExpr *Initializer = new (C) InitListExpr(C, SourceLocation(),
7193                                                    E, SourceLocation());
7194   Initializer->setType(UnionType);
7195   Initializer->setInitializedFieldInUnion(Field);
7196 
7197   // Build a compound literal constructing a value of the transparent
7198   // union type from this initializer list.
7199   TypeSourceInfo *unionTInfo = C.getTrivialTypeSourceInfo(UnionType);
7200   EResult = new (C) CompoundLiteralExpr(SourceLocation(), unionTInfo, UnionType,
7201                                         VK_RValue, Initializer, false);
7202 }
7203 
7204 Sema::AssignConvertType
CheckTransparentUnionArgumentConstraints(QualType ArgType,ExprResult & RHS)7205 Sema::CheckTransparentUnionArgumentConstraints(QualType ArgType,
7206                                                ExprResult &RHS) {
7207   QualType RHSType = RHS.get()->getType();
7208 
7209   // If the ArgType is a Union type, we want to handle a potential
7210   // transparent_union GCC extension.
7211   const RecordType *UT = ArgType->getAsUnionType();
7212   if (!UT || !UT->getDecl()->hasAttr<TransparentUnionAttr>())
7213     return Incompatible;
7214 
7215   // The field to initialize within the transparent union.
7216   RecordDecl *UD = UT->getDecl();
7217   FieldDecl *InitField = nullptr;
7218   // It's compatible if the expression matches any of the fields.
7219   for (auto *it : UD->fields()) {
7220     if (it->getType()->isPointerType()) {
7221       // If the transparent union contains a pointer type, we allow:
7222       // 1) void pointer
7223       // 2) null pointer constant
7224       if (RHSType->isPointerType())
7225         if (RHSType->castAs<PointerType>()->getPointeeType()->isVoidType()) {
7226           RHS = ImpCastExprToType(RHS.get(), it->getType(), CK_BitCast);
7227           InitField = it;
7228           break;
7229         }
7230 
7231       if (RHS.get()->isNullPointerConstant(Context,
7232                                            Expr::NPC_ValueDependentIsNull)) {
7233         RHS = ImpCastExprToType(RHS.get(), it->getType(),
7234                                 CK_NullToPointer);
7235         InitField = it;
7236         break;
7237       }
7238     }
7239 
7240     CastKind Kind = CK_Invalid;
7241     if (CheckAssignmentConstraints(it->getType(), RHS, Kind)
7242           == Compatible) {
7243       RHS = ImpCastExprToType(RHS.get(), it->getType(), Kind);
7244       InitField = it;
7245       break;
7246     }
7247   }
7248 
7249   if (!InitField)
7250     return Incompatible;
7251 
7252   ConstructTransparentUnion(*this, Context, RHS, ArgType, InitField);
7253   return Compatible;
7254 }
7255 
7256 Sema::AssignConvertType
CheckSingleAssignmentConstraints(QualType LHSType,ExprResult & CallerRHS,bool Diagnose,bool DiagnoseCFAudited,bool ConvertRHS)7257 Sema::CheckSingleAssignmentConstraints(QualType LHSType, ExprResult &CallerRHS,
7258                                        bool Diagnose,
7259                                        bool DiagnoseCFAudited,
7260                                        bool ConvertRHS) {
7261   // If ConvertRHS is false, we want to leave the caller's RHS untouched. Sadly,
7262   // we can't avoid *all* modifications at the moment, so we need some somewhere
7263   // to put the updated value.
7264   ExprResult LocalRHS = CallerRHS;
7265   ExprResult &RHS = ConvertRHS ? CallerRHS : LocalRHS;
7266 
7267   if (getLangOpts().CPlusPlus) {
7268     if (!LHSType->isRecordType() && !LHSType->isAtomicType()) {
7269       // C++ 5.17p3: If the left operand is not of class type, the
7270       // expression is implicitly converted (C++ 4) to the
7271       // cv-unqualified type of the left operand.
7272       ExprResult Res;
7273       if (Diagnose) {
7274         Res = PerformImplicitConversion(RHS.get(), LHSType.getUnqualifiedType(),
7275                                         AA_Assigning);
7276       } else {
7277         ImplicitConversionSequence ICS =
7278             TryImplicitConversion(RHS.get(), LHSType.getUnqualifiedType(),
7279                                   /*SuppressUserConversions=*/false,
7280                                   /*AllowExplicit=*/false,
7281                                   /*InOverloadResolution=*/false,
7282                                   /*CStyle=*/false,
7283                                   /*AllowObjCWritebackConversion=*/false);
7284         if (ICS.isFailure())
7285           return Incompatible;
7286         Res = PerformImplicitConversion(RHS.get(), LHSType.getUnqualifiedType(),
7287                                         ICS, AA_Assigning);
7288       }
7289       if (Res.isInvalid())
7290         return Incompatible;
7291       Sema::AssignConvertType result = Compatible;
7292       if (getLangOpts().ObjCAutoRefCount &&
7293           !CheckObjCARCUnavailableWeakConversion(LHSType,
7294                                                  RHS.get()->getType()))
7295         result = IncompatibleObjCWeakRef;
7296       RHS = Res;
7297       return result;
7298     }
7299 
7300     // FIXME: Currently, we fall through and treat C++ classes like C
7301     // structures.
7302     // FIXME: We also fall through for atomics; not sure what should
7303     // happen there, though.
7304   } else if (RHS.get()->getType() == Context.OverloadTy) {
7305     // As a set of extensions to C, we support overloading on functions. These
7306     // functions need to be resolved here.
7307     DeclAccessPair DAP;
7308     if (FunctionDecl *FD = ResolveAddressOfOverloadedFunction(
7309             RHS.get(), LHSType, /*Complain=*/false, DAP))
7310       RHS = FixOverloadedFunctionReference(RHS.get(), DAP, FD);
7311     else
7312       return Incompatible;
7313   }
7314 
7315   // C99 6.5.16.1p1: the left operand is a pointer and the right is
7316   // a null pointer constant.
7317   if ((LHSType->isPointerType() || LHSType->isObjCObjectPointerType() ||
7318        LHSType->isBlockPointerType()) &&
7319       RHS.get()->isNullPointerConstant(Context,
7320                                        Expr::NPC_ValueDependentIsNull)) {
7321     CastKind Kind;
7322     CXXCastPath Path;
7323     CheckPointerConversion(RHS.get(), LHSType, Kind, Path, false);
7324     if (ConvertRHS)
7325       RHS = ImpCastExprToType(RHS.get(), LHSType, Kind, VK_RValue, &Path);
7326     return Compatible;
7327   }
7328 
7329   // This check seems unnatural, however it is necessary to ensure the proper
7330   // conversion of functions/arrays. If the conversion were done for all
7331   // DeclExpr's (created by ActOnIdExpression), it would mess up the unary
7332   // expressions that suppress this implicit conversion (&, sizeof).
7333   //
7334   // Suppress this for references: C++ 8.5.3p5.
7335   if (!LHSType->isReferenceType()) {
7336     // FIXME: We potentially allocate here even if ConvertRHS is false.
7337     RHS = DefaultFunctionArrayLvalueConversion(RHS.get(), Diagnose);
7338     if (RHS.isInvalid())
7339       return Incompatible;
7340   }
7341 
7342   Expr *PRE = RHS.get()->IgnoreParenCasts();
7343   if (ObjCProtocolExpr *OPE = dyn_cast<ObjCProtocolExpr>(PRE)) {
7344     ObjCProtocolDecl *PDecl = OPE->getProtocol();
7345     if (PDecl && !PDecl->hasDefinition()) {
7346       Diag(PRE->getExprLoc(), diag::warn_atprotocol_protocol) << PDecl->getName();
7347       Diag(PDecl->getLocation(), diag::note_entity_declared_at) << PDecl;
7348     }
7349   }
7350 
7351   CastKind Kind = CK_Invalid;
7352   Sema::AssignConvertType result =
7353     CheckAssignmentConstraints(LHSType, RHS, Kind, ConvertRHS);
7354 
7355   // C99 6.5.16.1p2: The value of the right operand is converted to the
7356   // type of the assignment expression.
7357   // CheckAssignmentConstraints allows the left-hand side to be a reference,
7358   // so that we can use references in built-in functions even in C.
7359   // The getNonReferenceType() call makes sure that the resulting expression
7360   // does not have reference type.
7361   if (result != Incompatible && RHS.get()->getType() != LHSType) {
7362     QualType Ty = LHSType.getNonLValueExprType(Context);
7363     Expr *E = RHS.get();
7364     if (getLangOpts().ObjCAutoRefCount)
7365       CheckObjCARCConversion(SourceRange(), Ty, E, CCK_ImplicitConversion,
7366                              DiagnoseCFAudited);
7367     if (getLangOpts().ObjC1 &&
7368         (CheckObjCBridgeRelatedConversions(E->getLocStart(),
7369                                           LHSType, E->getType(), E) ||
7370          ConversionToObjCStringLiteralCheck(LHSType, E))) {
7371       RHS = E;
7372       return Compatible;
7373     }
7374 
7375     if (ConvertRHS)
7376       RHS = ImpCastExprToType(E, Ty, Kind);
7377   }
7378   return result;
7379 }
7380 
InvalidOperands(SourceLocation Loc,ExprResult & LHS,ExprResult & RHS)7381 QualType Sema::InvalidOperands(SourceLocation Loc, ExprResult &LHS,
7382                                ExprResult &RHS) {
7383   Diag(Loc, diag::err_typecheck_invalid_operands)
7384     << LHS.get()->getType() << RHS.get()->getType()
7385     << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
7386   return QualType();
7387 }
7388 
7389 /// Try to convert a value of non-vector type to a vector type by converting
7390 /// the type to the element type of the vector and then performing a splat.
7391 /// If the language is OpenCL, we only use conversions that promote scalar
7392 /// rank; for C, Obj-C, and C++ we allow any real scalar conversion except
7393 /// for float->int.
7394 ///
7395 /// \param scalar - if non-null, actually perform the conversions
7396 /// \return true if the operation fails (but without diagnosing the failure)
tryVectorConvertAndSplat(Sema & S,ExprResult * scalar,QualType scalarTy,QualType vectorEltTy,QualType vectorTy)7397 static bool tryVectorConvertAndSplat(Sema &S, ExprResult *scalar,
7398                                      QualType scalarTy,
7399                                      QualType vectorEltTy,
7400                                      QualType vectorTy) {
7401   // The conversion to apply to the scalar before splatting it,
7402   // if necessary.
7403   CastKind scalarCast = CK_Invalid;
7404 
7405   if (vectorEltTy->isIntegralType(S.Context)) {
7406     if (!scalarTy->isIntegralType(S.Context))
7407       return true;
7408     if (S.getLangOpts().OpenCL &&
7409         S.Context.getIntegerTypeOrder(vectorEltTy, scalarTy) < 0)
7410       return true;
7411     scalarCast = CK_IntegralCast;
7412   } else if (vectorEltTy->isRealFloatingType()) {
7413     if (scalarTy->isRealFloatingType()) {
7414       if (S.getLangOpts().OpenCL &&
7415           S.Context.getFloatingTypeOrder(vectorEltTy, scalarTy) < 0)
7416         return true;
7417       scalarCast = CK_FloatingCast;
7418     }
7419     else if (scalarTy->isIntegralType(S.Context))
7420       scalarCast = CK_IntegralToFloating;
7421     else
7422       return true;
7423   } else {
7424     return true;
7425   }
7426 
7427   // Adjust scalar if desired.
7428   if (scalar) {
7429     if (scalarCast != CK_Invalid)
7430       *scalar = S.ImpCastExprToType(scalar->get(), vectorEltTy, scalarCast);
7431     *scalar = S.ImpCastExprToType(scalar->get(), vectorTy, CK_VectorSplat);
7432   }
7433   return false;
7434 }
7435 
CheckVectorOperands(ExprResult & LHS,ExprResult & RHS,SourceLocation Loc,bool IsCompAssign,bool AllowBothBool,bool AllowBoolConversions)7436 QualType Sema::CheckVectorOperands(ExprResult &LHS, ExprResult &RHS,
7437                                    SourceLocation Loc, bool IsCompAssign,
7438                                    bool AllowBothBool,
7439                                    bool AllowBoolConversions) {
7440   if (!IsCompAssign) {
7441     LHS = DefaultFunctionArrayLvalueConversion(LHS.get());
7442     if (LHS.isInvalid())
7443       return QualType();
7444   }
7445   RHS = DefaultFunctionArrayLvalueConversion(RHS.get());
7446   if (RHS.isInvalid())
7447     return QualType();
7448 
7449   // For conversion purposes, we ignore any qualifiers.
7450   // For example, "const float" and "float" are equivalent.
7451   QualType LHSType = LHS.get()->getType().getUnqualifiedType();
7452   QualType RHSType = RHS.get()->getType().getUnqualifiedType();
7453 
7454   const VectorType *LHSVecType = LHSType->getAs<VectorType>();
7455   const VectorType *RHSVecType = RHSType->getAs<VectorType>();
7456   assert(LHSVecType || RHSVecType);
7457 
7458   // AltiVec-style "vector bool op vector bool" combinations are allowed
7459   // for some operators but not others.
7460   if (!AllowBothBool &&
7461       LHSVecType && LHSVecType->getVectorKind() == VectorType::AltiVecBool &&
7462       RHSVecType && RHSVecType->getVectorKind() == VectorType::AltiVecBool)
7463     return InvalidOperands(Loc, LHS, RHS);
7464 
7465   // If the vector types are identical, return.
7466   if (Context.hasSameType(LHSType, RHSType))
7467     return LHSType;
7468 
7469   // If we have compatible AltiVec and GCC vector types, use the AltiVec type.
7470   if (LHSVecType && RHSVecType &&
7471       Context.areCompatibleVectorTypes(LHSType, RHSType)) {
7472     if (isa<ExtVectorType>(LHSVecType)) {
7473       RHS = ImpCastExprToType(RHS.get(), LHSType, CK_BitCast);
7474       return LHSType;
7475     }
7476 
7477     if (!IsCompAssign)
7478       LHS = ImpCastExprToType(LHS.get(), RHSType, CK_BitCast);
7479     return RHSType;
7480   }
7481 
7482   // AllowBoolConversions says that bool and non-bool AltiVec vectors
7483   // can be mixed, with the result being the non-bool type.  The non-bool
7484   // operand must have integer element type.
7485   if (AllowBoolConversions && LHSVecType && RHSVecType &&
7486       LHSVecType->getNumElements() == RHSVecType->getNumElements() &&
7487       (Context.getTypeSize(LHSVecType->getElementType()) ==
7488        Context.getTypeSize(RHSVecType->getElementType()))) {
7489     if (LHSVecType->getVectorKind() == VectorType::AltiVecVector &&
7490         LHSVecType->getElementType()->isIntegerType() &&
7491         RHSVecType->getVectorKind() == VectorType::AltiVecBool) {
7492       RHS = ImpCastExprToType(RHS.get(), LHSType, CK_BitCast);
7493       return LHSType;
7494     }
7495     if (!IsCompAssign &&
7496         LHSVecType->getVectorKind() == VectorType::AltiVecBool &&
7497         RHSVecType->getVectorKind() == VectorType::AltiVecVector &&
7498         RHSVecType->getElementType()->isIntegerType()) {
7499       LHS = ImpCastExprToType(LHS.get(), RHSType, CK_BitCast);
7500       return RHSType;
7501     }
7502   }
7503 
7504   // If there's an ext-vector type and a scalar, try to convert the scalar to
7505   // the vector element type and splat.
7506   if (!RHSVecType && isa<ExtVectorType>(LHSVecType)) {
7507     if (!tryVectorConvertAndSplat(*this, &RHS, RHSType,
7508                                   LHSVecType->getElementType(), LHSType))
7509       return LHSType;
7510   }
7511   if (!LHSVecType && isa<ExtVectorType>(RHSVecType)) {
7512     if (!tryVectorConvertAndSplat(*this, (IsCompAssign ? nullptr : &LHS),
7513                                   LHSType, RHSVecType->getElementType(),
7514                                   RHSType))
7515       return RHSType;
7516   }
7517 
7518   // If we're allowing lax vector conversions, only the total (data) size
7519   // needs to be the same.
7520   // FIXME: Should we really be allowing this?
7521   // FIXME: We really just pick the LHS type arbitrarily?
7522   if (isLaxVectorConversion(RHSType, LHSType)) {
7523     QualType resultType = LHSType;
7524     RHS = ImpCastExprToType(RHS.get(), resultType, CK_BitCast);
7525     return resultType;
7526   }
7527 
7528   // Okay, the expression is invalid.
7529 
7530   // If there's a non-vector, non-real operand, diagnose that.
7531   if ((!RHSVecType && !RHSType->isRealType()) ||
7532       (!LHSVecType && !LHSType->isRealType())) {
7533     Diag(Loc, diag::err_typecheck_vector_not_convertable_non_scalar)
7534       << LHSType << RHSType
7535       << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
7536     return QualType();
7537   }
7538 
7539   // OpenCL V1.1 6.2.6.p1:
7540   // If the operands are of more than one vector type, then an error shall
7541   // occur. Implicit conversions between vector types are not permitted, per
7542   // section 6.2.1.
7543   if (getLangOpts().OpenCL &&
7544       RHSVecType && isa<ExtVectorType>(RHSVecType) &&
7545       LHSVecType && isa<ExtVectorType>(LHSVecType)) {
7546     Diag(Loc, diag::err_opencl_implicit_vector_conversion) << LHSType
7547                                                            << RHSType;
7548     return QualType();
7549   }
7550 
7551   // Otherwise, use the generic diagnostic.
7552   Diag(Loc, diag::err_typecheck_vector_not_convertable)
7553     << LHSType << RHSType
7554     << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
7555   return QualType();
7556 }
7557 
7558 // checkArithmeticNull - Detect when a NULL constant is used improperly in an
7559 // expression.  These are mainly cases where the null pointer is used as an
7560 // integer instead of a pointer.
checkArithmeticNull(Sema & S,ExprResult & LHS,ExprResult & RHS,SourceLocation Loc,bool IsCompare)7561 static void checkArithmeticNull(Sema &S, ExprResult &LHS, ExprResult &RHS,
7562                                 SourceLocation Loc, bool IsCompare) {
7563   // The canonical way to check for a GNU null is with isNullPointerConstant,
7564   // but we use a bit of a hack here for speed; this is a relatively
7565   // hot path, and isNullPointerConstant is slow.
7566   bool LHSNull = isa<GNUNullExpr>(LHS.get()->IgnoreParenImpCasts());
7567   bool RHSNull = isa<GNUNullExpr>(RHS.get()->IgnoreParenImpCasts());
7568 
7569   QualType NonNullType = LHSNull ? RHS.get()->getType() : LHS.get()->getType();
7570 
7571   // Avoid analyzing cases where the result will either be invalid (and
7572   // diagnosed as such) or entirely valid and not something to warn about.
7573   if ((!LHSNull && !RHSNull) || NonNullType->isBlockPointerType() ||
7574       NonNullType->isMemberPointerType() || NonNullType->isFunctionType())
7575     return;
7576 
7577   // Comparison operations would not make sense with a null pointer no matter
7578   // what the other expression is.
7579   if (!IsCompare) {
7580     S.Diag(Loc, diag::warn_null_in_arithmetic_operation)
7581         << (LHSNull ? LHS.get()->getSourceRange() : SourceRange())
7582         << (RHSNull ? RHS.get()->getSourceRange() : SourceRange());
7583     return;
7584   }
7585 
7586   // The rest of the operations only make sense with a null pointer
7587   // if the other expression is a pointer.
7588   if (LHSNull == RHSNull || NonNullType->isAnyPointerType() ||
7589       NonNullType->canDecayToPointerType())
7590     return;
7591 
7592   S.Diag(Loc, diag::warn_null_in_comparison_operation)
7593       << LHSNull /* LHS is NULL */ << NonNullType
7594       << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
7595 }
7596 
DiagnoseBadDivideOrRemainderValues(Sema & S,ExprResult & LHS,ExprResult & RHS,SourceLocation Loc,bool IsDiv)7597 static void DiagnoseBadDivideOrRemainderValues(Sema& S, ExprResult &LHS,
7598                                                ExprResult &RHS,
7599                                                SourceLocation Loc, bool IsDiv) {
7600   // Check for division/remainder by zero.
7601   llvm::APSInt RHSValue;
7602   if (!RHS.get()->isValueDependent() &&
7603       RHS.get()->EvaluateAsInt(RHSValue, S.Context) && RHSValue == 0)
7604     S.DiagRuntimeBehavior(Loc, RHS.get(),
7605                           S.PDiag(diag::warn_remainder_division_by_zero)
7606                             << IsDiv << RHS.get()->getSourceRange());
7607 }
7608 
CheckMultiplyDivideOperands(ExprResult & LHS,ExprResult & RHS,SourceLocation Loc,bool IsCompAssign,bool IsDiv)7609 QualType Sema::CheckMultiplyDivideOperands(ExprResult &LHS, ExprResult &RHS,
7610                                            SourceLocation Loc,
7611                                            bool IsCompAssign, bool IsDiv) {
7612   checkArithmeticNull(*this, LHS, RHS, Loc, /*isCompare=*/false);
7613 
7614   if (LHS.get()->getType()->isVectorType() ||
7615       RHS.get()->getType()->isVectorType())
7616     return CheckVectorOperands(LHS, RHS, Loc, IsCompAssign,
7617                                /*AllowBothBool*/getLangOpts().AltiVec,
7618                                /*AllowBoolConversions*/false);
7619 
7620   QualType compType = UsualArithmeticConversions(LHS, RHS, IsCompAssign);
7621   if (LHS.isInvalid() || RHS.isInvalid())
7622     return QualType();
7623 
7624 
7625   if (compType.isNull() || !compType->isArithmeticType())
7626     return InvalidOperands(Loc, LHS, RHS);
7627   if (IsDiv)
7628     DiagnoseBadDivideOrRemainderValues(*this, LHS, RHS, Loc, IsDiv);
7629   return compType;
7630 }
7631 
CheckRemainderOperands(ExprResult & LHS,ExprResult & RHS,SourceLocation Loc,bool IsCompAssign)7632 QualType Sema::CheckRemainderOperands(
7633   ExprResult &LHS, ExprResult &RHS, SourceLocation Loc, bool IsCompAssign) {
7634   checkArithmeticNull(*this, LHS, RHS, Loc, /*isCompare=*/false);
7635 
7636   if (LHS.get()->getType()->isVectorType() ||
7637       RHS.get()->getType()->isVectorType()) {
7638     if (LHS.get()->getType()->hasIntegerRepresentation() &&
7639         RHS.get()->getType()->hasIntegerRepresentation())
7640       return CheckVectorOperands(LHS, RHS, Loc, IsCompAssign,
7641                                  /*AllowBothBool*/getLangOpts().AltiVec,
7642                                  /*AllowBoolConversions*/false);
7643     return InvalidOperands(Loc, LHS, RHS);
7644   }
7645 
7646   QualType compType = UsualArithmeticConversions(LHS, RHS, IsCompAssign);
7647   if (LHS.isInvalid() || RHS.isInvalid())
7648     return QualType();
7649 
7650   if (compType.isNull() || !compType->isIntegerType())
7651     return InvalidOperands(Loc, LHS, RHS);
7652   DiagnoseBadDivideOrRemainderValues(*this, LHS, RHS, Loc, false /* IsDiv */);
7653   return compType;
7654 }
7655 
7656 /// \brief Diagnose invalid arithmetic on two void pointers.
diagnoseArithmeticOnTwoVoidPointers(Sema & S,SourceLocation Loc,Expr * LHSExpr,Expr * RHSExpr)7657 static void diagnoseArithmeticOnTwoVoidPointers(Sema &S, SourceLocation Loc,
7658                                                 Expr *LHSExpr, Expr *RHSExpr) {
7659   S.Diag(Loc, S.getLangOpts().CPlusPlus
7660                 ? diag::err_typecheck_pointer_arith_void_type
7661                 : diag::ext_gnu_void_ptr)
7662     << 1 /* two pointers */ << LHSExpr->getSourceRange()
7663                             << RHSExpr->getSourceRange();
7664 }
7665 
7666 /// \brief Diagnose invalid arithmetic on a void pointer.
diagnoseArithmeticOnVoidPointer(Sema & S,SourceLocation Loc,Expr * Pointer)7667 static void diagnoseArithmeticOnVoidPointer(Sema &S, SourceLocation Loc,
7668                                             Expr *Pointer) {
7669   S.Diag(Loc, S.getLangOpts().CPlusPlus
7670                 ? diag::err_typecheck_pointer_arith_void_type
7671                 : diag::ext_gnu_void_ptr)
7672     << 0 /* one pointer */ << Pointer->getSourceRange();
7673 }
7674 
7675 /// \brief Diagnose invalid arithmetic on two function pointers.
diagnoseArithmeticOnTwoFunctionPointers(Sema & S,SourceLocation Loc,Expr * LHS,Expr * RHS)7676 static void diagnoseArithmeticOnTwoFunctionPointers(Sema &S, SourceLocation Loc,
7677                                                     Expr *LHS, Expr *RHS) {
7678   assert(LHS->getType()->isAnyPointerType());
7679   assert(RHS->getType()->isAnyPointerType());
7680   S.Diag(Loc, S.getLangOpts().CPlusPlus
7681                 ? diag::err_typecheck_pointer_arith_function_type
7682                 : diag::ext_gnu_ptr_func_arith)
7683     << 1 /* two pointers */ << LHS->getType()->getPointeeType()
7684     // We only show the second type if it differs from the first.
7685     << (unsigned)!S.Context.hasSameUnqualifiedType(LHS->getType(),
7686                                                    RHS->getType())
7687     << RHS->getType()->getPointeeType()
7688     << LHS->getSourceRange() << RHS->getSourceRange();
7689 }
7690 
7691 /// \brief Diagnose invalid arithmetic on a function pointer.
diagnoseArithmeticOnFunctionPointer(Sema & S,SourceLocation Loc,Expr * Pointer)7692 static void diagnoseArithmeticOnFunctionPointer(Sema &S, SourceLocation Loc,
7693                                                 Expr *Pointer) {
7694   assert(Pointer->getType()->isAnyPointerType());
7695   S.Diag(Loc, S.getLangOpts().CPlusPlus
7696                 ? diag::err_typecheck_pointer_arith_function_type
7697                 : diag::ext_gnu_ptr_func_arith)
7698     << 0 /* one pointer */ << Pointer->getType()->getPointeeType()
7699     << 0 /* one pointer, so only one type */
7700     << Pointer->getSourceRange();
7701 }
7702 
7703 /// \brief Emit error if Operand is incomplete pointer type
7704 ///
7705 /// \returns True if pointer has incomplete type
checkArithmeticIncompletePointerType(Sema & S,SourceLocation Loc,Expr * Operand)7706 static bool checkArithmeticIncompletePointerType(Sema &S, SourceLocation Loc,
7707                                                  Expr *Operand) {
7708   QualType ResType = Operand->getType();
7709   if (const AtomicType *ResAtomicType = ResType->getAs<AtomicType>())
7710     ResType = ResAtomicType->getValueType();
7711 
7712   assert(ResType->isAnyPointerType() && !ResType->isDependentType());
7713   QualType PointeeTy = ResType->getPointeeType();
7714   return S.RequireCompleteType(Loc, PointeeTy,
7715                                diag::err_typecheck_arithmetic_incomplete_type,
7716                                PointeeTy, Operand->getSourceRange());
7717 }
7718 
7719 /// \brief Check the validity of an arithmetic pointer operand.
7720 ///
7721 /// If the operand has pointer type, this code will check for pointer types
7722 /// which are invalid in arithmetic operations. These will be diagnosed
7723 /// appropriately, including whether or not the use is supported as an
7724 /// extension.
7725 ///
7726 /// \returns True when the operand is valid to use (even if as an extension).
checkArithmeticOpPointerOperand(Sema & S,SourceLocation Loc,Expr * Operand)7727 static bool checkArithmeticOpPointerOperand(Sema &S, SourceLocation Loc,
7728                                             Expr *Operand) {
7729   QualType ResType = Operand->getType();
7730   if (const AtomicType *ResAtomicType = ResType->getAs<AtomicType>())
7731     ResType = ResAtomicType->getValueType();
7732 
7733   if (!ResType->isAnyPointerType()) return true;
7734 
7735   QualType PointeeTy = ResType->getPointeeType();
7736   if (PointeeTy->isVoidType()) {
7737     diagnoseArithmeticOnVoidPointer(S, Loc, Operand);
7738     return !S.getLangOpts().CPlusPlus;
7739   }
7740   if (PointeeTy->isFunctionType()) {
7741     diagnoseArithmeticOnFunctionPointer(S, Loc, Operand);
7742     return !S.getLangOpts().CPlusPlus;
7743   }
7744 
7745   if (checkArithmeticIncompletePointerType(S, Loc, Operand)) return false;
7746 
7747   return true;
7748 }
7749 
7750 /// \brief Check the validity of a binary arithmetic operation w.r.t. pointer
7751 /// operands.
7752 ///
7753 /// This routine will diagnose any invalid arithmetic on pointer operands much
7754 /// like \see checkArithmeticOpPointerOperand. However, it has special logic
7755 /// for emitting a single diagnostic even for operations where both LHS and RHS
7756 /// are (potentially problematic) pointers.
7757 ///
7758 /// \returns True when the operand is valid to use (even if as an extension).
checkArithmeticBinOpPointerOperands(Sema & S,SourceLocation Loc,Expr * LHSExpr,Expr * RHSExpr)7759 static bool checkArithmeticBinOpPointerOperands(Sema &S, SourceLocation Loc,
7760                                                 Expr *LHSExpr, Expr *RHSExpr) {
7761   bool isLHSPointer = LHSExpr->getType()->isAnyPointerType();
7762   bool isRHSPointer = RHSExpr->getType()->isAnyPointerType();
7763   if (!isLHSPointer && !isRHSPointer) return true;
7764 
7765   QualType LHSPointeeTy, RHSPointeeTy;
7766   if (isLHSPointer) LHSPointeeTy = LHSExpr->getType()->getPointeeType();
7767   if (isRHSPointer) RHSPointeeTy = RHSExpr->getType()->getPointeeType();
7768 
7769   // if both are pointers check if operation is valid wrt address spaces
7770   if (S.getLangOpts().OpenCL && isLHSPointer && isRHSPointer) {
7771     const PointerType *lhsPtr = LHSExpr->getType()->getAs<PointerType>();
7772     const PointerType *rhsPtr = RHSExpr->getType()->getAs<PointerType>();
7773     if (!lhsPtr->isAddressSpaceOverlapping(*rhsPtr)) {
7774       S.Diag(Loc,
7775              diag::err_typecheck_op_on_nonoverlapping_address_space_pointers)
7776           << LHSExpr->getType() << RHSExpr->getType() << 1 /*arithmetic op*/
7777           << LHSExpr->getSourceRange() << RHSExpr->getSourceRange();
7778       return false;
7779     }
7780   }
7781 
7782   // Check for arithmetic on pointers to incomplete types.
7783   bool isLHSVoidPtr = isLHSPointer && LHSPointeeTy->isVoidType();
7784   bool isRHSVoidPtr = isRHSPointer && RHSPointeeTy->isVoidType();
7785   if (isLHSVoidPtr || isRHSVoidPtr) {
7786     if (!isRHSVoidPtr) diagnoseArithmeticOnVoidPointer(S, Loc, LHSExpr);
7787     else if (!isLHSVoidPtr) diagnoseArithmeticOnVoidPointer(S, Loc, RHSExpr);
7788     else diagnoseArithmeticOnTwoVoidPointers(S, Loc, LHSExpr, RHSExpr);
7789 
7790     return !S.getLangOpts().CPlusPlus;
7791   }
7792 
7793   bool isLHSFuncPtr = isLHSPointer && LHSPointeeTy->isFunctionType();
7794   bool isRHSFuncPtr = isRHSPointer && RHSPointeeTy->isFunctionType();
7795   if (isLHSFuncPtr || isRHSFuncPtr) {
7796     if (!isRHSFuncPtr) diagnoseArithmeticOnFunctionPointer(S, Loc, LHSExpr);
7797     else if (!isLHSFuncPtr) diagnoseArithmeticOnFunctionPointer(S, Loc,
7798                                                                 RHSExpr);
7799     else diagnoseArithmeticOnTwoFunctionPointers(S, Loc, LHSExpr, RHSExpr);
7800 
7801     return !S.getLangOpts().CPlusPlus;
7802   }
7803 
7804   if (isLHSPointer && checkArithmeticIncompletePointerType(S, Loc, LHSExpr))
7805     return false;
7806   if (isRHSPointer && checkArithmeticIncompletePointerType(S, Loc, RHSExpr))
7807     return false;
7808 
7809   return true;
7810 }
7811 
7812 /// diagnoseStringPlusInt - Emit a warning when adding an integer to a string
7813 /// literal.
diagnoseStringPlusInt(Sema & Self,SourceLocation OpLoc,Expr * LHSExpr,Expr * RHSExpr)7814 static void diagnoseStringPlusInt(Sema &Self, SourceLocation OpLoc,
7815                                   Expr *LHSExpr, Expr *RHSExpr) {
7816   StringLiteral* StrExpr = dyn_cast<StringLiteral>(LHSExpr->IgnoreImpCasts());
7817   Expr* IndexExpr = RHSExpr;
7818   if (!StrExpr) {
7819     StrExpr = dyn_cast<StringLiteral>(RHSExpr->IgnoreImpCasts());
7820     IndexExpr = LHSExpr;
7821   }
7822 
7823   bool IsStringPlusInt = StrExpr &&
7824       IndexExpr->getType()->isIntegralOrUnscopedEnumerationType();
7825   if (!IsStringPlusInt || IndexExpr->isValueDependent())
7826     return;
7827 
7828   llvm::APSInt index;
7829   if (IndexExpr->EvaluateAsInt(index, Self.getASTContext())) {
7830     unsigned StrLenWithNull = StrExpr->getLength() + 1;
7831     if (index.isNonNegative() &&
7832         index <= llvm::APSInt(llvm::APInt(index.getBitWidth(), StrLenWithNull),
7833                               index.isUnsigned()))
7834       return;
7835   }
7836 
7837   SourceRange DiagRange(LHSExpr->getLocStart(), RHSExpr->getLocEnd());
7838   Self.Diag(OpLoc, diag::warn_string_plus_int)
7839       << DiagRange << IndexExpr->IgnoreImpCasts()->getType();
7840 
7841   // Only print a fixit for "str" + int, not for int + "str".
7842   if (IndexExpr == RHSExpr) {
7843     SourceLocation EndLoc = Self.getLocForEndOfToken(RHSExpr->getLocEnd());
7844     Self.Diag(OpLoc, diag::note_string_plus_scalar_silence)
7845         << FixItHint::CreateInsertion(LHSExpr->getLocStart(), "&")
7846         << FixItHint::CreateReplacement(SourceRange(OpLoc), "[")
7847         << FixItHint::CreateInsertion(EndLoc, "]");
7848   } else
7849     Self.Diag(OpLoc, diag::note_string_plus_scalar_silence);
7850 }
7851 
7852 /// \brief Emit a warning when adding a char literal to a string.
diagnoseStringPlusChar(Sema & Self,SourceLocation OpLoc,Expr * LHSExpr,Expr * RHSExpr)7853 static void diagnoseStringPlusChar(Sema &Self, SourceLocation OpLoc,
7854                                    Expr *LHSExpr, Expr *RHSExpr) {
7855   const Expr *StringRefExpr = LHSExpr;
7856   const CharacterLiteral *CharExpr =
7857       dyn_cast<CharacterLiteral>(RHSExpr->IgnoreImpCasts());
7858 
7859   if (!CharExpr) {
7860     CharExpr = dyn_cast<CharacterLiteral>(LHSExpr->IgnoreImpCasts());
7861     StringRefExpr = RHSExpr;
7862   }
7863 
7864   if (!CharExpr || !StringRefExpr)
7865     return;
7866 
7867   const QualType StringType = StringRefExpr->getType();
7868 
7869   // Return if not a PointerType.
7870   if (!StringType->isAnyPointerType())
7871     return;
7872 
7873   // Return if not a CharacterType.
7874   if (!StringType->getPointeeType()->isAnyCharacterType())
7875     return;
7876 
7877   ASTContext &Ctx = Self.getASTContext();
7878   SourceRange DiagRange(LHSExpr->getLocStart(), RHSExpr->getLocEnd());
7879 
7880   const QualType CharType = CharExpr->getType();
7881   if (!CharType->isAnyCharacterType() &&
7882       CharType->isIntegerType() &&
7883       llvm::isUIntN(Ctx.getCharWidth(), CharExpr->getValue())) {
7884     Self.Diag(OpLoc, diag::warn_string_plus_char)
7885         << DiagRange << Ctx.CharTy;
7886   } else {
7887     Self.Diag(OpLoc, diag::warn_string_plus_char)
7888         << DiagRange << CharExpr->getType();
7889   }
7890 
7891   // Only print a fixit for str + char, not for char + str.
7892   if (isa<CharacterLiteral>(RHSExpr->IgnoreImpCasts())) {
7893     SourceLocation EndLoc = Self.getLocForEndOfToken(RHSExpr->getLocEnd());
7894     Self.Diag(OpLoc, diag::note_string_plus_scalar_silence)
7895         << FixItHint::CreateInsertion(LHSExpr->getLocStart(), "&")
7896         << FixItHint::CreateReplacement(SourceRange(OpLoc), "[")
7897         << FixItHint::CreateInsertion(EndLoc, "]");
7898   } else {
7899     Self.Diag(OpLoc, diag::note_string_plus_scalar_silence);
7900   }
7901 }
7902 
7903 /// \brief Emit error when two pointers are incompatible.
diagnosePointerIncompatibility(Sema & S,SourceLocation Loc,Expr * LHSExpr,Expr * RHSExpr)7904 static void diagnosePointerIncompatibility(Sema &S, SourceLocation Loc,
7905                                            Expr *LHSExpr, Expr *RHSExpr) {
7906   assert(LHSExpr->getType()->isAnyPointerType());
7907   assert(RHSExpr->getType()->isAnyPointerType());
7908   S.Diag(Loc, diag::err_typecheck_sub_ptr_compatible)
7909     << LHSExpr->getType() << RHSExpr->getType() << LHSExpr->getSourceRange()
7910     << RHSExpr->getSourceRange();
7911 }
7912 
7913 // C99 6.5.6
CheckAdditionOperands(ExprResult & LHS,ExprResult & RHS,SourceLocation Loc,BinaryOperatorKind Opc,QualType * CompLHSTy)7914 QualType Sema::CheckAdditionOperands(ExprResult &LHS, ExprResult &RHS,
7915                                      SourceLocation Loc, BinaryOperatorKind Opc,
7916                                      QualType* CompLHSTy) {
7917   checkArithmeticNull(*this, LHS, RHS, Loc, /*isCompare=*/false);
7918 
7919   if (LHS.get()->getType()->isVectorType() ||
7920       RHS.get()->getType()->isVectorType()) {
7921     QualType compType = CheckVectorOperands(
7922         LHS, RHS, Loc, CompLHSTy,
7923         /*AllowBothBool*/getLangOpts().AltiVec,
7924         /*AllowBoolConversions*/getLangOpts().ZVector);
7925     if (CompLHSTy) *CompLHSTy = compType;
7926     return compType;
7927   }
7928 
7929   QualType compType = UsualArithmeticConversions(LHS, RHS, CompLHSTy);
7930   if (LHS.isInvalid() || RHS.isInvalid())
7931     return QualType();
7932 
7933   // Diagnose "string literal" '+' int and string '+' "char literal".
7934   if (Opc == BO_Add) {
7935     diagnoseStringPlusInt(*this, Loc, LHS.get(), RHS.get());
7936     diagnoseStringPlusChar(*this, Loc, LHS.get(), RHS.get());
7937   }
7938 
7939   // handle the common case first (both operands are arithmetic).
7940   if (!compType.isNull() && compType->isArithmeticType()) {
7941     if (CompLHSTy) *CompLHSTy = compType;
7942     return compType;
7943   }
7944 
7945   // Type-checking.  Ultimately the pointer's going to be in PExp;
7946   // note that we bias towards the LHS being the pointer.
7947   Expr *PExp = LHS.get(), *IExp = RHS.get();
7948 
7949   bool isObjCPointer;
7950   if (PExp->getType()->isPointerType()) {
7951     isObjCPointer = false;
7952   } else if (PExp->getType()->isObjCObjectPointerType()) {
7953     isObjCPointer = true;
7954   } else {
7955     std::swap(PExp, IExp);
7956     if (PExp->getType()->isPointerType()) {
7957       isObjCPointer = false;
7958     } else if (PExp->getType()->isObjCObjectPointerType()) {
7959       isObjCPointer = true;
7960     } else {
7961       return InvalidOperands(Loc, LHS, RHS);
7962     }
7963   }
7964   assert(PExp->getType()->isAnyPointerType());
7965 
7966   if (!IExp->getType()->isIntegerType())
7967     return InvalidOperands(Loc, LHS, RHS);
7968 
7969   if (!checkArithmeticOpPointerOperand(*this, Loc, PExp))
7970     return QualType();
7971 
7972   if (isObjCPointer && checkArithmeticOnObjCPointer(*this, Loc, PExp))
7973     return QualType();
7974 
7975   // Check array bounds for pointer arithemtic
7976   CheckArrayAccess(PExp, IExp);
7977 
7978   if (CompLHSTy) {
7979     QualType LHSTy = Context.isPromotableBitField(LHS.get());
7980     if (LHSTy.isNull()) {
7981       LHSTy = LHS.get()->getType();
7982       if (LHSTy->isPromotableIntegerType())
7983         LHSTy = Context.getPromotedIntegerType(LHSTy);
7984     }
7985     *CompLHSTy = LHSTy;
7986   }
7987 
7988   return PExp->getType();
7989 }
7990 
7991 // C99 6.5.6
CheckSubtractionOperands(ExprResult & LHS,ExprResult & RHS,SourceLocation Loc,QualType * CompLHSTy)7992 QualType Sema::CheckSubtractionOperands(ExprResult &LHS, ExprResult &RHS,
7993                                         SourceLocation Loc,
7994                                         QualType* CompLHSTy) {
7995   checkArithmeticNull(*this, LHS, RHS, Loc, /*isCompare=*/false);
7996 
7997   if (LHS.get()->getType()->isVectorType() ||
7998       RHS.get()->getType()->isVectorType()) {
7999     QualType compType = CheckVectorOperands(
8000         LHS, RHS, Loc, CompLHSTy,
8001         /*AllowBothBool*/getLangOpts().AltiVec,
8002         /*AllowBoolConversions*/getLangOpts().ZVector);
8003     if (CompLHSTy) *CompLHSTy = compType;
8004     return compType;
8005   }
8006 
8007   QualType compType = UsualArithmeticConversions(LHS, RHS, CompLHSTy);
8008   if (LHS.isInvalid() || RHS.isInvalid())
8009     return QualType();
8010 
8011   // Enforce type constraints: C99 6.5.6p3.
8012 
8013   // Handle the common case first (both operands are arithmetic).
8014   if (!compType.isNull() && compType->isArithmeticType()) {
8015     if (CompLHSTy) *CompLHSTy = compType;
8016     return compType;
8017   }
8018 
8019   // Either ptr - int   or   ptr - ptr.
8020   if (LHS.get()->getType()->isAnyPointerType()) {
8021     QualType lpointee = LHS.get()->getType()->getPointeeType();
8022 
8023     // Diagnose bad cases where we step over interface counts.
8024     if (LHS.get()->getType()->isObjCObjectPointerType() &&
8025         checkArithmeticOnObjCPointer(*this, Loc, LHS.get()))
8026       return QualType();
8027 
8028     // The result type of a pointer-int computation is the pointer type.
8029     if (RHS.get()->getType()->isIntegerType()) {
8030       if (!checkArithmeticOpPointerOperand(*this, Loc, LHS.get()))
8031         return QualType();
8032 
8033       // Check array bounds for pointer arithemtic
8034       CheckArrayAccess(LHS.get(), RHS.get(), /*ArraySubscriptExpr*/nullptr,
8035                        /*AllowOnePastEnd*/true, /*IndexNegated*/true);
8036 
8037       if (CompLHSTy) *CompLHSTy = LHS.get()->getType();
8038       return LHS.get()->getType();
8039     }
8040 
8041     // Handle pointer-pointer subtractions.
8042     if (const PointerType *RHSPTy
8043           = RHS.get()->getType()->getAs<PointerType>()) {
8044       QualType rpointee = RHSPTy->getPointeeType();
8045 
8046       if (getLangOpts().CPlusPlus) {
8047         // Pointee types must be the same: C++ [expr.add]
8048         if (!Context.hasSameUnqualifiedType(lpointee, rpointee)) {
8049           diagnosePointerIncompatibility(*this, Loc, LHS.get(), RHS.get());
8050         }
8051       } else {
8052         // Pointee types must be compatible C99 6.5.6p3
8053         if (!Context.typesAreCompatible(
8054                 Context.getCanonicalType(lpointee).getUnqualifiedType(),
8055                 Context.getCanonicalType(rpointee).getUnqualifiedType())) {
8056           diagnosePointerIncompatibility(*this, Loc, LHS.get(), RHS.get());
8057           return QualType();
8058         }
8059       }
8060 
8061       if (!checkArithmeticBinOpPointerOperands(*this, Loc,
8062                                                LHS.get(), RHS.get()))
8063         return QualType();
8064 
8065       // The pointee type may have zero size.  As an extension, a structure or
8066       // union may have zero size or an array may have zero length.  In this
8067       // case subtraction does not make sense.
