1 /*
2  *  Copyright 2004 The WebRTC Project Authors. All rights reserved.
3  *
4  *  Use of this source code is governed by a BSD-style license
5  *  that can be found in the LICENSE file in the root of the source
6  *  tree. An additional intellectual property rights grant can be found
7  *  in the file PATENTS.  All contributing project authors may
8  *  be found in the AUTHORS file in the root of the source tree.
9  */
10 
11 #if defined(_MSC_VER) && _MSC_VER < 1300
12 #pragma warning(disable:4786)
13 #endif
14 
15 #include <assert.h>
16 
17 #ifdef MEMORY_SANITIZER
18 #include <sanitizer/msan_interface.h>
19 #endif
20 
21 #if defined(WEBRTC_POSIX)
22 #include <string.h>
23 #include <errno.h>
24 #include <fcntl.h>
25 #include <sys/time.h>
26 #include <sys/select.h>
27 #include <unistd.h>
28 #include <signal.h>
29 #endif
30 
31 #if defined(WEBRTC_WIN)
32 #define WIN32_LEAN_AND_MEAN
33 #include <windows.h>
34 #include <winsock2.h>
35 #include <ws2tcpip.h>
36 #undef SetPort
37 #endif
38 
39 #include <algorithm>
40 #include <map>
41 
42 #include "webrtc/base/arraysize.h"
43 #include "webrtc/base/basictypes.h"
44 #include "webrtc/base/byteorder.h"
45 #include "webrtc/base/common.h"
46 #include "webrtc/base/logging.h"
47 #include "webrtc/base/physicalsocketserver.h"
48 #include "webrtc/base/timeutils.h"
49 #include "webrtc/base/winping.h"
50 #include "webrtc/base/win32socketinit.h"
51 
52 // stm: this will tell us if we are on OSX
53 #ifdef HAVE_CONFIG_H
54 #include "config.h"
55 #endif
56 
57 #if defined(WEBRTC_POSIX)
58 #include <netinet/tcp.h>  // for TCP_NODELAY
59 #define IP_MTU 14 // Until this is integrated from linux/in.h to netinet/in.h
60 typedef void* SockOptArg;
61 #endif  // WEBRTC_POSIX
62 
63 #if defined(WEBRTC_WIN)
64 typedef char* SockOptArg;
65 #endif
66 
67 namespace rtc {
68 
69 #if defined(WEBRTC_WIN)
70 // Standard MTUs, from RFC 1191
71 const uint16_t PACKET_MAXIMUMS[] = {
72     65535,  // Theoretical maximum, Hyperchannel
73     32000,  // Nothing
74     17914,  // 16Mb IBM Token Ring
75     8166,   // IEEE 802.4
76     // 4464,   // IEEE 802.5 (4Mb max)
77     4352,   // FDDI
78     // 2048,   // Wideband Network
79     2002,   // IEEE 802.5 (4Mb recommended)
80     // 1536,   // Expermental Ethernet Networks
81     // 1500,   // Ethernet, Point-to-Point (default)
82     1492,   // IEEE 802.3
83     1006,   // SLIP, ARPANET
84     // 576,    // X.25 Networks
85     // 544,    // DEC IP Portal
86     // 512,    // NETBIOS
87     508,    // IEEE 802/Source-Rt Bridge, ARCNET
88     296,    // Point-to-Point (low delay)
89     68,     // Official minimum
90     0,      // End of list marker
91 };
92 
93 static const int IP_HEADER_SIZE = 20u;
94 static const int IPV6_HEADER_SIZE = 40u;
95 static const int ICMP_HEADER_SIZE = 8u;
96 static const int ICMP_PING_TIMEOUT_MILLIS = 10000u;
97 #endif
98 
PhysicalSocket(PhysicalSocketServer * ss,SOCKET s)99 PhysicalSocket::PhysicalSocket(PhysicalSocketServer* ss, SOCKET s)
100   : ss_(ss), s_(s), enabled_events_(0), error_(0),
101     state_((s == INVALID_SOCKET) ? CS_CLOSED : CS_CONNECTED),
102     resolver_(nullptr) {
103 #if defined(WEBRTC_WIN)
104   // EnsureWinsockInit() ensures that winsock is initialized. The default
105   // version of this function doesn't do anything because winsock is
106   // initialized by constructor of a static object. If neccessary libjingle
107   // users can link it with a different version of this function by replacing
108   // win32socketinit.cc. See win32socketinit.cc for more details.
109   EnsureWinsockInit();
110 #endif
111   if (s_ != INVALID_SOCKET) {
112     enabled_events_ = DE_READ | DE_WRITE;
113 
114     int type = SOCK_STREAM;
115     socklen_t len = sizeof(type);
116     VERIFY(0 == getsockopt(s_, SOL_SOCKET, SO_TYPE, (SockOptArg)&type, &len));
117     udp_ = (SOCK_DGRAM == type);
118   }
119 }
120 
~PhysicalSocket()121 PhysicalSocket::~PhysicalSocket() {
122   Close();
123 }
124 
Create(int family,int type)125 bool PhysicalSocket::Create(int family, int type) {
126   Close();
127   s_ = ::socket(family, type, 0);
128   udp_ = (SOCK_DGRAM == type);
129   UpdateLastError();
130   if (udp_)
131     enabled_events_ = DE_READ | DE_WRITE;
132   return s_ != INVALID_SOCKET;
133 }
134 
GetLocalAddress() const135 SocketAddress PhysicalSocket::GetLocalAddress() const {
136   sockaddr_storage addr_storage = {0};
137   socklen_t addrlen = sizeof(addr_storage);
138   sockaddr* addr = reinterpret_cast<sockaddr*>(&addr_storage);
139   int result = ::getsockname(s_, addr, &addrlen);
140   SocketAddress address;
141   if (result >= 0) {
142     SocketAddressFromSockAddrStorage(addr_storage, &address);
143   } else {
144     LOG(LS_WARNING) << "GetLocalAddress: unable to get local addr, socket="
145                     << s_;
146   }
147   return address;
148 }
149 
GetRemoteAddress() const150 SocketAddress PhysicalSocket::GetRemoteAddress() const {
151   sockaddr_storage addr_storage = {0};
152   socklen_t addrlen = sizeof(addr_storage);
153   sockaddr* addr = reinterpret_cast<sockaddr*>(&addr_storage);
154   int result = ::getpeername(s_, addr, &addrlen);
155   SocketAddress address;
156   if (result >= 0) {
157     SocketAddressFromSockAddrStorage(addr_storage, &address);
158   } else {
159     LOG(LS_WARNING) << "GetRemoteAddress: unable to get remote addr, socket="
160                     << s_;
161   }
162   return address;
163 }
164 
Bind(const SocketAddress & bind_addr)165 int PhysicalSocket::Bind(const SocketAddress& bind_addr) {
166   sockaddr_storage addr_storage;
167   size_t len = bind_addr.ToSockAddrStorage(&addr_storage);
168   sockaddr* addr = reinterpret_cast<sockaddr*>(&addr_storage);
169   int err = ::bind(s_, addr, static_cast<int>(len));
170   UpdateLastError();
171 #if !defined(NDEBUG)
172   if (0 == err) {
173     dbg_addr_ = "Bound @ ";
174     dbg_addr_.append(GetLocalAddress().ToString());
175   }
176 #endif
177   return err;
178 }
179 
Connect(const SocketAddress & addr)180 int PhysicalSocket::Connect(const SocketAddress& addr) {
181   // TODO(pthatcher): Implicit creation is required to reconnect...
182   // ...but should we make it more explicit?
