1 //===- PassManager.h - Pass management infrastructure -----------*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 /// \file
10 ///
11 /// This header defines various interfaces for pass management in LLVM. There
12 /// is no "pass" interface in LLVM per se. Instead, an instance of any class
13 /// which supports a method to 'run' it over a unit of IR can be used as
14 /// a pass. A pass manager is generally a tool to collect a sequence of passes
15 /// which run over a particular IR construct, and run each of them in sequence
16 /// over each such construct in the containing IR construct. As there is no
17 /// containing IR construct for a Module, a manager for passes over modules
18 /// forms the base case which runs its managed passes in sequence over the
19 /// single module provided.
20 ///
21 /// The core IR library provides managers for running passes over
22 /// modules and functions.
23 ///
24 /// * FunctionPassManager can run over a Module, runs each pass over
25 ///   a Function.
26 /// * ModulePassManager must be directly run, runs each pass over the Module.
27 ///
28 /// Note that the implementations of the pass managers use concept-based
29 /// polymorphism as outlined in the "Value Semantics and Concept-based
30 /// Polymorphism" talk (or its abbreviated sibling "Inheritance Is The Base
31 /// Class of Evil") by Sean Parent:
32 /// * http://github.com/sean-parent/sean-parent.github.com/wiki/Papers-and-Presentations
33 /// * http://www.youtube.com/watch?v=_BpMYeUFXv8
34 /// * http://channel9.msdn.com/Events/GoingNative/2013/Inheritance-Is-The-Base-Class-of-Evil
35 ///
36 //===----------------------------------------------------------------------===//
37 
38 #ifndef LLVM_IR_PASSMANAGER_H
39 #define LLVM_IR_PASSMANAGER_H
40 
41 #include "llvm/ADT/DenseMap.h"
42 #include "llvm/ADT/STLExtras.h"
43 #include "llvm/ADT/SmallPtrSet.h"
44 #include "llvm/IR/Function.h"
45 #include "llvm/IR/Module.h"
46 #include "llvm/IR/PassManagerInternal.h"
47 #include "llvm/Support/CommandLine.h"
48 #include "llvm/Support/Debug.h"
49 #include "llvm/Support/raw_ostream.h"
50 #include "llvm/Support/type_traits.h"
51 #include <list>
52 #include <memory>
53 #include <vector>
54 
55 namespace llvm {
56 
57 class Module;
58 class Function;
59 
60 /// \brief An abstract set of preserved analyses following a transformation pass
61 /// run.
62 ///
63 /// When a transformation pass is run, it can return a set of analyses whose
64 /// results were preserved by that transformation. The default set is "none",
65 /// and preserving analyses must be done explicitly.
66 ///
67 /// There is also an explicit all state which can be used (for example) when
68 /// the IR is not mutated at all.
69 class PreservedAnalyses {
70 public:
71   // We have to explicitly define all the special member functions because MSVC
72   // refuses to generate them.
PreservedAnalyses()73   PreservedAnalyses() {}
PreservedAnalyses(const PreservedAnalyses & Arg)74   PreservedAnalyses(const PreservedAnalyses &Arg)
75       : PreservedPassIDs(Arg.PreservedPassIDs) {}
PreservedAnalyses(PreservedAnalyses && Arg)76   PreservedAnalyses(PreservedAnalyses &&Arg)
77       : PreservedPassIDs(std::move(Arg.PreservedPassIDs)) {}
swap(PreservedAnalyses & LHS,PreservedAnalyses & RHS)78   friend void swap(PreservedAnalyses &LHS, PreservedAnalyses &RHS) {
79     using std::swap;
80     swap(LHS.PreservedPassIDs, RHS.PreservedPassIDs);
81   }
82   PreservedAnalyses &operator=(PreservedAnalyses RHS) {
83     swap(*this, RHS);
84     return *this;
85   }
86 
87   /// \brief Convenience factory function for the empty preserved set.
none()88   static PreservedAnalyses none() { return PreservedAnalyses(); }
89 
90   /// \brief Construct a special preserved set that preserves all passes.
all()91   static PreservedAnalyses all() {
92     PreservedAnalyses PA;
93     PA.PreservedPassIDs.insert((void *)AllPassesID);
94     return PA;
95   }
96 
97   /// \brief Mark a particular pass as preserved, adding it to the set.
preserve()98   template <typename PassT> void preserve() { preserve(PassT::ID()); }
99 
100   /// \brief Mark an abstract PassID as preserved, adding it to the set.
preserve(void * PassID)101   void preserve(void *PassID) {
102     if (!areAllPreserved())
103       PreservedPassIDs.insert(PassID);
104   }
105 
106   /// \brief Intersect this set with another in place.
107   ///
108   /// This is a mutating operation on this preserved set, removing all
109   /// preserved passes which are not also preserved in the argument.
intersect(const PreservedAnalyses & Arg)110   void intersect(const PreservedAnalyses &Arg) {
111     if (Arg.areAllPreserved())
112       return;
113     if (areAllPreserved()) {
114       PreservedPassIDs = Arg.PreservedPassIDs;
115       return;
116     }
117     for (void *P : PreservedPassIDs)
118       if (!Arg.PreservedPassIDs.count(P))
119         PreservedPassIDs.erase(P);
120   }
121 
122   /// \brief Intersect this set with a temporary other set in place.
