1 //===- llvm/ADT/SmallPtrSet.cpp - 'Normally small' pointer set ------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the SmallPtrSet class. See SmallPtrSet.h for an
11 // overview of the algorithm.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #include "llvm/ADT/SmallPtrSet.h"
16 #include "llvm/ADT/DenseMapInfo.h"
17 #include "llvm/Support/MathExtras.h"
18 #include <algorithm>
19 #include <cstdlib>
20
21 using namespace llvm;
22
shrink_and_clear()23 void SmallPtrSetImplBase::shrink_and_clear() {
24 assert(!isSmall() && "Can't shrink a small set!");
25 free(CurArray);
26
27 // Reduce the number of buckets.
28 CurArraySize = NumElements > 16 ? 1 << (Log2_32_Ceil(NumElements) + 1) : 32;
29 NumElements = NumTombstones = 0;
30
31 // Install the new array. Clear all the buckets to empty.
32 CurArray = (const void**)malloc(sizeof(void*) * CurArraySize);
33 assert(CurArray && "Failed to allocate memory?");
34 memset(CurArray, -1, CurArraySize*sizeof(void*));
35 }
36
37 std::pair<const void *const *, bool>
insert_imp(const void * Ptr)38 SmallPtrSetImplBase::insert_imp(const void *Ptr) {
39 if (isSmall()) {
40 // Check to see if it is already in the set.
41 for (const void **APtr = SmallArray, **E = SmallArray+NumElements;
42 APtr != E; ++APtr)
43 if (*APtr == Ptr)
44 return std::make_pair(APtr, false);
45
46 // Nope, there isn't. If we stay small, just 'pushback' now.
47 if (NumElements < CurArraySize) {
48 SmallArray[NumElements++] = Ptr;
49 return std::make_pair(SmallArray + (NumElements - 1), true);
50 }
51 // Otherwise, hit the big set case, which will call grow.
52 }
53
54 if (LLVM_UNLIKELY(NumElements * 4 >= CurArraySize * 3)) {
55 // If more than 3/4 of the array is full, grow.
56 Grow(CurArraySize < 64 ? 128 : CurArraySize*2);
57 } else if (LLVM_UNLIKELY(CurArraySize - (NumElements + NumTombstones) <
58 CurArraySize / 8)) {
59 // If fewer of 1/8 of the array is empty (meaning that many are filled with
60 // tombstones), rehash.
61 Grow(CurArraySize);
62 }
63
64 // Okay, we know we have space. Find a hash bucket.
65 const void **Bucket = const_cast<const void**>(FindBucketFor(Ptr));
66 if (*Bucket == Ptr)
67 return std::make_pair(Bucket, false); // Already inserted, good.
68
69 // Otherwise, insert it!
70 if (*Bucket == getTombstoneMarker())
71 --NumTombstones;
72 *Bucket = Ptr;
73 ++NumElements; // Track density.
74 return std::make_pair(Bucket, true);
75 }
76
erase_imp(const void * Ptr)77 bool SmallPtrSetImplBase::erase_imp(const void * Ptr) {
78 if (isSmall()) {
79 // Check to see if it is in the set.
80 for (const void **APtr = SmallArray, **E = SmallArray+NumElements;
81 APtr != E; ++APtr)
82 if (*APtr == Ptr) {
83 // If it is in the set, replace this element.
84 *APtr = E[-1];
85 E[-1] = getEmptyMarker();
86 --NumElements;
87 return true;
88 }
89
90 return false;
91 }
92
93 // Okay, we know we have space. Find a hash bucket.
94 void **Bucket = const_cast<void**>(FindBucketFor(Ptr));
95 if (*Bucket != Ptr) return false; // Not in the set?
96
97 // Set this as a tombstone.
98 *Bucket = getTombstoneMarker();
99 --NumElements;
100 ++NumTombstones;
101 return true;
102 }
103
FindBucketFor(const void * Ptr) const104 const void * const *SmallPtrSetImplBase::FindBucketFor(const void *Ptr) const {
105 unsigned Bucket = DenseMapInfo<void *>::getHashValue(Ptr) & (CurArraySize-1);
106 unsigned ArraySize = CurArraySize;
107 unsigned ProbeAmt = 1;
108 const void *const *Array = CurArray;
109 const void *const *Tombstone = nullptr;
110 while (1) {
111 // If we found an empty bucket, the pointer doesn't exist in the set.
112 // Return a tombstone if we've seen one so far, or the empty bucket if
113 // not.
114 if (LLVM_LIKELY(Array[Bucket] == getEmptyMarker()))
115 return Tombstone ? Tombstone : Array+Bucket;
116
117 // Found Ptr's bucket?