8068       if (!rpointee->isVoidType() && !rpointee->isFunctionType()) {
8069         CharUnits ElementSize = Context.getTypeSizeInChars(rpointee);
8070         if (ElementSize.isZero()) {
8071           Diag(Loc,diag::warn_sub_ptr_zero_size_types)
8072             << rpointee.getUnqualifiedType()
8073             << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
8074         }
8075       }
8076 
8077       if (CompLHSTy) *CompLHSTy = LHS.get()->getType();
8078       return Context.getPointerDiffType();
8079     }
8080   }
8081 
8082   return InvalidOperands(Loc, LHS, RHS);
8083 }
8084 
isScopedEnumerationType(QualType T)8085 static bool isScopedEnumerationType(QualType T) {
8086   if (const EnumType *ET = T->getAs<EnumType>())
8087     return ET->getDecl()->isScoped();
8088   return false;
8089 }
8090 
DiagnoseBadShiftValues(Sema & S,ExprResult & LHS,ExprResult & RHS,SourceLocation Loc,BinaryOperatorKind Opc,QualType LHSType)8091 static void DiagnoseBadShiftValues(Sema& S, ExprResult &LHS, ExprResult &RHS,
8092                                    SourceLocation Loc, BinaryOperatorKind Opc,
8093                                    QualType LHSType) {
8094   // OpenCL 6.3j: shift values are effectively % word size of LHS (more defined),
8095   // so skip remaining warnings as we don't want to modify values within Sema.
8096   if (S.getLangOpts().OpenCL)
8097     return;
8098 
8099   llvm::APSInt Right;
8100   // Check right/shifter operand
8101   if (RHS.get()->isValueDependent() ||
8102       !RHS.get()->EvaluateAsInt(Right, S.Context))
8103     return;
8104 
8105   if (Right.isNegative()) {
8106     S.DiagRuntimeBehavior(Loc, RHS.get(),
8107                           S.PDiag(diag::warn_shift_negative)
8108                             << RHS.get()->getSourceRange());
8109     return;
8110   }
8111   llvm::APInt LeftBits(Right.getBitWidth(),
8112                        S.Context.getTypeSize(LHS.get()->getType()));
8113   if (Right.uge(LeftBits)) {
8114     S.DiagRuntimeBehavior(Loc, RHS.get(),
8115                           S.PDiag(diag::warn_shift_gt_typewidth)
8116                             << RHS.get()->getSourceRange());
8117     return;
8118   }
8119   if (Opc != BO_Shl)
8120     return;
8121 
8122   // When left shifting an ICE which is signed, we can check for overflow which
8123   // according to C++ has undefined behavior ([expr.shift] 5.8/2). Unsigned
8124   // integers have defined behavior modulo one more than the maximum value
8125   // representable in the result type, so never warn for those.
8126   llvm::APSInt Left;
8127   if (LHS.get()->isValueDependent() ||
8128       LHSType->hasUnsignedIntegerRepresentation() ||
8129       !LHS.get()->EvaluateAsInt(Left, S.Context))
8130     return;
8131 
8132   // If LHS does not have a signed type and non-negative value
8133   // then, the behavior is undefined. Warn about it.
8134   if (Left.isNegative()) {
8135     S.DiagRuntimeBehavior(Loc, LHS.get(),
8136                           S.PDiag(diag::warn_shift_lhs_negative)
8137                             << LHS.get()->getSourceRange());
8138     return;
8139   }
8140 
8141   llvm::APInt ResultBits =
8142       static_cast<llvm::APInt&>(Right) + Left.getMinSignedBits();
8143   if (LeftBits.uge(ResultBits))
8144     return;
8145   llvm::APSInt Result = Left.extend(ResultBits.getLimitedValue());
8146   Result = Result.shl(Right);
8147 
8148   // Print the bit representation of the signed integer as an unsigned
8149   // hexadecimal number.
8150   SmallString<40> HexResult;
8151   Result.toString(HexResult, 16, /*Signed =*/false, /*Literal =*/true);
8152 
8153   // If we are only missing a sign bit, this is less likely to result in actual
8154   // bugs -- if the result is cast back to an unsigned type, it will have the
8155   // expected value. Thus we place this behind a different warning that can be
8156   // turned off separately if needed.
8157   if (LeftBits == ResultBits - 1) {
8158     S.Diag(Loc, diag::warn_shift_result_sets_sign_bit)
8159         << HexResult << LHSType
8160         << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
8161     return;
8162   }
8163 
8164   S.Diag(Loc, diag::warn_shift_result_gt_typewidth)
8165     << HexResult.str() << Result.getMinSignedBits() << LHSType
8166     << Left.getBitWidth() << LHS.get()->getSourceRange()
8167     << RHS.get()->getSourceRange();
8168 }
8169 
8170 /// \brief Return the resulting type when an OpenCL vector is shifted
8171 ///        by a scalar or vector shift amount.
checkOpenCLVectorShift(Sema & S,ExprResult & LHS,ExprResult & RHS,SourceLocation Loc,bool IsCompAssign)8172 static QualType checkOpenCLVectorShift(Sema &S,
8173                                        ExprResult &LHS, ExprResult &RHS,
8174                                        SourceLocation Loc, bool IsCompAssign) {
8175   // OpenCL v1.1 s6.3.j says RHS can be a vector only if LHS is a vector.
8176   if (!LHS.get()->getType()->isVectorType()) {
8177     S.Diag(Loc, diag::err_shift_rhs_only_vector)
8178       << RHS.get()->getType() << LHS.get()->getType()
8179       << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
8180     return QualType();
8181   }
8182 
8183   if (!IsCompAssign) {
8184     LHS = S.UsualUnaryConversions(LHS.get());
8185     if (LHS.isInvalid()) return QualType();
8186   }
8187 
8188   RHS = S.UsualUnaryConversions(RHS.get());
8189   if (RHS.isInvalid()) return QualType();
8190 
8191   QualType LHSType = LHS.get()->getType();
8192   const VectorType *LHSVecTy = LHSType->getAs<VectorType>();
8193   QualType LHSEleType = LHSVecTy->getElementType();
8194 
8195   // Note that RHS might not be a vector.
8196   QualType RHSType = RHS.get()->getType();
8197   const VectorType *RHSVecTy = RHSType->getAs<VectorType>();
8198   QualType RHSEleType = RHSVecTy ? RHSVecTy->getElementType() : RHSType;
8199 
8200   // OpenCL v1.1 s6.3.j says that the operands need to be integers.
8201   if (!LHSEleType->isIntegerType()) {
8202     S.Diag(Loc, diag::err_typecheck_expect_int)
8203       << LHS.get()->getType() << LHS.get()->getSourceRange();
8204     return QualType();
8205   }
8206 
8207   if (!RHSEleType->isIntegerType()) {
8208     S.Diag(Loc, diag::err_typecheck_expect_int)
8209       << RHS.get()->getType() << RHS.get()->getSourceRange();
8210     return QualType();
8211   }
8212 
8213   if (RHSVecTy) {
8214     // OpenCL v1.1 s6.3.j says that for vector types, the operators
8215     // are applied component-wise. So if RHS is a vector, then ensure
8216     // that the number of elements is the same as LHS...
8217     if (RHSVecTy->getNumElements() != LHSVecTy->getNumElements()) {
8218       S.Diag(Loc, diag::err_typecheck_vector_lengths_not_equal)
8219         << LHS.get()->getType() << RHS.get()->getType()
8220         << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
8221       return QualType();
8222     }
8223   } else {
8224     // ...else expand RHS to match the number of elements in LHS.
8225     QualType VecTy =
8226       S.Context.getExtVectorType(RHSEleType, LHSVecTy->getNumElements());
8227     RHS = S.ImpCastExprToType(RHS.get(), VecTy, CK_VectorSplat);
8228   }
8229 
8230   return LHSType;
8231 }
8232 
8233 // C99 6.5.7
CheckShiftOperands(ExprResult & LHS,ExprResult & RHS,SourceLocation Loc,BinaryOperatorKind Opc,bool IsCompAssign)8234 QualType Sema::CheckShiftOperands(ExprResult &LHS, ExprResult &RHS,
8235                                   SourceLocation Loc, BinaryOperatorKind Opc,
8236                                   bool IsCompAssign) {
8237   checkArithmeticNull(*this, LHS, RHS, Loc, /*isCompare=*/false);
8238 
8239   // Vector shifts promote their scalar inputs to vector type.
8240   if (LHS.get()->getType()->isVectorType() ||
8241       RHS.get()->getType()->isVectorType()) {
8242     if (LangOpts.OpenCL)
8243       return checkOpenCLVectorShift(*this, LHS, RHS, Loc, IsCompAssign);
8244     if (LangOpts.ZVector) {
8245       // The shift operators for the z vector extensions work basically
8246       // like OpenCL shifts, except that neither the LHS nor the RHS is
8247       // allowed to be a "vector bool".
8248       if (auto LHSVecType = LHS.get()->getType()->getAs<VectorType>())
8249         if (LHSVecType->getVectorKind() == VectorType::AltiVecBool)
8250           return InvalidOperands(Loc, LHS, RHS);
8251       if (auto RHSVecType = RHS.get()->getType()->getAs<VectorType>())
8252         if (RHSVecType->getVectorKind() == VectorType::AltiVecBool)
8253           return InvalidOperands(Loc, LHS, RHS);
8254       return checkOpenCLVectorShift(*this, LHS, RHS, Loc, IsCompAssign);
8255     }
8256     return CheckVectorOperands(LHS, RHS, Loc, IsCompAssign,
8257                                /*AllowBothBool*/true,
8258                                /*AllowBoolConversions*/false);
8259   }
8260 
8261   // Shifts don't perform usual arithmetic conversions, they just do integer
8262   // promotions on each operand. C99 6.5.7p3
8263 
8264   // For the LHS, do usual unary conversions, but then reset them away
8265   // if this is a compound assignment.
8266   ExprResult OldLHS = LHS;
8267   LHS = UsualUnaryConversions(LHS.get());
8268   if (LHS.isInvalid())
8269     return QualType();
8270   QualType LHSType = LHS.get()->getType();
8271   if (IsCompAssign) LHS = OldLHS;
8272 
8273   // The RHS is simpler.
8274   RHS = UsualUnaryConversions(RHS.get());
8275   if (RHS.isInvalid())
8276     return QualType();
8277   QualType RHSType = RHS.get()->getType();
8278 
8279   // C99 6.5.7p2: Each of the operands shall have integer type.
8280   if (!LHSType->hasIntegerRepresentation() ||
8281       !RHSType->hasIntegerRepresentation())
8282     return InvalidOperands(Loc, LHS, RHS);
8283 
8284   // C++0x: Don't allow scoped enums. FIXME: Use something better than
8285   // hasIntegerRepresentation() above instead of this.
8286   if (isScopedEnumerationType(LHSType) ||
8287       isScopedEnumerationType(RHSType)) {
8288     return InvalidOperands(Loc, LHS, RHS);
8289   }
8290   // Sanity-check shift operands
8291   DiagnoseBadShiftValues(*this, LHS, RHS, Loc, Opc, LHSType);
8292 
8293   // "The type of the result is that of the promoted left operand."
8294   return LHSType;
8295 }
8296 
IsWithinTemplateSpecialization(Decl * D)8297 static bool IsWithinTemplateSpecialization(Decl *D) {
8298   if (DeclContext *DC = D->getDeclContext()) {
8299     if (isa<ClassTemplateSpecializationDecl>(DC))
8300       return true;
8301     if (FunctionDecl *FD = dyn_cast<FunctionDecl>(DC))
8302       return FD->isFunctionTemplateSpecialization();
8303   }
8304   return false;
8305 }
8306 
8307 /// If two different enums are compared, raise a warning.
checkEnumComparison(Sema & S,SourceLocation Loc,Expr * LHS,Expr * RHS)8308 static void checkEnumComparison(Sema &S, SourceLocation Loc, Expr *LHS,
8309                                 Expr *RHS) {
8310   QualType LHSStrippedType = LHS->IgnoreParenImpCasts()->getType();
8311   QualType RHSStrippedType = RHS->IgnoreParenImpCasts()->getType();
8312 
8313   const EnumType *LHSEnumType = LHSStrippedType->getAs<EnumType>();
8314   if (!LHSEnumType)
8315     return;
8316   const EnumType *RHSEnumType = RHSStrippedType->getAs<EnumType>();
8317   if (!RHSEnumType)
8318     return;
8319 
8320   // Ignore anonymous enums.
8321   if (!LHSEnumType->getDecl()->getIdentifier())
8322     return;
8323   if (!RHSEnumType->getDecl()->getIdentifier())
8324     return;
8325 
8326   if (S.Context.hasSameUnqualifiedType(LHSStrippedType, RHSStrippedType))
8327     return;
8328 
8329   S.Diag(Loc, diag::warn_comparison_of_mixed_enum_types)
8330       << LHSStrippedType << RHSStrippedType
8331       << LHS->getSourceRange() << RHS->getSourceRange();
8332 }
8333 
8334 /// \brief Diagnose bad pointer comparisons.
diagnoseDistinctPointerComparison(Sema & S,SourceLocation Loc,ExprResult & LHS,ExprResult & RHS,bool IsError)8335 static void diagnoseDistinctPointerComparison(Sema &S, SourceLocation Loc,
8336                                               ExprResult &LHS, ExprResult &RHS,
8337                                               bool IsError) {
8338   S.Diag(Loc, IsError ? diag::err_typecheck_comparison_of_distinct_pointers
8339                       : diag::ext_typecheck_comparison_of_distinct_pointers)
8340     << LHS.get()->getType() << RHS.get()->getType()
8341     << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
8342 }
8343 
8344 /// \brief Returns false if the pointers are converted to a composite type,
8345 /// true otherwise.
convertPointersToCompositeType(Sema & S,SourceLocation Loc,ExprResult & LHS,ExprResult & RHS)8346 static bool convertPointersToCompositeType(Sema &S, SourceLocation Loc,
8347                                            ExprResult &LHS, ExprResult &RHS) {
8348   // C++ [expr.rel]p2:
8349   //   [...] Pointer conversions (4.10) and qualification
8350   //   conversions (4.4) are performed on pointer operands (or on
8351   //   a pointer operand and a null pointer constant) to bring
8352   //   them to their composite pointer type. [...]
8353   //
8354   // C++ [expr.eq]p1 uses the same notion for (in)equality
8355   // comparisons of pointers.
8356 
8357   // C++ [expr.eq]p2:
8358   //   In addition, pointers to members can be compared, or a pointer to
8359   //   member and a null pointer constant. Pointer to member conversions
8360   //   (4.11) and qualification conversions (4.4) are performed to bring
8361   //   them to a common type. If one operand is a null pointer constant,
8362   //   the common type is the type of the other operand. Otherwise, the
8363   //   common type is a pointer to member type similar (4.4) to the type
8364   //   of one of the operands, with a cv-qualification signature (4.4)
8365   //   that is the union of the cv-qualification signatures of the operand
8366   //   types.
8367 
8368   QualType LHSType = LHS.get()->getType();
8369   QualType RHSType = RHS.get()->getType();
8370   assert((LHSType->isPointerType() && RHSType->isPointerType()) ||
8371          (LHSType->isMemberPointerType() && RHSType->isMemberPointerType()));
8372 
8373   bool NonStandardCompositeType = false;
8374   bool *BoolPtr = S.isSFINAEContext() ? nullptr : &NonStandardCompositeType;
8375   QualType T = S.FindCompositePointerType(Loc, LHS, RHS, BoolPtr);
8376   if (T.isNull()) {
8377     diagnoseDistinctPointerComparison(S, Loc, LHS, RHS, /*isError*/true);
8378     return true;
8379   }
8380 
8381   if (NonStandardCompositeType)
8382     S.Diag(Loc, diag::ext_typecheck_comparison_of_distinct_pointers_nonstandard)
8383       << LHSType << RHSType << T << LHS.get()->getSourceRange()
8384       << RHS.get()->getSourceRange();
8385 
8386   LHS = S.ImpCastExprToType(LHS.get(), T, CK_BitCast);
8387   RHS = S.ImpCastExprToType(RHS.get(), T, CK_BitCast);
8388   return false;
8389 }
8390 
diagnoseFunctionPointerToVoidComparison(Sema & S,SourceLocation Loc,ExprResult & LHS,ExprResult & RHS,bool IsError)8391 static void diagnoseFunctionPointerToVoidComparison(Sema &S, SourceLocation Loc,
8392                                                     ExprResult &LHS,
8393                                                     ExprResult &RHS,
8394                                                     bool IsError) {
8395   S.Diag(Loc, IsError ? diag::err_typecheck_comparison_of_fptr_to_void
8396                       : diag::ext_typecheck_comparison_of_fptr_to_void)
8397     << LHS.get()->getType() << RHS.get()->getType()
8398     << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
8399 }
8400 
isObjCObjectLiteral(ExprResult & E)8401 static bool isObjCObjectLiteral(ExprResult &E) {
8402   switch (E.get()->IgnoreParenImpCasts()->getStmtClass()) {
8403   case Stmt::ObjCArrayLiteralClass:
8404   case Stmt::ObjCDictionaryLiteralClass:
8405   case Stmt::ObjCStringLiteralClass:
8406   case Stmt::ObjCBoxedExprClass:
8407     return true;
8408   default:
8409     // Note that ObjCBoolLiteral is NOT an object literal!
8410     return false;
8411   }
8412 }
8413 
hasIsEqualMethod(Sema & S,const Expr * LHS,const Expr * RHS)8414 static bool hasIsEqualMethod(Sema &S, const Expr *LHS, const Expr *RHS) {
8415   const ObjCObjectPointerType *Type =
8416     LHS->getType()->getAs<ObjCObjectPointerType>();
8417 
8418   // If this is not actually an Objective-C object, bail out.
8419   if (!Type)
8420     return false;
8421 
8422   // Get the LHS object's interface type.
8423   QualType InterfaceType = Type->getPointeeType();
8424 
8425   // If the RHS isn't an Objective-C object, bail out.
8426   if (!RHS->getType()->isObjCObjectPointerType())
8427     return false;
8428 
8429   // Try to find the -isEqual: method.
8430   Selector IsEqualSel = S.NSAPIObj->getIsEqualSelector();
8431   ObjCMethodDecl *Method = S.LookupMethodInObjectType(IsEqualSel,
8432                                                       InterfaceType,
8433                                                       /*instance=*/true);
8434   if (!Method) {
8435     if (Type->isObjCIdType()) {
8436       // For 'id', just check the global pool.
8437       Method = S.LookupInstanceMethodInGlobalPool(IsEqualSel, SourceRange(),
8438                                                   /*receiverId=*/true);
8439     } else {
8440       // Check protocols.
8441       Method = S.LookupMethodInQualifiedType(IsEqualSel, Type,
8442                                              /*instance=*/true);
8443     }
8444   }
8445 
8446   if (!Method)
8447     return false;
8448 
8449   QualType T = Method->parameters()[0]->getType();
8450   if (!T->isObjCObjectPointerType())
8451     return false;
8452 
8453   QualType R = Method->getReturnType();
8454   if (!R->isScalarType())
8455     return false;
8456 
8457   return true;
8458 }
8459 
CheckLiteralKind(Expr * FromE)8460 Sema::ObjCLiteralKind Sema::CheckLiteralKind(Expr *FromE) {
8461   FromE = FromE->IgnoreParenImpCasts();
8462   switch (FromE->getStmtClass()) {
8463     default:
8464       break;
8465     case Stmt::ObjCStringLiteralClass:
8466       // "string literal"
8467       return LK_String;
8468     case Stmt::ObjCArrayLiteralClass:
8469       // "array literal"
8470       return LK_Array;
8471     case Stmt::ObjCDictionaryLiteralClass:
8472       // "dictionary literal"
8473       return LK_Dictionary;
8474     case Stmt::BlockExprClass:
8475       return LK_Block;
8476     case Stmt::ObjCBoxedExprClass: {
8477       Expr *Inner = cast<ObjCBoxedExpr>(FromE)->getSubExpr()->IgnoreParens();
8478       switch (Inner->getStmtClass()) {
8479         case Stmt::IntegerLiteralClass:
8480         case Stmt::FloatingLiteralClass:
8481         case Stmt::CharacterLiteralClass:
8482         case Stmt::ObjCBoolLiteralExprClass:
8483         case Stmt::CXXBoolLiteralExprClass:
8484           // "numeric literal"
8485           return LK_Numeric;
8486         case Stmt::ImplicitCastExprClass: {
8487           CastKind CK = cast<CastExpr>(Inner)->getCastKind();
8488           // Boolean literals can be represented by implicit casts.
8489           if (CK == CK_IntegralToBoolean || CK == CK_IntegralCast)
8490             return LK_Numeric;
8491           break;
8492         }
8493         default:
8494           break;
8495       }
8496       return LK_Boxed;
8497     }
8498   }
8499   return LK_None;
8500 }
8501 
diagnoseObjCLiteralComparison(Sema & S,SourceLocation Loc,ExprResult & LHS,ExprResult & RHS,BinaryOperator::Opcode Opc)8502 static void diagnoseObjCLiteralComparison(Sema &S, SourceLocation Loc,
8503                                           ExprResult &LHS, ExprResult &RHS,
8504                                           BinaryOperator::Opcode Opc){
8505   Expr *Literal;
8506   Expr *Other;
8507   if (isObjCObjectLiteral(LHS)) {
8508     Literal = LHS.get();
8509     Other = RHS.get();
8510   } else {
8511     Literal = RHS.get();
8512     Other = LHS.get();
8513   }
8514 
8515   // Don't warn on comparisons against nil.
8516   Other = Other->IgnoreParenCasts();
8517   if (Other->isNullPointerConstant(S.getASTContext(),
8518                                    Expr::NPC_ValueDependentIsNotNull))
8519     return;
8520 
8521   // This should be kept in sync with warn_objc_literal_comparison.
8522   // LK_String should always be after the other literals, since it has its own
8523   // warning flag.
8524   Sema::ObjCLiteralKind LiteralKind = S.CheckLiteralKind(Literal);
8525   assert(LiteralKind != Sema::LK_Block);
8526   if (LiteralKind == Sema::LK_None) {
8527     llvm_unreachable("Unknown Objective-C object literal kind");
8528   }
8529 
8530   if (LiteralKind == Sema::LK_String)
8531     S.Diag(Loc, diag::warn_objc_string_literal_comparison)
8532       << Literal->getSourceRange();
8533   else
8534     S.Diag(Loc, diag::warn_objc_literal_comparison)
8535       << LiteralKind << Literal->getSourceRange();
8536 
8537   if (BinaryOperator::isEqualityOp(Opc) &&
8538       hasIsEqualMethod(S, LHS.get(), RHS.get())) {
8539     SourceLocation Start = LHS.get()->getLocStart();
8540     SourceLocation End = S.getLocForEndOfToken(RHS.get()->getLocEnd());
8541     CharSourceRange OpRange =
8542       CharSourceRange::getCharRange(Loc, S.getLocForEndOfToken(Loc));
8543 
8544     S.Diag(Loc, diag::note_objc_literal_comparison_isequal)
8545       << FixItHint::CreateInsertion(Start, Opc == BO_EQ ? "[" : "![")
8546       << FixItHint::CreateReplacement(OpRange, " isEqual:")
8547       << FixItHint::CreateInsertion(End, "]");
8548   }
8549 }
8550 
diagnoseLogicalNotOnLHSofComparison(Sema & S,ExprResult & LHS,ExprResult & RHS,SourceLocation Loc,BinaryOperatorKind Opc)8551 static void diagnoseLogicalNotOnLHSofComparison(Sema &S, ExprResult &LHS,
8552                                                 ExprResult &RHS,
8553                                                 SourceLocation Loc,
8554                                                 BinaryOperatorKind Opc) {
8555   // Check that left hand side is !something.
8556   UnaryOperator *UO = dyn_cast<UnaryOperator>(LHS.get()->IgnoreImpCasts());
8557   if (!UO || UO->getOpcode() != UO_LNot) return;
8558 
8559   // Only check if the right hand side is non-bool arithmetic type.
8560   if (RHS.get()->isKnownToHaveBooleanValue()) return;
8561 
8562   // Make sure that the something in !something is not bool.
8563   Expr *SubExpr = UO->getSubExpr()->IgnoreImpCasts();
8564   if (SubExpr->isKnownToHaveBooleanValue()) return;
8565 
8566   // Emit warning.
8567   S.Diag(UO->getOperatorLoc(), diag::warn_logical_not_on_lhs_of_comparison)
8568       << Loc;
8569 
8570   // First note suggest !(x < y)
8571   SourceLocation FirstOpen = SubExpr->getLocStart();
8572   SourceLocation FirstClose = RHS.get()->getLocEnd();
8573   FirstClose = S.getLocForEndOfToken(FirstClose);
8574   if (FirstClose.isInvalid())
8575     FirstOpen = SourceLocation();
8576   S.Diag(UO->getOperatorLoc(), diag::note_logical_not_fix)
8577       << FixItHint::CreateInsertion(FirstOpen, "(")
8578       << FixItHint::CreateInsertion(FirstClose, ")");
8579 
8580   // Second note suggests (!x) < y
8581   SourceLocation SecondOpen = LHS.get()->getLocStart();
8582   SourceLocation SecondClose = LHS.get()->getLocEnd();
8583   SecondClose = S.getLocForEndOfToken(SecondClose);
8584   if (SecondClose.isInvalid())
8585     SecondOpen = SourceLocation();
8586   S.Diag(UO->getOperatorLoc(), diag::note_logical_not_silence_with_parens)
8587       << FixItHint::CreateInsertion(SecondOpen, "(")
8588       << FixItHint::CreateInsertion(SecondClose, ")");
8589 }
8590 
8591 // Get the decl for a simple expression: a reference to a variable,
8592 // an implicit C++ field reference, or an implicit ObjC ivar reference.
getCompareDecl(Expr * E)8593 static ValueDecl *getCompareDecl(Expr *E) {
8594   if (DeclRefExpr* DR = dyn_cast<DeclRefExpr>(E))
8595     return DR->getDecl();
8596   if (ObjCIvarRefExpr* Ivar = dyn_cast<ObjCIvarRefExpr>(E)) {
8597     if (Ivar->isFreeIvar())
8598       return Ivar->getDecl();
8599   }
8600   if (MemberExpr* Mem = dyn_cast<MemberExpr>(E)) {
8601     if (Mem->isImplicitAccess())
8602       return Mem->getMemberDecl();
8603   }
8604   return nullptr;
8605 }
8606 
8607 // C99 6.5.8, C++ [expr.rel]
CheckCompareOperands(ExprResult & LHS,ExprResult & RHS,SourceLocation Loc,BinaryOperatorKind Opc,bool IsRelational)8608 QualType Sema::CheckCompareOperands(ExprResult &LHS, ExprResult &RHS,
8609                                     SourceLocation Loc, BinaryOperatorKind Opc,
8610                                     bool IsRelational) {
8611   checkArithmeticNull(*this, LHS, RHS, Loc, /*isCompare=*/true);
8612 
8613   // Handle vector comparisons separately.
8614   if (LHS.get()->getType()->isVectorType() ||
8615       RHS.get()->getType()->isVectorType())
8616     return CheckVectorCompareOperands(LHS, RHS, Loc, IsRelational);
8617 
8618   QualType LHSType = LHS.get()->getType();
8619   QualType RHSType = RHS.get()->getType();
8620 
8621   Expr *LHSStripped = LHS.get()->IgnoreParenImpCasts();
8622   Expr *RHSStripped = RHS.get()->IgnoreParenImpCasts();
8623 
8624   checkEnumComparison(*this, Loc, LHS.get(), RHS.get());
8625   diagnoseLogicalNotOnLHSofComparison(*this, LHS, RHS, Loc, Opc);
8626 
8627   if (!LHSType->hasFloatingRepresentation() &&
8628       !(LHSType->isBlockPointerType() && IsRelational) &&
8629       !LHS.get()->getLocStart().isMacroID() &&
8630       !RHS.get()->getLocStart().isMacroID() &&
8631       ActiveTemplateInstantiations.empty()) {
8632     // For non-floating point types, check for self-comparisons of the form
8633     // x == x, x != x, x < x, etc.  These always evaluate to a constant, and
8634     // often indicate logic errors in the program.
8635     //
8636     // NOTE: Don't warn about comparison expressions resulting from macro
8637     // expansion. Also don't warn about comparisons which are only self
8638     // comparisons within a template specialization. The warnings should catch
8639     // obvious cases in the definition of the template anyways. The idea is to
8640     // warn when the typed comparison operator will always evaluate to the same
8641     // result.
8642     ValueDecl *DL = getCompareDecl(LHSStripped);
8643     ValueDecl *DR = getCompareDecl(RHSStripped);
8644     if (DL && DR && DL == DR && !IsWithinTemplateSpecialization(DL)) {
8645       DiagRuntimeBehavior(Loc, nullptr, PDiag(diag::warn_comparison_always)
8646                           << 0 // self-
8647                           << (Opc == BO_EQ
8648                               || Opc == BO_LE
8649                               || Opc == BO_GE));
8650     } else if (DL && DR && LHSType->isArrayType() && RHSType->isArrayType() &&
8651                !DL->getType()->isReferenceType() &&
8652                !DR->getType()->isReferenceType()) {
8653         // what is it always going to eval to?
8654         char always_evals_to;
8655         switch(Opc) {
8656         case BO_EQ: // e.g. array1 == array2
8657           always_evals_to = 0; // false
8658           break;
8659         case BO_NE: // e.g. array1 != array2
8660           always_evals_to = 1; // true
8661           break;
8662         default:
8663           // best we can say is 'a constant'
8664           always_evals_to = 2; // e.g. array1 <= array2
8665           break;
8666         }
8667         DiagRuntimeBehavior(Loc, nullptr, PDiag(diag::warn_comparison_always)
8668                             << 1 // array
8669                             << always_evals_to);
8670     }
8671 
8672     if (isa<CastExpr>(LHSStripped))
8673       LHSStripped = LHSStripped->IgnoreParenCasts();
8674     if (isa<CastExpr>(RHSStripped))
8675       RHSStripped = RHSStripped->IgnoreParenCasts();
8676 
8677     // Warn about comparisons against a string constant (unless the other
8678     // operand is null), the user probably wants strcmp.
8679     Expr *literalString = nullptr;
8680     Expr *literalStringStripped = nullptr;
8681     if ((isa<StringLiteral>(LHSStripped) || isa<ObjCEncodeExpr>(LHSStripped)) &&
8682         !RHSStripped->isNullPointerConstant(Context,
8683                                             Expr::NPC_ValueDependentIsNull)) {
8684       literalString = LHS.get();
8685       literalStringStripped = LHSStripped;
8686     } else if ((isa<StringLiteral>(RHSStripped) ||
8687                 isa<ObjCEncodeExpr>(RHSStripped)) &&
8688                !LHSStripped->isNullPointerConstant(Context,
8689                                             Expr::NPC_ValueDependentIsNull)) {
8690       literalString = RHS.get();
8691       literalStringStripped = RHSStripped;
8692     }
8693 
8694     if (literalString) {
8695       DiagRuntimeBehavior(Loc, nullptr,
8696         PDiag(diag::warn_stringcompare)
8697           << isa<ObjCEncodeExpr>(literalStringStripped)
8698           << literalString->getSourceRange());
8699     }
8700   }
8701 
8702   // C99 6.5.8p3 / C99 6.5.9p4
8703   UsualArithmeticConversions(LHS, RHS);
8704   if (LHS.isInvalid() || RHS.isInvalid())
8705     return QualType();
8706 
8707   LHSType = LHS.get()->getType();
8708   RHSType = RHS.get()->getType();
8709 
8710   // The result of comparisons is 'bool' in C++, 'int' in C.
8711   QualType ResultTy = Context.getLogicalOperationType();
8712 
8713   if (IsRelational) {
8714     if (LHSType->isRealType() && RHSType->isRealType())
8715       return ResultTy;
8716   } else {
8717     // Check for comparisons of floating point operands using != and ==.
8718     if (LHSType->hasFloatingRepresentation())
8719       CheckFloatComparison(Loc, LHS.get(), RHS.get());
8720 
8721     if (LHSType->isArithmeticType() && RHSType->isArithmeticType())
8722       return ResultTy;
8723   }
8724 
8725   const Expr::NullPointerConstantKind LHSNullKind =
8726       LHS.get()->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull);
8727   const Expr::NullPointerConstantKind RHSNullKind =
8728       RHS.get()->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull);
8729   bool LHSIsNull = LHSNullKind != Expr::NPCK_NotNull;
8730   bool RHSIsNull = RHSNullKind != Expr::NPCK_NotNull;
8731 
8732   if (!IsRelational && LHSIsNull != RHSIsNull) {
8733     bool IsEquality = Opc == BO_EQ;
8734     if (RHSIsNull)
8735       DiagnoseAlwaysNonNullPointer(LHS.get(), RHSNullKind, IsEquality,
8736                                    RHS.get()->getSourceRange());
8737     else
8738       DiagnoseAlwaysNonNullPointer(RHS.get(), LHSNullKind, IsEquality,
8739                                    LHS.get()->getSourceRange());
8740   }
8741 
8742   // All of the following pointer-related warnings are GCC extensions, except
8743   // when handling null pointer constants.
8744   if (LHSType->isPointerType() && RHSType->isPointerType()) { // C99 6.5.8p2
8745     QualType LCanPointeeTy =
8746       LHSType->castAs<PointerType>()->getPointeeType().getCanonicalType();
8747     QualType RCanPointeeTy =
8748       RHSType->castAs<PointerType>()->getPointeeType().getCanonicalType();
8749 
8750     if (getLangOpts().CPlusPlus) {
8751       if (LCanPointeeTy == RCanPointeeTy)
8752         return ResultTy;
8753       if (!IsRelational &&
8754           (LCanPointeeTy->isVoidType() || RCanPointeeTy->isVoidType())) {
8755         // Valid unless comparison between non-null pointer and function pointer
8756         // This is a gcc extension compatibility comparison.
8757         // In a SFINAE context, we treat this as a hard error to maintain
8758         // conformance with the C++ standard.
8759         if ((LCanPointeeTy->isFunctionType() || RCanPointeeTy->isFunctionType())
8760             && !LHSIsNull && !RHSIsNull) {
8761           diagnoseFunctionPointerToVoidComparison(
8762               *this, Loc, LHS, RHS, /*isError*/ (bool)isSFINAEContext());
8763 
8764           if (isSFINAEContext())
8765             return QualType();
8766 
8767           RHS = ImpCastExprToType(RHS.get(), LHSType, CK_BitCast);
8768           return ResultTy;
8769         }
8770       }
8771 
8772       if (convertPointersToCompositeType(*this, Loc, LHS, RHS))
8773         return QualType();
8774       else
8775         return ResultTy;
8776     }
8777     // C99 6.5.9p2 and C99 6.5.8p2
8778     if (Context.typesAreCompatible(LCanPointeeTy.getUnqualifiedType(),
8779                                    RCanPointeeTy.getUnqualifiedType())) {
8780       // Valid unless a relational comparison of function pointers
8781       if (IsRelational && LCanPointeeTy->isFunctionType()) {
8782         Diag(Loc, diag::ext_typecheck_ordered_comparison_of_function_pointers)
8783           << LHSType << RHSType << LHS.get()->getSourceRange()
8784           << RHS.get()->getSourceRange();
8785       }
8786     } else if (!IsRelational &&
8787                (LCanPointeeTy->isVoidType() || RCanPointeeTy->isVoidType())) {
8788       // Valid unless comparison between non-null pointer and function pointer
8789       if ((LCanPointeeTy->isFunctionType() || RCanPointeeTy->isFunctionType())
8790           && !LHSIsNull && !RHSIsNull)
8791         diagnoseFunctionPointerToVoidComparison(*this, Loc, LHS, RHS,
8792                                                 /*isError*/false);
8793     } else {
8794       // Invalid
8795       diagnoseDistinctPointerComparison(*this, Loc, LHS, RHS, /*isError*/false);
8796     }
8797     if (LCanPointeeTy != RCanPointeeTy) {
8798       // Treat NULL constant as a special case in OpenCL.
8799       if (getLangOpts().OpenCL && !LHSIsNull && !RHSIsNull) {
8800         const PointerType *LHSPtr = LHSType->getAs<PointerType>();
8801         if (!LHSPtr->isAddressSpaceOverlapping(*RHSType->getAs<PointerType>())) {
8802           Diag(Loc,
8803                diag::err_typecheck_op_on_nonoverlapping_address_space_pointers)
8804               << LHSType << RHSType << 0 /* comparison */
8805               << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
8806         }
8807       }
8808       unsigned AddrSpaceL = LCanPointeeTy.getAddressSpace();
8809       unsigned AddrSpaceR = RCanPointeeTy.getAddressSpace();
8810       CastKind Kind = AddrSpaceL != AddrSpaceR ? CK_AddressSpaceConversion
8811                                                : CK_BitCast;
8812       if (LHSIsNull && !RHSIsNull)
8813         LHS = ImpCastExprToType(LHS.get(), RHSType, Kind);
8814       else
8815         RHS = ImpCastExprToType(RHS.get(), LHSType, Kind);
8816     }
8817     return ResultTy;
8818   }
8819 
8820   if (getLangOpts().CPlusPlus) {
8821     // Comparison of nullptr_t with itself.
8822     if (LHSType->isNullPtrType() && RHSType->isNullPtrType())
8823       return ResultTy;
8824 
8825     // Comparison of pointers with null pointer constants and equality
8826     // comparisons of member pointers to null pointer constants.
8827     if (RHSIsNull &&
8828         ((LHSType->isAnyPointerType() || LHSType->isNullPtrType()) ||
8829          (!IsRelational &&
8830           (LHSType->isMemberPointerType() || LHSType->isBlockPointerType())))) {
8831       RHS = ImpCastExprToType(RHS.get(), LHSType,
8832                         LHSType->isMemberPointerType()
8833                           ? CK_NullToMemberPointer
8834                           : CK_NullToPointer);
8835       return ResultTy;
8836     }
8837     if (LHSIsNull &&
8838         ((RHSType->isAnyPointerType() || RHSType->isNullPtrType()) ||
8839          (!IsRelational &&
8840           (RHSType->isMemberPointerType() || RHSType->isBlockPointerType())))) {
8841       LHS = ImpCastExprToType(LHS.get(), RHSType,
8842                         RHSType->isMemberPointerType()
8843                           ? CK_NullToMemberPointer
8844                           : CK_NullToPointer);
8845       return ResultTy;
8846     }
8847 
8848     // Comparison of member pointers.
8849     if (!IsRelational &&
8850         LHSType->isMemberPointerType() && RHSType->isMemberPointerType()) {
8851       if (convertPointersToCompositeType(*this, Loc, LHS, RHS))
8852         return QualType();
8853       else
8854         return ResultTy;
8855     }
8856 
8857     // Handle scoped enumeration types specifically, since they don't promote
8858     // to integers.
8859     if (LHS.get()->getType()->isEnumeralType() &&
8860         Context.hasSameUnqualifiedType(LHS.get()->getType(),
8861                                        RHS.get()->getType()))
8862       return ResultTy;
8863   }
8864 
8865   // Handle block pointer types.
8866   if (!IsRelational && LHSType->isBlockPointerType() &&
8867       RHSType->isBlockPointerType()) {
8868     QualType lpointee = LHSType->castAs<BlockPointerType>()->getPointeeType();
8869     QualType rpointee = RHSType->castAs<BlockPointerType>()->getPointeeType();
8870 
8871     if (!LHSIsNull && !RHSIsNull &&
8872         !Context.typesAreCompatible(lpointee, rpointee)) {
8873       Diag(Loc, diag::err_typecheck_comparison_of_distinct_blocks)
8874         << LHSType << RHSType << LHS.get()->getSourceRange()
8875         << RHS.get()->getSourceRange();
8876     }
8877     RHS = ImpCastExprToType(RHS.get(), LHSType, CK_BitCast);
8878     return ResultTy;
8879   }
8880 
8881   // Allow block pointers to be compared with null pointer constants.
8882   if (!IsRelational
8883       && ((LHSType->isBlockPointerType() && RHSType->isPointerType())
8884           || (LHSType->isPointerType() && RHSType->isBlockPointerType()))) {
8885     if (!LHSIsNull && !RHSIsNull) {
8886       if (!((RHSType->isPointerType() && RHSType->castAs<PointerType>()
8887              ->getPointeeType()->isVoidType())
8888             || (LHSType->isPointerType() && LHSType->castAs<PointerType>()
8889                 ->getPointeeType()->isVoidType())))
8890         Diag(Loc, diag::err_typecheck_comparison_of_distinct_blocks)
8891           << LHSType << RHSType << LHS.get()->getSourceRange()
8892           << RHS.get()->getSourceRange();
8893     }
8894     if (LHSIsNull && !RHSIsNull)
8895       LHS = ImpCastExprToType(LHS.get(), RHSType,
8896                               RHSType->isPointerType() ? CK_BitCast
8897                                 : CK_AnyPointerToBlockPointerCast);
8898     else
8899       RHS = ImpCastExprToType(RHS.get(), LHSType,
8900                               LHSType->isPointerType() ? CK_BitCast
8901                                 : CK_AnyPointerToBlockPointerCast);
8902     return ResultTy;
8903   }
8904 
8905   if (LHSType->isObjCObjectPointerType() ||
8906       RHSType->isObjCObjectPointerType()) {
8907     const PointerType *LPT = LHSType->getAs<PointerType>();
8908     const PointerType *RPT = RHSType->getAs<PointerType>();
8909     if (LPT || RPT) {
8910       bool LPtrToVoid = LPT ? LPT->getPointeeType()->isVoidType() : false;
8911       bool RPtrToVoid = RPT ? RPT->getPointeeType()->isVoidType() : false;
8912 
8913       if (!LPtrToVoid && !RPtrToVoid &&
8914           !Context.typesAreCompatible(LHSType, RHSType)) {
8915         diagnoseDistinctPointerComparison(*this, Loc, LHS, RHS,
8916                                           /*isError*/false);
8917       }
8918       if (LHSIsNull && !RHSIsNull) {
8919         Expr *E = LHS.get();
8920         if (getLangOpts().ObjCAutoRefCount)
8921           CheckObjCARCConversion(SourceRange(), RHSType, E, CCK_ImplicitConversion);
8922         LHS = ImpCastExprToType(E, RHSType,
8923                                 RPT ? CK_BitCast :CK_CPointerToObjCPointerCast);
8924       }
8925       else {
8926         Expr *E = RHS.get();
8927         if (getLangOpts().ObjCAutoRefCount)
8928           CheckObjCARCConversion(SourceRange(), LHSType, E, CCK_ImplicitConversion, false,
8929                                  Opc);
8930         RHS = ImpCastExprToType(E, LHSType,
8931                                 LPT ? CK_BitCast :CK_CPointerToObjCPointerCast);
8932       }
8933       return ResultTy;
8934     }
8935     if (LHSType->isObjCObjectPointerType() &&
8936         RHSType->isObjCObjectPointerType()) {
8937       if (!Context.areComparableObjCPointerTypes(LHSType, RHSType))
8938         diagnoseDistinctPointerComparison(*this, Loc, LHS, RHS,
8939                                           /*isError*/false);
8940       if (isObjCObjectLiteral(LHS) || isObjCObjectLiteral(RHS))
8941         diagnoseObjCLiteralComparison(*this, Loc, LHS, RHS, Opc);
8942 
8943       if (LHSIsNull && !RHSIsNull)
8944         LHS = ImpCastExprToType(LHS.get(), RHSType, CK_BitCast);
8945       else
8946         RHS = ImpCastExprToType(RHS.get(), LHSType, CK_BitCast);
8947       return ResultTy;
8948     }
8949   }
8950   if ((LHSType->isAnyPointerType() && RHSType->isIntegerType()) ||
8951       (LHSType->isIntegerType() && RHSType->isAnyPointerType())) {
8952     unsigned DiagID = 0;
8953     bool isError = false;
8954     if (LangOpts.DebuggerSupport) {
8955       // Under a debugger, allow the comparison of pointers to integers,
8956       // since users tend to want to compare addresses.
8957     } else if ((LHSIsNull && LHSType->isIntegerType()) ||
8958         (RHSIsNull && RHSType->isIntegerType())) {
8959       if (IsRelational && !getLangOpts().CPlusPlus)
8960         DiagID = diag::ext_typecheck_ordered_comparison_of_pointer_and_zero;
8961     } else if (IsRelational && !getLangOpts().CPlusPlus)
8962       DiagID = diag::ext_typecheck_ordered_comparison_of_pointer_integer;
8963     else if (getLangOpts().CPlusPlus) {
8964       DiagID = diag::err_typecheck_comparison_of_pointer_integer;
8965       isError = true;
8966     } else
8967       DiagID = diag::ext_typecheck_comparison_of_pointer_integer;
8968 
8969     if (DiagID) {
8970       Diag(Loc, DiagID)
8971         << LHSType << RHSType << LHS.get()->getSourceRange()
8972         << RHS.get()->getSourceRange();
8973       if (isError)
8974         return QualType();
8975     }
8976 
8977     if (LHSType->isIntegerType())
8978       LHS = ImpCastExprToType(LHS.get(), RHSType,
8979                         LHSIsNull ? CK_NullToPointer : CK_IntegralToPointer);
8980     else
8981       RHS = ImpCastExprToType(RHS.get(), LHSType,
8982                         RHSIsNull ? CK_NullToPointer : CK_IntegralToPointer);
8983     return ResultTy;
8984   }
8985 
8986   // Handle block pointers.
8987   if (!IsRelational && RHSIsNull
8988       && LHSType->isBlockPointerType() && RHSType->isIntegerType()) {
8989     RHS = ImpCastExprToType(RHS.get(), LHSType, CK_NullToPointer);
8990     return ResultTy;
8991   }
8992   if (!IsRelational && LHSIsNull
8993       && LHSType->isIntegerType() && RHSType->isBlockPointerType()) {
8994     LHS = ImpCastExprToType(LHS.get(), RHSType, CK_NullToPointer);
8995     return ResultTy;
8996   }
8997 
8998   return InvalidOperands(Loc, LHS, RHS);
8999 }
9000 
9001 
9002 // Return a signed type that is of identical size and number of elements.
9003 // For floating point vectors, return an integer type of identical size
9004 // and number of elements.