123   ///
124   /// This is a mutating operation on this preserved set, removing all
125   /// preserved passes which are not also preserved in the argument.
intersect(PreservedAnalyses && Arg)126   void intersect(PreservedAnalyses &&Arg) {
127     if (Arg.areAllPreserved())
128       return;
129     if (areAllPreserved()) {
130       PreservedPassIDs = std::move(Arg.PreservedPassIDs);
131       return;
132     }
133     for (void *P : PreservedPassIDs)
134       if (!Arg.PreservedPassIDs.count(P))
135         PreservedPassIDs.erase(P);
136   }
137 
138   /// \brief Query whether a pass is marked as preserved by this set.
preserved()139   template <typename PassT> bool preserved() const {
140     return preserved(PassT::ID());
141   }
142 
143   /// \brief Query whether an abstract pass ID is marked as preserved by this
144   /// set.
preserved(void * PassID)145   bool preserved(void *PassID) const {
146     return PreservedPassIDs.count((void *)AllPassesID) ||
147            PreservedPassIDs.count(PassID);
148   }
149 
150   /// \brief Test whether all passes are preserved.
151   ///
152   /// This is used primarily to optimize for the case of no changes which will
153   /// common in many scenarios.
areAllPreserved()154   bool areAllPreserved() const {
155     return PreservedPassIDs.count((void *)AllPassesID);
156   }
157 
158 private:
159   // Note that this must not be -1 or -2 as those are already used by the
160   // SmallPtrSet.
161   static const uintptr_t AllPassesID = (intptr_t)(-3);
162 
163   SmallPtrSet<void *, 2> PreservedPassIDs;
164 };
165 
166 // Forward declare the analysis manager template.
167 template <typename IRUnitT> class AnalysisManager;
168 
169 /// \brief Manages a sequence of passes over units of IR.
170 ///
171 /// A pass manager contains a sequence of passes to run over units of IR. It is
172 /// itself a valid pass over that unit of IR, and when over some given IR will
173 /// run each pass in sequence. This is the primary and most basic building
174 /// block of a pass pipeline.
175 ///
176 /// If it is run with an \c AnalysisManager<IRUnitT> argument, it will propagate
177 /// that analysis manager to each pass it runs, as well as calling the analysis
178 /// manager's invalidation routine with the PreservedAnalyses of each pass it
179 /// runs.
180 template <typename IRUnitT> class PassManager {
181 public:
182   /// \brief Construct a pass manager.
183   ///
184   /// It can be passed a flag to get debug logging as the passes are run.
DebugLogging(DebugLogging)185   PassManager(bool DebugLogging = false) : DebugLogging(DebugLogging) {}
186   // We have to explicitly define all the special member functions because MSVC
187   // refuses to generate them.
PassManager(PassManager && Arg)188   PassManager(PassManager &&Arg)
189       : Passes(std::move(Arg.Passes)),
190         DebugLogging(std::move(Arg.DebugLogging)) {}
191   PassManager &operator=(PassManager &&RHS) {
192     Passes = std::move(RHS.Passes);
193     DebugLogging = std::move(RHS.DebugLogging);
194     return *this;
195   }
196 
197   /// \brief Run all of the passes in this manager over the IR.
198   PreservedAnalyses run(IRUnitT &IR, AnalysisManager<IRUnitT> *AM = nullptr) {
199     PreservedAnalyses PA = PreservedAnalyses::all();
200 
201     if (DebugLogging)
202       dbgs() << "Starting pass manager run.\n";
203 
204     for (unsigned Idx = 0, Size = Passes.size(); Idx != Size; ++Idx) {
205       if (DebugLogging)
206         dbgs() << "Running pass: " << Passes[Idx]->name() << " on "
207                << IR.getName() << "\n";
208 
209       PreservedAnalyses PassPA = Passes[Idx]->run(IR, AM);
210 
211       // If we have an active analysis manager at this level we want to ensure
212       // we update it as each pass runs and potentially invalidates analyses.
213       // We also update the preserved set of analyses based on what analyses we
214       // have already handled the invalidation for here and don't need to
215       // invalidate when finished.
216       if (AM)
217         PassPA = AM->invalidate(IR, std::move(PassPA));
218 
219       // Finally, we intersect the final preserved analyses to compute the
220       // aggregate preserved set for this pass manager.
221       PA.intersect(std::move(PassPA));
222 
223       // FIXME: Historically, the pass managers all called the LLVM context's
224       // yield function here. We don't have a generic way to acquire the
225       // context and it isn't yet clear what the right pattern is for yielding
226       // in the new pass manager so it is currently omitted.