183   if (state_ != CS_CLOSED) {
184     SetError(EALREADY);
185     return SOCKET_ERROR;
186   }
187   if (addr.IsUnresolvedIP()) {
188     LOG(LS_VERBOSE) << "Resolving addr in PhysicalSocket::Connect";
189     resolver_ = new AsyncResolver();
190     resolver_->SignalDone.connect(this, &PhysicalSocket::OnResolveResult);
191     resolver_->Start(addr);
192     state_ = CS_CONNECTING;
193     return 0;
194   }
195 
196   return DoConnect(addr);
197 }
198 
DoConnect(const SocketAddress & connect_addr)199 int PhysicalSocket::DoConnect(const SocketAddress& connect_addr) {
200   if ((s_ == INVALID_SOCKET) &&
201       !Create(connect_addr.family(), SOCK_STREAM)) {
202     return SOCKET_ERROR;
203   }
204   sockaddr_storage addr_storage;
205   size_t len = connect_addr.ToSockAddrStorage(&addr_storage);
206   sockaddr* addr = reinterpret_cast<sockaddr*>(&addr_storage);
207   int err = ::connect(s_, addr, static_cast<int>(len));
208   UpdateLastError();
209   if (err == 0) {
210     state_ = CS_CONNECTED;
211   } else if (IsBlockingError(GetError())) {
212     state_ = CS_CONNECTING;
213     enabled_events_ |= DE_CONNECT;
214   } else {
215     return SOCKET_ERROR;
216   }
217 
218   enabled_events_ |= DE_READ | DE_WRITE;
219   return 0;
220 }
221 
GetError() const222 int PhysicalSocket::GetError() const {
223   CritScope cs(&crit_);
224   return error_;
225 }
226 
SetError(int error)227 void PhysicalSocket::SetError(int error) {
228   CritScope cs(&crit_);
229   error_ = error;
230 }
231 
GetState() const232 AsyncSocket::ConnState PhysicalSocket::GetState() const {
233   return state_;
234 }
235 
GetOption(Option opt,int * value)236 int PhysicalSocket::GetOption(Option opt, int* value) {
237   int slevel;
238   int sopt;
239   if (TranslateOption(opt, &slevel, &sopt) == -1)
240     return -1;
241   socklen_t optlen = sizeof(*value);
242   int ret = ::getsockopt(s_, slevel, sopt, (SockOptArg)value, &optlen);
243   if (ret != -1 && opt == OPT_DONTFRAGMENT) {
244 #if defined(WEBRTC_LINUX) && !defined(WEBRTC_ANDROID)
245     *value = (*value != IP_PMTUDISC_DONT) ? 1 : 0;
246 #endif
247   }
248   return ret;
249 }
250 
SetOption(Option opt,int value)251 int PhysicalSocket::SetOption(Option opt, int value) {
252   int slevel;
253   int sopt;
254   if (TranslateOption(opt, &slevel, &sopt) == -1)
255     return -1;
256   if (opt == OPT_DONTFRAGMENT) {
257 #if defined(WEBRTC_LINUX) && !defined(WEBRTC_ANDROID)
258     value = (value) ? IP_PMTUDISC_DO : IP_PMTUDISC_DONT;
259 #endif
260   }
261   return ::setsockopt(s_, slevel, sopt, (SockOptArg)&value, sizeof(value));
262 }
263 
Send(const void * pv,size_t cb)264 int PhysicalSocket::Send(const void* pv, size_t cb) {
265   int sent = ::send(s_, reinterpret_cast<const char *>(pv), (int)cb,
266 #if defined(WEBRTC_LINUX) && !defined(WEBRTC_ANDROID)
267       // Suppress SIGPIPE. Without this, attempting to send on a socket whose
268       // other end is closed will result in a SIGPIPE signal being raised to
269       // our process, which by default will terminate the process, which we
270       // don't want. By specifying this flag, we'll just get the error EPIPE
271       // instead and can handle the error gracefully.
272       MSG_NOSIGNAL
273 #else
274       0
275 #endif
276       );
277   UpdateLastError();
278   MaybeRemapSendError();
279   // We have seen minidumps where this may be false.
280   ASSERT(sent <= static_cast<int>(cb));
281   if ((sent < 0) && IsBlockingError(GetError())) {
282     enabled_events_ |= DE_WRITE;
283   }
284   return sent;
285 }
286 
SendTo(const void * buffer,size_t length,const SocketAddress & addr)287 int PhysicalSocket::SendTo(const void* buffer,
288                            size_t length,
289                            const SocketAddress& addr) {
290   sockaddr_storage saddr;
291   size_t len = addr.ToSockAddrStorage(&saddr);
292   int sent = ::sendto(
293       s_, static_cast<const char *>(buffer), static_cast<int>(length),
294 #if defined(WEBRTC_LINUX) && !defined(WEBRTC_ANDROID)
295       // Suppress SIGPIPE. See above for explanation.
296       MSG_NOSIGNAL,
297 #else
298       0,
299 #endif
300       reinterpret_cast<sockaddr*>(&saddr), static_cast<int>(len));
301   UpdateLastError();
302   MaybeRemapSendError();
303   // We have seen minidumps where this may be false.
304   ASSERT(sent <= static_cast<int>(length));
305   if ((sent < 0) && IsBlockingError(GetError())) {
306     enabled_events_ |= DE_WRITE;
307   }
308   return sent;
309 }
310 
Recv(void * buffer,size_t length)311 int PhysicalSocket::Recv(void* buffer, size_t length) {
312   int received = ::recv(s_, static_cast<char*>(buffer),
313                         static_cast<int>(length), 0);
314   if ((received == 0) && (length != 0)) {
315     // Note: on graceful shutdown, recv can return 0.  In this case, we
316     // pretend it is blocking, and then signal close, so that simplifying
317     // assumptions can be made about Recv.
318     LOG(LS_WARNING) << "EOF from socket; deferring close event";
319     // Must turn this back on so that the select() loop will notice the close
320     // event.
321     enabled_events_ |= DE_READ;
322     SetError(EWOULDBLOCK);
323     return SOCKET_ERROR;
324   }
325   UpdateLastError();
326   int error = GetError();
327   bool success = (received >= 0) || IsBlockingError(error);
328   if (udp_ || success) {
329     enabled_events_ |= DE_READ;
330   }
331   if (!success) {
332     LOG_F(LS_VERBOSE) << "Error = " << error;
333   }
334   return received;
335 }
336 
RecvFrom(void * buffer,size_t length,SocketAddress * out_addr)337 int PhysicalSocket::RecvFrom(void* buffer,
338                              size_t length,
339                              SocketAddress* out_addr) {
340   sockaddr_storage addr_storage;
341   socklen_t addr_len = sizeof(addr_storage);
342   sockaddr* addr = reinterpret_cast<sockaddr*>(&addr_storage);
343   int received = ::recvfrom(s_, static_cast<char*>(buffer),
344                             static_cast<int>(length), 0, addr, &addr_len);
345   UpdateLastError();
346   if ((received >= 0) && (out_addr != nullptr))
347     SocketAddressFromSockAddrStorage(addr_storage, out_addr);
348   int error = GetError();
349   bool success = (received >= 0) || IsBlockingError(error);
350   if (udp_ || success) {
351     enabled_events_ |= DE_READ;
352   }
353   if (!success) {
354     LOG_F(LS_VERBOSE) << "Error = " << error;
355   }
356   return received;
357 }
358 
Listen(int backlog)359 int PhysicalSocket::Listen(int backlog) {
360   int err = ::listen(s_, backlog);
361   UpdateLastError();
362   if (err == 0) {
363     state_ = CS_CONNECTING;
364     enabled_events_ |= DE_ACCEPT;
365 #if !defined(NDEBUG)
366     dbg_addr_ = "Listening @ ";
367     dbg_addr_.append(GetLocalAddress().ToString());
368 #endif
369   }
370   return err;
371 }
372 
Accept(SocketAddress * out_addr)373 AsyncSocket* PhysicalSocket::Accept(SocketAddress* out_addr) {
374   // Always re-subscribe DE_ACCEPT to make sure new incoming connections will
375   // trigger an event even if DoAccept returns an error here.