118 if (LLVM_LIKELY(Array[Bucket] == Ptr))
119 return Array+Bucket;
120
121 // If this is a tombstone, remember it. If Ptr ends up not in the set, we
122 // prefer to return it than something that would require more probing.
123 if (Array[Bucket] == getTombstoneMarker() && !Tombstone)
124 Tombstone = Array+Bucket; // Remember the first tombstone found.
125
126 // It's a hash collision or a tombstone. Reprobe.
127 Bucket = (Bucket + ProbeAmt++) & (ArraySize-1);
128 }
129 }
130
131 /// Grow - Allocate a larger backing store for the buckets and move it over.
132 ///
Grow(unsigned NewSize)133 void SmallPtrSetImplBase::Grow(unsigned NewSize) {
134 // Allocate at twice as many buckets, but at least 128.
135 unsigned OldSize = CurArraySize;
136
137 const void **OldBuckets = CurArray;
138 bool WasSmall = isSmall();
139
140 // Install the new array. Clear all the buckets to empty.
141 CurArray = (const void**)malloc(sizeof(void*) * NewSize);
142 assert(CurArray && "Failed to allocate memory?");
143 CurArraySize = NewSize;
144 memset(CurArray, -1, NewSize*sizeof(void*));
145
146 // Copy over all the elements.
147 if (WasSmall) {
148 // Small sets store their elements in order.
149 for (const void **BucketPtr = OldBuckets, **E = OldBuckets+NumElements;
150 BucketPtr != E; ++BucketPtr) {
151 const void *Elt = *BucketPtr;
152 *const_cast<void**>(FindBucketFor(Elt)) = const_cast<void*>(Elt);
153 }
154 } else {
155 // Copy over all valid entries.
156 for (const void **BucketPtr = OldBuckets, **E = OldBuckets+OldSize;
157 BucketPtr != E; ++BucketPtr) {
158 // Copy over the element if it is valid.
159 const void *Elt = *BucketPtr;
160 if (Elt != getTombstoneMarker() && Elt != getEmptyMarker())
161 *const_cast<void**>(FindBucketFor(Elt)) = const_cast<void*>(Elt);
162 }
163
164 free(OldBuckets);
165 NumTombstones = 0;
166 }
167 }
168
SmallPtrSetImplBase(const void ** SmallStorage,const SmallPtrSetImplBase & that)169 SmallPtrSetImplBase::SmallPtrSetImplBase(const void **SmallStorage,
170 const SmallPtrSetImplBase& that) {
171 SmallArray = SmallStorage;
172
173 // If we're becoming small, prepare to insert into our stack space
174 if (that.isSmall()) {
175 CurArray = SmallArray;
176 // Otherwise, allocate new heap space (unless we were the same size)
177 } else {
178 CurArray = (const void**)malloc(sizeof(void*) * that.CurArraySize);
179 assert(CurArray && "Failed to allocate memory?");
180 }
181
182 // Copy over the new array size
183 CurArraySize = that.CurArraySize;
184
185 // Copy over the contents from the other set
186 memcpy(CurArray, that.CurArray, sizeof(void*)*CurArraySize);
187
188 NumElements = that.NumElements;
189 NumTombstones = that.NumTombstones;
190 }
191
SmallPtrSetImplBase(const void ** SmallStorage,unsigned SmallSize,SmallPtrSetImplBase && that)192 SmallPtrSetImplBase::SmallPtrSetImplBase(const void **SmallStorage,
193 unsigned SmallSize,
194 SmallPtrSetImplBase &&that) {
195 SmallArray = SmallStorage;
196
197 // Copy over the basic members.
198 CurArraySize = that.CurArraySize;
199 NumElements = that.NumElements;
200 NumTombstones = that.NumTombstones;
201
202 // When small, just copy into our small buffer.
203 if (that.isSmall()) {
204 CurArray = SmallArray;
205 memcpy(CurArray, that.CurArray, sizeof(void *) * CurArraySize);
206 } else {
207 // Otherwise, we steal the large memory allocation and no copy is needed.
208 CurArray = that.CurArray;
209 that.CurArray = that.SmallArray;
210 }
211
212 // Make the "that" object small and empty.
213 that.CurArraySize = SmallSize;
214 assert(that.CurArray == that.SmallArray);
215 that.NumElements = 0;
216 that.NumTombstones = 0;
217 }
218
219 /// CopyFrom - implement operator= from a smallptrset that has the same pointer
220 /// type, but may have a different small size.
