1 /*
2  * Copyright (C) 2014 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #include "code_generator_x86.h"
18 
19 #include "art_method.h"
20 #include "code_generator_utils.h"
21 #include "compiled_method.h"
22 #include "entrypoints/quick/quick_entrypoints.h"
23 #include "entrypoints/quick/quick_entrypoints_enum.h"
24 #include "gc/accounting/card_table.h"
25 #include "intrinsics.h"
26 #include "intrinsics_x86.h"
27 #include "mirror/array-inl.h"
28 #include "mirror/class-inl.h"
29 #include "thread.h"
30 #include "utils/assembler.h"
31 #include "utils/stack_checks.h"
32 #include "utils/x86/assembler_x86.h"
33 #include "utils/x86/managed_register_x86.h"
34 
35 namespace art {
36 
37 template<class MirrorType>
38 class GcRoot;
39 
40 namespace x86 {
41 
42 static constexpr int kCurrentMethodStackOffset = 0;
43 static constexpr Register kMethodRegisterArgument = EAX;
44 static constexpr Register kCoreCalleeSaves[] = { EBP, ESI, EDI };
45 
46 static constexpr int kC2ConditionMask = 0x400;
47 
48 static constexpr int kFakeReturnRegister = Register(8);
49 
50 #define __ down_cast<X86Assembler*>(codegen->GetAssembler())->
51 #define QUICK_ENTRY_POINT(x) QUICK_ENTRYPOINT_OFFSET(kX86WordSize, x).Int32Value()
52 
53 class NullCheckSlowPathX86 : public SlowPathCode {
54  public:
NullCheckSlowPathX86(HNullCheck * instruction)55   explicit NullCheckSlowPathX86(HNullCheck* instruction) : SlowPathCode(instruction) {}
56 
EmitNativeCode(CodeGenerator * codegen)57   void EmitNativeCode(CodeGenerator* codegen) OVERRIDE {
58     CodeGeneratorX86* x86_codegen = down_cast<CodeGeneratorX86*>(codegen);
59     __ Bind(GetEntryLabel());
60     if (instruction_->CanThrowIntoCatchBlock()) {
61       // Live registers will be restored in the catch block if caught.
62       SaveLiveRegisters(codegen, instruction_->GetLocations());
63     }
64     x86_codegen->InvokeRuntime(QUICK_ENTRY_POINT(pThrowNullPointer),
65                                instruction_,
66                                instruction_->GetDexPc(),
67                                this);
68     CheckEntrypointTypes<kQuickThrowNullPointer, void, void>();
69   }
70 
IsFatal() const71   bool IsFatal() const OVERRIDE { return true; }
72 
GetDescription() const73   const char* GetDescription() const OVERRIDE { return "NullCheckSlowPathX86"; }
74 
75  private:
76   DISALLOW_COPY_AND_ASSIGN(NullCheckSlowPathX86);
77 };
78 
79 class DivZeroCheckSlowPathX86 : public SlowPathCode {
80  public:
DivZeroCheckSlowPathX86(HDivZeroCheck * instruction)81   explicit DivZeroCheckSlowPathX86(HDivZeroCheck* instruction) : SlowPathCode(instruction) {}
82 
EmitNativeCode(CodeGenerator * codegen)83   void EmitNativeCode(CodeGenerator* codegen) OVERRIDE {
84     CodeGeneratorX86* x86_codegen = down_cast<CodeGeneratorX86*>(codegen);
85     __ Bind(GetEntryLabel());
86     if (instruction_->CanThrowIntoCatchBlock()) {
87       // Live registers will be restored in the catch block if caught.
88       SaveLiveRegisters(codegen, instruction_->GetLocations());
89     }
90     x86_codegen->InvokeRuntime(QUICK_ENTRY_POINT(pThrowDivZero),
91                                instruction_,
92                                instruction_->GetDexPc(),
93                                this);
94     CheckEntrypointTypes<kQuickThrowDivZero, void, void>();
95   }
96 
IsFatal() const97   bool IsFatal() const OVERRIDE { return true; }
98 
GetDescription() const99   const char* GetDescription() const OVERRIDE { return "DivZeroCheckSlowPathX86"; }
100 
101  private:
102   DISALLOW_COPY_AND_ASSIGN(DivZeroCheckSlowPathX86);
103 };
104 
105 class DivRemMinusOneSlowPathX86 : public SlowPathCode {
106  public:
DivRemMinusOneSlowPathX86(HInstruction * instruction,Register reg,bool is_div)107   DivRemMinusOneSlowPathX86(HInstruction* instruction, Register reg, bool is_div)
108       : SlowPathCode(instruction), reg_(reg), is_div_(is_div) {}
109 
EmitNativeCode(CodeGenerator * codegen)110   void EmitNativeCode(CodeGenerator* codegen) OVERRIDE {
111     __ Bind(GetEntryLabel());
112     if (is_div_) {
113       __ negl(reg_);
114     } else {
115       __ movl(reg_, Immediate(0));
116     }
117     __ jmp(GetExitLabel());
118   }
119 
GetDescription() const120   const char* GetDescription() const OVERRIDE { return "DivRemMinusOneSlowPathX86"; }
121 
122  private:
123   Register reg_;
124   bool is_div_;
125   DISALLOW_COPY_AND_ASSIGN(DivRemMinusOneSlowPathX86);
126 };
127 
128 class BoundsCheckSlowPathX86 : public SlowPathCode {
129  public:
BoundsCheckSlowPathX86(HBoundsCheck * instruction)130   explicit BoundsCheckSlowPathX86(HBoundsCheck* instruction) : SlowPathCode(instruction) {}
131 
EmitNativeCode(CodeGenerator * codegen)132   void EmitNativeCode(CodeGenerator* codegen) OVERRIDE {
133     LocationSummary* locations = instruction_->GetLocations();
134     CodeGeneratorX86* x86_codegen = down_cast<CodeGeneratorX86*>(codegen);
135     __ Bind(GetEntryLabel());
136     // We're moving two locations to locations that could overlap, so we need a parallel
137     // move resolver.
138     if (instruction_->CanThrowIntoCatchBlock()) {
139       // Live registers will be restored in the catch block if caught.
140       SaveLiveRegisters(codegen, instruction_->GetLocations());
141     }
142     InvokeRuntimeCallingConvention calling_convention;
143     x86_codegen->EmitParallelMoves(
144         locations->InAt(0),
145         Location::RegisterLocation(calling_convention.GetRegisterAt(0)),
146         Primitive::kPrimInt,
147         locations->InAt(1),
148         Location::RegisterLocation(calling_convention.GetRegisterAt(1)),
149         Primitive::kPrimInt);
150     x86_codegen->InvokeRuntime(QUICK_ENTRY_POINT(pThrowArrayBounds),
151                                instruction_,
152                                instruction_->GetDexPc(),
153                                this);
154     CheckEntrypointTypes<kQuickThrowArrayBounds, void, int32_t, int32_t>();
155   }
156 
IsFatal() const157   bool IsFatal() const OVERRIDE { return true; }
158 
GetDescription() const159   const char* GetDescription() const OVERRIDE { return "BoundsCheckSlowPathX86"; }
160 
161  private:
162   DISALLOW_COPY_AND_ASSIGN(BoundsCheckSlowPathX86);
163 };
164 
165 class SuspendCheckSlowPathX86 : public SlowPathCode {
166  public:
SuspendCheckSlowPathX86(HSuspendCheck * instruction,HBasicBlock * successor)167   SuspendCheckSlowPathX86(HSuspendCheck* instruction, HBasicBlock* successor)
168       : SlowPathCode(instruction), successor_(successor) {}
169 
EmitNativeCode(CodeGenerator * codegen)170   void EmitNativeCode(CodeGenerator* codegen) OVERRIDE {
171     CodeGeneratorX86* x86_codegen = down_cast<CodeGeneratorX86*>(codegen);
172     __ Bind(GetEntryLabel());
173     SaveLiveRegisters(codegen, instruction_->GetLocations());
174     x86_codegen->InvokeRuntime(QUICK_ENTRY_POINT(pTestSuspend),
175                                instruction_,
176                                instruction_->GetDexPc(),
177                                this);
178     CheckEntrypointTypes<kQuickTestSuspend, void, void>();
179     RestoreLiveRegisters(codegen, instruction_->GetLocations());
180     if (successor_ == nullptr) {
181       __ jmp(GetReturnLabel());
182     } else {
183       __ jmp(x86_codegen->GetLabelOf(successor_));
184     }
185   }
186 
GetReturnLabel()187   Label* GetReturnLabel() {
188     DCHECK(successor_ == nullptr);
189     return &return_label_;
190   }
191 
GetSuccessor() const192   HBasicBlock* GetSuccessor() const {
193     return successor_;
194   }
195 
GetDescription() const196   const char* GetDescription() const OVERRIDE { return "SuspendCheckSlowPathX86"; }
197 
198  private:
199   HBasicBlock* const successor_;
200   Label return_label_;
201 
202   DISALLOW_COPY_AND_ASSIGN(SuspendCheckSlowPathX86);
203 };
204 
205 class LoadStringSlowPathX86 : public SlowPathCode {
206  public:
LoadStringSlowPathX86(HLoadString * instruction)207   explicit LoadStringSlowPathX86(HLoadString* instruction): SlowPathCode(instruction) {}
208 
EmitNativeCode(CodeGenerator * codegen)209   void EmitNativeCode(CodeGenerator* codegen) OVERRIDE {
210     LocationSummary* locations = instruction_->GetLocations();
211     DCHECK(!locations->GetLiveRegisters()->ContainsCoreRegister(locations->Out().reg()));
212 
213     CodeGeneratorX86* x86_codegen = down_cast<CodeGeneratorX86*>(codegen);
214     __ Bind(GetEntryLabel());
215     SaveLiveRegisters(codegen, locations);
216 
217     InvokeRuntimeCallingConvention calling_convention;
218     const uint32_t string_index = instruction_->AsLoadString()->GetStringIndex();
219     __ movl(calling_convention.GetRegisterAt(0), Immediate(string_index));
220     x86_codegen->InvokeRuntime(QUICK_ENTRY_POINT(pResolveString),
221                                instruction_,
222                                instruction_->GetDexPc(),
223                                this);
224     CheckEntrypointTypes<kQuickResolveString, void*, uint32_t>();
225     x86_codegen->Move32(locations->Out(), Location::RegisterLocation(EAX));
226     RestoreLiveRegisters(codegen, locations);
227 
228     __ jmp(GetExitLabel());
229   }
230 
GetDescription() const231   const char* GetDescription() const OVERRIDE { return "LoadStringSlowPathX86"; }
232 
233  private:
234   DISALLOW_COPY_AND_ASSIGN(LoadStringSlowPathX86);
235 };
236 
237 class LoadClassSlowPathX86 : public SlowPathCode {
238  public:
LoadClassSlowPathX86(HLoadClass * cls,HInstruction * at,uint32_t dex_pc,bool do_clinit)239   LoadClassSlowPathX86(HLoadClass* cls,
240                        HInstruction* at,
241                        uint32_t dex_pc,
242                        bool do_clinit)
243       : SlowPathCode(at), cls_(cls), at_(at), dex_pc_(dex_pc), do_clinit_(do_clinit) {
244     DCHECK(at->IsLoadClass() || at->IsClinitCheck());
245   }
246 
EmitNativeCode(CodeGenerator * codegen)247   void EmitNativeCode(CodeGenerator* codegen) OVERRIDE {
248     LocationSummary* locations = at_->GetLocations();
249     CodeGeneratorX86* x86_codegen = down_cast<CodeGeneratorX86*>(codegen);
250     __ Bind(GetEntryLabel());
251     SaveLiveRegisters(codegen, locations);
252 
253     InvokeRuntimeCallingConvention calling_convention;
254     __ movl(calling_convention.GetRegisterAt(0), Immediate(cls_->GetTypeIndex()));
255     x86_codegen->InvokeRuntime(do_clinit_ ? QUICK_ENTRY_POINT(pInitializeStaticStorage)
256                                           : QUICK_ENTRY_POINT(pInitializeType),
257                                at_, dex_pc_, this);
258     if (do_clinit_) {
259       CheckEntrypointTypes<kQuickInitializeStaticStorage, void*, uint32_t>();
260     } else {
261       CheckEntrypointTypes<kQuickInitializeType, void*, uint32_t>();
262     }
263 
264     // Move the class to the desired location.
265     Location out = locations->Out();
266     if (out.IsValid()) {
267       DCHECK(out.IsRegister() && !locations->GetLiveRegisters()->ContainsCoreRegister(out.reg()));
268       x86_codegen->Move32(out, Location::RegisterLocation(EAX));
269     }
270 
271     RestoreLiveRegisters(codegen, locations);
272     __ jmp(GetExitLabel());
273   }
274 
GetDescription() const275   const char* GetDescription() const OVERRIDE { return "LoadClassSlowPathX86"; }
276 
277  private:
278   // The class this slow path will load.
279   HLoadClass* const cls_;
280 
281   // The instruction where this slow path is happening.
282   // (Might be the load class or an initialization check).
283   HInstruction* const at_;
284 
285   // The dex PC of `at_`.
286   const uint32_t dex_pc_;
287 
288   // Whether to initialize the class.
289   const bool do_clinit_;
290 
291   DISALLOW_COPY_AND_ASSIGN(LoadClassSlowPathX86);
292 };
293 
294 class TypeCheckSlowPathX86 : public SlowPathCode {
295  public:
TypeCheckSlowPathX86(HInstruction * instruction,bool is_fatal)296   TypeCheckSlowPathX86(HInstruction* instruction, bool is_fatal)
297       : SlowPathCode(instruction), is_fatal_(is_fatal) {}
298 
EmitNativeCode(CodeGenerator * codegen)299   void EmitNativeCode(CodeGenerator* codegen) OVERRIDE {
300     LocationSummary* locations = instruction_->GetLocations();
301     Location object_class = instruction_->IsCheckCast() ? locations->GetTemp(0)
302                                                         : locations->Out();
303     DCHECK(instruction_->IsCheckCast()
304            || !locations->GetLiveRegisters()->ContainsCoreRegister(locations->Out().reg()));
305 
306     CodeGeneratorX86* x86_codegen = down_cast<CodeGeneratorX86*>(codegen);
307     __ Bind(GetEntryLabel());
308 
309     if (!is_fatal_) {
310       SaveLiveRegisters(codegen, locations);
311     }
312 
313     // We're moving two locations to locations that could overlap, so we need a parallel
314     // move resolver.
315     InvokeRuntimeCallingConvention calling_convention;
316     x86_codegen->EmitParallelMoves(
317         locations->InAt(1),
318         Location::RegisterLocation(calling_convention.GetRegisterAt(0)),
319         Primitive::kPrimNot,
320         object_class,
321         Location::RegisterLocation(calling_convention.GetRegisterAt(1)),
322         Primitive::kPrimNot);
323 
324     if (instruction_->IsInstanceOf()) {
325       x86_codegen->InvokeRuntime(QUICK_ENTRY_POINT(pInstanceofNonTrivial),
326                                  instruction_,
327                                  instruction_->GetDexPc(),
328                                  this);
329       CheckEntrypointTypes<
330           kQuickInstanceofNonTrivial, uint32_t, const mirror::Class*, const mirror::Class*>();
331     } else {
332       DCHECK(instruction_->IsCheckCast());
333       x86_codegen->InvokeRuntime(QUICK_ENTRY_POINT(pCheckCast),
334                                  instruction_,
335                                  instruction_->GetDexPc(),
336                                  this);
337       CheckEntrypointTypes<kQuickCheckCast, void, const mirror::Class*, const mirror::Class*>();
338     }
339 
340     if (!is_fatal_) {
341       if (instruction_->IsInstanceOf()) {
342         x86_codegen->Move32(locations->Out(), Location::RegisterLocation(EAX));
343       }
344       RestoreLiveRegisters(codegen, locations);
345 
346       __ jmp(GetExitLabel());
347     }
348   }
349 
GetDescription() const350   const char* GetDescription() const OVERRIDE { return "TypeCheckSlowPathX86"; }
IsFatal() const351   bool IsFatal() const OVERRIDE { return is_fatal_; }
352 
353  private:
354   const bool is_fatal_;
355 
356   DISALLOW_COPY_AND_ASSIGN(TypeCheckSlowPathX86);
357 };
358 
359 class DeoptimizationSlowPathX86 : public SlowPathCode {
360  public:
DeoptimizationSlowPathX86(HDeoptimize * instruction)361   explicit DeoptimizationSlowPathX86(HDeoptimize* instruction)
362     : SlowPathCode(instruction) {}
363 
EmitNativeCode(CodeGenerator * codegen)364   void EmitNativeCode(CodeGenerator* codegen) OVERRIDE {
365     CodeGeneratorX86* x86_codegen = down_cast<CodeGeneratorX86*>(codegen);
366     __ Bind(GetEntryLabel());
367     SaveLiveRegisters(codegen, instruction_->GetLocations());
368     x86_codegen->InvokeRuntime(QUICK_ENTRY_POINT(pDeoptimize),
369                                instruction_,
370                                instruction_->GetDexPc(),
371                                this);
372     CheckEntrypointTypes<kQuickDeoptimize, void, void>();
373   }
374 
GetDescription() const375   const char* GetDescription() const OVERRIDE { return "DeoptimizationSlowPathX86"; }
376 
377  private:
378   DISALLOW_COPY_AND_ASSIGN(DeoptimizationSlowPathX86);
379 };
380 
381 class ArraySetSlowPathX86 : public SlowPathCode {
382  public:
ArraySetSlowPathX86(HInstruction * instruction)383   explicit ArraySetSlowPathX86(HInstruction* instruction) : SlowPathCode(instruction) {}
384 
EmitNativeCode(CodeGenerator * codegen)385   void EmitNativeCode(CodeGenerator* codegen) OVERRIDE {
386     LocationSummary* locations = instruction_->GetLocations();
387     __ Bind(GetEntryLabel());
388     SaveLiveRegisters(codegen, locations);
389 
390     InvokeRuntimeCallingConvention calling_convention;
391     HParallelMove parallel_move(codegen->GetGraph()->GetArena());
392     parallel_move.AddMove(
393         locations->InAt(0),
394         Location::RegisterLocation(calling_convention.GetRegisterAt(0)),
395         Primitive::kPrimNot,
396         nullptr);
397     parallel_move.AddMove(
398         locations->InAt(1),
399         Location::RegisterLocation(calling_convention.GetRegisterAt(1)),
400         Primitive::kPrimInt,
401         nullptr);
402     parallel_move.AddMove(
403         locations->InAt(2),
404         Location::RegisterLocation(calling_convention.GetRegisterAt(2)),
405         Primitive::kPrimNot,
406         nullptr);
407     codegen->GetMoveResolver()->EmitNativeCode(&parallel_move);
408 
409     CodeGeneratorX86* x86_codegen = down_cast<CodeGeneratorX86*>(codegen);
410     x86_codegen->InvokeRuntime(QUICK_ENTRY_POINT(pAputObject),
411                                instruction_,
412                                instruction_->GetDexPc(),
413                                this);
414     CheckEntrypointTypes<kQuickAputObject, void, mirror::Array*, int32_t, mirror::Object*>();
415     RestoreLiveRegisters(codegen, locations);
416     __ jmp(GetExitLabel());
417   }
418 
GetDescription() const419   const char* GetDescription() const OVERRIDE { return "ArraySetSlowPathX86"; }
420 
421  private:
422   DISALLOW_COPY_AND_ASSIGN(ArraySetSlowPathX86);
423 };
424 
425 // Slow path marking an object during a read barrier.
426 class ReadBarrierMarkSlowPathX86 : public SlowPathCode {
427  public:
ReadBarrierMarkSlowPathX86(HInstruction * instruction,Location out,Location obj)428   ReadBarrierMarkSlowPathX86(HInstruction* instruction, Location out, Location obj)
429       : SlowPathCode(instruction), out_(out), obj_(obj) {
430     DCHECK(kEmitCompilerReadBarrier);
431   }
432 
GetDescription() const433   const char* GetDescription() const OVERRIDE { return "ReadBarrierMarkSlowPathX86"; }
434 
EmitNativeCode(CodeGenerator * codegen)435   void EmitNativeCode(CodeGenerator* codegen) OVERRIDE {
436     LocationSummary* locations = instruction_->GetLocations();
437     Register reg_out = out_.AsRegister<Register>();
438     DCHECK(locations->CanCall());
439     DCHECK(!locations->GetLiveRegisters()->ContainsCoreRegister(reg_out));
440     DCHECK(instruction_->IsInstanceFieldGet() ||
441            instruction_->IsStaticFieldGet() ||
442            instruction_->IsArrayGet() ||
443            instruction_->IsLoadClass() ||
444            instruction_->IsLoadString() ||
445            instruction_->IsInstanceOf() ||
446            instruction_->IsCheckCast())
447         << "Unexpected instruction in read barrier marking slow path: "
448         << instruction_->DebugName();
449 
450     __ Bind(GetEntryLabel());
451     SaveLiveRegisters(codegen, locations);
452 
453     InvokeRuntimeCallingConvention calling_convention;
454     CodeGeneratorX86* x86_codegen = down_cast<CodeGeneratorX86*>(codegen);
455     x86_codegen->Move32(Location::RegisterLocation(calling_convention.GetRegisterAt(0)), obj_);
456     x86_codegen->InvokeRuntime(QUICK_ENTRY_POINT(pReadBarrierMark),
457                                instruction_,
458                                instruction_->GetDexPc(),
459                                this);
460     CheckEntrypointTypes<kQuickReadBarrierMark, mirror::Object*, mirror::Object*>();
461     x86_codegen->Move32(out_, Location::RegisterLocation(EAX));
462 
463     RestoreLiveRegisters(codegen, locations);
464     __ jmp(GetExitLabel());
465   }
466 
467  private:
468   const Location out_;
469   const Location obj_;
470 
471   DISALLOW_COPY_AND_ASSIGN(ReadBarrierMarkSlowPathX86);
472 };
473 
474 // Slow path generating a read barrier for a heap reference.
475 class ReadBarrierForHeapReferenceSlowPathX86 : public SlowPathCode {
476  public:
ReadBarrierForHeapReferenceSlowPathX86(HInstruction * instruction,Location out,Location ref,Location obj,uint32_t offset,Location index)477   ReadBarrierForHeapReferenceSlowPathX86(HInstruction* instruction,
478                                          Location out,
479                                          Location ref,
480                                          Location obj,
481                                          uint32_t offset,
482                                          Location index)
483       : SlowPathCode(instruction),
484         out_(out),
485         ref_(ref),
486         obj_(obj),
487         offset_(offset),
488         index_(index) {
489     DCHECK(kEmitCompilerReadBarrier);
490     // If `obj` is equal to `out` or `ref`, it means the initial object
491     // has been overwritten by (or after) the heap object reference load
492     // to be instrumented, e.g.:
493     //
494     //   __ movl(out, Address(out, offset));
495     //   codegen_->GenerateReadBarrierSlow(instruction, out_loc, out_loc, out_loc, offset);
496     //
497     // In that case, we have lost the information about the original
498     // object, and the emitted read barrier cannot work properly.
499     DCHECK(!obj.Equals(out)) << "obj=" << obj << " out=" << out;
500     DCHECK(!obj.Equals(ref)) << "obj=" << obj << " ref=" << ref;
501   }
502 
EmitNativeCode(CodeGenerator * codegen)503   void EmitNativeCode(CodeGenerator* codegen) OVERRIDE {
504     CodeGeneratorX86* x86_codegen = down_cast<CodeGeneratorX86*>(codegen);
505     LocationSummary* locations = instruction_->GetLocations();
506     Register reg_out = out_.AsRegister<Register>();
507     DCHECK(locations->CanCall());
508     DCHECK(!locations->GetLiveRegisters()->ContainsCoreRegister(reg_out));
509     DCHECK(!instruction_->IsInvoke() ||
510            (instruction_->IsInvokeStaticOrDirect() &&
511             instruction_->GetLocations()->Intrinsified()))
512         << "Unexpected instruction in read barrier for heap reference slow path: "
513         << instruction_->DebugName();
514 
515     __ Bind(GetEntryLabel());
516     SaveLiveRegisters(codegen, locations);
517 
518     // We may have to change the index's value, but as `index_` is a
519     // constant member (like other "inputs" of this slow path),
520     // introduce a copy of it, `index`.
521     Location index = index_;
522     if (index_.IsValid()) {
523       // Handle `index_` for HArrayGet and intrinsic UnsafeGetObject.
524       if (instruction_->IsArrayGet()) {
525         // Compute the actual memory offset and store it in `index`.
526         Register index_reg = index_.AsRegister<Register>();
527         DCHECK(locations->GetLiveRegisters()->ContainsCoreRegister(index_reg));
528         if (codegen->IsCoreCalleeSaveRegister(index_reg)) {
529           // We are about to change the value of `index_reg` (see the
530           // calls to art::x86::X86Assembler::shll and
531           // art::x86::X86Assembler::AddImmediate below), but it has
532           // not been saved by the previous call to
533           // art::SlowPathCode::SaveLiveRegisters, as it is a
534           // callee-save register --
535           // art::SlowPathCode::SaveLiveRegisters does not consider
536           // callee-save registers, as it has been designed with the
537           // assumption that callee-save registers are supposed to be
538           // handled by the called function.  So, as a callee-save
539           // register, `index_reg` _would_ eventually be saved onto
540           // the stack, but it would be too late: we would have
541           // changed its value earlier.  Therefore, we manually save
542           // it here into another freely available register,
543           // `free_reg`, chosen of course among the caller-save
544           // registers (as a callee-save `free_reg` register would
545           // exhibit the same problem).
546           //
547           // Note we could have requested a temporary register from
548           // the register allocator instead; but we prefer not to, as
549           // this is a slow path, and we know we can find a
550           // caller-save register that is available.
551           Register free_reg = FindAvailableCallerSaveRegister(codegen);
552           __ movl(free_reg, index_reg);
553           index_reg = free_reg;
554           index = Location::RegisterLocation(index_reg);
555         } else {
556           // The initial register stored in `index_` has already been
557           // saved in the call to art::SlowPathCode::SaveLiveRegisters
558           // (as it is not a callee-save register), so we can freely
559           // use it.
560         }
561         // Shifting the index value contained in `index_reg` by the scale
562         // factor (2) cannot overflow in practice, as the runtime is
563         // unable to allocate object arrays with a size larger than
564         // 2^26 - 1 (that is, 2^28 - 4 bytes).
565         __ shll(index_reg, Immediate(TIMES_4));
566         static_assert(
567             sizeof(mirror::HeapReference<mirror::Object>) == sizeof(int32_t),
568             "art::mirror::HeapReference<art::mirror::Object> and int32_t have different sizes.");
569         __ AddImmediate(index_reg, Immediate(offset_));
570       } else {
571         DCHECK(instruction_->IsInvoke());
572         DCHECK(instruction_->GetLocations()->Intrinsified());
573         DCHECK((instruction_->AsInvoke()->GetIntrinsic() == Intrinsics::kUnsafeGetObject) ||
574                (instruction_->AsInvoke()->GetIntrinsic() == Intrinsics::kUnsafeGetObjectVolatile))
575             << instruction_->AsInvoke()->GetIntrinsic();
576         DCHECK_EQ(offset_, 0U);
577         DCHECK(index_.IsRegisterPair());
578         // UnsafeGet's offset location is a register pair, the low
579         // part contains the correct offset.
580         index = index_.ToLow();
581       }
582     }
583 
584     // We're moving two or three locations to locations that could
585     // overlap, so we need a parallel move resolver.