376   enabled_events_ |= DE_ACCEPT;
377   sockaddr_storage addr_storage;
378   socklen_t addr_len = sizeof(addr_storage);
379   sockaddr* addr = reinterpret_cast<sockaddr*>(&addr_storage);
380   SOCKET s = DoAccept(s_, addr, &addr_len);
381   UpdateLastError();
382   if (s == INVALID_SOCKET)
383     return nullptr;
384   if (out_addr != nullptr)
385     SocketAddressFromSockAddrStorage(addr_storage, out_addr);
386   return ss_->WrapSocket(s);
387 }
388 
Close()389 int PhysicalSocket::Close() {
390   if (s_ == INVALID_SOCKET)
391     return 0;
392   int err = ::closesocket(s_);
393   UpdateLastError();
394   s_ = INVALID_SOCKET;
395   state_ = CS_CLOSED;
396   enabled_events_ = 0;
397   if (resolver_) {
398     resolver_->Destroy(false);
399     resolver_ = nullptr;
400   }
401   return err;
402 }
403 
EstimateMTU(uint16_t * mtu)404 int PhysicalSocket::EstimateMTU(uint16_t* mtu) {
405   SocketAddress addr = GetRemoteAddress();
406   if (addr.IsAnyIP()) {
407     SetError(ENOTCONN);
408     return -1;
409   }
410 
411 #if defined(WEBRTC_WIN)
412   // Gets the interface MTU (TTL=1) for the interface used to reach |addr|.
413   WinPing ping;
414   if (!ping.IsValid()) {
415     SetError(EINVAL);  // can't think of a better error ID
416     return -1;
417   }
418   int header_size = ICMP_HEADER_SIZE;
419   if (addr.family() == AF_INET6) {
420     header_size += IPV6_HEADER_SIZE;
421   } else if (addr.family() == AF_INET) {
422     header_size += IP_HEADER_SIZE;
423   }
424 
425   for (int level = 0; PACKET_MAXIMUMS[level + 1] > 0; ++level) {
426     int32_t size = PACKET_MAXIMUMS[level] - header_size;
427     WinPing::PingResult result = ping.Ping(addr.ipaddr(), size,
428                                            ICMP_PING_TIMEOUT_MILLIS,
429                                            1, false);
430     if (result == WinPing::PING_FAIL) {
431       SetError(EINVAL);  // can't think of a better error ID
432       return -1;
433     } else if (result != WinPing::PING_TOO_LARGE) {
434       *mtu = PACKET_MAXIMUMS[level];
435       return 0;
436     }
437   }
438 
439   ASSERT(false);
440   return -1;
441 #elif defined(WEBRTC_MAC)
442   // No simple way to do this on Mac OS X.
443   // SIOCGIFMTU would work if we knew which interface would be used, but
444   // figuring that out is pretty complicated. For now we'll return an error
445   // and let the caller pick a default MTU.
446   SetError(EINVAL);
447   return -1;
448 #elif defined(WEBRTC_LINUX)
449   // Gets the path MTU.
450   int value;
451   socklen_t vlen = sizeof(value);
452   int err = getsockopt(s_, IPPROTO_IP, IP_MTU, &value, &vlen);
453   if (err < 0) {
454     UpdateLastError();
455     return err;
456   }
457 
458   ASSERT((0 <= value) && (value <= 65536));
459   *mtu = value;
460   return 0;
461 #elif defined(__native_client__)
462   // Most socket operations, including this, will fail in NaCl's sandbox.
463   error_ = EACCES;
464   return -1;
465 #endif
466 }
467 
468 
DoAccept(SOCKET socket,sockaddr * addr,socklen_t * addrlen)469 SOCKET PhysicalSocket::DoAccept(SOCKET socket,
470                                 sockaddr* addr,
471                                 socklen_t* addrlen) {
472   return ::accept(socket, addr, addrlen);
473 }
474 
OnResolveResult(AsyncResolverInterface * resolver)475 void PhysicalSocket::OnResolveResult(AsyncResolverInterface* resolver) {
476   if (resolver != resolver_) {
477     return;
478   }
479 
480   int error = resolver_->GetError();
481   if (error == 0) {
482     error = DoConnect(resolver_->address());
483   } else {
484     Close();
485   }
486 
487   if (error) {
488     SetError(error);
489     SignalCloseEvent(this, error);
490   }
491 }
492 
UpdateLastError()493 void PhysicalSocket::UpdateLastError() {
494   SetError(LAST_SYSTEM_ERROR);
495 }
496 
MaybeRemapSendError()497 void PhysicalSocket::MaybeRemapSendError() {
498 #if defined(WEBRTC_MAC)
499   // https://developer.apple.com/library/mac/documentation/Darwin/
500   // Reference/ManPages/man2/sendto.2.html
501   // ENOBUFS - The output queue for a network interface is full.
502   // This generally indicates that the interface has stopped sending,
503   // but may be caused by transient congestion.
504   if (GetError() == ENOBUFS) {
505     SetError(EWOULDBLOCK);
506   }
507 #endif
508 }
509 
TranslateOption(Option opt,int * slevel,int * sopt)510 int PhysicalSocket::TranslateOption(Option opt, int* slevel, int* sopt) {
511   switch (opt) {
512     case OPT_DONTFRAGMENT:
513 #if defined(WEBRTC_WIN)
514       *slevel = IPPROTO_IP;
515       *sopt = IP_DONTFRAGMENT;
516       break;
517 #elif defined(WEBRTC_MAC) || defined(BSD) || defined(__native_client__)
518       LOG(LS_WARNING) << "Socket::OPT_DONTFRAGMENT not supported.";
519       return -1;
520 #elif defined(WEBRTC_POSIX)
521       *slevel = IPPROTO_IP;
522       *sopt = IP_MTU_DISCOVER;
523       break;
524 #endif
525     case OPT_RCVBUF:
526       *slevel = SOL_SOCKET;
527       *sopt = SO_RCVBUF;
528       break;
529     case OPT_SNDBUF:
530       *slevel = SOL_SOCKET;
531       *sopt = SO_SNDBUF;
532       break;
533     case OPT_NODELAY:
534       *slevel = IPPROTO_TCP;
535       *sopt = TCP_NODELAY;
536       break;
537     case OPT_DSCP:
538       LOG(LS_WARNING) << "Socket::OPT_DSCP not supported.";
539       return -1;
540     case OPT_RTP_SENDTIME_EXTN_ID:
541       return -1;  // No logging is necessary as this not a OS socket option.
542     default:
543       ASSERT(false);
544       return -1;
545   }
546   return 0;
547 }
548 
SocketDispatcher(PhysicalSocketServer * ss)549 SocketDispatcher::SocketDispatcher(PhysicalSocketServer *ss)
550 #if defined(WEBRTC_WIN)
551   : PhysicalSocket(ss), id_(0), signal_close_(false)
552 #else
553   : PhysicalSocket(ss)
554 #endif
555 {
556 }
557 
SocketDispatcher(SOCKET s,PhysicalSocketServer * ss)558 SocketDispatcher::SocketDispatcher(SOCKET s, PhysicalSocketServer *ss)
559 #if defined(WEBRTC_WIN)
560   : PhysicalSocket(ss, s), id_(0), signal_close_(false)
561 #else
562   : PhysicalSocket(ss, s)
563 #endif
564 {
565 }
566 
~SocketDispatcher()567 SocketDispatcher::~SocketDispatcher() {
568   Close();
569 }
570 
Initialize()571 bool SocketDispatcher::Initialize() {
572   ASSERT(s_ != INVALID_SOCKET);
573   // Must be a non-blocking
574 #if defined(WEBRTC_WIN)
575   u_long argp = 1;
576   ioctlsocket(s_, FIONBIO, &argp);
577 #elif defined(WEBRTC_POSIX)
578   fcntl(s_, F_SETFL, fcntl(s_, F_GETFL, 0) | O_NONBLOCK);
579 #endif
580   ss_->Add(this);
581   return true;
582 }
583 
Create(int type)584 bool SocketDispatcher::Create(int type) {
585   return Create(AF_INET, type);
586 }
587 
Create(int family,int type)588 bool SocketDispatcher::Create(int family, int type) {
589   // Change the socket to be non-blocking.