CopyFrom(const SmallPtrSetImplBase & RHS)221 void SmallPtrSetImplBase::CopyFrom(const SmallPtrSetImplBase &RHS) {
222 assert(&RHS != this && "Self-copy should be handled by the caller.");
223
224 if (isSmall() && RHS.isSmall())
225 assert(CurArraySize == RHS.CurArraySize &&
226 "Cannot assign sets with different small sizes");
227
228 // If we're becoming small, prepare to insert into our stack space
229 if (RHS.isSmall()) {
230 if (!isSmall())
231 free(CurArray);
232 CurArray = SmallArray;
233 // Otherwise, allocate new heap space (unless we were the same size)
234 } else if (CurArraySize != RHS.CurArraySize) {
235 if (isSmall())
236 CurArray = (const void**)malloc(sizeof(void*) * RHS.CurArraySize);
237 else {
238 const void **T = (const void**)realloc(CurArray,
239 sizeof(void*) * RHS.CurArraySize);
240 if (!T)
241 free(CurArray);
242 CurArray = T;
243 }
244 assert(CurArray && "Failed to allocate memory?");
245 }
246
247 // Copy over the new array size
248 CurArraySize = RHS.CurArraySize;
249
250 // Copy over the contents from the other set
251 memcpy(CurArray, RHS.CurArray, sizeof(void*)*CurArraySize);
252
253 NumElements = RHS.NumElements;
254 NumTombstones = RHS.NumTombstones;
255 }
256
MoveFrom(unsigned SmallSize,SmallPtrSetImplBase && RHS)257 void SmallPtrSetImplBase::MoveFrom(unsigned SmallSize,
258 SmallPtrSetImplBase &&RHS) {
259 assert(&RHS != this && "Self-move should be handled by the caller.");
260
261 if (!isSmall())
262 free(CurArray);
263
264 if (RHS.isSmall()) {
265 // Copy a small RHS rather than moving.
266 CurArray = SmallArray;
267 memcpy(CurArray, RHS.CurArray, sizeof(void*)*RHS.CurArraySize);
268 } else {
269 CurArray = RHS.CurArray;
270 RHS.CurArray = RHS.SmallArray;
271 }
272
273 // Copy the rest of the trivial members.
274 CurArraySize = RHS.CurArraySize;
275 NumElements = RHS.NumElements;
276 NumTombstones = RHS.NumTombstones;
277
278 // Make the RHS small and empty.
279 RHS.CurArraySize = SmallSize;
280 assert(RHS.CurArray == RHS.SmallArray);
281 RHS.NumElements = 0;
282 RHS.NumTombstones = 0;
283 }
284
swap(SmallPtrSetImplBase & RHS)285 void SmallPtrSetImplBase::swap(SmallPtrSetImplBase &RHS) {
286 if (this == &RHS) return;
287
288 // We can only avoid copying elements if neither set is small.
289 if (!this->isSmall() && !RHS.isSmall()) {
290 std::swap(this->CurArray, RHS.CurArray);
291 std::swap(this->CurArraySize, RHS.CurArraySize);
292 std::swap(this->NumElements, RHS.NumElements);
293 std::swap(this->NumTombstones, RHS.NumTombstones);
294 return;
295 }
296
297 // FIXME: From here on we assume that both sets have the same small size.
298
299 // If only RHS is small, copy the small elements into LHS and move the pointer
300 // from LHS to RHS.
301 if (!this->isSmall() && RHS.isSmall()) {
302 std::copy(RHS.SmallArray, RHS.SmallArray+RHS.CurArraySize,
303 this->SmallArray);
304 std::swap(this->NumElements, RHS.NumElements);
305 std::swap(this->CurArraySize, RHS.CurArraySize);
306 RHS.CurArray = this->CurArray;
307 RHS.NumTombstones = this->NumTombstones;
308 this->CurArray = this->SmallArray;
309 this->NumTombstones = 0;
310 return;
311 }
312
313 // If only LHS is small, copy the small elements into RHS and move the pointer
314 // from RHS to LHS.
315 if (this->isSmall() && !RHS.isSmall()) {
316 std::copy(this->SmallArray, this->SmallArray+this->CurArraySize,
317 RHS.SmallArray);
318 std::swap(RHS.NumElements, this->NumElements);
319 std::swap(RHS.CurArraySize, this->CurArraySize);
320 this->CurArray = RHS.CurArray;
321 this->NumTombstones = RHS.NumTombstones;
322 RHS.CurArray = RHS.SmallArray;
323 RHS.NumTombstones = 0;
324 return;
325 }
326
327 // Both a small, just swap the small elements.
328 assert(this->isSmall() && RHS.isSmall());
329 assert(this->CurArraySize == RHS.CurArraySize);
330 std::swap_ranges(this->SmallArray, this->SmallArray+this->CurArraySize,
331 RHS.SmallArray);
332 std::swap(this->NumElements, RHS.NumElements);
333 }
334
~SmallPtrSetImplBase()335 SmallPtrSetImplBase::~SmallPtrSetImplBase() {
336 if (!isSmall())
337 free(CurArray);
338 }
339