586     InvokeRuntimeCallingConvention calling_convention;
587     HParallelMove parallel_move(codegen->GetGraph()->GetArena());
588     parallel_move.AddMove(ref_,
589                           Location::RegisterLocation(calling_convention.GetRegisterAt(0)),
590                           Primitive::kPrimNot,
591                           nullptr);
592     parallel_move.AddMove(obj_,
593                           Location::RegisterLocation(calling_convention.GetRegisterAt(1)),
594                           Primitive::kPrimNot,
595                           nullptr);
596     if (index.IsValid()) {
597       parallel_move.AddMove(index,
598                             Location::RegisterLocation(calling_convention.GetRegisterAt(2)),
599                             Primitive::kPrimInt,
600                             nullptr);
601       codegen->GetMoveResolver()->EmitNativeCode(&parallel_move);
602     } else {
603       codegen->GetMoveResolver()->EmitNativeCode(&parallel_move);
604       __ movl(calling_convention.GetRegisterAt(2), Immediate(offset_));
605     }
606     x86_codegen->InvokeRuntime(QUICK_ENTRY_POINT(pReadBarrierSlow),
607                                instruction_,
608                                instruction_->GetDexPc(),
609                                this);
610     CheckEntrypointTypes<
611         kQuickReadBarrierSlow, mirror::Object*, mirror::Object*, mirror::Object*, uint32_t>();
612     x86_codegen->Move32(out_, Location::RegisterLocation(EAX));
613 
614     RestoreLiveRegisters(codegen, locations);
615     __ jmp(GetExitLabel());
616   }
617 
GetDescription() const618   const char* GetDescription() const OVERRIDE { return "ReadBarrierForHeapReferenceSlowPathX86"; }
619 
620  private:
FindAvailableCallerSaveRegister(CodeGenerator * codegen)621   Register FindAvailableCallerSaveRegister(CodeGenerator* codegen) {
622     size_t ref = static_cast<int>(ref_.AsRegister<Register>());
623     size_t obj = static_cast<int>(obj_.AsRegister<Register>());
624     for (size_t i = 0, e = codegen->GetNumberOfCoreRegisters(); i < e; ++i) {
625       if (i != ref && i != obj && !codegen->IsCoreCalleeSaveRegister(i)) {
626         return static_cast<Register>(i);
627       }
628     }
629     // We shall never fail to find a free caller-save register, as
630     // there are more than two core caller-save registers on x86
631     // (meaning it is possible to find one which is different from
632     // `ref` and `obj`).
633     DCHECK_GT(codegen->GetNumberOfCoreCallerSaveRegisters(), 2u);
634     LOG(FATAL) << "Could not find a free caller-save register";
635     UNREACHABLE();
636   }
637 
638   const Location out_;
639   const Location ref_;
640   const Location obj_;
641   const uint32_t offset_;
642   // An additional location containing an index to an array.
643   // Only used for HArrayGet and the UnsafeGetObject &
644   // UnsafeGetObjectVolatile intrinsics.
645   const Location index_;
646 
647   DISALLOW_COPY_AND_ASSIGN(ReadBarrierForHeapReferenceSlowPathX86);
648 };
649 
650 // Slow path generating a read barrier for a GC root.
651 class ReadBarrierForRootSlowPathX86 : public SlowPathCode {
652  public:
ReadBarrierForRootSlowPathX86(HInstruction * instruction,Location out,Location root)653   ReadBarrierForRootSlowPathX86(HInstruction* instruction, Location out, Location root)
654       : SlowPathCode(instruction), out_(out), root_(root) {
655     DCHECK(kEmitCompilerReadBarrier);
656   }
657 
EmitNativeCode(CodeGenerator * codegen)658   void EmitNativeCode(CodeGenerator* codegen) OVERRIDE {
659     LocationSummary* locations = instruction_->GetLocations();
660     Register reg_out = out_.AsRegister<Register>();
661     DCHECK(locations->CanCall());
662     DCHECK(!locations->GetLiveRegisters()->ContainsCoreRegister(reg_out));
663     DCHECK(instruction_->IsLoadClass() || instruction_->IsLoadString())
664         << "Unexpected instruction in read barrier for GC root slow path: "
665         << instruction_->DebugName();
666 
667     __ Bind(GetEntryLabel());
668     SaveLiveRegisters(codegen, locations);
669 
670     InvokeRuntimeCallingConvention calling_convention;
671     CodeGeneratorX86* x86_codegen = down_cast<CodeGeneratorX86*>(codegen);
672     x86_codegen->Move32(Location::RegisterLocation(calling_convention.GetRegisterAt(0)), root_);
673     x86_codegen->InvokeRuntime(QUICK_ENTRY_POINT(pReadBarrierForRootSlow),
674                                instruction_,
675                                instruction_->GetDexPc(),
676                                this);
677     CheckEntrypointTypes<kQuickReadBarrierForRootSlow, mirror::Object*, GcRoot<mirror::Object>*>();
678     x86_codegen->Move32(out_, Location::RegisterLocation(EAX));
679 
680     RestoreLiveRegisters(codegen, locations);
681     __ jmp(GetExitLabel());
682   }
683 
GetDescription() const684   const char* GetDescription() const OVERRIDE { return "ReadBarrierForRootSlowPathX86"; }
685 
686  private:
687   const Location out_;
688   const Location root_;
689 
690   DISALLOW_COPY_AND_ASSIGN(ReadBarrierForRootSlowPathX86);
691 };
692 
693 #undef __
694 #define __ down_cast<X86Assembler*>(GetAssembler())->
695 
X86Condition(IfCondition cond)696 inline Condition X86Condition(IfCondition cond) {
697   switch (cond) {
698     case kCondEQ: return kEqual;
699     case kCondNE: return kNotEqual;
700     case kCondLT: return kLess;
701     case kCondLE: return kLessEqual;
702     case kCondGT: return kGreater;
703     case kCondGE: return kGreaterEqual;
704     case kCondB:  return kBelow;
705     case kCondBE: return kBelowEqual;
706     case kCondA:  return kAbove;
707     case kCondAE: return kAboveEqual;
708   }
709   LOG(FATAL) << "Unreachable";
710   UNREACHABLE();
711 }
712 
713 // Maps signed condition to unsigned condition and FP condition to x86 name.
X86UnsignedOrFPCondition(IfCondition cond)714 inline Condition X86UnsignedOrFPCondition(IfCondition cond) {
715   switch (cond) {
716     case kCondEQ: return kEqual;
717     case kCondNE: return kNotEqual;
718     // Signed to unsigned, and FP to x86 name.
719     case kCondLT: return kBelow;
720     case kCondLE: return kBelowEqual;
721     case kCondGT: return kAbove;
722     case kCondGE: return kAboveEqual;
723     // Unsigned remain unchanged.
724     case kCondB:  return kBelow;
725     case kCondBE: return kBelowEqual;
726     case kCondA:  return kAbove;
727     case kCondAE: return kAboveEqual;
728   }
729   LOG(FATAL) << "Unreachable";
730   UNREACHABLE();
731 }
732 
DumpCoreRegister(std::ostream & stream,int reg) const733 void CodeGeneratorX86::DumpCoreRegister(std::ostream& stream, int reg) const {
734   stream << Register(reg);
735 }
736 
DumpFloatingPointRegister(std::ostream & stream,int reg) const737 void CodeGeneratorX86::DumpFloatingPointRegister(std::ostream& stream, int reg) const {
738   stream << XmmRegister(reg);
739 }
740 
SaveCoreRegister(size_t stack_index,uint32_t reg_id)741 size_t CodeGeneratorX86::SaveCoreRegister(size_t stack_index, uint32_t reg_id) {
742   __ movl(Address(ESP, stack_index), static_cast<Register>(reg_id));
743   return kX86WordSize;
744 }
745 
RestoreCoreRegister(size_t stack_index,uint32_t reg_id)746 size_t CodeGeneratorX86::RestoreCoreRegister(size_t stack_index, uint32_t reg_id) {
747   __ movl(static_cast<Register>(reg_id), Address(ESP, stack_index));
748   return kX86WordSize;
749 }
750 
SaveFloatingPointRegister(size_t stack_index,uint32_t reg_id)751 size_t CodeGeneratorX86::SaveFloatingPointRegister(size_t stack_index, uint32_t reg_id) {
752   __ movsd(Address(ESP, stack_index), XmmRegister(reg_id));
753   return GetFloatingPointSpillSlotSize();
754 }
755 
RestoreFloatingPointRegister(size_t stack_index,uint32_t reg_id)756 size_t CodeGeneratorX86::RestoreFloatingPointRegister(size_t stack_index, uint32_t reg_id) {
757   __ movsd(XmmRegister(reg_id), Address(ESP, stack_index));
758   return GetFloatingPointSpillSlotSize();
759 }
760 
InvokeRuntime(QuickEntrypointEnum entrypoint,HInstruction * instruction,uint32_t dex_pc,SlowPathCode * slow_path)761 void CodeGeneratorX86::InvokeRuntime(QuickEntrypointEnum entrypoint,
762                                      HInstruction* instruction,
763                                      uint32_t dex_pc,
764                                      SlowPathCode* slow_path) {
765   InvokeRuntime(GetThreadOffset<kX86WordSize>(entrypoint).Int32Value(),
766                 instruction,
767                 dex_pc,
768                 slow_path);
769 }
770 
InvokeRuntime(int32_t entry_point_offset,HInstruction * instruction,uint32_t dex_pc,SlowPathCode * slow_path)771 void CodeGeneratorX86::InvokeRuntime(int32_t entry_point_offset,
772                                      HInstruction* instruction,
773                                      uint32_t dex_pc,
774                                      SlowPathCode* slow_path) {
775   ValidateInvokeRuntime(instruction, slow_path);
776   __ fs()->call(Address::Absolute(entry_point_offset));
777   RecordPcInfo(instruction, dex_pc, slow_path);
778 }
779 
CodeGeneratorX86(HGraph * graph,const X86InstructionSetFeatures & isa_features,const CompilerOptions & compiler_options,OptimizingCompilerStats * stats)780 CodeGeneratorX86::CodeGeneratorX86(HGraph* graph,
781                                    const X86InstructionSetFeatures& isa_features,
782                                    const CompilerOptions& compiler_options,
783                                    OptimizingCompilerStats* stats)
784     : CodeGenerator(graph,
785                     kNumberOfCpuRegisters,
786                     kNumberOfXmmRegisters,
787                     kNumberOfRegisterPairs,
788                     ComputeRegisterMask(reinterpret_cast<const int*>(kCoreCalleeSaves),
789                                         arraysize(kCoreCalleeSaves))
790                         | (1 << kFakeReturnRegister),
791                     0,
792                     compiler_options,
793                     stats),
794       block_labels_(nullptr),
795       location_builder_(graph, this),
796       instruction_visitor_(graph, this),
797       move_resolver_(graph->GetArena(), this),
798       assembler_(graph->GetArena()),
799       isa_features_(isa_features),
800       method_patches_(graph->GetArena()->Adapter(kArenaAllocCodeGenerator)),
801       relative_call_patches_(graph->GetArena()->Adapter(kArenaAllocCodeGenerator)),
802       pc_relative_dex_cache_patches_(graph->GetArena()->Adapter(kArenaAllocCodeGenerator)),
803       simple_patches_(graph->GetArena()->Adapter(kArenaAllocCodeGenerator)),
804       string_patches_(graph->GetArena()->Adapter(kArenaAllocCodeGenerator)),
805       constant_area_start_(-1),
806       fixups_to_jump_tables_(graph->GetArena()->Adapter(kArenaAllocCodeGenerator)),
807       method_address_offset_(-1) {
808   // Use a fake return address register to mimic Quick.
809   AddAllocatedRegister(Location::RegisterLocation(kFakeReturnRegister));
810 }
811 
SetupBlockedRegisters() const812 void CodeGeneratorX86::SetupBlockedRegisters() const {
813   // Don't allocate the dalvik style register pair passing.
814   blocked_register_pairs_[ECX_EDX] = true;
815 
816   // Stack register is always reserved.
817   blocked_core_registers_[ESP] = true;
818 
819   UpdateBlockedPairRegisters();
820 }
821 
UpdateBlockedPairRegisters() const822 void CodeGeneratorX86::UpdateBlockedPairRegisters() const {
823   for (int i = 0; i < kNumberOfRegisterPairs; i++) {
824     X86ManagedRegister current =
825         X86ManagedRegister::FromRegisterPair(static_cast<RegisterPair>(i));
826     if (blocked_core_registers_[current.AsRegisterPairLow()]
827         || blocked_core_registers_[current.AsRegisterPairHigh()]) {
828       blocked_register_pairs_[i] = true;
829     }
830   }
831 }
832 
InstructionCodeGeneratorX86(HGraph * graph,CodeGeneratorX86 * codegen)833 InstructionCodeGeneratorX86::InstructionCodeGeneratorX86(HGraph* graph, CodeGeneratorX86* codegen)
834       : InstructionCodeGenerator(graph, codegen),
835         assembler_(codegen->GetAssembler()),
836         codegen_(codegen) {}
837 
DWARFReg(Register reg)838 static dwarf::Reg DWARFReg(Register reg) {
839   return dwarf::Reg::X86Core(static_cast<int>(reg));
840 }
841 
GenerateFrameEntry()842 void CodeGeneratorX86::GenerateFrameEntry() {
843   __ cfi().SetCurrentCFAOffset(kX86WordSize);  // return address
844   __ Bind(&frame_entry_label_);
845   bool skip_overflow_check =
846       IsLeafMethod() && !FrameNeedsStackCheck(GetFrameSize(), InstructionSet::kX86);
847   DCHECK(GetCompilerOptions().GetImplicitStackOverflowChecks());
848 
849   if (!skip_overflow_check) {
850     __ testl(EAX, Address(ESP, -static_cast<int32_t>(GetStackOverflowReservedBytes(kX86))));
851     RecordPcInfo(nullptr, 0);
852   }
853 
854   if (HasEmptyFrame()) {
855     return;
856   }
857 
858   for (int i = arraysize(kCoreCalleeSaves) - 1; i >= 0; --i) {
859     Register reg = kCoreCalleeSaves[i];
860     if (allocated_registers_.ContainsCoreRegister(reg)) {
861       __ pushl(reg);
862       __ cfi().AdjustCFAOffset(kX86WordSize);
863       __ cfi().RelOffset(DWARFReg(reg), 0);
864     }
865   }
866 
867   int adjust = GetFrameSize() - FrameEntrySpillSize();
868   __ subl(ESP, Immediate(adjust));
869   __ cfi().AdjustCFAOffset(adjust);
870   __ movl(Address(ESP, kCurrentMethodStackOffset), kMethodRegisterArgument);
871 }
872 
GenerateFrameExit()873 void CodeGeneratorX86::GenerateFrameExit() {
874   __ cfi().RememberState();
875   if (!HasEmptyFrame()) {
876     int adjust = GetFrameSize() - FrameEntrySpillSize();
877     __ addl(ESP, Immediate(adjust));
878     __ cfi().AdjustCFAOffset(-adjust);
879 
880     for (size_t i = 0; i < arraysize(kCoreCalleeSaves); ++i) {
881       Register reg = kCoreCalleeSaves[i];
882       if (allocated_registers_.ContainsCoreRegister(reg)) {
883         __ popl(reg);
884         __ cfi().AdjustCFAOffset(-static_cast<int>(kX86WordSize));
885         __ cfi().Restore(DWARFReg(reg));
886       }
887     }
888   }
889   __ ret();
890   __ cfi().RestoreState();
891   __ cfi().DefCFAOffset(GetFrameSize());
892 }
893 
Bind(HBasicBlock * block)894 void CodeGeneratorX86::Bind(HBasicBlock* block) {
895   __ Bind(GetLabelOf(block));
896 }
897 
GetReturnLocation(Primitive::Type type) const898 Location InvokeDexCallingConventionVisitorX86::GetReturnLocation(Primitive::Type type) const {
899   switch (type) {
900     case Primitive::kPrimBoolean:
901     case Primitive::kPrimByte:
902     case Primitive::kPrimChar:
903     case Primitive::kPrimShort:
904     case Primitive::kPrimInt:
905     case Primitive::kPrimNot:
906       return Location::RegisterLocation(EAX);
907 
908     case Primitive::kPrimLong:
909       return Location::RegisterPairLocation(EAX, EDX);
910 
911     case Primitive::kPrimVoid:
912       return Location::NoLocation();
913 
914     case Primitive::kPrimDouble:
915     case Primitive::kPrimFloat:
916       return Location::FpuRegisterLocation(XMM0);
917   }
918 
919   UNREACHABLE();
920 }
921 
GetMethodLocation() const922 Location InvokeDexCallingConventionVisitorX86::GetMethodLocation() const {
923   return Location::RegisterLocation(kMethodRegisterArgument);
924 }
925 
GetNextLocation(Primitive::Type type)926 Location InvokeDexCallingConventionVisitorX86::GetNextLocation(Primitive::Type type) {
927   switch (type) {
928     case Primitive::kPrimBoolean:
929     case Primitive::kPrimByte:
930     case Primitive::kPrimChar:
931     case Primitive::kPrimShort:
932     case Primitive::kPrimInt:
933     case Primitive::kPrimNot: {
934       uint32_t index = gp_index_++;
935       stack_index_++;
936       if (index < calling_convention.GetNumberOfRegisters()) {
937         return Location::RegisterLocation(calling_convention.GetRegisterAt(index));
938       } else {
939         return Location::StackSlot(calling_convention.GetStackOffsetOf(stack_index_ - 1));
940       }
941     }
942 
943     case Primitive::kPrimLong: {
944       uint32_t index = gp_index_;
945       gp_index_ += 2;
946       stack_index_ += 2;
947       if (index + 1 < calling_convention.GetNumberOfRegisters()) {
948         X86ManagedRegister pair = X86ManagedRegister::FromRegisterPair(
949             calling_convention.GetRegisterPairAt(index));
950         return Location::RegisterPairLocation(pair.AsRegisterPairLow(), pair.AsRegisterPairHigh());
951       } else {
952         return Location::DoubleStackSlot(calling_convention.GetStackOffsetOf(stack_index_ - 2));
953       }
954     }
955 
956     case Primitive::kPrimFloat: {
957       uint32_t index = float_index_++;
958       stack_index_++;
959       if (index < calling_convention.GetNumberOfFpuRegisters()) {
960         return Location::FpuRegisterLocation(calling_convention.GetFpuRegisterAt(index));
961       } else {
962         return Location::StackSlot(calling_convention.GetStackOffsetOf(stack_index_ - 1));
963       }
964     }
965 
966     case Primitive::kPrimDouble: {
967       uint32_t index = float_index_++;
968       stack_index_ += 2;
969       if (index < calling_convention.GetNumberOfFpuRegisters()) {
970         return Location::FpuRegisterLocation(calling_convention.GetFpuRegisterAt(index));
971       } else {
972         return Location::DoubleStackSlot(calling_convention.GetStackOffsetOf(stack_index_ - 2));
973       }
974     }
975 
976     case Primitive::kPrimVoid:
977       LOG(FATAL) << "Unexpected parameter type " << type;
978       break;
979   }
980   return Location::NoLocation();
981 }
982 
Move32(Location destination,Location source)983 void CodeGeneratorX86::Move32(Location destination, Location source) {
984   if (source.Equals(destination)) {
985     return;
986   }
987   if (destination.IsRegister()) {
988     if (source.IsRegister()) {
989       __ movl(destination.AsRegister<Register>(), source.AsRegister<Register>());
990     } else if (source.IsFpuRegister()) {
991       __ movd(destination.AsRegister<Register>(), source.AsFpuRegister<XmmRegister>());
992     } else {
993       DCHECK(source.IsStackSlot());
994       __ movl(destination.AsRegister<Register>(), Address(ESP, source.GetStackIndex()));
995     }
996   } else if (destination.IsFpuRegister()) {
997     if (source.IsRegister()) {
998       __ movd(destination.AsFpuRegister<XmmRegister>(), source.AsRegister<Register>());
999     } else if (source.IsFpuRegister()) {
1000       __ movaps(destination.AsFpuRegister<XmmRegister>(), source.AsFpuRegister<XmmRegister>());
1001     } else {
1002       DCHECK(source.IsStackSlot());
1003       __ movss(destination.AsFpuRegister<XmmRegister>(), Address(ESP, source.GetStackIndex()));
1004     }
1005   } else {
1006     DCHECK(destination.IsStackSlot()) << destination;
1007     if (source.IsRegister()) {
1008       __ movl(Address(ESP, destination.GetStackIndex()), source.AsRegister<Register>());
1009     } else if (source.IsFpuRegister()) {
1010       __ movss(Address(ESP, destination.GetStackIndex()), source.AsFpuRegister<XmmRegister>());
1011     } else if (source.IsConstant()) {
1012       HConstant* constant = source.GetConstant();
1013       int32_t value = GetInt32ValueOf(constant);
1014       __ movl(Address(ESP, destination.GetStackIndex()), Immediate(value));
1015     } else {
1016       DCHECK(source.IsStackSlot());
1017       __ pushl(Address(ESP, source.GetStackIndex()));
1018       __ popl(Address(ESP, destination.GetStackIndex()));
1019     }
1020   }
1021 }
1022 
Move64(Location destination,Location source)1023 void CodeGeneratorX86::Move64(Location destination, Location source) {
1024   if (source.Equals(destination)) {
1025     return;
1026   }
1027   if (destination.IsRegisterPair()) {
1028     if (source.IsRegisterPair()) {
1029       EmitParallelMoves(
1030           Location::RegisterLocation(source.AsRegisterPairHigh<Register>()),
1031           Location::RegisterLocation(destination.AsRegisterPairHigh<Register>()),
1032           Primitive::kPrimInt,
1033           Location::RegisterLocation(source.AsRegisterPairLow<Register>()),
1034           Location::RegisterLocation(destination.AsRegisterPairLow<Register>()),
1035           Primitive::kPrimInt);
1036     } else if (source.IsFpuRegister()) {
1037       XmmRegister src_reg = source.AsFpuRegister<XmmRegister>();
1038       __ movd(destination.AsRegisterPairLow<Register>(), src_reg);
1039       __ psrlq(src_reg, Immediate(32));
1040       __ movd(destination.AsRegisterPairHigh<Register>(), src_reg);
1041     } else {
1042       // No conflict possible, so just do the moves.
1043       DCHECK(source.IsDoubleStackSlot());
1044       __ movl(destination.AsRegisterPairLow<Register>(), Address(ESP, source.GetStackIndex()));
1045       __ movl(destination.AsRegisterPairHigh<Register>(),
1046               Address(ESP, source.GetHighStackIndex(kX86WordSize)));
1047     }
1048   } else if (destination.IsFpuRegister()) {
1049     if (source.IsFpuRegister()) {
1050       __ movaps(destination.AsFpuRegister<XmmRegister>(), source.AsFpuRegister<XmmRegister>());
1051     } else if (source.IsDoubleStackSlot()) {
1052       __ movsd(destination.AsFpuRegister<XmmRegister>(), Address(ESP, source.GetStackIndex()));
1053     } else if (source.IsRegisterPair()) {
1054       size_t elem_size = Primitive::ComponentSize(Primitive::kPrimInt);
1055       // Create stack space for 2 elements.
1056       __ subl(ESP, Immediate(2 * elem_size));
1057       __ movl(Address(ESP, 0), source.AsRegisterPairLow<Register>());
1058       __ movl(Address(ESP, elem_size), source.AsRegisterPairHigh<Register>());
1059       __ movsd(destination.AsFpuRegister<XmmRegister>(), Address(ESP, 0));
1060       // And remove the temporary stack space we allocated.
1061       __ addl(ESP, Immediate(2 * elem_size));
1062     } else {
1063       LOG(FATAL) << "Unimplemented";
1064     }
1065   } else {
1066     DCHECK(destination.IsDoubleStackSlot()) << destination;
1067     if (source.IsRegisterPair()) {
1068       // No conflict possible, so just do the moves.
1069       __ movl(Address(ESP, destination.GetStackIndex()), source.AsRegisterPairLow<Register>());
1070       __ movl(Address(ESP, destination.GetHighStackIndex(kX86WordSize)),
1071               source.AsRegisterPairHigh<Register>());
1072     } else if (source.IsFpuRegister()) {
1073       __ movsd(Address(ESP, destination.GetStackIndex()), source.AsFpuRegister<XmmRegister>());
1074     } else if (source.IsConstant()) {
1075       HConstant* constant = source.GetConstant();
1076       int64_t value;
1077       if (constant->IsLongConstant()) {
1078         value = constant->AsLongConstant()->GetValue();
1079       } else {
1080         DCHECK(constant->IsDoubleConstant());
1081         value = bit_cast<int64_t, double>(constant->AsDoubleConstant()->GetValue());
1082       }
1083       __ movl(Address(ESP, destination.GetStackIndex()), Immediate(Low32Bits(value)));
1084       __ movl(Address(ESP, destination.GetHighStackIndex(kX86WordSize)), Immediate(High32Bits(value)));
1085     } else {
1086       DCHECK(source.IsDoubleStackSlot()) << source;
1087       EmitParallelMoves(
1088           Location::StackSlot(source.GetStackIndex()),
1089           Location::StackSlot(destination.GetStackIndex()),
1090           Primitive::kPrimInt,
1091           Location::StackSlot(source.GetHighStackIndex(kX86WordSize)),
1092           Location::StackSlot(destination.GetHighStackIndex(kX86WordSize)),
1093           Primitive::kPrimInt);
1094     }
1095   }
1096 }
1097 
MoveConstant(Location location,int32_t value)1098 void CodeGeneratorX86::MoveConstant(Location location, int32_t value) {
1099   DCHECK(location.IsRegister());
1100   __ movl(location.AsRegister<Register>(), Immediate(value));
1101 }
1102 
MoveLocation(Location dst,Location src,Primitive::Type dst_type)1103 void CodeGeneratorX86::MoveLocation(Location dst, Location src, Primitive::Type dst_type) {
1104   HParallelMove move(GetGraph()->GetArena());
1105   if (dst_type == Primitive::kPrimLong && !src.IsConstant() && !src.IsFpuRegister()) {
1106     move.AddMove(src.ToLow(), dst.ToLow(), Primitive::kPrimInt, nullptr);
1107     move.AddMove(src.ToHigh(), dst.ToHigh(), Primitive::kPrimInt, nullptr);
1108   } else {
1109     move.AddMove(src, dst, dst_type, nullptr);
1110   }
1111   GetMoveResolver()->EmitNativeCode(&move);
1112 }
1113 
AddLocationAsTemp(Location location,LocationSummary * locations)1114 void CodeGeneratorX86::AddLocationAsTemp(Location location, LocationSummary* locations) {
1115   if (location.IsRegister()) {
1116     locations->AddTemp(location);
1117   } else if (location.IsRegisterPair()) {
1118     locations->AddTemp(Location::RegisterLocation(location.AsRegisterPairLow<Register>()));
1119     locations->AddTemp(Location::RegisterLocation(location.AsRegisterPairHigh<Register>()));
1120   } else {
1121     UNIMPLEMENTED(FATAL) << "AddLocationAsTemp not implemented for location " << location;
1122   }
1123 }
1124 
HandleGoto(HInstruction * got,HBasicBlock * successor)1125 void InstructionCodeGeneratorX86::HandleGoto(HInstruction* got, HBasicBlock* successor) {
1126   DCHECK(!successor->IsExitBlock());
1127 
1128   HBasicBlock* block = got->GetBlock();
1129   HInstruction* previous = got->GetPrevious();
1130 
1131   HLoopInformation* info = block->GetLoopInformation();
1132   if (info != nullptr && info->IsBackEdge(*block) && info->HasSuspendCheck()) {
1133     GenerateSuspendCheck(info->GetSuspendCheck(), successor);
1134     return;
1135   }
1136 
1137   if (block->IsEntryBlock() && (previous != nullptr) && previous->IsSuspendCheck()) {
1138     GenerateSuspendCheck(previous->AsSuspendCheck(), nullptr);
1139   }
1140   if (!codegen_->GoesToNextBlock(got->GetBlock(), successor)) {
1141     __ jmp(codegen_->GetLabelOf(successor));
1142   }
1143 }
1144 
VisitGoto(HGoto * got)1145 void LocationsBuilderX86::VisitGoto(HGoto* got) {
1146   got->SetLocations(nullptr);
1147 }
1148 
VisitGoto(HGoto * got)1149 void InstructionCodeGeneratorX86::VisitGoto(HGoto* got) {
1150   HandleGoto(got, got->GetSuccessor());
1151 }
1152 
VisitTryBoundary(HTryBoundary * try_boundary)1153 void LocationsBuilderX86::VisitTryBoundary(HTryBoundary* try_boundary) {
1154   try_boundary->SetLocations(nullptr);
1155 }
1156 
VisitTryBoundary(HTryBoundary * try_boundary)1157 void InstructionCodeGeneratorX86::VisitTryBoundary(HTryBoundary* try_boundary) {
1158   HBasicBlock* successor = try_boundary->GetNormalFlowSuccessor();
1159   if (!successor->IsExitBlock()) {
1160     HandleGoto(try_boundary, successor);
1161   }
1162 }
1163 
VisitExit(HExit * exit)1164 void LocationsBuilderX86::VisitExit(HExit* exit) {
1165   exit->SetLocations(nullptr);
1166 }
1167 
VisitExit(HExit * exit ATTRIBUTE_UNUSED)1168 void InstructionCodeGeneratorX86::VisitExit(HExit* exit ATTRIBUTE_UNUSED) {
1169 }
1170 
1171 template<class LabelType>
GenerateFPJumps(HCondition * cond,LabelType * true_label,LabelType * false_label)1172 void InstructionCodeGeneratorX86::GenerateFPJumps(HCondition* cond,
1173                                                   LabelType* true_label,
1174                                                   LabelType* false_label) {
1175   if (cond->IsFPConditionTrueIfNaN()) {
1176     __ j(kUnordered, true_label);
1177   } else if (cond->IsFPConditionFalseIfNaN()) {
1178     __ j(kUnordered, false_label);
1179   }
1180   __ j(X86UnsignedOrFPCondition(cond->GetCondition()), true_label);
1181 }
1182 
1183 template<class LabelType>
GenerateLongComparesAndJumps(HCondition * cond,LabelType * true_label,LabelType * false_label)1184 void InstructionCodeGeneratorX86::GenerateLongComparesAndJumps(HCondition* cond,
1185                                                                LabelType* true_label,
1186                                                                LabelType* false_label) {
1187   LocationSummary* locations = cond->GetLocations();
1188   Location left = locations->InAt(0);
1189   Location right = locations->InAt(1);
1190   IfCondition if_cond = cond->GetCondition();
1191 
1192   Register left_high = left.AsRegisterPairHigh<Register>();
1193   Register left_low = left.AsRegisterPairLow<Register>();
1194   IfCondition true_high_cond = if_cond;
1195   IfCondition false_high_cond = cond->GetOppositeCondition();
1196   Condition final_condition = X86UnsignedOrFPCondition(if_cond);  // unsigned on lower part
1197 
1198   // Set the conditions for the test, remembering that == needs to be
1199   // decided using the low words.