590   if (!PhysicalSocket::Create(family, type))
591     return false;
592 
593   if (!Initialize())
594     return false;
595 
596 #if defined(WEBRTC_WIN)
597   do { id_ = ++next_id_; } while (id_ == 0);
598 #endif
599   return true;
600 }
601 
602 #if defined(WEBRTC_WIN)
603 
GetWSAEvent()604 WSAEVENT SocketDispatcher::GetWSAEvent() {
605   return WSA_INVALID_EVENT;
606 }
607 
GetSocket()608 SOCKET SocketDispatcher::GetSocket() {
609   return s_;
610 }
611 
CheckSignalClose()612 bool SocketDispatcher::CheckSignalClose() {
613   if (!signal_close_)
614     return false;
615 
616   char ch;
617   if (recv(s_, &ch, 1, MSG_PEEK) > 0)
618     return false;
619 
620   state_ = CS_CLOSED;
621   signal_close_ = false;
622   SignalCloseEvent(this, signal_err_);
623   return true;
624 }
625 
626 int SocketDispatcher::next_id_ = 0;
627 
628 #elif defined(WEBRTC_POSIX)
629 
GetDescriptor()630 int SocketDispatcher::GetDescriptor() {
631   return s_;
632 }
633 
IsDescriptorClosed()634 bool SocketDispatcher::IsDescriptorClosed() {
635   // We don't have a reliable way of distinguishing end-of-stream
636   // from readability.  So test on each readable call.  Is this
637   // inefficient?  Probably.
638   char ch;
639   ssize_t res = ::recv(s_, &ch, 1, MSG_PEEK);
640   if (res > 0) {
641     // Data available, so not closed.
642     return false;
643   } else if (res == 0) {
644     // EOF, so closed.
645     return true;
646   } else {  // error
647     switch (errno) {
648       // Returned if we've already closed s_.
649       case EBADF:
650       // Returned during ungraceful peer shutdown.
651       case ECONNRESET:
652         return true;
653       default:
654         // Assume that all other errors are just blocking errors, meaning the
655         // connection is still good but we just can't read from it right now.
656         // This should only happen when connecting (and at most once), because
657         // in all other cases this function is only called if the file
658         // descriptor is already known to be in the readable state. However,
659         // it's not necessary a problem if we spuriously interpret a
660         // "connection lost"-type error as a blocking error, because typically
661         // the next recv() will get EOF, so we'll still eventually notice that
662         // the socket is closed.
663         LOG_ERR(LS_WARNING) << "Assuming benign blocking error";
664         return false;
665     }
666   }
667 }
668 
669 #endif // WEBRTC_POSIX
670 
GetRequestedEvents()671 uint32_t SocketDispatcher::GetRequestedEvents() {
672   return enabled_events_;
673 }
674 
OnPreEvent(uint32_t ff)675 void SocketDispatcher::OnPreEvent(uint32_t ff) {
676   if ((ff & DE_CONNECT) != 0)
677     state_ = CS_CONNECTED;
678 
679 #if defined(WEBRTC_WIN)
680   // We set CS_CLOSED from CheckSignalClose.
681 #elif defined(WEBRTC_POSIX)
682   if ((ff & DE_CLOSE) != 0)
683     state_ = CS_CLOSED;
684 #endif
685 }
686 
687 #if defined(WEBRTC_WIN)
688 
OnEvent(uint32_t ff,int err)689 void SocketDispatcher::OnEvent(uint32_t ff, int err) {
690   int cache_id = id_;
691   // Make sure we deliver connect/accept first. Otherwise, consumers may see
692   // something like a READ followed by a CONNECT, which would be odd.
693   if (((ff & DE_CONNECT) != 0) && (id_ == cache_id)) {
694     if (ff != DE_CONNECT)
695       LOG(LS_VERBOSE) << "Signalled with DE_CONNECT: " << ff;
696     enabled_events_ &= ~DE_CONNECT;
697 #if !defined(NDEBUG)
698     dbg_addr_ = "Connected @ ";
699     dbg_addr_.append(GetRemoteAddress().ToString());
700 #endif
701     SignalConnectEvent(this);
702   }
703   if (((ff & DE_ACCEPT) != 0) && (id_ == cache_id)) {
704     enabled_events_ &= ~DE_ACCEPT;
705     SignalReadEvent(this);
706   }
707   if ((ff & DE_READ) != 0) {
708     enabled_events_ &= ~DE_READ;
709     SignalReadEvent(this);
710   }
711   if (((ff & DE_WRITE) != 0) && (id_ == cache_id)) {
712     enabled_events_ &= ~DE_WRITE;
713     SignalWriteEvent(this);
714   }
715   if (((ff & DE_CLOSE) != 0) && (id_ == cache_id)) {
716     signal_close_ = true;
717     signal_err_ = err;
718   }
719 }
720 
721 #elif defined(WEBRTC_POSIX)
722 
OnEvent(uint32_t ff,int err)723 void SocketDispatcher::OnEvent(uint32_t ff, int err) {
724   // Make sure we deliver connect/accept first. Otherwise, consumers may see
725   // something like a READ followed by a CONNECT, which would be odd.
726   if ((ff & DE_CONNECT) != 0) {
727     enabled_events_ &= ~DE_CONNECT;
728     SignalConnectEvent(this);
729   }
730   if ((ff & DE_ACCEPT) != 0) {
731     enabled_events_ &= ~DE_ACCEPT;
732     SignalReadEvent(this);
733   }
734   if ((ff & DE_READ) != 0) {
735     enabled_events_ &= ~DE_READ;
736     SignalReadEvent(this);
737   }
738   if ((ff & DE_WRITE) != 0) {
739     enabled_events_ &= ~DE_WRITE;
740     SignalWriteEvent(this);
741   }
742   if ((ff & DE_CLOSE) != 0) {
743     // The socket is now dead to us, so stop checking it.
744     enabled_events_ = 0;
745     SignalCloseEvent(this, err);
746   }
747 }
748 
749 #endif // WEBRTC_POSIX
750 
Close()751 int SocketDispatcher::Close() {
752   if (s_ == INVALID_SOCKET)
753     return 0;
754 
755 #if defined(WEBRTC_WIN)
756   id_ = 0;
757   signal_close_ = false;
758 #endif
759   ss_->Remove(this);
760   return PhysicalSocket::Close();
761 }
762 
763 #if defined(WEBRTC_POSIX)
764 class EventDispatcher : public Dispatcher {
765  public:
EventDispatcher(PhysicalSocketServer * ss)766   EventDispatcher(PhysicalSocketServer* ss) : ss_(ss), fSignaled_(false) {
767     if (pipe(afd_) < 0)
768       LOG(LERROR) << "pipe failed";
769     ss_->Add(this);
770   }
771 
~EventDispatcher()772   ~EventDispatcher() override {
773     ss_->Remove(this);
774     close(afd_[0]);
775     close(afd_[1]);
776   }
777 
Signal()778   virtual void Signal() {
779     CritScope cs(&crit_);
780     if (!fSignaled_) {
781       const uint8_t b[1] = {0};
782       if (VERIFY(1 == write(afd_[1], b, sizeof(b)))) {
783         fSignaled_ = true;
784       }
785     }
786   }
787 
GetRequestedEvents()788   uint32_t GetRequestedEvents() override { return DE_READ; }
789 
OnPreEvent(uint32_t ff)790   void OnPreEvent(uint32_t ff) override {
791     // It is not possible to perfectly emulate an auto-resetting event with
792     // pipes.  This simulates it by resetting before the event is handled.
793 
794     CritScope cs(&crit_);
795     if (fSignaled_) {
796       uint8_t b[4];  // Allow for reading more than 1 byte, but expect 1.
797       VERIFY(1 == read(afd_[0], b, sizeof(b)));
798       fSignaled_ = false;
799     }
800   }
801 
OnEvent(uint32_t ff,int err)802   void OnEvent(uint32_t ff, int err) override { ASSERT(false); }
803 
GetDescriptor()804   int GetDescriptor() override { return afd_[0]; }
805 
IsDescriptorClosed()806   bool IsDescriptorClosed() override { return false; }
807 
808  private:
809   PhysicalSocketServer *ss_;
810   int afd_[2];
811   bool fSignaled_;
812   CriticalSection crit_;
813 };
814 
815 // These two classes use the self-pipe trick to deliver POSIX signals to our
816 // select loop. This is the only safe, reliable, cross-platform way to do
817 // non-trivial things with a POSIX signal in an event-driven program (until
818 // proper pselect() implementations become ubiquitous).
819 
820 class PosixSignalHandler {
821  public:
822   // POSIX only specifies 32 signals, but in principle the system might have
823   // more and the programmer might choose to use them, so we size our array
824   // for 128.