GetSignedVectorType(QualType V)9005 QualType Sema::GetSignedVectorType(QualType V) {
9006   const VectorType *VTy = V->getAs<VectorType>();
9007   unsigned TypeSize = Context.getTypeSize(VTy->getElementType());
9008   if (TypeSize == Context.getTypeSize(Context.CharTy))
9009     return Context.getExtVectorType(Context.CharTy, VTy->getNumElements());
9010   else if (TypeSize == Context.getTypeSize(Context.ShortTy))
9011     return Context.getExtVectorType(Context.ShortTy, VTy->getNumElements());
9012   else if (TypeSize == Context.getTypeSize(Context.IntTy))
9013     return Context.getExtVectorType(Context.IntTy, VTy->getNumElements());
9014   else if (TypeSize == Context.getTypeSize(Context.LongTy))
9015     return Context.getExtVectorType(Context.LongTy, VTy->getNumElements());
9016   assert(TypeSize == Context.getTypeSize(Context.LongLongTy) &&
9017          "Unhandled vector element size in vector compare");
9018   return Context.getExtVectorType(Context.LongLongTy, VTy->getNumElements());
9019 }
9020 
9021 /// CheckVectorCompareOperands - vector comparisons are a clang extension that
9022 /// operates on extended vector types.  Instead of producing an IntTy result,
9023 /// like a scalar comparison, a vector comparison produces a vector of integer
9024 /// types.
CheckVectorCompareOperands(ExprResult & LHS,ExprResult & RHS,SourceLocation Loc,bool IsRelational)9025 QualType Sema::CheckVectorCompareOperands(ExprResult &LHS, ExprResult &RHS,
9026                                           SourceLocation Loc,
9027                                           bool IsRelational) {
9028   // Check to make sure we're operating on vectors of the same type and width,
9029   // Allowing one side to be a scalar of element type.
9030   QualType vType = CheckVectorOperands(LHS, RHS, Loc, /*isCompAssign*/false,
9031                               /*AllowBothBool*/true,
9032                               /*AllowBoolConversions*/getLangOpts().ZVector);
9033   if (vType.isNull())
9034     return vType;
9035 
9036   QualType LHSType = LHS.get()->getType();
9037 
9038   // If AltiVec, the comparison results in a numeric type, i.e.
9039   // bool for C++, int for C
9040   if (getLangOpts().AltiVec &&
9041       vType->getAs<VectorType>()->getVectorKind() == VectorType::AltiVecVector)
9042     return Context.getLogicalOperationType();
9043 
9044   // For non-floating point types, check for self-comparisons of the form
9045   // x == x, x != x, x < x, etc.  These always evaluate to a constant, and
9046   // often indicate logic errors in the program.
9047   if (!LHSType->hasFloatingRepresentation() &&
9048       ActiveTemplateInstantiations.empty()) {
9049     if (DeclRefExpr* DRL
9050           = dyn_cast<DeclRefExpr>(LHS.get()->IgnoreParenImpCasts()))
9051       if (DeclRefExpr* DRR
9052             = dyn_cast<DeclRefExpr>(RHS.get()->IgnoreParenImpCasts()))
9053         if (DRL->getDecl() == DRR->getDecl())
9054           DiagRuntimeBehavior(Loc, nullptr,
9055                               PDiag(diag::warn_comparison_always)
9056                                 << 0 // self-
9057                                 << 2 // "a constant"
9058                               );
9059   }
9060 
9061   // Check for comparisons of floating point operands using != and ==.
9062   if (!IsRelational && LHSType->hasFloatingRepresentation()) {
9063     assert (RHS.get()->getType()->hasFloatingRepresentation());
9064     CheckFloatComparison(Loc, LHS.get(), RHS.get());
9065   }
9066 
9067   // Return a signed type for the vector.
9068   return GetSignedVectorType(LHSType);
9069 }
9070 
CheckVectorLogicalOperands(ExprResult & LHS,ExprResult & RHS,SourceLocation Loc)9071 QualType Sema::CheckVectorLogicalOperands(ExprResult &LHS, ExprResult &RHS,
9072                                           SourceLocation Loc) {
9073   // Ensure that either both operands are of the same vector type, or
9074   // one operand is of a vector type and the other is of its element type.
9075   QualType vType = CheckVectorOperands(LHS, RHS, Loc, false,
9076                                        /*AllowBothBool*/true,
9077                                        /*AllowBoolConversions*/false);
9078   if (vType.isNull())
9079     return InvalidOperands(Loc, LHS, RHS);
9080   if (getLangOpts().OpenCL && getLangOpts().OpenCLVersion < 120 &&
9081       vType->hasFloatingRepresentation())
9082     return InvalidOperands(Loc, LHS, RHS);
9083 
9084   return GetSignedVectorType(LHS.get()->getType());
9085 }
9086 
CheckBitwiseOperands(ExprResult & LHS,ExprResult & RHS,SourceLocation Loc,bool IsCompAssign)9087 inline QualType Sema::CheckBitwiseOperands(
9088   ExprResult &LHS, ExprResult &RHS, SourceLocation Loc, bool IsCompAssign) {
9089   checkArithmeticNull(*this, LHS, RHS, Loc, /*isCompare=*/false);
9090 
9091   if (LHS.get()->getType()->isVectorType() ||
9092       RHS.get()->getType()->isVectorType()) {
9093     if (LHS.get()->getType()->hasIntegerRepresentation() &&
9094         RHS.get()->getType()->hasIntegerRepresentation())
9095       return CheckVectorOperands(LHS, RHS, Loc, IsCompAssign,
9096                         /*AllowBothBool*/true,
9097                         /*AllowBoolConversions*/getLangOpts().ZVector);
9098     return InvalidOperands(Loc, LHS, RHS);
9099   }
9100 
9101   ExprResult LHSResult = LHS, RHSResult = RHS;
9102   QualType compType = UsualArithmeticConversions(LHSResult, RHSResult,
9103                                                  IsCompAssign);
9104   if (LHSResult.isInvalid() || RHSResult.isInvalid())
9105     return QualType();
9106   LHS = LHSResult.get();
9107   RHS = RHSResult.get();
9108 
9109   if (!compType.isNull() && compType->isIntegralOrUnscopedEnumerationType())
9110     return compType;
9111   return InvalidOperands(Loc, LHS, RHS);
9112 }
9113 
9114 // C99 6.5.[13,14]
CheckLogicalOperands(ExprResult & LHS,ExprResult & RHS,SourceLocation Loc,BinaryOperatorKind Opc)9115 inline QualType Sema::CheckLogicalOperands(ExprResult &LHS, ExprResult &RHS,
9116                                            SourceLocation Loc,
9117                                            BinaryOperatorKind Opc) {
9118   // Check vector operands differently.
9119   if (LHS.get()->getType()->isVectorType() || RHS.get()->getType()->isVectorType())
9120     return CheckVectorLogicalOperands(LHS, RHS, Loc);
9121 
9122   // Diagnose cases where the user write a logical and/or but probably meant a
9123   // bitwise one.  We do this when the LHS is a non-bool integer and the RHS
9124   // is a constant.
9125   if (LHS.get()->getType()->isIntegerType() &&
9126       !LHS.get()->getType()->isBooleanType() &&
9127       RHS.get()->getType()->isIntegerType() && !RHS.get()->isValueDependent() &&
9128       // Don't warn in macros or template instantiations.
9129       !Loc.isMacroID() && ActiveTemplateInstantiations.empty()) {
9130     // If the RHS can be constant folded, and if it constant folds to something
9131     // that isn't 0 or 1 (which indicate a potential logical operation that
9132     // happened to fold to true/false) then warn.
9133     // Parens on the RHS are ignored.
9134     llvm::APSInt Result;
9135     if (RHS.get()->EvaluateAsInt(Result, Context))
9136       if ((getLangOpts().Bool && !RHS.get()->getType()->isBooleanType() &&
9137            !RHS.get()->getExprLoc().isMacroID()) ||
9138           (Result != 0 && Result != 1)) {
9139         Diag(Loc, diag::warn_logical_instead_of_bitwise)
9140           << RHS.get()->getSourceRange()
9141           << (Opc == BO_LAnd ? "&&" : "||");
9142         // Suggest replacing the logical operator with the bitwise version
9143         Diag(Loc, diag::note_logical_instead_of_bitwise_change_operator)
9144             << (Opc == BO_LAnd ? "&" : "|")
9145             << FixItHint::CreateReplacement(SourceRange(
9146                                                  Loc, getLocForEndOfToken(Loc)),
9147                                             Opc == BO_LAnd ? "&" : "|");
9148         if (Opc == BO_LAnd)
9149           // Suggest replacing "Foo() && kNonZero" with "Foo()"
9150           Diag(Loc, diag::note_logical_instead_of_bitwise_remove_constant)
9151               << FixItHint::CreateRemoval(
9152                   SourceRange(getLocForEndOfToken(LHS.get()->getLocEnd()),
9153                               RHS.get()->getLocEnd()));
9154       }
9155   }
9156 
9157   if (!Context.getLangOpts().CPlusPlus) {
9158     // OpenCL v1.1 s6.3.g: The logical operators and (&&), or (||) do
9159     // not operate on the built-in scalar and vector float types.
9160     if (Context.getLangOpts().OpenCL &&
9161         Context.getLangOpts().OpenCLVersion < 120) {
9162       if (LHS.get()->getType()->isFloatingType() ||
9163           RHS.get()->getType()->isFloatingType())
9164         return InvalidOperands(Loc, LHS, RHS);
9165     }
9166 
9167     LHS = UsualUnaryConversions(LHS.get());
9168     if (LHS.isInvalid())
9169       return QualType();
9170 
9171     RHS = UsualUnaryConversions(RHS.get());
9172     if (RHS.isInvalid())
9173       return QualType();
9174 
9175     if (!LHS.get()->getType()->isScalarType() ||
9176         !RHS.get()->getType()->isScalarType())
9177       return InvalidOperands(Loc, LHS, RHS);
9178 
9179     return Context.IntTy;
9180   }
9181 
9182   // The following is safe because we only use this method for
9183   // non-overloadable operands.
9184 
9185   // C++ [expr.log.and]p1
9186   // C++ [expr.log.or]p1
9187   // The operands are both contextually converted to type bool.
9188   ExprResult LHSRes = PerformContextuallyConvertToBool(LHS.get());
9189   if (LHSRes.isInvalid())
9190     return InvalidOperands(Loc, LHS, RHS);
9191   LHS = LHSRes;
9192 
9193   ExprResult RHSRes = PerformContextuallyConvertToBool(RHS.get());
9194   if (RHSRes.isInvalid())
9195     return InvalidOperands(Loc, LHS, RHS);
9196   RHS = RHSRes;
9197 
9198   // C++ [expr.log.and]p2
9199   // C++ [expr.log.or]p2
9200   // The result is a bool.
9201   return Context.BoolTy;
9202 }
9203 
IsReadonlyMessage(Expr * E,Sema & S)9204 static bool IsReadonlyMessage(Expr *E, Sema &S) {
9205   const MemberExpr *ME = dyn_cast<MemberExpr>(E);
9206   if (!ME) return false;
9207   if (!isa<FieldDecl>(ME->getMemberDecl())) return false;
9208   ObjCMessageExpr *Base =
9209     dyn_cast<ObjCMessageExpr>(ME->getBase()->IgnoreParenImpCasts());
9210   if (!Base) return false;
9211   return Base->getMethodDecl() != nullptr;
9212 }
9213 
9214 /// Is the given expression (which must be 'const') a reference to a
9215 /// variable which was originally non-const, but which has become
9216 /// 'const' due to being captured within a block?
9217 enum NonConstCaptureKind { NCCK_None, NCCK_Block, NCCK_Lambda };
isReferenceToNonConstCapture(Sema & S,Expr * E)9218 static NonConstCaptureKind isReferenceToNonConstCapture(Sema &S, Expr *E) {
9219   assert(E->isLValue() && E->getType().isConstQualified());
9220   E = E->IgnoreParens();
9221 
9222   // Must be a reference to a declaration from an enclosing scope.
9223   DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E);
9224   if (!DRE) return NCCK_None;
9225   if (!DRE->refersToEnclosingVariableOrCapture()) return NCCK_None;
9226 
9227   // The declaration must be a variable which is not declared 'const'.
9228   VarDecl *var = dyn_cast<VarDecl>(DRE->getDecl());
9229   if (!var) return NCCK_None;
9230   if (var->getType().isConstQualified()) return NCCK_None;
9231   assert(var->hasLocalStorage() && "capture added 'const' to non-local?");
9232 
9233   // Decide whether the first capture was for a block or a lambda.
9234   DeclContext *DC = S.CurContext, *Prev = nullptr;
9235   while (DC != var->getDeclContext()) {
9236     Prev = DC;
9237     DC = DC->getParent();
9238   }
9239   // Unless we have an init-capture, we've gone one step too far.
9240   if (!var->isInitCapture())
9241     DC = Prev;
9242   return (isa<BlockDecl>(DC) ? NCCK_Block : NCCK_Lambda);
9243 }
9244 
IsTypeModifiable(QualType Ty,bool IsDereference)9245 static bool IsTypeModifiable(QualType Ty, bool IsDereference) {
9246   Ty = Ty.getNonReferenceType();
9247   if (IsDereference && Ty->isPointerType())
9248     Ty = Ty->getPointeeType();
9249   return !Ty.isConstQualified();
9250 }
9251 
9252 /// Emit the "read-only variable not assignable" error and print notes to give
9253 /// more information about why the variable is not assignable, such as pointing
9254 /// to the declaration of a const variable, showing that a method is const, or
9255 /// that the function is returning a const reference.
DiagnoseConstAssignment(Sema & S,const Expr * E,SourceLocation Loc)9256 static void DiagnoseConstAssignment(Sema &S, const Expr *E,
9257                                     SourceLocation Loc) {
9258   // Update err_typecheck_assign_const and note_typecheck_assign_const
9259   // when this enum is changed.
9260   enum {
9261     ConstFunction,
9262     ConstVariable,
9263     ConstMember,
9264     ConstMethod,
9265     ConstUnknown,  // Keep as last element
9266   };
9267 
9268   SourceRange ExprRange = E->getSourceRange();
9269 
9270   // Only emit one error on the first const found.  All other consts will emit
9271   // a note to the error.
9272   bool DiagnosticEmitted = false;
9273 
9274   // Track if the current expression is the result of a derefence, and if the
9275   // next checked expression is the result of a derefence.
9276   bool IsDereference = false;
9277   bool NextIsDereference = false;
9278 
9279   // Loop to process MemberExpr chains.
9280   while (true) {
9281     IsDereference = NextIsDereference;
9282     NextIsDereference = false;
9283 
9284     E = E->IgnoreParenImpCasts();
9285     if (const MemberExpr *ME = dyn_cast<MemberExpr>(E)) {
9286       NextIsDereference = ME->isArrow();
9287       const ValueDecl *VD = ME->getMemberDecl();
9288       if (const FieldDecl *Field = dyn_cast<FieldDecl>(VD)) {
9289         // Mutable fields can be modified even if the class is const.
9290         if (Field->isMutable()) {
9291           assert(DiagnosticEmitted && "Expected diagnostic not emitted.");
9292           break;
9293         }
9294 
9295         if (!IsTypeModifiable(Field->getType(), IsDereference)) {
9296           if (!DiagnosticEmitted) {
9297             S.Diag(Loc, diag::err_typecheck_assign_const)
9298                 << ExprRange << ConstMember << false /*static*/ << Field
9299                 << Field->getType();
9300             DiagnosticEmitted = true;
9301           }
9302           S.Diag(VD->getLocation(), diag::note_typecheck_assign_const)
9303               << ConstMember << false /*static*/ << Field << Field->getType()
9304               << Field->getSourceRange();
9305         }
9306         E = ME->getBase();
9307         continue;
9308       } else if (const VarDecl *VDecl = dyn_cast<VarDecl>(VD)) {
9309         if (VDecl->getType().isConstQualified()) {
9310           if (!DiagnosticEmitted) {
9311             S.Diag(Loc, diag::err_typecheck_assign_const)
9312                 << ExprRange << ConstMember << true /*static*/ << VDecl
9313                 << VDecl->getType();
9314             DiagnosticEmitted = true;
9315           }
9316           S.Diag(VD->getLocation(), diag::note_typecheck_assign_const)
9317               << ConstMember << true /*static*/ << VDecl << VDecl->getType()
9318               << VDecl->getSourceRange();
9319         }
9320         // Static fields do not inherit constness from parents.
9321         break;
9322       }
9323       break;
9324     } // End MemberExpr
9325     break;
9326   }
9327 
9328   if (const CallExpr *CE = dyn_cast<CallExpr>(E)) {
9329     // Function calls
9330     const FunctionDecl *FD = CE->getDirectCallee();
9331     if (FD && !IsTypeModifiable(FD->getReturnType(), IsDereference)) {
9332       if (!DiagnosticEmitted) {
9333         S.Diag(Loc, diag::err_typecheck_assign_const) << ExprRange
9334                                                       << ConstFunction << FD;
9335         DiagnosticEmitted = true;
9336       }
9337       S.Diag(FD->getReturnTypeSourceRange().getBegin(),
9338              diag::note_typecheck_assign_const)
9339           << ConstFunction << FD << FD->getReturnType()
9340           << FD->getReturnTypeSourceRange();
9341     }
9342   } else if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) {
9343     // Point to variable declaration.
9344     if (const ValueDecl *VD = DRE->getDecl()) {
9345       if (!IsTypeModifiable(VD->getType(), IsDereference)) {
9346         if (!DiagnosticEmitted) {
9347           S.Diag(Loc, diag::err_typecheck_assign_const)
9348               << ExprRange << ConstVariable << VD << VD->getType();
9349           DiagnosticEmitted = true;
9350         }
9351         S.Diag(VD->getLocation(), diag::note_typecheck_assign_const)
9352             << ConstVariable << VD << VD->getType() << VD->getSourceRange();
9353       }
9354     }
9355   } else if (isa<CXXThisExpr>(E)) {
9356     if (const DeclContext *DC = S.getFunctionLevelDeclContext()) {
9357       if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(DC)) {
9358         if (MD->isConst()) {
9359           if (!DiagnosticEmitted) {
9360             S.Diag(Loc, diag::err_typecheck_assign_const) << ExprRange
9361                                                           << ConstMethod << MD;
9362             DiagnosticEmitted = true;
9363           }
9364           S.Diag(MD->getLocation(), diag::note_typecheck_assign_const)
9365               << ConstMethod << MD << MD->getSourceRange();
9366         }
9367       }
9368     }
9369   }
9370 
9371   if (DiagnosticEmitted)
9372     return;
9373 
9374   // Can't determine a more specific message, so display the generic error.
9375   S.Diag(Loc, diag::err_typecheck_assign_const) << ExprRange << ConstUnknown;
9376 }
9377 
9378 /// CheckForModifiableLvalue - Verify that E is a modifiable lvalue.  If not,
9379 /// emit an error and return true.  If so, return false.
CheckForModifiableLvalue(Expr * E,SourceLocation Loc,Sema & S)9380 static bool CheckForModifiableLvalue(Expr *E, SourceLocation Loc, Sema &S) {
9381   assert(!E->hasPlaceholderType(BuiltinType::PseudoObject));
9382   SourceLocation OrigLoc = Loc;
9383   Expr::isModifiableLvalueResult IsLV = E->isModifiableLvalue(S.Context,
9384                                                               &Loc);
9385   if (IsLV == Expr::MLV_ClassTemporary && IsReadonlyMessage(E, S))
9386     IsLV = Expr::MLV_InvalidMessageExpression;
9387   if (IsLV == Expr::MLV_Valid)
9388     return false;
9389 
9390   unsigned DiagID = 0;
9391   bool NeedType = false;
9392   switch (IsLV) { // C99 6.5.16p2
9393   case Expr::MLV_ConstQualified:
9394     // Use a specialized diagnostic when we're assigning to an object
9395     // from an enclosing function or block.
9396     if (NonConstCaptureKind NCCK = isReferenceToNonConstCapture(S, E)) {
9397       if (NCCK == NCCK_Block)
9398         DiagID = diag::err_block_decl_ref_not_modifiable_lvalue;
9399       else
9400         DiagID = diag::err_lambda_decl_ref_not_modifiable_lvalue;
9401       break;
9402     }
9403 
9404     // In ARC, use some specialized diagnostics for occasions where we
9405     // infer 'const'.  These are always pseudo-strong variables.
9406     if (S.getLangOpts().ObjCAutoRefCount) {
9407       DeclRefExpr *declRef = dyn_cast<DeclRefExpr>(E->IgnoreParenCasts());
9408       if (declRef && isa<VarDecl>(declRef->getDecl())) {
9409         VarDecl *var = cast<VarDecl>(declRef->getDecl());
9410 
9411         // Use the normal diagnostic if it's pseudo-__strong but the
9412         // user actually wrote 'const'.
9413         if (var->isARCPseudoStrong() &&
9414             (!var->getTypeSourceInfo() ||
9415              !var->getTypeSourceInfo()->getType().isConstQualified())) {
9416           // There are two pseudo-strong cases:
9417           //  - self
9418           ObjCMethodDecl *method = S.getCurMethodDecl();
9419           if (method && var == method->getSelfDecl())
9420             DiagID = method->isClassMethod()
9421               ? diag::err_typecheck_arc_assign_self_class_method
9422               : diag::err_typecheck_arc_assign_self;
9423 
9424           //  - fast enumeration variables
9425           else
9426             DiagID = diag::err_typecheck_arr_assign_enumeration;
9427 
9428           SourceRange Assign;
9429           if (Loc != OrigLoc)
9430             Assign = SourceRange(OrigLoc, OrigLoc);
9431           S.Diag(Loc, DiagID) << E->getSourceRange() << Assign;
9432           // We need to preserve the AST regardless, so migration tool
9433           // can do its job.
9434           return false;
9435         }
9436       }
9437     }
9438 
9439     // If none of the special cases above are triggered, then this is a
9440     // simple const assignment.
9441     if (DiagID == 0) {
9442       DiagnoseConstAssignment(S, E, Loc);
9443       return true;
9444     }
9445 
9446     break;
9447   case Expr::MLV_ConstAddrSpace:
9448     DiagnoseConstAssignment(S, E, Loc);
9449     return true;
9450   case Expr::MLV_ArrayType:
9451   case Expr::MLV_ArrayTemporary:
9452     DiagID = diag::err_typecheck_array_not_modifiable_lvalue;
9453     NeedType = true;
9454     break;
9455   case Expr::MLV_NotObjectType:
9456     DiagID = diag::err_typecheck_non_object_not_modifiable_lvalue;
9457     NeedType = true;
9458     break;
9459   case Expr::MLV_LValueCast:
9460     DiagID = diag::err_typecheck_lvalue_casts_not_supported;
9461     break;
9462   case Expr::MLV_Valid:
9463     llvm_unreachable("did not take early return for MLV_Valid");
9464   case Expr::MLV_InvalidExpression:
9465   case Expr::MLV_MemberFunction:
9466   case Expr::MLV_ClassTemporary:
9467     DiagID = diag::err_typecheck_expression_not_modifiable_lvalue;
9468     break;
9469   case Expr::MLV_IncompleteType:
9470   case Expr::MLV_IncompleteVoidType:
9471     return S.RequireCompleteType(Loc, E->getType(),
9472              diag::err_typecheck_incomplete_type_not_modifiable_lvalue, E);
9473   case Expr::MLV_DuplicateVectorComponents:
9474     DiagID = diag::err_typecheck_duplicate_vector_components_not_mlvalue;
9475     break;
9476   case Expr::MLV_NoSetterProperty:
9477     llvm_unreachable("readonly properties should be processed differently");
9478   case Expr::MLV_InvalidMessageExpression:
9479     DiagID = diag::error_readonly_message_assignment;
9480     break;
9481   case Expr::MLV_SubObjCPropertySetting:
9482     DiagID = diag::error_no_subobject_property_setting;
9483     break;
9484   }
9485 
9486   SourceRange Assign;
9487   if (Loc != OrigLoc)
9488     Assign = SourceRange(OrigLoc, OrigLoc);
9489   if (NeedType)
9490     S.Diag(Loc, DiagID) << E->getType() << E->getSourceRange() << Assign;
9491   else
9492     S.Diag(Loc, DiagID) << E->getSourceRange() << Assign;
9493   return true;
9494 }
9495 
CheckIdentityFieldAssignment(Expr * LHSExpr,Expr * RHSExpr,SourceLocation Loc,Sema & Sema)9496 static void CheckIdentityFieldAssignment(Expr *LHSExpr, Expr *RHSExpr,
9497                                          SourceLocation Loc,
9498                                          Sema &Sema) {
9499   // C / C++ fields
9500   MemberExpr *ML = dyn_cast<MemberExpr>(LHSExpr);
9501   MemberExpr *MR = dyn_cast<MemberExpr>(RHSExpr);
9502   if (ML && MR && ML->getMemberDecl() == MR->getMemberDecl()) {
9503     if (isa<CXXThisExpr>(ML->getBase()) && isa<CXXThisExpr>(MR->getBase()))
9504       Sema.Diag(Loc, diag::warn_identity_field_assign) << 0;
9505   }
9506 
9507   // Objective-C instance variables
9508   ObjCIvarRefExpr *OL = dyn_cast<ObjCIvarRefExpr>(LHSExpr);
9509   ObjCIvarRefExpr *OR = dyn_cast<ObjCIvarRefExpr>(RHSExpr);
9510   if (OL && OR && OL->getDecl() == OR->getDecl()) {
9511     DeclRefExpr *RL = dyn_cast<DeclRefExpr>(OL->getBase()->IgnoreImpCasts());
9512     DeclRefExpr *RR = dyn_cast<DeclRefExpr>(OR->getBase()->IgnoreImpCasts());
9513     if (RL && RR && RL->getDecl() == RR->getDecl())
9514       Sema.Diag(Loc, diag::warn_identity_field_assign) << 1;
9515   }
9516 }
9517 
9518 // C99 6.5.16.1
CheckAssignmentOperands(Expr * LHSExpr,ExprResult & RHS,SourceLocation Loc,QualType CompoundType)9519 QualType Sema::CheckAssignmentOperands(Expr *LHSExpr, ExprResult &RHS,
9520                                        SourceLocation Loc,
9521                                        QualType CompoundType) {
9522   assert(!LHSExpr->hasPlaceholderType(BuiltinType::PseudoObject));
9523 
9524   // Verify that LHS is a modifiable lvalue, and emit error if not.
9525   if (CheckForModifiableLvalue(LHSExpr, Loc, *this))
9526     return QualType();
9527 
9528   QualType LHSType = LHSExpr->getType();
9529   QualType RHSType = CompoundType.isNull() ? RHS.get()->getType() :
9530                                              CompoundType;
9531   AssignConvertType ConvTy;
9532   if (CompoundType.isNull()) {
9533     Expr *RHSCheck = RHS.get();
9534 
9535     CheckIdentityFieldAssignment(LHSExpr, RHSCheck, Loc, *this);
9536 
9537     QualType LHSTy(LHSType);
9538     ConvTy = CheckSingleAssignmentConstraints(LHSTy, RHS);
9539     if (RHS.isInvalid())
9540       return QualType();
9541     // Special case of NSObject attributes on c-style pointer types.
9542     if (ConvTy == IncompatiblePointer &&
9543         ((Context.isObjCNSObjectType(LHSType) &&
9544           RHSType->isObjCObjectPointerType()) ||
9545          (Context.isObjCNSObjectType(RHSType) &&
9546           LHSType->isObjCObjectPointerType())))
9547       ConvTy = Compatible;
9548 
9549     if (ConvTy == Compatible &&
9550         LHSType->isObjCObjectType())
9551         Diag(Loc, diag::err_objc_object_assignment)
9552           << LHSType;
9553 
9554     // If the RHS is a unary plus or minus, check to see if they = and + are
9555     // right next to each other.  If so, the user may have typo'd "x =+ 4"
9556     // instead of "x += 4".
9557     if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(RHSCheck))
9558       RHSCheck = ICE->getSubExpr();
9559     if (UnaryOperator *UO = dyn_cast<UnaryOperator>(RHSCheck)) {
9560       if ((UO->getOpcode() == UO_Plus ||
9561            UO->getOpcode() == UO_Minus) &&
9562           Loc.isFileID() && UO->getOperatorLoc().isFileID() &&
9563           // Only if the two operators are exactly adjacent.
9564           Loc.getLocWithOffset(1) == UO->getOperatorLoc() &&
9565           // And there is a space or other character before the subexpr of the
9566           // unary +/-.  We don't want to warn on "x=-1".
9567           Loc.getLocWithOffset(2) != UO->getSubExpr()->getLocStart() &&
9568           UO->getSubExpr()->getLocStart().isFileID()) {
9569         Diag(Loc, diag::warn_not_compound_assign)
9570           << (UO->getOpcode() == UO_Plus ? "+" : "-")
9571           << SourceRange(UO->getOperatorLoc(), UO->getOperatorLoc());
9572       }
9573     }
9574 
9575     if (ConvTy == Compatible) {
9576       if (LHSType.getObjCLifetime() == Qualifiers::OCL_Strong) {
9577         // Warn about retain cycles where a block captures the LHS, but
9578         // not if the LHS is a simple variable into which the block is
9579         // being stored...unless that variable can be captured by reference!
9580         const Expr *InnerLHS = LHSExpr->IgnoreParenCasts();
9581         const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(InnerLHS);
9582         if (!DRE || DRE->getDecl()->hasAttr<BlocksAttr>())
9583           checkRetainCycles(LHSExpr, RHS.get());
9584 
9585         // It is safe to assign a weak reference into a strong variable.
9586         // Although this code can still have problems:
9587         //   id x = self.weakProp;
9588         //   id y = self.weakProp;
9589         // we do not warn to warn spuriously when 'x' and 'y' are on separate
9590         // paths through the function. This should be revisited if
9591         // -Wrepeated-use-of-weak is made flow-sensitive.
9592         if (!Diags.isIgnored(diag::warn_arc_repeated_use_of_weak,
9593                              RHS.get()->getLocStart()))
9594           getCurFunction()->markSafeWeakUse(RHS.get());
9595 
9596       } else if (getLangOpts().ObjCAutoRefCount) {
9597         checkUnsafeExprAssigns(Loc, LHSExpr, RHS.get());
9598       }
9599     }
9600   } else {
9601     // Compound assignment "x += y"
9602     ConvTy = CheckAssignmentConstraints(Loc, LHSType, RHSType);
9603   }
9604 
9605   if (DiagnoseAssignmentResult(ConvTy, Loc, LHSType, RHSType,
9606                                RHS.get(), AA_Assigning))
9607     return QualType();
9608 
9609   CheckForNullPointerDereference(*this, LHSExpr);
9610 
9611   // C99 6.5.16p3: The type of an assignment expression is the type of the
9612   // left operand unless the left operand has qualified type, in which case
9613   // it is the unqualified version of the type of the left operand.
9614   // C99 6.5.16.1p2: In simple assignment, the value of the right operand
9615   // is converted to the type of the assignment expression (above).
9616   // C++ 5.17p1: the type of the assignment expression is that of its left
9617   // operand.
9618   return (getLangOpts().CPlusPlus
9619           ? LHSType : LHSType.getUnqualifiedType());
9620 }
9621 
9622 // C99 6.5.17
CheckCommaOperands(Sema & S,ExprResult & LHS,ExprResult & RHS,SourceLocation Loc)9623 static QualType CheckCommaOperands(Sema &S, ExprResult &LHS, ExprResult &RHS,
9624                                    SourceLocation Loc) {
9625   LHS = S.CheckPlaceholderExpr(LHS.get());
9626   RHS = S.CheckPlaceholderExpr(RHS.get());
9627   if (LHS.isInvalid() || RHS.isInvalid())
9628     return QualType();
9629 
9630   // C's comma performs lvalue conversion (C99 6.3.2.1) on both its
9631   // operands, but not unary promotions.
9632   // C++'s comma does not do any conversions at all (C++ [expr.comma]p1).
9633 
9634   // So we treat the LHS as a ignored value, and in C++ we allow the
9635   // containing site to determine what should be done with the RHS.
9636   LHS = S.IgnoredValueConversions(LHS.get());
9637   if (LHS.isInvalid())
9638     return QualType();
9639 
9640   S.DiagnoseUnusedExprResult(LHS.get());
9641 
9642   if (!S.getLangOpts().CPlusPlus) {
9643     RHS = S.DefaultFunctionArrayLvalueConversion(RHS.get());
9644     if (RHS.isInvalid())
9645       return QualType();
9646     if (!RHS.get()->getType()->isVoidType())
9647       S.RequireCompleteType(Loc, RHS.get()->getType(),
9648                             diag::err_incomplete_type);
9649   }
9650 
9651   return RHS.get()->getType();
9652 }
9653 
9654 /// CheckIncrementDecrementOperand - unlike most "Check" methods, this routine
9655 /// doesn't need to call UsualUnaryConversions or UsualArithmeticConversions.
CheckIncrementDecrementOperand(Sema & S,Expr * Op,ExprValueKind & VK,ExprObjectKind & OK,SourceLocation OpLoc,bool IsInc,bool IsPrefix)9656 static QualType CheckIncrementDecrementOperand(Sema &S, Expr *Op,
9657                                                ExprValueKind &VK,
9658                                                ExprObjectKind &OK,
9659                                                SourceLocation OpLoc,
9660                                                bool IsInc, bool IsPrefix) {
9661   if (Op->isTypeDependent())
9662     return S.Context.DependentTy;
9663 
9664   QualType ResType = Op->getType();
9665   // Atomic types can be used for increment / decrement where the non-atomic
9666   // versions can, so ignore the _Atomic() specifier for the purpose of
9667   // checking.
9668   if (const AtomicType *ResAtomicType = ResType->getAs<AtomicType>())
9669     ResType = ResAtomicType->getValueType();
9670 
9671   assert(!ResType.isNull() && "no type for increment/decrement expression");
9672 
9673   if (S.getLangOpts().CPlusPlus && ResType->isBooleanType()) {
9674     // Decrement of bool is not allowed.
9675     if (!IsInc) {
9676       S.Diag(OpLoc, diag::err_decrement_bool) << Op->getSourceRange();
9677       return QualType();
9678     }
9679     // Increment of bool sets it to true, but is deprecated.
9680     S.Diag(OpLoc, S.getLangOpts().CPlusPlus1z ? diag::ext_increment_bool
9681                                               : diag::warn_increment_bool)
9682       << Op->getSourceRange();
9683   } else if (S.getLangOpts().CPlusPlus && ResType->isEnumeralType()) {
9684     // Error on enum increments and decrements in C++ mode
9685     S.Diag(OpLoc, diag::err_increment_decrement_enum) << IsInc << ResType;
9686     return QualType();
9687   } else if (ResType->isRealType()) {
9688     // OK!
9689   } else if (ResType->isPointerType()) {
9690     // C99 6.5.2.4p2, 6.5.6p2
9691     if (!checkArithmeticOpPointerOperand(S, OpLoc, Op))
9692       return QualType();
9693   } else if (ResType->isObjCObjectPointerType()) {
9694     // On modern runtimes, ObjC pointer arithmetic is forbidden.
9695     // Otherwise, we just need a complete type.
9696     if (checkArithmeticIncompletePointerType(S, OpLoc, Op) ||
9697         checkArithmeticOnObjCPointer(S, OpLoc, Op))
9698       return QualType();
9699   } else if (ResType->isAnyComplexType()) {
9700     // C99 does not support ++/-- on complex types, we allow as an extension.
9701     S.Diag(OpLoc, diag::ext_integer_increment_complex)
9702       << ResType << Op->getSourceRange();
9703   } else if (ResType->isPlaceholderType()) {
9704     ExprResult PR = S.CheckPlaceholderExpr(Op);
9705     if (PR.isInvalid()) return QualType();
9706     return CheckIncrementDecrementOperand(S, PR.get(), VK, OK, OpLoc,
9707                                           IsInc, IsPrefix);
9708   } else if (S.getLangOpts().AltiVec && ResType->isVectorType()) {
9709     // OK! ( C/C++ Language Extensions for CBEA(Version 2.6) 10.3 )
9710   } else if (S.getLangOpts().ZVector && ResType->isVectorType() &&
9711              (ResType->getAs<VectorType>()->getVectorKind() !=
9712               VectorType::AltiVecBool)) {
9713     // The z vector extensions allow ++ and -- for non-bool vectors.
9714   } else if(S.getLangOpts().OpenCL && ResType->isVectorType() &&
9715             ResType->getAs<VectorType>()->getElementType()->isIntegerType()) {
9716     // OpenCL V1.2 6.3 says dec/inc ops operate on integer vector types.
9717   } else {
9718     S.Diag(OpLoc, diag::err_typecheck_illegal_increment_decrement)
9719       << ResType << int(IsInc) << Op->getSourceRange();
9720     return QualType();
9721   }
9722   // At this point, we know we have a real, complex or pointer type.
9723   // Now make sure the operand is a modifiable lvalue.
9724   if (CheckForModifiableLvalue(Op, OpLoc, S))
9725     return QualType();
9726   // In C++, a prefix increment is the same type as the operand. Otherwise
9727   // (in C or with postfix), the increment is the unqualified type of the
9728   // operand.
9729   if (IsPrefix && S.getLangOpts().CPlusPlus) {
9730     VK = VK_LValue;
9731     OK = Op->getObjectKind();
9732     return ResType;
9733   } else {
9734     VK = VK_RValue;
9735     return ResType.getUnqualifiedType();
9736   }
9737 }
9738 
9739 
9740 /// getPrimaryDecl - Helper function for CheckAddressOfOperand().
9741 /// This routine allows us to typecheck complex/recursive expressions
9742 /// where the declaration is needed for type checking. We only need to
9743 /// handle cases when the expression references a function designator
9744 /// or is an lvalue. Here are some examples:
9745 ///  - &(x) => x
9746 ///  - &*****f => f for f a function designator.
9747 ///  - &s.xx => s
9748 ///  - &s.zz[1].yy -> s, if zz is an array
9749 ///  - *(x + 1) -> x, if x is an array
9750 ///  - &"123"[2] -> 0
9751 ///  - & __real__ x -> x
getPrimaryDecl(Expr * E)9752 static ValueDecl *getPrimaryDecl(Expr *E) {
9753   switch (E->getStmtClass()) {
9754   case Stmt::DeclRefExprClass:
9755     return cast<DeclRefExpr>(E)->getDecl();
9756   case Stmt::MemberExprClass:
9757     // If this is an arrow operator, the address is an offset from
9758     // the base's value, so the object the base refers to is
9759     // irrelevant.
9760     if (cast<MemberExpr>(E)->isArrow())
9761       return nullptr;
9762     // Otherwise, the expression refers to a part of the base
9763     return getPrimaryDecl(cast<MemberExpr>(E)->getBase());
9764   case Stmt::ArraySubscriptExprClass: {
9765     // FIXME: This code shouldn't be necessary!  We should catch the implicit
9766     // promotion of register arrays earlier.
9767     Expr* Base = cast<ArraySubscriptExpr>(E)->getBase();
9768     if (ImplicitCastExpr* ICE = dyn_cast<ImplicitCastExpr>(Base)) {
9769       if (ICE->getSubExpr()->getType()->isArrayType())
9770         return getPrimaryDecl(ICE->getSubExpr());
9771     }
9772     return nullptr;
9773   }
9774   case Stmt::UnaryOperatorClass: {
9775     UnaryOperator *UO = cast<UnaryOperator>(E);
9776 
9777     switch(UO->getOpcode()) {
9778     case UO_Real:
9779     case UO_Imag:
9780     case UO_Extension:
9781       return getPrimaryDecl(UO->getSubExpr());
9782     default:
9783       return nullptr;
9784     }
9785   }
9786   case Stmt::ParenExprClass:
9787     return getPrimaryDecl(cast<ParenExpr>(E)->getSubExpr());
9788   case Stmt::ImplicitCastExprClass:
9789     // If the result of an implicit cast is an l-value, we care about
9790     // the sub-expression; otherwise, the result here doesn't matter.
9791     return getPrimaryDecl(cast<ImplicitCastExpr>(E)->getSubExpr());
9792   default:
9793     return nullptr;
9794   }
9795 }
9796 
9797 namespace {
9798   enum {
9799     AO_Bit_Field = 0,
9800     AO_Vector_Element = 1,
9801     AO_Property_Expansion = 2,
9802     AO_Register_Variable = 3,
9803     AO_No_Error = 4
9804   };
9805 }
9806 /// \brief Diagnose invalid operand for address of operations.
9807 ///
9808 /// \param Type The type of operand which cannot have its address taken.
diagnoseAddressOfInvalidType(Sema & S,SourceLocation Loc,Expr * E,unsigned Type)9809 static void diagnoseAddressOfInvalidType(Sema &S, SourceLocation Loc,
9810                                          Expr *E, unsigned Type) {
9811   S.Diag(Loc, diag::err_typecheck_address_of) << Type << E->getSourceRange();
9812 }
9813 
9814 /// CheckAddressOfOperand - The operand of & must be either a function
9815 /// designator or an lvalue designating an object. If it is an lvalue, the
9816 /// object cannot be declared with storage class register or be a bit field.
9817 /// Note: The usual conversions are *not* applied to the operand of the &
9818 /// operator (C99 6.3.2.1p[2-4]), and its result is never an lvalue.
9819 /// In C++, the operand might be an overloaded function name, in which case
9820 /// we allow the '&' but retain the overloaded-function type.
CheckAddressOfOperand(ExprResult & OrigOp,SourceLocation OpLoc)9821 QualType Sema::CheckAddressOfOperand(ExprResult &OrigOp, SourceLocation OpLoc) {
9822   if (const BuiltinType *PTy = OrigOp.get()->getType()->getAsPlaceholderType()){
9823     if (PTy->getKind() == BuiltinType::Overload) {
9824       Expr *E = OrigOp.get()->IgnoreParens();
9825       if (!isa<OverloadExpr>(E)) {
9826         assert(cast<UnaryOperator>(E)->getOpcode() == UO_AddrOf);
9827         Diag(OpLoc, diag::err_typecheck_invalid_lvalue_addrof_addrof_function)
9828           << OrigOp.get()->getSourceRange();
9829         return QualType();
9830       }
9831 
9832       OverloadExpr *Ovl = cast<OverloadExpr>(E);
9833       if (isa<UnresolvedMemberExpr>(Ovl))
9834         if (!ResolveSingleFunctionTemplateSpecialization(Ovl)) {
9835           Diag(OpLoc, diag::err_invalid_form_pointer_member_function)
9836             << OrigOp.get()->getSourceRange();
9837           return QualType();
9838         }
9839 
9840       return Context.OverloadTy;
9841     }
9842 
9843     if (PTy->getKind() == BuiltinType::UnknownAny)
9844       return Context.UnknownAnyTy;
9845 
9846     if (PTy->getKind() == BuiltinType::BoundMember) {
9847       Diag(OpLoc, diag::err_invalid_form_pointer_member_function)
9848         << OrigOp.get()->getSourceRange();
9849       return QualType();
9850     }
9851 
9852     OrigOp = CheckPlaceholderExpr(OrigOp.get());
9853     if (OrigOp.isInvalid()) return QualType();
9854   }
9855 
9856   if (OrigOp.get()->isTypeDependent())
9857     return Context.DependentTy;
9858 
9859   assert(!OrigOp.get()->getType()->isPlaceholderType());
9860 
9861   // Make sure to ignore parentheses in subsequent checks
9862   Expr *op = OrigOp.get()->IgnoreParens();
9863 
9864   // OpenCL v1.0 s6.8.a.3: Pointers to functions are not allowed.
9865   if (LangOpts.OpenCL && op->getType()->isFunctionType()) {
9866     Diag(op->getExprLoc(), diag::err_opencl_taking_function_address);
9867     return QualType();
9868   }
9869 
9870   if (getLangOpts().C99) {
9871     // Implement C99-only parts of addressof rules.
9872     if (UnaryOperator* uOp = dyn_cast<UnaryOperator>(op)) {
9873       if (uOp->getOpcode() == UO_Deref)
9874         // Per C99 6.5.3.2, the address of a deref always returns a valid result
9875         // (assuming the deref expression is valid).
9876         return uOp->getSubExpr()->getType();
9877     }
9878     // Technically, there should be a check for array subscript
9879     // expressions here, but the result of one is always an lvalue anyway.
9880   }
9881   ValueDecl *dcl = getPrimaryDecl(op);
9882 
9883   if (auto *FD = dyn_cast_or_null<FunctionDecl>(dcl))
9884     if (!checkAddressOfFunctionIsAvailable(FD, /*Complain=*/true,
9885                                            op->getLocStart()))
9886       return QualType();
9887 
9888   Expr::LValueClassification lval = op->ClassifyLValue(Context);
9889   unsigned AddressOfError = AO_No_Error;
9890 
9891   if (lval == Expr::LV_ClassTemporary || lval == Expr::LV_ArrayTemporary) {
9892     bool sfinae = (bool)isSFINAEContext();
9893     Diag(OpLoc, isSFINAEContext() ? diag::err_typecheck_addrof_temporary
9894                                   : diag::ext_typecheck_addrof_temporary)
9895       << op->getType() << op->getSourceRange();
9896     if (sfinae)
9897       return QualType();
9898     // Materialize the temporary as an lvalue so that we can take its address.
9899     OrigOp = op = new (Context)
9900         MaterializeTemporaryExpr(op->getType(), OrigOp.get(), true);
9901   } else if (isa<ObjCSelectorExpr>(op)) {
9902     return Context.getPointerType(op->getType());
9903   } else if (lval == Expr::LV_MemberFunction) {
9904     // If it's an instance method, make a member pointer.
9905     // The expression must have exactly the form &A::foo.
9906 
9907     // If the underlying expression isn't a decl ref, give up.
9908     if (!isa<DeclRefExpr>(op)) {
9909       Diag(OpLoc, diag::err_invalid_form_pointer_member_function)
9910         << OrigOp.get()->getSourceRange();
9911       return QualType();
9912     }
9913     DeclRefExpr *DRE = cast<DeclRefExpr>(op);
9914     CXXMethodDecl *MD = cast<CXXMethodDecl>(DRE->getDecl());
9915 
9916     // The id-expression was parenthesized.
9917     if (OrigOp.get() != DRE) {
9918       Diag(OpLoc, diag::err_parens_pointer_member_function)
9919         << OrigOp.get()->getSourceRange();
9920 
9921     // The method was named without a qualifier.
9922     } else if (!DRE->getQualifier()) {
9923       if (MD->getParent()->getName().empty())
9924         Diag(OpLoc, diag::err_unqualified_pointer_member_function)
9925           << op->getSourceRange();
9926       else {
9927         SmallString<32> Str;
9928         StringRef Qual = (MD->getParent()->getName() + "::").toStringRef(Str);
9929         Diag(OpLoc, diag::err_unqualified_pointer_member_function)
9930           << op->getSourceRange()
9931           << FixItHint::CreateInsertion(op->getSourceRange().getBegin(), Qual);
9932       }
9933     }
9934 
9935     // Taking the address of a dtor is illegal per C++ [class.dtor]p2.