1200   switch (if_cond) {
1201     case kCondEQ:
1202     case kCondNE:
1203       // Nothing to do.
1204       break;
1205     case kCondLT:
1206       false_high_cond = kCondGT;
1207       break;
1208     case kCondLE:
1209       true_high_cond = kCondLT;
1210       break;
1211     case kCondGT:
1212       false_high_cond = kCondLT;
1213       break;
1214     case kCondGE:
1215       true_high_cond = kCondGT;
1216       break;
1217     case kCondB:
1218       false_high_cond = kCondA;
1219       break;
1220     case kCondBE:
1221       true_high_cond = kCondB;
1222       break;
1223     case kCondA:
1224       false_high_cond = kCondB;
1225       break;
1226     case kCondAE:
1227       true_high_cond = kCondA;
1228       break;
1229   }
1230 
1231   if (right.IsConstant()) {
1232     int64_t value = right.GetConstant()->AsLongConstant()->GetValue();
1233     int32_t val_high = High32Bits(value);
1234     int32_t val_low = Low32Bits(value);
1235 
1236     codegen_->Compare32BitValue(left_high, val_high);
1237     if (if_cond == kCondNE) {
1238       __ j(X86Condition(true_high_cond), true_label);
1239     } else if (if_cond == kCondEQ) {
1240       __ j(X86Condition(false_high_cond), false_label);
1241     } else {
1242       __ j(X86Condition(true_high_cond), true_label);
1243       __ j(X86Condition(false_high_cond), false_label);
1244     }
1245     // Must be equal high, so compare the lows.
1246     codegen_->Compare32BitValue(left_low, val_low);
1247   } else if (right.IsRegisterPair()) {
1248     Register right_high = right.AsRegisterPairHigh<Register>();
1249     Register right_low = right.AsRegisterPairLow<Register>();
1250 
1251     __ cmpl(left_high, right_high);
1252     if (if_cond == kCondNE) {
1253       __ j(X86Condition(true_high_cond), true_label);
1254     } else if (if_cond == kCondEQ) {
1255       __ j(X86Condition(false_high_cond), false_label);
1256     } else {
1257       __ j(X86Condition(true_high_cond), true_label);
1258       __ j(X86Condition(false_high_cond), false_label);
1259     }
1260     // Must be equal high, so compare the lows.
1261     __ cmpl(left_low, right_low);
1262   } else {
1263     DCHECK(right.IsDoubleStackSlot());
1264     __ cmpl(left_high, Address(ESP, right.GetHighStackIndex(kX86WordSize)));
1265     if (if_cond == kCondNE) {
1266       __ j(X86Condition(true_high_cond), true_label);
1267     } else if (if_cond == kCondEQ) {
1268       __ j(X86Condition(false_high_cond), false_label);
1269     } else {
1270       __ j(X86Condition(true_high_cond), true_label);
1271       __ j(X86Condition(false_high_cond), false_label);
1272     }
1273     // Must be equal high, so compare the lows.
1274     __ cmpl(left_low, Address(ESP, right.GetStackIndex()));
1275   }
1276   // The last comparison might be unsigned.
1277   __ j(final_condition, true_label);
1278 }
1279 
GenerateFPCompare(Location lhs,Location rhs,HInstruction * insn,bool is_double)1280 void InstructionCodeGeneratorX86::GenerateFPCompare(Location lhs,
1281                                                     Location rhs,
1282                                                     HInstruction* insn,
1283                                                     bool is_double) {
1284   HX86LoadFromConstantTable* const_area = insn->InputAt(1)->AsX86LoadFromConstantTable();
1285   if (is_double) {
1286     if (rhs.IsFpuRegister()) {
1287       __ ucomisd(lhs.AsFpuRegister<XmmRegister>(), rhs.AsFpuRegister<XmmRegister>());
1288     } else if (const_area != nullptr) {
1289       DCHECK(const_area->IsEmittedAtUseSite());
1290       __ ucomisd(lhs.AsFpuRegister<XmmRegister>(),
1291                  codegen_->LiteralDoubleAddress(
1292                    const_area->GetConstant()->AsDoubleConstant()->GetValue(),
1293                    const_area->GetLocations()->InAt(0).AsRegister<Register>()));
1294     } else {
1295       DCHECK(rhs.IsDoubleStackSlot());
1296       __ ucomisd(lhs.AsFpuRegister<XmmRegister>(), Address(ESP, rhs.GetStackIndex()));
1297     }
1298   } else {
1299     if (rhs.IsFpuRegister()) {
1300       __ ucomiss(lhs.AsFpuRegister<XmmRegister>(), rhs.AsFpuRegister<XmmRegister>());
1301     } else if (const_area != nullptr) {
1302       DCHECK(const_area->IsEmittedAtUseSite());
1303       __ ucomiss(lhs.AsFpuRegister<XmmRegister>(),
1304                  codegen_->LiteralFloatAddress(
1305                    const_area->GetConstant()->AsFloatConstant()->GetValue(),
1306                    const_area->GetLocations()->InAt(0).AsRegister<Register>()));
1307     } else {
1308       DCHECK(rhs.IsStackSlot());
1309       __ ucomiss(lhs.AsFpuRegister<XmmRegister>(), Address(ESP, rhs.GetStackIndex()));
1310     }
1311   }
1312 }
1313 
1314 template<class LabelType>
GenerateCompareTestAndBranch(HCondition * condition,LabelType * true_target_in,LabelType * false_target_in)1315 void InstructionCodeGeneratorX86::GenerateCompareTestAndBranch(HCondition* condition,
1316                                                                LabelType* true_target_in,
1317                                                                LabelType* false_target_in) {
1318   // Generated branching requires both targets to be explicit. If either of the
1319   // targets is nullptr (fallthrough) use and bind `fallthrough_target` instead.
1320   LabelType fallthrough_target;
1321   LabelType* true_target = true_target_in == nullptr ? &fallthrough_target : true_target_in;
1322   LabelType* false_target = false_target_in == nullptr ? &fallthrough_target : false_target_in;
1323 
1324   LocationSummary* locations = condition->GetLocations();
1325   Location left = locations->InAt(0);
1326   Location right = locations->InAt(1);
1327 
1328   Primitive::Type type = condition->InputAt(0)->GetType();
1329   switch (type) {
1330     case Primitive::kPrimLong:
1331       GenerateLongComparesAndJumps(condition, true_target, false_target);
1332       break;
1333     case Primitive::kPrimFloat:
1334       GenerateFPCompare(left, right, condition, false);
1335       GenerateFPJumps(condition, true_target, false_target);
1336       break;
1337     case Primitive::kPrimDouble:
1338       GenerateFPCompare(left, right, condition, true);
1339       GenerateFPJumps(condition, true_target, false_target);
1340       break;
1341     default:
1342       LOG(FATAL) << "Unexpected compare type " << type;
1343   }
1344 
1345   if (false_target != &fallthrough_target) {
1346     __ jmp(false_target);
1347   }
1348 
1349   if (fallthrough_target.IsLinked()) {
1350     __ Bind(&fallthrough_target);
1351   }
1352 }
1353 
AreEflagsSetFrom(HInstruction * cond,HInstruction * branch)1354 static bool AreEflagsSetFrom(HInstruction* cond, HInstruction* branch) {
1355   // Moves may affect the eflags register (move zero uses xorl), so the EFLAGS
1356   // are set only strictly before `branch`. We can't use the eflags on long/FP
1357   // conditions if they are materialized due to the complex branching.
1358   return cond->IsCondition() &&
1359          cond->GetNext() == branch &&
1360          cond->InputAt(0)->GetType() != Primitive::kPrimLong &&
1361          !Primitive::IsFloatingPointType(cond->InputAt(0)->GetType());
1362 }
1363 
1364 template<class LabelType>
GenerateTestAndBranch(HInstruction * instruction,size_t condition_input_index,LabelType * true_target,LabelType * false_target)1365 void InstructionCodeGeneratorX86::GenerateTestAndBranch(HInstruction* instruction,
1366                                                         size_t condition_input_index,
1367                                                         LabelType* true_target,
1368                                                         LabelType* false_target) {
1369   HInstruction* cond = instruction->InputAt(condition_input_index);
1370 
1371   if (true_target == nullptr && false_target == nullptr) {
1372     // Nothing to do. The code always falls through.
1373     return;
1374   } else if (cond->IsIntConstant()) {
1375     // Constant condition, statically compared against "true" (integer value 1).
1376     if (cond->AsIntConstant()->IsTrue()) {
1377       if (true_target != nullptr) {
1378         __ jmp(true_target);
1379       }
1380     } else {
1381       DCHECK(cond->AsIntConstant()->IsFalse()) << cond->AsIntConstant()->GetValue();
1382       if (false_target != nullptr) {
1383         __ jmp(false_target);
1384       }
1385     }
1386     return;
1387   }
1388 
1389   // The following code generates these patterns:
1390   //  (1) true_target == nullptr && false_target != nullptr
1391   //        - opposite condition true => branch to false_target
1392   //  (2) true_target != nullptr && false_target == nullptr
1393   //        - condition true => branch to true_target
1394   //  (3) true_target != nullptr && false_target != nullptr
1395   //        - condition true => branch to true_target
1396   //        - branch to false_target
1397   if (IsBooleanValueOrMaterializedCondition(cond)) {
1398     if (AreEflagsSetFrom(cond, instruction)) {
1399       if (true_target == nullptr) {
1400         __ j(X86Condition(cond->AsCondition()->GetOppositeCondition()), false_target);
1401       } else {
1402         __ j(X86Condition(cond->AsCondition()->GetCondition()), true_target);
1403       }
1404     } else {
1405       // Materialized condition, compare against 0.
1406       Location lhs = instruction->GetLocations()->InAt(condition_input_index);
1407       if (lhs.IsRegister()) {
1408         __ testl(lhs.AsRegister<Register>(), lhs.AsRegister<Register>());
1409       } else {
1410         __ cmpl(Address(ESP, lhs.GetStackIndex()), Immediate(0));
1411       }
1412       if (true_target == nullptr) {
1413         __ j(kEqual, false_target);
1414       } else {
1415         __ j(kNotEqual, true_target);
1416       }
1417     }
1418   } else {
1419     // Condition has not been materialized, use its inputs as the comparison and
1420     // its condition as the branch condition.
1421     HCondition* condition = cond->AsCondition();
1422 
1423     // If this is a long or FP comparison that has been folded into
1424     // the HCondition, generate the comparison directly.
1425     Primitive::Type type = condition->InputAt(0)->GetType();
1426     if (type == Primitive::kPrimLong || Primitive::IsFloatingPointType(type)) {
1427       GenerateCompareTestAndBranch(condition, true_target, false_target);
1428       return;
1429     }
1430 
1431     Location lhs = condition->GetLocations()->InAt(0);
1432     Location rhs = condition->GetLocations()->InAt(1);
1433     // LHS is guaranteed to be in a register (see LocationsBuilderX86::HandleCondition).
1434     if (rhs.IsRegister()) {
1435       __ cmpl(lhs.AsRegister<Register>(), rhs.AsRegister<Register>());
1436     } else if (rhs.IsConstant()) {
1437       int32_t constant = CodeGenerator::GetInt32ValueOf(rhs.GetConstant());
1438       codegen_->Compare32BitValue(lhs.AsRegister<Register>(), constant);
1439     } else {
1440       __ cmpl(lhs.AsRegister<Register>(), Address(ESP, rhs.GetStackIndex()));
1441     }
1442     if (true_target == nullptr) {
1443       __ j(X86Condition(condition->GetOppositeCondition()), false_target);
1444     } else {
1445       __ j(X86Condition(condition->GetCondition()), true_target);
1446     }
1447   }
1448 
1449   // If neither branch falls through (case 3), the conditional branch to `true_target`
1450   // was already emitted (case 2) and we need to emit a jump to `false_target`.
1451   if (true_target != nullptr && false_target != nullptr) {
1452     __ jmp(false_target);
1453   }
1454 }
1455 
VisitIf(HIf * if_instr)1456 void LocationsBuilderX86::VisitIf(HIf* if_instr) {
1457   LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(if_instr);
1458   if (IsBooleanValueOrMaterializedCondition(if_instr->InputAt(0))) {
1459     locations->SetInAt(0, Location::Any());
1460   }
1461 }
1462 
VisitIf(HIf * if_instr)1463 void InstructionCodeGeneratorX86::VisitIf(HIf* if_instr) {
1464   HBasicBlock* true_successor = if_instr->IfTrueSuccessor();
1465   HBasicBlock* false_successor = if_instr->IfFalseSuccessor();
1466   Label* true_target = codegen_->GoesToNextBlock(if_instr->GetBlock(), true_successor) ?
1467       nullptr : codegen_->GetLabelOf(true_successor);
1468   Label* false_target = codegen_->GoesToNextBlock(if_instr->GetBlock(), false_successor) ?
1469       nullptr : codegen_->GetLabelOf(false_successor);
1470   GenerateTestAndBranch(if_instr, /* condition_input_index */ 0, true_target, false_target);
1471 }
1472 
VisitDeoptimize(HDeoptimize * deoptimize)1473 void LocationsBuilderX86::VisitDeoptimize(HDeoptimize* deoptimize) {
1474   LocationSummary* locations = new (GetGraph()->GetArena())
1475       LocationSummary(deoptimize, LocationSummary::kCallOnSlowPath);
1476   if (IsBooleanValueOrMaterializedCondition(deoptimize->InputAt(0))) {
1477     locations->SetInAt(0, Location::Any());
1478   }
1479 }
1480 
VisitDeoptimize(HDeoptimize * deoptimize)1481 void InstructionCodeGeneratorX86::VisitDeoptimize(HDeoptimize* deoptimize) {
1482   SlowPathCode* slow_path = deopt_slow_paths_.NewSlowPath<DeoptimizationSlowPathX86>(deoptimize);
1483   GenerateTestAndBranch<Label>(deoptimize,
1484                                /* condition_input_index */ 0,
1485                                slow_path->GetEntryLabel(),
1486                                /* false_target */ nullptr);
1487 }
1488 
SelectCanUseCMOV(HSelect * select)1489 static bool SelectCanUseCMOV(HSelect* select) {
1490   // There are no conditional move instructions for XMMs.
1491   if (Primitive::IsFloatingPointType(select->GetType())) {
1492     return false;
1493   }
1494 
1495   // A FP condition doesn't generate the single CC that we need.
1496   // In 32 bit mode, a long condition doesn't generate a single CC either.
1497   HInstruction* condition = select->GetCondition();
1498   if (condition->IsCondition()) {
1499     Primitive::Type compare_type = condition->InputAt(0)->GetType();
1500     if (compare_type == Primitive::kPrimLong ||
1501         Primitive::IsFloatingPointType(compare_type)) {
1502       return false;
1503     }
1504   }
1505 
1506   // We can generate a CMOV for this Select.
1507   return true;
1508 }
1509 
VisitSelect(HSelect * select)1510 void LocationsBuilderX86::VisitSelect(HSelect* select) {
1511   LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(select);
1512   if (Primitive::IsFloatingPointType(select->GetType())) {
1513     locations->SetInAt(0, Location::RequiresFpuRegister());
1514     locations->SetInAt(1, Location::Any());
1515   } else {
1516     locations->SetInAt(0, Location::RequiresRegister());
1517     if (SelectCanUseCMOV(select)) {
1518       if (select->InputAt(1)->IsConstant()) {
1519         // Cmov can't handle a constant value.
1520         locations->SetInAt(1, Location::RequiresRegister());
1521       } else {
1522         locations->SetInAt(1, Location::Any());
1523       }
1524     } else {
1525       locations->SetInAt(1, Location::Any());
1526     }
1527   }
1528   if (IsBooleanValueOrMaterializedCondition(select->GetCondition())) {
1529     locations->SetInAt(2, Location::RequiresRegister());
1530   }
1531   locations->SetOut(Location::SameAsFirstInput());
1532 }
1533 
GenerateIntCompare(Location lhs,Location rhs)1534 void InstructionCodeGeneratorX86::GenerateIntCompare(Location lhs, Location rhs) {
1535   Register lhs_reg = lhs.AsRegister<Register>();
1536   if (rhs.IsConstant()) {
1537     int32_t value = CodeGenerator::GetInt32ValueOf(rhs.GetConstant());
1538     codegen_->Compare32BitValue(lhs_reg, value);
1539   } else if (rhs.IsStackSlot()) {
1540     __ cmpl(lhs_reg, Address(ESP, rhs.GetStackIndex()));
1541   } else {
1542     __ cmpl(lhs_reg, rhs.AsRegister<Register>());
1543   }
1544 }
1545 
VisitSelect(HSelect * select)1546 void InstructionCodeGeneratorX86::VisitSelect(HSelect* select) {
1547   LocationSummary* locations = select->GetLocations();
1548   DCHECK(locations->InAt(0).Equals(locations->Out()));
1549   if (SelectCanUseCMOV(select)) {
1550     // If both the condition and the source types are integer, we can generate
1551     // a CMOV to implement Select.
1552 
1553     HInstruction* select_condition = select->GetCondition();
1554     Condition cond = kNotEqual;
1555 
1556     // Figure out how to test the 'condition'.
1557     if (select_condition->IsCondition()) {
1558       HCondition* condition = select_condition->AsCondition();
1559       if (!condition->IsEmittedAtUseSite()) {
1560         // This was a previously materialized condition.
1561         // Can we use the existing condition code?
1562         if (AreEflagsSetFrom(condition, select)) {
1563           // Materialization was the previous instruction. Condition codes are right.
1564           cond = X86Condition(condition->GetCondition());
1565         } else {
1566           // No, we have to recreate the condition code.
1567           Register cond_reg = locations->InAt(2).AsRegister<Register>();
1568           __ testl(cond_reg, cond_reg);
1569         }
1570       } else {
1571         // We can't handle FP or long here.
1572         DCHECK_NE(condition->InputAt(0)->GetType(), Primitive::kPrimLong);
1573         DCHECK(!Primitive::IsFloatingPointType(condition->InputAt(0)->GetType()));
1574         LocationSummary* cond_locations = condition->GetLocations();
1575         GenerateIntCompare(cond_locations->InAt(0), cond_locations->InAt(1));
1576         cond = X86Condition(condition->GetCondition());
1577       }
1578     } else {
1579       // Must be a boolean condition, which needs to be compared to 0.
1580       Register cond_reg = locations->InAt(2).AsRegister<Register>();
1581       __ testl(cond_reg, cond_reg);
1582     }
1583 
1584     // If the condition is true, overwrite the output, which already contains false.
1585     Location false_loc = locations->InAt(0);
1586     Location true_loc = locations->InAt(1);
1587     if (select->GetType() == Primitive::kPrimLong) {
1588       // 64 bit conditional move.
1589       Register false_high = false_loc.AsRegisterPairHigh<Register>();
1590       Register false_low = false_loc.AsRegisterPairLow<Register>();
1591       if (true_loc.IsRegisterPair()) {
1592         __ cmovl(cond, false_high, true_loc.AsRegisterPairHigh<Register>());
1593         __ cmovl(cond, false_low, true_loc.AsRegisterPairLow<Register>());
1594       } else {
1595         __ cmovl(cond, false_high, Address(ESP, true_loc.GetHighStackIndex(kX86WordSize)));
1596         __ cmovl(cond, false_low, Address(ESP, true_loc.GetStackIndex()));
1597       }
1598     } else {
1599       // 32 bit conditional move.
1600       Register false_reg = false_loc.AsRegister<Register>();
1601       if (true_loc.IsRegister()) {
1602         __ cmovl(cond, false_reg, true_loc.AsRegister<Register>());
1603       } else {
1604         __ cmovl(cond, false_reg, Address(ESP, true_loc.GetStackIndex()));
1605       }
1606     }
1607   } else {
1608     NearLabel false_target;
1609     GenerateTestAndBranch<NearLabel>(
1610         select, /* condition_input_index */ 2, /* true_target */ nullptr, &false_target);
1611     codegen_->MoveLocation(locations->Out(), locations->InAt(1), select->GetType());
1612     __ Bind(&false_target);
1613   }
1614 }
1615 
VisitNativeDebugInfo(HNativeDebugInfo * info)1616 void LocationsBuilderX86::VisitNativeDebugInfo(HNativeDebugInfo* info) {
1617   new (GetGraph()->GetArena()) LocationSummary(info);
1618 }
1619 
VisitNativeDebugInfo(HNativeDebugInfo *)1620 void InstructionCodeGeneratorX86::VisitNativeDebugInfo(HNativeDebugInfo*) {
1621   // MaybeRecordNativeDebugInfo is already called implicitly in CodeGenerator::Compile.
1622 }
1623 
GenerateNop()1624 void CodeGeneratorX86::GenerateNop() {
1625   __ nop();
1626 }
1627 
HandleCondition(HCondition * cond)1628 void LocationsBuilderX86::HandleCondition(HCondition* cond) {
1629   LocationSummary* locations =
1630       new (GetGraph()->GetArena()) LocationSummary(cond, LocationSummary::kNoCall);
1631   // Handle the long/FP comparisons made in instruction simplification.
1632   switch (cond->InputAt(0)->GetType()) {
1633     case Primitive::kPrimLong: {
1634       locations->SetInAt(0, Location::RequiresRegister());
1635       locations->SetInAt(1, Location::Any());
1636       if (!cond->IsEmittedAtUseSite()) {
1637         locations->SetOut(Location::RequiresRegister());
1638       }
1639       break;
1640     }
1641     case Primitive::kPrimFloat:
1642     case Primitive::kPrimDouble: {
1643       locations->SetInAt(0, Location::RequiresFpuRegister());
1644       if (cond->InputAt(1)->IsX86LoadFromConstantTable()) {
1645         DCHECK(cond->InputAt(1)->IsEmittedAtUseSite());
1646       } else if (cond->InputAt(1)->IsConstant()) {
1647         locations->SetInAt(1, Location::RequiresFpuRegister());
1648       } else {
1649         locations->SetInAt(1, Location::Any());
1650       }
1651       if (!cond->IsEmittedAtUseSite()) {
1652         locations->SetOut(Location::RequiresRegister());
1653       }
1654       break;
1655     }
1656     default:
1657       locations->SetInAt(0, Location::RequiresRegister());
1658       locations->SetInAt(1, Location::Any());
1659       if (!cond->IsEmittedAtUseSite()) {
1660         // We need a byte register.
1661         locations->SetOut(Location::RegisterLocation(ECX));
1662       }
1663       break;
1664   }
1665 }
1666 
HandleCondition(HCondition * cond)1667 void InstructionCodeGeneratorX86::HandleCondition(HCondition* cond) {
1668   if (cond->IsEmittedAtUseSite()) {
1669     return;
1670   }
1671 
1672   LocationSummary* locations = cond->GetLocations();
1673   Location lhs = locations->InAt(0);
1674   Location rhs = locations->InAt(1);
1675   Register reg = locations->Out().AsRegister<Register>();
1676   NearLabel true_label, false_label;
1677 
1678   switch (cond->InputAt(0)->GetType()) {
1679     default: {
1680       // Integer case.
1681 
1682       // Clear output register: setb only sets the low byte.
1683       __ xorl(reg, reg);
1684       GenerateIntCompare(lhs, rhs);
1685       __ setb(X86Condition(cond->GetCondition()), reg);
1686       return;
1687     }
1688     case Primitive::kPrimLong:
1689       GenerateLongComparesAndJumps(cond, &true_label, &false_label);
1690       break;
1691     case Primitive::kPrimFloat:
1692       GenerateFPCompare(lhs, rhs, cond, false);
1693       GenerateFPJumps(cond, &true_label, &false_label);
1694       break;
1695     case Primitive::kPrimDouble:
1696       GenerateFPCompare(lhs, rhs, cond, true);
1697       GenerateFPJumps(cond, &true_label, &false_label);
1698       break;
1699   }
1700 
1701   // Convert the jumps into the result.
1702   NearLabel done_label;
1703 
1704   // False case: result = 0.
1705   __ Bind(&false_label);
1706   __ xorl(reg, reg);
1707   __ jmp(&done_label);
1708 
1709   // True case: result = 1.