825   static const int kNumPosixSignals = 128;
826 
827   // There is just a single global instance. (Signal handlers do not get any
828   // sort of user-defined void * parameter, so they can't access anything that
829   // isn't global.)
Instance()830   static PosixSignalHandler* Instance() {
831     RTC_DEFINE_STATIC_LOCAL(PosixSignalHandler, instance, ());
832     return &instance;
833   }
834 
835   // Returns true if the given signal number is set.
IsSignalSet(int signum) const836   bool IsSignalSet(int signum) const {
837     ASSERT(signum < static_cast<int>(arraysize(received_signal_)));
838     if (signum < static_cast<int>(arraysize(received_signal_))) {
839       return received_signal_[signum];
840     } else {
841       return false;
842     }
843   }
844 
845   // Clears the given signal number.
ClearSignal(int signum)846   void ClearSignal(int signum) {
847     ASSERT(signum < static_cast<int>(arraysize(received_signal_)));
848     if (signum < static_cast<int>(arraysize(received_signal_))) {
849       received_signal_[signum] = false;
850     }
851   }
852 
853   // Returns the file descriptor to monitor for signal events.
GetDescriptor() const854   int GetDescriptor() const {
855     return afd_[0];
856   }
857 
858   // This is called directly from our real signal handler, so it must be
859   // signal-handler-safe. That means it cannot assume anything about the
860   // user-level state of the process, since the handler could be executed at any
861   // time on any thread.
OnPosixSignalReceived(int signum)862   void OnPosixSignalReceived(int signum) {
863     if (signum >= static_cast<int>(arraysize(received_signal_))) {
864       // We don't have space in our array for this.
865       return;
866     }
867     // Set a flag saying we've seen this signal.
868     received_signal_[signum] = true;
869     // Notify application code that we got a signal.
870     const uint8_t b[1] = {0};
871     if (-1 == write(afd_[1], b, sizeof(b))) {
872       // Nothing we can do here. If there's an error somehow then there's
873       // nothing we can safely do from a signal handler.
874       // No, we can't even safely log it.
875       // But, we still have to check the return value here. Otherwise,
876       // GCC 4.4.1 complains ignoring return value. Even (void) doesn't help.
877       return;
878     }
879   }
880 
881  private:
PosixSignalHandler()882   PosixSignalHandler() {
883     if (pipe(afd_) < 0) {
884       LOG_ERR(LS_ERROR) << "pipe failed";
885       return;
886     }
887     if (fcntl(afd_[0], F_SETFL, O_NONBLOCK) < 0) {
888       LOG_ERR(LS_WARNING) << "fcntl #1 failed";
889     }
890     if (fcntl(afd_[1], F_SETFL, O_NONBLOCK) < 0) {
891       LOG_ERR(LS_WARNING) << "fcntl #2 failed";
892     }
893     memset(const_cast<void *>(static_cast<volatile void *>(received_signal_)),
894            0,
895            sizeof(received_signal_));
896   }
897 
~PosixSignalHandler()898   ~PosixSignalHandler() {
899     int fd1 = afd_[0];
900     int fd2 = afd_[1];
901     // We clobber the stored file descriptor numbers here or else in principle
902     // a signal that happens to be delivered during application termination
903     // could erroneously write a zero byte to an unrelated file handle in
904     // OnPosixSignalReceived() if some other file happens to be opened later
905     // during shutdown and happens to be given the same file descriptor number
906     // as our pipe had. Unfortunately even with this precaution there is still a
907     // race where that could occur if said signal happens to be handled
908     // concurrently with this code and happens to have already read the value of
909     // afd_[1] from memory before we clobber it, but that's unlikely.
910     afd_[0] = -1;
911     afd_[1] = -1;
912     close(fd1);
913     close(fd2);
914   }
915 
916   int afd_[2];
917   // These are boolean flags that will be set in our signal handler and read
918   // and cleared from Wait(). There is a race involved in this, but it is
919   // benign. The signal handler sets the flag before signaling the pipe, so
920   // we'll never end up blocking in select() while a flag is still true.
921   // However, if two of the same signal arrive close to each other then it's
922   // possible that the second time the handler may set the flag while it's still
923   // true, meaning that signal will be missed. But the first occurrence of it
924   // will still be handled, so this isn't a problem.
925   // Volatile is not necessary here for correctness, but this data _is_ volatile
926   // so I've marked it as such.
927   volatile uint8_t received_signal_[kNumPosixSignals];
928 };
929 
930 class PosixSignalDispatcher : public Dispatcher {
931  public:
PosixSignalDispatcher(PhysicalSocketServer * owner)932   PosixSignalDispatcher(PhysicalSocketServer *owner) : owner_(owner) {
933     owner_->Add(this);
934   }
935 
~PosixSignalDispatcher()936   ~PosixSignalDispatcher() override {
937     owner_->Remove(this);
938   }
939 
GetRequestedEvents()940   uint32_t GetRequestedEvents() override { return DE_READ; }
941 
OnPreEvent(uint32_t ff)942   void OnPreEvent(uint32_t ff) override {
943     // Events might get grouped if signals come very fast, so we read out up to
944     // 16 bytes to make sure we keep the pipe empty.
945     uint8_t b[16];
946     ssize_t ret = read(GetDescriptor(), b, sizeof(b));
947     if (ret < 0) {
948       LOG_ERR(LS_WARNING) << "Error in read()";
949     } else if (ret == 0) {
950       LOG(LS_WARNING) << "Should have read at least one byte";
951     }
952   }
953 
OnEvent(uint32_t ff,int err)954   void OnEvent(uint32_t ff, int err) override {
955     for (int signum = 0; signum < PosixSignalHandler::kNumPosixSignals;
956          ++signum) {
957       if (PosixSignalHandler::Instance()->IsSignalSet(signum)) {
958         PosixSignalHandler::Instance()->ClearSignal(signum);
959         HandlerMap::iterator i = handlers_.find(signum);
960         if (i == handlers_.end()) {
961           // This can happen if a signal is delivered to our process at around
962           // the same time as we unset our handler for it. It is not an error
963           // condition, but it's unusual enough to be worth logging.
964           LOG(LS_INFO) << "Received signal with no handler: " << signum;
965         } else {
966           // Otherwise, execute our handler.
967           (*i->second)(signum);
968         }
969       }
970     }
971   }
972 
GetDescriptor()973   int GetDescriptor() override {
974     return PosixSignalHandler::Instance()->GetDescriptor();
975   }
976 
IsDescriptorClosed()977   bool IsDescriptorClosed() override { return false; }
978 
SetHandler(int signum,void (* handler)(int))979   void SetHandler(int signum, void (*handler)(int)) {
980     handlers_[signum] = handler;
981   }
982 
ClearHandler(int signum)983   void ClearHandler(int signum) {
984     handlers_.erase(signum);
985   }
986 
HasHandlers()987   bool HasHandlers() {
988     return !handlers_.empty();
989   }
990 
991  private:
992   typedef std::map<int, void (*)(int)> HandlerMap;
993 
994   HandlerMap handlers_;
995   // Our owner.