227       //IR.getContext().yield();
228     }
229 
230     if (DebugLogging)
231       dbgs() << "Finished pass manager run.\n";
232 
233     return PA;
234   }
235 
addPass(PassT Pass)236   template <typename PassT> void addPass(PassT Pass) {
237     typedef detail::PassModel<IRUnitT, PassT> PassModelT;
238     Passes.emplace_back(new PassModelT(std::move(Pass)));
239   }
240 
name()241   static StringRef name() { return "PassManager"; }
242 
243 private:
244   typedef detail::PassConcept<IRUnitT> PassConceptT;
245 
246   PassManager(const PassManager &) = delete;
247   PassManager &operator=(const PassManager &) = delete;
248 
249   std::vector<std::unique_ptr<PassConceptT>> Passes;
250 
251   /// \brief Flag indicating whether we should do debug logging.
252   bool DebugLogging;
253 };
254 
255 /// \brief Convenience typedef for a pass manager over modules.
256 typedef PassManager<Module> ModulePassManager;
257 
258 /// \brief Convenience typedef for a pass manager over functions.
259 typedef PassManager<Function> FunctionPassManager;
260 
261 namespace detail {
262 
263 /// \brief A CRTP base used to implement analysis managers.
264 ///
265 /// This class template serves as the boiler plate of an analysis manager. Any
266 /// analysis manager can be implemented on top of this base class. Any
267 /// implementation will be required to provide specific hooks:
268 ///
269 /// - getResultImpl
270 /// - getCachedResultImpl
271 /// - invalidateImpl
272 ///
273 /// The details of the call pattern are within.
274 ///
275 /// Note that there is also a generic analysis manager template which implements
276 /// the above required functions along with common datastructures used for
277 /// managing analyses. This base class is factored so that if you need to
278 /// customize the handling of a specific IR unit, you can do so without
279 /// replicating *all* of the boilerplate.
280 template <typename DerivedT, typename IRUnitT> class AnalysisManagerBase {
derived_this()281   DerivedT *derived_this() { return static_cast<DerivedT *>(this); }
derived_this()282   const DerivedT *derived_this() const {
283     return static_cast<const DerivedT *>(this);
284   }
285 
286   AnalysisManagerBase(const AnalysisManagerBase &) = delete;
287   AnalysisManagerBase &
288   operator=(const AnalysisManagerBase &) = delete;
289 
290 protected:
291   typedef detail::AnalysisResultConcept<IRUnitT> ResultConceptT;
292   typedef detail::AnalysisPassConcept<IRUnitT> PassConceptT;
293 
294   // FIXME: Provide template aliases for the models when we're using C++11 in
295   // a mode supporting them.
296 
297   // We have to explicitly define all the special member functions because MSVC
298   // refuses to generate them.
AnalysisManagerBase()299   AnalysisManagerBase() {}
AnalysisManagerBase(AnalysisManagerBase && Arg)300   AnalysisManagerBase(AnalysisManagerBase &&Arg)
301       : AnalysisPasses(std::move(Arg.AnalysisPasses)) {}
302   AnalysisManagerBase &operator=(AnalysisManagerBase &&RHS) {
303     AnalysisPasses = std::move(RHS.AnalysisPasses);
304     return *this;
305   }
306 
307 public:
308   /// \brief Get the result of an analysis pass for this module.
309   ///
310   /// If there is not a valid cached result in the manager already, this will
311   /// re-run the analysis to produce a valid result.
getResult(IRUnitT & IR)312   template <typename PassT> typename PassT::Result &getResult(IRUnitT &IR) {
313     assert(AnalysisPasses.count(PassT::ID()) &&
314            "This analysis pass was not registered prior to being queried");
315 
316     ResultConceptT &ResultConcept =
317         derived_this()->getResultImpl(PassT::ID(), IR);
318     typedef detail::AnalysisResultModel<IRUnitT, PassT, typename PassT::Result>
319         ResultModelT;
320     return static_cast<ResultModelT &>(ResultConcept).Result;
321   }
322 
323   /// \brief Get the cached result of an analysis pass for this module.
324   ///
325   /// This method never runs the analysis.
326   ///
327   /// \returns null if there is no cached result.
328   template <typename PassT>
getCachedResult(IRUnitT & IR)329   typename PassT::Result *getCachedResult(IRUnitT &IR) const {
330     assert(AnalysisPasses.count(PassT::ID()) &&
331            "This analysis pass was not registered prior to being queried");
332 
333     ResultConceptT *ResultConcept =
334         derived_this()->getCachedResultImpl(PassT::ID(), IR);
335     if (!ResultConcept)
336       return nullptr;
337 
338     typedef detail::AnalysisResultModel<IRUnitT, PassT, typename PassT::Result>
339         ResultModelT;
340     return &static_cast<ResultModelT *>(ResultConcept)->Result;
341   }
342 
343   /// \brief Register an analysis pass with the manager.
344   ///
345   /// This provides an initialized and set-up analysis pass to the analysis
346   /// manager. Whomever is setting up analysis passes must use this to populate
347   /// the manager with all of the analysis passes available.
registerPass(PassT Pass)348   template <typename PassT> void registerPass(PassT Pass) {
349     assert(!AnalysisPasses.count(PassT::ID()) &&
350            "Registered the same analysis pass twice!");
351     typedef detail::AnalysisPassModel<IRUnitT, PassT> PassModelT;
352     AnalysisPasses[PassT::ID()].reset(new PassModelT(std::move(Pass)));
353   }
354 
355   /// \brief Invalidate a specific analysis pass for an IR module.