1710   __ Bind(&true_label);
1711   __ movl(reg, Immediate(1));
1712   __ Bind(&done_label);
1713 }
1714 
VisitEqual(HEqual * comp)1715 void LocationsBuilderX86::VisitEqual(HEqual* comp) {
1716   HandleCondition(comp);
1717 }
1718 
VisitEqual(HEqual * comp)1719 void InstructionCodeGeneratorX86::VisitEqual(HEqual* comp) {
1720   HandleCondition(comp);
1721 }
1722 
VisitNotEqual(HNotEqual * comp)1723 void LocationsBuilderX86::VisitNotEqual(HNotEqual* comp) {
1724   HandleCondition(comp);
1725 }
1726 
VisitNotEqual(HNotEqual * comp)1727 void InstructionCodeGeneratorX86::VisitNotEqual(HNotEqual* comp) {
1728   HandleCondition(comp);
1729 }
1730 
VisitLessThan(HLessThan * comp)1731 void LocationsBuilderX86::VisitLessThan(HLessThan* comp) {
1732   HandleCondition(comp);
1733 }
1734 
VisitLessThan(HLessThan * comp)1735 void InstructionCodeGeneratorX86::VisitLessThan(HLessThan* comp) {
1736   HandleCondition(comp);
1737 }
1738 
VisitLessThanOrEqual(HLessThanOrEqual * comp)1739 void LocationsBuilderX86::VisitLessThanOrEqual(HLessThanOrEqual* comp) {
1740   HandleCondition(comp);
1741 }
1742 
VisitLessThanOrEqual(HLessThanOrEqual * comp)1743 void InstructionCodeGeneratorX86::VisitLessThanOrEqual(HLessThanOrEqual* comp) {
1744   HandleCondition(comp);
1745 }
1746 
VisitGreaterThan(HGreaterThan * comp)1747 void LocationsBuilderX86::VisitGreaterThan(HGreaterThan* comp) {
1748   HandleCondition(comp);
1749 }
1750 
VisitGreaterThan(HGreaterThan * comp)1751 void InstructionCodeGeneratorX86::VisitGreaterThan(HGreaterThan* comp) {
1752   HandleCondition(comp);
1753 }
1754 
VisitGreaterThanOrEqual(HGreaterThanOrEqual * comp)1755 void LocationsBuilderX86::VisitGreaterThanOrEqual(HGreaterThanOrEqual* comp) {
1756   HandleCondition(comp);
1757 }
1758 
VisitGreaterThanOrEqual(HGreaterThanOrEqual * comp)1759 void InstructionCodeGeneratorX86::VisitGreaterThanOrEqual(HGreaterThanOrEqual* comp) {
1760   HandleCondition(comp);
1761 }
1762 
VisitBelow(HBelow * comp)1763 void LocationsBuilderX86::VisitBelow(HBelow* comp) {
1764   HandleCondition(comp);
1765 }
1766 
VisitBelow(HBelow * comp)1767 void InstructionCodeGeneratorX86::VisitBelow(HBelow* comp) {
1768   HandleCondition(comp);
1769 }
1770 
VisitBelowOrEqual(HBelowOrEqual * comp)1771 void LocationsBuilderX86::VisitBelowOrEqual(HBelowOrEqual* comp) {
1772   HandleCondition(comp);
1773 }
1774 
VisitBelowOrEqual(HBelowOrEqual * comp)1775 void InstructionCodeGeneratorX86::VisitBelowOrEqual(HBelowOrEqual* comp) {
1776   HandleCondition(comp);
1777 }
1778 
VisitAbove(HAbove * comp)1779 void LocationsBuilderX86::VisitAbove(HAbove* comp) {
1780   HandleCondition(comp);
1781 }
1782 
VisitAbove(HAbove * comp)1783 void InstructionCodeGeneratorX86::VisitAbove(HAbove* comp) {
1784   HandleCondition(comp);
1785 }
1786 
VisitAboveOrEqual(HAboveOrEqual * comp)1787 void LocationsBuilderX86::VisitAboveOrEqual(HAboveOrEqual* comp) {
1788   HandleCondition(comp);
1789 }
1790 
VisitAboveOrEqual(HAboveOrEqual * comp)1791 void InstructionCodeGeneratorX86::VisitAboveOrEqual(HAboveOrEqual* comp) {
1792   HandleCondition(comp);
1793 }
1794 
VisitIntConstant(HIntConstant * constant)1795 void LocationsBuilderX86::VisitIntConstant(HIntConstant* constant) {
1796   LocationSummary* locations =
1797       new (GetGraph()->GetArena()) LocationSummary(constant, LocationSummary::kNoCall);
1798   locations->SetOut(Location::ConstantLocation(constant));
1799 }
1800 
VisitIntConstant(HIntConstant * constant ATTRIBUTE_UNUSED)1801 void InstructionCodeGeneratorX86::VisitIntConstant(HIntConstant* constant ATTRIBUTE_UNUSED) {
1802   // Will be generated at use site.
1803 }
1804 
VisitNullConstant(HNullConstant * constant)1805 void LocationsBuilderX86::VisitNullConstant(HNullConstant* constant) {
1806   LocationSummary* locations =
1807       new (GetGraph()->GetArena()) LocationSummary(constant, LocationSummary::kNoCall);
1808   locations->SetOut(Location::ConstantLocation(constant));
1809 }
1810 
VisitNullConstant(HNullConstant * constant ATTRIBUTE_UNUSED)1811 void InstructionCodeGeneratorX86::VisitNullConstant(HNullConstant* constant ATTRIBUTE_UNUSED) {
1812   // Will be generated at use site.
1813 }
1814 
VisitLongConstant(HLongConstant * constant)1815 void LocationsBuilderX86::VisitLongConstant(HLongConstant* constant) {
1816   LocationSummary* locations =
1817       new (GetGraph()->GetArena()) LocationSummary(constant, LocationSummary::kNoCall);
1818   locations->SetOut(Location::ConstantLocation(constant));
1819 }
1820 
VisitLongConstant(HLongConstant * constant ATTRIBUTE_UNUSED)1821 void InstructionCodeGeneratorX86::VisitLongConstant(HLongConstant* constant ATTRIBUTE_UNUSED) {
1822   // Will be generated at use site.
1823 }
1824 
VisitFloatConstant(HFloatConstant * constant)1825 void LocationsBuilderX86::VisitFloatConstant(HFloatConstant* constant) {
1826   LocationSummary* locations =
1827       new (GetGraph()->GetArena()) LocationSummary(constant, LocationSummary::kNoCall);
1828   locations->SetOut(Location::ConstantLocation(constant));
1829 }
1830 
VisitFloatConstant(HFloatConstant * constant ATTRIBUTE_UNUSED)1831 void InstructionCodeGeneratorX86::VisitFloatConstant(HFloatConstant* constant ATTRIBUTE_UNUSED) {
1832   // Will be generated at use site.
1833 }
1834 
VisitDoubleConstant(HDoubleConstant * constant)1835 void LocationsBuilderX86::VisitDoubleConstant(HDoubleConstant* constant) {
1836   LocationSummary* locations =
1837       new (GetGraph()->GetArena()) LocationSummary(constant, LocationSummary::kNoCall);
1838   locations->SetOut(Location::ConstantLocation(constant));
1839 }
1840 
VisitDoubleConstant(HDoubleConstant * constant ATTRIBUTE_UNUSED)1841 void InstructionCodeGeneratorX86::VisitDoubleConstant(HDoubleConstant* constant ATTRIBUTE_UNUSED) {
1842   // Will be generated at use site.
1843 }
1844 
VisitMemoryBarrier(HMemoryBarrier * memory_barrier)1845 void LocationsBuilderX86::VisitMemoryBarrier(HMemoryBarrier* memory_barrier) {
1846   memory_barrier->SetLocations(nullptr);
1847 }
1848 
VisitMemoryBarrier(HMemoryBarrier * memory_barrier)1849 void InstructionCodeGeneratorX86::VisitMemoryBarrier(HMemoryBarrier* memory_barrier) {
1850   codegen_->GenerateMemoryBarrier(memory_barrier->GetBarrierKind());
1851 }
1852 
VisitReturnVoid(HReturnVoid * ret)1853 void LocationsBuilderX86::VisitReturnVoid(HReturnVoid* ret) {
1854   ret->SetLocations(nullptr);
1855 }
1856 
VisitReturnVoid(HReturnVoid * ret ATTRIBUTE_UNUSED)1857 void InstructionCodeGeneratorX86::VisitReturnVoid(HReturnVoid* ret ATTRIBUTE_UNUSED) {
1858   codegen_->GenerateFrameExit();
1859 }
1860 
VisitReturn(HReturn * ret)1861 void LocationsBuilderX86::VisitReturn(HReturn* ret) {
1862   LocationSummary* locations =
1863       new (GetGraph()->GetArena()) LocationSummary(ret, LocationSummary::kNoCall);
1864   switch (ret->InputAt(0)->GetType()) {
1865     case Primitive::kPrimBoolean:
1866     case Primitive::kPrimByte:
1867     case Primitive::kPrimChar:
1868     case Primitive::kPrimShort:
1869     case Primitive::kPrimInt:
1870     case Primitive::kPrimNot:
1871       locations->SetInAt(0, Location::RegisterLocation(EAX));
1872       break;
1873 
1874     case Primitive::kPrimLong:
1875       locations->SetInAt(
1876           0, Location::RegisterPairLocation(EAX, EDX));
1877       break;
1878 
1879     case Primitive::kPrimFloat:
1880     case Primitive::kPrimDouble:
1881       locations->SetInAt(
1882           0, Location::FpuRegisterLocation(XMM0));
1883       break;
1884 
1885     default:
1886       LOG(FATAL) << "Unknown return type " << ret->InputAt(0)->GetType();
1887   }
1888 }
1889 
VisitReturn(HReturn * ret)1890 void InstructionCodeGeneratorX86::VisitReturn(HReturn* ret) {
1891   if (kIsDebugBuild) {
1892     switch (ret->InputAt(0)->GetType()) {
1893       case Primitive::kPrimBoolean:
1894       case Primitive::kPrimByte:
1895       case Primitive::kPrimChar:
1896       case Primitive::kPrimShort:
1897       case Primitive::kPrimInt:
1898       case Primitive::kPrimNot:
1899         DCHECK_EQ(ret->GetLocations()->InAt(0).AsRegister<Register>(), EAX);
1900         break;
1901 
1902       case Primitive::kPrimLong:
1903         DCHECK_EQ(ret->GetLocations()->InAt(0).AsRegisterPairLow<Register>(), EAX);
1904         DCHECK_EQ(ret->GetLocations()->InAt(0).AsRegisterPairHigh<Register>(), EDX);
1905         break;
1906 
1907       case Primitive::kPrimFloat:
1908       case Primitive::kPrimDouble:
1909         DCHECK_EQ(ret->GetLocations()->InAt(0).AsFpuRegister<XmmRegister>(), XMM0);
1910         break;
1911 
1912       default:
1913         LOG(FATAL) << "Unknown return type " << ret->InputAt(0)->GetType();
1914     }
1915   }
1916   codegen_->GenerateFrameExit();
1917 }
1918 
VisitInvokeUnresolved(HInvokeUnresolved * invoke)1919 void LocationsBuilderX86::VisitInvokeUnresolved(HInvokeUnresolved* invoke) {
1920   // The trampoline uses the same calling convention as dex calling conventions,
1921   // except instead of loading arg0/r0 with the target Method*, arg0/r0 will contain
1922   // the method_idx.
1923   HandleInvoke(invoke);
1924 }
1925 
VisitInvokeUnresolved(HInvokeUnresolved * invoke)1926 void InstructionCodeGeneratorX86::VisitInvokeUnresolved(HInvokeUnresolved* invoke) {
1927   codegen_->GenerateInvokeUnresolvedRuntimeCall(invoke);
1928 }
1929 
VisitInvokeStaticOrDirect(HInvokeStaticOrDirect * invoke)1930 void LocationsBuilderX86::VisitInvokeStaticOrDirect(HInvokeStaticOrDirect* invoke) {
1931   // Explicit clinit checks triggered by static invokes must have been pruned by
1932   // art::PrepareForRegisterAllocation.
1933   DCHECK(!invoke->IsStaticWithExplicitClinitCheck());
1934 
1935   IntrinsicLocationsBuilderX86 intrinsic(codegen_);
1936   if (intrinsic.TryDispatch(invoke)) {
1937     if (invoke->GetLocations()->CanCall() && invoke->HasPcRelativeDexCache()) {
1938       invoke->GetLocations()->SetInAt(invoke->GetSpecialInputIndex(), Location::Any());
1939     }
1940     return;
1941   }
1942 
1943   HandleInvoke(invoke);
1944 
1945   // For PC-relative dex cache the invoke has an extra input, the PC-relative address base.
1946   if (invoke->HasPcRelativeDexCache()) {
1947     invoke->GetLocations()->SetInAt(invoke->GetSpecialInputIndex(), Location::RequiresRegister());
1948   }
1949 }
1950 
TryGenerateIntrinsicCode(HInvoke * invoke,CodeGeneratorX86 * codegen)1951 static bool TryGenerateIntrinsicCode(HInvoke* invoke, CodeGeneratorX86* codegen) {
1952   if (invoke->GetLocations()->Intrinsified()) {
1953     IntrinsicCodeGeneratorX86 intrinsic(codegen);
1954     intrinsic.Dispatch(invoke);
1955     return true;
1956   }
1957   return false;
1958 }
1959 
VisitInvokeStaticOrDirect(HInvokeStaticOrDirect * invoke)1960 void InstructionCodeGeneratorX86::VisitInvokeStaticOrDirect(HInvokeStaticOrDirect* invoke) {
1961   // Explicit clinit checks triggered by static invokes must have been pruned by
1962   // art::PrepareForRegisterAllocation.
1963   DCHECK(!invoke->IsStaticWithExplicitClinitCheck());
1964 
1965   if (TryGenerateIntrinsicCode(invoke, codegen_)) {
1966     return;
1967   }
1968 
1969   LocationSummary* locations = invoke->GetLocations();
1970   codegen_->GenerateStaticOrDirectCall(
1971       invoke, locations->HasTemps() ? locations->GetTemp(0) : Location::NoLocation());
1972   codegen_->RecordPcInfo(invoke, invoke->GetDexPc());
1973 }
1974 
VisitInvokeVirtual(HInvokeVirtual * invoke)1975 void LocationsBuilderX86::VisitInvokeVirtual(HInvokeVirtual* invoke) {
1976   IntrinsicLocationsBuilderX86 intrinsic(codegen_);
1977   if (intrinsic.TryDispatch(invoke)) {
1978     return;
1979   }
1980 
1981   HandleInvoke(invoke);
1982 }
1983 
HandleInvoke(HInvoke * invoke)1984 void LocationsBuilderX86::HandleInvoke(HInvoke* invoke) {
1985   InvokeDexCallingConventionVisitorX86 calling_convention_visitor;
1986   CodeGenerator::CreateCommonInvokeLocationSummary(invoke, &calling_convention_visitor);
1987 }
1988 
VisitInvokeVirtual(HInvokeVirtual * invoke)1989 void InstructionCodeGeneratorX86::VisitInvokeVirtual(HInvokeVirtual* invoke) {
1990   if (TryGenerateIntrinsicCode(invoke, codegen_)) {
1991     return;
1992   }
1993 
1994   codegen_->GenerateVirtualCall(invoke, invoke->GetLocations()->GetTemp(0));
1995   DCHECK(!codegen_->IsLeafMethod());
1996   codegen_->RecordPcInfo(invoke, invoke->GetDexPc());
1997 }
1998 
VisitInvokeInterface(HInvokeInterface * invoke)1999 void LocationsBuilderX86::VisitInvokeInterface(HInvokeInterface* invoke) {
2000   // This call to HandleInvoke allocates a temporary (core) register
2001   // which is also used to transfer the hidden argument from FP to
2002   // core register.
2003   HandleInvoke(invoke);
2004   // Add the hidden argument.
2005   invoke->GetLocations()->AddTemp(Location::FpuRegisterLocation(XMM7));
2006 }
2007 
VisitInvokeInterface(HInvokeInterface * invoke)2008 void InstructionCodeGeneratorX86::VisitInvokeInterface(HInvokeInterface* invoke) {
2009   // TODO: b/18116999, our IMTs can miss an IncompatibleClassChangeError.
2010   LocationSummary* locations = invoke->GetLocations();
2011   Register temp = locations->GetTemp(0).AsRegister<Register>();
2012   XmmRegister hidden_reg = locations->GetTemp(1).AsFpuRegister<XmmRegister>();
2013   uint32_t method_offset = mirror::Class::EmbeddedImTableEntryOffset(
2014       invoke->GetImtIndex() % mirror::Class::kImtSize, kX86PointerSize).Uint32Value();
2015   Location receiver = locations->InAt(0);
2016   uint32_t class_offset = mirror::Object::ClassOffset().Int32Value();
2017 
2018   // Set the hidden argument. This is safe to do this here, as XMM7
2019   // won't be modified thereafter, before the `call` instruction.
2020   DCHECK_EQ(XMM7, hidden_reg);
2021   __ movl(temp, Immediate(invoke->GetDexMethodIndex()));
2022   __ movd(hidden_reg, temp);
2023 
2024   if (receiver.IsStackSlot()) {
2025     __ movl(temp, Address(ESP, receiver.GetStackIndex()));
2026     // /* HeapReference<Class> */ temp = temp->klass_
2027     __ movl(temp, Address(temp, class_offset));
2028   } else {
2029     // /* HeapReference<Class> */ temp = receiver->klass_
2030     __ movl(temp, Address(receiver.AsRegister<Register>(), class_offset));
2031   }
2032   codegen_->MaybeRecordImplicitNullCheck(invoke);
2033   // Instead of simply (possibly) unpoisoning `temp` here, we should
2034   // emit a read barrier for the previous class reference load.
2035   // However this is not required in practice, as this is an
2036   // intermediate/temporary reference and because the current
2037   // concurrent copying collector keeps the from-space memory
2038   // intact/accessible until the end of the marking phase (the
2039   // concurrent copying collector may not in the future).
2040   __ MaybeUnpoisonHeapReference(temp);
2041   // temp = temp->GetImtEntryAt(method_offset);
2042   __ movl(temp, Address(temp, method_offset));
2043   // call temp->GetEntryPoint();
2044   __ call(Address(temp,
2045                   ArtMethod::EntryPointFromQuickCompiledCodeOffset(kX86WordSize).Int32Value()));
2046 
2047   DCHECK(!codegen_->IsLeafMethod());
2048   codegen_->RecordPcInfo(invoke, invoke->GetDexPc());
2049 }
2050 
VisitNeg(HNeg * neg)2051 void LocationsBuilderX86::VisitNeg(HNeg* neg) {
2052   LocationSummary* locations =
2053       new (GetGraph()->GetArena()) LocationSummary(neg, LocationSummary::kNoCall);
2054   switch (neg->GetResultType()) {
2055     case Primitive::kPrimInt:
2056     case Primitive::kPrimLong:
2057       locations->SetInAt(0, Location::RequiresRegister());
2058       locations->SetOut(Location::SameAsFirstInput());
2059       break;
2060 
2061     case Primitive::kPrimFloat:
2062       locations->SetInAt(0, Location::RequiresFpuRegister());
2063       locations->SetOut(Location::SameAsFirstInput());
2064       locations->AddTemp(Location::RequiresRegister());
2065       locations->AddTemp(Location::RequiresFpuRegister());
2066       break;
2067 
2068     case Primitive::kPrimDouble:
2069       locations->SetInAt(0, Location::RequiresFpuRegister());
2070       locations->SetOut(Location::SameAsFirstInput());
2071       locations->AddTemp(Location::RequiresFpuRegister());
2072       break;
2073 
2074     default:
2075       LOG(FATAL) << "Unexpected neg type " << neg->GetResultType();
2076   }
2077 }
2078 
VisitNeg(HNeg * neg)2079 void InstructionCodeGeneratorX86::VisitNeg(HNeg* neg) {
2080   LocationSummary* locations = neg->GetLocations();
2081   Location out = locations->Out();
2082   Location in = locations->InAt(0);
2083   switch (neg->GetResultType()) {
2084     case Primitive::kPrimInt:
2085       DCHECK(in.IsRegister());
2086       DCHECK(in.Equals(out));
2087       __ negl(out.AsRegister<Register>());
2088       break;
2089 
2090     case Primitive::kPrimLong:
2091       DCHECK(in.IsRegisterPair());
2092       DCHECK(in.Equals(out));
2093       __ negl(out.AsRegisterPairLow<Register>());
2094       // Negation is similar to subtraction from zero.  The least
2095       // significant byte triggers a borrow when it is different from
2096       // zero; to take it into account, add 1 to the most significant
2097       // byte if the carry flag (CF) is set to 1 after the first NEGL
2098       // operation.
2099       __ adcl(out.AsRegisterPairHigh<Register>(), Immediate(0));
2100       __ negl(out.AsRegisterPairHigh<Register>());
2101       break;
2102 
2103     case Primitive::kPrimFloat: {
2104       DCHECK(in.Equals(out));
2105       Register constant = locations->GetTemp(0).AsRegister<Register>();
2106       XmmRegister mask = locations->GetTemp(1).AsFpuRegister<XmmRegister>();
2107       // Implement float negation with an exclusive or with value
2108       // 0x80000000 (mask for bit 31, representing the sign of a
2109       // single-precision floating-point number).
2110       __ movl(constant, Immediate(INT32_C(0x80000000)));
2111       __ movd(mask, constant);
2112       __ xorps(out.AsFpuRegister<XmmRegister>(), mask);
2113       break;
2114     }
2115 
2116     case Primitive::kPrimDouble: {
2117       DCHECK(in.Equals(out));
2118       XmmRegister mask = locations->GetTemp(0).AsFpuRegister<XmmRegister>();
2119       // Implement double negation with an exclusive or with value
2120       // 0x8000000000000000 (mask for bit 63, representing the sign of
2121       // a double-precision floating-point number).
2122       __ LoadLongConstant(mask, INT64_C(0x8000000000000000));
2123       __ xorpd(out.AsFpuRegister<XmmRegister>(), mask);
2124       break;
2125     }
2126 
2127     default:
2128       LOG(FATAL) << "Unexpected neg type " << neg->GetResultType();
2129   }
2130 }
2131 
VisitX86FPNeg(HX86FPNeg * neg)2132 void LocationsBuilderX86::VisitX86FPNeg(HX86FPNeg* neg) {
2133   LocationSummary* locations =
2134       new (GetGraph()->GetArena()) LocationSummary(neg, LocationSummary::kNoCall);
2135   DCHECK(Primitive::IsFloatingPointType(neg->GetType()));
2136   locations->SetInAt(0, Location::RequiresFpuRegister());
2137   locations->SetInAt(1, Location::RequiresRegister());
2138   locations->SetOut(Location::SameAsFirstInput());
2139   locations->AddTemp(Location::RequiresFpuRegister());
2140 }
2141 
VisitX86FPNeg(HX86FPNeg * neg)2142 void InstructionCodeGeneratorX86::VisitX86FPNeg(HX86FPNeg* neg) {
2143   LocationSummary* locations = neg->GetLocations();
2144   Location out = locations->Out();
2145   DCHECK(locations->InAt(0).Equals(out));
2146 
2147   Register constant_area = locations->InAt(1).AsRegister<Register>();
2148   XmmRegister mask = locations->GetTemp(0).AsFpuRegister<XmmRegister>();
2149   if (neg->GetType() == Primitive::kPrimFloat) {
2150     __ movss(mask, codegen_->LiteralInt32Address(INT32_C(0x80000000), constant_area));
2151     __ xorps(out.AsFpuRegister<XmmRegister>(), mask);
2152   } else {
2153      __ movsd(mask, codegen_->LiteralInt64Address(INT64_C(0x8000000000000000), constant_area));
2154      __ xorpd(out.AsFpuRegister<XmmRegister>(), mask);
2155   }
2156 }
2157 
VisitTypeConversion(HTypeConversion * conversion)2158 void LocationsBuilderX86::VisitTypeConversion(HTypeConversion* conversion) {
2159   Primitive::Type result_type = conversion->GetResultType();
2160   Primitive::Type input_type = conversion->GetInputType();
2161   DCHECK_NE(result_type, input_type);
2162 
2163   // The float-to-long and double-to-long type conversions rely on a
2164   // call to the runtime.
2165   LocationSummary::CallKind call_kind =
2166       ((input_type == Primitive::kPrimFloat || input_type == Primitive::kPrimDouble)
2167        && result_type == Primitive::kPrimLong)
2168       ? LocationSummary::kCall
2169       : LocationSummary::kNoCall;
2170   LocationSummary* locations =
2171       new (GetGraph()->GetArena()) LocationSummary(conversion, call_kind);
2172 
2173   // The Java language does not allow treating boolean as an integral type but
2174   // our bit representation makes it safe.
2175 
2176   switch (result_type) {
2177     case Primitive::kPrimByte:
2178       switch (input_type) {
2179         case Primitive::kPrimLong: {
2180           // Type conversion from long to byte is a result of code transformations.
2181           HInstruction* input = conversion->InputAt(0);
2182           Location input_location = input->IsConstant()
2183               ? Location::ConstantLocation(input->AsConstant())
2184               : Location::RegisterPairLocation(EAX, EDX);
2185           locations->SetInAt(0, input_location);
2186           // Make the output overlap to please the register allocator. This greatly simplifies
2187           // the validation of the linear scan implementation
2188           locations->SetOut(Location::RequiresRegister(), Location::kOutputOverlap);
2189           break;
2190         }
2191         case Primitive::kPrimBoolean:
2192           // Boolean input is a result of code transformations.
2193         case Primitive::kPrimShort:
2194         case Primitive::kPrimInt:
2195         case Primitive::kPrimChar:
2196           // Processing a Dex `int-to-byte' instruction.
2197           locations->SetInAt(0, Location::ByteRegisterOrConstant(ECX, conversion->InputAt(0)));
2198           // Make the output overlap to please the register allocator. This greatly simplifies
2199           // the validation of the linear scan implementation
2200           locations->SetOut(Location::RequiresRegister(), Location::kOutputOverlap);
2201           break;
2202 
2203         default:
2204           LOG(FATAL) << "Unexpected type conversion from " << input_type
2205                      << " to " << result_type;
2206       }
2207       break;
2208 
2209     case Primitive::kPrimShort:
2210       switch (input_type) {
2211         case Primitive::kPrimLong:
2212           // Type conversion from long to short is a result of code transformations.
2213         case Primitive::kPrimBoolean:
2214           // Boolean input is a result of code transformations.
2215         case Primitive::kPrimByte:
2216         case Primitive::kPrimInt:
2217         case Primitive::kPrimChar:
2218           // Processing a Dex `int-to-short' instruction.
2219           locations->SetInAt(0, Location::Any());
2220           locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
2221           break;
2222 
2223         default:
2224           LOG(FATAL) << "Unexpected type conversion from " << input_type
2225                      << " to " << result_type;
2226       }
2227       break;
2228 
2229     case Primitive::kPrimInt:
2230       switch (input_type) {
2231         case Primitive::kPrimLong:
2232           // Processing a Dex `long-to-int' instruction.
2233           locations->SetInAt(0, Location::Any());
2234           locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
2235           break;
2236 
2237         case Primitive::kPrimFloat:
2238           // Processing a Dex `float-to-int' instruction.
2239           locations->SetInAt(0, Location::RequiresFpuRegister());
2240           locations->SetOut(Location::RequiresRegister());
2241           locations->AddTemp(Location::RequiresFpuRegister());
2242           break;
2243 
2244         case Primitive::kPrimDouble:
2245           // Processing a Dex `double-to-int' instruction.
2246           locations->SetInAt(0, Location::RequiresFpuRegister());
2247           locations->SetOut(Location::RequiresRegister());
2248           locations->AddTemp(Location::RequiresFpuRegister());
2249           break;
2250 
2251         default:
2252           LOG(FATAL) << "Unexpected type conversion from " << input_type
2253                      << " to " << result_type;
2254       }
2255       break;
2256 
2257     case Primitive::kPrimLong:
2258       switch (input_type) {
2259         case Primitive::kPrimBoolean:
2260           // Boolean input is a result of code transformations.
2261         case Primitive::kPrimByte:
2262         case Primitive::kPrimShort:
2263         case Primitive::kPrimInt:
2264         case Primitive::kPrimChar:
2265           // Processing a Dex `int-to-long' instruction.
2266           locations->SetInAt(0, Location::RegisterLocation(EAX));
2267           locations->SetOut(Location::RegisterPairLocation(EAX, EDX));
2268           break;
2269 
2270         case Primitive::kPrimFloat:
2271         case Primitive::kPrimDouble: {
2272           // Processing a Dex `float-to-long' or 'double-to-long' instruction.
2273           InvokeRuntimeCallingConvention calling_convention;
2274           XmmRegister parameter = calling_convention.GetFpuRegisterAt(0);
2275           locations->SetInAt(0, Location::FpuRegisterLocation(parameter));
2276 
2277           // The runtime helper puts the result in EAX, EDX.
2278           locations->SetOut(Location::RegisterPairLocation(EAX, EDX));
2279         }
2280         break;
2281 
2282         default:
2283           LOG(FATAL) << "Unexpected type conversion from " << input_type
2284                      << " to " << result_type;
2285       }
2286       break;
2287 
2288     case Primitive::kPrimChar:
2289       switch (input_type) {
2290         case Primitive::kPrimLong:
2291           // Type conversion from long to char is a result of code transformations.