996   PhysicalSocketServer *owner_;
997 };
998 
999 class FileDispatcher: public Dispatcher, public AsyncFile {
1000  public:
FileDispatcher(int fd,PhysicalSocketServer * ss)1001   FileDispatcher(int fd, PhysicalSocketServer *ss) : ss_(ss), fd_(fd) {
1002     set_readable(true);
1003 
1004     ss_->Add(this);
1005 
1006     fcntl(fd_, F_SETFL, fcntl(fd_, F_GETFL, 0) | O_NONBLOCK);
1007   }
1008 
~FileDispatcher()1009   ~FileDispatcher() override {
1010     ss_->Remove(this);
1011   }
1012 
socketserver()1013   SocketServer* socketserver() { return ss_; }
1014 
GetDescriptor()1015   int GetDescriptor() override { return fd_; }
1016 
IsDescriptorClosed()1017   bool IsDescriptorClosed() override { return false; }
1018 
GetRequestedEvents()1019   uint32_t GetRequestedEvents() override { return flags_; }
1020 
OnPreEvent(uint32_t ff)1021   void OnPreEvent(uint32_t ff) override {}
1022 
OnEvent(uint32_t ff,int err)1023   void OnEvent(uint32_t ff, int err) override {
1024     if ((ff & DE_READ) != 0)
1025       SignalReadEvent(this);
1026     if ((ff & DE_WRITE) != 0)
1027       SignalWriteEvent(this);
1028     if ((ff & DE_CLOSE) != 0)
1029       SignalCloseEvent(this, err);
1030   }
1031 
readable()1032   bool readable() override { return (flags_ & DE_READ) != 0; }
1033 
set_readable(bool value)1034   void set_readable(bool value) override {
1035     flags_ = value ? (flags_ | DE_READ) : (flags_ & ~DE_READ);
1036   }
1037 
writable()1038   bool writable() override { return (flags_ & DE_WRITE) != 0; }
1039 
set_writable(bool value)1040   void set_writable(bool value) override {
1041     flags_ = value ? (flags_ | DE_WRITE) : (flags_ & ~DE_WRITE);
1042   }
1043 
1044  private:
1045   PhysicalSocketServer* ss_;
1046   int fd_;
1047   int flags_;
1048 };
1049 
CreateFile(int fd)1050 AsyncFile* PhysicalSocketServer::CreateFile(int fd) {
1051   return new FileDispatcher(fd, this);
1052 }
1053 
1054 #endif // WEBRTC_POSIX
1055 
1056 #if defined(WEBRTC_WIN)
FlagsToEvents(uint32_t events)1057 static uint32_t FlagsToEvents(uint32_t events) {
1058   uint32_t ffFD = FD_CLOSE;
1059   if (events & DE_READ)
1060     ffFD |= FD_READ;
1061   if (events & DE_WRITE)
1062     ffFD |= FD_WRITE;
1063   if (events & DE_CONNECT)
1064     ffFD |= FD_CONNECT;
1065   if (events & DE_ACCEPT)
1066     ffFD |= FD_ACCEPT;
1067   return ffFD;
1068 }
1069 
1070 class EventDispatcher : public Dispatcher {
1071  public:
EventDispatcher(PhysicalSocketServer * ss)1072   EventDispatcher(PhysicalSocketServer *ss) : ss_(ss) {
1073     hev_ = WSACreateEvent();
1074     if (hev_) {
1075       ss_->Add(this);
1076     }
1077   }
1078 
~EventDispatcher()1079   ~EventDispatcher() {
1080     if (hev_ != NULL) {
1081       ss_->Remove(this);
1082       WSACloseEvent(hev_);
1083       hev_ = NULL;
1084     }
1085   }
1086 
Signal()1087   virtual void Signal() {
1088     if (hev_ != NULL)
1089       WSASetEvent(hev_);
1090   }
1091 
GetRequestedEvents()1092   virtual uint32_t GetRequestedEvents() { return 0; }
1093 
OnPreEvent(uint32_t ff)1094   virtual void OnPreEvent(uint32_t ff) { WSAResetEvent(hev_); }
1095 
OnEvent(uint32_t ff,int err)1096   virtual void OnEvent(uint32_t ff, int err) {}
1097 
GetWSAEvent()1098   virtual WSAEVENT GetWSAEvent() {
1099     return hev_;
1100   }
1101 
GetSocket()1102   virtual SOCKET GetSocket() {
1103     return INVALID_SOCKET;
1104   }
1105 
CheckSignalClose()1106   virtual bool CheckSignalClose() { return false; }
1107 
1108 private:
1109   PhysicalSocketServer* ss_;
1110   WSAEVENT hev_;
1111 };
1112 #endif  // WEBRTC_WIN
1113 
1114 // Sets the value of a boolean value to false when signaled.
1115 class Signaler : public EventDispatcher {
1116  public:
Signaler(PhysicalSocketServer * ss,bool * pf)1117   Signaler(PhysicalSocketServer* ss, bool* pf)
1118       : EventDispatcher(ss), pf_(pf) {
1119   }
~Signaler()1120   ~Signaler() override { }
1121 
OnEvent(uint32_t ff,int err)1122   void OnEvent(uint32_t ff, int err) override {
1123     if (pf_)
1124       *pf_ = false;
1125   }
1126 
1127  private:
1128   bool *pf_;
1129 };
1130 
PhysicalSocketServer()1131 PhysicalSocketServer::PhysicalSocketServer()
1132     : fWait_(false) {
1133   signal_wakeup_ = new Signaler(this, &fWait_);
1134 #if defined(WEBRTC_WIN)
1135   socket_ev_ = WSACreateEvent();
1136 #endif
1137 }
1138 
~PhysicalSocketServer()1139 PhysicalSocketServer::~PhysicalSocketServer() {
1140 #if defined(WEBRTC_WIN)
1141   WSACloseEvent(socket_ev_);
1142 #endif
1143 #if defined(WEBRTC_POSIX)
1144   signal_dispatcher_.reset();
1145 #endif
1146   delete signal_wakeup_;
1147   ASSERT(dispatchers_.empty());
1148 }
1149 
WakeUp()1150 void PhysicalSocketServer::WakeUp() {
1151   signal_wakeup_->Signal();
1152 }
1153 
CreateSocket(int type)1154 Socket* PhysicalSocketServer::CreateSocket(int type) {
1155   return CreateSocket(AF_INET, type);
1156 }
1157 
CreateSocket(int family,int type)1158 Socket* PhysicalSocketServer::CreateSocket(int family, int type) {
1159   PhysicalSocket* socket = new PhysicalSocket(this);
1160   if (socket->Create(family, type)) {
1161     return socket;
1162   } else {
1163     delete socket;
1164     return nullptr;
1165   }
1166 }
1167 
CreateAsyncSocket(int type)1168 AsyncSocket* PhysicalSocketServer::CreateAsyncSocket(int type) {
1169   return CreateAsyncSocket(AF_INET, type);
1170 }
1171 
CreateAsyncSocket(int family,int type)1172 AsyncSocket* PhysicalSocketServer::CreateAsyncSocket(int family, int type) {
1173   SocketDispatcher* dispatcher = new SocketDispatcher(this);
1174   if (dispatcher->Create(family, type)) {
1175     return dispatcher;
1176   } else {
1177     delete dispatcher;
1178     return nullptr;
1179   }
1180 }
1181 
WrapSocket(SOCKET s)1182 AsyncSocket* PhysicalSocketServer::WrapSocket(SOCKET s) {
1183   SocketDispatcher* dispatcher = new SocketDispatcher(s, this);
1184   if (dispatcher->Initialize()) {
1185     return dispatcher;
1186   } else {
1187     delete dispatcher;
1188     return nullptr;
1189   }
1190 }
1191 
Add(Dispatcher * pdispatcher)1192 void PhysicalSocketServer::Add(Dispatcher *pdispatcher) {
1193   CritScope cs(&crit_);
1194   // Prevent duplicates. This can cause dead dispatchers to stick around.
1195   DispatcherList::iterator pos = std::find(dispatchers_.begin(),
1196                                            dispatchers_.end(),
1197                                            pdispatcher);
1198   if (pos != dispatchers_.end())
1199     return;
1200   dispatchers_.push_back(pdispatcher);
1201 }
1202 
Remove(Dispatcher * pdispatcher)1203 void PhysicalSocketServer::Remove(Dispatcher *pdispatcher) {
1204   CritScope cs(&crit_);
1205   DispatcherList::iterator pos = std::find(dispatchers_.begin(),
1206                                            dispatchers_.end(),
1207                                            pdispatcher);
1208   // We silently ignore duplicate calls to Add, so we should silently ignore
1209   // the (expected) symmetric calls to Remove. Note that this may still hide
1210   // a real issue, so we at least log a warning about it.