356   ///
357   /// Note that the analysis result can disregard invalidation.
invalidate(IRUnitT & IR)358   template <typename PassT> void invalidate(IRUnitT &IR) {
359     assert(AnalysisPasses.count(PassT::ID()) &&
360            "This analysis pass was not registered prior to being invalidated");
361     derived_this()->invalidateImpl(PassT::ID(), IR);
362   }
363 
364   /// \brief Invalidate analyses cached for an IR unit.
365   ///
366   /// Walk through all of the analyses pertaining to this unit of IR and
367   /// invalidate them unless they are preserved by the PreservedAnalyses set.
368   /// We accept the PreservedAnalyses set by value and update it with each
369   /// analyis pass which has been successfully invalidated and thus can be
370   /// preserved going forward. The updated set is returned.
invalidate(IRUnitT & IR,PreservedAnalyses PA)371   PreservedAnalyses invalidate(IRUnitT &IR, PreservedAnalyses PA) {
372     return derived_this()->invalidateImpl(IR, std::move(PA));
373   }
374 
375 protected:
376   /// \brief Lookup a registered analysis pass.
lookupPass(void * PassID)377   PassConceptT &lookupPass(void *PassID) {
378     typename AnalysisPassMapT::iterator PI = AnalysisPasses.find(PassID);
379     assert(PI != AnalysisPasses.end() &&
380            "Analysis passes must be registered prior to being queried!");
381     return *PI->second;
382   }
383 
384   /// \brief Lookup a registered analysis pass.
lookupPass(void * PassID)385   const PassConceptT &lookupPass(void *PassID) const {
386     typename AnalysisPassMapT::const_iterator PI = AnalysisPasses.find(PassID);
387     assert(PI != AnalysisPasses.end() &&
388            "Analysis passes must be registered prior to being queried!");
389     return *PI->second;
390   }
391 
392 private:
393   /// \brief Map type from module analysis pass ID to pass concept pointer.
394   typedef DenseMap<void *, std::unique_ptr<PassConceptT>> AnalysisPassMapT;
395 
396   /// \brief Collection of module analysis passes, indexed by ID.
397   AnalysisPassMapT AnalysisPasses;
398 };
399 
400 } // End namespace detail
401 
402 /// \brief A generic analysis pass manager with lazy running and caching of
403 /// results.
404 ///
405 /// This analysis manager can be used for any IR unit where the address of the
406 /// IR unit sufficies as its identity. It manages the cache for a unit of IR via
407 /// the address of each unit of IR cached.
408 template <typename IRUnitT>
409 class AnalysisManager
410     : public detail::AnalysisManagerBase<AnalysisManager<IRUnitT>, IRUnitT> {
411   friend class detail::AnalysisManagerBase<AnalysisManager<IRUnitT>, IRUnitT>;
412   typedef detail::AnalysisManagerBase<AnalysisManager<IRUnitT>, IRUnitT> BaseT;
413   typedef typename BaseT::ResultConceptT ResultConceptT;
414   typedef typename BaseT::PassConceptT PassConceptT;
415 
416 public:
417   // Most public APIs are inherited from the CRTP base class.
418 
419   /// \brief Construct an empty analysis manager.
420   ///
421   /// A flag can be passed to indicate that the manager should perform debug
422   /// logging.
DebugLogging(DebugLogging)423   AnalysisManager(bool DebugLogging = false) : DebugLogging(DebugLogging) {}
424 
425   // We have to explicitly define all the special member functions because MSVC
426   // refuses to generate them.
AnalysisManager(AnalysisManager && Arg)427   AnalysisManager(AnalysisManager &&Arg)
428       : BaseT(std::move(static_cast<BaseT &>(Arg))),
429         AnalysisResults(std::move(Arg.AnalysisResults)),
430         DebugLogging(std::move(Arg.DebugLogging)) {}
431   AnalysisManager &operator=(AnalysisManager &&RHS) {
432     BaseT::operator=(std::move(static_cast<BaseT &>(RHS)));
433     AnalysisResults = std::move(RHS.AnalysisResults);
434     DebugLogging = std::move(RHS.DebugLogging);
435     return *this;
436   }
437 
438   /// \brief Returns true if the analysis manager has an empty results cache.
empty()439   bool empty() const {
440     assert(AnalysisResults.empty() == AnalysisResultLists.empty() &&
441            "The storage and index of analysis results disagree on how many "
442            "there are!");
443     return AnalysisResults.empty();
444   }
445 
446   /// \brief Clear the analysis result cache.
447   ///
448   /// This routine allows cleaning up when the set of IR units itself has
449   /// potentially changed, and thus we can't even look up a a result and
450   /// invalidate it directly. Notably, this does *not* call invalidate functions
451   /// as there is nothing to be done for them.
clear()452   void clear() {
453     AnalysisResults.clear();
454     AnalysisResultLists.clear();
455   }
456 
457 private:
458   AnalysisManager(const AnalysisManager &) = delete;
459   AnalysisManager &operator=(const AnalysisManager &) = delete;
460 
461   /// \brief Get an analysis result, running the pass if necessary.
getResultImpl(void * PassID,IRUnitT & IR)462   ResultConceptT &getResultImpl(void *PassID, IRUnitT &IR) {
463     typename AnalysisResultMapT::iterator RI;
464     bool Inserted;
465     std::tie(RI, Inserted) = AnalysisResults.insert(std::make_pair(
466         std::make_pair(PassID, &IR), typename AnalysisResultListT::iterator()));
467 
468     // If we don't have a cached result for this function, look up the pass and
469     // run it to produce a result, which we then add to the cache.