2292         case Primitive::kPrimBoolean:
2293           // Boolean input is a result of code transformations.
2294         case Primitive::kPrimByte:
2295         case Primitive::kPrimShort:
2296         case Primitive::kPrimInt:
2297           // Processing a Dex `int-to-char' instruction.
2298           locations->SetInAt(0, Location::Any());
2299           locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
2300           break;
2301 
2302         default:
2303           LOG(FATAL) << "Unexpected type conversion from " << input_type
2304                      << " to " << result_type;
2305       }
2306       break;
2307 
2308     case Primitive::kPrimFloat:
2309       switch (input_type) {
2310         case Primitive::kPrimBoolean:
2311           // Boolean input is a result of code transformations.
2312         case Primitive::kPrimByte:
2313         case Primitive::kPrimShort:
2314         case Primitive::kPrimInt:
2315         case Primitive::kPrimChar:
2316           // Processing a Dex `int-to-float' instruction.
2317           locations->SetInAt(0, Location::RequiresRegister());
2318           locations->SetOut(Location::RequiresFpuRegister());
2319           break;
2320 
2321         case Primitive::kPrimLong:
2322           // Processing a Dex `long-to-float' instruction.
2323           locations->SetInAt(0, Location::Any());
2324           locations->SetOut(Location::Any());
2325           break;
2326 
2327         case Primitive::kPrimDouble:
2328           // Processing a Dex `double-to-float' instruction.
2329           locations->SetInAt(0, Location::RequiresFpuRegister());
2330           locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap);
2331           break;
2332 
2333         default:
2334           LOG(FATAL) << "Unexpected type conversion from " << input_type
2335                      << " to " << result_type;
2336       };
2337       break;
2338 
2339     case Primitive::kPrimDouble:
2340       switch (input_type) {
2341         case Primitive::kPrimBoolean:
2342           // Boolean input is a result of code transformations.
2343         case Primitive::kPrimByte:
2344         case Primitive::kPrimShort:
2345         case Primitive::kPrimInt:
2346         case Primitive::kPrimChar:
2347           // Processing a Dex `int-to-double' instruction.
2348           locations->SetInAt(0, Location::RequiresRegister());
2349           locations->SetOut(Location::RequiresFpuRegister());
2350           break;
2351 
2352         case Primitive::kPrimLong:
2353           // Processing a Dex `long-to-double' instruction.
2354           locations->SetInAt(0, Location::Any());
2355           locations->SetOut(Location::Any());
2356           break;
2357 
2358         case Primitive::kPrimFloat:
2359           // Processing a Dex `float-to-double' instruction.
2360           locations->SetInAt(0, Location::RequiresFpuRegister());
2361           locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap);
2362           break;
2363 
2364         default:
2365           LOG(FATAL) << "Unexpected type conversion from " << input_type
2366                      << " to " << result_type;
2367       }
2368       break;
2369 
2370     default:
2371       LOG(FATAL) << "Unexpected type conversion from " << input_type
2372                  << " to " << result_type;
2373   }
2374 }
2375 
VisitTypeConversion(HTypeConversion * conversion)2376 void InstructionCodeGeneratorX86::VisitTypeConversion(HTypeConversion* conversion) {
2377   LocationSummary* locations = conversion->GetLocations();
2378   Location out = locations->Out();
2379   Location in = locations->InAt(0);
2380   Primitive::Type result_type = conversion->GetResultType();
2381   Primitive::Type input_type = conversion->GetInputType();
2382   DCHECK_NE(result_type, input_type);
2383   switch (result_type) {
2384     case Primitive::kPrimByte:
2385       switch (input_type) {
2386         case Primitive::kPrimLong:
2387           // Type conversion from long to byte is a result of code transformations.
2388           if (in.IsRegisterPair()) {
2389             __ movsxb(out.AsRegister<Register>(), in.AsRegisterPairLow<ByteRegister>());
2390           } else {
2391             DCHECK(in.GetConstant()->IsLongConstant());
2392             int64_t value = in.GetConstant()->AsLongConstant()->GetValue();
2393             __ movl(out.AsRegister<Register>(), Immediate(static_cast<int8_t>(value)));
2394           }
2395           break;
2396         case Primitive::kPrimBoolean:
2397           // Boolean input is a result of code transformations.
2398         case Primitive::kPrimShort:
2399         case Primitive::kPrimInt:
2400         case Primitive::kPrimChar:
2401           // Processing a Dex `int-to-byte' instruction.
2402           if (in.IsRegister()) {
2403             __ movsxb(out.AsRegister<Register>(), in.AsRegister<ByteRegister>());
2404           } else {
2405             DCHECK(in.GetConstant()->IsIntConstant());
2406             int32_t value = in.GetConstant()->AsIntConstant()->GetValue();
2407             __ movl(out.AsRegister<Register>(), Immediate(static_cast<int8_t>(value)));
2408           }
2409           break;
2410 
2411         default:
2412           LOG(FATAL) << "Unexpected type conversion from " << input_type
2413                      << " to " << result_type;
2414       }
2415       break;
2416 
2417     case Primitive::kPrimShort:
2418       switch (input_type) {
2419         case Primitive::kPrimLong:
2420           // Type conversion from long to short is a result of code transformations.
2421           if (in.IsRegisterPair()) {
2422             __ movsxw(out.AsRegister<Register>(), in.AsRegisterPairLow<Register>());
2423           } else if (in.IsDoubleStackSlot()) {
2424             __ movsxw(out.AsRegister<Register>(), Address(ESP, in.GetStackIndex()));
2425           } else {
2426             DCHECK(in.GetConstant()->IsLongConstant());
2427             int64_t value = in.GetConstant()->AsLongConstant()->GetValue();
2428             __ movl(out.AsRegister<Register>(), Immediate(static_cast<int16_t>(value)));
2429           }
2430           break;
2431         case Primitive::kPrimBoolean:
2432           // Boolean input is a result of code transformations.
2433         case Primitive::kPrimByte:
2434         case Primitive::kPrimInt:
2435         case Primitive::kPrimChar:
2436           // Processing a Dex `int-to-short' instruction.
2437           if (in.IsRegister()) {
2438             __ movsxw(out.AsRegister<Register>(), in.AsRegister<Register>());
2439           } else if (in.IsStackSlot()) {
2440             __ movsxw(out.AsRegister<Register>(), Address(ESP, in.GetStackIndex()));
2441           } else {
2442             DCHECK(in.GetConstant()->IsIntConstant());
2443             int32_t value = in.GetConstant()->AsIntConstant()->GetValue();
2444             __ movl(out.AsRegister<Register>(), Immediate(static_cast<int16_t>(value)));
2445           }
2446           break;
2447 
2448         default:
2449           LOG(FATAL) << "Unexpected type conversion from " << input_type
2450                      << " to " << result_type;
2451       }
2452       break;
2453 
2454     case Primitive::kPrimInt:
2455       switch (input_type) {
2456         case Primitive::kPrimLong:
2457           // Processing a Dex `long-to-int' instruction.
2458           if (in.IsRegisterPair()) {
2459             __ movl(out.AsRegister<Register>(), in.AsRegisterPairLow<Register>());
2460           } else if (in.IsDoubleStackSlot()) {
2461             __ movl(out.AsRegister<Register>(), Address(ESP, in.GetStackIndex()));
2462           } else {
2463             DCHECK(in.IsConstant());
2464             DCHECK(in.GetConstant()->IsLongConstant());
2465             int64_t value = in.GetConstant()->AsLongConstant()->GetValue();
2466             __ movl(out.AsRegister<Register>(), Immediate(static_cast<int32_t>(value)));
2467           }
2468           break;
2469 
2470         case Primitive::kPrimFloat: {
2471           // Processing a Dex `float-to-int' instruction.
2472           XmmRegister input = in.AsFpuRegister<XmmRegister>();
2473           Register output = out.AsRegister<Register>();
2474           XmmRegister temp = locations->GetTemp(0).AsFpuRegister<XmmRegister>();
2475           NearLabel done, nan;
2476 
2477           __ movl(output, Immediate(kPrimIntMax));
2478           // temp = int-to-float(output)
2479           __ cvtsi2ss(temp, output);
2480           // if input >= temp goto done
2481           __ comiss(input, temp);
2482           __ j(kAboveEqual, &done);
2483           // if input == NaN goto nan
2484           __ j(kUnordered, &nan);
2485           // output = float-to-int-truncate(input)
2486           __ cvttss2si(output, input);
2487           __ jmp(&done);
2488           __ Bind(&nan);
2489           //  output = 0
2490           __ xorl(output, output);
2491           __ Bind(&done);
2492           break;
2493         }
2494 
2495         case Primitive::kPrimDouble: {
2496           // Processing a Dex `double-to-int' instruction.
2497           XmmRegister input = in.AsFpuRegister<XmmRegister>();
2498           Register output = out.AsRegister<Register>();
2499           XmmRegister temp = locations->GetTemp(0).AsFpuRegister<XmmRegister>();
2500           NearLabel done, nan;
2501 
2502           __ movl(output, Immediate(kPrimIntMax));
2503           // temp = int-to-double(output)
2504           __ cvtsi2sd(temp, output);
2505           // if input >= temp goto done
2506           __ comisd(input, temp);
2507           __ j(kAboveEqual, &done);
2508           // if input == NaN goto nan
2509           __ j(kUnordered, &nan);
2510           // output = double-to-int-truncate(input)
2511           __ cvttsd2si(output, input);
2512           __ jmp(&done);
2513           __ Bind(&nan);
2514           //  output = 0
2515           __ xorl(output, output);
2516           __ Bind(&done);
2517           break;
2518         }
2519 
2520         default:
2521           LOG(FATAL) << "Unexpected type conversion from " << input_type
2522                      << " to " << result_type;
2523       }
2524       break;
2525 
2526     case Primitive::kPrimLong:
2527       switch (input_type) {
2528         case Primitive::kPrimBoolean:
2529           // Boolean input is a result of code transformations.
2530         case Primitive::kPrimByte:
2531         case Primitive::kPrimShort:
2532         case Primitive::kPrimInt:
2533         case Primitive::kPrimChar:
2534           // Processing a Dex `int-to-long' instruction.
2535           DCHECK_EQ(out.AsRegisterPairLow<Register>(), EAX);
2536           DCHECK_EQ(out.AsRegisterPairHigh<Register>(), EDX);
2537           DCHECK_EQ(in.AsRegister<Register>(), EAX);
2538           __ cdq();
2539           break;
2540 
2541         case Primitive::kPrimFloat:
2542           // Processing a Dex `float-to-long' instruction.
2543           codegen_->InvokeRuntime(QUICK_ENTRY_POINT(pF2l),
2544                                   conversion,
2545                                   conversion->GetDexPc(),
2546                                   nullptr);
2547           CheckEntrypointTypes<kQuickF2l, int64_t, float>();
2548           break;
2549 
2550         case Primitive::kPrimDouble:
2551           // Processing a Dex `double-to-long' instruction.
2552           codegen_->InvokeRuntime(QUICK_ENTRY_POINT(pD2l),
2553                                   conversion,
2554                                   conversion->GetDexPc(),
2555                                   nullptr);
2556           CheckEntrypointTypes<kQuickD2l, int64_t, double>();
2557           break;
2558 
2559         default:
2560           LOG(FATAL) << "Unexpected type conversion from " << input_type
2561                      << " to " << result_type;
2562       }
2563       break;
2564 
2565     case Primitive::kPrimChar:
2566       switch (input_type) {
2567         case Primitive::kPrimLong:
2568           // Type conversion from long to short is a result of code transformations.
2569           if (in.IsRegisterPair()) {
2570             __ movzxw(out.AsRegister<Register>(), in.AsRegisterPairLow<Register>());
2571           } else if (in.IsDoubleStackSlot()) {
2572             __ movzxw(out.AsRegister<Register>(), Address(ESP, in.GetStackIndex()));
2573           } else {
2574             DCHECK(in.GetConstant()->IsLongConstant());
2575             int64_t value = in.GetConstant()->AsLongConstant()->GetValue();
2576             __ movl(out.AsRegister<Register>(), Immediate(static_cast<uint16_t>(value)));
2577           }
2578           break;
2579         case Primitive::kPrimBoolean:
2580           // Boolean input is a result of code transformations.
2581         case Primitive::kPrimByte:
2582         case Primitive::kPrimShort:
2583         case Primitive::kPrimInt:
2584           // Processing a Dex `Process a Dex `int-to-char'' instruction.
2585           if (in.IsRegister()) {
2586             __ movzxw(out.AsRegister<Register>(), in.AsRegister<Register>());
2587           } else if (in.IsStackSlot()) {
2588             __ movzxw(out.AsRegister<Register>(), Address(ESP, in.GetStackIndex()));
2589           } else {
2590             DCHECK(in.GetConstant()->IsIntConstant());
2591             int32_t value = in.GetConstant()->AsIntConstant()->GetValue();
2592             __ movl(out.AsRegister<Register>(), Immediate(static_cast<uint16_t>(value)));
2593           }
2594           break;
2595 
2596         default:
2597           LOG(FATAL) << "Unexpected type conversion from " << input_type
2598                      << " to " << result_type;
2599       }
2600       break;
2601 
2602     case Primitive::kPrimFloat:
2603       switch (input_type) {
2604         case Primitive::kPrimBoolean:
2605           // Boolean input is a result of code transformations.
2606         case Primitive::kPrimByte:
2607         case Primitive::kPrimShort:
2608         case Primitive::kPrimInt:
2609         case Primitive::kPrimChar:
2610           // Processing a Dex `int-to-float' instruction.
2611           __ cvtsi2ss(out.AsFpuRegister<XmmRegister>(), in.AsRegister<Register>());
2612           break;
2613 
2614         case Primitive::kPrimLong: {
2615           // Processing a Dex `long-to-float' instruction.
2616           size_t adjustment = 0;
2617 
2618           // Create stack space for the call to
2619           // InstructionCodeGeneratorX86::PushOntoFPStack and/or X86Assembler::fstps below.
2620           // TODO: enhance register allocator to ask for stack temporaries.
2621           if (!in.IsDoubleStackSlot() || !out.IsStackSlot()) {
2622             adjustment = Primitive::ComponentSize(Primitive::kPrimLong);
2623             __ subl(ESP, Immediate(adjustment));
2624           }
2625 
2626           // Load the value to the FP stack, using temporaries if needed.
2627           PushOntoFPStack(in, 0, adjustment, false, true);
2628 
2629           if (out.IsStackSlot()) {
2630             __ fstps(Address(ESP, out.GetStackIndex() + adjustment));
2631           } else {
2632             __ fstps(Address(ESP, 0));
2633             Location stack_temp = Location::StackSlot(0);
2634             codegen_->Move32(out, stack_temp);
2635           }
2636 
2637           // Remove the temporary stack space we allocated.
2638           if (adjustment != 0) {
2639             __ addl(ESP, Immediate(adjustment));
2640           }
2641           break;
2642         }
2643 
2644         case Primitive::kPrimDouble:
2645           // Processing a Dex `double-to-float' instruction.
2646           __ cvtsd2ss(out.AsFpuRegister<XmmRegister>(), in.AsFpuRegister<XmmRegister>());
2647           break;
2648 
2649         default:
2650           LOG(FATAL) << "Unexpected type conversion from " << input_type
2651                      << " to " << result_type;
2652       };
2653       break;
2654 
2655     case Primitive::kPrimDouble:
2656       switch (input_type) {
2657         case Primitive::kPrimBoolean:
2658           // Boolean input is a result of code transformations.
2659         case Primitive::kPrimByte:
2660         case Primitive::kPrimShort:
2661         case Primitive::kPrimInt:
2662         case Primitive::kPrimChar:
2663           // Processing a Dex `int-to-double' instruction.
2664           __ cvtsi2sd(out.AsFpuRegister<XmmRegister>(), in.AsRegister<Register>());
2665           break;
2666 
2667         case Primitive::kPrimLong: {
2668           // Processing a Dex `long-to-double' instruction.
2669           size_t adjustment = 0;
2670 
2671           // Create stack space for the call to
2672           // InstructionCodeGeneratorX86::PushOntoFPStack and/or X86Assembler::fstpl below.
2673           // TODO: enhance register allocator to ask for stack temporaries.
2674           if (!in.IsDoubleStackSlot() || !out.IsDoubleStackSlot()) {
2675             adjustment = Primitive::ComponentSize(Primitive::kPrimLong);
2676             __ subl(ESP, Immediate(adjustment));
2677           }
2678 
2679           // Load the value to the FP stack, using temporaries if needed.
2680           PushOntoFPStack(in, 0, adjustment, false, true);
2681 
2682           if (out.IsDoubleStackSlot()) {
2683             __ fstpl(Address(ESP, out.GetStackIndex() + adjustment));
2684           } else {
2685             __ fstpl(Address(ESP, 0));
2686             Location stack_temp = Location::DoubleStackSlot(0);
2687             codegen_->Move64(out, stack_temp);
2688           }
2689 
2690           // Remove the temporary stack space we allocated.
2691           if (adjustment != 0) {
2692             __ addl(ESP, Immediate(adjustment));
2693           }
2694           break;
2695         }
2696 
2697         case Primitive::kPrimFloat:
2698           // Processing a Dex `float-to-double' instruction.
2699           __ cvtss2sd(out.AsFpuRegister<XmmRegister>(), in.AsFpuRegister<XmmRegister>());
2700           break;
2701 
2702         default:
2703           LOG(FATAL) << "Unexpected type conversion from " << input_type
2704                      << " to " << result_type;
2705       };
2706       break;
2707 
2708     default:
2709       LOG(FATAL) << "Unexpected type conversion from " << input_type
2710                  << " to " << result_type;
2711   }
2712 }
2713 
VisitAdd(HAdd * add)2714 void LocationsBuilderX86::VisitAdd(HAdd* add) {
2715   LocationSummary* locations =
2716       new (GetGraph()->GetArena()) LocationSummary(add, LocationSummary::kNoCall);
2717   switch (add->GetResultType()) {
2718     case Primitive::kPrimInt: {
2719       locations->SetInAt(0, Location::RequiresRegister());
2720       locations->SetInAt(1, Location::RegisterOrConstant(add->InputAt(1)));
2721       locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
2722       break;
2723     }
2724 
2725     case Primitive::kPrimLong: {
2726       locations->SetInAt(0, Location::RequiresRegister());
2727       locations->SetInAt(1, Location::Any());
2728       locations->SetOut(Location::SameAsFirstInput());
2729       break;
2730     }
2731 
2732     case Primitive::kPrimFloat:
2733     case Primitive::kPrimDouble: {
2734       locations->SetInAt(0, Location::RequiresFpuRegister());
2735       if (add->InputAt(1)->IsX86LoadFromConstantTable()) {
2736         DCHECK(add->InputAt(1)->IsEmittedAtUseSite());
2737       } else if (add->InputAt(1)->IsConstant()) {
2738         locations->SetInAt(1, Location::RequiresFpuRegister());
2739       } else {
2740         locations->SetInAt(1, Location::Any());
2741       }
2742       locations->SetOut(Location::SameAsFirstInput());
2743       break;
2744     }
2745 
2746     default:
2747       LOG(FATAL) << "Unexpected add type " << add->GetResultType();
2748       break;
2749   }
2750 }
2751 
VisitAdd(HAdd * add)2752 void InstructionCodeGeneratorX86::VisitAdd(HAdd* add) {
2753   LocationSummary* locations = add->GetLocations();
2754   Location first = locations->InAt(0);
2755   Location second = locations->InAt(1);
2756   Location out = locations->Out();
2757 
2758   switch (add->GetResultType()) {
2759     case Primitive::kPrimInt: {
2760       if (second.IsRegister()) {
2761         if (out.AsRegister<Register>() == first.AsRegister<Register>()) {
2762           __ addl(out.AsRegister<Register>(), second.AsRegister<Register>());
2763         } else if (out.AsRegister<Register>() == second.AsRegister<Register>()) {
2764           __ addl(out.AsRegister<Register>(), first.AsRegister<Register>());
2765         } else {
2766           __ leal(out.AsRegister<Register>(), Address(
2767               first.AsRegister<Register>(), second.AsRegister<Register>(), TIMES_1, 0));
2768           }
2769       } else if (second.IsConstant()) {
2770         int32_t value = second.GetConstant()->AsIntConstant()->GetValue();
2771         if (out.AsRegister<Register>() == first.AsRegister<Register>()) {
2772           __ addl(out.AsRegister<Register>(), Immediate(value));
2773         } else {
2774           __ leal(out.AsRegister<Register>(), Address(first.AsRegister<Register>(), value));
2775         }
2776       } else {
2777         DCHECK(first.Equals(locations->Out()));
2778         __ addl(first.AsRegister<Register>(), Address(ESP, second.GetStackIndex()));
2779       }
2780       break;
2781     }
2782 
2783     case Primitive::kPrimLong: {
2784       if (second.IsRegisterPair()) {
2785         __ addl(first.AsRegisterPairLow<Register>(), second.AsRegisterPairLow<Register>());
2786         __ adcl(first.AsRegisterPairHigh<Register>(), second.AsRegisterPairHigh<Register>());
2787       } else if (second.IsDoubleStackSlot()) {
2788         __ addl(first.AsRegisterPairLow<Register>(), Address(ESP, second.GetStackIndex()));
2789         __ adcl(first.AsRegisterPairHigh<Register>(),
2790                 Address(ESP, second.GetHighStackIndex(kX86WordSize)));
2791       } else {
2792         DCHECK(second.IsConstant()) << second;
2793         int64_t value = second.GetConstant()->AsLongConstant()->GetValue();
2794         __ addl(first.AsRegisterPairLow<Register>(), Immediate(Low32Bits(value)));
2795         __ adcl(first.AsRegisterPairHigh<Register>(), Immediate(High32Bits(value)));
2796       }
2797       break;
2798     }
2799 
2800     case Primitive::kPrimFloat: {
2801       if (second.IsFpuRegister()) {
2802         __ addss(first.AsFpuRegister<XmmRegister>(), second.AsFpuRegister<XmmRegister>());
2803       } else if (add->InputAt(1)->IsX86LoadFromConstantTable()) {
2804         HX86LoadFromConstantTable* const_area = add->InputAt(1)->AsX86LoadFromConstantTable();
2805         DCHECK(const_area->IsEmittedAtUseSite());
2806         __ addss(first.AsFpuRegister<XmmRegister>(),
2807                  codegen_->LiteralFloatAddress(
2808                    const_area->GetConstant()->AsFloatConstant()->GetValue(),
2809                    const_area->GetLocations()->InAt(0).AsRegister<Register>()));
2810       } else {
2811         DCHECK(second.IsStackSlot());
2812         __ addss(first.AsFpuRegister<XmmRegister>(), Address(ESP, second.GetStackIndex()));
2813       }
2814       break;
2815     }
2816 
2817     case Primitive::kPrimDouble: {
2818       if (second.IsFpuRegister()) {
2819         __ addsd(first.AsFpuRegister<XmmRegister>(), second.AsFpuRegister<XmmRegister>());
2820       } else if (add->InputAt(1)->IsX86LoadFromConstantTable()) {
2821         HX86LoadFromConstantTable* const_area = add->InputAt(1)->AsX86LoadFromConstantTable();
2822         DCHECK(const_area->IsEmittedAtUseSite());
2823         __ addsd(first.AsFpuRegister<XmmRegister>(),
2824                  codegen_->LiteralDoubleAddress(
2825                    const_area->GetConstant()->AsDoubleConstant()->GetValue(),
2826                    const_area->GetLocations()->InAt(0).AsRegister<Register>()));
2827       } else {
2828         DCHECK(second.IsDoubleStackSlot());
2829         __ addsd(first.AsFpuRegister<XmmRegister>(), Address(ESP, second.GetStackIndex()));
2830       }
2831       break;
2832     }
2833 
2834     default:
2835       LOG(FATAL) << "Unexpected add type " << add->GetResultType();
2836   }
2837 }
2838 
VisitSub(HSub * sub)2839 void LocationsBuilderX86::VisitSub(HSub* sub) {
2840   LocationSummary* locations =
2841       new (GetGraph()->GetArena()) LocationSummary(sub, LocationSummary::kNoCall);
2842   switch (sub->GetResultType()) {
2843     case Primitive::kPrimInt:
2844     case Primitive::kPrimLong: {
2845       locations->SetInAt(0, Location::RequiresRegister());
2846       locations->SetInAt(1, Location::Any());
2847       locations->SetOut(Location::SameAsFirstInput());
2848       break;
2849     }
2850     case Primitive::kPrimFloat:
2851     case Primitive::kPrimDouble: {
2852       locations->SetInAt(0, Location::RequiresFpuRegister());
2853       if (sub->InputAt(1)->IsX86LoadFromConstantTable()) {
2854         DCHECK(sub->InputAt(1)->IsEmittedAtUseSite());
2855       } else if (sub->InputAt(1)->IsConstant()) {
2856         locations->SetInAt(1, Location::RequiresFpuRegister());
2857       } else {
2858         locations->SetInAt(1, Location::Any());
2859       }
2860       locations->SetOut(Location::SameAsFirstInput());
2861       break;
2862     }
2863 
2864     default:
2865       LOG(FATAL) << "Unexpected sub type " << sub->GetResultType();
2866   }
2867 }
2868 
VisitSub(HSub * sub)2869 void InstructionCodeGeneratorX86::VisitSub(HSub* sub) {
2870   LocationSummary* locations = sub->GetLocations();
2871   Location first = locations->InAt(0);
2872   Location second = locations->InAt(1);
2873   DCHECK(first.Equals(locations->Out()));
2874   switch (sub->GetResultType()) {
2875     case Primitive::kPrimInt: {
2876       if (second.IsRegister()) {
2877         __ subl(first.AsRegister<Register>(), second.AsRegister<Register>());
2878       } else if (second.IsConstant()) {
2879         __ subl(first.AsRegister<Register>(),
2880                 Immediate(second.GetConstant()->AsIntConstant()->GetValue()));
2881       } else {
2882         __ subl(first.AsRegister<Register>(), Address(ESP, second.GetStackIndex()));
2883       }
2884       break;
2885     }
2886 
2887     case Primitive::kPrimLong: {
2888       if (second.IsRegisterPair()) {
2889         __ subl(first.AsRegisterPairLow<Register>(), second.AsRegisterPairLow<Register>());
2890         __ sbbl(first.AsRegisterPairHigh<Register>(), second.AsRegisterPairHigh<Register>());
2891       } else if (second.IsDoubleStackSlot()) {
2892         __ subl(first.AsRegisterPairLow<Register>(), Address(ESP, second.GetStackIndex()));
2893         __ sbbl(first.AsRegisterPairHigh<Register>(),
2894                 Address(ESP, second.GetHighStackIndex(kX86WordSize)));
2895       } else {
2896         DCHECK(second.IsConstant()) << second;
2897         int64_t value = second.GetConstant()->AsLongConstant()->GetValue();
2898         __ subl(first.AsRegisterPairLow<Register>(), Immediate(Low32Bits(value)));
2899         __ sbbl(first.AsRegisterPairHigh<Register>(), Immediate(High32Bits(value)));
2900       }
2901       break;
2902     }
2903 
2904     case Primitive::kPrimFloat: {
2905       if (second.IsFpuRegister()) {
2906         __ subss(first.AsFpuRegister<XmmRegister>(), second.AsFpuRegister<XmmRegister>());
2907       } else if (sub->InputAt(1)->IsX86LoadFromConstantTable()) {
2908         HX86LoadFromConstantTable* const_area = sub->InputAt(1)->AsX86LoadFromConstantTable();
2909         DCHECK(const_area->IsEmittedAtUseSite());
2910         __ subss(first.AsFpuRegister<XmmRegister>(),
2911                  codegen_->LiteralFloatAddress(
2912                    const_area->GetConstant()->AsFloatConstant()->GetValue(),
2913                    const_area->GetLocations()->InAt(0).AsRegister<Register>()));
2914       } else {
2915         DCHECK(second.IsStackSlot());
2916         __ subss(first.AsFpuRegister<XmmRegister>(), Address(ESP, second.GetStackIndex()));
2917       }
2918       break;
2919     }
2920 
2921     case Primitive::kPrimDouble: {
2922       if (second.IsFpuRegister()) {
2923         __ subsd(first.AsFpuRegister<XmmRegister>(), second.AsFpuRegister<XmmRegister>());
2924       } else if (sub->InputAt(1)->IsX86LoadFromConstantTable()) {
2925         HX86LoadFromConstantTable* const_area = sub->InputAt(1)->AsX86LoadFromConstantTable();
2926         DCHECK(const_area->IsEmittedAtUseSite());
2927         __ subsd(first.AsFpuRegister<XmmRegister>(),
2928                  codegen_->LiteralDoubleAddress(
2929                      const_area->GetConstant()->AsDoubleConstant()->GetValue(),
2930                      const_area->GetLocations()->InAt(0).AsRegister<Register>()));
2931       } else {
2932         DCHECK(second.IsDoubleStackSlot());
2933         __ subsd(first.AsFpuRegister<XmmRegister>(), Address(ESP, second.GetStackIndex()));
2934       }
2935       break;
2936     }
2937 
2938     default:
2939       LOG(FATAL) << "Unexpected sub type " << sub->GetResultType();
2940   }
2941 }
2942 
VisitMul(HMul * mul)2943 void LocationsBuilderX86::VisitMul(HMul* mul) {
2944   LocationSummary* locations =
2945       new (GetGraph()->GetArena()) LocationSummary(mul, LocationSummary::kNoCall);
2946   switch (mul->GetResultType()) {
2947     case Primitive::kPrimInt:
2948       locations->SetInAt(0, Location::RequiresRegister());
2949       locations->SetInAt(1, Location::Any());
2950       if (mul->InputAt(1)->IsIntConstant()) {
2951         // Can use 3 operand multiply.