9936     if (isa<CXXDestructorDecl>(MD))
9937       Diag(OpLoc, diag::err_typecheck_addrof_dtor) << op->getSourceRange();
9938 
9939     QualType MPTy = Context.getMemberPointerType(
9940         op->getType(), Context.getTypeDeclType(MD->getParent()).getTypePtr());
9941     // Under the MS ABI, lock down the inheritance model now.
9942     if (Context.getTargetInfo().getCXXABI().isMicrosoft())
9943       (void)isCompleteType(OpLoc, MPTy);
9944     return MPTy;
9945   } else if (lval != Expr::LV_Valid && lval != Expr::LV_IncompleteVoidType) {
9946     // C99 6.5.3.2p1
9947     // The operand must be either an l-value or a function designator
9948     if (!op->getType()->isFunctionType()) {
9949       // Use a special diagnostic for loads from property references.
9950       if (isa<PseudoObjectExpr>(op)) {
9951         AddressOfError = AO_Property_Expansion;
9952       } else {
9953         Diag(OpLoc, diag::err_typecheck_invalid_lvalue_addrof)
9954           << op->getType() << op->getSourceRange();
9955         return QualType();
9956       }
9957     }
9958   } else if (op->getObjectKind() == OK_BitField) { // C99 6.5.3.2p1
9959     // The operand cannot be a bit-field
9960     AddressOfError = AO_Bit_Field;
9961   } else if (op->getObjectKind() == OK_VectorComponent) {
9962     // The operand cannot be an element of a vector
9963     AddressOfError = AO_Vector_Element;
9964   } else if (dcl) { // C99 6.5.3.2p1
9965     // We have an lvalue with a decl. Make sure the decl is not declared
9966     // with the register storage-class specifier.
9967     if (const VarDecl *vd = dyn_cast<VarDecl>(dcl)) {
9968       // in C++ it is not error to take address of a register
9969       // variable (c++03 7.1.1P3)
9970       if (vd->getStorageClass() == SC_Register &&
9971           !getLangOpts().CPlusPlus) {
9972         AddressOfError = AO_Register_Variable;
9973       }
9974     } else if (isa<MSPropertyDecl>(dcl)) {
9975       AddressOfError = AO_Property_Expansion;
9976     } else if (isa<FunctionTemplateDecl>(dcl)) {
9977       return Context.OverloadTy;
9978     } else if (isa<FieldDecl>(dcl) || isa<IndirectFieldDecl>(dcl)) {
9979       // Okay: we can take the address of a field.
9980       // Could be a pointer to member, though, if there is an explicit
9981       // scope qualifier for the class.
9982       if (isa<DeclRefExpr>(op) && cast<DeclRefExpr>(op)->getQualifier()) {
9983         DeclContext *Ctx = dcl->getDeclContext();
9984         if (Ctx && Ctx->isRecord()) {
9985           if (dcl->getType()->isReferenceType()) {
9986             Diag(OpLoc,
9987                  diag::err_cannot_form_pointer_to_member_of_reference_type)
9988               << dcl->getDeclName() << dcl->getType();
9989             return QualType();
9990           }
9991 
9992           while (cast<RecordDecl>(Ctx)->isAnonymousStructOrUnion())
9993             Ctx = Ctx->getParent();
9994 
9995           QualType MPTy = Context.getMemberPointerType(
9996               op->getType(),
9997               Context.getTypeDeclType(cast<RecordDecl>(Ctx)).getTypePtr());
9998           // Under the MS ABI, lock down the inheritance model now.
9999           if (Context.getTargetInfo().getCXXABI().isMicrosoft())
10000             (void)isCompleteType(OpLoc, MPTy);
10001           return MPTy;
10002         }
10003       }
10004     } else if (!isa<FunctionDecl>(dcl) && !isa<NonTypeTemplateParmDecl>(dcl))
10005       llvm_unreachable("Unknown/unexpected decl type");
10006   }
10007 
10008   if (AddressOfError != AO_No_Error) {
10009     diagnoseAddressOfInvalidType(*this, OpLoc, op, AddressOfError);
10010     return QualType();
10011   }
10012 
10013   if (lval == Expr::LV_IncompleteVoidType) {
10014     // Taking the address of a void variable is technically illegal, but we
10015     // allow it in cases which are otherwise valid.
10016     // Example: "extern void x; void* y = &x;".
10017     Diag(OpLoc, diag::ext_typecheck_addrof_void) << op->getSourceRange();
10018   }
10019 
10020   // If the operand has type "type", the result has type "pointer to type".
10021   if (op->getType()->isObjCObjectType())
10022     return Context.getObjCObjectPointerType(op->getType());
10023   return Context.getPointerType(op->getType());
10024 }
10025 
RecordModifiableNonNullParam(Sema & S,const Expr * Exp)10026 static void RecordModifiableNonNullParam(Sema &S, const Expr *Exp) {
10027   const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Exp);
10028   if (!DRE)
10029     return;
10030   const Decl *D = DRE->getDecl();
10031   if (!D)
10032     return;
10033   const ParmVarDecl *Param = dyn_cast<ParmVarDecl>(D);
10034   if (!Param)
10035     return;
10036   if (const FunctionDecl* FD = dyn_cast<FunctionDecl>(Param->getDeclContext()))
10037     if (!FD->hasAttr<NonNullAttr>() && !Param->hasAttr<NonNullAttr>())
10038       return;
10039   if (FunctionScopeInfo *FD = S.getCurFunction())
10040     if (!FD->ModifiedNonNullParams.count(Param))
10041       FD->ModifiedNonNullParams.insert(Param);
10042 }
10043 
10044 /// CheckIndirectionOperand - Type check unary indirection (prefix '*').
CheckIndirectionOperand(Sema & S,Expr * Op,ExprValueKind & VK,SourceLocation OpLoc)10045 static QualType CheckIndirectionOperand(Sema &S, Expr *Op, ExprValueKind &VK,
10046                                         SourceLocation OpLoc) {
10047   if (Op->isTypeDependent())
10048     return S.Context.DependentTy;
10049 
10050   ExprResult ConvResult = S.UsualUnaryConversions(Op);
10051   if (ConvResult.isInvalid())
10052     return QualType();
10053   Op = ConvResult.get();
10054   QualType OpTy = Op->getType();
10055   QualType Result;
10056 
10057   if (isa<CXXReinterpretCastExpr>(Op)) {
10058     QualType OpOrigType = Op->IgnoreParenCasts()->getType();
10059     S.CheckCompatibleReinterpretCast(OpOrigType, OpTy, /*IsDereference*/true,
10060                                      Op->getSourceRange());
10061   }
10062 
10063   if (const PointerType *PT = OpTy->getAs<PointerType>())
10064     Result = PT->getPointeeType();
10065   else if (const ObjCObjectPointerType *OPT =
10066              OpTy->getAs<ObjCObjectPointerType>())
10067     Result = OPT->getPointeeType();
10068   else {
10069     ExprResult PR = S.CheckPlaceholderExpr(Op);
10070     if (PR.isInvalid()) return QualType();
10071     if (PR.get() != Op)
10072       return CheckIndirectionOperand(S, PR.get(), VK, OpLoc);
10073   }
10074 
10075   if (Result.isNull()) {
10076     S.Diag(OpLoc, diag::err_typecheck_indirection_requires_pointer)
10077       << OpTy << Op->getSourceRange();
10078     return QualType();
10079   }
10080 
10081   // Note that per both C89 and C99, indirection is always legal, even if Result
10082   // is an incomplete type or void.  It would be possible to warn about
10083   // dereferencing a void pointer, but it's completely well-defined, and such a
10084   // warning is unlikely to catch any mistakes. In C++, indirection is not valid
10085   // for pointers to 'void' but is fine for any other pointer type:
10086   //
10087   // C++ [expr.unary.op]p1:
10088   //   [...] the expression to which [the unary * operator] is applied shall
10089   //   be a pointer to an object type, or a pointer to a function type
10090   if (S.getLangOpts().CPlusPlus && Result->isVoidType())
10091     S.Diag(OpLoc, diag::ext_typecheck_indirection_through_void_pointer)
10092       << OpTy << Op->getSourceRange();
10093 
10094   // Dereferences are usually l-values...
10095   VK = VK_LValue;
10096 
10097   // ...except that certain expressions are never l-values in C.
10098   if (!S.getLangOpts().CPlusPlus && Result.isCForbiddenLValueType())
10099     VK = VK_RValue;
10100 
10101   return Result;
10102 }
10103 
ConvertTokenKindToBinaryOpcode(tok::TokenKind Kind)10104 BinaryOperatorKind Sema::ConvertTokenKindToBinaryOpcode(tok::TokenKind Kind) {
10105   BinaryOperatorKind Opc;
10106   switch (Kind) {
10107   default: llvm_unreachable("Unknown binop!");
10108   case tok::periodstar:           Opc = BO_PtrMemD; break;
10109   case tok::arrowstar:            Opc = BO_PtrMemI; break;
10110   case tok::star:                 Opc = BO_Mul; break;
10111   case tok::slash:                Opc = BO_Div; break;
10112   case tok::percent:              Opc = BO_Rem; break;
10113   case tok::plus:                 Opc = BO_Add; break;
10114   case tok::minus:                Opc = BO_Sub; break;
10115   case tok::lessless:             Opc = BO_Shl; break;
10116   case tok::greatergreater:       Opc = BO_Shr; break;
10117   case tok::lessequal:            Opc = BO_LE; break;
10118   case tok::less:                 Opc = BO_LT; break;
10119   case tok::greaterequal:         Opc = BO_GE; break;
10120   case tok::greater:              Opc = BO_GT; break;
10121   case tok::exclaimequal:         Opc = BO_NE; break;
10122   case tok::equalequal:           Opc = BO_EQ; break;
10123   case tok::amp:                  Opc = BO_And; break;
10124   case tok::caret:                Opc = BO_Xor; break;
10125   case tok::pipe:                 Opc = BO_Or; break;
10126   case tok::ampamp:               Opc = BO_LAnd; break;
10127   case tok::pipepipe:             Opc = BO_LOr; break;
10128   case tok::equal:                Opc = BO_Assign; break;
10129   case tok::starequal:            Opc = BO_MulAssign; break;
10130   case tok::slashequal:           Opc = BO_DivAssign; break;
10131   case tok::percentequal:         Opc = BO_RemAssign; break;
10132   case tok::plusequal:            Opc = BO_AddAssign; break;
10133   case tok::minusequal:           Opc = BO_SubAssign; break;
10134   case tok::lesslessequal:        Opc = BO_ShlAssign; break;
10135   case tok::greatergreaterequal:  Opc = BO_ShrAssign; break;
10136   case tok::ampequal:             Opc = BO_AndAssign; break;
10137   case tok::caretequal:           Opc = BO_XorAssign; break;
10138   case tok::pipeequal:            Opc = BO_OrAssign; break;
10139   case tok::comma:                Opc = BO_Comma; break;
10140   }
10141   return Opc;
10142 }
10143 
ConvertTokenKindToUnaryOpcode(tok::TokenKind Kind)10144 static inline UnaryOperatorKind ConvertTokenKindToUnaryOpcode(
10145   tok::TokenKind Kind) {
10146   UnaryOperatorKind Opc;
10147   switch (Kind) {
10148   default: llvm_unreachable("Unknown unary op!");
10149   case tok::plusplus:     Opc = UO_PreInc; break;
10150   case tok::minusminus:   Opc = UO_PreDec; break;
10151   case tok::amp:          Opc = UO_AddrOf; break;
10152   case tok::star:         Opc = UO_Deref; break;
10153   case tok::plus:         Opc = UO_Plus; break;
10154   case tok::minus:        Opc = UO_Minus; break;
10155   case tok::tilde:        Opc = UO_Not; break;
10156   case tok::exclaim:      Opc = UO_LNot; break;
10157   case tok::kw___real:    Opc = UO_Real; break;
10158   case tok::kw___imag:    Opc = UO_Imag; break;
10159   case tok::kw___extension__: Opc = UO_Extension; break;
10160   }
10161   return Opc;
10162 }
10163 
10164 /// DiagnoseSelfAssignment - Emits a warning if a value is assigned to itself.
10165 /// This warning is only emitted for builtin assignment operations. It is also
10166 /// suppressed in the event of macro expansions.
DiagnoseSelfAssignment(Sema & S,Expr * LHSExpr,Expr * RHSExpr,SourceLocation OpLoc)10167 static void DiagnoseSelfAssignment(Sema &S, Expr *LHSExpr, Expr *RHSExpr,
10168                                    SourceLocation OpLoc) {
10169   if (!S.ActiveTemplateInstantiations.empty())
10170     return;
10171   if (OpLoc.isInvalid() || OpLoc.isMacroID())
10172     return;
10173   LHSExpr = LHSExpr->IgnoreParenImpCasts();
10174   RHSExpr = RHSExpr->IgnoreParenImpCasts();
10175   const DeclRefExpr *LHSDeclRef = dyn_cast<DeclRefExpr>(LHSExpr);
10176   const DeclRefExpr *RHSDeclRef = dyn_cast<DeclRefExpr>(RHSExpr);
10177   if (!LHSDeclRef || !RHSDeclRef ||
10178       LHSDeclRef->getLocation().isMacroID() ||
10179       RHSDeclRef->getLocation().isMacroID())
10180     return;
10181   const ValueDecl *LHSDecl =
10182     cast<ValueDecl>(LHSDeclRef->getDecl()->getCanonicalDecl());
10183   const ValueDecl *RHSDecl =
10184     cast<ValueDecl>(RHSDeclRef->getDecl()->getCanonicalDecl());
10185   if (LHSDecl != RHSDecl)
10186     return;
10187   if (LHSDecl->getType().isVolatileQualified())
10188     return;
10189   if (const ReferenceType *RefTy = LHSDecl->getType()->getAs<ReferenceType>())
10190     if (RefTy->getPointeeType().isVolatileQualified())
10191       return;
10192 
10193   S.Diag(OpLoc, diag::warn_self_assignment)
10194       << LHSDeclRef->getType()
10195       << LHSExpr->getSourceRange() << RHSExpr->getSourceRange();
10196 }
10197 
10198 /// Check if a bitwise-& is performed on an Objective-C pointer.  This
10199 /// is usually indicative of introspection within the Objective-C pointer.
checkObjCPointerIntrospection(Sema & S,ExprResult & L,ExprResult & R,SourceLocation OpLoc)10200 static void checkObjCPointerIntrospection(Sema &S, ExprResult &L, ExprResult &R,
10201                                           SourceLocation OpLoc) {
10202   if (!S.getLangOpts().ObjC1)
10203     return;
10204 
10205   const Expr *ObjCPointerExpr = nullptr, *OtherExpr = nullptr;
10206   const Expr *LHS = L.get();
10207   const Expr *RHS = R.get();
10208 
10209   if (LHS->IgnoreParenCasts()->getType()->isObjCObjectPointerType()) {
10210     ObjCPointerExpr = LHS;
10211     OtherExpr = RHS;
10212   }
10213   else if (RHS->IgnoreParenCasts()->getType()->isObjCObjectPointerType()) {
10214     ObjCPointerExpr = RHS;
10215     OtherExpr = LHS;
10216   }
10217 
10218   // This warning is deliberately made very specific to reduce false
10219   // positives with logic that uses '&' for hashing.  This logic mainly
10220   // looks for code trying to introspect into tagged pointers, which
10221   // code should generally never do.
10222   if (ObjCPointerExpr && isa<IntegerLiteral>(OtherExpr->IgnoreParenCasts())) {
10223     unsigned Diag = diag::warn_objc_pointer_masking;
10224     // Determine if we are introspecting the result of performSelectorXXX.
10225     const Expr *Ex = ObjCPointerExpr->IgnoreParenCasts();
10226     // Special case messages to -performSelector and friends, which
10227     // can return non-pointer values boxed in a pointer value.
10228     // Some clients may wish to silence warnings in this subcase.
10229     if (const ObjCMessageExpr *ME = dyn_cast<ObjCMessageExpr>(Ex)) {
10230       Selector S = ME->getSelector();
10231       StringRef SelArg0 = S.getNameForSlot(0);
10232       if (SelArg0.startswith("performSelector"))
10233         Diag = diag::warn_objc_pointer_masking_performSelector;
10234     }
10235 
10236     S.Diag(OpLoc, Diag)
10237       << ObjCPointerExpr->getSourceRange();
10238   }
10239 }
10240 
getDeclFromExpr(Expr * E)10241 static NamedDecl *getDeclFromExpr(Expr *E) {
10242   if (!E)
10243     return nullptr;
10244   if (auto *DRE = dyn_cast<DeclRefExpr>(E))
10245     return DRE->getDecl();
10246   if (auto *ME = dyn_cast<MemberExpr>(E))
10247     return ME->getMemberDecl();
10248   if (auto *IRE = dyn_cast<ObjCIvarRefExpr>(E))
10249     return IRE->getDecl();
10250   return nullptr;
10251 }
10252 
10253 /// CreateBuiltinBinOp - Creates a new built-in binary operation with
10254 /// operator @p Opc at location @c TokLoc. This routine only supports
10255 /// built-in operations; ActOnBinOp handles overloaded operators.
CreateBuiltinBinOp(SourceLocation OpLoc,BinaryOperatorKind Opc,Expr * LHSExpr,Expr * RHSExpr)10256 ExprResult Sema::CreateBuiltinBinOp(SourceLocation OpLoc,
10257                                     BinaryOperatorKind Opc,
10258                                     Expr *LHSExpr, Expr *RHSExpr) {
10259   if (getLangOpts().CPlusPlus11 && isa<InitListExpr>(RHSExpr)) {
10260     // The syntax only allows initializer lists on the RHS of assignment,
10261     // so we don't need to worry about accepting invalid code for
10262     // non-assignment operators.
10263     // C++11 5.17p9:
10264     //   The meaning of x = {v} [...] is that of x = T(v) [...]. The meaning
10265     //   of x = {} is x = T().
10266     InitializationKind Kind =
10267         InitializationKind::CreateDirectList(RHSExpr->getLocStart());
10268     InitializedEntity Entity =
10269         InitializedEntity::InitializeTemporary(LHSExpr->getType());
10270     InitializationSequence InitSeq(*this, Entity, Kind, RHSExpr);
10271     ExprResult Init = InitSeq.Perform(*this, Entity, Kind, RHSExpr);
10272     if (Init.isInvalid())
10273       return Init;
10274     RHSExpr = Init.get();
10275   }
10276 
10277   ExprResult LHS = LHSExpr, RHS = RHSExpr;
10278   QualType ResultTy;     // Result type of the binary operator.
10279   // The following two variables are used for compound assignment operators
10280   QualType CompLHSTy;    // Type of LHS after promotions for computation
10281   QualType CompResultTy; // Type of computation result
10282   ExprValueKind VK = VK_RValue;
10283   ExprObjectKind OK = OK_Ordinary;
10284 
10285   if (!getLangOpts().CPlusPlus) {
10286     // C cannot handle TypoExpr nodes on either side of a binop because it
10287     // doesn't handle dependent types properly, so make sure any TypoExprs have
10288     // been dealt with before checking the operands.
10289     LHS = CorrectDelayedTyposInExpr(LHSExpr);
10290     RHS = CorrectDelayedTyposInExpr(RHSExpr, [Opc, LHS](Expr *E) {
10291       if (Opc != BO_Assign)
10292         return ExprResult(E);
10293       // Avoid correcting the RHS to the same Expr as the LHS.
10294       Decl *D = getDeclFromExpr(E);
10295       return (D && D == getDeclFromExpr(LHS.get())) ? ExprError() : E;
10296     });
10297     if (!LHS.isUsable() || !RHS.isUsable())
10298       return ExprError();
10299   }
10300 
10301   if (getLangOpts().OpenCL) {
10302     // OpenCLC v2.0 s6.13.11.1 allows atomic variables to be initialized by
10303     // the ATOMIC_VAR_INIT macro.
10304     if (LHSExpr->getType()->isAtomicType() ||
10305         RHSExpr->getType()->isAtomicType()) {
10306       SourceRange SR(LHSExpr->getLocStart(), RHSExpr->getLocEnd());
10307       if (BO_Assign == Opc)
10308         Diag(OpLoc, diag::err_atomic_init_constant) << SR;
10309       else
10310         ResultTy = InvalidOperands(OpLoc, LHS, RHS);
10311       return ExprError();
10312     }
10313   }
10314 
10315   switch (Opc) {
10316   case BO_Assign:
10317     ResultTy = CheckAssignmentOperands(LHS.get(), RHS, OpLoc, QualType());
10318     if (getLangOpts().CPlusPlus &&
10319         LHS.get()->getObjectKind() != OK_ObjCProperty) {
10320       VK = LHS.get()->getValueKind();
10321       OK = LHS.get()->getObjectKind();
10322     }
10323     if (!ResultTy.isNull()) {
10324       DiagnoseSelfAssignment(*this, LHS.get(), RHS.get(), OpLoc);
10325       DiagnoseSelfMove(LHS.get(), RHS.get(), OpLoc);
10326     }
10327     RecordModifiableNonNullParam(*this, LHS.get());
10328     break;
10329   case BO_PtrMemD:
10330   case BO_PtrMemI:
10331     ResultTy = CheckPointerToMemberOperands(LHS, RHS, VK, OpLoc,
10332                                             Opc == BO_PtrMemI);
10333     break;
10334   case BO_Mul:
10335   case BO_Div:
10336     ResultTy = CheckMultiplyDivideOperands(LHS, RHS, OpLoc, false,
10337                                            Opc == BO_Div);
10338     break;
10339   case BO_Rem:
10340     ResultTy = CheckRemainderOperands(LHS, RHS, OpLoc);
10341     break;
10342   case BO_Add:
10343     ResultTy = CheckAdditionOperands(LHS, RHS, OpLoc, Opc);
10344     break;
10345   case BO_Sub:
10346     ResultTy = CheckSubtractionOperands(LHS, RHS, OpLoc);
10347     break;
10348   case BO_Shl:
10349   case BO_Shr:
10350     ResultTy = CheckShiftOperands(LHS, RHS, OpLoc, Opc);
10351     break;
10352   case BO_LE:
10353   case BO_LT:
10354   case BO_GE:
10355   case BO_GT:
10356     ResultTy = CheckCompareOperands(LHS, RHS, OpLoc, Opc, true);
10357     break;
10358   case BO_EQ:
10359   case BO_NE:
10360     ResultTy = CheckCompareOperands(LHS, RHS, OpLoc, Opc, false);
10361     break;
10362   case BO_And:
10363     checkObjCPointerIntrospection(*this, LHS, RHS, OpLoc);
10364   case BO_Xor:
10365   case BO_Or:
10366     ResultTy = CheckBitwiseOperands(LHS, RHS, OpLoc);
10367     break;
10368   case BO_LAnd:
10369   case BO_LOr:
10370     ResultTy = CheckLogicalOperands(LHS, RHS, OpLoc, Opc);
10371     break;
10372   case BO_MulAssign:
10373   case BO_DivAssign:
10374     CompResultTy = CheckMultiplyDivideOperands(LHS, RHS, OpLoc, true,
10375                                                Opc == BO_DivAssign);
10376     CompLHSTy = CompResultTy;
10377     if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid())
10378       ResultTy = CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy);
10379     break;
10380   case BO_RemAssign:
10381     CompResultTy = CheckRemainderOperands(LHS, RHS, OpLoc, true);
10382     CompLHSTy = CompResultTy;
10383     if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid())
10384       ResultTy = CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy);
10385     break;
10386   case BO_AddAssign:
10387     CompResultTy = CheckAdditionOperands(LHS, RHS, OpLoc, Opc, &CompLHSTy);
10388     if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid())
10389       ResultTy = CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy);
10390     break;
10391   case BO_SubAssign:
10392     CompResultTy = CheckSubtractionOperands(LHS, RHS, OpLoc, &CompLHSTy);
10393     if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid())
10394       ResultTy = CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy);
10395     break;
10396   case BO_ShlAssign:
10397   case BO_ShrAssign:
10398     CompResultTy = CheckShiftOperands(LHS, RHS, OpLoc, Opc, true);
10399     CompLHSTy = CompResultTy;
10400     if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid())
10401       ResultTy = CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy);
10402     break;
10403   case BO_AndAssign:
10404   case BO_OrAssign: // fallthrough
10405     DiagnoseSelfAssignment(*this, LHS.get(), RHS.get(), OpLoc);
10406   case BO_XorAssign:
10407     CompResultTy = CheckBitwiseOperands(LHS, RHS, OpLoc, true);
10408     CompLHSTy = CompResultTy;
10409     if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid())
10410       ResultTy = CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy);
10411     break;
10412   case BO_Comma:
10413     ResultTy = CheckCommaOperands(*this, LHS, RHS, OpLoc);
10414     if (getLangOpts().CPlusPlus && !RHS.isInvalid()) {
10415       VK = RHS.get()->getValueKind();
10416       OK = RHS.get()->getObjectKind();
10417     }
10418     break;
10419   }
10420   if (ResultTy.isNull() || LHS.isInvalid() || RHS.isInvalid())
10421     return ExprError();
10422 
10423   // Check for array bounds violations for both sides of the BinaryOperator
10424   CheckArrayAccess(LHS.get());
10425   CheckArrayAccess(RHS.get());
10426 
10427   if (const ObjCIsaExpr *OISA = dyn_cast<ObjCIsaExpr>(LHS.get()->IgnoreParenCasts())) {
10428     NamedDecl *ObjectSetClass = LookupSingleName(TUScope,
10429                                                  &Context.Idents.get("object_setClass"),
10430                                                  SourceLocation(), LookupOrdinaryName);
10431     if (ObjectSetClass && isa<ObjCIsaExpr>(LHS.get())) {
10432       SourceLocation RHSLocEnd = getLocForEndOfToken(RHS.get()->getLocEnd());
10433       Diag(LHS.get()->getExprLoc(), diag::warn_objc_isa_assign) <<
10434       FixItHint::CreateInsertion(LHS.get()->getLocStart(), "object_setClass(") <<
10435       FixItHint::CreateReplacement(SourceRange(OISA->getOpLoc(), OpLoc), ",") <<
10436       FixItHint::CreateInsertion(RHSLocEnd, ")");
10437     }
10438     else
10439       Diag(LHS.get()->getExprLoc(), diag::warn_objc_isa_assign);
10440   }
10441   else if (const ObjCIvarRefExpr *OIRE =
10442            dyn_cast<ObjCIvarRefExpr>(LHS.get()->IgnoreParenCasts()))
10443     DiagnoseDirectIsaAccess(*this, OIRE, OpLoc, RHS.get());
10444 
10445   if (CompResultTy.isNull())
10446     return new (Context) BinaryOperator(LHS.get(), RHS.get(), Opc, ResultTy, VK,
10447                                         OK, OpLoc, FPFeatures.fp_contract);
10448   if (getLangOpts().CPlusPlus && LHS.get()->getObjectKind() !=
10449       OK_ObjCProperty) {
10450     VK = VK_LValue;
10451     OK = LHS.get()->getObjectKind();
10452   }
10453   return new (Context) CompoundAssignOperator(
10454       LHS.get(), RHS.get(), Opc, ResultTy, VK, OK, CompLHSTy, CompResultTy,
10455       OpLoc, FPFeatures.fp_contract);
10456 }
10457 
10458 /// DiagnoseBitwisePrecedence - Emit a warning when bitwise and comparison
10459 /// operators are mixed in a way that suggests that the programmer forgot that
10460 /// comparison operators have higher precedence. The most typical example of
10461 /// such code is "flags & 0x0020 != 0", which is equivalent to "flags & 1".
DiagnoseBitwisePrecedence(Sema & Self,BinaryOperatorKind Opc,SourceLocation OpLoc,Expr * LHSExpr,Expr * RHSExpr)10462 static void DiagnoseBitwisePrecedence(Sema &Self, BinaryOperatorKind Opc,
10463                                       SourceLocation OpLoc, Expr *LHSExpr,
10464                                       Expr *RHSExpr) {
10465   BinaryOperator *LHSBO = dyn_cast<BinaryOperator>(LHSExpr);
10466   BinaryOperator *RHSBO = dyn_cast<BinaryOperator>(RHSExpr);
10467 
10468   // Check that one of the sides is a comparison operator and the other isn't.
10469   bool isLeftComp = LHSBO && LHSBO->isComparisonOp();
10470   bool isRightComp = RHSBO && RHSBO->isComparisonOp();
10471   if (isLeftComp == isRightComp)
10472     return;
10473 
10474   // Bitwise operations are sometimes used as eager logical ops.
10475   // Don't diagnose this.
10476   bool isLeftBitwise = LHSBO && LHSBO->isBitwiseOp();
10477   bool isRightBitwise = RHSBO && RHSBO->isBitwiseOp();
10478   if (isLeftBitwise || isRightBitwise)
10479     return;
10480 
10481   SourceRange DiagRange = isLeftComp ? SourceRange(LHSExpr->getLocStart(),
10482                                                    OpLoc)
10483                                      : SourceRange(OpLoc, RHSExpr->getLocEnd());
10484   StringRef OpStr = isLeftComp ? LHSBO->getOpcodeStr() : RHSBO->getOpcodeStr();
10485   SourceRange ParensRange = isLeftComp ?
10486       SourceRange(LHSBO->getRHS()->getLocStart(), RHSExpr->getLocEnd())
10487     : SourceRange(LHSExpr->getLocStart(), RHSBO->getLHS()->getLocEnd());
10488 
10489   Self.Diag(OpLoc, diag::warn_precedence_bitwise_rel)
10490     << DiagRange << BinaryOperator::getOpcodeStr(Opc) << OpStr;
10491   SuggestParentheses(Self, OpLoc,
10492     Self.PDiag(diag::note_precedence_silence) << OpStr,
10493     (isLeftComp ? LHSExpr : RHSExpr)->getSourceRange());
10494   SuggestParentheses(Self, OpLoc,
10495     Self.PDiag(diag::note_precedence_bitwise_first)
10496       << BinaryOperator::getOpcodeStr(Opc),
10497     ParensRange);
10498 }
10499 
10500 /// \brief It accepts a '&&' expr that is inside a '||' one.
10501 /// Emit a diagnostic together with a fixit hint that wraps the '&&' expression
10502 /// in parentheses.
10503 static void
EmitDiagnosticForLogicalAndInLogicalOr(Sema & Self,SourceLocation OpLoc,BinaryOperator * Bop)10504 EmitDiagnosticForLogicalAndInLogicalOr(Sema &Self, SourceLocation OpLoc,
10505                                        BinaryOperator *Bop) {
10506   assert(Bop->getOpcode() == BO_LAnd);
10507   Self.Diag(Bop->getOperatorLoc(), diag::warn_logical_and_in_logical_or)
10508       << Bop->getSourceRange() << OpLoc;
10509   SuggestParentheses(Self, Bop->getOperatorLoc(),
10510     Self.PDiag(diag::note_precedence_silence)
10511       << Bop->getOpcodeStr(),
10512     Bop->getSourceRange());
10513 }
10514 
10515 /// \brief Returns true if the given expression can be evaluated as a constant
10516 /// 'true'.
EvaluatesAsTrue(Sema & S,Expr * E)10517 static bool EvaluatesAsTrue(Sema &S, Expr *E) {
10518   bool Res;
10519   return !E->isValueDependent() &&
10520          E->EvaluateAsBooleanCondition(Res, S.getASTContext()) && Res;
10521 }
10522 
10523 /// \brief Returns true if the given expression can be evaluated as a constant
10524 /// 'false'.
EvaluatesAsFalse(Sema & S,Expr * E)10525 static bool EvaluatesAsFalse(Sema &S, Expr *E) {
10526   bool Res;
10527   return !E->isValueDependent() &&
10528          E->EvaluateAsBooleanCondition(Res, S.getASTContext()) && !Res;
10529 }
10530 
10531 /// \brief Look for '&&' in the left hand of a '||' expr.
DiagnoseLogicalAndInLogicalOrLHS(Sema & S,SourceLocation OpLoc,Expr * LHSExpr,Expr * RHSExpr)10532 static void DiagnoseLogicalAndInLogicalOrLHS(Sema &S, SourceLocation OpLoc,
10533                                              Expr *LHSExpr, Expr *RHSExpr) {
10534   if (BinaryOperator *Bop = dyn_cast<BinaryOperator>(LHSExpr)) {
10535     if (Bop->getOpcode() == BO_LAnd) {
10536       // If it's "a && b || 0" don't warn since the precedence doesn't matter.
10537       if (EvaluatesAsFalse(S, RHSExpr))
10538         return;
10539       // If it's "1 && a || b" don't warn since the precedence doesn't matter.
10540       if (!EvaluatesAsTrue(S, Bop->getLHS()))
10541         return EmitDiagnosticForLogicalAndInLogicalOr(S, OpLoc, Bop);
10542     } else if (Bop->getOpcode() == BO_LOr) {
10543       if (BinaryOperator *RBop = dyn_cast<BinaryOperator>(Bop->getRHS())) {
10544         // If it's "a || b && 1 || c" we didn't warn earlier for
10545         // "a || b && 1", but warn now.
10546         if (RBop->getOpcode() == BO_LAnd && EvaluatesAsTrue(S, RBop->getRHS()))
10547           return EmitDiagnosticForLogicalAndInLogicalOr(S, OpLoc, RBop);
10548       }
10549     }
10550   }
10551 }
10552 
10553 /// \brief Look for '&&' in the right hand of a '||' expr.
DiagnoseLogicalAndInLogicalOrRHS(Sema & S,SourceLocation OpLoc,Expr * LHSExpr,Expr * RHSExpr)10554 static void DiagnoseLogicalAndInLogicalOrRHS(Sema &S, SourceLocation OpLoc,
10555                                              Expr *LHSExpr, Expr *RHSExpr) {
10556   if (BinaryOperator *Bop = dyn_cast<BinaryOperator>(RHSExpr)) {
10557     if (Bop->getOpcode() == BO_LAnd) {
10558       // If it's "0 || a && b" don't warn since the precedence doesn't matter.
10559       if (EvaluatesAsFalse(S, LHSExpr))
10560         return;
10561       // If it's "a || b && 1" don't warn since the precedence doesn't matter.
10562       if (!EvaluatesAsTrue(S, Bop->getRHS()))
10563         return EmitDiagnosticForLogicalAndInLogicalOr(S, OpLoc, Bop);
10564     }
10565   }
10566 }
10567 
10568 /// \brief Look for bitwise op in the left or right hand of a bitwise op with
10569 /// lower precedence and emit a diagnostic together with a fixit hint that wraps
10570 /// the '&' expression in parentheses.
DiagnoseBitwiseOpInBitwiseOp(Sema & S,BinaryOperatorKind Opc,SourceLocation OpLoc,Expr * SubExpr)10571 static void DiagnoseBitwiseOpInBitwiseOp(Sema &S, BinaryOperatorKind Opc,
10572                                          SourceLocation OpLoc, Expr *SubExpr) {
10573   if (BinaryOperator *Bop = dyn_cast<BinaryOperator>(SubExpr)) {
10574     if (Bop->isBitwiseOp() && Bop->getOpcode() < Opc) {
10575       S.Diag(Bop->getOperatorLoc(), diag::warn_bitwise_op_in_bitwise_op)
10576         << Bop->getOpcodeStr() << BinaryOperator::getOpcodeStr(Opc)
10577         << Bop->getSourceRange() << OpLoc;
10578       SuggestParentheses(S, Bop->getOperatorLoc(),
10579         S.PDiag(diag::note_precedence_silence)
10580           << Bop->getOpcodeStr(),
10581         Bop->getSourceRange());
10582     }
10583   }
10584 }
10585 
DiagnoseAdditionInShift(Sema & S,SourceLocation OpLoc,Expr * SubExpr,StringRef Shift)10586 static void DiagnoseAdditionInShift(Sema &S, SourceLocation OpLoc,
10587                                     Expr *SubExpr, StringRef Shift) {
10588   if (BinaryOperator *Bop = dyn_cast<BinaryOperator>(SubExpr)) {
10589     if (Bop->getOpcode() == BO_Add || Bop->getOpcode() == BO_Sub) {
10590       StringRef Op = Bop->getOpcodeStr();
10591       S.Diag(Bop->getOperatorLoc(), diag::warn_addition_in_bitshift)
10592           << Bop->getSourceRange() << OpLoc << Shift << Op;
10593       SuggestParentheses(S, Bop->getOperatorLoc(),
10594           S.PDiag(diag::note_precedence_silence) << Op,
10595           Bop->getSourceRange());
10596     }
10597   }
10598 }
10599 
DiagnoseShiftCompare(Sema & S,SourceLocation OpLoc,Expr * LHSExpr,Expr * RHSExpr)10600 static void DiagnoseShiftCompare(Sema &S, SourceLocation OpLoc,
10601                                  Expr *LHSExpr, Expr *RHSExpr) {
10602   CXXOperatorCallExpr *OCE = dyn_cast<CXXOperatorCallExpr>(LHSExpr);
10603   if (!OCE)
10604     return;
10605 
10606   FunctionDecl *FD = OCE->getDirectCallee();
10607   if (!FD || !FD->isOverloadedOperator())
10608     return;
10609 
10610   OverloadedOperatorKind Kind = FD->getOverloadedOperator();
10611   if (Kind != OO_LessLess && Kind != OO_GreaterGreater)
10612     return;
10613 
10614   S.Diag(OpLoc, diag::warn_overloaded_shift_in_comparison)
10615       << LHSExpr->getSourceRange() << RHSExpr->getSourceRange()
10616       << (Kind == OO_LessLess);
10617   SuggestParentheses(S, OCE->getOperatorLoc(),
10618                      S.PDiag(diag::note_precedence_silence)
10619                          << (Kind == OO_LessLess ? "<<" : ">>"),
10620                      OCE->getSourceRange());
10621   SuggestParentheses(S, OpLoc,
10622                      S.PDiag(diag::note_evaluate_comparison_first),
10623                      SourceRange(OCE->getArg(1)->getLocStart(),
10624                                  RHSExpr->getLocEnd()));
10625 }
10626 
10627 /// DiagnoseBinOpPrecedence - Emit warnings for expressions with tricky
10628 /// precedence.
DiagnoseBinOpPrecedence(Sema & Self,BinaryOperatorKind Opc,SourceLocation OpLoc,Expr * LHSExpr,Expr * RHSExpr)10629 static void DiagnoseBinOpPrecedence(Sema &Self, BinaryOperatorKind Opc,
10630                                     SourceLocation OpLoc, Expr *LHSExpr,
10631                                     Expr *RHSExpr){
10632   // Diagnose "arg1 'bitwise' arg2 'eq' arg3".
10633   if (BinaryOperator::isBitwiseOp(Opc))
10634     DiagnoseBitwisePrecedence(Self, Opc, OpLoc, LHSExpr, RHSExpr);
10635 
10636   // Diagnose "arg1 & arg2 | arg3"
10637   if ((Opc == BO_Or || Opc == BO_Xor) &&
10638       !OpLoc.isMacroID()/* Don't warn in macros. */) {
10639     DiagnoseBitwiseOpInBitwiseOp(Self, Opc, OpLoc, LHSExpr);
10640     DiagnoseBitwiseOpInBitwiseOp(Self, Opc, OpLoc, RHSExpr);
10641   }
10642 
10643   // Warn about arg1 || arg2 && arg3, as GCC 4.3+ does.
10644   // We don't warn for 'assert(a || b && "bad")' since this is safe.
10645   if (Opc == BO_LOr && !OpLoc.isMacroID()/* Don't warn in macros. */) {
10646     DiagnoseLogicalAndInLogicalOrLHS(Self, OpLoc, LHSExpr, RHSExpr);
10647     DiagnoseLogicalAndInLogicalOrRHS(Self, OpLoc, LHSExpr, RHSExpr);
10648   }
10649 
10650   if ((Opc == BO_Shl && LHSExpr->getType()->isIntegralType(Self.getASTContext()))
10651       || Opc == BO_Shr) {
10652     StringRef Shift = BinaryOperator::getOpcodeStr(Opc);
10653     DiagnoseAdditionInShift(Self, OpLoc, LHSExpr, Shift);
10654     DiagnoseAdditionInShift(Self, OpLoc, RHSExpr, Shift);
10655   }
10656 
10657   // Warn on overloaded shift operators and comparisons, such as:
10658   // cout << 5 == 4;
10659   if (BinaryOperator::isComparisonOp(Opc))
10660     DiagnoseShiftCompare(Self, OpLoc, LHSExpr, RHSExpr);
10661 }
10662 
10663 // Binary Operators.  'Tok' is the token for the operator.
ActOnBinOp(Scope * S,SourceLocation TokLoc,tok::TokenKind Kind,Expr * LHSExpr,Expr * RHSExpr)10664 ExprResult Sema::ActOnBinOp(Scope *S, SourceLocation TokLoc,
10665                             tok::TokenKind Kind,
10666                             Expr *LHSExpr, Expr *RHSExpr) {
10667   BinaryOperatorKind Opc = ConvertTokenKindToBinaryOpcode(Kind);
10668   assert(LHSExpr && "ActOnBinOp(): missing left expression");
10669   assert(RHSExpr && "ActOnBinOp(): missing right expression");
10670 
10671   // Emit warnings for tricky precedence issues, e.g. "bitfield & 0x4 == 0"
10672   DiagnoseBinOpPrecedence(*this, Opc, TokLoc, LHSExpr, RHSExpr);
10673 
10674   return BuildBinOp(S, TokLoc, Opc, LHSExpr, RHSExpr);
10675 }
10676 
10677 /// Build an overloaded binary operator expression in the given scope.
BuildOverloadedBinOp(Sema & S,Scope * Sc,SourceLocation OpLoc,BinaryOperatorKind Opc,Expr * LHS,Expr * RHS)10678 static ExprResult BuildOverloadedBinOp(Sema &S, Scope *Sc, SourceLocation OpLoc,
10679                                        BinaryOperatorKind Opc,
10680                                        Expr *LHS, Expr *RHS) {
10681   // Find all of the overloaded operators visible from this
10682   // point. We perform both an operator-name lookup from the local
10683   // scope and an argument-dependent lookup based on the types of
10684   // the arguments.
10685   UnresolvedSet<16> Functions;
10686   OverloadedOperatorKind OverOp
10687     = BinaryOperator::getOverloadedOperator(Opc);
10688   if (Sc && OverOp != OO_None && OverOp != OO_Equal)
10689     S.LookupOverloadedOperatorName(OverOp, Sc, LHS->getType(),
10690                                    RHS->getType(), Functions);
10691 
10692   // Build the (potentially-overloaded, potentially-dependent)
10693   // binary operation.
10694   return S.CreateOverloadedBinOp(OpLoc, Opc, Functions, LHS, RHS);
10695 }
10696 
BuildBinOp(Scope * S,SourceLocation OpLoc,BinaryOperatorKind Opc,Expr * LHSExpr,Expr * RHSExpr)10697 ExprResult Sema::BuildBinOp(Scope *S, SourceLocation OpLoc,
10698                             BinaryOperatorKind Opc,
10699                             Expr *LHSExpr, Expr *RHSExpr) {
10700   // We want to end up calling one of checkPseudoObjectAssignment
10701   // (if the LHS is a pseudo-object), BuildOverloadedBinOp (if
10702   // both expressions are overloadable or either is type-dependent),
10703   // or CreateBuiltinBinOp (in any other case).  We also want to get
10704   // any placeholder types out of the way.
10705 
10706   // Handle pseudo-objects in the LHS.
10707   if (const BuiltinType *pty = LHSExpr->getType()->getAsPlaceholderType()) {
10708     // Assignments with a pseudo-object l-value need special analysis.
10709     if (pty->getKind() == BuiltinType::PseudoObject &&
10710         BinaryOperator::isAssignmentOp(Opc))
10711       return checkPseudoObjectAssignment(S, OpLoc, Opc, LHSExpr, RHSExpr);
10712 
10713     // Don't resolve overloads if the other type is overloadable.
10714     if (pty->getKind() == BuiltinType::Overload) {
10715       // We can't actually test that if we still have a placeholder,
10716       // though.  Fortunately, none of the exceptions we see in that
10717       // code below are valid when the LHS is an overload set.  Note
10718       // that an overload set can be dependently-typed, but it never
10719       // instantiates to having an overloadable type.
10720       ExprResult resolvedRHS = CheckPlaceholderExpr(RHSExpr);
10721       if (resolvedRHS.isInvalid()) return ExprError();
10722       RHSExpr = resolvedRHS.get();
10723 
10724       if (RHSExpr->isTypeDependent() ||
10725           RHSExpr->getType()->isOverloadableType())
10726         return BuildOverloadedBinOp(*this, S, OpLoc, Opc, LHSExpr, RHSExpr);
10727     }
10728 
10729     ExprResult LHS = CheckPlaceholderExpr(LHSExpr);
10730     if (LHS.isInvalid()) return ExprError();
10731     LHSExpr = LHS.get();
10732   }
10733 
10734   // Handle pseudo-objects in the RHS.
10735   if (const BuiltinType *pty = RHSExpr->getType()->getAsPlaceholderType()) {
10736     // An overload in the RHS can potentially be resolved by the type
10737     // being assigned to.
10738     if (Opc == BO_Assign && pty->getKind() == BuiltinType::Overload) {
10739       if (LHSExpr->isTypeDependent() || RHSExpr->isTypeDependent())
10740         return BuildOverloadedBinOp(*this, S, OpLoc, Opc, LHSExpr, RHSExpr);
10741 
10742       if (LHSExpr->getType()->isOverloadableType())
10743         return BuildOverloadedBinOp(*this, S, OpLoc, Opc, LHSExpr, RHSExpr);
10744 
10745       return CreateBuiltinBinOp(OpLoc, Opc, LHSExpr, RHSExpr);
10746     }
10747 
10748     // Don't resolve overloads if the other type is overloadable.
10749     if (pty->getKind() == BuiltinType::Overload &&
10750         LHSExpr->getType()->isOverloadableType())
10751       return BuildOverloadedBinOp(*this, S, OpLoc, Opc, LHSExpr, RHSExpr);
10752 
10753     ExprResult resolvedRHS = CheckPlaceholderExpr(RHSExpr);
10754     if (!resolvedRHS.isUsable()) return ExprError();
10755     RHSExpr = resolvedRHS.get();
10756   }
10757 
10758   if (getLangOpts().CPlusPlus) {
10759     // If either expression is type-dependent, always build an
10760     // overloaded op.