470     if (Inserted) {
471       auto &P = this->lookupPass(PassID);
472       if (DebugLogging)
473         dbgs() << "Running analysis: " << P.name() << "\n";
474       AnalysisResultListT &ResultList = AnalysisResultLists[&IR];
475       ResultList.emplace_back(PassID, P.run(IR, this));
476 
477       // P.run may have inserted elements into AnalysisResults and invalidated
478       // RI.
479       RI = AnalysisResults.find(std::make_pair(PassID, &IR));
480       assert(RI != AnalysisResults.end() && "we just inserted it!");
481 
482       RI->second = std::prev(ResultList.end());
483     }
484 
485     return *RI->second->second;
486   }
487 
488   /// \brief Get a cached analysis result or return null.
getCachedResultImpl(void * PassID,IRUnitT & IR)489   ResultConceptT *getCachedResultImpl(void *PassID, IRUnitT &IR) const {
490     typename AnalysisResultMapT::const_iterator RI =
491         AnalysisResults.find(std::make_pair(PassID, &IR));
492     return RI == AnalysisResults.end() ? nullptr : &*RI->second->second;
493   }
494 
495   /// \brief Invalidate a function pass result.
invalidateImpl(void * PassID,IRUnitT & IR)496   void invalidateImpl(void *PassID, IRUnitT &IR) {
497     typename AnalysisResultMapT::iterator RI =
498         AnalysisResults.find(std::make_pair(PassID, &IR));
499     if (RI == AnalysisResults.end())
500       return;
501 
502     if (DebugLogging)
503       dbgs() << "Invalidating analysis: " << this->lookupPass(PassID).name()
504              << "\n";
505     AnalysisResultLists[&IR].erase(RI->second);
506     AnalysisResults.erase(RI);
507   }
508 
509   /// \brief Invalidate the results for a function..
invalidateImpl(IRUnitT & IR,PreservedAnalyses PA)510   PreservedAnalyses invalidateImpl(IRUnitT &IR, PreservedAnalyses PA) {
511     // Short circuit for a common case of all analyses being preserved.
512     if (PA.areAllPreserved())
513       return PA;
514 
515     if (DebugLogging)
516       dbgs() << "Invalidating all non-preserved analyses for: "
517              << IR.getName() << "\n";
518 
519     // Clear all the invalidated results associated specifically with this
520     // function.
521     SmallVector<void *, 8> InvalidatedPassIDs;
522     AnalysisResultListT &ResultsList = AnalysisResultLists[&IR];
523     for (typename AnalysisResultListT::iterator I = ResultsList.begin(),
524                                                 E = ResultsList.end();
525          I != E;) {
526       void *PassID = I->first;
527 
528       // Pass the invalidation down to the pass itself to see if it thinks it is
529       // necessary. The analysis pass can return false if no action on the part
530       // of the analysis manager is required for this invalidation event.
531       if (I->second->invalidate(IR, PA)) {
532         if (DebugLogging)
533           dbgs() << "Invalidating analysis: " << this->lookupPass(PassID).name()
534                  << "\n";
535 
536         InvalidatedPassIDs.push_back(I->first);
537         I = ResultsList.erase(I);
538       } else {
539         ++I;
540       }
541 
542       // After handling each pass, we mark it as preserved. Once we've
543       // invalidated any stale results, the rest of the system is allowed to
544       // start preserving this analysis again.
545       PA.preserve(PassID);
546     }
547     while (!InvalidatedPassIDs.empty())
548       AnalysisResults.erase(
549           std::make_pair(InvalidatedPassIDs.pop_back_val(), &IR));
550     if (ResultsList.empty())
551       AnalysisResultLists.erase(&IR);
552 
553     return PA;
554   }
555 
556   /// \brief List of function analysis pass IDs and associated concept pointers.
557   ///
558   /// Requires iterators to be valid across appending new entries and arbitrary
559   /// erases. Provides both the pass ID and concept pointer such that it is
560   /// half of a bijection and provides storage for the actual result concept.
561   typedef std::list<std::pair<
562       void *, std::unique_ptr<detail::AnalysisResultConcept<IRUnitT>>>>
563       AnalysisResultListT;
564 
565   /// \brief Map type from function pointer to our custom list type.
566   typedef DenseMap<IRUnitT *, AnalysisResultListT> AnalysisResultListMapT;
567 
568   /// \brief Map from function to a list of function analysis results.
569   ///
570   /// Provides linear time removal of all analysis results for a function and
571   /// the ultimate storage for a particular cached analysis result.
572   AnalysisResultListMapT AnalysisResultLists;
573 
574   /// \brief Map type from a pair of analysis ID and function pointer to an
575   /// iterator into a particular result list.