1211   if (pos == dispatchers_.end()) {
1212     LOG(LS_WARNING) << "PhysicalSocketServer asked to remove a unknown "
1213                     << "dispatcher, potentially from a duplicate call to Add.";
1214     return;
1215   }
1216   size_t index = pos - dispatchers_.begin();
1217   dispatchers_.erase(pos);
1218   for (IteratorList::iterator it = iterators_.begin(); it != iterators_.end();
1219        ++it) {
1220     if (index < **it) {
1221       --**it;
1222     }
1223   }
1224 }
1225 
1226 #if defined(WEBRTC_POSIX)
Wait(int cmsWait,bool process_io)1227 bool PhysicalSocketServer::Wait(int cmsWait, bool process_io) {
1228   // Calculate timing information
1229 
1230   struct timeval *ptvWait = NULL;
1231   struct timeval tvWait;
1232   struct timeval tvStop;
1233   if (cmsWait != kForever) {
1234     // Calculate wait timeval
1235     tvWait.tv_sec = cmsWait / 1000;
1236     tvWait.tv_usec = (cmsWait % 1000) * 1000;
1237     ptvWait = &tvWait;
1238 
1239     // Calculate when to return in a timeval
1240     gettimeofday(&tvStop, NULL);
1241     tvStop.tv_sec += tvWait.tv_sec;
1242     tvStop.tv_usec += tvWait.tv_usec;
1243     if (tvStop.tv_usec >= 1000000) {
1244       tvStop.tv_usec -= 1000000;
1245       tvStop.tv_sec += 1;
1246     }
1247   }
1248 
1249   // Zero all fd_sets. Don't need to do this inside the loop since
1250   // select() zeros the descriptors not signaled
1251 
1252   fd_set fdsRead;
1253   FD_ZERO(&fdsRead);
1254   fd_set fdsWrite;
1255   FD_ZERO(&fdsWrite);
1256   // Explicitly unpoison these FDs on MemorySanitizer which doesn't handle the
1257   // inline assembly in FD_ZERO.
1258   // http://crbug.com/344505
1259 #ifdef MEMORY_SANITIZER
1260   __msan_unpoison(&fdsRead, sizeof(fdsRead));
1261   __msan_unpoison(&fdsWrite, sizeof(fdsWrite));
1262 #endif
1263 
1264   fWait_ = true;
1265 
1266   while (fWait_) {
1267     int fdmax = -1;
1268     {
1269       CritScope cr(&crit_);
1270       for (size_t i = 0; i < dispatchers_.size(); ++i) {
1271         // Query dispatchers for read and write wait state
1272         Dispatcher *pdispatcher = dispatchers_[i];
1273         ASSERT(pdispatcher);
1274         if (!process_io && (pdispatcher != signal_wakeup_))
1275           continue;
1276         int fd = pdispatcher->GetDescriptor();
1277         if (fd > fdmax)
1278           fdmax = fd;
1279 
1280         uint32_t ff = pdispatcher->GetRequestedEvents();
1281         if (ff & (DE_READ | DE_ACCEPT))
1282           FD_SET(fd, &fdsRead);
1283         if (ff & (DE_WRITE | DE_CONNECT))
1284           FD_SET(fd, &fdsWrite);
1285       }
1286     }
1287 
1288     // Wait then call handlers as appropriate
1289     // < 0 means error
1290     // 0 means timeout
1291     // > 0 means count of descriptors ready
1292     int n = select(fdmax + 1, &fdsRead, &fdsWrite, NULL, ptvWait);
1293 
1294     // If error, return error.
1295     if (n < 0) {
1296       if (errno != EINTR) {
1297         LOG_E(LS_ERROR, EN, errno) << "select";
1298         return false;
1299       }
1300       // Else ignore the error and keep going. If this EINTR was for one of the
1301       // signals managed by this PhysicalSocketServer, the
1302       // PosixSignalDeliveryDispatcher will be in the signaled state in the next
1303       // iteration.
1304     } else if (n == 0) {
1305       // If timeout, return success
1306       return true;
1307     } else {
1308       // We have signaled descriptors
1309       CritScope cr(&crit_);
1310       for (size_t i = 0; i < dispatchers_.size(); ++i) {
1311         Dispatcher *pdispatcher = dispatchers_[i];
1312         int fd = pdispatcher->GetDescriptor();
1313         uint32_t ff = 0;
1314         int errcode = 0;
1315 
1316         // Reap any error code, which can be signaled through reads or writes.
1317         // TODO(pthatcher): Should we set errcode if getsockopt fails?
1318         if (FD_ISSET(fd, &fdsRead) || FD_ISSET(fd, &fdsWrite)) {
1319           socklen_t len = sizeof(errcode);
1320           ::getsockopt(fd, SOL_SOCKET, SO_ERROR, &errcode, &len);
1321         }
1322 
1323         // Check readable descriptors. If we're waiting on an accept, signal
1324         // that. Otherwise we're waiting for data, check to see if we're
1325         // readable or really closed.
1326         // TODO(pthatcher): Only peek at TCP descriptors.
1327         if (FD_ISSET(fd, &fdsRead)) {
1328           FD_CLR(fd, &fdsRead);
1329           if (pdispatcher->GetRequestedEvents() & DE_ACCEPT) {
1330             ff |= DE_ACCEPT;
1331           } else if (errcode || pdispatcher->IsDescriptorClosed()) {
1332             ff |= DE_CLOSE;
1333           } else {
1334             ff |= DE_READ;
1335           }
1336         }
1337 
1338         // Check writable descriptors. If we're waiting on a connect, detect
1339         // success versus failure by the reaped error code.
1340         if (FD_ISSET(fd, &fdsWrite)) {
1341           FD_CLR(fd, &fdsWrite);
1342           if (pdispatcher->GetRequestedEvents() & DE_CONNECT) {
1343             if (!errcode) {
1344               ff |= DE_CONNECT;
1345             } else {
1346               ff |= DE_CLOSE;
1347             }
1348           } else {
1349             ff |= DE_WRITE;
1350           }
1351         }
1352 
1353         // Tell the descriptor about the event.
1354         if (ff != 0) {
1355           pdispatcher->OnPreEvent(ff);
1356           pdispatcher->OnEvent(ff, errcode);
1357         }
1358       }
1359     }
1360 
1361     // Recalc the time remaining to wait. Doing it here means it doesn't get
1362     // calced twice the first time through the loop
1363     if (ptvWait) {
1364       ptvWait->tv_sec = 0;
1365       ptvWait->tv_usec = 0;
1366       struct timeval tvT;
1367       gettimeofday(&tvT, NULL);
1368       if ((tvStop.tv_sec > tvT.tv_sec)
1369           || ((tvStop.tv_sec == tvT.tv_sec)
1370               && (tvStop.tv_usec > tvT.tv_usec))) {
1371         ptvWait->tv_sec = tvStop.tv_sec - tvT.tv_sec;
1372         ptvWait->tv_usec = tvStop.tv_usec - tvT.tv_usec;
1373         if (ptvWait->tv_usec < 0) {
1374           ASSERT(ptvWait->tv_sec > 0);
1375           ptvWait->tv_usec += 1000000;
1376           ptvWait->tv_sec -= 1;
1377         }
1378       }
1379     }
1380   }
1381 
1382   return true;
1383 }
1384 
GlobalSignalHandler(int signum)1385 static void GlobalSignalHandler(int signum) {
1386   PosixSignalHandler::Instance()->OnPosixSignalReceived(signum);
1387 }
1388 
SetPosixSignalHandler(int signum,void (* handler)(int))1389 bool PhysicalSocketServer::SetPosixSignalHandler(int signum,
1390                                                  void (*handler)(int)) {
1391   // If handler is SIG_IGN or SIG_DFL then clear our user-level handler,
1392   // otherwise set one.
1393   if (handler == SIG_IGN || handler == SIG_DFL) {
1394     if (!InstallSignal(signum, handler)) {
1395       return false;
1396     }
1397     if (signal_dispatcher_) {
1398       signal_dispatcher_->ClearHandler(signum);
1399       if (!signal_dispatcher_->HasHandlers()) {
1400         signal_dispatcher_.reset();
1401       }
1402     }
1403   } else {
1404     if (!signal_dispatcher_) {
1405       signal_dispatcher_.reset(new PosixSignalDispatcher(this));
1406     }
1407     signal_dispatcher_->SetHandler(signum, handler);
1408     if (!InstallSignal(signum, &GlobalSignalHandler)) {
1409       return false;
1410     }
1411   }
1412   return true;
1413 }
1414 
signal_dispatcher()1415 Dispatcher* PhysicalSocketServer::signal_dispatcher() {
1416   return signal_dispatcher_.get();
1417 }
1418 
InstallSignal(int signum,void (* handler)(int))1419 bool PhysicalSocketServer::InstallSignal(int signum, void (*handler)(int)) {
1420   struct sigaction act;
1421   // It doesn't really matter what we set this mask to.