10761     if (LHSExpr->isTypeDependent() || RHSExpr->isTypeDependent())
10762       return BuildOverloadedBinOp(*this, S, OpLoc, Opc, LHSExpr, RHSExpr);
10763 
10764     // Otherwise, build an overloaded op if either expression has an
10765     // overloadable type.
10766     if (LHSExpr->getType()->isOverloadableType() ||
10767         RHSExpr->getType()->isOverloadableType())
10768       return BuildOverloadedBinOp(*this, S, OpLoc, Opc, LHSExpr, RHSExpr);
10769   }
10770 
10771   // Build a built-in binary operation.
10772   return CreateBuiltinBinOp(OpLoc, Opc, LHSExpr, RHSExpr);
10773 }
10774 
CreateBuiltinUnaryOp(SourceLocation OpLoc,UnaryOperatorKind Opc,Expr * InputExpr)10775 ExprResult Sema::CreateBuiltinUnaryOp(SourceLocation OpLoc,
10776                                       UnaryOperatorKind Opc,
10777                                       Expr *InputExpr) {
10778   ExprResult Input = InputExpr;
10779   ExprValueKind VK = VK_RValue;
10780   ExprObjectKind OK = OK_Ordinary;
10781   QualType resultType;
10782   if (getLangOpts().OpenCL) {
10783     // The only legal unary operation for atomics is '&'.
10784     if (Opc != UO_AddrOf && InputExpr->getType()->isAtomicType()) {
10785       return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
10786                        << InputExpr->getType()
10787                        << Input.get()->getSourceRange());
10788     }
10789   }
10790   switch (Opc) {
10791   case UO_PreInc:
10792   case UO_PreDec:
10793   case UO_PostInc:
10794   case UO_PostDec:
10795     resultType = CheckIncrementDecrementOperand(*this, Input.get(), VK, OK,
10796                                                 OpLoc,
10797                                                 Opc == UO_PreInc ||
10798                                                 Opc == UO_PostInc,
10799                                                 Opc == UO_PreInc ||
10800                                                 Opc == UO_PreDec);
10801     break;
10802   case UO_AddrOf:
10803     resultType = CheckAddressOfOperand(Input, OpLoc);
10804     RecordModifiableNonNullParam(*this, InputExpr);
10805     break;
10806   case UO_Deref: {
10807     Input = DefaultFunctionArrayLvalueConversion(Input.get());
10808     if (Input.isInvalid()) return ExprError();
10809     resultType = CheckIndirectionOperand(*this, Input.get(), VK, OpLoc);
10810     break;
10811   }
10812   case UO_Plus:
10813   case UO_Minus:
10814     Input = UsualUnaryConversions(Input.get());
10815     if (Input.isInvalid()) return ExprError();
10816     resultType = Input.get()->getType();
10817     if (resultType->isDependentType())
10818       break;
10819     if (resultType->isArithmeticType()) // C99 6.5.3.3p1
10820       break;
10821     else if (resultType->isVectorType() &&
10822              // The z vector extensions don't allow + or - with bool vectors.
10823              (!Context.getLangOpts().ZVector ||
10824               resultType->getAs<VectorType>()->getVectorKind() !=
10825               VectorType::AltiVecBool))
10826       break;
10827     else if (getLangOpts().CPlusPlus && // C++ [expr.unary.op]p6
10828              Opc == UO_Plus &&
10829              resultType->isPointerType())
10830       break;
10831 
10832     return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
10833       << resultType << Input.get()->getSourceRange());
10834 
10835   case UO_Not: // bitwise complement
10836     Input = UsualUnaryConversions(Input.get());
10837     if (Input.isInvalid())
10838       return ExprError();
10839     resultType = Input.get()->getType();
10840     if (resultType->isDependentType())
10841       break;
10842     // C99 6.5.3.3p1. We allow complex int and float as a GCC extension.
10843     if (resultType->isComplexType() || resultType->isComplexIntegerType())
10844       // C99 does not support '~' for complex conjugation.
10845       Diag(OpLoc, diag::ext_integer_complement_complex)
10846           << resultType << Input.get()->getSourceRange();
10847     else if (resultType->hasIntegerRepresentation())
10848       break;
10849     else if (resultType->isExtVectorType()) {
10850       if (Context.getLangOpts().OpenCL) {
10851         // OpenCL v1.1 s6.3.f: The bitwise operator not (~) does not operate
10852         // on vector float types.
10853         QualType T = resultType->getAs<ExtVectorType>()->getElementType();
10854         if (!T->isIntegerType())
10855           return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
10856                            << resultType << Input.get()->getSourceRange());
10857       }
10858       break;
10859     } else {
10860       return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
10861                        << resultType << Input.get()->getSourceRange());
10862     }
10863     break;
10864 
10865   case UO_LNot: // logical negation
10866     // Unlike +/-/~, integer promotions aren't done here (C99 6.5.3.3p5).
10867     Input = DefaultFunctionArrayLvalueConversion(Input.get());
10868     if (Input.isInvalid()) return ExprError();
10869     resultType = Input.get()->getType();
10870 
10871     // Though we still have to promote half FP to float...
10872     if (resultType->isHalfType() && !Context.getLangOpts().NativeHalfType) {
10873       Input = ImpCastExprToType(Input.get(), Context.FloatTy, CK_FloatingCast).get();
10874       resultType = Context.FloatTy;
10875     }
10876 
10877     if (resultType->isDependentType())
10878       break;
10879     if (resultType->isScalarType() && !isScopedEnumerationType(resultType)) {
10880       // C99 6.5.3.3p1: ok, fallthrough;
10881       if (Context.getLangOpts().CPlusPlus) {
10882         // C++03 [expr.unary.op]p8, C++0x [expr.unary.op]p9:
10883         // operand contextually converted to bool.
10884         Input = ImpCastExprToType(Input.get(), Context.BoolTy,
10885                                   ScalarTypeToBooleanCastKind(resultType));
10886       } else if (Context.getLangOpts().OpenCL &&
10887                  Context.getLangOpts().OpenCLVersion < 120) {
10888         // OpenCL v1.1 6.3.h: The logical operator not (!) does not
10889         // operate on scalar float types.
10890         if (!resultType->isIntegerType())
10891           return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
10892                            << resultType << Input.get()->getSourceRange());
10893       }
10894     } else if (resultType->isExtVectorType()) {
10895       if (Context.getLangOpts().OpenCL &&
10896           Context.getLangOpts().OpenCLVersion < 120) {
10897         // OpenCL v1.1 6.3.h: The logical operator not (!) does not
10898         // operate on vector float types.
10899         QualType T = resultType->getAs<ExtVectorType>()->getElementType();
10900         if (!T->isIntegerType())
10901           return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
10902                            << resultType << Input.get()->getSourceRange());
10903       }
10904       // Vector logical not returns the signed variant of the operand type.
10905       resultType = GetSignedVectorType(resultType);
10906       break;
10907     } else {
10908       return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
10909         << resultType << Input.get()->getSourceRange());
10910     }
10911 
10912     // LNot always has type int. C99 6.5.3.3p5.
10913     // In C++, it's bool. C++ 5.3.1p8
10914     resultType = Context.getLogicalOperationType();
10915     break;
10916   case UO_Real:
10917   case UO_Imag:
10918     resultType = CheckRealImagOperand(*this, Input, OpLoc, Opc == UO_Real);
10919     // _Real maps ordinary l-values into ordinary l-values. _Imag maps ordinary
10920     // complex l-values to ordinary l-values and all other values to r-values.
10921     if (Input.isInvalid()) return ExprError();
10922     if (Opc == UO_Real || Input.get()->getType()->isAnyComplexType()) {
10923       if (Input.get()->getValueKind() != VK_RValue &&
10924           Input.get()->getObjectKind() == OK_Ordinary)
10925         VK = Input.get()->getValueKind();
10926     } else if (!getLangOpts().CPlusPlus) {
10927       // In C, a volatile scalar is read by __imag. In C++, it is not.
10928       Input = DefaultLvalueConversion(Input.get());
10929     }
10930     break;
10931   case UO_Extension:
10932   case UO_Coawait:
10933     resultType = Input.get()->getType();
10934     VK = Input.get()->getValueKind();
10935     OK = Input.get()->getObjectKind();
10936     break;
10937   }
10938   if (resultType.isNull() || Input.isInvalid())
10939     return ExprError();
10940 
10941   // Check for array bounds violations in the operand of the UnaryOperator,
10942   // except for the '*' and '&' operators that have to be handled specially
10943   // by CheckArrayAccess (as there are special cases like &array[arraysize]
10944   // that are explicitly defined as valid by the standard).
10945   if (Opc != UO_AddrOf && Opc != UO_Deref)
10946     CheckArrayAccess(Input.get());
10947 
10948   return new (Context)
10949       UnaryOperator(Input.get(), Opc, resultType, VK, OK, OpLoc);
10950 }
10951 
10952 /// \brief Determine whether the given expression is a qualified member
10953 /// access expression, of a form that could be turned into a pointer to member
10954 /// with the address-of operator.
isQualifiedMemberAccess(Expr * E)10955 static bool isQualifiedMemberAccess(Expr *E) {
10956   if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) {
10957     if (!DRE->getQualifier())
10958       return false;
10959 
10960     ValueDecl *VD = DRE->getDecl();
10961     if (!VD->isCXXClassMember())
10962       return false;
10963 
10964     if (isa<FieldDecl>(VD) || isa<IndirectFieldDecl>(VD))
10965       return true;
10966     if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(VD))
10967       return Method->isInstance();
10968 
10969     return false;
10970   }
10971 
10972   if (UnresolvedLookupExpr *ULE = dyn_cast<UnresolvedLookupExpr>(E)) {
10973     if (!ULE->getQualifier())
10974       return false;
10975 
10976     for (NamedDecl *D : ULE->decls()) {
10977       if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
10978         if (Method->isInstance())
10979           return true;
10980       } else {
10981         // Overload set does not contain methods.
10982         break;
10983       }
10984     }
10985 
10986     return false;
10987   }
10988 
10989   return false;
10990 }
10991 
BuildUnaryOp(Scope * S,SourceLocation OpLoc,UnaryOperatorKind Opc,Expr * Input)10992 ExprResult Sema::BuildUnaryOp(Scope *S, SourceLocation OpLoc,
10993                               UnaryOperatorKind Opc, Expr *Input) {
10994   // First things first: handle placeholders so that the
10995   // overloaded-operator check considers the right type.
10996   if (const BuiltinType *pty = Input->getType()->getAsPlaceholderType()) {
10997     // Increment and decrement of pseudo-object references.
10998     if (pty->getKind() == BuiltinType::PseudoObject &&
10999         UnaryOperator::isIncrementDecrementOp(Opc))
11000       return checkPseudoObjectIncDec(S, OpLoc, Opc, Input);
11001 
11002     // extension is always a builtin operator.
11003     if (Opc == UO_Extension)
11004       return CreateBuiltinUnaryOp(OpLoc, Opc, Input);
11005 
11006     // & gets special logic for several kinds of placeholder.
11007     // The builtin code knows what to do.
11008     if (Opc == UO_AddrOf &&
11009         (pty->getKind() == BuiltinType::Overload ||
11010          pty->getKind() == BuiltinType::UnknownAny ||
11011          pty->getKind() == BuiltinType::BoundMember))
11012       return CreateBuiltinUnaryOp(OpLoc, Opc, Input);
11013 
11014     // Anything else needs to be handled now.
11015     ExprResult Result = CheckPlaceholderExpr(Input);
11016     if (Result.isInvalid()) return ExprError();
11017     Input = Result.get();
11018   }
11019 
11020   if (getLangOpts().CPlusPlus && Input->getType()->isOverloadableType() &&
11021       UnaryOperator::getOverloadedOperator(Opc) != OO_None &&
11022       !(Opc == UO_AddrOf && isQualifiedMemberAccess(Input))) {
11023     // Find all of the overloaded operators visible from this
11024     // point. We perform both an operator-name lookup from the local
11025     // scope and an argument-dependent lookup based on the types of
11026     // the arguments.
11027     UnresolvedSet<16> Functions;
11028     OverloadedOperatorKind OverOp = UnaryOperator::getOverloadedOperator(Opc);
11029     if (S && OverOp != OO_None)
11030       LookupOverloadedOperatorName(OverOp, S, Input->getType(), QualType(),
11031                                    Functions);
11032 
11033     return CreateOverloadedUnaryOp(OpLoc, Opc, Functions, Input);
11034   }
11035 
11036   return CreateBuiltinUnaryOp(OpLoc, Opc, Input);
11037 }
11038 
11039 // Unary Operators.  'Tok' is the token for the operator.
ActOnUnaryOp(Scope * S,SourceLocation OpLoc,tok::TokenKind Op,Expr * Input)11040 ExprResult Sema::ActOnUnaryOp(Scope *S, SourceLocation OpLoc,
11041                               tok::TokenKind Op, Expr *Input) {
11042   return BuildUnaryOp(S, OpLoc, ConvertTokenKindToUnaryOpcode(Op), Input);
11043 }
11044 
11045 /// ActOnAddrLabel - Parse the GNU address of label extension: "&&foo".
ActOnAddrLabel(SourceLocation OpLoc,SourceLocation LabLoc,LabelDecl * TheDecl)11046 ExprResult Sema::ActOnAddrLabel(SourceLocation OpLoc, SourceLocation LabLoc,
11047                                 LabelDecl *TheDecl) {
11048   TheDecl->markUsed(Context);
11049   // Create the AST node.  The address of a label always has type 'void*'.
11050   return new (Context) AddrLabelExpr(OpLoc, LabLoc, TheDecl,
11051                                      Context.getPointerType(Context.VoidTy));
11052 }
11053 
11054 /// Given the last statement in a statement-expression, check whether
11055 /// the result is a producing expression (like a call to an
11056 /// ns_returns_retained function) and, if so, rebuild it to hoist the
11057 /// release out of the full-expression.  Otherwise, return null.
11058 /// Cannot fail.
maybeRebuildARCConsumingStmt(Stmt * Statement)11059 static Expr *maybeRebuildARCConsumingStmt(Stmt *Statement) {
11060   // Should always be wrapped with one of these.
11061   ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(Statement);
11062   if (!cleanups) return nullptr;
11063 
11064   ImplicitCastExpr *cast = dyn_cast<ImplicitCastExpr>(cleanups->getSubExpr());
11065   if (!cast || cast->getCastKind() != CK_ARCConsumeObject)
11066     return nullptr;
11067 
11068   // Splice out the cast.  This shouldn't modify any interesting
11069   // features of the statement.
11070   Expr *producer = cast->getSubExpr();
11071   assert(producer->getType() == cast->getType());
11072   assert(producer->getValueKind() == cast->getValueKind());
11073   cleanups->setSubExpr(producer);
11074   return cleanups;
11075 }
11076 
ActOnStartStmtExpr()11077 void Sema::ActOnStartStmtExpr() {
11078   PushExpressionEvaluationContext(ExprEvalContexts.back().Context);
11079 }
11080 
ActOnStmtExprError()11081 void Sema::ActOnStmtExprError() {
11082   // Note that function is also called by TreeTransform when leaving a
11083   // StmtExpr scope without rebuilding anything.
11084 
11085   DiscardCleanupsInEvaluationContext();
11086   PopExpressionEvaluationContext();
11087 }
11088 
11089 ExprResult
ActOnStmtExpr(SourceLocation LPLoc,Stmt * SubStmt,SourceLocation RPLoc)11090 Sema::ActOnStmtExpr(SourceLocation LPLoc, Stmt *SubStmt,
11091                     SourceLocation RPLoc) { // "({..})"
11092   assert(SubStmt && isa<CompoundStmt>(SubStmt) && "Invalid action invocation!");
11093   CompoundStmt *Compound = cast<CompoundStmt>(SubStmt);
11094 
11095   if (hasAnyUnrecoverableErrorsInThisFunction())
11096     DiscardCleanupsInEvaluationContext();
11097   assert(!ExprNeedsCleanups && "cleanups within StmtExpr not correctly bound!");
11098   PopExpressionEvaluationContext();
11099 
11100   // FIXME: there are a variety of strange constraints to enforce here, for
11101   // example, it is not possible to goto into a stmt expression apparently.
11102   // More semantic analysis is needed.
11103 
11104   // If there are sub-stmts in the compound stmt, take the type of the last one
11105   // as the type of the stmtexpr.
11106   QualType Ty = Context.VoidTy;
11107   bool StmtExprMayBindToTemp = false;
11108   if (!Compound->body_empty()) {
11109     Stmt *LastStmt = Compound->body_back();
11110     LabelStmt *LastLabelStmt = nullptr;
11111     // If LastStmt is a label, skip down through into the body.
11112     while (LabelStmt *Label = dyn_cast<LabelStmt>(LastStmt)) {
11113       LastLabelStmt = Label;
11114       LastStmt = Label->getSubStmt();
11115     }
11116 
11117     if (Expr *LastE = dyn_cast<Expr>(LastStmt)) {
11118       // Do function/array conversion on the last expression, but not
11119       // lvalue-to-rvalue.  However, initialize an unqualified type.
11120       ExprResult LastExpr = DefaultFunctionArrayConversion(LastE);
11121       if (LastExpr.isInvalid())
11122         return ExprError();
11123       Ty = LastExpr.get()->getType().getUnqualifiedType();
11124 
11125       if (!Ty->isDependentType() && !LastExpr.get()->isTypeDependent()) {
11126         // In ARC, if the final expression ends in a consume, splice
11127         // the consume out and bind it later.  In the alternate case
11128         // (when dealing with a retainable type), the result
11129         // initialization will create a produce.  In both cases the
11130         // result will be +1, and we'll need to balance that out with
11131         // a bind.
11132         if (Expr *rebuiltLastStmt
11133               = maybeRebuildARCConsumingStmt(LastExpr.get())) {
11134           LastExpr = rebuiltLastStmt;
11135         } else {
11136           LastExpr = PerformCopyInitialization(
11137                             InitializedEntity::InitializeResult(LPLoc,
11138                                                                 Ty,
11139                                                                 false),
11140                                                    SourceLocation(),
11141                                                LastExpr);
11142         }
11143 
11144         if (LastExpr.isInvalid())
11145           return ExprError();
11146         if (LastExpr.get() != nullptr) {
11147           if (!LastLabelStmt)
11148             Compound->setLastStmt(LastExpr.get());
11149           else
11150             LastLabelStmt->setSubStmt(LastExpr.get());
11151           StmtExprMayBindToTemp = true;
11152         }
11153       }
11154     }
11155   }
11156 
11157   // FIXME: Check that expression type is complete/non-abstract; statement
11158   // expressions are not lvalues.
11159   Expr *ResStmtExpr = new (Context) StmtExpr(Compound, Ty, LPLoc, RPLoc);
11160   if (StmtExprMayBindToTemp)
11161     return MaybeBindToTemporary(ResStmtExpr);
11162   return ResStmtExpr;
11163 }
11164 
BuildBuiltinOffsetOf(SourceLocation BuiltinLoc,TypeSourceInfo * TInfo,ArrayRef<OffsetOfComponent> Components,SourceLocation RParenLoc)11165 ExprResult Sema::BuildBuiltinOffsetOf(SourceLocation BuiltinLoc,
11166                                       TypeSourceInfo *TInfo,
11167                                       ArrayRef<OffsetOfComponent> Components,
11168                                       SourceLocation RParenLoc) {
11169   QualType ArgTy = TInfo->getType();
11170   bool Dependent = ArgTy->isDependentType();
11171   SourceRange TypeRange = TInfo->getTypeLoc().getLocalSourceRange();
11172 
11173   // We must have at least one component that refers to the type, and the first
11174   // one is known to be a field designator.  Verify that the ArgTy represents
11175   // a struct/union/class.
11176   if (!Dependent && !ArgTy->isRecordType())
11177     return ExprError(Diag(BuiltinLoc, diag::err_offsetof_record_type)
11178                        << ArgTy << TypeRange);
11179 
11180   // Type must be complete per C99 7.17p3 because a declaring a variable
11181   // with an incomplete type would be ill-formed.
11182   if (!Dependent
11183       && RequireCompleteType(BuiltinLoc, ArgTy,
11184                              diag::err_offsetof_incomplete_type, TypeRange))
11185     return ExprError();
11186 
11187   // offsetof with non-identifier designators (e.g. "offsetof(x, a.b[c])") are a
11188   // GCC extension, diagnose them.
11189   // FIXME: This diagnostic isn't actually visible because the location is in
11190   // a system header!
11191   if (Components.size() != 1)
11192     Diag(BuiltinLoc, diag::ext_offsetof_extended_field_designator)
11193       << SourceRange(Components[1].LocStart, Components.back().LocEnd);
11194 
11195   bool DidWarnAboutNonPOD = false;
11196   QualType CurrentType = ArgTy;
11197   typedef OffsetOfExpr::OffsetOfNode OffsetOfNode;
11198   SmallVector<OffsetOfNode, 4> Comps;
11199   SmallVector<Expr*, 4> Exprs;
11200   for (const OffsetOfComponent &OC : Components) {
11201     if (OC.isBrackets) {
11202       // Offset of an array sub-field.  TODO: Should we allow vector elements?
11203       if (!CurrentType->isDependentType()) {
11204         const ArrayType *AT = Context.getAsArrayType(CurrentType);
11205         if(!AT)
11206           return ExprError(Diag(OC.LocEnd, diag::err_offsetof_array_type)
11207                            << CurrentType);
11208         CurrentType = AT->getElementType();
11209       } else
11210         CurrentType = Context.DependentTy;
11211 
11212       ExprResult IdxRval = DefaultLvalueConversion(static_cast<Expr*>(OC.U.E));
11213       if (IdxRval.isInvalid())
11214         return ExprError();
11215       Expr *Idx = IdxRval.get();
11216 
11217       // The expression must be an integral expression.
11218       // FIXME: An integral constant expression?
11219       if (!Idx->isTypeDependent() && !Idx->isValueDependent() &&
11220           !Idx->getType()->isIntegerType())
11221         return ExprError(Diag(Idx->getLocStart(),
11222                               diag::err_typecheck_subscript_not_integer)
11223                          << Idx->getSourceRange());
11224 
11225       // Record this array index.
11226       Comps.push_back(OffsetOfNode(OC.LocStart, Exprs.size(), OC.LocEnd));
11227       Exprs.push_back(Idx);
11228       continue;
11229     }
11230 
11231     // Offset of a field.
11232     if (CurrentType->isDependentType()) {
11233       // We have the offset of a field, but we can't look into the dependent
11234       // type. Just record the identifier of the field.
11235       Comps.push_back(OffsetOfNode(OC.LocStart, OC.U.IdentInfo, OC.LocEnd));
11236       CurrentType = Context.DependentTy;
11237       continue;
11238     }
11239 
11240     // We need to have a complete type to look into.
11241     if (RequireCompleteType(OC.LocStart, CurrentType,
11242                             diag::err_offsetof_incomplete_type))
11243       return ExprError();
11244 
11245     // Look for the designated field.
11246     const RecordType *RC = CurrentType->getAs<RecordType>();
11247     if (!RC)
11248       return ExprError(Diag(OC.LocEnd, diag::err_offsetof_record_type)
11249                        << CurrentType);
11250     RecordDecl *RD = RC->getDecl();
11251 
11252     // C++ [lib.support.types]p5:
11253     //   The macro offsetof accepts a restricted set of type arguments in this
11254     //   International Standard. type shall be a POD structure or a POD union
11255     //   (clause 9).
11256     // C++11 [support.types]p4:
11257     //   If type is not a standard-layout class (Clause 9), the results are
11258     //   undefined.
11259     if (CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(RD)) {
11260       bool IsSafe = LangOpts.CPlusPlus11? CRD->isStandardLayout() : CRD->isPOD();
11261       unsigned DiagID =
11262         LangOpts.CPlusPlus11? diag::ext_offsetof_non_standardlayout_type
11263                             : diag::ext_offsetof_non_pod_type;
11264 
11265       if (!IsSafe && !DidWarnAboutNonPOD &&
11266           DiagRuntimeBehavior(BuiltinLoc, nullptr,
11267                               PDiag(DiagID)
11268                               << SourceRange(Components[0].LocStart, OC.LocEnd)
11269                               << CurrentType))
11270         DidWarnAboutNonPOD = true;
11271     }
11272 
11273     // Look for the field.
11274     LookupResult R(*this, OC.U.IdentInfo, OC.LocStart, LookupMemberName);
11275     LookupQualifiedName(R, RD);
11276     FieldDecl *MemberDecl = R.getAsSingle<FieldDecl>();
11277     IndirectFieldDecl *IndirectMemberDecl = nullptr;
11278     if (!MemberDecl) {
11279       if ((IndirectMemberDecl = R.getAsSingle<IndirectFieldDecl>()))
11280         MemberDecl = IndirectMemberDecl->getAnonField();
11281     }
11282 
11283     if (!MemberDecl)
11284       return ExprError(Diag(BuiltinLoc, diag::err_no_member)
11285                        << OC.U.IdentInfo << RD << SourceRange(OC.LocStart,
11286                                                               OC.LocEnd));
11287 
11288     // C99 7.17p3:
11289     //   (If the specified member is a bit-field, the behavior is undefined.)
11290     //
11291     // We diagnose this as an error.
11292     if (MemberDecl->isBitField()) {
11293       Diag(OC.LocEnd, diag::err_offsetof_bitfield)
11294         << MemberDecl->getDeclName()
11295         << SourceRange(BuiltinLoc, RParenLoc);
11296       Diag(MemberDecl->getLocation(), diag::note_bitfield_decl);
11297       return ExprError();
11298     }
11299 
11300     RecordDecl *Parent = MemberDecl->getParent();
11301     if (IndirectMemberDecl)
11302       Parent = cast<RecordDecl>(IndirectMemberDecl->getDeclContext());
11303 
11304     // If the member was found in a base class, introduce OffsetOfNodes for
11305     // the base class indirections.
11306     CXXBasePaths Paths;
11307     if (IsDerivedFrom(OC.LocStart, CurrentType, Context.getTypeDeclType(Parent),
11308                       Paths)) {
11309       if (Paths.getDetectedVirtual()) {
11310         Diag(OC.LocEnd, diag::err_offsetof_field_of_virtual_base)
11311           << MemberDecl->getDeclName()
11312           << SourceRange(BuiltinLoc, RParenLoc);
11313         return ExprError();
11314       }
11315 
11316       CXXBasePath &Path = Paths.front();
11317       for (const CXXBasePathElement &B : Path)
11318         Comps.push_back(OffsetOfNode(B.Base));
11319     }
11320 
11321     if (IndirectMemberDecl) {
11322       for (auto *FI : IndirectMemberDecl->chain()) {
11323         assert(isa<FieldDecl>(FI));
11324         Comps.push_back(OffsetOfNode(OC.LocStart,
11325                                      cast<FieldDecl>(FI), OC.LocEnd));
11326       }
11327     } else
11328       Comps.push_back(OffsetOfNode(OC.LocStart, MemberDecl, OC.LocEnd));
11329 
11330     CurrentType = MemberDecl->getType().getNonReferenceType();
11331   }
11332 
11333   return OffsetOfExpr::Create(Context, Context.getSizeType(), BuiltinLoc, TInfo,
11334                               Comps, Exprs, RParenLoc);
11335 }
11336 
ActOnBuiltinOffsetOf(Scope * S,SourceLocation BuiltinLoc,SourceLocation TypeLoc,ParsedType ParsedArgTy,ArrayRef<OffsetOfComponent> Components,SourceLocation RParenLoc)11337 ExprResult Sema::ActOnBuiltinOffsetOf(Scope *S,
11338                                       SourceLocation BuiltinLoc,
11339                                       SourceLocation TypeLoc,
11340                                       ParsedType ParsedArgTy,
11341                                       ArrayRef<OffsetOfComponent> Components,
11342                                       SourceLocation RParenLoc) {
11343 
11344   TypeSourceInfo *ArgTInfo;
11345   QualType ArgTy = GetTypeFromParser(ParsedArgTy, &ArgTInfo);
11346   if (ArgTy.isNull())
11347     return ExprError();
11348 
11349   if (!ArgTInfo)
11350     ArgTInfo = Context.getTrivialTypeSourceInfo(ArgTy, TypeLoc);
11351 
11352   return BuildBuiltinOffsetOf(BuiltinLoc, ArgTInfo, Components, RParenLoc);
11353 }
11354 
11355 
ActOnChooseExpr(SourceLocation BuiltinLoc,Expr * CondExpr,Expr * LHSExpr,Expr * RHSExpr,SourceLocation RPLoc)11356 ExprResult Sema::ActOnChooseExpr(SourceLocation BuiltinLoc,
11357                                  Expr *CondExpr,
11358                                  Expr *LHSExpr, Expr *RHSExpr,
11359                                  SourceLocation RPLoc) {
11360   assert((CondExpr && LHSExpr && RHSExpr) && "Missing type argument(s)");
11361 
11362   ExprValueKind VK = VK_RValue;
11363   ExprObjectKind OK = OK_Ordinary;
11364   QualType resType;
11365   bool ValueDependent = false;
11366   bool CondIsTrue = false;
11367   if (CondExpr->isTypeDependent() || CondExpr->isValueDependent()) {
11368     resType = Context.DependentTy;
11369     ValueDependent = true;
11370   } else {
11371     // The conditional expression is required to be a constant expression.
11372     llvm::APSInt condEval(32);
11373     ExprResult CondICE
11374       = VerifyIntegerConstantExpression(CondExpr, &condEval,
11375           diag::err_typecheck_choose_expr_requires_constant, false);
11376     if (CondICE.isInvalid())
11377       return ExprError();
11378     CondExpr = CondICE.get();
11379     CondIsTrue = condEval.getZExtValue();
11380 
11381     // If the condition is > zero, then the AST type is the same as the LSHExpr.
11382     Expr *ActiveExpr = CondIsTrue ? LHSExpr : RHSExpr;
11383 
11384     resType = ActiveExpr->getType();
11385     ValueDependent = ActiveExpr->isValueDependent();
11386     VK = ActiveExpr->getValueKind();
11387     OK = ActiveExpr->getObjectKind();
11388   }
11389 
11390   return new (Context)
11391       ChooseExpr(BuiltinLoc, CondExpr, LHSExpr, RHSExpr, resType, VK, OK, RPLoc,
11392                  CondIsTrue, resType->isDependentType(), ValueDependent);
11393 }
11394 
11395 //===----------------------------------------------------------------------===//
11396 // Clang Extensions.
11397 //===----------------------------------------------------------------------===//
11398 
11399 /// ActOnBlockStart - This callback is invoked when a block literal is started.
ActOnBlockStart(SourceLocation CaretLoc,Scope * CurScope)11400 void Sema::ActOnBlockStart(SourceLocation CaretLoc, Scope *CurScope) {
11401   BlockDecl *Block = BlockDecl::Create(Context, CurContext, CaretLoc);
11402 
11403   if (LangOpts.CPlusPlus) {
11404     Decl *ManglingContextDecl;
11405     if (MangleNumberingContext *MCtx =
11406             getCurrentMangleNumberContext(Block->getDeclContext(),
11407                                           ManglingContextDecl)) {
11408       unsigned ManglingNumber = MCtx->getManglingNumber(Block);
11409       Block->setBlockMangling(ManglingNumber, ManglingContextDecl);
11410     }
11411   }
11412 
11413   PushBlockScope(CurScope, Block);
11414   CurContext->addDecl(Block);
11415   if (CurScope)
11416     PushDeclContext(CurScope, Block);
11417   else
11418     CurContext = Block;
11419 
11420   getCurBlock()->HasImplicitReturnType = true;
11421 
11422   // Enter a new evaluation context to insulate the block from any
11423   // cleanups from the enclosing full-expression.
11424   PushExpressionEvaluationContext(PotentiallyEvaluated);
11425 }
11426 
ActOnBlockArguments(SourceLocation CaretLoc,Declarator & ParamInfo,Scope * CurScope)11427 void Sema::ActOnBlockArguments(SourceLocation CaretLoc, Declarator &ParamInfo,
11428                                Scope *CurScope) {
11429   assert(ParamInfo.getIdentifier() == nullptr &&
11430          "block-id should have no identifier!");
11431   assert(ParamInfo.getContext() == Declarator::BlockLiteralContext);
11432   BlockScopeInfo *CurBlock = getCurBlock();
11433 
11434   TypeSourceInfo *Sig = GetTypeForDeclarator(ParamInfo, CurScope);
11435   QualType T = Sig->getType();
11436 
11437   // FIXME: We should allow unexpanded parameter packs here, but that would,
11438   // in turn, make the block expression contain unexpanded parameter packs.
11439   if (DiagnoseUnexpandedParameterPack(CaretLoc, Sig, UPPC_Block)) {
11440     // Drop the parameters.
11441     FunctionProtoType::ExtProtoInfo EPI;
11442     EPI.HasTrailingReturn = false;
11443     EPI.TypeQuals |= DeclSpec::TQ_const;
11444     T = Context.getFunctionType(Context.DependentTy, None, EPI);
11445     Sig = Context.getTrivialTypeSourceInfo(T);
11446   }
11447 
11448   // GetTypeForDeclarator always produces a function type for a block
11449   // literal signature.  Furthermore, it is always a FunctionProtoType
11450   // unless the function was written with a typedef.
11451   assert(T->isFunctionType() &&
11452          "GetTypeForDeclarator made a non-function block signature");
11453 
11454   // Look for an explicit signature in that function type.
11455   FunctionProtoTypeLoc ExplicitSignature;
11456 
11457   TypeLoc tmp = Sig->getTypeLoc().IgnoreParens();
11458   if ((ExplicitSignature = tmp.getAs<FunctionProtoTypeLoc>())) {
11459 
11460     // Check whether that explicit signature was synthesized by
11461     // GetTypeForDeclarator.  If so, don't save that as part of the
11462     // written signature.
11463     if (ExplicitSignature.getLocalRangeBegin() ==
11464         ExplicitSignature.getLocalRangeEnd()) {
11465       // This would be much cheaper if we stored TypeLocs instead of
11466       // TypeSourceInfos.
11467       TypeLoc Result = ExplicitSignature.getReturnLoc();
11468       unsigned Size = Result.getFullDataSize();
11469       Sig = Context.CreateTypeSourceInfo(Result.getType(), Size);
11470       Sig->getTypeLoc().initializeFullCopy(Result, Size);
11471 
11472       ExplicitSignature = FunctionProtoTypeLoc();
11473     }
11474   }
11475 
11476   CurBlock->TheDecl->setSignatureAsWritten(Sig);
11477   CurBlock->FunctionType = T;
11478 
11479   const FunctionType *Fn = T->getAs<FunctionType>();
11480   QualType RetTy = Fn->getReturnType();
11481   bool isVariadic =
11482     (isa<FunctionProtoType>(Fn) && cast<FunctionProtoType>(Fn)->isVariadic());
11483 
11484   CurBlock->TheDecl->setIsVariadic(isVariadic);
11485 
11486   // Context.DependentTy is used as a placeholder for a missing block
11487   // return type.  TODO:  what should we do with declarators like:
11488   //   ^ * { ... }
11489   // If the answer is "apply template argument deduction"....
11490   if (RetTy != Context.DependentTy) {
11491     CurBlock->ReturnType = RetTy;
11492     CurBlock->TheDecl->setBlockMissingReturnType(false);
11493     CurBlock->HasImplicitReturnType = false;
11494   }
11495 
11496   // Push block parameters from the declarator if we had them.
11497   SmallVector<ParmVarDecl*, 8> Params;
11498   if (ExplicitSignature) {
11499     for (unsigned I = 0, E = ExplicitSignature.getNumParams(); I != E; ++I) {
11500       ParmVarDecl *Param = ExplicitSignature.getParam(I);
11501       if (Param->getIdentifier() == nullptr &&
11502           !Param->isImplicit() &&
11503           !Param->isInvalidDecl() &&
11504           !getLangOpts().CPlusPlus)
11505         Diag(Param->getLocation(), diag::err_parameter_name_omitted);
11506       Params.push_back(Param);
11507     }
11508 
11509   // Fake up parameter variables if we have a typedef, like
11510   //   ^ fntype { ... }
11511   } else if (const FunctionProtoType *Fn = T->getAs<FunctionProtoType>()) {
11512     for (const auto &I : Fn->param_types()) {
11513       ParmVarDecl *Param = BuildParmVarDeclForTypedef(
11514           CurBlock->TheDecl, ParamInfo.getLocStart(), I);
11515       Params.push_back(Param);
11516     }
11517   }
11518 
11519   // Set the parameters on the block decl.
11520   if (!Params.empty()) {
11521     CurBlock->TheDecl->setParams(Params);
11522     CheckParmsForFunctionDef(CurBlock->TheDecl->param_begin(),
11523                              CurBlock->TheDecl->param_end(),
11524                              /*CheckParameterNames=*/false);
11525   }
11526 
11527   // Finally we can process decl attributes.
11528   ProcessDeclAttributes(CurScope, CurBlock->TheDecl, ParamInfo);
11529 
11530   // Put the parameter variables in scope.
11531   for (auto AI : CurBlock->TheDecl->params()) {
11532     AI->setOwningFunction(CurBlock->TheDecl);
11533 
11534     // If this has an identifier, add it to the scope stack.
11535     if (AI->getIdentifier()) {
11536       CheckShadow(CurBlock->TheScope, AI);
11537 
11538       PushOnScopeChains(AI, CurBlock->TheScope);
11539     }
11540   }
11541 }
11542 
11543 /// ActOnBlockError - If there is an error parsing a block, this callback
11544 /// is invoked to pop the information about the block from the action impl.
ActOnBlockError(SourceLocation CaretLoc,Scope * CurScope)11545 void Sema::ActOnBlockError(SourceLocation CaretLoc, Scope *CurScope) {
11546   // Leave the expression-evaluation context.
11547   DiscardCleanupsInEvaluationContext();
11548   PopExpressionEvaluationContext();
11549 
11550   // Pop off CurBlock, handle nested blocks.
11551   PopDeclContext();
11552   PopFunctionScopeInfo();
11553 }
11554 
11555 /// ActOnBlockStmtExpr - This is called when the body of a block statement
11556 /// literal was successfully completed.  ^(int x){...}
ActOnBlockStmtExpr(SourceLocation CaretLoc,Stmt * Body,Scope * CurScope)11557 ExprResult Sema::ActOnBlockStmtExpr(SourceLocation CaretLoc,
11558                                     Stmt *Body, Scope *CurScope) {
11559   // If blocks are disabled, emit an error.
11560   if (!LangOpts.Blocks)
11561     Diag(CaretLoc, diag::err_blocks_disable);
11562 
11563   // Leave the expression-evaluation context.
11564   if (hasAnyUnrecoverableErrorsInThisFunction())
11565     DiscardCleanupsInEvaluationContext();
11566   assert(!ExprNeedsCleanups && "cleanups within block not correctly bound!");
11567   PopExpressionEvaluationContext();
11568 
11569   BlockScopeInfo *BSI = cast<BlockScopeInfo>(FunctionScopes.back());
11570 
11571   if (BSI->HasImplicitReturnType)
11572     deduceClosureReturnType(*BSI);
11573 
11574   PopDeclContext();
11575 
11576   QualType RetTy = Context.VoidTy;
11577   if (!BSI->ReturnType.isNull())
11578     RetTy = BSI->ReturnType;
11579 
11580   bool NoReturn = BSI->TheDecl->hasAttr<NoReturnAttr>();
11581   QualType BlockTy;
11582 
11583   // Set the captured variables on the block.
11584   // FIXME: Share capture structure between BlockDecl and CapturingScopeInfo!
11585   SmallVector<BlockDecl::Capture, 4> Captures;
11586   for (CapturingScopeInfo::Capture &Cap : BSI->Captures) {
11587     if (Cap.isThisCapture())
11588       continue;
11589     BlockDecl::Capture NewCap(Cap.getVariable(), Cap.isBlockCapture(),
11590                               Cap.isNested(), Cap.getInitExpr());
11591     Captures.push_back(NewCap);
11592   }
11593   BSI->TheDecl->setCaptures(Context, Captures, BSI->CXXThisCaptureIndex != 0);
11594 
11595   // If the user wrote a function type in some form, try to use that.
11596   if (!BSI->FunctionType.isNull()) {
11597     const FunctionType *FTy = BSI->FunctionType->getAs<FunctionType>();
11598 
11599     FunctionType::ExtInfo Ext = FTy->getExtInfo();
11600     if (NoReturn && !Ext.getNoReturn()) Ext = Ext.withNoReturn(true);
11601 
11602     // Turn protoless block types into nullary block types.
11603     if (isa<FunctionNoProtoType>(FTy)) {
11604       FunctionProtoType::ExtProtoInfo EPI;
11605       EPI.ExtInfo = Ext;
11606       BlockTy = Context.getFunctionType(RetTy, None, EPI);
11607 
11608     // Otherwise, if we don't need to change anything about the function type,
11609     // preserve its sugar structure.
11610     } else if (FTy->getReturnType() == RetTy &&
11611                (!NoReturn || FTy->getNoReturnAttr())) {
11612       BlockTy = BSI->FunctionType;
11613 
11614     // Otherwise, make the minimal modifications to the function type.
11615     } else {
11616       const FunctionProtoType *FPT = cast<FunctionProtoType>(FTy);
11617       FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
11618       EPI.TypeQuals = 0; // FIXME: silently?
11619       EPI.ExtInfo = Ext;
11620       BlockTy = Context.getFunctionType(RetTy, FPT->getParamTypes(), EPI);
11621     }
11622 
11623   // If we don't have a function type, just build one from nothing.
11624   } else {
11625     FunctionProtoType::ExtProtoInfo EPI;
11626     EPI.ExtInfo = FunctionType::ExtInfo().withNoReturn(NoReturn);
11627     BlockTy = Context.getFunctionType(RetTy, None, EPI);
11628   }
11629 
11630   DiagnoseUnusedParameters(BSI->TheDecl->param_begin(),
11631                            BSI->TheDecl->param_end());
11632   BlockTy = Context.getBlockPointerType(BlockTy);
11633 
11634   // If needed, diagnose invalid gotos and switches in the block.
11635   if (getCurFunction()->NeedsScopeChecking() &&
11636       !PP.isCodeCompletionEnabled())
11637     DiagnoseInvalidJumps(cast<CompoundStmt>(Body));
11638 
11639   BSI->TheDecl->setBody(cast<CompoundStmt>(Body));
11640 
11641   // Try to apply the named return value optimization. We have to check again
11642   // if we can do this, though, because blocks keep return statements around
11643   // to deduce an implicit return type.
11644   if (getLangOpts().CPlusPlus && RetTy->isRecordType() &&
11645       !BSI->TheDecl->isDependentContext())
11646     computeNRVO(Body, BSI);
11647 
11648   BlockExpr *Result = new (Context) BlockExpr(BSI->TheDecl, BlockTy);
11649   AnalysisBasedWarnings::Policy WP = AnalysisWarnings.getDefaultPolicy();
11650   PopFunctionScopeInfo(&WP, Result->getBlockDecl(), Result);
11651 
11652   // If the block isn't obviously global, i.e. it captures anything at
11653   // all, then we need to do a few things in the surrounding context:
11654   if (Result->getBlockDecl()->hasCaptures()) {
11655     // First, this expression has a new cleanup object.
11656     ExprCleanupObjects.push_back(Result->getBlockDecl());
11657     ExprNeedsCleanups = true;
11658 
11659     // It also gets a branch-protected scope if any of the captured
11660     // variables needs destruction.
11661     for (const auto &CI : Result->getBlockDecl()->captures()) {
11662       const VarDecl *var = CI.getVariable();
11663       if (var->getType().isDestructedType() != QualType::DK_none) {
11664         getCurFunction()->setHasBranchProtectedScope();
11665         break;
11666       }
11667     }
11668   }
11669 
11670   return Result;
11671 }
11672 
ActOnVAArg(SourceLocation BuiltinLoc,Expr * E,ParsedType Ty,SourceLocation RPLoc)11673 ExprResult Sema::ActOnVAArg(SourceLocation BuiltinLoc,
11674                                         Expr *E, ParsedType Ty,
11675                                         SourceLocation RPLoc) {
11676   TypeSourceInfo *TInfo;
11677   GetTypeFromParser(Ty, &TInfo);
11678   return BuildVAArgExpr(BuiltinLoc, E, TInfo, RPLoc);
11679 }
11680 
BuildVAArgExpr(SourceLocation BuiltinLoc,Expr * E,TypeSourceInfo * TInfo,SourceLocation RPLoc)11681 ExprResult Sema::BuildVAArgExpr(SourceLocation BuiltinLoc,
11682                                 Expr *E, TypeSourceInfo *TInfo,
11683                                 SourceLocation RPLoc) {
11684   Expr *OrigExpr = E;
11685   bool IsMS = false;
11686 
11687   // It might be a __builtin_ms_va_list. (But don't ever mark a va_arg()
11688   // as Microsoft ABI on an actual Microsoft platform, where
11689   // __builtin_ms_va_list and __builtin_va_list are the same.)
11690   if (!E->isTypeDependent() && Context.getTargetInfo().hasBuiltinMSVaList() &&
11691       Context.getTargetInfo().getBuiltinVaListKind() != TargetInfo::CharPtrBuiltinVaList) {
11692     QualType MSVaListType = Context.getBuiltinMSVaListType();
11693     if (Context.hasSameType(MSVaListType, E->getType())) {
11694       if (CheckForModifiableLvalue(E, BuiltinLoc, *this))
11695         return ExprError();
11696       IsMS = true;
11697     }
11698   }
11699 
11700   // Get the va_list type
11701   QualType VaListType = Context.getBuiltinVaListType();
11702   if (!IsMS) {
11703     if (VaListType->isArrayType()) {
11704       // Deal with implicit array decay; for example, on x86-64,
11705       // va_list is an array, but it's supposed to decay to
11706       // a pointer for va_arg.
11707       VaListType = Context.getArrayDecayedType(VaListType);
11708       // Make sure the input expression also decays appropriately.