576   typedef DenseMap<std::pair<void *, IRUnitT *>,
577                    typename AnalysisResultListT::iterator> AnalysisResultMapT;
578 
579   /// \brief Map from an analysis ID and function to a particular cached
580   /// analysis result.
581   AnalysisResultMapT AnalysisResults;
582 
583   /// \brief A flag indicating whether debug logging is enabled.
584   bool DebugLogging;
585 };
586 
587 /// \brief Convenience typedef for the Module analysis manager.
588 typedef AnalysisManager<Module> ModuleAnalysisManager;
589 
590 /// \brief Convenience typedef for the Function analysis manager.
591 typedef AnalysisManager<Function> FunctionAnalysisManager;
592 
593 /// \brief A module analysis which acts as a proxy for a function analysis
594 /// manager.
595 ///
596 /// This primarily proxies invalidation information from the module analysis
597 /// manager and module pass manager to a function analysis manager. You should
598 /// never use a function analysis manager from within (transitively) a module
599 /// pass manager unless your parent module pass has received a proxy result
600 /// object for it.
601 class FunctionAnalysisManagerModuleProxy {
602 public:
603   class Result;
604 
ID()605   static void *ID() { return (void *)&PassID; }
606 
name()607   static StringRef name() { return "FunctionAnalysisManagerModuleProxy"; }
608 
FunctionAnalysisManagerModuleProxy(FunctionAnalysisManager & FAM)609   explicit FunctionAnalysisManagerModuleProxy(FunctionAnalysisManager &FAM)
610       : FAM(&FAM) {}
611   // We have to explicitly define all the special member functions because MSVC
612   // refuses to generate them.
FunctionAnalysisManagerModuleProxy(const FunctionAnalysisManagerModuleProxy & Arg)613   FunctionAnalysisManagerModuleProxy(
614       const FunctionAnalysisManagerModuleProxy &Arg)
615       : FAM(Arg.FAM) {}
FunctionAnalysisManagerModuleProxy(FunctionAnalysisManagerModuleProxy && Arg)616   FunctionAnalysisManagerModuleProxy(FunctionAnalysisManagerModuleProxy &&Arg)
617       : FAM(std::move(Arg.FAM)) {}
618   FunctionAnalysisManagerModuleProxy &
619   operator=(FunctionAnalysisManagerModuleProxy RHS) {
620     std::swap(FAM, RHS.FAM);
621     return *this;
622   }
623 
624   /// \brief Run the analysis pass and create our proxy result object.
625   ///
626   /// This doesn't do any interesting work, it is primarily used to insert our
627   /// proxy result object into the module analysis cache so that we can proxy
628   /// invalidation to the function analysis manager.
629   ///
630   /// In debug builds, it will also assert that the analysis manager is empty
631   /// as no queries should arrive at the function analysis manager prior to
632   /// this analysis being requested.
633   Result run(Module &M);
634 
635 private:
636   static char PassID;
637 
638   FunctionAnalysisManager *FAM;
639 };
640 
641 /// \brief The result proxy object for the
642 /// \c FunctionAnalysisManagerModuleProxy.
643 ///
644 /// See its documentation for more information.
645 class FunctionAnalysisManagerModuleProxy::Result {
646 public:
Result(FunctionAnalysisManager & FAM)647   explicit Result(FunctionAnalysisManager &FAM) : FAM(&FAM) {}
648   // We have to explicitly define all the special member functions because MSVC
649   // refuses to generate them.
Result(const Result & Arg)650   Result(const Result &Arg) : FAM(Arg.FAM) {}
Result(Result && Arg)651   Result(Result &&Arg) : FAM(std::move(Arg.FAM)) {}
652   Result &operator=(Result RHS) {
653     std::swap(FAM, RHS.FAM);
654     return *this;
655   }
656   ~Result();
657 
658   /// \brief Accessor for the \c FunctionAnalysisManager.
getManager()659   FunctionAnalysisManager &getManager() { return *FAM; }
660 
661   /// \brief Handler for invalidation of the module.
662   ///
663   /// If this analysis itself is preserved, then we assume that the set of \c
664   /// Function objects in the \c Module hasn't changed and thus we don't need
665   /// to invalidate *all* cached data associated with a \c Function* in the \c
666   /// FunctionAnalysisManager.
667   ///
668   /// Regardless of whether this analysis is marked as preserved, all of the
669   /// analyses in the \c FunctionAnalysisManager are potentially invalidated
670   /// based on the set of preserved analyses.
671   bool invalidate(Module &M, const PreservedAnalyses &PA);
672 
673 private:
674   FunctionAnalysisManager *FAM;
675 };
676 
677 /// \brief A function analysis which acts as a proxy for a module analysis
678 /// manager.
679 ///
680 /// This primarily provides an accessor to a parent module analysis manager to
681 /// function passes. Only the const interface of the module analysis manager is
682 /// provided to indicate that once inside of a function analysis pass you
683 /// cannot request a module analysis to actually run. Instead, the user must
684 /// rely on the \c getCachedResult API.