1422   if (sigemptyset(&act.sa_mask) != 0) {
1423     LOG_ERR(LS_ERROR) << "Couldn't set mask";
1424     return false;
1425   }
1426   act.sa_handler = handler;
1427 #if !defined(__native_client__)
1428   // Use SA_RESTART so that our syscalls don't get EINTR, since we don't need it
1429   // and it's a nuisance. Though some syscalls still return EINTR and there's no
1430   // real standard for which ones. :(
1431   act.sa_flags = SA_RESTART;
1432 #else
1433   act.sa_flags = 0;
1434 #endif
1435   if (sigaction(signum, &act, NULL) != 0) {
1436     LOG_ERR(LS_ERROR) << "Couldn't set sigaction";
1437     return false;
1438   }
1439   return true;
1440 }
1441 #endif  // WEBRTC_POSIX
1442 
1443 #if defined(WEBRTC_WIN)
Wait(int cmsWait,bool process_io)1444 bool PhysicalSocketServer::Wait(int cmsWait, bool process_io) {
1445   int cmsTotal = cmsWait;
1446   int cmsElapsed = 0;
1447   uint32_t msStart = Time();
1448 
1449   fWait_ = true;
1450   while (fWait_) {
1451     std::vector<WSAEVENT> events;
1452     std::vector<Dispatcher *> event_owners;
1453 
1454     events.push_back(socket_ev_);
1455 
1456     {
1457       CritScope cr(&crit_);
1458       size_t i = 0;
1459       iterators_.push_back(&i);
1460       // Don't track dispatchers_.size(), because we want to pick up any new
1461       // dispatchers that were added while processing the loop.
1462       while (i < dispatchers_.size()) {
1463         Dispatcher* disp = dispatchers_[i++];
1464         if (!process_io && (disp != signal_wakeup_))
1465           continue;
1466         SOCKET s = disp->GetSocket();
1467         if (disp->CheckSignalClose()) {
1468           // We just signalled close, don't poll this socket
1469         } else if (s != INVALID_SOCKET) {
1470           WSAEventSelect(s,
1471                          events[0],
1472                          FlagsToEvents(disp->GetRequestedEvents()));
1473         } else {
1474           events.push_back(disp->GetWSAEvent());
1475           event_owners.push_back(disp);
1476         }
1477       }
1478       ASSERT(iterators_.back() == &i);
1479       iterators_.pop_back();
1480     }
1481 
1482     // Which is shorter, the delay wait or the asked wait?
1483 
1484     int cmsNext;
1485     if (cmsWait == kForever) {
1486       cmsNext = cmsWait;
1487     } else {
1488       cmsNext = std::max(0, cmsTotal - cmsElapsed);
1489     }
1490 
1491     // Wait for one of the events to signal
1492     DWORD dw = WSAWaitForMultipleEvents(static_cast<DWORD>(events.size()),
1493                                         &events[0],
1494                                         false,
1495                                         cmsNext,
1496                                         false);
1497 
1498     if (dw == WSA_WAIT_FAILED) {
1499       // Failed?
1500       // TODO(pthatcher): need a better strategy than this!
1501       WSAGetLastError();
1502       ASSERT(false);
1503       return false;
1504     } else if (dw == WSA_WAIT_TIMEOUT) {
1505       // Timeout?
1506       return true;
1507     } else {
1508       // Figure out which one it is and call it
1509       CritScope cr(&crit_);
1510       int index = dw - WSA_WAIT_EVENT_0;
1511       if (index > 0) {
1512         --index; // The first event is the socket event
1513         event_owners[index]->OnPreEvent(0);
1514         event_owners[index]->OnEvent(0, 0);
1515       } else if (process_io) {
1516         size_t i = 0, end = dispatchers_.size();
1517         iterators_.push_back(&i);
1518         iterators_.push_back(&end);  // Don't iterate over new dispatchers.
1519         while (i < end) {
1520           Dispatcher* disp = dispatchers_[i++];
1521           SOCKET s = disp->GetSocket();
1522           if (s == INVALID_SOCKET)
1523             continue;
1524 
1525           WSANETWORKEVENTS wsaEvents;
1526           int err = WSAEnumNetworkEvents(s, events[0], &wsaEvents);
1527           if (err == 0) {
1528 
1529 #if LOGGING
1530             {
1531               if ((wsaEvents.lNetworkEvents & FD_READ) &&
1532                   wsaEvents.iErrorCode[FD_READ_BIT] != 0) {
1533                 LOG(WARNING) << "PhysicalSocketServer got FD_READ_BIT error "
1534                              << wsaEvents.iErrorCode[FD_READ_BIT];
1535               }
1536               if ((wsaEvents.lNetworkEvents & FD_WRITE) &&
1537                   wsaEvents.iErrorCode[FD_WRITE_BIT] != 0) {
1538                 LOG(WARNING) << "PhysicalSocketServer got FD_WRITE_BIT error "
1539                              << wsaEvents.iErrorCode[FD_WRITE_BIT];
1540               }
1541               if ((wsaEvents.lNetworkEvents & FD_CONNECT) &&
1542                   wsaEvents.iErrorCode[FD_CONNECT_BIT] != 0) {
1543                 LOG(WARNING) << "PhysicalSocketServer got FD_CONNECT_BIT error "
1544                              << wsaEvents.iErrorCode[FD_CONNECT_BIT];
1545               }
1546               if ((wsaEvents.lNetworkEvents & FD_ACCEPT) &&
1547                   wsaEvents.iErrorCode[FD_ACCEPT_BIT] != 0) {
1548                 LOG(WARNING) << "PhysicalSocketServer got FD_ACCEPT_BIT error "
1549                              << wsaEvents.iErrorCode[FD_ACCEPT_BIT];
1550               }
1551               if ((wsaEvents.lNetworkEvents & FD_CLOSE) &&
1552                   wsaEvents.iErrorCode[FD_CLOSE_BIT] != 0) {
1553                 LOG(WARNING) << "PhysicalSocketServer got FD_CLOSE_BIT error "
1554                              << wsaEvents.iErrorCode[FD_CLOSE_BIT];
1555               }
1556             }
1557 #endif
1558             uint32_t ff = 0;
1559             int errcode = 0;
1560             if (wsaEvents.lNetworkEvents & FD_READ)
1561               ff |= DE_READ;
1562             if (wsaEvents.lNetworkEvents & FD_WRITE)
1563               ff |= DE_WRITE;
1564             if (wsaEvents.lNetworkEvents & FD_CONNECT) {
1565               if (wsaEvents.iErrorCode[FD_CONNECT_BIT] == 0) {
1566                 ff |= DE_CONNECT;
1567               } else {
1568                 ff |= DE_CLOSE;
1569                 errcode = wsaEvents.iErrorCode[FD_CONNECT_BIT];
1570               }
1571             }
1572             if (wsaEvents.lNetworkEvents & FD_ACCEPT)
1573               ff |= DE_ACCEPT;
1574             if (wsaEvents.lNetworkEvents & FD_CLOSE) {
1575               ff |= DE_CLOSE;
1576               errcode = wsaEvents.iErrorCode[FD_CLOSE_BIT];
1577             }
1578             if (ff != 0) {
1579               disp->OnPreEvent(ff);
1580               disp->OnEvent(ff, errcode);
1581             }
1582           }
1583         }
1584         ASSERT(iterators_.back() == &end);
1585         iterators_.pop_back();
1586         ASSERT(iterators_.back() == &i);
1587         iterators_.pop_back();
1588       }
1589 
1590       // Reset the network event until new activity occurs
1591       WSAResetEvent(socket_ev_);
1592     }
1593 
1594     // Break?
1595     if (!fWait_)
1596       break;
1597     cmsElapsed = TimeSince(msStart);
1598     if ((cmsWait != kForever) && (cmsElapsed >= cmsWait)) {
1599        break;
1600     }
1601   }
1602 
1603   // Done
1604   return true;
1605 }
1606 #endif  // WEBRTC_WIN
1607 
1608 }  // namespace rtc
1609