11709       ExprResult Result = UsualUnaryConversions(E);
11710       if (Result.isInvalid())
11711         return ExprError();
11712       E = Result.get();
11713     } else if (VaListType->isRecordType() && getLangOpts().CPlusPlus) {
11714       // If va_list is a record type and we are compiling in C++ mode,
11715       // check the argument using reference binding.
11716       InitializedEntity Entity = InitializedEntity::InitializeParameter(
11717           Context, Context.getLValueReferenceType(VaListType), false);
11718       ExprResult Init = PerformCopyInitialization(Entity, SourceLocation(), E);
11719       if (Init.isInvalid())
11720         return ExprError();
11721       E = Init.getAs<Expr>();
11722     } else {
11723       // Otherwise, the va_list argument must be an l-value because
11724       // it is modified by va_arg.
11725       if (!E->isTypeDependent() &&
11726           CheckForModifiableLvalue(E, BuiltinLoc, *this))
11727         return ExprError();
11728     }
11729   }
11730 
11731   if (!IsMS && !E->isTypeDependent() &&
11732       !Context.hasSameType(VaListType, E->getType()))
11733     return ExprError(Diag(E->getLocStart(),
11734                          diag::err_first_argument_to_va_arg_not_of_type_va_list)
11735       << OrigExpr->getType() << E->getSourceRange());
11736 
11737   if (!TInfo->getType()->isDependentType()) {
11738     if (RequireCompleteType(TInfo->getTypeLoc().getBeginLoc(), TInfo->getType(),
11739                             diag::err_second_parameter_to_va_arg_incomplete,
11740                             TInfo->getTypeLoc()))
11741       return ExprError();
11742 
11743     if (RequireNonAbstractType(TInfo->getTypeLoc().getBeginLoc(),
11744                                TInfo->getType(),
11745                                diag::err_second_parameter_to_va_arg_abstract,
11746                                TInfo->getTypeLoc()))
11747       return ExprError();
11748 
11749     if (!TInfo->getType().isPODType(Context)) {
11750       Diag(TInfo->getTypeLoc().getBeginLoc(),
11751            TInfo->getType()->isObjCLifetimeType()
11752              ? diag::warn_second_parameter_to_va_arg_ownership_qualified
11753              : diag::warn_second_parameter_to_va_arg_not_pod)
11754         << TInfo->getType()
11755         << TInfo->getTypeLoc().getSourceRange();
11756     }
11757 
11758     // Check for va_arg where arguments of the given type will be promoted
11759     // (i.e. this va_arg is guaranteed to have undefined behavior).
11760     QualType PromoteType;
11761     if (TInfo->getType()->isPromotableIntegerType()) {
11762       PromoteType = Context.getPromotedIntegerType(TInfo->getType());
11763       if (Context.typesAreCompatible(PromoteType, TInfo->getType()))
11764         PromoteType = QualType();
11765     }
11766     if (TInfo->getType()->isSpecificBuiltinType(BuiltinType::Float))
11767       PromoteType = Context.DoubleTy;
11768     if (!PromoteType.isNull())
11769       DiagRuntimeBehavior(TInfo->getTypeLoc().getBeginLoc(), E,
11770                   PDiag(diag::warn_second_parameter_to_va_arg_never_compatible)
11771                           << TInfo->getType()
11772                           << PromoteType
11773                           << TInfo->getTypeLoc().getSourceRange());
11774   }
11775 
11776   QualType T = TInfo->getType().getNonLValueExprType(Context);
11777   return new (Context) VAArgExpr(BuiltinLoc, E, TInfo, RPLoc, T, IsMS);
11778 }
11779 
ActOnGNUNullExpr(SourceLocation TokenLoc)11780 ExprResult Sema::ActOnGNUNullExpr(SourceLocation TokenLoc) {
11781   // The type of __null will be int or long, depending on the size of
11782   // pointers on the target.
11783   QualType Ty;
11784   unsigned pw = Context.getTargetInfo().getPointerWidth(0);
11785   if (pw == Context.getTargetInfo().getIntWidth())
11786     Ty = Context.IntTy;
11787   else if (pw == Context.getTargetInfo().getLongWidth())
11788     Ty = Context.LongTy;
11789   else if (pw == Context.getTargetInfo().getLongLongWidth())
11790     Ty = Context.LongLongTy;
11791   else {
11792     llvm_unreachable("I don't know size of pointer!");
11793   }
11794 
11795   return new (Context) GNUNullExpr(Ty, TokenLoc);
11796 }
11797 
11798 bool
ConversionToObjCStringLiteralCheck(QualType DstType,Expr * & Exp)11799 Sema::ConversionToObjCStringLiteralCheck(QualType DstType, Expr *&Exp) {
11800   if (!getLangOpts().ObjC1)
11801     return false;
11802 
11803   const ObjCObjectPointerType *PT = DstType->getAs<ObjCObjectPointerType>();
11804   if (!PT)
11805     return false;
11806 
11807   if (!PT->isObjCIdType()) {
11808     // Check if the destination is the 'NSString' interface.
11809     const ObjCInterfaceDecl *ID = PT->getInterfaceDecl();
11810     if (!ID || !ID->getIdentifier()->isStr("NSString"))
11811       return false;
11812   }
11813 
11814   // Ignore any parens, implicit casts (should only be
11815   // array-to-pointer decays), and not-so-opaque values.  The last is
11816   // important for making this trigger for property assignments.
11817   Expr *SrcExpr = Exp->IgnoreParenImpCasts();
11818   if (OpaqueValueExpr *OV = dyn_cast<OpaqueValueExpr>(SrcExpr))
11819     if (OV->getSourceExpr())
11820       SrcExpr = OV->getSourceExpr()->IgnoreParenImpCasts();
11821 
11822   StringLiteral *SL = dyn_cast<StringLiteral>(SrcExpr);
11823   if (!SL || !SL->isAscii())
11824     return false;
11825   Diag(SL->getLocStart(), diag::err_missing_atsign_prefix)
11826     << FixItHint::CreateInsertion(SL->getLocStart(), "@");
11827   Exp = BuildObjCStringLiteral(SL->getLocStart(), SL).get();
11828   return true;
11829 }
11830 
maybeDiagnoseAssignmentToFunction(Sema & S,QualType DstType,const Expr * SrcExpr)11831 static bool maybeDiagnoseAssignmentToFunction(Sema &S, QualType DstType,
11832                                               const Expr *SrcExpr) {
11833   if (!DstType->isFunctionPointerType() ||
11834       !SrcExpr->getType()->isFunctionType())
11835     return false;
11836 
11837   auto *DRE = dyn_cast<DeclRefExpr>(SrcExpr->IgnoreParenImpCasts());
11838   if (!DRE)
11839     return false;
11840 
11841   auto *FD = dyn_cast<FunctionDecl>(DRE->getDecl());
11842   if (!FD)
11843     return false;
11844 
11845   return !S.checkAddressOfFunctionIsAvailable(FD,
11846                                               /*Complain=*/true,
11847                                               SrcExpr->getLocStart());
11848 }
11849 
DiagnoseAssignmentResult(AssignConvertType ConvTy,SourceLocation Loc,QualType DstType,QualType SrcType,Expr * SrcExpr,AssignmentAction Action,bool * Complained)11850 bool Sema::DiagnoseAssignmentResult(AssignConvertType ConvTy,
11851                                     SourceLocation Loc,
11852                                     QualType DstType, QualType SrcType,
11853                                     Expr *SrcExpr, AssignmentAction Action,
11854                                     bool *Complained) {
11855   if (Complained)
11856     *Complained = false;
11857 
11858   // Decode the result (notice that AST's are still created for extensions).
11859   bool CheckInferredResultType = false;
11860   bool isInvalid = false;
11861   unsigned DiagKind = 0;
11862   FixItHint Hint;
11863   ConversionFixItGenerator ConvHints;
11864   bool MayHaveConvFixit = false;
11865   bool MayHaveFunctionDiff = false;
11866   const ObjCInterfaceDecl *IFace = nullptr;
11867   const ObjCProtocolDecl *PDecl = nullptr;
11868 
11869   switch (ConvTy) {
11870   case Compatible:
11871       DiagnoseAssignmentEnum(DstType, SrcType, SrcExpr);
11872       return false;
11873 
11874   case PointerToInt:
11875     DiagKind = diag::ext_typecheck_convert_pointer_int;
11876     ConvHints.tryToFixConversion(SrcExpr, SrcType, DstType, *this);
11877     MayHaveConvFixit = true;
11878     break;
11879   case IntToPointer:
11880     DiagKind = diag::ext_typecheck_convert_int_pointer;
11881     ConvHints.tryToFixConversion(SrcExpr, SrcType, DstType, *this);
11882     MayHaveConvFixit = true;
11883     break;
11884   case IncompatiblePointer:
11885       DiagKind =
11886         (Action == AA_Passing_CFAudited ?
11887           diag::err_arc_typecheck_convert_incompatible_pointer :
11888           diag::ext_typecheck_convert_incompatible_pointer);
11889     CheckInferredResultType = DstType->isObjCObjectPointerType() &&
11890       SrcType->isObjCObjectPointerType();
11891     if (Hint.isNull() && !CheckInferredResultType) {
11892       ConvHints.tryToFixConversion(SrcExpr, SrcType, DstType, *this);
11893     }
11894     else if (CheckInferredResultType) {
11895       SrcType = SrcType.getUnqualifiedType();
11896       DstType = DstType.getUnqualifiedType();
11897     }
11898     MayHaveConvFixit = true;
11899     break;
11900   case IncompatiblePointerSign:
11901     DiagKind = diag::ext_typecheck_convert_incompatible_pointer_sign;
11902     break;
11903   case FunctionVoidPointer:
11904     DiagKind = diag::ext_typecheck_convert_pointer_void_func;
11905     break;
11906   case IncompatiblePointerDiscardsQualifiers: {
11907     // Perform array-to-pointer decay if necessary.
11908     if (SrcType->isArrayType()) SrcType = Context.getArrayDecayedType(SrcType);
11909 
11910     Qualifiers lhq = SrcType->getPointeeType().getQualifiers();
11911     Qualifiers rhq = DstType->getPointeeType().getQualifiers();
11912     if (lhq.getAddressSpace() != rhq.getAddressSpace()) {
11913       DiagKind = diag::err_typecheck_incompatible_address_space;
11914       break;
11915 
11916 
11917     } else if (lhq.getObjCLifetime() != rhq.getObjCLifetime()) {
11918       DiagKind = diag::err_typecheck_incompatible_ownership;
11919       break;
11920     }
11921 
11922     llvm_unreachable("unknown error case for discarding qualifiers!");
11923     // fallthrough
11924   }
11925   case CompatiblePointerDiscardsQualifiers:
11926     // If the qualifiers lost were because we were applying the
11927     // (deprecated) C++ conversion from a string literal to a char*
11928     // (or wchar_t*), then there was no error (C++ 4.2p2).  FIXME:
11929     // Ideally, this check would be performed in
11930     // checkPointerTypesForAssignment. However, that would require a
11931     // bit of refactoring (so that the second argument is an
11932     // expression, rather than a type), which should be done as part
11933     // of a larger effort to fix checkPointerTypesForAssignment for
11934     // C++ semantics.
11935     if (getLangOpts().CPlusPlus &&
11936         IsStringLiteralToNonConstPointerConversion(SrcExpr, DstType))
11937       return false;
11938     DiagKind = diag::ext_typecheck_convert_discards_qualifiers;
11939     break;
11940   case IncompatibleNestedPointerQualifiers:
11941     DiagKind = diag::ext_nested_pointer_qualifier_mismatch;
11942     break;
11943   case IntToBlockPointer:
11944     DiagKind = diag::err_int_to_block_pointer;
11945     break;
11946   case IncompatibleBlockPointer:
11947     DiagKind = diag::err_typecheck_convert_incompatible_block_pointer;
11948     break;
11949   case IncompatibleObjCQualifiedId: {
11950     if (SrcType->isObjCQualifiedIdType()) {
11951       const ObjCObjectPointerType *srcOPT =
11952                 SrcType->getAs<ObjCObjectPointerType>();
11953       for (auto *srcProto : srcOPT->quals()) {
11954         PDecl = srcProto;
11955         break;
11956       }
11957       if (const ObjCInterfaceType *IFaceT =
11958             DstType->getAs<ObjCObjectPointerType>()->getInterfaceType())
11959         IFace = IFaceT->getDecl();
11960     }
11961     else if (DstType->isObjCQualifiedIdType()) {
11962       const ObjCObjectPointerType *dstOPT =
11963         DstType->getAs<ObjCObjectPointerType>();
11964       for (auto *dstProto : dstOPT->quals()) {
11965         PDecl = dstProto;
11966         break;
11967       }
11968       if (const ObjCInterfaceType *IFaceT =
11969             SrcType->getAs<ObjCObjectPointerType>()->getInterfaceType())
11970         IFace = IFaceT->getDecl();
11971     }
11972     DiagKind = diag::warn_incompatible_qualified_id;
11973     break;
11974   }
11975   case IncompatibleVectors:
11976     DiagKind = diag::warn_incompatible_vectors;
11977     break;
11978   case IncompatibleObjCWeakRef:
11979     DiagKind = diag::err_arc_weak_unavailable_assign;
11980     break;
11981   case Incompatible:
11982     if (maybeDiagnoseAssignmentToFunction(*this, DstType, SrcExpr)) {
11983       if (Complained)
11984         *Complained = true;
11985       return true;
11986     }
11987 
11988     DiagKind = diag::err_typecheck_convert_incompatible;
11989     ConvHints.tryToFixConversion(SrcExpr, SrcType, DstType, *this);
11990     MayHaveConvFixit = true;
11991     isInvalid = true;
11992     MayHaveFunctionDiff = true;
11993     break;
11994   }
11995 
11996   QualType FirstType, SecondType;
11997   switch (Action) {
11998   case AA_Assigning:
11999   case AA_Initializing:
12000     // The destination type comes first.
12001     FirstType = DstType;
12002     SecondType = SrcType;
12003     break;
12004 
12005   case AA_Returning:
12006   case AA_Passing:
12007   case AA_Passing_CFAudited:
12008   case AA_Converting:
12009   case AA_Sending:
12010   case AA_Casting:
12011     // The source type comes first.
12012     FirstType = SrcType;
12013     SecondType = DstType;
12014     break;
12015   }
12016 
12017   PartialDiagnostic FDiag = PDiag(DiagKind);
12018   if (Action == AA_Passing_CFAudited)
12019     FDiag << FirstType << SecondType << AA_Passing << SrcExpr->getSourceRange();
12020   else
12021     FDiag << FirstType << SecondType << Action << SrcExpr->getSourceRange();
12022 
12023   // If we can fix the conversion, suggest the FixIts.
12024   assert(ConvHints.isNull() || Hint.isNull());
12025   if (!ConvHints.isNull()) {
12026     for (FixItHint &H : ConvHints.Hints)
12027       FDiag << H;
12028   } else {
12029     FDiag << Hint;
12030   }
12031   if (MayHaveConvFixit) { FDiag << (unsigned) (ConvHints.Kind); }
12032 
12033   if (MayHaveFunctionDiff)
12034     HandleFunctionTypeMismatch(FDiag, SecondType, FirstType);
12035 
12036   Diag(Loc, FDiag);
12037   if (DiagKind == diag::warn_incompatible_qualified_id &&
12038       PDecl && IFace && !IFace->hasDefinition())
12039       Diag(IFace->getLocation(), diag::not_incomplete_class_and_qualified_id)
12040         << IFace->getName() << PDecl->getName();
12041 
12042   if (SecondType == Context.OverloadTy)
12043     NoteAllOverloadCandidates(OverloadExpr::find(SrcExpr).Expression,
12044                               FirstType, /*TakingAddress=*/true);
12045 
12046   if (CheckInferredResultType)
12047     EmitRelatedResultTypeNote(SrcExpr);
12048 
12049   if (Action == AA_Returning && ConvTy == IncompatiblePointer)
12050     EmitRelatedResultTypeNoteForReturn(DstType);
12051 
12052   if (Complained)
12053     *Complained = true;
12054   return isInvalid;
12055 }
12056 
VerifyIntegerConstantExpression(Expr * E,llvm::APSInt * Result)12057 ExprResult Sema::VerifyIntegerConstantExpression(Expr *E,
12058                                                  llvm::APSInt *Result) {
12059   class SimpleICEDiagnoser : public VerifyICEDiagnoser {
12060   public:
12061     void diagnoseNotICE(Sema &S, SourceLocation Loc, SourceRange SR) override {
12062       S.Diag(Loc, diag::err_expr_not_ice) << S.LangOpts.CPlusPlus << SR;
12063     }
12064   } Diagnoser;
12065 
12066   return VerifyIntegerConstantExpression(E, Result, Diagnoser);
12067 }
12068 
VerifyIntegerConstantExpression(Expr * E,llvm::APSInt * Result,unsigned DiagID,bool AllowFold)12069 ExprResult Sema::VerifyIntegerConstantExpression(Expr *E,
12070                                                  llvm::APSInt *Result,
12071                                                  unsigned DiagID,
12072                                                  bool AllowFold) {
12073   class IDDiagnoser : public VerifyICEDiagnoser {
12074     unsigned DiagID;
12075 
12076   public:
12077     IDDiagnoser(unsigned DiagID)
12078       : VerifyICEDiagnoser(DiagID == 0), DiagID(DiagID) { }
12079 
12080     void diagnoseNotICE(Sema &S, SourceLocation Loc, SourceRange SR) override {
12081       S.Diag(Loc, DiagID) << SR;
12082     }
12083   } Diagnoser(DiagID);
12084 
12085   return VerifyIntegerConstantExpression(E, Result, Diagnoser, AllowFold);
12086 }
12087 
diagnoseFold(Sema & S,SourceLocation Loc,SourceRange SR)12088 void Sema::VerifyICEDiagnoser::diagnoseFold(Sema &S, SourceLocation Loc,
12089                                             SourceRange SR) {
12090   S.Diag(Loc, diag::ext_expr_not_ice) << SR << S.LangOpts.CPlusPlus;
12091 }
12092 
12093 ExprResult
VerifyIntegerConstantExpression(Expr * E,llvm::APSInt * Result,VerifyICEDiagnoser & Diagnoser,bool AllowFold)12094 Sema::VerifyIntegerConstantExpression(Expr *E, llvm::APSInt *Result,
12095                                       VerifyICEDiagnoser &Diagnoser,
12096                                       bool AllowFold) {
12097   SourceLocation DiagLoc = E->getLocStart();
12098 
12099   if (getLangOpts().CPlusPlus11) {
12100     // C++11 [expr.const]p5:
12101     //   If an expression of literal class type is used in a context where an
12102     //   integral constant expression is required, then that class type shall
12103     //   have a single non-explicit conversion function to an integral or
12104     //   unscoped enumeration type
12105     ExprResult Converted;
12106     class CXX11ConvertDiagnoser : public ICEConvertDiagnoser {
12107     public:
12108       CXX11ConvertDiagnoser(bool Silent)
12109           : ICEConvertDiagnoser(/*AllowScopedEnumerations*/false,
12110                                 Silent, true) {}
12111 
12112       SemaDiagnosticBuilder diagnoseNotInt(Sema &S, SourceLocation Loc,
12113                                            QualType T) override {
12114         return S.Diag(Loc, diag::err_ice_not_integral) << T;
12115       }
12116 
12117       SemaDiagnosticBuilder diagnoseIncomplete(
12118           Sema &S, SourceLocation Loc, QualType T) override {
12119         return S.Diag(Loc, diag::err_ice_incomplete_type) << T;
12120       }
12121 
12122       SemaDiagnosticBuilder diagnoseExplicitConv(
12123           Sema &S, SourceLocation Loc, QualType T, QualType ConvTy) override {
12124         return S.Diag(Loc, diag::err_ice_explicit_conversion) << T << ConvTy;
12125       }
12126 
12127       SemaDiagnosticBuilder noteExplicitConv(
12128           Sema &S, CXXConversionDecl *Conv, QualType ConvTy) override {
12129         return S.Diag(Conv->getLocation(), diag::note_ice_conversion_here)
12130                  << ConvTy->isEnumeralType() << ConvTy;
12131       }
12132 
12133       SemaDiagnosticBuilder diagnoseAmbiguous(
12134           Sema &S, SourceLocation Loc, QualType T) override {
12135         return S.Diag(Loc, diag::err_ice_ambiguous_conversion) << T;
12136       }
12137 
12138       SemaDiagnosticBuilder noteAmbiguous(
12139           Sema &S, CXXConversionDecl *Conv, QualType ConvTy) override {
12140         return S.Diag(Conv->getLocation(), diag::note_ice_conversion_here)
12141                  << ConvTy->isEnumeralType() << ConvTy;
12142       }
12143 
12144       SemaDiagnosticBuilder diagnoseConversion(
12145           Sema &S, SourceLocation Loc, QualType T, QualType ConvTy) override {
12146         llvm_unreachable("conversion functions are permitted");
12147       }
12148     } ConvertDiagnoser(Diagnoser.Suppress);
12149 
12150     Converted = PerformContextualImplicitConversion(DiagLoc, E,
12151                                                     ConvertDiagnoser);
12152     if (Converted.isInvalid())
12153       return Converted;
12154     E = Converted.get();
12155     if (!E->getType()->isIntegralOrUnscopedEnumerationType())
12156       return ExprError();
12157   } else if (!E->getType()->isIntegralOrUnscopedEnumerationType()) {
12158     // An ICE must be of integral or unscoped enumeration type.
12159     if (!Diagnoser.Suppress)
12160       Diagnoser.diagnoseNotICE(*this, DiagLoc, E->getSourceRange());
12161     return ExprError();
12162   }
12163 
12164   // Circumvent ICE checking in C++11 to avoid evaluating the expression twice
12165   // in the non-ICE case.
12166   if (!getLangOpts().CPlusPlus11 && E->isIntegerConstantExpr(Context)) {
12167     if (Result)
12168       *Result = E->EvaluateKnownConstInt(Context);
12169     return E;
12170   }
12171 
12172   Expr::EvalResult EvalResult;
12173   SmallVector<PartialDiagnosticAt, 8> Notes;
12174   EvalResult.Diag = &Notes;
12175 
12176   // Try to evaluate the expression, and produce diagnostics explaining why it's
12177   // not a constant expression as a side-effect.
12178   bool Folded = E->EvaluateAsRValue(EvalResult, Context) &&
12179                 EvalResult.Val.isInt() && !EvalResult.HasSideEffects;
12180 
12181   // In C++11, we can rely on diagnostics being produced for any expression
12182   // which is not a constant expression. If no diagnostics were produced, then
12183   // this is a constant expression.
12184   if (Folded && getLangOpts().CPlusPlus11 && Notes.empty()) {
12185     if (Result)
12186       *Result = EvalResult.Val.getInt();
12187     return E;
12188   }
12189 
12190   // If our only note is the usual "invalid subexpression" note, just point
12191   // the caret at its location rather than producing an essentially
12192   // redundant note.
12193   if (Notes.size() == 1 && Notes[0].second.getDiagID() ==
12194         diag::note_invalid_subexpr_in_const_expr) {
12195     DiagLoc = Notes[0].first;
12196     Notes.clear();
12197   }
12198 
12199   if (!Folded || !AllowFold) {
12200     if (!Diagnoser.Suppress) {
12201       Diagnoser.diagnoseNotICE(*this, DiagLoc, E->getSourceRange());
12202       for (const PartialDiagnosticAt &Note : Notes)
12203         Diag(Note.first, Note.second);
12204     }
12205 
12206     return ExprError();
12207   }
12208 
12209   Diagnoser.diagnoseFold(*this, DiagLoc, E->getSourceRange());
12210   for (const PartialDiagnosticAt &Note : Notes)
12211     Diag(Note.first, Note.second);
12212 
12213   if (Result)
12214     *Result = EvalResult.Val.getInt();
12215   return E;
12216 }
12217 
12218 namespace {
12219   // Handle the case where we conclude a expression which we speculatively
12220   // considered to be unevaluated is actually evaluated.
12221   class TransformToPE : public TreeTransform<TransformToPE> {
12222     typedef TreeTransform<TransformToPE> BaseTransform;
12223 
12224   public:
TransformToPE(Sema & SemaRef)12225     TransformToPE(Sema &SemaRef) : BaseTransform(SemaRef) { }
12226 
12227     // Make sure we redo semantic analysis
AlwaysRebuild()12228     bool AlwaysRebuild() { return true; }
12229 
12230     // Make sure we handle LabelStmts correctly.
12231     // FIXME: This does the right thing, but maybe we need a more general
12232     // fix to TreeTransform?
TransformLabelStmt(LabelStmt * S)12233     StmtResult TransformLabelStmt(LabelStmt *S) {
12234       S->getDecl()->setStmt(nullptr);
12235       return BaseTransform::TransformLabelStmt(S);
12236     }
12237 
12238     // We need to special-case DeclRefExprs referring to FieldDecls which
12239     // are not part of a member pointer formation; normal TreeTransforming
12240     // doesn't catch this case because of the way we represent them in the AST.
12241     // FIXME: This is a bit ugly; is it really the best way to handle this
12242     // case?
12243     //
12244     // Error on DeclRefExprs referring to FieldDecls.
TransformDeclRefExpr(DeclRefExpr * E)12245     ExprResult TransformDeclRefExpr(DeclRefExpr *E) {
12246       if (isa<FieldDecl>(E->getDecl()) &&
12247           !SemaRef.isUnevaluatedContext())
12248         return SemaRef.Diag(E->getLocation(),
12249                             diag::err_invalid_non_static_member_use)
12250             << E->getDecl() << E->getSourceRange();
12251 
12252       return BaseTransform::TransformDeclRefExpr(E);
12253     }
12254 
12255     // Exception: filter out member pointer formation
TransformUnaryOperator(UnaryOperator * E)12256     ExprResult TransformUnaryOperator(UnaryOperator *E) {
12257       if (E->getOpcode() == UO_AddrOf && E->getType()->isMemberPointerType())
12258         return E;
12259 
12260       return BaseTransform::TransformUnaryOperator(E);
12261     }
12262 
TransformLambdaExpr(LambdaExpr * E)12263     ExprResult TransformLambdaExpr(LambdaExpr *E) {
12264       // Lambdas never need to be transformed.
12265       return E;
12266     }
12267   };
12268 }
12269 
TransformToPotentiallyEvaluated(Expr * E)12270 ExprResult Sema::TransformToPotentiallyEvaluated(Expr *E) {
12271   assert(isUnevaluatedContext() &&
12272          "Should only transform unevaluated expressions");
12273   ExprEvalContexts.back().Context =
12274       ExprEvalContexts[ExprEvalContexts.size()-2].Context;
12275   if (isUnevaluatedContext())
12276     return E;
12277   return TransformToPE(*this).TransformExpr(E);
12278 }
12279 
12280 void
PushExpressionEvaluationContext(ExpressionEvaluationContext NewContext,Decl * LambdaContextDecl,bool IsDecltype)12281 Sema::PushExpressionEvaluationContext(ExpressionEvaluationContext NewContext,
12282                                       Decl *LambdaContextDecl,
12283                                       bool IsDecltype) {
12284   ExprEvalContexts.emplace_back(NewContext, ExprCleanupObjects.size(),
12285                                 ExprNeedsCleanups, LambdaContextDecl,
12286                                 IsDecltype);
12287   ExprNeedsCleanups = false;
12288   if (!MaybeODRUseExprs.empty())
12289     std::swap(MaybeODRUseExprs, ExprEvalContexts.back().SavedMaybeODRUseExprs);
12290 }
12291 
12292 void
PushExpressionEvaluationContext(ExpressionEvaluationContext NewContext,ReuseLambdaContextDecl_t,bool IsDecltype)12293 Sema::PushExpressionEvaluationContext(ExpressionEvaluationContext NewContext,
12294                                       ReuseLambdaContextDecl_t,
12295                                       bool IsDecltype) {
12296   Decl *ClosureContextDecl = ExprEvalContexts.back().ManglingContextDecl;
12297   PushExpressionEvaluationContext(NewContext, ClosureContextDecl, IsDecltype);
12298 }
12299 
PopExpressionEvaluationContext()12300 void Sema::PopExpressionEvaluationContext() {
12301   ExpressionEvaluationContextRecord& Rec = ExprEvalContexts.back();
12302   unsigned NumTypos = Rec.NumTypos;
12303 
12304   if (!Rec.Lambdas.empty()) {
12305     if (Rec.isUnevaluated() || Rec.Context == ConstantEvaluated) {
12306       unsigned D;
12307       if (Rec.isUnevaluated()) {
12308         // C++11 [expr.prim.lambda]p2:
12309         //   A lambda-expression shall not appear in an unevaluated operand
12310         //   (Clause 5).
12311         D = diag::err_lambda_unevaluated_operand;
12312       } else {
12313         // C++1y [expr.const]p2:
12314         //   A conditional-expression e is a core constant expression unless the
12315         //   evaluation of e, following the rules of the abstract machine, would
12316         //   evaluate [...] a lambda-expression.
12317         D = diag::err_lambda_in_constant_expression;
12318       }
12319       for (const auto *L : Rec.Lambdas)
12320         Diag(L->getLocStart(), D);
12321     } else {
12322       // Mark the capture expressions odr-used. This was deferred
12323       // during lambda expression creation.
12324       for (auto *Lambda : Rec.Lambdas) {
12325         for (auto *C : Lambda->capture_inits())
12326           MarkDeclarationsReferencedInExpr(C);
12327       }
12328     }
12329   }
12330 
12331   // When are coming out of an unevaluated context, clear out any
12332   // temporaries that we may have created as part of the evaluation of
12333   // the expression in that context: they aren't relevant because they
12334   // will never be constructed.
12335   if (Rec.isUnevaluated() || Rec.Context == ConstantEvaluated) {
12336     ExprCleanupObjects.erase(ExprCleanupObjects.begin() + Rec.NumCleanupObjects,
12337                              ExprCleanupObjects.end());
12338     ExprNeedsCleanups = Rec.ParentNeedsCleanups;
12339     CleanupVarDeclMarking();
12340     std::swap(MaybeODRUseExprs, Rec.SavedMaybeODRUseExprs);
12341   // Otherwise, merge the contexts together.
12342   } else {
12343     ExprNeedsCleanups |= Rec.ParentNeedsCleanups;
12344     MaybeODRUseExprs.insert(Rec.SavedMaybeODRUseExprs.begin(),
12345                             Rec.SavedMaybeODRUseExprs.end());
12346   }
12347 
12348   // Pop the current expression evaluation context off the stack.
12349   ExprEvalContexts.pop_back();
12350 
12351   if (!ExprEvalContexts.empty())
12352     ExprEvalContexts.back().NumTypos += NumTypos;
12353   else
12354     assert(NumTypos == 0 && "There are outstanding typos after popping the "
12355                             "last ExpressionEvaluationContextRecord");
12356 }
12357 
DiscardCleanupsInEvaluationContext()12358 void Sema::DiscardCleanupsInEvaluationContext() {
12359   ExprCleanupObjects.erase(
12360          ExprCleanupObjects.begin() + ExprEvalContexts.back().NumCleanupObjects,
12361          ExprCleanupObjects.end());
12362   ExprNeedsCleanups = false;
12363   MaybeODRUseExprs.clear();
12364 }
12365 
HandleExprEvaluationContextForTypeof(Expr * E)12366 ExprResult Sema::HandleExprEvaluationContextForTypeof(Expr *E) {
12367   if (!E->getType()->isVariablyModifiedType())
12368     return E;
12369   return TransformToPotentiallyEvaluated(E);
12370 }
12371 
IsPotentiallyEvaluatedContext(Sema & SemaRef)12372 static bool IsPotentiallyEvaluatedContext(Sema &SemaRef) {
12373   // Do not mark anything as "used" within a dependent context; wait for
12374   // an instantiation.
12375   if (SemaRef.CurContext->isDependentContext())
12376     return false;
12377 
12378   switch (SemaRef.ExprEvalContexts.back().Context) {
12379     case Sema::Unevaluated:
12380     case Sema::UnevaluatedAbstract:
12381       // We are in an expression that is not potentially evaluated; do nothing.
12382       // (Depending on how you read the standard, we actually do need to do
12383       // something here for null pointer constants, but the standard's
12384       // definition of a null pointer constant is completely crazy.)
12385       return false;
12386 
12387     case Sema::ConstantEvaluated:
12388     case Sema::PotentiallyEvaluated:
12389       // We are in a potentially evaluated expression (or a constant-expression
12390       // in C++03); we need to do implicit template instantiation, implicitly
12391       // define class members, and mark most declarations as used.
12392       return true;
12393 
12394     case Sema::PotentiallyEvaluatedIfUsed:
12395       // Referenced declarations will only be used if the construct in the
12396       // containing expression is used.
12397       return false;
12398   }
12399   llvm_unreachable("Invalid context");
12400 }
12401 
12402 /// \brief Mark a function referenced, and check whether it is odr-used
12403 /// (C++ [basic.def.odr]p2, C99 6.9p3)
MarkFunctionReferenced(SourceLocation Loc,FunctionDecl * Func,bool OdrUse)12404 void Sema::MarkFunctionReferenced(SourceLocation Loc, FunctionDecl *Func,
12405                                   bool OdrUse) {
12406   assert(Func && "No function?");
12407 
12408   Func->setReferenced();
12409 
12410   // C++11 [basic.def.odr]p3:
12411   //   A function whose name appears as a potentially-evaluated expression is
12412   //   odr-used if it is the unique lookup result or the selected member of a
12413   //   set of overloaded functions [...].
12414   //
12415   // We (incorrectly) mark overload resolution as an unevaluated context, so we
12416   // can just check that here. Skip the rest of this function if we've already
12417   // marked the function as used.
12418   if (Func->isUsed(/*CheckUsedAttr=*/false) ||
12419       !IsPotentiallyEvaluatedContext(*this)) {
12420     // C++11 [temp.inst]p3:
12421     //   Unless a function template specialization has been explicitly
12422     //   instantiated or explicitly specialized, the function template
12423     //   specialization is implicitly instantiated when the specialization is
12424     //   referenced in a context that requires a function definition to exist.
12425     //
12426     // We consider constexpr function templates to be referenced in a context
12427     // that requires a definition to exist whenever they are referenced.
12428     //
12429     // FIXME: This instantiates constexpr functions too frequently. If this is
12430     // really an unevaluated context (and we're not just in the definition of a
12431     // function template or overload resolution or other cases which we
12432     // incorrectly consider to be unevaluated contexts), and we're not in a
12433     // subexpression which we actually need to evaluate (for instance, a
12434     // template argument, array bound or an expression in a braced-init-list),
12435     // we are not permitted to instantiate this constexpr function definition.
12436     //
12437     // FIXME: This also implicitly defines special members too frequently. They
12438     // are only supposed to be implicitly defined if they are odr-used, but they
12439     // are not odr-used from constant expressions in unevaluated contexts.
12440     // However, they cannot be referenced if they are deleted, and they are
12441     // deleted whenever the implicit definition of the special member would
12442     // fail.
12443     if (!Func->isConstexpr() || Func->getBody())
12444       return;
12445     CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Func);
12446     if (!Func->isImplicitlyInstantiable() && (!MD || MD->isUserProvided()))
12447       return;
12448   }
12449 
12450   // Note that this declaration has been used.
12451   if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Func)) {
12452     Constructor = cast<CXXConstructorDecl>(Constructor->getFirstDecl());
12453     if (Constructor->isDefaulted() && !Constructor->isDeleted()) {
12454       if (Constructor->isDefaultConstructor()) {
12455         if (Constructor->isTrivial() && !Constructor->hasAttr<DLLExportAttr>())
12456           return;
12457         DefineImplicitDefaultConstructor(Loc, Constructor);
12458       } else if (Constructor->isCopyConstructor()) {
12459         DefineImplicitCopyConstructor(Loc, Constructor);
12460       } else if (Constructor->isMoveConstructor()) {
12461         DefineImplicitMoveConstructor(Loc, Constructor);
12462       }
12463     } else if (Constructor->getInheritedConstructor()) {
12464       DefineInheritingConstructor(Loc, Constructor);
12465     }
12466   } else if (CXXDestructorDecl *Destructor =
12467                  dyn_cast<CXXDestructorDecl>(Func)) {
12468     Destructor = cast<CXXDestructorDecl>(Destructor->getFirstDecl());
12469     if (Destructor->isDefaulted() && !Destructor->isDeleted()) {
12470       if (Destructor->isTrivial() && !Destructor->hasAttr<DLLExportAttr>())
12471         return;
12472       DefineImplicitDestructor(Loc, Destructor);
12473     }
12474     if (Destructor->isVirtual() && getLangOpts().AppleKext)
12475       MarkVTableUsed(Loc, Destructor->getParent());
12476   } else if (CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(Func)) {
12477     if (MethodDecl->isOverloadedOperator() &&
12478         MethodDecl->getOverloadedOperator() == OO_Equal) {
12479       MethodDecl = cast<CXXMethodDecl>(MethodDecl->getFirstDecl());
12480       if (MethodDecl->isDefaulted() && !MethodDecl->isDeleted()) {
12481         if (MethodDecl->isCopyAssignmentOperator())
12482           DefineImplicitCopyAssignment(Loc, MethodDecl);
12483         else
12484           DefineImplicitMoveAssignment(Loc, MethodDecl);
12485       }
12486     } else if (isa<CXXConversionDecl>(MethodDecl) &&
12487                MethodDecl->getParent()->isLambda()) {
12488       CXXConversionDecl *Conversion =
12489           cast<CXXConversionDecl>(MethodDecl->getFirstDecl());
12490       if (Conversion->isLambdaToBlockPointerConversion())
12491         DefineImplicitLambdaToBlockPointerConversion(Loc, Conversion);
12492       else
12493         DefineImplicitLambdaToFunctionPointerConversion(Loc, Conversion);
12494     } else if (MethodDecl->isVirtual() && getLangOpts().AppleKext)
12495       MarkVTableUsed(Loc, MethodDecl->getParent());
12496   }
12497 
12498   // Recursive functions should be marked when used from another function.
12499   // FIXME: Is this really right?
12500   if (CurContext == Func) return;
12501 
12502   // Resolve the exception specification for any function which is
12503   // used: CodeGen will need it.
12504   const FunctionProtoType *FPT = Func->getType()->getAs<FunctionProtoType>();
12505   if (FPT && isUnresolvedExceptionSpec(FPT->getExceptionSpecType()))
12506     ResolveExceptionSpec(Loc, FPT);
12507 
12508   if (!OdrUse) return;
12509 
12510   // Implicit instantiation of function templates and member functions of
12511   // class templates.
12512   if (Func->isImplicitlyInstantiable()) {
12513     bool AlreadyInstantiated = false;
12514     SourceLocation PointOfInstantiation = Loc;
12515     if (FunctionTemplateSpecializationInfo *SpecInfo
12516                               = Func->getTemplateSpecializationInfo()) {
12517       if (SpecInfo->getPointOfInstantiation().isInvalid())
12518         SpecInfo->setPointOfInstantiation(Loc);
12519       else if (SpecInfo->getTemplateSpecializationKind()
12520                  == TSK_ImplicitInstantiation) {
12521         AlreadyInstantiated = true;
12522         PointOfInstantiation = SpecInfo->getPointOfInstantiation();
12523       }
12524     } else if (MemberSpecializationInfo *MSInfo
12525                                 = Func->getMemberSpecializationInfo()) {
12526       if (MSInfo->getPointOfInstantiation().isInvalid())
12527         MSInfo->setPointOfInstantiation(Loc);
12528       else if (MSInfo->getTemplateSpecializationKind()
12529                  == TSK_ImplicitInstantiation) {
12530         AlreadyInstantiated = true;
12531         PointOfInstantiation = MSInfo->getPointOfInstantiation();
12532       }
12533     }
12534 
12535     if (!AlreadyInstantiated || Func->isConstexpr()) {
12536       if (isa<CXXRecordDecl>(Func->getDeclContext()) &&
12537           cast<CXXRecordDecl>(Func->getDeclContext())->isLocalClass() &&
12538           ActiveTemplateInstantiations.size())
12539         PendingLocalImplicitInstantiations.push_back(
12540             std::make_pair(Func, PointOfInstantiation));
12541       else if (Func->isConstexpr())
12542         // Do not defer instantiations of constexpr functions, to avoid the
12543         // expression evaluator needing to call back into Sema if it sees a
12544         // call to such a function.
12545         InstantiateFunctionDefinition(PointOfInstantiation, Func);
12546       else {
12547         PendingInstantiations.push_back(std::make_pair(Func,
12548                                                        PointOfInstantiation));
12549         // Notify the consumer that a function was implicitly instantiated.
12550         Consumer.HandleCXXImplicitFunctionInstantiation(Func);
12551       }
12552     }
12553   } else {
12554     // Walk redefinitions, as some of them may be instantiable.
12555     for (auto i : Func->redecls()) {
12556       if (!i->isUsed(false) && i->isImplicitlyInstantiable())
12557         MarkFunctionReferenced(Loc, i);
12558     }
12559   }
12560 
12561   // Keep track of used but undefined functions.
12562   if (!Func->isDefined()) {
12563     if (mightHaveNonExternalLinkage(Func))
12564       UndefinedButUsed.insert(std::make_pair(Func->getCanonicalDecl(), Loc));
12565     else if (Func->getMostRecentDecl()->isInlined() &&
12566              !LangOpts.GNUInline &&
12567              !Func->getMostRecentDecl()->hasAttr<GNUInlineAttr>())
12568       UndefinedButUsed.insert(std::make_pair(Func->getCanonicalDecl(), Loc));
12569   }
12570 
12571   // Normally the most current decl is marked used while processing the use and
12572   // any subsequent decls are marked used by decl merging. This fails with
12573   // template instantiation since marking can happen at the end of the file
12574   // and, because of the two phase lookup, this function is called with at
12575   // decl in the middle of a decl chain. We loop to maintain the invariant
12576   // that once a decl is used, all decls after it are also used.
12577   for (FunctionDecl *F = Func->getMostRecentDecl();; F = F->getPreviousDecl()) {
12578     F->markUsed(Context);
12579     if (F == Func)
12580       break;
12581   }
12582 }
12583 
12584 static void
diagnoseUncapturableValueReference(Sema & S,SourceLocation loc,VarDecl * var,DeclContext * DC)12585 diagnoseUncapturableValueReference(Sema &S, SourceLocation loc,
12586                                    VarDecl *var, DeclContext *DC) {
12587   DeclContext *VarDC = var->getDeclContext();
12588 
12589   //  If the parameter still belongs to the translation unit, then
12590   //  we're actually just using one parameter in the declaration of
12591   //  the next.
12592   if (isa<ParmVarDecl>(var) &&
12593       isa<TranslationUnitDecl>(VarDC))
12594     return;
12595 
12596   // For C code, don't diagnose about capture if we're not actually in code
12597   // right now; it's impossible to write a non-constant expression outside of
12598   // function context, so we'll get other (more useful) diagnostics later.
12599   //
12600   // For C++, things get a bit more nasty... it would be nice to suppress this
12601   // diagnostic for certain cases like using a local variable in an array bound
12602   // for a member of a local class, but the correct predicate is not obvious.
12603   if (!S.getLangOpts().CPlusPlus && !S.CurContext->isFunctionOrMethod())
12604     return;
12605 
12606   if (isa<CXXMethodDecl>(VarDC) &&
12607       cast<CXXRecordDecl>(VarDC->getParent())->isLambda()) {
12608     S.Diag(loc, diag::err_reference_to_local_var_in_enclosing_lambda)
12609       << var->getIdentifier();
12610   } else if (FunctionDecl *fn = dyn_cast<FunctionDecl>(VarDC)) {
12611     S.Diag(loc, diag::err_reference_to_local_var_in_enclosing_function)
12612       << var->getIdentifier() << fn->getDeclName();
12613   } else if (isa<BlockDecl>(VarDC)) {
12614     S.Diag(loc, diag::err_reference_to_local_var_in_enclosing_block)
12615       << var->getIdentifier();
12616   } else {
12617     // FIXME: Is there any other context where a local variable can be
12618     // declared?
12619     S.Diag(loc, diag::err_reference_to_local_var_in_enclosing_context)
12620       << var->getIdentifier();
12621   }
12622 
12623   S.Diag(var->getLocation(), diag::note_entity_declared_at)
12624       << var->getIdentifier();
12625 
12626   // FIXME: Add additional diagnostic info about class etc. which prevents
12627   // capture.
12628 }
12629 
12630 
isVariableAlreadyCapturedInScopeInfo(CapturingScopeInfo * CSI,VarDecl * Var,bool & SubCapturesAreNested,QualType & CaptureType,QualType & DeclRefType)12631 static bool isVariableAlreadyCapturedInScopeInfo(CapturingScopeInfo *CSI, VarDecl *Var,
12632                                       bool &SubCapturesAreNested,
12633                                       QualType &CaptureType,
12634                                       QualType &DeclRefType) {
12635    // Check whether we've already captured it.
12636   if (CSI->CaptureMap.count(Var)) {
12637     // If we found a capture, any subcaptures are nested.
12638     SubCapturesAreNested = true;
12639 
12640     // Retrieve the capture type for this variable.
12641     CaptureType = CSI->getCapture(Var).getCaptureType();
12642 
12643     // Compute the type of an expression that refers to this variable.
12644     DeclRefType = CaptureType.getNonReferenceType();
12645 
12646     // Similarly to mutable captures in lambda, all the OpenMP captures by copy
12647     // are mutable in the sense that user can change their value - they are
12648     // private instances of the captured declarations.
12649     const CapturingScopeInfo::Capture &Cap = CSI->getCapture(Var);
12650     if (Cap.isCopyCapture() &&
12651         !(isa<LambdaScopeInfo>(CSI) && cast<LambdaScopeInfo>(CSI)->Mutable) &&
12652         !(isa<CapturedRegionScopeInfo>(CSI) &&
12653           cast<CapturedRegionScopeInfo>(CSI)->CapRegionKind == CR_OpenMP))
12654       DeclRefType.addConst();
12655     return true;
12656   }
12657   return false;
12658 }
12659 
12660 // Only block literals, captured statements, and lambda expressions can
12661 // capture; other scopes don't work.
getParentOfCapturingContextOrNull(DeclContext * DC,VarDecl * Var,SourceLocation Loc,const bool Diagnose,Sema & S)12662 static DeclContext *getParentOfCapturingContextOrNull(DeclContext *DC, VarDecl *Var,
12663                                  SourceLocation Loc,
12664                                  const bool Diagnose, Sema &S) {
12665   if (isa<BlockDecl>(DC) || isa<CapturedDecl>(DC) || isLambdaCallOperator(DC))
12666     return getLambdaAwareParentOfDeclContext(DC);
12667   else if (Var->hasLocalStorage()) {
12668     if (Diagnose)
12669        diagnoseUncapturableValueReference(S, Loc, Var, DC);
12670   }
12671   return nullptr;
12672 }
12673 
12674 // Certain capturing entities (lambdas, blocks etc.) are not allowed to capture
12675 // certain types of variables (unnamed, variably modified types etc.)