2952         locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
2953       } else {
2954         locations->SetOut(Location::SameAsFirstInput());
2955       }
2956       break;
2957     case Primitive::kPrimLong: {
2958       locations->SetInAt(0, Location::RequiresRegister());
2959       locations->SetInAt(1, Location::Any());
2960       locations->SetOut(Location::SameAsFirstInput());
2961       // Needed for imul on 32bits with 64bits output.
2962       locations->AddTemp(Location::RegisterLocation(EAX));
2963       locations->AddTemp(Location::RegisterLocation(EDX));
2964       break;
2965     }
2966     case Primitive::kPrimFloat:
2967     case Primitive::kPrimDouble: {
2968       locations->SetInAt(0, Location::RequiresFpuRegister());
2969       if (mul->InputAt(1)->IsX86LoadFromConstantTable()) {
2970         DCHECK(mul->InputAt(1)->IsEmittedAtUseSite());
2971       } else if (mul->InputAt(1)->IsConstant()) {
2972         locations->SetInAt(1, Location::RequiresFpuRegister());
2973       } else {
2974         locations->SetInAt(1, Location::Any());
2975       }
2976       locations->SetOut(Location::SameAsFirstInput());
2977       break;
2978     }
2979 
2980     default:
2981       LOG(FATAL) << "Unexpected mul type " << mul->GetResultType();
2982   }
2983 }
2984 
VisitMul(HMul * mul)2985 void InstructionCodeGeneratorX86::VisitMul(HMul* mul) {
2986   LocationSummary* locations = mul->GetLocations();
2987   Location first = locations->InAt(0);
2988   Location second = locations->InAt(1);
2989   Location out = locations->Out();
2990 
2991   switch (mul->GetResultType()) {
2992     case Primitive::kPrimInt:
2993       // The constant may have ended up in a register, so test explicitly to avoid
2994       // problems where the output may not be the same as the first operand.
2995       if (mul->InputAt(1)->IsIntConstant()) {
2996         Immediate imm(mul->InputAt(1)->AsIntConstant()->GetValue());
2997         __ imull(out.AsRegister<Register>(), first.AsRegister<Register>(), imm);
2998       } else if (second.IsRegister()) {
2999         DCHECK(first.Equals(out));
3000         __ imull(first.AsRegister<Register>(), second.AsRegister<Register>());
3001       } else {
3002         DCHECK(second.IsStackSlot());
3003         DCHECK(first.Equals(out));
3004         __ imull(first.AsRegister<Register>(), Address(ESP, second.GetStackIndex()));
3005       }
3006       break;
3007 
3008     case Primitive::kPrimLong: {
3009       Register in1_hi = first.AsRegisterPairHigh<Register>();
3010       Register in1_lo = first.AsRegisterPairLow<Register>();
3011       Register eax = locations->GetTemp(0).AsRegister<Register>();
3012       Register edx = locations->GetTemp(1).AsRegister<Register>();
3013 
3014       DCHECK_EQ(EAX, eax);
3015       DCHECK_EQ(EDX, edx);
3016 
3017       // input: in1 - 64 bits, in2 - 64 bits.
3018       // output: in1
3019       // formula: in1.hi : in1.lo = (in1.lo * in2.hi + in1.hi * in2.lo)* 2^32 + in1.lo * in2.lo
3020       // parts: in1.hi = in1.lo * in2.hi + in1.hi * in2.lo + (in1.lo * in2.lo)[63:32]
3021       // parts: in1.lo = (in1.lo * in2.lo)[31:0]
3022       if (second.IsConstant()) {
3023         DCHECK(second.GetConstant()->IsLongConstant());
3024 
3025         int64_t value = second.GetConstant()->AsLongConstant()->GetValue();
3026         int32_t low_value = Low32Bits(value);
3027         int32_t high_value = High32Bits(value);
3028         Immediate low(low_value);
3029         Immediate high(high_value);
3030 
3031         __ movl(eax, high);
3032         // eax <- in1.lo * in2.hi
3033         __ imull(eax, in1_lo);
3034         // in1.hi <- in1.hi * in2.lo
3035         __ imull(in1_hi, low);
3036         // in1.hi <- in1.lo * in2.hi + in1.hi * in2.lo
3037         __ addl(in1_hi, eax);
3038         // move in2_lo to eax to prepare for double precision
3039         __ movl(eax, low);
3040         // edx:eax <- in1.lo * in2.lo
3041         __ mull(in1_lo);
3042         // in1.hi <- in2.hi * in1.lo +  in2.lo * in1.hi + (in1.lo * in2.lo)[63:32]
3043         __ addl(in1_hi, edx);
3044         // in1.lo <- (in1.lo * in2.lo)[31:0];
3045         __ movl(in1_lo, eax);
3046       } else if (second.IsRegisterPair()) {
3047         Register in2_hi = second.AsRegisterPairHigh<Register>();
3048         Register in2_lo = second.AsRegisterPairLow<Register>();
3049 
3050         __ movl(eax, in2_hi);
3051         // eax <- in1.lo * in2.hi
3052         __ imull(eax, in1_lo);
3053         // in1.hi <- in1.hi * in2.lo
3054         __ imull(in1_hi, in2_lo);
3055         // in1.hi <- in1.lo * in2.hi + in1.hi * in2.lo
3056         __ addl(in1_hi, eax);
3057         // move in1_lo to eax to prepare for double precision
3058         __ movl(eax, in1_lo);
3059         // edx:eax <- in1.lo * in2.lo
3060         __ mull(in2_lo);
3061         // in1.hi <- in2.hi * in1.lo +  in2.lo * in1.hi + (in1.lo * in2.lo)[63:32]
3062         __ addl(in1_hi, edx);
3063         // in1.lo <- (in1.lo * in2.lo)[31:0];
3064         __ movl(in1_lo, eax);
3065       } else {
3066         DCHECK(second.IsDoubleStackSlot()) << second;
3067         Address in2_hi(ESP, second.GetHighStackIndex(kX86WordSize));
3068         Address in2_lo(ESP, second.GetStackIndex());
3069 
3070         __ movl(eax, in2_hi);
3071         // eax <- in1.lo * in2.hi
3072         __ imull(eax, in1_lo);
3073         // in1.hi <- in1.hi * in2.lo
3074         __ imull(in1_hi, in2_lo);
3075         // in1.hi <- in1.lo * in2.hi + in1.hi * in2.lo
3076         __ addl(in1_hi, eax);
3077         // move in1_lo to eax to prepare for double precision
3078         __ movl(eax, in1_lo);
3079         // edx:eax <- in1.lo * in2.lo
3080         __ mull(in2_lo);
3081         // in1.hi <- in2.hi * in1.lo +  in2.lo * in1.hi + (in1.lo * in2.lo)[63:32]
3082         __ addl(in1_hi, edx);
3083         // in1.lo <- (in1.lo * in2.lo)[31:0];
3084         __ movl(in1_lo, eax);
3085       }
3086 
3087       break;
3088     }
3089 
3090     case Primitive::kPrimFloat: {
3091       DCHECK(first.Equals(locations->Out()));
3092       if (second.IsFpuRegister()) {
3093         __ mulss(first.AsFpuRegister<XmmRegister>(), second.AsFpuRegister<XmmRegister>());
3094       } else if (mul->InputAt(1)->IsX86LoadFromConstantTable()) {
3095         HX86LoadFromConstantTable* const_area = mul->InputAt(1)->AsX86LoadFromConstantTable();
3096         DCHECK(const_area->IsEmittedAtUseSite());
3097         __ mulss(first.AsFpuRegister<XmmRegister>(),
3098                  codegen_->LiteralFloatAddress(
3099                      const_area->GetConstant()->AsFloatConstant()->GetValue(),
3100                      const_area->GetLocations()->InAt(0).AsRegister<Register>()));
3101       } else {
3102         DCHECK(second.IsStackSlot());
3103         __ mulss(first.AsFpuRegister<XmmRegister>(), Address(ESP, second.GetStackIndex()));
3104       }
3105       break;
3106     }
3107 
3108     case Primitive::kPrimDouble: {
3109       DCHECK(first.Equals(locations->Out()));
3110       if (second.IsFpuRegister()) {
3111         __ mulsd(first.AsFpuRegister<XmmRegister>(), second.AsFpuRegister<XmmRegister>());
3112       } else if (mul->InputAt(1)->IsX86LoadFromConstantTable()) {
3113         HX86LoadFromConstantTable* const_area = mul->InputAt(1)->AsX86LoadFromConstantTable();
3114         DCHECK(const_area->IsEmittedAtUseSite());
3115         __ mulsd(first.AsFpuRegister<XmmRegister>(),
3116                  codegen_->LiteralDoubleAddress(
3117                      const_area->GetConstant()->AsDoubleConstant()->GetValue(),
3118                      const_area->GetLocations()->InAt(0).AsRegister<Register>()));
3119       } else {
3120         DCHECK(second.IsDoubleStackSlot());
3121         __ mulsd(first.AsFpuRegister<XmmRegister>(), Address(ESP, second.GetStackIndex()));
3122       }
3123       break;
3124     }
3125 
3126     default:
3127       LOG(FATAL) << "Unexpected mul type " << mul->GetResultType();
3128   }
3129 }
3130 
PushOntoFPStack(Location source,uint32_t temp_offset,uint32_t stack_adjustment,bool is_fp,bool is_wide)3131 void InstructionCodeGeneratorX86::PushOntoFPStack(Location source,
3132                                                   uint32_t temp_offset,
3133                                                   uint32_t stack_adjustment,
3134                                                   bool is_fp,
3135                                                   bool is_wide) {
3136   if (source.IsStackSlot()) {
3137     DCHECK(!is_wide);
3138     if (is_fp) {
3139       __ flds(Address(ESP, source.GetStackIndex() + stack_adjustment));
3140     } else {
3141       __ filds(Address(ESP, source.GetStackIndex() + stack_adjustment));
3142     }
3143   } else if (source.IsDoubleStackSlot()) {
3144     DCHECK(is_wide);
3145     if (is_fp) {
3146       __ fldl(Address(ESP, source.GetStackIndex() + stack_adjustment));
3147     } else {
3148       __ fildl(Address(ESP, source.GetStackIndex() + stack_adjustment));
3149     }
3150   } else {
3151     // Write the value to the temporary location on the stack and load to FP stack.
3152     if (!is_wide) {
3153       Location stack_temp = Location::StackSlot(temp_offset);
3154       codegen_->Move32(stack_temp, source);
3155       if (is_fp) {
3156         __ flds(Address(ESP, temp_offset));
3157       } else {
3158         __ filds(Address(ESP, temp_offset));
3159       }
3160     } else {
3161       Location stack_temp = Location::DoubleStackSlot(temp_offset);
3162       codegen_->Move64(stack_temp, source);
3163       if (is_fp) {
3164         __ fldl(Address(ESP, temp_offset));
3165       } else {
3166         __ fildl(Address(ESP, temp_offset));
3167       }
3168     }
3169   }
3170 }
3171 
GenerateRemFP(HRem * rem)3172 void InstructionCodeGeneratorX86::GenerateRemFP(HRem *rem) {
3173   Primitive::Type type = rem->GetResultType();
3174   bool is_float = type == Primitive::kPrimFloat;
3175   size_t elem_size = Primitive::ComponentSize(type);
3176   LocationSummary* locations = rem->GetLocations();
3177   Location first = locations->InAt(0);
3178   Location second = locations->InAt(1);
3179   Location out = locations->Out();
3180 
3181   // Create stack space for 2 elements.
3182   // TODO: enhance register allocator to ask for stack temporaries.
3183   __ subl(ESP, Immediate(2 * elem_size));
3184 
3185   // Load the values to the FP stack in reverse order, using temporaries if needed.
3186   const bool is_wide = !is_float;
3187   PushOntoFPStack(second, elem_size, 2 * elem_size, /* is_fp */ true, is_wide);
3188   PushOntoFPStack(first, 0, 2 * elem_size, /* is_fp */ true, is_wide);
3189 
3190   // Loop doing FPREM until we stabilize.
3191   NearLabel retry;
3192   __ Bind(&retry);
3193   __ fprem();
3194 
3195   // Move FP status to AX.
3196   __ fstsw();
3197 
3198   // And see if the argument reduction is complete. This is signaled by the
3199   // C2 FPU flag bit set to 0.
3200   __ andl(EAX, Immediate(kC2ConditionMask));
3201   __ j(kNotEqual, &retry);
3202 
3203   // We have settled on the final value. Retrieve it into an XMM register.
3204   // Store FP top of stack to real stack.
3205   if (is_float) {
3206     __ fsts(Address(ESP, 0));
3207   } else {
3208     __ fstl(Address(ESP, 0));
3209   }
3210 
3211   // Pop the 2 items from the FP stack.
3212   __ fucompp();
3213 
3214   // Load the value from the stack into an XMM register.
3215   DCHECK(out.IsFpuRegister()) << out;
3216   if (is_float) {
3217     __ movss(out.AsFpuRegister<XmmRegister>(), Address(ESP, 0));
3218   } else {
3219     __ movsd(out.AsFpuRegister<XmmRegister>(), Address(ESP, 0));
3220   }
3221 
3222   // And remove the temporary stack space we allocated.
3223   __ addl(ESP, Immediate(2 * elem_size));
3224 }
3225 
3226 
DivRemOneOrMinusOne(HBinaryOperation * instruction)3227 void InstructionCodeGeneratorX86::DivRemOneOrMinusOne(HBinaryOperation* instruction) {
3228   DCHECK(instruction->IsDiv() || instruction->IsRem());
3229 
3230   LocationSummary* locations = instruction->GetLocations();
3231   DCHECK(locations->InAt(1).IsConstant());
3232   DCHECK(locations->InAt(1).GetConstant()->IsIntConstant());
3233 
3234   Register out_register = locations->Out().AsRegister<Register>();
3235   Register input_register = locations->InAt(0).AsRegister<Register>();
3236   int32_t imm = locations->InAt(1).GetConstant()->AsIntConstant()->GetValue();
3237 
3238   DCHECK(imm == 1 || imm == -1);
3239 
3240   if (instruction->IsRem()) {
3241     __ xorl(out_register, out_register);
3242   } else {
3243     __ movl(out_register, input_register);
3244     if (imm == -1) {
3245       __ negl(out_register);
3246     }
3247   }
3248 }
3249 
3250 
DivByPowerOfTwo(HDiv * instruction)3251 void InstructionCodeGeneratorX86::DivByPowerOfTwo(HDiv* instruction) {
3252   LocationSummary* locations = instruction->GetLocations();
3253 
3254   Register out_register = locations->Out().AsRegister<Register>();
3255   Register input_register = locations->InAt(0).AsRegister<Register>();
3256   int32_t imm = locations->InAt(1).GetConstant()->AsIntConstant()->GetValue();
3257   DCHECK(IsPowerOfTwo(AbsOrMin(imm)));
3258   uint32_t abs_imm = static_cast<uint32_t>(AbsOrMin(imm));
3259 
3260   Register num = locations->GetTemp(0).AsRegister<Register>();
3261 
3262   __ leal(num, Address(input_register, abs_imm - 1));
3263   __ testl(input_register, input_register);
3264   __ cmovl(kGreaterEqual, num, input_register);
3265   int shift = CTZ(imm);
3266   __ sarl(num, Immediate(shift));
3267 
3268   if (imm < 0) {
3269     __ negl(num);
3270   }
3271 
3272   __ movl(out_register, num);
3273 }
3274 
GenerateDivRemWithAnyConstant(HBinaryOperation * instruction)3275 void InstructionCodeGeneratorX86::GenerateDivRemWithAnyConstant(HBinaryOperation* instruction) {
3276   DCHECK(instruction->IsDiv() || instruction->IsRem());
3277 
3278   LocationSummary* locations = instruction->GetLocations();
3279   int imm = locations->InAt(1).GetConstant()->AsIntConstant()->GetValue();
3280 
3281   Register eax = locations->InAt(0).AsRegister<Register>();
3282   Register out = locations->Out().AsRegister<Register>();
3283   Register num;
3284   Register edx;
3285 
3286   if (instruction->IsDiv()) {
3287     edx = locations->GetTemp(0).AsRegister<Register>();
3288     num = locations->GetTemp(1).AsRegister<Register>();
3289   } else {
3290     edx = locations->Out().AsRegister<Register>();
3291     num = locations->GetTemp(0).AsRegister<Register>();
3292   }
3293 
3294   DCHECK_EQ(EAX, eax);
3295   DCHECK_EQ(EDX, edx);
3296   if (instruction->IsDiv()) {
3297     DCHECK_EQ(EAX, out);
3298   } else {
3299     DCHECK_EQ(EDX, out);
3300   }
3301 
3302   int64_t magic;
3303   int shift;
3304   CalculateMagicAndShiftForDivRem(imm, false /* is_long */, &magic, &shift);
3305 
3306   NearLabel ndiv;
3307   NearLabel end;
3308   // If numerator is 0, the result is 0, no computation needed.
3309   __ testl(eax, eax);
3310   __ j(kNotEqual, &ndiv);
3311 
3312   __ xorl(out, out);
3313   __ jmp(&end);
3314 
3315   __ Bind(&ndiv);
3316 
3317   // Save the numerator.
3318   __ movl(num, eax);
3319 
3320   // EAX = magic
3321   __ movl(eax, Immediate(magic));
3322 
3323   // EDX:EAX = magic * numerator
3324   __ imull(num);
3325 
3326   if (imm > 0 && magic < 0) {
3327     // EDX += num
3328     __ addl(edx, num);
3329   } else if (imm < 0 && magic > 0) {
3330     __ subl(edx, num);
3331   }
3332 
3333   // Shift if needed.
3334   if (shift != 0) {
3335     __ sarl(edx, Immediate(shift));
3336   }
3337 
3338   // EDX += 1 if EDX < 0
3339   __ movl(eax, edx);
3340   __ shrl(edx, Immediate(31));
3341   __ addl(edx, eax);
3342 
3343   if (instruction->IsRem()) {
3344     __ movl(eax, num);
3345     __ imull(edx, Immediate(imm));
3346     __ subl(eax, edx);
3347     __ movl(edx, eax);
3348   } else {
3349     __ movl(eax, edx);
3350   }
3351   __ Bind(&end);
3352 }
3353 
GenerateDivRemIntegral(HBinaryOperation * instruction)3354 void InstructionCodeGeneratorX86::GenerateDivRemIntegral(HBinaryOperation* instruction) {
3355   DCHECK(instruction->IsDiv() || instruction->IsRem());
3356 
3357   LocationSummary* locations = instruction->GetLocations();
3358   Location out = locations->Out();
3359   Location first = locations->InAt(0);
3360   Location second = locations->InAt(1);
3361   bool is_div = instruction->IsDiv();
3362 
3363   switch (instruction->GetResultType()) {
3364     case Primitive::kPrimInt: {
3365       DCHECK_EQ(EAX, first.AsRegister<Register>());
3366       DCHECK_EQ(is_div ? EAX : EDX, out.AsRegister<Register>());
3367 
3368       if (second.IsConstant()) {
3369         int32_t imm = second.GetConstant()->AsIntConstant()->GetValue();
3370 
3371         if (imm == 0) {
3372           // Do not generate anything for 0. DivZeroCheck would forbid any generated code.
3373         } else if (imm == 1 || imm == -1) {
3374           DivRemOneOrMinusOne(instruction);
3375         } else if (is_div && IsPowerOfTwo(AbsOrMin(imm))) {
3376           DivByPowerOfTwo(instruction->AsDiv());
3377         } else {
3378           DCHECK(imm <= -2 || imm >= 2);
3379           GenerateDivRemWithAnyConstant(instruction);
3380         }
3381       } else {
3382         SlowPathCode* slow_path = new (GetGraph()->GetArena()) DivRemMinusOneSlowPathX86(
3383             instruction, out.AsRegister<Register>(), is_div);
3384         codegen_->AddSlowPath(slow_path);
3385 
3386         Register second_reg = second.AsRegister<Register>();
3387         // 0x80000000/-1 triggers an arithmetic exception!
3388         // Dividing by -1 is actually negation and -0x800000000 = 0x80000000 so
3389         // it's safe to just use negl instead of more complex comparisons.
3390 
3391         __ cmpl(second_reg, Immediate(-1));
3392         __ j(kEqual, slow_path->GetEntryLabel());
3393 
3394         // edx:eax <- sign-extended of eax
3395         __ cdq();
3396         // eax = quotient, edx = remainder
3397         __ idivl(second_reg);
3398         __ Bind(slow_path->GetExitLabel());
3399       }
3400       break;
3401     }
3402 
3403     case Primitive::kPrimLong: {
3404       InvokeRuntimeCallingConvention calling_convention;
3405       DCHECK_EQ(calling_convention.GetRegisterAt(0), first.AsRegisterPairLow<Register>());
3406       DCHECK_EQ(calling_convention.GetRegisterAt(1), first.AsRegisterPairHigh<Register>());
3407       DCHECK_EQ(calling_convention.GetRegisterAt(2), second.AsRegisterPairLow<Register>());
3408       DCHECK_EQ(calling_convention.GetRegisterAt(3), second.AsRegisterPairHigh<Register>());
3409       DCHECK_EQ(EAX, out.AsRegisterPairLow<Register>());
3410       DCHECK_EQ(EDX, out.AsRegisterPairHigh<Register>());
3411 
3412       if (is_div) {
3413         codegen_->InvokeRuntime(QUICK_ENTRY_POINT(pLdiv),
3414                                 instruction,
3415                                 instruction->GetDexPc(),
3416                                 nullptr);
3417         CheckEntrypointTypes<kQuickLdiv, int64_t, int64_t, int64_t>();
3418       } else {
3419         codegen_->InvokeRuntime(QUICK_ENTRY_POINT(pLmod),
3420                                 instruction,
3421                                 instruction->GetDexPc(),
3422                                 nullptr);
3423         CheckEntrypointTypes<kQuickLmod, int64_t, int64_t, int64_t>();
3424       }
3425       break;
3426     }
3427 
3428     default:
3429       LOG(FATAL) << "Unexpected type for GenerateDivRemIntegral " << instruction->GetResultType();
3430   }
3431 }
3432 
VisitDiv(HDiv * div)3433 void LocationsBuilderX86::VisitDiv(HDiv* div) {
3434   LocationSummary::CallKind call_kind = (div->GetResultType() == Primitive::kPrimLong)
3435       ? LocationSummary::kCall
3436       : LocationSummary::kNoCall;
3437   LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(div, call_kind);
3438 
3439   switch (div->GetResultType()) {
3440     case Primitive::kPrimInt: {
3441       locations->SetInAt(0, Location::RegisterLocation(EAX));
3442       locations->SetInAt(1, Location::RegisterOrConstant(div->InputAt(1)));
3443       locations->SetOut(Location::SameAsFirstInput());
3444       // Intel uses edx:eax as the dividend.
3445       locations->AddTemp(Location::RegisterLocation(EDX));
3446       // We need to save the numerator while we tweak eax and edx. As we are using imul in a way
3447       // which enforces results to be in EAX and EDX, things are simpler if we use EAX also as
3448       // output and request another temp.
3449       if (div->InputAt(1)->IsIntConstant()) {
3450         locations->AddTemp(Location::RequiresRegister());
3451       }
3452       break;
3453     }
3454     case Primitive::kPrimLong: {
3455       InvokeRuntimeCallingConvention calling_convention;
3456       locations->SetInAt(0, Location::RegisterPairLocation(
3457           calling_convention.GetRegisterAt(0), calling_convention.GetRegisterAt(1)));
3458       locations->SetInAt(1, Location::RegisterPairLocation(
3459           calling_convention.GetRegisterAt(2), calling_convention.GetRegisterAt(3)));
3460       // Runtime helper puts the result in EAX, EDX.
3461       locations->SetOut(Location::RegisterPairLocation(EAX, EDX));
3462       break;
3463     }
3464     case Primitive::kPrimFloat:
3465     case Primitive::kPrimDouble: {
3466       locations->SetInAt(0, Location::RequiresFpuRegister());
3467       if (div->InputAt(1)->IsX86LoadFromConstantTable()) {
3468         DCHECK(div->InputAt(1)->IsEmittedAtUseSite());
3469       } else if (div->InputAt(1)->IsConstant()) {
3470         locations->SetInAt(1, Location::RequiresFpuRegister());
3471       } else {
3472         locations->SetInAt(1, Location::Any());
3473       }
3474       locations->SetOut(Location::SameAsFirstInput());
3475       break;
3476     }
3477 
3478     default:
3479       LOG(FATAL) << "Unexpected div type " << div->GetResultType();
3480   }
3481 }
3482 
VisitDiv(HDiv * div)3483 void InstructionCodeGeneratorX86::VisitDiv(HDiv* div) {
3484   LocationSummary* locations = div->GetLocations();
3485   Location first = locations->InAt(0);
3486   Location second = locations->InAt(1);
3487 
3488   switch (div->GetResultType()) {
3489     case Primitive::kPrimInt:
3490     case Primitive::kPrimLong: {
3491       GenerateDivRemIntegral(div);
3492       break;
3493     }
3494 
3495     case Primitive::kPrimFloat: {
3496       if (second.IsFpuRegister()) {
3497         __ divss(first.AsFpuRegister<XmmRegister>(), second.AsFpuRegister<XmmRegister>());
3498       } else if (div->InputAt(1)->IsX86LoadFromConstantTable()) {
3499         HX86LoadFromConstantTable* const_area = div->InputAt(1)->AsX86LoadFromConstantTable();
3500         DCHECK(const_area->IsEmittedAtUseSite());
3501         __ divss(first.AsFpuRegister<XmmRegister>(),
3502                  codegen_->LiteralFloatAddress(
3503                    const_area->GetConstant()->AsFloatConstant()->GetValue(),
3504                    const_area->GetLocations()->InAt(0).AsRegister<Register>()));
3505       } else {
3506         DCHECK(second.IsStackSlot());
3507         __ divss(first.AsFpuRegister<XmmRegister>(), Address(ESP, second.GetStackIndex()));
3508       }
3509       break;
3510     }
3511 
3512     case Primitive::kPrimDouble: {
3513       if (second.IsFpuRegister()) {
3514         __ divsd(first.AsFpuRegister<XmmRegister>(), second.AsFpuRegister<XmmRegister>());
3515       } else if (div->InputAt(1)->IsX86LoadFromConstantTable()) {
3516         HX86LoadFromConstantTable* const_area = div->InputAt(1)->AsX86LoadFromConstantTable();
3517         DCHECK(const_area->IsEmittedAtUseSite());
3518         __ divsd(first.AsFpuRegister<XmmRegister>(),
3519                  codegen_->LiteralDoubleAddress(
3520                    const_area->GetConstant()->AsDoubleConstant()->GetValue(),
3521                    const_area->GetLocations()->InAt(0).AsRegister<Register>()));
3522       } else {
3523         DCHECK(second.IsDoubleStackSlot());
3524         __ divsd(first.AsFpuRegister<XmmRegister>(), Address(ESP, second.GetStackIndex()));
3525       }
3526       break;
3527     }
3528 
3529     default:
3530       LOG(FATAL) << "Unexpected div type " << div->GetResultType();
3531   }
3532 }
3533 
VisitRem(HRem * rem)3534 void LocationsBuilderX86::VisitRem(HRem* rem) {
3535   Primitive::Type type = rem->GetResultType();
3536 
3537   LocationSummary::CallKind call_kind = (rem->GetResultType() == Primitive::kPrimLong)
3538       ? LocationSummary::kCall
3539       : LocationSummary::kNoCall;
3540   LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(rem, call_kind);
3541 
3542   switch (type) {
3543     case Primitive::kPrimInt: {
3544       locations->SetInAt(0, Location::RegisterLocation(EAX));
3545       locations->SetInAt(1, Location::RegisterOrConstant(rem->InputAt(1)));
3546       locations->SetOut(Location::RegisterLocation(EDX));
3547       // We need to save the numerator while we tweak eax and edx. As we are using imul in a way
3548       // which enforces results to be in EAX and EDX, things are simpler if we use EDX also as
3549       // output and request another temp.