685 ///
686 /// This proxy *doesn't* manage the invalidation in any way. That is handled by
687 /// the recursive return path of each layer of the pass manager and the
688 /// returned PreservedAnalysis set.
689 class ModuleAnalysisManagerFunctionProxy {
690 public:
691   /// \brief Result proxy object for \c ModuleAnalysisManagerFunctionProxy.
692   class Result {
693   public:
Result(const ModuleAnalysisManager & MAM)694     explicit Result(const ModuleAnalysisManager &MAM) : MAM(&MAM) {}
695     // We have to explicitly define all the special member functions because
696     // MSVC refuses to generate them.
Result(const Result & Arg)697     Result(const Result &Arg) : MAM(Arg.MAM) {}
Result(Result && Arg)698     Result(Result &&Arg) : MAM(std::move(Arg.MAM)) {}
699     Result &operator=(Result RHS) {
700       std::swap(MAM, RHS.MAM);
701       return *this;
702     }
703 
getManager()704     const ModuleAnalysisManager &getManager() const { return *MAM; }
705 
706     /// \brief Handle invalidation by ignoring it, this pass is immutable.
invalidate(Function &)707     bool invalidate(Function &) { return false; }
708 
709   private:
710     const ModuleAnalysisManager *MAM;
711   };
712 
ID()713   static void *ID() { return (void *)&PassID; }
714 
name()715   static StringRef name() { return "ModuleAnalysisManagerFunctionProxy"; }
716 
ModuleAnalysisManagerFunctionProxy(const ModuleAnalysisManager & MAM)717   ModuleAnalysisManagerFunctionProxy(const ModuleAnalysisManager &MAM)
718       : MAM(&MAM) {}
719   // We have to explicitly define all the special member functions because MSVC
720   // refuses to generate them.
ModuleAnalysisManagerFunctionProxy(const ModuleAnalysisManagerFunctionProxy & Arg)721   ModuleAnalysisManagerFunctionProxy(
722       const ModuleAnalysisManagerFunctionProxy &Arg)
723       : MAM(Arg.MAM) {}
ModuleAnalysisManagerFunctionProxy(ModuleAnalysisManagerFunctionProxy && Arg)724   ModuleAnalysisManagerFunctionProxy(ModuleAnalysisManagerFunctionProxy &&Arg)
725       : MAM(std::move(Arg.MAM)) {}
726   ModuleAnalysisManagerFunctionProxy &
727   operator=(ModuleAnalysisManagerFunctionProxy RHS) {
728     std::swap(MAM, RHS.MAM);
729     return *this;
730   }
731 
732   /// \brief Run the analysis pass and create our proxy result object.
733   /// Nothing to see here, it just forwards the \c MAM reference into the
734   /// result.
run(Function &)735   Result run(Function &) { return Result(*MAM); }
736 
737 private:
738   static char PassID;
739 
740   const ModuleAnalysisManager *MAM;
741 };
742 
743 /// \brief Trivial adaptor that maps from a module to its functions.
744 ///
745 /// Designed to allow composition of a FunctionPass(Manager) and
746 /// a ModulePassManager. Note that if this pass is constructed with a pointer
747 /// to a \c ModuleAnalysisManager it will run the
748 /// \c FunctionAnalysisManagerModuleProxy analysis prior to running the function
749 /// pass over the module to enable a \c FunctionAnalysisManager to be used
750 /// within this run safely.
751 ///
752 /// Function passes run within this adaptor can rely on having exclusive access
753 /// to the function they are run over. They should not read or modify any other
754 /// functions! Other threads or systems may be manipulating other functions in
755 /// the module, and so their state should never be relied on.
756 /// FIXME: Make the above true for all of LLVM's actual passes, some still
757 /// violate this principle.
758 ///
759 /// Function passes can also read the module containing the function, but they
760 /// should not modify that module outside of the use lists of various globals.
761 /// For example, a function pass is not permitted to add functions to the
762 /// module.
763 /// FIXME: Make the above true for all of LLVM's actual passes, some still
764 /// violate this principle.
765 template <typename FunctionPassT> class ModuleToFunctionPassAdaptor {
766 public:
ModuleToFunctionPassAdaptor(FunctionPassT Pass)767   explicit ModuleToFunctionPassAdaptor(FunctionPassT Pass)
768       : Pass(std::move(Pass)) {}
769   // We have to explicitly define all the special member functions because MSVC
770   // refuses to generate them.
ModuleToFunctionPassAdaptor(const ModuleToFunctionPassAdaptor & Arg)771   ModuleToFunctionPassAdaptor(const ModuleToFunctionPassAdaptor &Arg)
772       : Pass(Arg.Pass) {}
ModuleToFunctionPassAdaptor(ModuleToFunctionPassAdaptor && Arg)773   ModuleToFunctionPassAdaptor(ModuleToFunctionPassAdaptor &&Arg)
774       : Pass(std::move(Arg.Pass)) {}
swap(ModuleToFunctionPassAdaptor & LHS,ModuleToFunctionPassAdaptor & RHS)775   friend void swap(ModuleToFunctionPassAdaptor &LHS,
776                    ModuleToFunctionPassAdaptor &RHS) {
777     using std::swap;
778     swap(LHS.Pass, RHS.Pass);
779   }
780   ModuleToFunctionPassAdaptor &operator=(ModuleToFunctionPassAdaptor RHS) {
781     swap(*this, RHS);
782     return *this;
783   }
784 
785   /// \brief Runs the function pass across every function in the module.
run(Module & M,ModuleAnalysisManager * AM)786   PreservedAnalyses run(Module &M, ModuleAnalysisManager *AM) {
787     FunctionAnalysisManager *FAM = nullptr;
788     if (AM)
789       // Setup the function analysis manager from its proxy.