12676 // so check for eligibility.
isVariableCapturable(CapturingScopeInfo * CSI,VarDecl * Var,SourceLocation Loc,const bool Diagnose,Sema & S)12677 static bool isVariableCapturable(CapturingScopeInfo *CSI, VarDecl *Var,
12678                                  SourceLocation Loc,
12679                                  const bool Diagnose, Sema &S) {
12680 
12681   bool IsBlock = isa<BlockScopeInfo>(CSI);
12682   bool IsLambda = isa<LambdaScopeInfo>(CSI);
12683 
12684   // Lambdas are not allowed to capture unnamed variables
12685   // (e.g. anonymous unions).
12686   // FIXME: The C++11 rule don't actually state this explicitly, but I'm
12687   // assuming that's the intent.
12688   if (IsLambda && !Var->getDeclName()) {
12689     if (Diagnose) {
12690       S.Diag(Loc, diag::err_lambda_capture_anonymous_var);
12691       S.Diag(Var->getLocation(), diag::note_declared_at);
12692     }
12693     return false;
12694   }
12695 
12696   // Prohibit variably-modified types in blocks; they're difficult to deal with.
12697   if (Var->getType()->isVariablyModifiedType() && IsBlock) {
12698     if (Diagnose) {
12699       S.Diag(Loc, diag::err_ref_vm_type);
12700       S.Diag(Var->getLocation(), diag::note_previous_decl)
12701         << Var->getDeclName();
12702     }
12703     return false;
12704   }
12705   // Prohibit structs with flexible array members too.
12706   // We cannot capture what is in the tail end of the struct.
12707   if (const RecordType *VTTy = Var->getType()->getAs<RecordType>()) {
12708     if (VTTy->getDecl()->hasFlexibleArrayMember()) {
12709       if (Diagnose) {
12710         if (IsBlock)
12711           S.Diag(Loc, diag::err_ref_flexarray_type);
12712         else
12713           S.Diag(Loc, diag::err_lambda_capture_flexarray_type)
12714             << Var->getDeclName();
12715         S.Diag(Var->getLocation(), diag::note_previous_decl)
12716           << Var->getDeclName();
12717       }
12718       return false;
12719     }
12720   }
12721   const bool HasBlocksAttr = Var->hasAttr<BlocksAttr>();
12722   // Lambdas and captured statements are not allowed to capture __block
12723   // variables; they don't support the expected semantics.
12724   if (HasBlocksAttr && (IsLambda || isa<CapturedRegionScopeInfo>(CSI))) {
12725     if (Diagnose) {
12726       S.Diag(Loc, diag::err_capture_block_variable)
12727         << Var->getDeclName() << !IsLambda;
12728       S.Diag(Var->getLocation(), diag::note_previous_decl)
12729         << Var->getDeclName();
12730     }
12731     return false;
12732   }
12733 
12734   return true;
12735 }
12736 
12737 // Returns true if the capture by block was successful.
captureInBlock(BlockScopeInfo * BSI,VarDecl * Var,SourceLocation Loc,const bool BuildAndDiagnose,QualType & CaptureType,QualType & DeclRefType,const bool Nested,Sema & S)12738 static bool captureInBlock(BlockScopeInfo *BSI, VarDecl *Var,
12739                                  SourceLocation Loc,
12740                                  const bool BuildAndDiagnose,
12741                                  QualType &CaptureType,
12742                                  QualType &DeclRefType,
12743                                  const bool Nested,
12744                                  Sema &S) {
12745   Expr *CopyExpr = nullptr;
12746   bool ByRef = false;
12747 
12748   // Blocks are not allowed to capture arrays.
12749   if (CaptureType->isArrayType()) {
12750     if (BuildAndDiagnose) {
12751       S.Diag(Loc, diag::err_ref_array_type);
12752       S.Diag(Var->getLocation(), diag::note_previous_decl)
12753       << Var->getDeclName();
12754     }
12755     return false;
12756   }
12757 
12758   // Forbid the block-capture of autoreleasing variables.
12759   if (CaptureType.getObjCLifetime() == Qualifiers::OCL_Autoreleasing) {
12760     if (BuildAndDiagnose) {
12761       S.Diag(Loc, diag::err_arc_autoreleasing_capture)
12762         << /*block*/ 0;
12763       S.Diag(Var->getLocation(), diag::note_previous_decl)
12764         << Var->getDeclName();
12765     }
12766     return false;
12767   }
12768   const bool HasBlocksAttr = Var->hasAttr<BlocksAttr>();
12769   if (HasBlocksAttr || CaptureType->isReferenceType()) {
12770     // Block capture by reference does not change the capture or
12771     // declaration reference types.
12772     ByRef = true;
12773   } else {
12774     // Block capture by copy introduces 'const'.
12775     CaptureType = CaptureType.getNonReferenceType().withConst();
12776     DeclRefType = CaptureType;
12777 
12778     if (S.getLangOpts().CPlusPlus && BuildAndDiagnose) {
12779       if (const RecordType *Record = DeclRefType->getAs<RecordType>()) {
12780         // The capture logic needs the destructor, so make sure we mark it.
12781         // Usually this is unnecessary because most local variables have
12782         // their destructors marked at declaration time, but parameters are
12783         // an exception because it's technically only the call site that
12784         // actually requires the destructor.
12785         if (isa<ParmVarDecl>(Var))
12786           S.FinalizeVarWithDestructor(Var, Record);
12787 
12788         // Enter a new evaluation context to insulate the copy
12789         // full-expression.
12790         EnterExpressionEvaluationContext scope(S, S.PotentiallyEvaluated);
12791 
12792         // According to the blocks spec, the capture of a variable from
12793         // the stack requires a const copy constructor.  This is not true
12794         // of the copy/move done to move a __block variable to the heap.
12795         Expr *DeclRef = new (S.Context) DeclRefExpr(Var, Nested,
12796                                                   DeclRefType.withConst(),
12797                                                   VK_LValue, Loc);
12798 
12799         ExprResult Result
12800           = S.PerformCopyInitialization(
12801               InitializedEntity::InitializeBlock(Var->getLocation(),
12802                                                   CaptureType, false),
12803               Loc, DeclRef);
12804 
12805         // Build a full-expression copy expression if initialization
12806         // succeeded and used a non-trivial constructor.  Recover from
12807         // errors by pretending that the copy isn't necessary.
12808         if (!Result.isInvalid() &&
12809             !cast<CXXConstructExpr>(Result.get())->getConstructor()
12810                 ->isTrivial()) {
12811           Result = S.MaybeCreateExprWithCleanups(Result);
12812           CopyExpr = Result.get();
12813         }
12814       }
12815     }
12816   }
12817 
12818   // Actually capture the variable.
12819   if (BuildAndDiagnose)
12820     BSI->addCapture(Var, HasBlocksAttr, ByRef, Nested, Loc,
12821                     SourceLocation(), CaptureType, CopyExpr);
12822 
12823   return true;
12824 
12825 }
12826 
12827 
12828 /// \brief Capture the given variable in the captured region.
captureInCapturedRegion(CapturedRegionScopeInfo * RSI,VarDecl * Var,SourceLocation Loc,const bool BuildAndDiagnose,QualType & CaptureType,QualType & DeclRefType,const bool RefersToCapturedVariable,Sema & S)12829 static bool captureInCapturedRegion(CapturedRegionScopeInfo *RSI,
12830                                     VarDecl *Var,
12831                                     SourceLocation Loc,
12832                                     const bool BuildAndDiagnose,
12833                                     QualType &CaptureType,
12834                                     QualType &DeclRefType,
12835                                     const bool RefersToCapturedVariable,
12836                                     Sema &S) {
12837 
12838   // By default, capture variables by reference.
12839   bool ByRef = true;
12840   // Using an LValue reference type is consistent with Lambdas (see below).
12841   if (S.getLangOpts().OpenMP) {
12842     ByRef = S.IsOpenMPCapturedByRef(Var, RSI);
12843     if (S.IsOpenMPCapturedVar(Var))
12844       DeclRefType = DeclRefType.getUnqualifiedType();
12845   }
12846 
12847   if (ByRef)
12848     CaptureType = S.Context.getLValueReferenceType(DeclRefType);
12849   else
12850     CaptureType = DeclRefType;
12851 
12852   Expr *CopyExpr = nullptr;
12853   if (BuildAndDiagnose) {
12854     // The current implementation assumes that all variables are captured
12855     // by references. Since there is no capture by copy, no expression
12856     // evaluation will be needed.
12857     RecordDecl *RD = RSI->TheRecordDecl;
12858 
12859     FieldDecl *Field
12860       = FieldDecl::Create(S.Context, RD, Loc, Loc, nullptr, CaptureType,
12861                           S.Context.getTrivialTypeSourceInfo(CaptureType, Loc),
12862                           nullptr, false, ICIS_NoInit);
12863     Field->setImplicit(true);
12864     Field->setAccess(AS_private);
12865     RD->addDecl(Field);
12866 
12867     CopyExpr = new (S.Context) DeclRefExpr(Var, RefersToCapturedVariable,
12868                                             DeclRefType, VK_LValue, Loc);
12869     Var->setReferenced(true);
12870     Var->markUsed(S.Context);
12871   }
12872 
12873   // Actually capture the variable.
12874   if (BuildAndDiagnose)
12875     RSI->addCapture(Var, /*isBlock*/false, ByRef, RefersToCapturedVariable, Loc,
12876                     SourceLocation(), CaptureType, CopyExpr);
12877 
12878 
12879   return true;
12880 }
12881 
12882 /// \brief Create a field within the lambda class for the variable
12883 /// being captured.
addAsFieldToClosureType(Sema & S,LambdaScopeInfo * LSI,VarDecl * Var,QualType FieldType,QualType DeclRefType,SourceLocation Loc,bool RefersToCapturedVariable)12884 static void addAsFieldToClosureType(Sema &S, LambdaScopeInfo *LSI, VarDecl *Var,
12885                                     QualType FieldType, QualType DeclRefType,
12886                                     SourceLocation Loc,
12887                                     bool RefersToCapturedVariable) {
12888   CXXRecordDecl *Lambda = LSI->Lambda;
12889 
12890   // Build the non-static data member.
12891   FieldDecl *Field
12892     = FieldDecl::Create(S.Context, Lambda, Loc, Loc, nullptr, FieldType,
12893                         S.Context.getTrivialTypeSourceInfo(FieldType, Loc),
12894                         nullptr, false, ICIS_NoInit);
12895   Field->setImplicit(true);
12896   Field->setAccess(AS_private);
12897   Lambda->addDecl(Field);
12898 }
12899 
12900 /// \brief Capture the given variable in the lambda.
captureInLambda(LambdaScopeInfo * LSI,VarDecl * Var,SourceLocation Loc,const bool BuildAndDiagnose,QualType & CaptureType,QualType & DeclRefType,const bool RefersToCapturedVariable,const Sema::TryCaptureKind Kind,SourceLocation EllipsisLoc,const bool IsTopScope,Sema & S)12901 static bool captureInLambda(LambdaScopeInfo *LSI,
12902                             VarDecl *Var,
12903                             SourceLocation Loc,
12904                             const bool BuildAndDiagnose,
12905                             QualType &CaptureType,
12906                             QualType &DeclRefType,
12907                             const bool RefersToCapturedVariable,
12908                             const Sema::TryCaptureKind Kind,
12909                             SourceLocation EllipsisLoc,
12910                             const bool IsTopScope,
12911                             Sema &S) {
12912 
12913   // Determine whether we are capturing by reference or by value.
12914   bool ByRef = false;
12915   if (IsTopScope && Kind != Sema::TryCapture_Implicit) {
12916     ByRef = (Kind == Sema::TryCapture_ExplicitByRef);
12917   } else {
12918     ByRef = (LSI->ImpCaptureStyle == LambdaScopeInfo::ImpCap_LambdaByref);
12919   }
12920 
12921   // Compute the type of the field that will capture this variable.
12922   if (ByRef) {
12923     // C++11 [expr.prim.lambda]p15:
12924     //   An entity is captured by reference if it is implicitly or
12925     //   explicitly captured but not captured by copy. It is
12926     //   unspecified whether additional unnamed non-static data
12927     //   members are declared in the closure type for entities
12928     //   captured by reference.
12929     //
12930     // FIXME: It is not clear whether we want to build an lvalue reference
12931     // to the DeclRefType or to CaptureType.getNonReferenceType(). GCC appears
12932     // to do the former, while EDG does the latter. Core issue 1249 will
12933     // clarify, but for now we follow GCC because it's a more permissive and
12934     // easily defensible position.
12935     CaptureType = S.Context.getLValueReferenceType(DeclRefType);
12936   } else {
12937     // C++11 [expr.prim.lambda]p14:
12938     //   For each entity captured by copy, an unnamed non-static
12939     //   data member is declared in the closure type. The
12940     //   declaration order of these members is unspecified. The type
12941     //   of such a data member is the type of the corresponding
12942     //   captured entity if the entity is not a reference to an
12943     //   object, or the referenced type otherwise. [Note: If the
12944     //   captured entity is a reference to a function, the
12945     //   corresponding data member is also a reference to a
12946     //   function. - end note ]
12947     if (const ReferenceType *RefType = CaptureType->getAs<ReferenceType>()){
12948       if (!RefType->getPointeeType()->isFunctionType())
12949         CaptureType = RefType->getPointeeType();
12950     }
12951 
12952     // Forbid the lambda copy-capture of autoreleasing variables.
12953     if (CaptureType.getObjCLifetime() == Qualifiers::OCL_Autoreleasing) {
12954       if (BuildAndDiagnose) {
12955         S.Diag(Loc, diag::err_arc_autoreleasing_capture) << /*lambda*/ 1;
12956         S.Diag(Var->getLocation(), diag::note_previous_decl)
12957           << Var->getDeclName();
12958       }
12959       return false;
12960     }
12961 
12962     // Make sure that by-copy captures are of a complete and non-abstract type.
12963     if (BuildAndDiagnose) {
12964       if (!CaptureType->isDependentType() &&
12965           S.RequireCompleteType(Loc, CaptureType,
12966                                 diag::err_capture_of_incomplete_type,
12967                                 Var->getDeclName()))
12968         return false;
12969 
12970       if (S.RequireNonAbstractType(Loc, CaptureType,
12971                                    diag::err_capture_of_abstract_type))
12972         return false;
12973     }
12974   }
12975 
12976   // Capture this variable in the lambda.
12977   if (BuildAndDiagnose)
12978     addAsFieldToClosureType(S, LSI, Var, CaptureType, DeclRefType, Loc,
12979                             RefersToCapturedVariable);
12980 
12981   // Compute the type of a reference to this captured variable.
12982   if (ByRef)
12983     DeclRefType = CaptureType.getNonReferenceType();
12984   else {
12985     // C++ [expr.prim.lambda]p5:
12986     //   The closure type for a lambda-expression has a public inline
12987     //   function call operator [...]. This function call operator is
12988     //   declared const (9.3.1) if and only if the lambda-expression’s
12989     //   parameter-declaration-clause is not followed by mutable.
12990     DeclRefType = CaptureType.getNonReferenceType();
12991     if (!LSI->Mutable && !CaptureType->isReferenceType())
12992       DeclRefType.addConst();
12993   }
12994 
12995   // Add the capture.
12996   if (BuildAndDiagnose)
12997     LSI->addCapture(Var, /*IsBlock=*/false, ByRef, RefersToCapturedVariable,
12998                     Loc, EllipsisLoc, CaptureType, /*CopyExpr=*/nullptr);
12999 
13000   return true;
13001 }
13002 
tryCaptureVariable(VarDecl * Var,SourceLocation ExprLoc,TryCaptureKind Kind,SourceLocation EllipsisLoc,bool BuildAndDiagnose,QualType & CaptureType,QualType & DeclRefType,const unsigned * const FunctionScopeIndexToStopAt)13003 bool Sema::tryCaptureVariable(
13004     VarDecl *Var, SourceLocation ExprLoc, TryCaptureKind Kind,
13005     SourceLocation EllipsisLoc, bool BuildAndDiagnose, QualType &CaptureType,
13006     QualType &DeclRefType, const unsigned *const FunctionScopeIndexToStopAt) {
13007   // An init-capture is notionally from the context surrounding its
13008   // declaration, but its parent DC is the lambda class.
13009   DeclContext *VarDC = Var->getDeclContext();
13010   if (Var->isInitCapture())
13011     VarDC = VarDC->getParent();
13012 
13013   DeclContext *DC = CurContext;
13014   const unsigned MaxFunctionScopesIndex = FunctionScopeIndexToStopAt
13015       ? *FunctionScopeIndexToStopAt : FunctionScopes.size() - 1;
13016   // We need to sync up the Declaration Context with the
13017   // FunctionScopeIndexToStopAt
13018   if (FunctionScopeIndexToStopAt) {
13019     unsigned FSIndex = FunctionScopes.size() - 1;
13020     while (FSIndex != MaxFunctionScopesIndex) {
13021       DC = getLambdaAwareParentOfDeclContext(DC);
13022       --FSIndex;
13023     }
13024   }
13025 
13026 
13027   // If the variable is declared in the current context, there is no need to
13028   // capture it.
13029   if (VarDC == DC) return true;
13030 
13031   // Capture global variables if it is required to use private copy of this
13032   // variable.
13033   bool IsGlobal = !Var->hasLocalStorage();
13034   if (IsGlobal && !(LangOpts.OpenMP && IsOpenMPCapturedVar(Var)))
13035     return true;
13036 
13037   // Walk up the stack to determine whether we can capture the variable,
13038   // performing the "simple" checks that don't depend on type. We stop when
13039   // we've either hit the declared scope of the variable or find an existing
13040   // capture of that variable.  We start from the innermost capturing-entity
13041   // (the DC) and ensure that all intervening capturing-entities
13042   // (blocks/lambdas etc.) between the innermost capturer and the variable`s
13043   // declcontext can either capture the variable or have already captured
13044   // the variable.
13045   CaptureType = Var->getType();
13046   DeclRefType = CaptureType.getNonReferenceType();
13047   bool Nested = false;
13048   bool Explicit = (Kind != TryCapture_Implicit);
13049   unsigned FunctionScopesIndex = MaxFunctionScopesIndex;
13050   unsigned OpenMPLevel = 0;
13051   do {
13052     // Only block literals, captured statements, and lambda expressions can
13053     // capture; other scopes don't work.
13054     DeclContext *ParentDC = getParentOfCapturingContextOrNull(DC, Var,
13055                                                               ExprLoc,
13056                                                               BuildAndDiagnose,
13057                                                               *this);
13058     // We need to check for the parent *first* because, if we *have*
13059     // private-captured a global variable, we need to recursively capture it in
13060     // intermediate blocks, lambdas, etc.
13061     if (!ParentDC) {
13062       if (IsGlobal) {
13063         FunctionScopesIndex = MaxFunctionScopesIndex - 1;
13064         break;
13065       }
13066       return true;
13067     }
13068 
13069     FunctionScopeInfo  *FSI = FunctionScopes[FunctionScopesIndex];
13070     CapturingScopeInfo *CSI = cast<CapturingScopeInfo>(FSI);
13071 
13072 
13073     // Check whether we've already captured it.
13074     if (isVariableAlreadyCapturedInScopeInfo(CSI, Var, Nested, CaptureType,
13075                                              DeclRefType))
13076       break;
13077     // If we are instantiating a generic lambda call operator body,
13078     // we do not want to capture new variables.  What was captured
13079     // during either a lambdas transformation or initial parsing
13080     // should be used.
13081     if (isGenericLambdaCallOperatorSpecialization(DC)) {
13082       if (BuildAndDiagnose) {
13083         LambdaScopeInfo *LSI = cast<LambdaScopeInfo>(CSI);
13084         if (LSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_None) {
13085           Diag(ExprLoc, diag::err_lambda_impcap) << Var->getDeclName();
13086           Diag(Var->getLocation(), diag::note_previous_decl)
13087              << Var->getDeclName();
13088           Diag(LSI->Lambda->getLocStart(), diag::note_lambda_decl);
13089         } else
13090           diagnoseUncapturableValueReference(*this, ExprLoc, Var, DC);
13091       }
13092       return true;
13093     }
13094     // Certain capturing entities (lambdas, blocks etc.) are not allowed to capture
13095     // certain types of variables (unnamed, variably modified types etc.)
13096     // so check for eligibility.
13097     if (!isVariableCapturable(CSI, Var, ExprLoc, BuildAndDiagnose, *this))
13098        return true;
13099 
13100     // Try to capture variable-length arrays types.
13101     if (Var->getType()->isVariablyModifiedType()) {
13102       // We're going to walk down into the type and look for VLA
13103       // expressions.
13104       QualType QTy = Var->getType();
13105       if (ParmVarDecl *PVD = dyn_cast_or_null<ParmVarDecl>(Var))
13106         QTy = PVD->getOriginalType();
13107       do {
13108         const Type *Ty = QTy.getTypePtr();
13109         switch (Ty->getTypeClass()) {
13110 #define TYPE(Class, Base)
13111 #define ABSTRACT_TYPE(Class, Base)
13112 #define NON_CANONICAL_TYPE(Class, Base)
13113 #define DEPENDENT_TYPE(Class, Base) case Type::Class:
13114 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base)
13115 #include "clang/AST/TypeNodes.def"
13116           QTy = QualType();
13117           break;
13118         // These types are never variably-modified.
13119         case Type::Builtin:
13120         case Type::Complex:
13121         case Type::Vector:
13122         case Type::ExtVector:
13123         case Type::Record:
13124         case Type::Enum:
13125         case Type::Elaborated:
13126         case Type::TemplateSpecialization:
13127         case Type::ObjCObject:
13128         case Type::ObjCInterface:
13129         case Type::ObjCObjectPointer:
13130           llvm_unreachable("type class is never variably-modified!");
13131         case Type::Adjusted:
13132           QTy = cast<AdjustedType>(Ty)->getOriginalType();
13133           break;
13134         case Type::Decayed:
13135           QTy = cast<DecayedType>(Ty)->getPointeeType();
13136           break;
13137         case Type::Pointer:
13138           QTy = cast<PointerType>(Ty)->getPointeeType();
13139           break;
13140         case Type::BlockPointer:
13141           QTy = cast<BlockPointerType>(Ty)->getPointeeType();
13142           break;
13143         case Type::LValueReference:
13144         case Type::RValueReference:
13145           QTy = cast<ReferenceType>(Ty)->getPointeeType();
13146           break;
13147         case Type::MemberPointer:
13148           QTy = cast<MemberPointerType>(Ty)->getPointeeType();
13149           break;
13150         case Type::ConstantArray:
13151         case Type::IncompleteArray:
13152           // Losing element qualification here is fine.
13153           QTy = cast<ArrayType>(Ty)->getElementType();
13154           break;
13155         case Type::VariableArray: {
13156           // Losing element qualification here is fine.
13157           const VariableArrayType *VAT = cast<VariableArrayType>(Ty);
13158 
13159           // Unknown size indication requires no size computation.
13160           // Otherwise, evaluate and record it.
13161           if (auto Size = VAT->getSizeExpr()) {
13162             if (!CSI->isVLATypeCaptured(VAT)) {
13163               RecordDecl *CapRecord = nullptr;
13164               if (auto LSI = dyn_cast<LambdaScopeInfo>(CSI)) {
13165                 CapRecord = LSI->Lambda;
13166               } else if (auto CRSI = dyn_cast<CapturedRegionScopeInfo>(CSI)) {
13167                 CapRecord = CRSI->TheRecordDecl;
13168               }
13169               if (CapRecord) {
13170                 auto ExprLoc = Size->getExprLoc();
13171                 auto SizeType = Context.getSizeType();
13172                 // Build the non-static data member.
13173                 auto Field = FieldDecl::Create(
13174                     Context, CapRecord, ExprLoc, ExprLoc,
13175                     /*Id*/ nullptr, SizeType, /*TInfo*/ nullptr,
13176                     /*BW*/ nullptr, /*Mutable*/ false,
13177                     /*InitStyle*/ ICIS_NoInit);
13178                 Field->setImplicit(true);
13179                 Field->setAccess(AS_private);
13180                 Field->setCapturedVLAType(VAT);
13181                 CapRecord->addDecl(Field);
13182 
13183                 CSI->addVLATypeCapture(ExprLoc, SizeType);
13184               }
13185             }
13186           }
13187           QTy = VAT->getElementType();
13188           break;
13189         }
13190         case Type::FunctionProto:
13191         case Type::FunctionNoProto:
13192           QTy = cast<FunctionType>(Ty)->getReturnType();
13193           break;
13194         case Type::Paren:
13195         case Type::TypeOf:
13196         case Type::UnaryTransform:
13197         case Type::Attributed:
13198         case Type::SubstTemplateTypeParm:
13199         case Type::PackExpansion:
13200           // Keep walking after single level desugaring.
13201           QTy = QTy.getSingleStepDesugaredType(getASTContext());
13202           break;
13203         case Type::Typedef:
13204           QTy = cast<TypedefType>(Ty)->desugar();
13205           break;
13206         case Type::Decltype:
13207           QTy = cast<DecltypeType>(Ty)->desugar();
13208           break;
13209         case Type::Auto:
13210           QTy = cast<AutoType>(Ty)->getDeducedType();
13211           break;
13212         case Type::TypeOfExpr:
13213           QTy = cast<TypeOfExprType>(Ty)->getUnderlyingExpr()->getType();
13214           break;
13215         case Type::Atomic:
13216           QTy = cast<AtomicType>(Ty)->getValueType();
13217           break;
13218         }
13219       } while (!QTy.isNull() && QTy->isVariablyModifiedType());
13220     }
13221 
13222     if (getLangOpts().OpenMP) {
13223       if (auto *RSI = dyn_cast<CapturedRegionScopeInfo>(CSI)) {
13224         // OpenMP private variables should not be captured in outer scope, so
13225         // just break here. Similarly, global variables that are captured in a
13226         // target region should not be captured outside the scope of the region.
13227         if (RSI->CapRegionKind == CR_OpenMP) {
13228           auto isTargetCap = isOpenMPTargetCapturedVar(Var, OpenMPLevel);
13229           // When we detect target captures we are looking from inside the
13230           // target region, therefore we need to propagate the capture from the
13231           // enclosing region. Therefore, the capture is not initially nested.
13232           if (isTargetCap)
13233             FunctionScopesIndex--;
13234 
13235           if (isTargetCap || isOpenMPPrivateVar(Var, OpenMPLevel)) {
13236             Nested = !isTargetCap;
13237             DeclRefType = DeclRefType.getUnqualifiedType();
13238             CaptureType = Context.getLValueReferenceType(DeclRefType);
13239             break;
13240           }
13241           ++OpenMPLevel;
13242         }
13243       }
13244     }
13245     if (CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_None && !Explicit) {
13246       // No capture-default, and this is not an explicit capture
13247       // so cannot capture this variable.
13248       if (BuildAndDiagnose) {
13249         Diag(ExprLoc, diag::err_lambda_impcap) << Var->getDeclName();
13250         Diag(Var->getLocation(), diag::note_previous_decl)
13251           << Var->getDeclName();
13252         Diag(cast<LambdaScopeInfo>(CSI)->Lambda->getLocStart(),
13253              diag::note_lambda_decl);
13254         // FIXME: If we error out because an outer lambda can not implicitly
13255         // capture a variable that an inner lambda explicitly captures, we
13256         // should have the inner lambda do the explicit capture - because
13257         // it makes for cleaner diagnostics later.  This would purely be done
13258         // so that the diagnostic does not misleadingly claim that a variable
13259         // can not be captured by a lambda implicitly even though it is captured
13260         // explicitly.  Suggestion:
13261         //  - create const bool VariableCaptureWasInitiallyExplicit = Explicit
13262         //    at the function head
13263         //  - cache the StartingDeclContext - this must be a lambda
13264         //  - captureInLambda in the innermost lambda the variable.
13265       }
13266       return true;
13267     }
13268 
13269     FunctionScopesIndex--;
13270     DC = ParentDC;
13271     Explicit = false;
13272   } while (!VarDC->Equals(DC));
13273 
13274   // Walk back down the scope stack, (e.g. from outer lambda to inner lambda)
13275   // computing the type of the capture at each step, checking type-specific
13276   // requirements, and adding captures if requested.
13277   // If the variable had already been captured previously, we start capturing
13278   // at the lambda nested within that one.
13279   for (unsigned I = ++FunctionScopesIndex, N = MaxFunctionScopesIndex + 1; I != N;
13280        ++I) {
13281     CapturingScopeInfo *CSI = cast<CapturingScopeInfo>(FunctionScopes[I]);
13282 
13283     if (BlockScopeInfo *BSI = dyn_cast<BlockScopeInfo>(CSI)) {
13284       if (!captureInBlock(BSI, Var, ExprLoc,
13285                           BuildAndDiagnose, CaptureType,
13286                           DeclRefType, Nested, *this))
13287         return true;
13288       Nested = true;
13289     } else if (CapturedRegionScopeInfo *RSI = dyn_cast<CapturedRegionScopeInfo>(CSI)) {
13290       if (!captureInCapturedRegion(RSI, Var, ExprLoc,
13291                                    BuildAndDiagnose, CaptureType,
13292                                    DeclRefType, Nested, *this))
13293         return true;
13294       Nested = true;
13295     } else {
13296       LambdaScopeInfo *LSI = cast<LambdaScopeInfo>(CSI);
13297       if (!captureInLambda(LSI, Var, ExprLoc,
13298                            BuildAndDiagnose, CaptureType,
13299                            DeclRefType, Nested, Kind, EllipsisLoc,
13300                             /*IsTopScope*/I == N - 1, *this))
13301         return true;
13302       Nested = true;
13303     }
13304   }
13305   return false;
13306 }
13307 
tryCaptureVariable(VarDecl * Var,SourceLocation Loc,TryCaptureKind Kind,SourceLocation EllipsisLoc)13308 bool Sema::tryCaptureVariable(VarDecl *Var, SourceLocation Loc,
13309                               TryCaptureKind Kind, SourceLocation EllipsisLoc) {
13310   QualType CaptureType;
13311   QualType DeclRefType;
13312   return tryCaptureVariable(Var, Loc, Kind, EllipsisLoc,
13313                             /*BuildAndDiagnose=*/true, CaptureType,
13314                             DeclRefType, nullptr);
13315 }
13316 
NeedToCaptureVariable(VarDecl * Var,SourceLocation Loc)13317 bool Sema::NeedToCaptureVariable(VarDecl *Var, SourceLocation Loc) {
13318   QualType CaptureType;
13319   QualType DeclRefType;
13320   return !tryCaptureVariable(Var, Loc, TryCapture_Implicit, SourceLocation(),
13321                              /*BuildAndDiagnose=*/false, CaptureType,
13322                              DeclRefType, nullptr);
13323 }
13324 
getCapturedDeclRefType(VarDecl * Var,SourceLocation Loc)13325 QualType Sema::getCapturedDeclRefType(VarDecl *Var, SourceLocation Loc) {
13326   QualType CaptureType;
13327   QualType DeclRefType;
13328 
13329   // Determine whether we can capture this variable.
13330   if (tryCaptureVariable(Var, Loc, TryCapture_Implicit, SourceLocation(),
13331                          /*BuildAndDiagnose=*/false, CaptureType,
13332                          DeclRefType, nullptr))
13333     return QualType();
13334 
13335   return DeclRefType;
13336 }
13337 
13338 
13339 
13340 // If either the type of the variable or the initializer is dependent,
13341 // return false. Otherwise, determine whether the variable is a constant
13342 // expression. Use this if you need to know if a variable that might or
13343 // might not be dependent is truly a constant expression.
IsVariableNonDependentAndAConstantExpression(VarDecl * Var,ASTContext & Context)13344 static inline bool IsVariableNonDependentAndAConstantExpression(VarDecl *Var,
13345     ASTContext &Context) {
13346 
13347   if (Var->getType()->isDependentType())
13348     return false;
13349   const VarDecl *DefVD = nullptr;
13350   Var->getAnyInitializer(DefVD);
13351   if (!DefVD)
13352     return false;
13353   EvaluatedStmt *Eval = DefVD->ensureEvaluatedStmt();
13354   Expr *Init = cast<Expr>(Eval->Value);
13355   if (Init->isValueDependent())
13356     return false;
13357   return IsVariableAConstantExpression(Var, Context);
13358 }
13359 
13360 
UpdateMarkingForLValueToRValue(Expr * E)13361 void Sema::UpdateMarkingForLValueToRValue(Expr *E) {
13362   // Per C++11 [basic.def.odr], a variable is odr-used "unless it is
13363   // an object that satisfies the requirements for appearing in a
13364   // constant expression (5.19) and the lvalue-to-rvalue conversion (4.1)
13365   // is immediately applied."  This function handles the lvalue-to-rvalue
13366   // conversion part.
13367   MaybeODRUseExprs.erase(E->IgnoreParens());
13368 
13369   // If we are in a lambda, check if this DeclRefExpr or MemberExpr refers
13370   // to a variable that is a constant expression, and if so, identify it as
13371   // a reference to a variable that does not involve an odr-use of that
13372   // variable.
13373   if (LambdaScopeInfo *LSI = getCurLambda()) {
13374     Expr *SansParensExpr = E->IgnoreParens();
13375     VarDecl *Var = nullptr;
13376     if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(SansParensExpr))
13377       Var = dyn_cast<VarDecl>(DRE->getFoundDecl());
13378     else if (MemberExpr *ME = dyn_cast<MemberExpr>(SansParensExpr))
13379       Var = dyn_cast<VarDecl>(ME->getMemberDecl());
13380 
13381     if (Var && IsVariableNonDependentAndAConstantExpression(Var, Context))
13382       LSI->markVariableExprAsNonODRUsed(SansParensExpr);
13383   }
13384 }
13385 
ActOnConstantExpression(ExprResult Res)13386 ExprResult Sema::ActOnConstantExpression(ExprResult Res) {
13387   Res = CorrectDelayedTyposInExpr(Res);
13388 
13389   if (!Res.isUsable())
13390     return Res;
13391 
13392   // If a constant-expression is a reference to a variable where we delay
13393   // deciding whether it is an odr-use, just assume we will apply the
13394   // lvalue-to-rvalue conversion.  In the one case where this doesn't happen
13395   // (a non-type template argument), we have special handling anyway.
13396   UpdateMarkingForLValueToRValue(Res.get());
13397   return Res;
13398 }
13399 
CleanupVarDeclMarking()13400 void Sema::CleanupVarDeclMarking() {
13401   for (Expr *E : MaybeODRUseExprs) {
13402     VarDecl *Var;
13403     SourceLocation Loc;
13404     if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) {
13405       Var = cast<VarDecl>(DRE->getDecl());
13406       Loc = DRE->getLocation();
13407     } else if (MemberExpr *ME = dyn_cast<MemberExpr>(E)) {
13408       Var = cast<VarDecl>(ME->getMemberDecl());
13409       Loc = ME->getMemberLoc();
13410     } else {
13411       llvm_unreachable("Unexpected expression");
13412     }
13413 
13414     MarkVarDeclODRUsed(Var, Loc, *this,
13415                        /*MaxFunctionScopeIndex Pointer*/ nullptr);
13416   }
13417 
13418   MaybeODRUseExprs.clear();
13419 }
13420 
13421 
DoMarkVarDeclReferenced(Sema & SemaRef,SourceLocation Loc,VarDecl * Var,Expr * E)13422 static void DoMarkVarDeclReferenced(Sema &SemaRef, SourceLocation Loc,
13423                                     VarDecl *Var, Expr *E) {
13424   assert((!E || isa<DeclRefExpr>(E) || isa<MemberExpr>(E)) &&
13425          "Invalid Expr argument to DoMarkVarDeclReferenced");
13426   Var->setReferenced();
13427 
13428   TemplateSpecializationKind TSK = Var->getTemplateSpecializationKind();
13429   bool MarkODRUsed = true;
13430 
13431   // If the context is not potentially evaluated, this is not an odr-use and
13432   // does not trigger instantiation.
13433   if (!IsPotentiallyEvaluatedContext(SemaRef)) {
13434     if (SemaRef.isUnevaluatedContext())
13435       return;
13436 
13437     // If we don't yet know whether this context is going to end up being an
13438     // evaluated context, and we're referencing a variable from an enclosing
13439     // scope, add a potential capture.
13440     //
13441     // FIXME: Is this necessary? These contexts are only used for default
13442     // arguments, where local variables can't be used.
13443     const bool RefersToEnclosingScope =
13444         (SemaRef.CurContext != Var->getDeclContext() &&
13445          Var->getDeclContext()->isFunctionOrMethod() && Var->hasLocalStorage());
13446     if (RefersToEnclosingScope) {
13447       if (LambdaScopeInfo *const LSI = SemaRef.getCurLambda()) {
13448         // If a variable could potentially be odr-used, defer marking it so
13449         // until we finish analyzing the full expression for any
13450         // lvalue-to-rvalue
13451         // or discarded value conversions that would obviate odr-use.
13452         // Add it to the list of potential captures that will be analyzed
13453         // later (ActOnFinishFullExpr) for eventual capture and odr-use marking
13454         // unless the variable is a reference that was initialized by a constant
13455         // expression (this will never need to be captured or odr-used).
13456         assert(E && "Capture variable should be used in an expression.");
13457         if (!Var->getType()->isReferenceType() ||
13458             !IsVariableNonDependentAndAConstantExpression(Var, SemaRef.Context))
13459           LSI->addPotentialCapture(E->IgnoreParens());
13460       }
13461     }
13462 
13463     if (!isTemplateInstantiation(TSK))
13464       return;
13465 
13466     // Instantiate, but do not mark as odr-used, variable templates.
13467     MarkODRUsed = false;
13468   }
13469 
13470   VarTemplateSpecializationDecl *VarSpec =
13471       dyn_cast<VarTemplateSpecializationDecl>(Var);
13472   assert(!isa<VarTemplatePartialSpecializationDecl>(Var) &&
13473          "Can't instantiate a partial template specialization.");
13474 
13475   // Perform implicit instantiation of static data members, static data member
13476   // templates of class templates, and variable template specializations. Delay
13477   // instantiations of variable templates, except for those that could be used
13478   // in a constant expression.
13479   if (isTemplateInstantiation(TSK)) {
13480     bool TryInstantiating = TSK == TSK_ImplicitInstantiation;
13481 
13482     if (TryInstantiating && !isa<VarTemplateSpecializationDecl>(Var)) {
13483       if (Var->getPointOfInstantiation().isInvalid()) {
13484         // This is a modification of an existing AST node. Notify listeners.
13485         if (ASTMutationListener *L = SemaRef.getASTMutationListener())
13486           L->StaticDataMemberInstantiated(Var);
13487       } else if (!Var->isUsableInConstantExpressions(SemaRef.Context))
13488         // Don't bother trying to instantiate it again, unless we might need
13489         // its initializer before we get to the end of the TU.
13490         TryInstantiating = false;
13491     }
13492 
13493     if (Var->getPointOfInstantiation().isInvalid())
13494       Var->setTemplateSpecializationKind(TSK, Loc);
13495 
13496     if (TryInstantiating) {
13497       SourceLocation PointOfInstantiation = Var->getPointOfInstantiation();
13498       bool InstantiationDependent = false;
13499       bool IsNonDependent =
13500           VarSpec ? !TemplateSpecializationType::anyDependentTemplateArguments(
13501                         VarSpec->getTemplateArgsInfo(), InstantiationDependent)
13502                   : true;
13503 
13504       // Do not instantiate specializations that are still type-dependent.
13505       if (IsNonDependent) {
13506         if (Var->isUsableInConstantExpressions(SemaRef.Context)) {
13507           // Do not defer instantiations of variables which could be used in a
13508           // constant expression.
13509           SemaRef.InstantiateVariableDefinition(PointOfInstantiation, Var);
13510         } else {
13511           SemaRef.PendingInstantiations
13512               .push_back(std::make_pair(Var, PointOfInstantiation));
13513         }
13514       }
13515     }
13516   }
13517 
13518   if(!MarkODRUsed) return;
13519 
13520   // Per C++11 [basic.def.odr], a variable is odr-used "unless it satisfies
13521   // the requirements for appearing in a constant expression (5.19) and, if
13522   // it is an object, the lvalue-to-rvalue conversion (4.1)
13523   // is immediately applied."  We check the first part here, and
13524   // Sema::UpdateMarkingForLValueToRValue deals with the second part.
13525   // Note that we use the C++11 definition everywhere because nothing in
13526   // C++03 depends on whether we get the C++03 version correct. The second
13527   // part does not apply to references, since they are not objects.
13528   if (E && IsVariableAConstantExpression(Var, SemaRef.Context)) {
13529     // A reference initialized by a constant expression can never be
13530     // odr-used, so simply ignore it.
13531     if (!Var->getType()->isReferenceType())
13532       SemaRef.MaybeODRUseExprs.insert(E);
13533   } else
13534     MarkVarDeclODRUsed(Var, Loc, SemaRef,
13535                        /*MaxFunctionScopeIndex ptr*/ nullptr);
13536 }
13537 
13538 /// \brief Mark a variable referenced, and check whether it is odr-used
13539 /// (C++ [basic.def.odr]p2, C99 6.9p3).  Note that this should not be
13540 /// used directly for normal expressions referring to VarDecl.
MarkVariableReferenced(SourceLocation Loc,VarDecl * Var)13541 void Sema::MarkVariableReferenced(SourceLocation Loc, VarDecl *Var) {
13542   DoMarkVarDeclReferenced(*this, Loc, Var, nullptr);
13543 }
13544 
MarkExprReferenced(Sema & SemaRef,SourceLocation Loc,Decl * D,Expr * E,bool OdrUse)13545 static void MarkExprReferenced(Sema &SemaRef, SourceLocation Loc,
13546                                Decl *D, Expr *E, bool OdrUse) {
13547   if (VarDecl *Var = dyn_cast<VarDecl>(D)) {
13548     DoMarkVarDeclReferenced(SemaRef, Loc, Var, E);
13549     return;
13550   }
13551 
13552   SemaRef.MarkAnyDeclReferenced(Loc, D, OdrUse);
13553 
13554   // If this is a call to a method via a cast, also mark the method in the
13555   // derived class used in case codegen can devirtualize the call.
13556   const MemberExpr *ME = dyn_cast<MemberExpr>(E);
13557   if (!ME)
13558     return;
13559   CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(ME->getMemberDecl());
13560   if (!MD)
13561     return;
13562   // Only attempt to devirtualize if this is truly a virtual call.
13563   bool IsVirtualCall = MD->isVirtual() &&
13564                           ME->performsVirtualDispatch(SemaRef.getLangOpts());
13565   if (!IsVirtualCall)
13566     return;
13567   const Expr *Base = ME->getBase();
13568   const CXXRecordDecl *MostDerivedClassDecl = Base->getBestDynamicClassType();
13569   if (!MostDerivedClassDecl)
13570     return;
13571   CXXMethodDecl *DM = MD->getCorrespondingMethodInClass(MostDerivedClassDecl);
13572   if (!DM || DM->isPure())
13573     return;
13574   SemaRef.MarkAnyDeclReferenced(Loc, DM, OdrUse);
13575 }
13576 
13577 /// \brief Perform reference-marking and odr-use handling for a DeclRefExpr.
MarkDeclRefReferenced(DeclRefExpr * E)13578 void Sema::MarkDeclRefReferenced(DeclRefExpr *E) {
13579   // TODO: update this with DR# once a defect report is filed.
13580   // C++11 defect. The address of a pure member should not be an ODR use, even
13581   // if it's a qualified reference.
13582   bool OdrUse = true;
13583   if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(E->getDecl()))
13584     if (Method->isVirtual())
13585       OdrUse = false;
13586   MarkExprReferenced(*this, E->getLocation(), E->getDecl(), E, OdrUse);
13587 }
13588 
13589 /// \brief Perform reference-marking and odr-use handling for a MemberExpr.
MarkMemberReferenced(MemberExpr * E)13590 void Sema::MarkMemberReferenced(MemberExpr *E) {
13591   // C++11 [basic.def.odr]p2:
13592   //   A non-overloaded function whose name appears as a potentially-evaluated
13593   //   expression or a member of a set of candidate functions, if selected by
13594   //   overload resolution when referred to from a potentially-evaluated
13595   //   expression, is odr-used, unless it is a pure virtual function and its
13596   //   name is not explicitly qualified.
13597   bool OdrUse = true;
13598   if (E->performsVirtualDispatch(getLangOpts())) {
13599     if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(E->getMemberDecl()))
13600       if (Method->isPure())
13601         OdrUse = false;
13602   }
13603   SourceLocation Loc = E->getMemberLoc().isValid() ?
13604                             E->getMemberLoc() : E->getLocStart();
13605   MarkExprReferenced(*this, Loc, E->getMemberDecl(), E, OdrUse);
13606 }
13607 
13608 /// \brief Perform marking for a reference to an arbitrary declaration.  It
13609 /// marks the declaration referenced, and performs odr-use checking for
13610 /// functions and variables. This method should not be used when building a
13611 /// normal expression which refers to a variable.