3550       if (rem->InputAt(1)->IsIntConstant()) {
3551         locations->AddTemp(Location::RequiresRegister());
3552       }
3553       break;
3554     }
3555     case Primitive::kPrimLong: {
3556       InvokeRuntimeCallingConvention calling_convention;
3557       locations->SetInAt(0, Location::RegisterPairLocation(
3558           calling_convention.GetRegisterAt(0), calling_convention.GetRegisterAt(1)));
3559       locations->SetInAt(1, Location::RegisterPairLocation(
3560           calling_convention.GetRegisterAt(2), calling_convention.GetRegisterAt(3)));
3561       // Runtime helper puts the result in EAX, EDX.
3562       locations->SetOut(Location::RegisterPairLocation(EAX, EDX));
3563       break;
3564     }
3565     case Primitive::kPrimDouble:
3566     case Primitive::kPrimFloat: {
3567       locations->SetInAt(0, Location::Any());
3568       locations->SetInAt(1, Location::Any());
3569       locations->SetOut(Location::RequiresFpuRegister());
3570       locations->AddTemp(Location::RegisterLocation(EAX));
3571       break;
3572     }
3573 
3574     default:
3575       LOG(FATAL) << "Unexpected rem type " << type;
3576   }
3577 }
3578 
VisitRem(HRem * rem)3579 void InstructionCodeGeneratorX86::VisitRem(HRem* rem) {
3580   Primitive::Type type = rem->GetResultType();
3581   switch (type) {
3582     case Primitive::kPrimInt:
3583     case Primitive::kPrimLong: {
3584       GenerateDivRemIntegral(rem);
3585       break;
3586     }
3587     case Primitive::kPrimFloat:
3588     case Primitive::kPrimDouble: {
3589       GenerateRemFP(rem);
3590       break;
3591     }
3592     default:
3593       LOG(FATAL) << "Unexpected rem type " << type;
3594   }
3595 }
3596 
VisitDivZeroCheck(HDivZeroCheck * instruction)3597 void LocationsBuilderX86::VisitDivZeroCheck(HDivZeroCheck* instruction) {
3598   LocationSummary::CallKind call_kind = instruction->CanThrowIntoCatchBlock()
3599       ? LocationSummary::kCallOnSlowPath
3600       : LocationSummary::kNoCall;
3601   LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(instruction, call_kind);
3602   switch (instruction->GetType()) {
3603     case Primitive::kPrimBoolean:
3604     case Primitive::kPrimByte:
3605     case Primitive::kPrimChar:
3606     case Primitive::kPrimShort:
3607     case Primitive::kPrimInt: {
3608       locations->SetInAt(0, Location::Any());
3609       break;
3610     }
3611     case Primitive::kPrimLong: {
3612       locations->SetInAt(0, Location::RegisterOrConstant(instruction->InputAt(0)));
3613       if (!instruction->IsConstant()) {
3614         locations->AddTemp(Location::RequiresRegister());
3615       }
3616       break;
3617     }
3618     default:
3619       LOG(FATAL) << "Unexpected type for HDivZeroCheck " << instruction->GetType();
3620   }
3621   if (instruction->HasUses()) {
3622     locations->SetOut(Location::SameAsFirstInput());
3623   }
3624 }
3625 
VisitDivZeroCheck(HDivZeroCheck * instruction)3626 void InstructionCodeGeneratorX86::VisitDivZeroCheck(HDivZeroCheck* instruction) {
3627   SlowPathCode* slow_path = new (GetGraph()->GetArena()) DivZeroCheckSlowPathX86(instruction);
3628   codegen_->AddSlowPath(slow_path);
3629 
3630   LocationSummary* locations = instruction->GetLocations();
3631   Location value = locations->InAt(0);
3632 
3633   switch (instruction->GetType()) {
3634     case Primitive::kPrimBoolean:
3635     case Primitive::kPrimByte:
3636     case Primitive::kPrimChar:
3637     case Primitive::kPrimShort:
3638     case Primitive::kPrimInt: {
3639       if (value.IsRegister()) {
3640         __ testl(value.AsRegister<Register>(), value.AsRegister<Register>());
3641         __ j(kEqual, slow_path->GetEntryLabel());
3642       } else if (value.IsStackSlot()) {
3643         __ cmpl(Address(ESP, value.GetStackIndex()), Immediate(0));
3644         __ j(kEqual, slow_path->GetEntryLabel());
3645       } else {
3646         DCHECK(value.IsConstant()) << value;
3647         if (value.GetConstant()->AsIntConstant()->GetValue() == 0) {
3648         __ jmp(slow_path->GetEntryLabel());
3649         }
3650       }
3651       break;
3652     }
3653     case Primitive::kPrimLong: {
3654       if (value.IsRegisterPair()) {
3655         Register temp = locations->GetTemp(0).AsRegister<Register>();
3656         __ movl(temp, value.AsRegisterPairLow<Register>());
3657         __ orl(temp, value.AsRegisterPairHigh<Register>());
3658         __ j(kEqual, slow_path->GetEntryLabel());
3659       } else {
3660         DCHECK(value.IsConstant()) << value;
3661         if (value.GetConstant()->AsLongConstant()->GetValue() == 0) {
3662           __ jmp(slow_path->GetEntryLabel());
3663         }
3664       }
3665       break;
3666     }
3667     default:
3668       LOG(FATAL) << "Unexpected type for HDivZeroCheck" << instruction->GetType();
3669   }
3670 }
3671 
HandleShift(HBinaryOperation * op)3672 void LocationsBuilderX86::HandleShift(HBinaryOperation* op) {
3673   DCHECK(op->IsShl() || op->IsShr() || op->IsUShr());
3674 
3675   LocationSummary* locations =
3676       new (GetGraph()->GetArena()) LocationSummary(op, LocationSummary::kNoCall);
3677 
3678   switch (op->GetResultType()) {
3679     case Primitive::kPrimInt:
3680     case Primitive::kPrimLong: {
3681       // Can't have Location::Any() and output SameAsFirstInput()
3682       locations->SetInAt(0, Location::RequiresRegister());
3683       // The shift count needs to be in CL or a constant.
3684       locations->SetInAt(1, Location::ByteRegisterOrConstant(ECX, op->InputAt(1)));
3685       locations->SetOut(Location::SameAsFirstInput());
3686       break;
3687     }
3688     default:
3689       LOG(FATAL) << "Unexpected op type " << op->GetResultType();
3690   }
3691 }
3692 
HandleShift(HBinaryOperation * op)3693 void InstructionCodeGeneratorX86::HandleShift(HBinaryOperation* op) {
3694   DCHECK(op->IsShl() || op->IsShr() || op->IsUShr());
3695 
3696   LocationSummary* locations = op->GetLocations();
3697   Location first = locations->InAt(0);
3698   Location second = locations->InAt(1);
3699   DCHECK(first.Equals(locations->Out()));
3700 
3701   switch (op->GetResultType()) {
3702     case Primitive::kPrimInt: {
3703       DCHECK(first.IsRegister());
3704       Register first_reg = first.AsRegister<Register>();
3705       if (second.IsRegister()) {
3706         Register second_reg = second.AsRegister<Register>();
3707         DCHECK_EQ(ECX, second_reg);
3708         if (op->IsShl()) {
3709           __ shll(first_reg, second_reg);
3710         } else if (op->IsShr()) {
3711           __ sarl(first_reg, second_reg);
3712         } else {
3713           __ shrl(first_reg, second_reg);
3714         }
3715       } else {
3716         int32_t shift = second.GetConstant()->AsIntConstant()->GetValue() & kMaxIntShiftDistance;
3717         if (shift == 0) {
3718           return;
3719         }
3720         Immediate imm(shift);
3721         if (op->IsShl()) {
3722           __ shll(first_reg, imm);
3723         } else if (op->IsShr()) {
3724           __ sarl(first_reg, imm);
3725         } else {
3726           __ shrl(first_reg, imm);
3727         }
3728       }
3729       break;
3730     }
3731     case Primitive::kPrimLong: {
3732       if (second.IsRegister()) {
3733         Register second_reg = second.AsRegister<Register>();
3734         DCHECK_EQ(ECX, second_reg);
3735         if (op->IsShl()) {
3736           GenerateShlLong(first, second_reg);
3737         } else if (op->IsShr()) {
3738           GenerateShrLong(first, second_reg);
3739         } else {
3740           GenerateUShrLong(first, second_reg);
3741         }
3742       } else {
3743         // Shift by a constant.
3744         int32_t shift = second.GetConstant()->AsIntConstant()->GetValue() & kMaxLongShiftDistance;
3745         // Nothing to do if the shift is 0, as the input is already the output.
3746         if (shift != 0) {
3747           if (op->IsShl()) {
3748             GenerateShlLong(first, shift);
3749           } else if (op->IsShr()) {
3750             GenerateShrLong(first, shift);
3751           } else {
3752             GenerateUShrLong(first, shift);
3753           }
3754         }
3755       }
3756       break;
3757     }
3758     default:
3759       LOG(FATAL) << "Unexpected op type " << op->GetResultType();
3760   }
3761 }
3762 
GenerateShlLong(const Location & loc,int shift)3763 void InstructionCodeGeneratorX86::GenerateShlLong(const Location& loc, int shift) {
3764   Register low = loc.AsRegisterPairLow<Register>();
3765   Register high = loc.AsRegisterPairHigh<Register>();
3766   if (shift == 1) {
3767     // This is just an addition.
3768     __ addl(low, low);
3769     __ adcl(high, high);
3770   } else if (shift == 32) {
3771     // Shift by 32 is easy. High gets low, and low gets 0.
3772     codegen_->EmitParallelMoves(
3773         loc.ToLow(),
3774         loc.ToHigh(),
3775         Primitive::kPrimInt,
3776         Location::ConstantLocation(GetGraph()->GetIntConstant(0)),
3777         loc.ToLow(),
3778         Primitive::kPrimInt);
3779   } else if (shift > 32) {
3780     // Low part becomes 0.  High part is low part << (shift-32).
3781     __ movl(high, low);
3782     __ shll(high, Immediate(shift - 32));
3783     __ xorl(low, low);
3784   } else {
3785     // Between 1 and 31.
3786     __ shld(high, low, Immediate(shift));
3787     __ shll(low, Immediate(shift));
3788   }
3789 }
3790 
GenerateShlLong(const Location & loc,Register shifter)3791 void InstructionCodeGeneratorX86::GenerateShlLong(const Location& loc, Register shifter) {
3792   NearLabel done;
3793   __ shld(loc.AsRegisterPairHigh<Register>(), loc.AsRegisterPairLow<Register>(), shifter);
3794   __ shll(loc.AsRegisterPairLow<Register>(), shifter);
3795   __ testl(shifter, Immediate(32));
3796   __ j(kEqual, &done);
3797   __ movl(loc.AsRegisterPairHigh<Register>(), loc.AsRegisterPairLow<Register>());
3798   __ movl(loc.AsRegisterPairLow<Register>(), Immediate(0));
3799   __ Bind(&done);
3800 }
3801 
GenerateShrLong(const Location & loc,int shift)3802 void InstructionCodeGeneratorX86::GenerateShrLong(const Location& loc, int shift) {
3803   Register low = loc.AsRegisterPairLow<Register>();
3804   Register high = loc.AsRegisterPairHigh<Register>();
3805   if (shift == 32) {
3806     // Need to copy the sign.
3807     DCHECK_NE(low, high);
3808     __ movl(low, high);
3809     __ sarl(high, Immediate(31));
3810   } else if (shift > 32) {
3811     DCHECK_NE(low, high);
3812     // High part becomes sign. Low part is shifted by shift - 32.
3813     __ movl(low, high);
3814     __ sarl(high, Immediate(31));
3815     __ sarl(low, Immediate(shift - 32));
3816   } else {
3817     // Between 1 and 31.
3818     __ shrd(low, high, Immediate(shift));
3819     __ sarl(high, Immediate(shift));
3820   }
3821 }
3822 
GenerateShrLong(const Location & loc,Register shifter)3823 void InstructionCodeGeneratorX86::GenerateShrLong(const Location& loc, Register shifter) {
3824   NearLabel done;
3825   __ shrd(loc.AsRegisterPairLow<Register>(), loc.AsRegisterPairHigh<Register>(), shifter);
3826   __ sarl(loc.AsRegisterPairHigh<Register>(), shifter);
3827   __ testl(shifter, Immediate(32));
3828   __ j(kEqual, &done);
3829   __ movl(loc.AsRegisterPairLow<Register>(), loc.AsRegisterPairHigh<Register>());
3830   __ sarl(loc.AsRegisterPairHigh<Register>(), Immediate(31));
3831   __ Bind(&done);
3832 }
3833 
GenerateUShrLong(const Location & loc,int shift)3834 void InstructionCodeGeneratorX86::GenerateUShrLong(const Location& loc, int shift) {
3835   Register low = loc.AsRegisterPairLow<Register>();
3836   Register high = loc.AsRegisterPairHigh<Register>();
3837   if (shift == 32) {
3838     // Shift by 32 is easy. Low gets high, and high gets 0.
3839     codegen_->EmitParallelMoves(
3840         loc.ToHigh(),
3841         loc.ToLow(),
3842         Primitive::kPrimInt,
3843         Location::ConstantLocation(GetGraph()->GetIntConstant(0)),
3844         loc.ToHigh(),
3845         Primitive::kPrimInt);
3846   } else if (shift > 32) {
3847     // Low part is high >> (shift - 32). High part becomes 0.
3848     __ movl(low, high);
3849     __ shrl(low, Immediate(shift - 32));
3850     __ xorl(high, high);
3851   } else {
3852     // Between 1 and 31.
3853     __ shrd(low, high, Immediate(shift));
3854     __ shrl(high, Immediate(shift));
3855   }
3856 }
3857 
GenerateUShrLong(const Location & loc,Register shifter)3858 void InstructionCodeGeneratorX86::GenerateUShrLong(const Location& loc, Register shifter) {
3859   NearLabel done;
3860   __ shrd(loc.AsRegisterPairLow<Register>(), loc.AsRegisterPairHigh<Register>(), shifter);
3861   __ shrl(loc.AsRegisterPairHigh<Register>(), shifter);
3862   __ testl(shifter, Immediate(32));
3863   __ j(kEqual, &done);
3864   __ movl(loc.AsRegisterPairLow<Register>(), loc.AsRegisterPairHigh<Register>());
3865   __ movl(loc.AsRegisterPairHigh<Register>(), Immediate(0));
3866   __ Bind(&done);
3867 }
3868 
VisitRor(HRor * ror)3869 void LocationsBuilderX86::VisitRor(HRor* ror) {
3870   LocationSummary* locations =
3871       new (GetGraph()->GetArena()) LocationSummary(ror, LocationSummary::kNoCall);
3872 
3873   switch (ror->GetResultType()) {
3874     case Primitive::kPrimLong:
3875       // Add the temporary needed.
3876       locations->AddTemp(Location::RequiresRegister());
3877       FALLTHROUGH_INTENDED;
3878     case Primitive::kPrimInt:
3879       locations->SetInAt(0, Location::RequiresRegister());
3880       // The shift count needs to be in CL (unless it is a constant).
3881       locations->SetInAt(1, Location::ByteRegisterOrConstant(ECX, ror->InputAt(1)));
3882       locations->SetOut(Location::SameAsFirstInput());
3883       break;
3884     default:
3885       LOG(FATAL) << "Unexpected operation type " << ror->GetResultType();
3886       UNREACHABLE();
3887   }
3888 }
3889 
VisitRor(HRor * ror)3890 void InstructionCodeGeneratorX86::VisitRor(HRor* ror) {
3891   LocationSummary* locations = ror->GetLocations();
3892   Location first = locations->InAt(0);
3893   Location second = locations->InAt(1);
3894 
3895   if (ror->GetResultType() == Primitive::kPrimInt) {
3896     Register first_reg = first.AsRegister<Register>();
3897     if (second.IsRegister()) {
3898       Register second_reg = second.AsRegister<Register>();
3899       __ rorl(first_reg, second_reg);
3900     } else {
3901       Immediate imm(second.GetConstant()->AsIntConstant()->GetValue() & kMaxIntShiftDistance);
3902       __ rorl(first_reg, imm);
3903     }
3904     return;
3905   }
3906 
3907   DCHECK_EQ(ror->GetResultType(), Primitive::kPrimLong);
3908   Register first_reg_lo = first.AsRegisterPairLow<Register>();
3909   Register first_reg_hi = first.AsRegisterPairHigh<Register>();
3910   Register temp_reg = locations->GetTemp(0).AsRegister<Register>();
3911   if (second.IsRegister()) {
3912     Register second_reg = second.AsRegister<Register>();
3913     DCHECK_EQ(second_reg, ECX);
3914     __ movl(temp_reg, first_reg_hi);
3915     __ shrd(first_reg_hi, first_reg_lo, second_reg);
3916     __ shrd(first_reg_lo, temp_reg, second_reg);
3917     __ movl(temp_reg, first_reg_hi);
3918     __ testl(second_reg, Immediate(32));
3919     __ cmovl(kNotEqual, first_reg_hi, first_reg_lo);
3920     __ cmovl(kNotEqual, first_reg_lo, temp_reg);
3921   } else {
3922     int32_t shift_amt = second.GetConstant()->AsIntConstant()->GetValue() & kMaxLongShiftDistance;
3923     if (shift_amt == 0) {
3924       // Already fine.
3925       return;
3926     }
3927     if (shift_amt == 32) {
3928       // Just swap.
3929       __ movl(temp_reg, first_reg_lo);
3930       __ movl(first_reg_lo, first_reg_hi);
3931       __ movl(first_reg_hi, temp_reg);
3932       return;
3933     }
3934 
3935     Immediate imm(shift_amt);
3936     // Save the constents of the low value.
3937     __ movl(temp_reg, first_reg_lo);
3938 
3939     // Shift right into low, feeding bits from high.
3940     __ shrd(first_reg_lo, first_reg_hi, imm);
3941 
3942     // Shift right into high, feeding bits from the original low.
3943     __ shrd(first_reg_hi, temp_reg, imm);
3944 
3945     // Swap if needed.
3946     if (shift_amt > 32) {
3947       __ movl(temp_reg, first_reg_lo);
3948       __ movl(first_reg_lo, first_reg_hi);
3949       __ movl(first_reg_hi, temp_reg);
3950     }
3951   }
3952 }
3953 
VisitShl(HShl * shl)3954 void LocationsBuilderX86::VisitShl(HShl* shl) {
3955   HandleShift(shl);
3956 }
3957 
VisitShl(HShl * shl)3958 void InstructionCodeGeneratorX86::VisitShl(HShl* shl) {
3959   HandleShift(shl);
3960 }
3961 
VisitShr(HShr * shr)3962 void LocationsBuilderX86::VisitShr(HShr* shr) {
3963   HandleShift(shr);
3964 }
3965 
VisitShr(HShr * shr)3966 void InstructionCodeGeneratorX86::VisitShr(HShr* shr) {
3967   HandleShift(shr);
3968 }
3969 
VisitUShr(HUShr * ushr)3970 void LocationsBuilderX86::VisitUShr(HUShr* ushr) {
3971   HandleShift(ushr);
3972 }
3973 
VisitUShr(HUShr * ushr)3974 void InstructionCodeGeneratorX86::VisitUShr(HUShr* ushr) {
3975   HandleShift(ushr);
3976 }
3977 
VisitNewInstance(HNewInstance * instruction)3978 void LocationsBuilderX86::VisitNewInstance(HNewInstance* instruction) {
3979   LocationSummary* locations =
3980       new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kCall);
3981   locations->SetOut(Location::RegisterLocation(EAX));
3982   if (instruction->IsStringAlloc()) {
3983     locations->AddTemp(Location::RegisterLocation(kMethodRegisterArgument));
3984   } else {
3985     InvokeRuntimeCallingConvention calling_convention;
3986     locations->SetInAt(0, Location::RegisterLocation(calling_convention.GetRegisterAt(0)));
3987     locations->SetInAt(1, Location::RegisterLocation(calling_convention.GetRegisterAt(1)));
3988   }
3989 }
3990 
VisitNewInstance(HNewInstance * instruction)3991 void InstructionCodeGeneratorX86::VisitNewInstance(HNewInstance* instruction) {
3992   // Note: if heap poisoning is enabled, the entry point takes cares
3993   // of poisoning the reference.
3994   if (instruction->IsStringAlloc()) {
3995     // String is allocated through StringFactory. Call NewEmptyString entry point.
3996     Register temp = instruction->GetLocations()->GetTemp(0).AsRegister<Register>();
3997     MemberOffset code_offset = ArtMethod::EntryPointFromQuickCompiledCodeOffset(kX86WordSize);
3998     __ fs()->movl(temp, Address::Absolute(QUICK_ENTRY_POINT(pNewEmptyString)));
3999     __ call(Address(temp, code_offset.Int32Value()));
4000     codegen_->RecordPcInfo(instruction, instruction->GetDexPc());
4001   } else {
4002     codegen_->InvokeRuntime(instruction->GetEntrypoint(),
4003                             instruction,
4004                             instruction->GetDexPc(),
4005                             nullptr);
4006     CheckEntrypointTypes<kQuickAllocObjectWithAccessCheck, void*, uint32_t, ArtMethod*>();
4007     DCHECK(!codegen_->IsLeafMethod());
4008   }
4009 }
4010 
VisitNewArray(HNewArray * instruction)4011 void LocationsBuilderX86::VisitNewArray(HNewArray* instruction) {
4012   LocationSummary* locations =
4013       new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kCall);
4014   locations->SetOut(Location::RegisterLocation(EAX));
4015   InvokeRuntimeCallingConvention calling_convention;
4016   locations->AddTemp(Location::RegisterLocation(calling_convention.GetRegisterAt(0)));
4017   locations->SetInAt(0, Location::RegisterLocation(calling_convention.GetRegisterAt(1)));
4018   locations->SetInAt(1, Location::RegisterLocation(calling_convention.GetRegisterAt(2)));
4019 }
4020 
VisitNewArray(HNewArray * instruction)4021 void InstructionCodeGeneratorX86::VisitNewArray(HNewArray* instruction) {
4022   InvokeRuntimeCallingConvention calling_convention;
4023   __ movl(calling_convention.GetRegisterAt(0), Immediate(instruction->GetTypeIndex()));
4024   // Note: if heap poisoning is enabled, the entry point takes cares
4025   // of poisoning the reference.