790       FAM = &AM->getResult<FunctionAnalysisManagerModuleProxy>(M).getManager();
791 
792     PreservedAnalyses PA = PreservedAnalyses::all();
793     for (Function &F : M) {
794       if (F.isDeclaration())
795         continue;
796 
797       PreservedAnalyses PassPA = Pass.run(F, FAM);
798 
799       // We know that the function pass couldn't have invalidated any other
800       // function's analyses (that's the contract of a function pass), so
801       // directly handle the function analysis manager's invalidation here and
802       // update our preserved set to reflect that these have already been
803       // handled.
804       if (FAM)
805         PassPA = FAM->invalidate(F, std::move(PassPA));
806 
807       // Then intersect the preserved set so that invalidation of module
808       // analyses will eventually occur when the module pass completes.
809       PA.intersect(std::move(PassPA));
810     }
811 
812     // By definition we preserve the proxy. This precludes *any* invalidation
813     // of function analyses by the proxy, but that's OK because we've taken
814     // care to invalidate analyses in the function analysis manager
815     // incrementally above.
816     PA.preserve<FunctionAnalysisManagerModuleProxy>();
817     return PA;
818   }
819 
name()820   static StringRef name() { return "ModuleToFunctionPassAdaptor"; }
821 
822 private:
823   FunctionPassT Pass;
824 };
825 
826 /// \brief A function to deduce a function pass type and wrap it in the
827 /// templated adaptor.
828 template <typename FunctionPassT>
829 ModuleToFunctionPassAdaptor<FunctionPassT>
createModuleToFunctionPassAdaptor(FunctionPassT Pass)830 createModuleToFunctionPassAdaptor(FunctionPassT Pass) {
831   return ModuleToFunctionPassAdaptor<FunctionPassT>(std::move(Pass));
832 }
833 
834 /// \brief A template utility pass to force an analysis result to be available.
835 ///
836 /// This is a no-op pass which simply forces a specific analysis pass's result
837 /// to be available when it is run.
838 template <typename AnalysisT> struct RequireAnalysisPass {
839   /// \brief Run this pass over some unit of IR.
840   ///
841   /// This pass can be run over any unit of IR and use any analysis manager
842   /// provided they satisfy the basic API requirements. When this pass is
843   /// created, these methods can be instantiated to satisfy whatever the
844   /// context requires.
845   template <typename IRUnitT>
runRequireAnalysisPass846   PreservedAnalyses run(IRUnitT &Arg, AnalysisManager<IRUnitT> *AM) {
847     if (AM)
848       (void)AM->template getResult<AnalysisT>(Arg);
849 
850     return PreservedAnalyses::all();
851   }
852 
nameRequireAnalysisPass853   static StringRef name() { return "RequireAnalysisPass"; }
854 };
855 
856 /// \brief A template utility pass to force an analysis result to be
857 /// invalidated.
858 ///
859 /// This is a no-op pass which simply forces a specific analysis result to be
860 /// invalidated when it is run.
861 template <typename AnalysisT> struct InvalidateAnalysisPass {
862   /// \brief Run this pass over some unit of IR.
863   ///
864   /// This pass can be run over any unit of IR and use any analysis manager
865   /// provided they satisfy the basic API requirements. When this pass is
866   /// created, these methods can be instantiated to satisfy whatever the
867   /// context requires.
868   template <typename IRUnitT>
runInvalidateAnalysisPass869   PreservedAnalyses run(IRUnitT &Arg, AnalysisManager<IRUnitT> *AM) {
870     if (AM)
871       // We have to directly invalidate the analysis result as we can't
872       // enumerate all other analyses and use the preserved set to control it.
873       (void)AM->template invalidate<AnalysisT>(Arg);
874 
875     return PreservedAnalyses::all();
876   }
877 
nameInvalidateAnalysisPass878   static StringRef name() { return "InvalidateAnalysisPass"; }
879 };
880 
881 /// \brief A utility pass that does nothing but preserves no analyses.
882 ///
883 /// As a consequence fo not preserving any analyses, this pass will force all
884 /// analysis passes to be re-run to produce fresh results if any are needed.
885 struct InvalidateAllAnalysesPass {
886   /// \brief Run this pass over some unit of IR.
runInvalidateAllAnalysesPass887   template <typename IRUnitT> PreservedAnalyses run(IRUnitT &Arg) {
888     return PreservedAnalyses::none();
889   }
890 
nameInvalidateAllAnalysesPass891   static StringRef name() { return "InvalidateAllAnalysesPass"; }
892 };
893 
894 }
895 
896 #endif
897