MarkAnyDeclReferenced(SourceLocation Loc,Decl * D,bool OdrUse)13612 void Sema::MarkAnyDeclReferenced(SourceLocation Loc, Decl *D, bool OdrUse) {
13613   if (OdrUse) {
13614     if (auto *VD = dyn_cast<VarDecl>(D)) {
13615       MarkVariableReferenced(Loc, VD);
13616       return;
13617     }
13618   }
13619   if (auto *FD = dyn_cast<FunctionDecl>(D)) {
13620     MarkFunctionReferenced(Loc, FD, OdrUse);
13621     return;
13622   }
13623   D->setReferenced();
13624 }
13625 
13626 namespace {
13627   // Mark all of the declarations referenced
13628   // FIXME: Not fully implemented yet! We need to have a better understanding
13629   // of when we're entering
13630   class MarkReferencedDecls : public RecursiveASTVisitor<MarkReferencedDecls> {
13631     Sema &S;
13632     SourceLocation Loc;
13633 
13634   public:
13635     typedef RecursiveASTVisitor<MarkReferencedDecls> Inherited;
13636 
MarkReferencedDecls(Sema & S,SourceLocation Loc)13637     MarkReferencedDecls(Sema &S, SourceLocation Loc) : S(S), Loc(Loc) { }
13638 
13639     bool TraverseTemplateArgument(const TemplateArgument &Arg);
13640     bool TraverseRecordType(RecordType *T);
13641   };
13642 }
13643 
TraverseTemplateArgument(const TemplateArgument & Arg)13644 bool MarkReferencedDecls::TraverseTemplateArgument(
13645     const TemplateArgument &Arg) {
13646   if (Arg.getKind() == TemplateArgument::Declaration) {
13647     if (Decl *D = Arg.getAsDecl())
13648       S.MarkAnyDeclReferenced(Loc, D, true);
13649   }
13650 
13651   return Inherited::TraverseTemplateArgument(Arg);
13652 }
13653 
TraverseRecordType(RecordType * T)13654 bool MarkReferencedDecls::TraverseRecordType(RecordType *T) {
13655   if (ClassTemplateSpecializationDecl *Spec
13656                   = dyn_cast<ClassTemplateSpecializationDecl>(T->getDecl())) {
13657     const TemplateArgumentList &Args = Spec->getTemplateArgs();
13658     return TraverseTemplateArguments(Args.data(), Args.size());
13659   }
13660 
13661   return true;
13662 }
13663 
MarkDeclarationsReferencedInType(SourceLocation Loc,QualType T)13664 void Sema::MarkDeclarationsReferencedInType(SourceLocation Loc, QualType T) {
13665   MarkReferencedDecls Marker(*this, Loc);
13666   Marker.TraverseType(Context.getCanonicalType(T));
13667 }
13668 
13669 namespace {
13670   /// \brief Helper class that marks all of the declarations referenced by
13671   /// potentially-evaluated subexpressions as "referenced".
13672   class EvaluatedExprMarker : public EvaluatedExprVisitor<EvaluatedExprMarker> {
13673     Sema &S;
13674     bool SkipLocalVariables;
13675 
13676   public:
13677     typedef EvaluatedExprVisitor<EvaluatedExprMarker> Inherited;
13678 
EvaluatedExprMarker(Sema & S,bool SkipLocalVariables)13679     EvaluatedExprMarker(Sema &S, bool SkipLocalVariables)
13680       : Inherited(S.Context), S(S), SkipLocalVariables(SkipLocalVariables) { }
13681 
VisitDeclRefExpr(DeclRefExpr * E)13682     void VisitDeclRefExpr(DeclRefExpr *E) {
13683       // If we were asked not to visit local variables, don't.
13684       if (SkipLocalVariables) {
13685         if (VarDecl *VD = dyn_cast<VarDecl>(E->getDecl()))
13686           if (VD->hasLocalStorage())
13687             return;
13688       }
13689 
13690       S.MarkDeclRefReferenced(E);
13691     }
13692 
VisitMemberExpr(MemberExpr * E)13693     void VisitMemberExpr(MemberExpr *E) {
13694       S.MarkMemberReferenced(E);
13695       Inherited::VisitMemberExpr(E);
13696     }
13697 
VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr * E)13698     void VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) {
13699       S.MarkFunctionReferenced(E->getLocStart(),
13700             const_cast<CXXDestructorDecl*>(E->getTemporary()->getDestructor()));
13701       Visit(E->getSubExpr());
13702     }
13703 
VisitCXXNewExpr(CXXNewExpr * E)13704     void VisitCXXNewExpr(CXXNewExpr *E) {
13705       if (E->getOperatorNew())
13706         S.MarkFunctionReferenced(E->getLocStart(), E->getOperatorNew());
13707       if (E->getOperatorDelete())
13708         S.MarkFunctionReferenced(E->getLocStart(), E->getOperatorDelete());
13709       Inherited::VisitCXXNewExpr(E);
13710     }
13711 
VisitCXXDeleteExpr(CXXDeleteExpr * E)13712     void VisitCXXDeleteExpr(CXXDeleteExpr *E) {
13713       if (E->getOperatorDelete())
13714         S.MarkFunctionReferenced(E->getLocStart(), E->getOperatorDelete());
13715       QualType Destroyed = S.Context.getBaseElementType(E->getDestroyedType());
13716       if (const RecordType *DestroyedRec = Destroyed->getAs<RecordType>()) {
13717         CXXRecordDecl *Record = cast<CXXRecordDecl>(DestroyedRec->getDecl());
13718         S.MarkFunctionReferenced(E->getLocStart(),
13719                                     S.LookupDestructor(Record));
13720       }
13721 
13722       Inherited::VisitCXXDeleteExpr(E);
13723     }
13724 
VisitCXXConstructExpr(CXXConstructExpr * E)13725     void VisitCXXConstructExpr(CXXConstructExpr *E) {
13726       S.MarkFunctionReferenced(E->getLocStart(), E->getConstructor());
13727       Inherited::VisitCXXConstructExpr(E);
13728     }
13729 
VisitCXXDefaultArgExpr(CXXDefaultArgExpr * E)13730     void VisitCXXDefaultArgExpr(CXXDefaultArgExpr *E) {
13731       Visit(E->getExpr());
13732     }
13733 
VisitImplicitCastExpr(ImplicitCastExpr * E)13734     void VisitImplicitCastExpr(ImplicitCastExpr *E) {
13735       Inherited::VisitImplicitCastExpr(E);
13736 
13737       if (E->getCastKind() == CK_LValueToRValue)
13738         S.UpdateMarkingForLValueToRValue(E->getSubExpr());
13739     }
13740   };
13741 }
13742 
13743 /// \brief Mark any declarations that appear within this expression or any
13744 /// potentially-evaluated subexpressions as "referenced".
13745 ///
13746 /// \param SkipLocalVariables If true, don't mark local variables as
13747 /// 'referenced'.
MarkDeclarationsReferencedInExpr(Expr * E,bool SkipLocalVariables)13748 void Sema::MarkDeclarationsReferencedInExpr(Expr *E,
13749                                             bool SkipLocalVariables) {
13750   EvaluatedExprMarker(*this, SkipLocalVariables).Visit(E);
13751 }
13752 
13753 /// \brief Emit a diagnostic that describes an effect on the run-time behavior
13754 /// of the program being compiled.
13755 ///
13756 /// This routine emits the given diagnostic when the code currently being
13757 /// type-checked is "potentially evaluated", meaning that there is a
13758 /// possibility that the code will actually be executable. Code in sizeof()
13759 /// expressions, code used only during overload resolution, etc., are not
13760 /// potentially evaluated. This routine will suppress such diagnostics or,
13761 /// in the absolutely nutty case of potentially potentially evaluated
13762 /// expressions (C++ typeid), queue the diagnostic to potentially emit it
13763 /// later.
13764 ///
13765 /// This routine should be used for all diagnostics that describe the run-time
13766 /// behavior of a program, such as passing a non-POD value through an ellipsis.
13767 /// Failure to do so will likely result in spurious diagnostics or failures
13768 /// during overload resolution or within sizeof/alignof/typeof/typeid.
DiagRuntimeBehavior(SourceLocation Loc,const Stmt * Statement,const PartialDiagnostic & PD)13769 bool Sema::DiagRuntimeBehavior(SourceLocation Loc, const Stmt *Statement,
13770                                const PartialDiagnostic &PD) {
13771   switch (ExprEvalContexts.back().Context) {
13772   case Unevaluated:
13773   case UnevaluatedAbstract:
13774     // The argument will never be evaluated, so don't complain.
13775     break;
13776 
13777   case ConstantEvaluated:
13778     // Relevant diagnostics should be produced by constant evaluation.
13779     break;
13780 
13781   case PotentiallyEvaluated:
13782   case PotentiallyEvaluatedIfUsed:
13783     if (Statement && getCurFunctionOrMethodDecl()) {
13784       FunctionScopes.back()->PossiblyUnreachableDiags.
13785         push_back(sema::PossiblyUnreachableDiag(PD, Loc, Statement));
13786     }
13787     else
13788       Diag(Loc, PD);
13789 
13790     return true;
13791   }
13792 
13793   return false;
13794 }
13795 
CheckCallReturnType(QualType ReturnType,SourceLocation Loc,CallExpr * CE,FunctionDecl * FD)13796 bool Sema::CheckCallReturnType(QualType ReturnType, SourceLocation Loc,
13797                                CallExpr *CE, FunctionDecl *FD) {
13798   if (ReturnType->isVoidType() || !ReturnType->isIncompleteType())
13799     return false;
13800 
13801   // If we're inside a decltype's expression, don't check for a valid return
13802   // type or construct temporaries until we know whether this is the last call.
13803   if (ExprEvalContexts.back().IsDecltype) {
13804     ExprEvalContexts.back().DelayedDecltypeCalls.push_back(CE);
13805     return false;
13806   }
13807 
13808   class CallReturnIncompleteDiagnoser : public TypeDiagnoser {
13809     FunctionDecl *FD;
13810     CallExpr *CE;
13811 
13812   public:
13813     CallReturnIncompleteDiagnoser(FunctionDecl *FD, CallExpr *CE)
13814       : FD(FD), CE(CE) { }
13815 
13816     void diagnose(Sema &S, SourceLocation Loc, QualType T) override {
13817       if (!FD) {
13818         S.Diag(Loc, diag::err_call_incomplete_return)
13819           << T << CE->getSourceRange();
13820         return;
13821       }
13822 
13823       S.Diag(Loc, diag::err_call_function_incomplete_return)
13824         << CE->getSourceRange() << FD->getDeclName() << T;
13825       S.Diag(FD->getLocation(), diag::note_entity_declared_at)
13826           << FD->getDeclName();
13827     }
13828   } Diagnoser(FD, CE);
13829 
13830   if (RequireCompleteType(Loc, ReturnType, Diagnoser))
13831     return true;
13832 
13833   return false;
13834 }
13835 
13836 // Diagnose the s/=/==/ and s/\|=/!=/ typos. Note that adding parentheses
13837 // will prevent this condition from triggering, which is what we want.
DiagnoseAssignmentAsCondition(Expr * E)13838 void Sema::DiagnoseAssignmentAsCondition(Expr *E) {
13839   SourceLocation Loc;
13840 
13841   unsigned diagnostic = diag::warn_condition_is_assignment;
13842   bool IsOrAssign = false;
13843 
13844   if (BinaryOperator *Op = dyn_cast<BinaryOperator>(E)) {
13845     if (Op->getOpcode() != BO_Assign && Op->getOpcode() != BO_OrAssign)
13846       return;
13847 
13848     IsOrAssign = Op->getOpcode() == BO_OrAssign;
13849 
13850     // Greylist some idioms by putting them into a warning subcategory.
13851     if (ObjCMessageExpr *ME
13852           = dyn_cast<ObjCMessageExpr>(Op->getRHS()->IgnoreParenCasts())) {
13853       Selector Sel = ME->getSelector();
13854 
13855       // self = [<foo> init...]
13856       if (isSelfExpr(Op->getLHS()) && ME->getMethodFamily() == OMF_init)
13857         diagnostic = diag::warn_condition_is_idiomatic_assignment;
13858 
13859       // <foo> = [<bar> nextObject]
13860       else if (Sel.isUnarySelector() && Sel.getNameForSlot(0) == "nextObject")
13861         diagnostic = diag::warn_condition_is_idiomatic_assignment;
13862     }
13863 
13864     Loc = Op->getOperatorLoc();
13865   } else if (CXXOperatorCallExpr *Op = dyn_cast<CXXOperatorCallExpr>(E)) {
13866     if (Op->getOperator() != OO_Equal && Op->getOperator() != OO_PipeEqual)
13867       return;
13868 
13869     IsOrAssign = Op->getOperator() == OO_PipeEqual;
13870     Loc = Op->getOperatorLoc();
13871   } else if (PseudoObjectExpr *POE = dyn_cast<PseudoObjectExpr>(E))
13872     return DiagnoseAssignmentAsCondition(POE->getSyntacticForm());
13873   else {
13874     // Not an assignment.
13875     return;
13876   }
13877 
13878   Diag(Loc, diagnostic) << E->getSourceRange();
13879 
13880   SourceLocation Open = E->getLocStart();
13881   SourceLocation Close = getLocForEndOfToken(E->getSourceRange().getEnd());
13882   Diag(Loc, diag::note_condition_assign_silence)
13883         << FixItHint::CreateInsertion(Open, "(")
13884         << FixItHint::CreateInsertion(Close, ")");
13885 
13886   if (IsOrAssign)
13887     Diag(Loc, diag::note_condition_or_assign_to_comparison)
13888       << FixItHint::CreateReplacement(Loc, "!=");
13889   else
13890     Diag(Loc, diag::note_condition_assign_to_comparison)
13891       << FixItHint::CreateReplacement(Loc, "==");
13892 }
13893 
13894 /// \brief Redundant parentheses over an equality comparison can indicate
13895 /// that the user intended an assignment used as condition.
DiagnoseEqualityWithExtraParens(ParenExpr * ParenE)13896 void Sema::DiagnoseEqualityWithExtraParens(ParenExpr *ParenE) {
13897   // Don't warn if the parens came from a macro.
13898   SourceLocation parenLoc = ParenE->getLocStart();
13899   if (parenLoc.isInvalid() || parenLoc.isMacroID())
13900     return;
13901   // Don't warn for dependent expressions.
13902   if (ParenE->isTypeDependent())
13903     return;
13904 
13905   Expr *E = ParenE->IgnoreParens();
13906 
13907   if (BinaryOperator *opE = dyn_cast<BinaryOperator>(E))
13908     if (opE->getOpcode() == BO_EQ &&
13909         opE->getLHS()->IgnoreParenImpCasts()->isModifiableLvalue(Context)
13910                                                            == Expr::MLV_Valid) {
13911       SourceLocation Loc = opE->getOperatorLoc();
13912 
13913       Diag(Loc, diag::warn_equality_with_extra_parens) << E->getSourceRange();
13914       SourceRange ParenERange = ParenE->getSourceRange();
13915       Diag(Loc, diag::note_equality_comparison_silence)
13916         << FixItHint::CreateRemoval(ParenERange.getBegin())
13917         << FixItHint::CreateRemoval(ParenERange.getEnd());
13918       Diag(Loc, diag::note_equality_comparison_to_assign)
13919         << FixItHint::CreateReplacement(Loc, "=");
13920     }
13921 }
13922 
CheckBooleanCondition(Expr * E,SourceLocation Loc)13923 ExprResult Sema::CheckBooleanCondition(Expr *E, SourceLocation Loc) {
13924   DiagnoseAssignmentAsCondition(E);
13925   if (ParenExpr *parenE = dyn_cast<ParenExpr>(E))
13926     DiagnoseEqualityWithExtraParens(parenE);
13927 
13928   ExprResult result = CheckPlaceholderExpr(E);
13929   if (result.isInvalid()) return ExprError();
13930   E = result.get();
13931 
13932   if (!E->isTypeDependent()) {
13933     if (getLangOpts().CPlusPlus)
13934       return CheckCXXBooleanCondition(E); // C++ 6.4p4
13935 
13936     ExprResult ERes = DefaultFunctionArrayLvalueConversion(E);
13937     if (ERes.isInvalid())
13938       return ExprError();
13939     E = ERes.get();
13940 
13941     QualType T = E->getType();
13942     if (!T->isScalarType()) { // C99 6.8.4.1p1
13943       Diag(Loc, diag::err_typecheck_statement_requires_scalar)
13944         << T << E->getSourceRange();
13945       return ExprError();
13946     }
13947     CheckBoolLikeConversion(E, Loc);
13948   }
13949 
13950   return E;
13951 }
13952 
ActOnBooleanCondition(Scope * S,SourceLocation Loc,Expr * SubExpr)13953 ExprResult Sema::ActOnBooleanCondition(Scope *S, SourceLocation Loc,
13954                                        Expr *SubExpr) {
13955   if (!SubExpr)
13956     return ExprError();
13957 
13958   return CheckBooleanCondition(SubExpr, Loc);
13959 }
13960 
13961 namespace {
13962   /// A visitor for rebuilding a call to an __unknown_any expression
13963   /// to have an appropriate type.
13964   struct RebuildUnknownAnyFunction
13965     : StmtVisitor<RebuildUnknownAnyFunction, ExprResult> {
13966 
13967     Sema &S;
13968 
RebuildUnknownAnyFunction__anon76e074960b11::RebuildUnknownAnyFunction13969     RebuildUnknownAnyFunction(Sema &S) : S(S) {}
13970 
VisitStmt__anon76e074960b11::RebuildUnknownAnyFunction13971     ExprResult VisitStmt(Stmt *S) {
13972       llvm_unreachable("unexpected statement!");
13973     }
13974 
VisitExpr__anon76e074960b11::RebuildUnknownAnyFunction13975     ExprResult VisitExpr(Expr *E) {
13976       S.Diag(E->getExprLoc(), diag::err_unsupported_unknown_any_call)
13977         << E->getSourceRange();
13978       return ExprError();
13979     }
13980 
13981     /// Rebuild an expression which simply semantically wraps another
13982     /// expression which it shares the type and value kind of.
rebuildSugarExpr__anon76e074960b11::RebuildUnknownAnyFunction13983     template <class T> ExprResult rebuildSugarExpr(T *E) {
13984       ExprResult SubResult = Visit(E->getSubExpr());
13985       if (SubResult.isInvalid()) return ExprError();
13986 
13987       Expr *SubExpr = SubResult.get();
13988       E->setSubExpr(SubExpr);
13989       E->setType(SubExpr->getType());
13990       E->setValueKind(SubExpr->getValueKind());
13991       assert(E->getObjectKind() == OK_Ordinary);
13992       return E;
13993     }
13994 
VisitParenExpr__anon76e074960b11::RebuildUnknownAnyFunction13995     ExprResult VisitParenExpr(ParenExpr *E) {
13996       return rebuildSugarExpr(E);
13997     }
13998 
VisitUnaryExtension__anon76e074960b11::RebuildUnknownAnyFunction13999     ExprResult VisitUnaryExtension(UnaryOperator *E) {
14000       return rebuildSugarExpr(E);
14001     }
14002 
VisitUnaryAddrOf__anon76e074960b11::RebuildUnknownAnyFunction14003     ExprResult VisitUnaryAddrOf(UnaryOperator *E) {
14004       ExprResult SubResult = Visit(E->getSubExpr());
14005       if (SubResult.isInvalid()) return ExprError();
14006 
14007       Expr *SubExpr = SubResult.get();
14008       E->setSubExpr(SubExpr);
14009       E->setType(S.Context.getPointerType(SubExpr->getType()));
14010       assert(E->getValueKind() == VK_RValue);
14011       assert(E->getObjectKind() == OK_Ordinary);
14012       return E;
14013     }
14014 
resolveDecl__anon76e074960b11::RebuildUnknownAnyFunction14015     ExprResult resolveDecl(Expr *E, ValueDecl *VD) {
14016       if (!isa<FunctionDecl>(VD)) return VisitExpr(E);
14017 
14018       E->setType(VD->getType());
14019 
14020       assert(E->getValueKind() == VK_RValue);
14021       if (S.getLangOpts().CPlusPlus &&
14022           !(isa<CXXMethodDecl>(VD) &&
14023             cast<CXXMethodDecl>(VD)->isInstance()))
14024         E->setValueKind(VK_LValue);
14025 
14026       return E;
14027     }
14028 
VisitMemberExpr__anon76e074960b11::RebuildUnknownAnyFunction14029     ExprResult VisitMemberExpr(MemberExpr *E) {
14030       return resolveDecl(E, E->getMemberDecl());
14031     }
14032 
VisitDeclRefExpr__anon76e074960b11::RebuildUnknownAnyFunction14033     ExprResult VisitDeclRefExpr(DeclRefExpr *E) {
14034       return resolveDecl(E, E->getDecl());
14035     }
14036   };
14037 }
14038 
14039 /// Given a function expression of unknown-any type, try to rebuild it
14040 /// to have a function type.
rebuildUnknownAnyFunction(Sema & S,Expr * FunctionExpr)14041 static ExprResult rebuildUnknownAnyFunction(Sema &S, Expr *FunctionExpr) {
14042   ExprResult Result = RebuildUnknownAnyFunction(S).Visit(FunctionExpr);
14043   if (Result.isInvalid()) return ExprError();
14044   return S.DefaultFunctionArrayConversion(Result.get());
14045 }
14046 
14047 namespace {
14048   /// A visitor for rebuilding an expression of type __unknown_anytype
14049   /// into one which resolves the type directly on the referring
14050   /// expression.  Strict preservation of the original source
14051   /// structure is not a goal.
14052   struct RebuildUnknownAnyExpr
14053     : StmtVisitor<RebuildUnknownAnyExpr, ExprResult> {
14054 
14055     Sema &S;
14056 
14057     /// The current destination type.
14058     QualType DestType;
14059 
RebuildUnknownAnyExpr__anon76e074960c11::RebuildUnknownAnyExpr14060     RebuildUnknownAnyExpr(Sema &S, QualType CastType)
14061       : S(S), DestType(CastType) {}
14062 
VisitStmt__anon76e074960c11::RebuildUnknownAnyExpr14063     ExprResult VisitStmt(Stmt *S) {
14064       llvm_unreachable("unexpected statement!");
14065     }
14066 
VisitExpr__anon76e074960c11::RebuildUnknownAnyExpr14067     ExprResult VisitExpr(Expr *E) {
14068       S.Diag(E->getExprLoc(), diag::err_unsupported_unknown_any_expr)
14069         << E->getSourceRange();
14070       return ExprError();
14071     }
14072 
14073     ExprResult VisitCallExpr(CallExpr *E);
14074     ExprResult VisitObjCMessageExpr(ObjCMessageExpr *E);
14075 
14076     /// Rebuild an expression which simply semantically wraps another
14077     /// expression which it shares the type and value kind of.
rebuildSugarExpr__anon76e074960c11::RebuildUnknownAnyExpr14078     template <class T> ExprResult rebuildSugarExpr(T *E) {
14079       ExprResult SubResult = Visit(E->getSubExpr());
14080       if (SubResult.isInvalid()) return ExprError();
14081       Expr *SubExpr = SubResult.get();
14082       E->setSubExpr(SubExpr);
14083       E->setType(SubExpr->getType());
14084       E->setValueKind(SubExpr->getValueKind());
14085       assert(E->getObjectKind() == OK_Ordinary);
14086       return E;
14087     }
14088 
VisitParenExpr__anon76e074960c11::RebuildUnknownAnyExpr14089     ExprResult VisitParenExpr(ParenExpr *E) {
14090       return rebuildSugarExpr(E);
14091     }
14092 
VisitUnaryExtension__anon76e074960c11::RebuildUnknownAnyExpr14093     ExprResult VisitUnaryExtension(UnaryOperator *E) {
14094       return rebuildSugarExpr(E);
14095     }
14096 
VisitUnaryAddrOf__anon76e074960c11::RebuildUnknownAnyExpr14097     ExprResult VisitUnaryAddrOf(UnaryOperator *E) {
14098       const PointerType *Ptr = DestType->getAs<PointerType>();
14099       if (!Ptr) {
14100         S.Diag(E->getOperatorLoc(), diag::err_unknown_any_addrof)
14101           << E->getSourceRange();
14102         return ExprError();
14103       }
14104       assert(E->getValueKind() == VK_RValue);
14105       assert(E->getObjectKind() == OK_Ordinary);
14106       E->setType(DestType);
14107 
14108       // Build the sub-expression as if it were an object of the pointee type.
14109       DestType = Ptr->getPointeeType();
14110       ExprResult SubResult = Visit(E->getSubExpr());
14111       if (SubResult.isInvalid()) return ExprError();
14112       E->setSubExpr(SubResult.get());
14113       return E;
14114     }
14115 
14116     ExprResult VisitImplicitCastExpr(ImplicitCastExpr *E);
14117 
14118     ExprResult resolveDecl(Expr *E, ValueDecl *VD);
14119 
VisitMemberExpr__anon76e074960c11::RebuildUnknownAnyExpr14120     ExprResult VisitMemberExpr(MemberExpr *E) {
14121       return resolveDecl(E, E->getMemberDecl());
14122     }
14123 
VisitDeclRefExpr__anon76e074960c11::RebuildUnknownAnyExpr14124     ExprResult VisitDeclRefExpr(DeclRefExpr *E) {
14125       return resolveDecl(E, E->getDecl());
14126     }
14127   };
14128 }
14129 
14130 /// Rebuilds a call expression which yielded __unknown_anytype.
VisitCallExpr(CallExpr * E)14131 ExprResult RebuildUnknownAnyExpr::VisitCallExpr(CallExpr *E) {
14132   Expr *CalleeExpr = E->getCallee();
14133 
14134   enum FnKind {
14135     FK_MemberFunction,
14136     FK_FunctionPointer,
14137     FK_BlockPointer
14138   };
14139 
14140   FnKind Kind;
14141   QualType CalleeType = CalleeExpr->getType();
14142   if (CalleeType == S.Context.BoundMemberTy) {
14143     assert(isa<CXXMemberCallExpr>(E) || isa<CXXOperatorCallExpr>(E));
14144     Kind = FK_MemberFunction;
14145     CalleeType = Expr::findBoundMemberType(CalleeExpr);
14146   } else if (const PointerType *Ptr = CalleeType->getAs<PointerType>()) {
14147     CalleeType = Ptr->getPointeeType();
14148     Kind = FK_FunctionPointer;
14149   } else {
14150     CalleeType = CalleeType->castAs<BlockPointerType>()->getPointeeType();
14151     Kind = FK_BlockPointer;
14152   }
14153   const FunctionType *FnType = CalleeType->castAs<FunctionType>();
14154 
14155   // Verify that this is a legal result type of a function.
14156   if (DestType->isArrayType() || DestType->isFunctionType()) {
14157     unsigned diagID = diag::err_func_returning_array_function;
14158     if (Kind == FK_BlockPointer)
14159       diagID = diag::err_block_returning_array_function;
14160 
14161     S.Diag(E->getExprLoc(), diagID)
14162       << DestType->isFunctionType() << DestType;
14163     return ExprError();
14164   }
14165 
14166   // Otherwise, go ahead and set DestType as the call's result.
14167   E->setType(DestType.getNonLValueExprType(S.Context));
14168   E->setValueKind(Expr::getValueKindForType(DestType));
14169   assert(E->getObjectKind() == OK_Ordinary);
14170 
14171   // Rebuild the function type, replacing the result type with DestType.
14172   const FunctionProtoType *Proto = dyn_cast<FunctionProtoType>(FnType);
14173   if (Proto) {
14174     // __unknown_anytype(...) is a special case used by the debugger when
14175     // it has no idea what a function's signature is.
14176     //
14177     // We want to build this call essentially under the K&R
14178     // unprototyped rules, but making a FunctionNoProtoType in C++
14179     // would foul up all sorts of assumptions.  However, we cannot
14180     // simply pass all arguments as variadic arguments, nor can we
14181     // portably just call the function under a non-variadic type; see
14182     // the comment on IR-gen's TargetInfo::isNoProtoCallVariadic.
14183     // However, it turns out that in practice it is generally safe to
14184     // call a function declared as "A foo(B,C,D);" under the prototype
14185     // "A foo(B,C,D,...);".  The only known exception is with the
14186     // Windows ABI, where any variadic function is implicitly cdecl
14187     // regardless of its normal CC.  Therefore we change the parameter
14188     // types to match the types of the arguments.
14189     //
14190     // This is a hack, but it is far superior to moving the
14191     // corresponding target-specific code from IR-gen to Sema/AST.
14192 
14193     ArrayRef<QualType> ParamTypes = Proto->getParamTypes();
14194     SmallVector<QualType, 8> ArgTypes;
14195     if (ParamTypes.empty() && Proto->isVariadic()) { // the special case
14196       ArgTypes.reserve(E->getNumArgs());
14197       for (unsigned i = 0, e = E->getNumArgs(); i != e; ++i) {
14198         Expr *Arg = E->getArg(i);
14199         QualType ArgType = Arg->getType();
14200         if (E->isLValue()) {
14201           ArgType = S.Context.getLValueReferenceType(ArgType);
14202         } else if (E->isXValue()) {
14203           ArgType = S.Context.getRValueReferenceType(ArgType);
14204         }
14205         ArgTypes.push_back(ArgType);
14206       }
14207       ParamTypes = ArgTypes;
14208     }
14209     DestType = S.Context.getFunctionType(DestType, ParamTypes,
14210                                          Proto->getExtProtoInfo());
14211   } else {
14212     DestType = S.Context.getFunctionNoProtoType(DestType,
14213                                                 FnType->getExtInfo());
14214   }
14215 
14216   // Rebuild the appropriate pointer-to-function type.
14217   switch (Kind) {
14218   case FK_MemberFunction:
14219     // Nothing to do.
14220     break;
14221 
14222   case FK_FunctionPointer:
14223     DestType = S.Context.getPointerType(DestType);
14224     break;
14225 
14226   case FK_BlockPointer:
14227     DestType = S.Context.getBlockPointerType(DestType);
14228     break;
14229   }
14230 
14231   // Finally, we can recurse.
14232   ExprResult CalleeResult = Visit(CalleeExpr);
14233   if (!CalleeResult.isUsable()) return ExprError();
14234   E->setCallee(CalleeResult.get());
14235 
14236   // Bind a temporary if necessary.
14237   return S.MaybeBindToTemporary(E);
14238 }
14239 
VisitObjCMessageExpr(ObjCMessageExpr * E)14240 ExprResult RebuildUnknownAnyExpr::VisitObjCMessageExpr(ObjCMessageExpr *E) {
14241   // Verify that this is a legal result type of a call.
14242   if (DestType->isArrayType() || DestType->isFunctionType()) {
14243     S.Diag(E->getExprLoc(), diag::err_func_returning_array_function)
14244       << DestType->isFunctionType() << DestType;
14245     return ExprError();
14246   }
14247 
14248   // Rewrite the method result type if available.
14249   if (ObjCMethodDecl *Method = E->getMethodDecl()) {
14250     assert(Method->getReturnType() == S.Context.UnknownAnyTy);
14251     Method->setReturnType(DestType);
14252   }
14253 
14254   // Change the type of the message.
14255   E->setType(DestType.getNonReferenceType());
14256   E->setValueKind(Expr::getValueKindForType(DestType));
14257 
14258   return S.MaybeBindToTemporary(E);
14259 }
14260 
VisitImplicitCastExpr(ImplicitCastExpr * E)14261 ExprResult RebuildUnknownAnyExpr::VisitImplicitCastExpr(ImplicitCastExpr *E) {
14262   // The only case we should ever see here is a function-to-pointer decay.
14263   if (E->getCastKind() == CK_FunctionToPointerDecay) {
14264     assert(E->getValueKind() == VK_RValue);
14265     assert(E->getObjectKind() == OK_Ordinary);
14266 
14267     E->setType(DestType);
14268 
14269     // Rebuild the sub-expression as the pointee (function) type.
14270     DestType = DestType->castAs<PointerType>()->getPointeeType();
14271 
14272     ExprResult Result = Visit(E->getSubExpr());
14273     if (!Result.isUsable()) return ExprError();
14274 
14275     E->setSubExpr(Result.get());
14276     return E;
14277   } else if (E->getCastKind() == CK_LValueToRValue) {
14278     assert(E->getValueKind() == VK_RValue);
14279     assert(E->getObjectKind() == OK_Ordinary);
14280 
14281     assert(isa<BlockPointerType>(E->getType()));
14282 
14283     E->setType(DestType);
14284 
14285     // The sub-expression has to be a lvalue reference, so rebuild it as such.
14286     DestType = S.Context.getLValueReferenceType(DestType);
14287 
14288     ExprResult Result = Visit(E->getSubExpr());
14289     if (!Result.isUsable()) return ExprError();
14290 
14291     E->setSubExpr(Result.get());
14292     return E;
14293   } else {
14294     llvm_unreachable("Unhandled cast type!");
14295   }
14296 }
14297 
resolveDecl(Expr * E,ValueDecl * VD)14298 ExprResult RebuildUnknownAnyExpr::resolveDecl(Expr *E, ValueDecl *VD) {
14299   ExprValueKind ValueKind = VK_LValue;
14300   QualType Type = DestType;
14301 
14302   // We know how to make this work for certain kinds of decls:
14303 
14304   //  - functions
14305   if (FunctionDecl *FD = dyn_cast<FunctionDecl>(VD)) {
14306     if (const PointerType *Ptr = Type->getAs<PointerType>()) {
14307       DestType = Ptr->getPointeeType();
14308       ExprResult Result = resolveDecl(E, VD);
14309       if (Result.isInvalid()) return ExprError();
14310       return S.ImpCastExprToType(Result.get(), Type,
14311                                  CK_FunctionToPointerDecay, VK_RValue);
14312     }
14313 
14314     if (!Type->isFunctionType()) {
14315       S.Diag(E->getExprLoc(), diag::err_unknown_any_function)
14316         << VD << E->getSourceRange();
14317       return ExprError();
14318     }
14319     if (const FunctionProtoType *FT = Type->getAs<FunctionProtoType>()) {
14320       // We must match the FunctionDecl's type to the hack introduced in
14321       // RebuildUnknownAnyExpr::VisitCallExpr to vararg functions of unknown
14322       // type. See the lengthy commentary in that routine.
14323       QualType FDT = FD->getType();
14324       const FunctionType *FnType = FDT->castAs<FunctionType>();
14325       const FunctionProtoType *Proto = dyn_cast_or_null<FunctionProtoType>(FnType);
14326       DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E);
14327       if (DRE && Proto && Proto->getParamTypes().empty() && Proto->isVariadic()) {
14328         SourceLocation Loc = FD->getLocation();
14329         FunctionDecl *NewFD = FunctionDecl::Create(FD->getASTContext(),
14330                                       FD->getDeclContext(),
14331                                       Loc, Loc, FD->getNameInfo().getName(),
14332                                       DestType, FD->getTypeSourceInfo(),
14333                                       SC_None, false/*isInlineSpecified*/,
14334                                       FD->hasPrototype(),
14335                                       false/*isConstexprSpecified*/);
14336 
14337         if (FD->getQualifier())
14338           NewFD->setQualifierInfo(FD->getQualifierLoc());
14339 
14340         SmallVector<ParmVarDecl*, 16> Params;
14341         for (const auto &AI : FT->param_types()) {
14342           ParmVarDecl *Param =
14343             S.BuildParmVarDeclForTypedef(FD, Loc, AI);
14344           Param->setScopeInfo(0, Params.size());
14345           Params.push_back(Param);
14346         }
14347         NewFD->setParams(Params);
14348         DRE->setDecl(NewFD);
14349         VD = DRE->getDecl();
14350       }
14351     }
14352 
14353     if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD))
14354       if (MD->isInstance()) {
14355         ValueKind = VK_RValue;
14356         Type = S.Context.BoundMemberTy;
14357       }
14358 
14359     // Function references aren't l-values in C.
14360     if (!S.getLangOpts().CPlusPlus)
14361       ValueKind = VK_RValue;
14362 
14363   //  - variables
14364   } else if (isa<VarDecl>(VD)) {
14365     if (const ReferenceType *RefTy = Type->getAs<ReferenceType>()) {
14366       Type = RefTy->getPointeeType();
14367     } else if (Type->isFunctionType()) {
14368       S.Diag(E->getExprLoc(), diag::err_unknown_any_var_function_type)
14369         << VD << E->getSourceRange();
14370       return ExprError();
14371     }
14372 
14373   //  - nothing else
14374   } else {
14375     S.Diag(E->getExprLoc(), diag::err_unsupported_unknown_any_decl)
14376       << VD << E->getSourceRange();
14377     return ExprError();
14378   }
14379 
14380   // Modifying the declaration like this is friendly to IR-gen but
14381   // also really dangerous.
14382   VD->setType(DestType);
14383   E->setType(Type);
14384   E->setValueKind(ValueKind);
14385   return E;
14386 }
14387 
14388 /// Check a cast of an unknown-any type.  We intentionally only
14389 /// trigger this for C-style casts.
checkUnknownAnyCast(SourceRange TypeRange,QualType CastType,Expr * CastExpr,CastKind & CastKind,ExprValueKind & VK,CXXCastPath & Path)14390 ExprResult Sema::checkUnknownAnyCast(SourceRange TypeRange, QualType CastType,
14391                                      Expr *CastExpr, CastKind &CastKind,
14392                                      ExprValueKind &VK, CXXCastPath &Path) {
14393   // Rewrite the casted expression from scratch.
14394   ExprResult result = RebuildUnknownAnyExpr(*this, CastType).Visit(CastExpr);
14395   if (!result.isUsable()) return ExprError();
14396 
14397   CastExpr = result.get();
14398   VK = CastExpr->getValueKind();
14399   CastKind = CK_NoOp;
14400 
14401   return CastExpr;
14402 }
14403 
forceUnknownAnyToType(Expr * E,QualType ToType)14404 ExprResult Sema::forceUnknownAnyToType(Expr *E, QualType ToType) {
14405   return RebuildUnknownAnyExpr(*this, ToType).Visit(E);
14406 }
14407 
checkUnknownAnyArg(SourceLocation callLoc,Expr * arg,QualType & paramType)14408 ExprResult Sema::checkUnknownAnyArg(SourceLocation callLoc,
14409                                     Expr *arg, QualType &paramType) {
14410   // If the syntactic form of the argument is not an explicit cast of
14411   // any sort, just do default argument promotion.
14412   ExplicitCastExpr *castArg = dyn_cast<ExplicitCastExpr>(arg->IgnoreParens());
14413   if (!castArg) {
14414     ExprResult result = DefaultArgumentPromotion(arg);
14415     if (result.isInvalid()) return ExprError();
14416     paramType = result.get()->getType();
14417     return result;
14418   }
14419 
14420   // Otherwise, use the type that was written in the explicit cast.
14421   assert(!arg->hasPlaceholderType());
14422   paramType = castArg->getTypeAsWritten();
14423 
14424   // Copy-initialize a parameter of that type.
14425   InitializedEntity entity =
14426     InitializedEntity::InitializeParameter(Context, paramType,
14427                                            /*consumed*/ false);
14428   return PerformCopyInitialization(entity, callLoc, arg);
14429 }
14430 
diagnoseUnknownAnyExpr(Sema & S,Expr * E)14431 static ExprResult diagnoseUnknownAnyExpr(Sema &S, Expr *E) {
14432   Expr *orig = E;
14433   unsigned diagID = diag::err_uncasted_use_of_unknown_any;
14434   while (true) {
14435     E = E->IgnoreParenImpCasts();
14436     if (CallExpr *call = dyn_cast<CallExpr>(E)) {
14437       E = call->getCallee();
14438       diagID = diag::err_uncasted_call_of_unknown_any;
14439     } else {
14440       break;
14441     }
14442   }
14443 
14444   SourceLocation loc;
14445   NamedDecl *d;
14446   if (DeclRefExpr *ref = dyn_cast<DeclRefExpr>(E)) {
14447     loc = ref->getLocation();
14448     d = ref->getDecl();
14449   } else if (MemberExpr *mem = dyn_cast<MemberExpr>(E)) {
14450     loc = mem->getMemberLoc();
14451     d = mem->getMemberDecl();
14452   } else if (ObjCMessageExpr *msg = dyn_cast<ObjCMessageExpr>(E)) {
14453     diagID = diag::err_uncasted_call_of_unknown_any;
14454     loc = msg->getSelectorStartLoc();
14455     d = msg->getMethodDecl();
14456     if (!d) {
14457       S.Diag(loc, diag::err_uncasted_send_to_unknown_any_method)
14458         << static_cast<unsigned>(msg->isClassMessage()) << msg->getSelector()
14459         << orig->getSourceRange();
14460       return ExprError();
14461     }
14462   } else {
14463     S.Diag(E->getExprLoc(), diag::err_unsupported_unknown_any_expr)
14464       << E->getSourceRange();
14465     return ExprError();
14466   }
14467 
14468   S.Diag(loc, diagID) << d << orig->getSourceRange();
14469 
14470   // Never recoverable.
14471   return ExprError();
14472 }
14473 
14474 /// Check for operands with placeholder types and complain if found.
14475 /// Returns true if there was an error and no recovery was possible.
CheckPlaceholderExpr(Expr * E)14476 ExprResult Sema::CheckPlaceholderExpr(Expr *E) {
14477   if (!getLangOpts().CPlusPlus) {
14478     // C cannot handle TypoExpr nodes on either side of a binop because it
14479     // doesn't handle dependent types properly, so make sure any TypoExprs have
14480     // been dealt with before checking the operands.
14481     ExprResult Result = CorrectDelayedTyposInExpr(E);
14482     if (!Result.isUsable()) return ExprError();
14483     E = Result.get();
14484   }
14485 
14486   const BuiltinType *placeholderType = E->getType()->getAsPlaceholderType();
14487   if (!placeholderType) return E;
14488 
14489   switch (placeholderType->getKind()) {
14490 
14491   // Overloaded expressions.
14492   case BuiltinType::Overload: {
14493     // Try to resolve a single function template specialization.
14494     // This is obligatory.
14495     ExprResult result = E;
14496     if (ResolveAndFixSingleFunctionTemplateSpecialization(result, false)) {
14497       return result;
14498 
14499     // If that failed, try to recover with a call.
14500     } else {
14501       tryToRecoverWithCall(result, PDiag(diag::err_ovl_unresolvable),
14502                            /*complain*/ true);
14503       return result;
14504     }
14505   }
14506 
14507   // Bound member functions.
14508   case BuiltinType::BoundMember: {
14509     ExprResult result = E;
14510     const Expr *BME = E->IgnoreParens();
14511     PartialDiagnostic PD = PDiag(diag::err_bound_member_function);
14512     // Try to give a nicer diagnostic if it is a bound member that we recognize.
14513     if (isa<CXXPseudoDestructorExpr>(BME)) {
14514       PD = PDiag(diag::err_dtor_expr_without_call) << /*pseudo-destructor*/ 1;
14515     } else if (const auto *ME = dyn_cast<MemberExpr>(BME)) {
14516       if (ME->getMemberNameInfo().getName().getNameKind() ==
14517           DeclarationName::CXXDestructorName)
14518         PD = PDiag(diag::err_dtor_expr_without_call) << /*destructor*/ 0;
14519     }
14520     tryToRecoverWithCall(result, PD,
14521                          /*complain*/ true);
14522     return result;
14523   }
14524 
14525   // ARC unbridged casts.
14526   case BuiltinType::ARCUnbridgedCast: {
14527     Expr *realCast = stripARCUnbridgedCast(E);
14528     diagnoseARCUnbridgedCast(realCast);
14529     return realCast;
14530   }
14531 
14532   // Expressions of unknown type.
14533   case BuiltinType::UnknownAny:
14534     return diagnoseUnknownAnyExpr(*this, E);
14535 
14536   // Pseudo-objects.
14537   case BuiltinType::PseudoObject:
14538     return checkPseudoObjectRValue(E);
14539 
14540   case BuiltinType::BuiltinFn: {
14541     // Accept __noop without parens by implicitly converting it to a call expr.
14542     auto *DRE = dyn_cast<DeclRefExpr>(E->IgnoreParenImpCasts());
14543     if (DRE) {
14544       auto *FD = cast<FunctionDecl>(DRE->getDecl());
14545       if (FD->getBuiltinID() == Builtin::BI__noop) {
14546         E = ImpCastExprToType(E, Context.getPointerType(FD->getType()),
14547                               CK_BuiltinFnToFnPtr).get();
14548         return new (Context) CallExpr(Context, E, None, Context.IntTy,
14549                                       VK_RValue, SourceLocation());
14550       }
14551     }
14552 
14553     Diag(E->getLocStart(), diag::err_builtin_fn_use);
14554     return ExprError();
14555   }
14556 
14557   // Expressions of unknown type.
14558   case BuiltinType::OMPArraySection:
14559     Diag(E->getLocStart(), diag::err_omp_array_section_use);
14560     return ExprError();
14561 
14562   // Everything else should be impossible.
14563 #define BUILTIN_TYPE(Id, SingletonId) \
14564   case BuiltinType::Id:
14565 #define PLACEHOLDER_TYPE(Id, SingletonId)
14566 #include "clang/AST/BuiltinTypes.def"
14567     break;
14568   }
14569 
14570   llvm_unreachable("invalid placeholder type!");
14571 }
14572 
CheckCaseExpression(Expr * E)14573 bool Sema::CheckCaseExpression(Expr *E) {
14574   if (E->isTypeDependent())
14575     return true;
14576   if (E->isValueDependent() || E->isIntegerConstantExpr(Context))
14577     return E->getType()->isIntegralOrEnumerationType();
14578   return false;
14579 }
14580 
14581 /// ActOnObjCBoolLiteral - Parse {__objc_yes,__objc_no} literals.
14582 ExprResult
ActOnObjCBoolLiteral(SourceLocation OpLoc,tok::TokenKind Kind)14583 Sema::ActOnObjCBoolLiteral(SourceLocation OpLoc, tok::TokenKind Kind) {
14584   assert((Kind == tok::kw___objc_yes || Kind == tok::kw___objc_no) &&
14585          "Unknown Objective-C Boolean value!");
14586   QualType BoolT = Context.ObjCBuiltinBoolTy;
14587   if (!Context.getBOOLDecl()) {
14588     LookupResult Result(*this, &Context.Idents.get("BOOL"), OpLoc,
14589                         Sema::LookupOrdinaryName);
14590     if (LookupName(Result, getCurScope()) && Result.isSingleResult()) {
14591       NamedDecl *ND = Result.getFoundDecl();
14592       if (TypedefDecl *TD = dyn_cast<TypedefDecl>(ND))
14593         Context.setBOOLDecl(TD);
14594     }
14595   }
14596   if (Context.getBOOLDecl())
14597     BoolT = Context.getBOOLType();
14598   return new (Context)
14599       ObjCBoolLiteralExpr(Kind == tok::kw___objc_yes, BoolT, OpLoc);
14600 }
14601