4026   codegen_->InvokeRuntime(instruction->GetEntrypoint(),
4027                           instruction,
4028                           instruction->GetDexPc(),
4029                           nullptr);
4030   CheckEntrypointTypes<kQuickAllocArrayWithAccessCheck, void*, uint32_t, int32_t, ArtMethod*>();
4031   DCHECK(!codegen_->IsLeafMethod());
4032 }
4033 
VisitParameterValue(HParameterValue * instruction)4034 void LocationsBuilderX86::VisitParameterValue(HParameterValue* instruction) {
4035   LocationSummary* locations =
4036       new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kNoCall);
4037   Location location = parameter_visitor_.GetNextLocation(instruction->GetType());
4038   if (location.IsStackSlot()) {
4039     location = Location::StackSlot(location.GetStackIndex() + codegen_->GetFrameSize());
4040   } else if (location.IsDoubleStackSlot()) {
4041     location = Location::DoubleStackSlot(location.GetStackIndex() + codegen_->GetFrameSize());
4042   }
4043   locations->SetOut(location);
4044 }
4045 
VisitParameterValue(HParameterValue * instruction ATTRIBUTE_UNUSED)4046 void InstructionCodeGeneratorX86::VisitParameterValue(
4047     HParameterValue* instruction ATTRIBUTE_UNUSED) {
4048 }
4049 
VisitCurrentMethod(HCurrentMethod * instruction)4050 void LocationsBuilderX86::VisitCurrentMethod(HCurrentMethod* instruction) {
4051   LocationSummary* locations =
4052       new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kNoCall);
4053   locations->SetOut(Location::RegisterLocation(kMethodRegisterArgument));
4054 }
4055 
VisitCurrentMethod(HCurrentMethod * instruction ATTRIBUTE_UNUSED)4056 void InstructionCodeGeneratorX86::VisitCurrentMethod(HCurrentMethod* instruction ATTRIBUTE_UNUSED) {
4057 }
4058 
VisitClassTableGet(HClassTableGet * instruction)4059 void LocationsBuilderX86::VisitClassTableGet(HClassTableGet* instruction) {
4060   LocationSummary* locations =
4061       new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kNoCall);
4062   locations->SetInAt(0, Location::RequiresRegister());
4063   locations->SetOut(Location::RequiresRegister());
4064 }
4065 
VisitClassTableGet(HClassTableGet * instruction)4066 void InstructionCodeGeneratorX86::VisitClassTableGet(HClassTableGet* instruction) {
4067   LocationSummary* locations = instruction->GetLocations();
4068   uint32_t method_offset = 0;
4069   if (instruction->GetTableKind() == HClassTableGet::TableKind::kVTable) {
4070     method_offset = mirror::Class::EmbeddedVTableEntryOffset(
4071         instruction->GetIndex(), kX86PointerSize).SizeValue();
4072   } else {
4073     method_offset = mirror::Class::EmbeddedImTableEntryOffset(
4074         instruction->GetIndex() % mirror::Class::kImtSize, kX86PointerSize).Uint32Value();
4075   }
4076   __ movl(locations->Out().AsRegister<Register>(),
4077           Address(locations->InAt(0).AsRegister<Register>(), method_offset));
4078 }
4079 
VisitNot(HNot * not_)4080 void LocationsBuilderX86::VisitNot(HNot* not_) {
4081   LocationSummary* locations =
4082       new (GetGraph()->GetArena()) LocationSummary(not_, LocationSummary::kNoCall);
4083   locations->SetInAt(0, Location::RequiresRegister());
4084   locations->SetOut(Location::SameAsFirstInput());
4085 }
4086 
VisitNot(HNot * not_)4087 void InstructionCodeGeneratorX86::VisitNot(HNot* not_) {
4088   LocationSummary* locations = not_->GetLocations();
4089   Location in = locations->InAt(0);
4090   Location out = locations->Out();
4091   DCHECK(in.Equals(out));
4092   switch (not_->GetResultType()) {
4093     case Primitive::kPrimInt:
4094       __ notl(out.AsRegister<Register>());
4095       break;
4096 
4097     case Primitive::kPrimLong:
4098       __ notl(out.AsRegisterPairLow<Register>());
4099       __ notl(out.AsRegisterPairHigh<Register>());
4100       break;
4101 
4102     default:
4103       LOG(FATAL) << "Unimplemented type for not operation " << not_->GetResultType();
4104   }
4105 }
4106 
VisitBooleanNot(HBooleanNot * bool_not)4107 void LocationsBuilderX86::VisitBooleanNot(HBooleanNot* bool_not) {
4108   LocationSummary* locations =
4109       new (GetGraph()->GetArena()) LocationSummary(bool_not, LocationSummary::kNoCall);
4110   locations->SetInAt(0, Location::RequiresRegister());
4111   locations->SetOut(Location::SameAsFirstInput());
4112 }
4113 
VisitBooleanNot(HBooleanNot * bool_not)4114 void InstructionCodeGeneratorX86::VisitBooleanNot(HBooleanNot* bool_not) {
4115   LocationSummary* locations = bool_not->GetLocations();
4116   Location in = locations->InAt(0);
4117   Location out = locations->Out();
4118   DCHECK(in.Equals(out));
4119   __ xorl(out.AsRegister<Register>(), Immediate(1));
4120 }
4121 
VisitCompare(HCompare * compare)4122 void LocationsBuilderX86::VisitCompare(HCompare* compare) {
4123   LocationSummary* locations =
4124       new (GetGraph()->GetArena()) LocationSummary(compare, LocationSummary::kNoCall);
4125   switch (compare->InputAt(0)->GetType()) {
4126     case Primitive::kPrimBoolean:
4127     case Primitive::kPrimByte:
4128     case Primitive::kPrimShort:
4129     case Primitive::kPrimChar:
4130     case Primitive::kPrimInt:
4131     case Primitive::kPrimLong: {
4132       locations->SetInAt(0, Location::RequiresRegister());
4133       locations->SetInAt(1, Location::Any());
4134       locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
4135       break;
4136     }
4137     case Primitive::kPrimFloat:
4138     case Primitive::kPrimDouble: {
4139       locations->SetInAt(0, Location::RequiresFpuRegister());
4140       if (compare->InputAt(1)->IsX86LoadFromConstantTable()) {
4141         DCHECK(compare->InputAt(1)->IsEmittedAtUseSite());
4142       } else if (compare->InputAt(1)->IsConstant()) {
4143         locations->SetInAt(1, Location::RequiresFpuRegister());
4144       } else {
4145         locations->SetInAt(1, Location::Any());
4146       }
4147       locations->SetOut(Location::RequiresRegister());
4148       break;
4149     }
4150     default:
4151       LOG(FATAL) << "Unexpected type for compare operation " << compare->InputAt(0)->GetType();
4152   }
4153 }
4154 
VisitCompare(HCompare * compare)4155 void InstructionCodeGeneratorX86::VisitCompare(HCompare* compare) {
4156   LocationSummary* locations = compare->GetLocations();
4157   Register out = locations->Out().AsRegister<Register>();
4158   Location left = locations->InAt(0);
4159   Location right = locations->InAt(1);
4160 
4161   NearLabel less, greater, done;
4162   Condition less_cond = kLess;
4163 
4164   switch (compare->InputAt(0)->GetType()) {
4165     case Primitive::kPrimBoolean:
4166     case Primitive::kPrimByte:
4167     case Primitive::kPrimShort:
4168     case Primitive::kPrimChar:
4169     case Primitive::kPrimInt: {
4170       GenerateIntCompare(left, right);
4171       break;
4172     }
4173     case Primitive::kPrimLong: {
4174       Register left_low = left.AsRegisterPairLow<Register>();
4175       Register left_high = left.AsRegisterPairHigh<Register>();
4176       int32_t val_low = 0;
4177       int32_t val_high = 0;
4178       bool right_is_const = false;
4179 
4180       if (right.IsConstant()) {
4181         DCHECK(right.GetConstant()->IsLongConstant());
4182         right_is_const = true;
4183         int64_t val = right.GetConstant()->AsLongConstant()->GetValue();
4184         val_low = Low32Bits(val);
4185         val_high = High32Bits(val);
4186       }
4187 
4188       if (right.IsRegisterPair()) {
4189         __ cmpl(left_high, right.AsRegisterPairHigh<Register>());
4190       } else if (right.IsDoubleStackSlot()) {
4191         __ cmpl(left_high, Address(ESP, right.GetHighStackIndex(kX86WordSize)));
4192       } else {
4193         DCHECK(right_is_const) << right;
4194         codegen_->Compare32BitValue(left_high, val_high);
4195       }
4196       __ j(kLess, &less);  // Signed compare.
4197       __ j(kGreater, &greater);  // Signed compare.
4198       if (right.IsRegisterPair()) {
4199         __ cmpl(left_low, right.AsRegisterPairLow<Register>());
4200       } else if (right.IsDoubleStackSlot()) {
4201         __ cmpl(left_low, Address(ESP, right.GetStackIndex()));
4202       } else {
4203         DCHECK(right_is_const) << right;
4204         codegen_->Compare32BitValue(left_low, val_low);
4205       }
4206       less_cond = kBelow;  // for CF (unsigned).
4207       break;
4208     }
4209     case Primitive::kPrimFloat: {
4210       GenerateFPCompare(left, right, compare, false);
4211       __ j(kUnordered, compare->IsGtBias() ? &greater : &less);
4212       less_cond = kBelow;  // for CF (floats).
4213       break;
4214     }
4215     case Primitive::kPrimDouble: {
4216       GenerateFPCompare(left, right, compare, true);
4217       __ j(kUnordered, compare->IsGtBias() ? &greater : &less);
4218       less_cond = kBelow;  // for CF (floats).
4219       break;
4220     }
4221     default:
4222       LOG(FATAL) << "Unexpected type for compare operation " << compare->InputAt(0)->GetType();
4223   }
4224 
4225   __ movl(out, Immediate(0));
4226   __ j(kEqual, &done);
4227   __ j(less_cond, &less);
4228 
4229   __ Bind(&greater);
4230   __ movl(out, Immediate(1));
4231   __ jmp(&done);
4232 
4233   __ Bind(&less);
4234   __ movl(out, Immediate(-1));
4235 
4236   __ Bind(&done);
4237 }
4238 
VisitPhi(HPhi * instruction)4239 void LocationsBuilderX86::VisitPhi(HPhi* instruction) {
4240   LocationSummary* locations =
4241       new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kNoCall);
4242   for (size_t i = 0, e = instruction->InputCount(); i < e; ++i) {
4243     locations->SetInAt(i, Location::Any());
4244   }
4245   locations->SetOut(Location::Any());
4246 }
4247 
VisitPhi(HPhi * instruction ATTRIBUTE_UNUSED)4248 void InstructionCodeGeneratorX86::VisitPhi(HPhi* instruction ATTRIBUTE_UNUSED) {
4249   LOG(FATAL) << "Unreachable";
4250 }
4251 
GenerateMemoryBarrier(MemBarrierKind kind)4252 void CodeGeneratorX86::GenerateMemoryBarrier(MemBarrierKind kind) {
4253   /*
4254    * According to the JSR-133 Cookbook, for x86 only StoreLoad/AnyAny barriers need memory fence.
4255    * All other barriers (LoadAny, AnyStore, StoreStore) are nops due to the x86 memory model.
4256    * For those cases, all we need to ensure is that there is a scheduling barrier in place.
4257    */
4258   switch (kind) {
4259     case MemBarrierKind::kAnyAny: {
4260       MemoryFence();
4261       break;
4262     }
4263     case MemBarrierKind::kAnyStore:
4264     case MemBarrierKind::kLoadAny:
4265     case MemBarrierKind::kStoreStore: {
4266       // nop
4267       break;
4268     }
4269     default:
4270       LOG(FATAL) << "Unexpected memory barrier " << kind;
4271   }
4272 }
4273 
GetSupportedInvokeStaticOrDirectDispatch(const HInvokeStaticOrDirect::DispatchInfo & desired_dispatch_info,MethodReference target_method ATTRIBUTE_UNUSED)4274 HInvokeStaticOrDirect::DispatchInfo CodeGeneratorX86::GetSupportedInvokeStaticOrDirectDispatch(
4275       const HInvokeStaticOrDirect::DispatchInfo& desired_dispatch_info,
4276       MethodReference target_method ATTRIBUTE_UNUSED) {
4277   HInvokeStaticOrDirect::DispatchInfo dispatch_info = desired_dispatch_info;
4278 
4279   // We disable pc-relative load when there is an irreducible loop, as the optimization
4280   // is incompatible with it.
4281   // TODO: Create as many X86ComputeBaseMethodAddress instructions
4282   // as needed for methods with irreducible loops.
4283   if (GetGraph()->HasIrreducibleLoops() &&
4284       (dispatch_info.method_load_kind ==
4285           HInvokeStaticOrDirect::MethodLoadKind::kDexCachePcRelative)) {
4286     dispatch_info.method_load_kind = HInvokeStaticOrDirect::MethodLoadKind::kDexCacheViaMethod;
4287   }
4288   switch (dispatch_info.code_ptr_location) {
4289     case HInvokeStaticOrDirect::CodePtrLocation::kCallDirectWithFixup:
4290     case HInvokeStaticOrDirect::CodePtrLocation::kCallDirect:
4291       // For direct code, we actually prefer to call via the code pointer from ArtMethod*.
4292       // (Though the direct CALL ptr16:32 is available for consideration).
4293       return HInvokeStaticOrDirect::DispatchInfo {
4294         dispatch_info.method_load_kind,
4295         HInvokeStaticOrDirect::CodePtrLocation::kCallArtMethod,
4296         dispatch_info.method_load_data,
4297         0u
4298       };
4299     default:
4300       return dispatch_info;
4301   }
4302 }
4303 
GetInvokeStaticOrDirectExtraParameter(HInvokeStaticOrDirect * invoke,Register temp)4304 Register CodeGeneratorX86::GetInvokeStaticOrDirectExtraParameter(HInvokeStaticOrDirect* invoke,
4305                                                                  Register temp) {
4306   DCHECK_EQ(invoke->InputCount(), invoke->GetNumberOfArguments() + 1u);
4307   Location location = invoke->GetLocations()->InAt(invoke->GetSpecialInputIndex());
4308   if (!invoke->GetLocations()->Intrinsified()) {
4309     return location.AsRegister<Register>();
4310   }
4311   // For intrinsics we allow any location, so it may be on the stack.
4312   if (!location.IsRegister()) {
4313     __ movl(temp, Address(ESP, location.GetStackIndex()));
4314     return temp;
4315   }
4316   // For register locations, check if the register was saved. If so, get it from the stack.
4317   // Note: There is a chance that the register was saved but not overwritten, so we could
4318   // save one load. However, since this is just an intrinsic slow path we prefer this
4319   // simple and more robust approach rather that trying to determine if that's the case.
4320   SlowPathCode* slow_path = GetCurrentSlowPath();
4321   DCHECK(slow_path != nullptr);  // For intrinsified invokes the call is emitted on the slow path.
4322   if (slow_path->IsCoreRegisterSaved(location.AsRegister<Register>())) {
4323     int stack_offset = slow_path->GetStackOffsetOfCoreRegister(location.AsRegister<Register>());
4324     __ movl(temp, Address(ESP, stack_offset));
4325     return temp;
4326   }
4327   return location.AsRegister<Register>();
4328 }
4329 
GenerateStaticOrDirectCall(HInvokeStaticOrDirect * invoke,Location temp)4330 void CodeGeneratorX86::GenerateStaticOrDirectCall(HInvokeStaticOrDirect* invoke, Location temp) {
4331   Location callee_method = temp;  // For all kinds except kRecursive, callee will be in temp.
4332   switch (invoke->GetMethodLoadKind()) {
4333     case HInvokeStaticOrDirect::MethodLoadKind::kStringInit:
4334       // temp = thread->string_init_entrypoint
4335       __ fs()->movl(temp.AsRegister<Register>(), Address::Absolute(invoke->GetStringInitOffset()));
4336       break;
4337     case HInvokeStaticOrDirect::MethodLoadKind::kRecursive:
4338       callee_method = invoke->GetLocations()->InAt(invoke->GetSpecialInputIndex());
4339       break;
4340     case HInvokeStaticOrDirect::MethodLoadKind::kDirectAddress:
4341       __ movl(temp.AsRegister<Register>(), Immediate(invoke->GetMethodAddress()));
4342       break;
4343     case HInvokeStaticOrDirect::MethodLoadKind::kDirectAddressWithFixup:
4344       __ movl(temp.AsRegister<Register>(), Immediate(/* placeholder */ 0));
4345       method_patches_.emplace_back(invoke->GetTargetMethod());
4346       __ Bind(&method_patches_.back().label);  // Bind the label at the end of the "movl" insn.
4347       break;
4348     case HInvokeStaticOrDirect::MethodLoadKind::kDexCachePcRelative: {
4349       Register base_reg = GetInvokeStaticOrDirectExtraParameter(invoke,
4350                                                                 temp.AsRegister<Register>());
4351       __ movl(temp.AsRegister<Register>(), Address(base_reg, kDummy32BitOffset));
4352       // Bind a new fixup label at the end of the "movl" insn.
4353       uint32_t offset = invoke->GetDexCacheArrayOffset();
4354       __ Bind(NewPcRelativeDexCacheArrayPatch(*invoke->GetTargetMethod().dex_file, offset));
4355       break;
4356     }
4357     case HInvokeStaticOrDirect::MethodLoadKind::kDexCacheViaMethod: {
4358       Location current_method = invoke->GetLocations()->InAt(invoke->GetSpecialInputIndex());
4359       Register method_reg;
4360       Register reg = temp.AsRegister<Register>();
4361       if (current_method.IsRegister()) {
4362         method_reg = current_method.AsRegister<Register>();
4363       } else {
4364         DCHECK(invoke->GetLocations()->Intrinsified());
4365         DCHECK(!current_method.IsValid());
4366         method_reg = reg;
4367         __ movl(reg, Address(ESP, kCurrentMethodStackOffset));
4368       }
4369       // /* ArtMethod*[] */ temp = temp.ptr_sized_fields_->dex_cache_resolved_methods_;
4370       __ movl(reg, Address(method_reg,
4371                            ArtMethod::DexCacheResolvedMethodsOffset(kX86PointerSize).Int32Value()));
4372       // temp = temp[index_in_cache];
4373       // Note: Don't use invoke->GetTargetMethod() as it may point to a different dex file.
4374       uint32_t index_in_cache = invoke->GetDexMethodIndex();
4375       __ movl(reg, Address(reg, CodeGenerator::GetCachePointerOffset(index_in_cache)));
4376       break;
4377     }
4378   }
4379 
4380   switch (invoke->GetCodePtrLocation()) {
4381     case HInvokeStaticOrDirect::CodePtrLocation::kCallSelf:
4382       __ call(GetFrameEntryLabel());
4383       break;
4384     case HInvokeStaticOrDirect::CodePtrLocation::kCallPCRelative: {
4385       relative_call_patches_.emplace_back(invoke->GetTargetMethod());
4386       Label* label = &relative_call_patches_.back().label;
4387       __ call(label);  // Bind to the patch label, override at link time.
4388       __ Bind(label);  // Bind the label at the end of the "call" insn.
4389       break;
4390     }
4391     case HInvokeStaticOrDirect::CodePtrLocation::kCallDirectWithFixup:
4392     case HInvokeStaticOrDirect::CodePtrLocation::kCallDirect:
4393       // Filtered out by GetSupportedInvokeStaticOrDirectDispatch().
4394       LOG(FATAL) << "Unsupported";
4395       UNREACHABLE();
4396     case HInvokeStaticOrDirect::CodePtrLocation::kCallArtMethod:
4397       // (callee_method + offset_of_quick_compiled_code)()
4398       __ call(Address(callee_method.AsRegister<Register>(),
4399                       ArtMethod::EntryPointFromQuickCompiledCodeOffset(
4400                           kX86WordSize).Int32Value()));
4401       break;
4402   }
4403 
4404   DCHECK(!IsLeafMethod());
4405 }
4406 
GenerateVirtualCall(HInvokeVirtual * invoke,Location temp_in)4407 void CodeGeneratorX86::GenerateVirtualCall(HInvokeVirtual* invoke, Location temp_in) {
4408   Register temp = temp_in.AsRegister<Register>();
4409   uint32_t method_offset = mirror::Class::EmbeddedVTableEntryOffset(
4410       invoke->GetVTableIndex(), kX86PointerSize).Uint32Value();
4411 
4412   // Use the calling convention instead of the location of the receiver, as
4413   // intrinsics may have put the receiver in a different register. In the intrinsics
4414   // slow path, the arguments have been moved to the right place, so here we are
4415   // guaranteed that the receiver is the first register of the calling convention.
4416   InvokeDexCallingConvention calling_convention;
4417   Register receiver = calling_convention.GetRegisterAt(0);
4418   uint32_t class_offset = mirror::Object::ClassOffset().Int32Value();
4419   // /* HeapReference<Class> */ temp = receiver->klass_
4420   __ movl(temp, Address(receiver, class_offset));
4421   MaybeRecordImplicitNullCheck(invoke);
4422   // Instead of simply (possibly) unpoisoning `temp` here, we should
4423   // emit a read barrier for the previous class reference load.
4424   // However this is not required in practice, as this is an
4425   // intermediate/temporary reference and because the current
4426   // concurrent copying collector keeps the from-space memory
4427   // intact/accessible until the end of the marking phase (the
4428   // concurrent copying collector may not in the future).
4429   __ MaybeUnpoisonHeapReference(temp);
4430   // temp = temp->GetMethodAt(method_offset);
4431   __ movl(temp, Address(temp, method_offset));
4432   // call temp->GetEntryPoint();
4433   __ call(Address(
4434       temp, ArtMethod::EntryPointFromQuickCompiledCodeOffset(kX86WordSize).Int32Value()));
4435 }
4436 
RecordSimplePatch()4437 void CodeGeneratorX86::RecordSimplePatch() {
4438   if (GetCompilerOptions().GetIncludePatchInformation()) {
4439     simple_patches_.emplace_back();
4440     __ Bind(&simple_patches_.back());
4441   }
4442 }
4443 
RecordStringPatch(HLoadString * load_string)4444 void CodeGeneratorX86::RecordStringPatch(HLoadString* load_string) {
4445   string_patches_.emplace_back(load_string->GetDexFile(), load_string->GetStringIndex());
4446   __ Bind(&string_patches_.back().label);
4447 }
4448 
NewPcRelativeDexCacheArrayPatch(const DexFile & dex_file,uint32_t element_offset)4449 Label* CodeGeneratorX86::NewPcRelativeDexCacheArrayPatch(const DexFile& dex_file,
4450                                                          uint32_t element_offset) {
4451   // Add the patch entry and bind its label at the end of the instruction.
4452   pc_relative_dex_cache_patches_.emplace_back(dex_file, element_offset);
4453   return &pc_relative_dex_cache_patches_.back().label;
4454 }
4455 
EmitLinkerPatches(ArenaVector<LinkerPatch> * linker_patches)4456 void CodeGeneratorX86::EmitLinkerPatches(ArenaVector<LinkerPatch>* linker_patches) {
4457   DCHECK(linker_patches->empty());
4458   size_t size =
4459       method_patches_.size() +
4460       relative_call_patches_.size() +
4461       pc_relative_dex_cache_patches_.size() +
4462       simple_patches_.size() +
4463       string_patches_.size();
4464   linker_patches->reserve(size);
4465   // The label points to the end of the "movl" insn but the literal offset for method
4466   // patch needs to point to the embedded constant which occupies the last 4 bytes.
4467   constexpr uint32_t kLabelPositionToLiteralOffsetAdjustment = 4u;
4468   for (const MethodPatchInfo<Label>& info : method_patches_) {
4469     uint32_t literal_offset = info.label.Position() - kLabelPositionToLiteralOffsetAdjustment;
4470     linker_patches->push_back(LinkerPatch::MethodPatch(literal_offset,
4471                                                        info.target_method.dex_file,
4472                                                        info.target_method.dex_method_index));
4473   }
4474   for (const MethodPatchInfo<Label>& info : relative_call_patches_) {
4475     uint32_t literal_offset = info.label.Position() - kLabelPositionToLiteralOffsetAdjustment;
4476     linker_patches->push_back(LinkerPatch::RelativeCodePatch(literal_offset,
4477                                                              info.target_method.dex_file,
4478                                                              info.target_method.dex_method_index));
4479   }
4480   for (const PcRelativeDexCacheAccessInfo& info : pc_relative_dex_cache_patches_) {
4481     uint32_t literal_offset = info.label.Position() - kLabelPositionToLiteralOffsetAdjustment;
4482     linker_patches->push_back(LinkerPatch::DexCacheArrayPatch(literal_offset,
4483                                                               &info.target_dex_file,
4484                                                               GetMethodAddressOffset(),
4485                                                               info.element_offset));
4486   }
4487   for (const Label& label : simple_patches_) {
4488     uint32_t literal_offset = label.Position() - kLabelPositionToLiteralOffsetAdjustment;
4489     linker_patches->push_back(LinkerPatch::RecordPosition(literal_offset));
4490   }
4491   if (GetCompilerOptions().GetCompilePic()) {
4492     for (const StringPatchInfo<Label>& info : string_patches_) {
4493       uint32_t literal_offset = info.label.Position() - kLabelPositionToLiteralOffsetAdjustment;
4494       linker_patches->push_back(LinkerPatch::RelativeStringPatch(literal_offset,
4495                                                                  &info.dex_file,
4496                                                                  GetMethodAddressOffset(),
4497                                                                  info.string_index));
4498     }
4499   } else {
4500     for (const StringPatchInfo<Label>& info : string_patches_) {
4501       uint32_t literal_offset = info.label.Position() - kLabelPositionToLiteralOffsetAdjustment;
4502       linker_patches->push_back(LinkerPatch::StringPatch(literal_offset,
4503                                                          &info.dex_file,
4504                                                          info.string_index));
4505     }
4506   }
4507 }
4508 
MarkGCCard(Register temp,Register card,Register object,Register value,bool value_can_be_null)4509 void CodeGeneratorX86::MarkGCCard(Register temp,
4510                                   Register card,
4511                                   Register object,
4512                                   Register value,
4513                                   bool value_can_be_null) {
4514   NearLabel is_null;
4515   if (value_can_be_null) {
4516     __ testl(value, value);
4517     __ j(kEqual, &is_null);
4518   }
4519   __ fs()->movl(card, Address::Absolute(Thread::CardTableOffset<kX86WordSize>().Int32Value()));
4520   __ movl(temp, object);
4521   __ shrl(temp, Immediate(gc::accounting::CardTable::kCardShift));
4522   __ movb(Address(temp, card, TIMES_1, 0),
4523           X86ManagedRegister::FromCpuRegister(card).AsByteRegister());
4524   if (value_can_be_null) {
4525     __ Bind(&is_null);
4526   }
4527 }
4528 
HandleFieldGet(HInstruction * instruction,const FieldInfo & field_info)4529 void LocationsBuilderX86::HandleFieldGet(HInstruction* instruction, const FieldInfo& field_info) {
4530   DCHECK(instruction->IsInstanceFieldGet() || instruction->IsStaticFieldGet());
4531 
4532   bool object_field_get_with_read_barrier =
4533       kEmitCompilerReadBarrier && (instruction->GetType() == Primitive::kPrimNot);
4534   LocationSummary* locations =
4535       new (GetGraph()->GetArena()) LocationSummary(instruction,
4536                                                    kEmitCompilerReadBarrier ?
4537                                                        LocationSummary::kCallOnSlowPath :
4538                                                        LocationSummary::kNoCall);
4539   locations->SetInAt(0, Location::RequiresRegister());
4540 
4541   if (Primitive::IsFloatingPointType(instruction->GetType())) {
4542     locations->SetOut(Location::RequiresFpuRegister());
4543   } else {
4544     // The output overlaps in case of long: we don't want the low move
4545     // to overwrite the object's location.  Likewise, in the case of
4546     // an object field get with read barriers enabled, we do not want
4547     // the move to overwrite the object's location, as we need it to emit
4548     // the read barrier.
4549     locations->SetOut(
4550         Location::RequiresRegister(),
4551         (object_field_get_with_read_barrier || instruction->GetType() == Primitive::kPrimLong) ?
4552             Location::kOutputOverlap :
4553             Location::kNoOutputOverlap);
4554   }
4555 
4556   if (field_info.IsVolatile() && (field_info.GetFieldType() == Primitive::kPrimLong)) {
4557     // Long values can be loaded atomically into an XMM using movsd.
4558     // So we use an XMM register as a temp to achieve atomicity (first
4559     // load the temp into the XMM and then copy the XMM into the
4560     // output, 32 bits at a time).
4561     locations->AddTemp(Location::RequiresFpuRegister());
4562   } else if (object_field_get_with_read_barrier && kUseBakerReadBarrier) {
4563     // We need a temporary register for the read barrier marking slow
4564     // path in CodeGeneratorX86::GenerateFieldLoadWithBakerReadBarrier.
4565     locations->AddTemp(Location::RequiresRegister());
4566   }
4567 }
4568 
HandleFieldGet(HInstruction * instruction,const FieldInfo & field_info)4569 void InstructionCodeGeneratorX86::HandleFieldGet(HInstruction* instruction,
4570                                                  const FieldInfo& field_info) {
4571   DCHECK(instruction->IsInstanceFieldGet() || instruction->IsStaticFieldGet());
4572 
4573   LocationSummary* locations = instruction->GetLocations();
4574   Location base_loc = locations->InAt(0);
4575   Register base = base_loc.AsRegister<Register>();
4576   Location out = locations->Out();
4577   bool is_volatile = field_info.IsVolatile();
4578   Primitive::Type field_type = field_info.GetFieldType();
4579   uint32_t offset = field_info.GetFieldOffset().Uint32Value();
4580 
4581   switch (field_type) {
4582     case Primitive::kPrimBoolean: {
4583       __ movzxb(out.AsRegister<Register>(), Address(base, offset));
4584       break;
4585     }
4586 
4587     case Primitive::kPrimByte: {
4588       __ movsxb(out.AsRegister<Register>(), Address(base, offset));
4589       break;
4590     }
4591 
4592     case Primitive::kPrimShort: {
4593       __ movsxw(out.AsRegister<Register>(), Address(base, offset));
4594       break;
4595     }
4596 
4597     case Primitive::kPrimChar: {
4598       __ movzxw(out.AsRegister<Register>(), Address(base, offset));
4599       break;
4600     }
4601 
4602     case Primitive::kPrimInt:
4603       __ movl(out.AsRegister<Register>(), Address(base, offset));
4604       break;
4605 
4606     case Primitive::kPrimNot: {
4607       // /* HeapReference<Object> */ out = *(base + offset)
4608       if (kEmitCompilerReadBarrier && kUseBakerReadBarrier) {
4609         Location temp_loc = locations->GetTemp(0);
4610         // Note that a potential implicit null check is handled in this
4611         // CodeGeneratorX86::GenerateFieldLoadWithBakerReadBarrier call.
4612         codegen_->GenerateFieldLoadWithBakerReadBarrier(
4613             instruction, out, base, offset, temp_loc, /* needs_null_check */ true);
4614         if (is_volatile) {
4615           codegen_->GenerateMemoryBarrier(MemBarrierKind::kLoadAny);
4616         }
4617       } else {
4618         __ movl(out.AsRegister<Register>(), Address(base, offset));
4619         codegen_->MaybeRecordImplicitNullCheck(instruction);
4620         if (is_volatile) {
4621           codegen_->GenerateMemoryBarrier(MemBarrierKind::kLoadAny);
4622         }
4623         // If read barriers are enabled, emit read barriers other than
4624         // Baker's using a slow path (and also unpoison the loaded
4625         // reference, if heap poisoning is enabled).
4626         codegen_->MaybeGenerateReadBarrierSlow(instruction, out, out, base_loc, offset);
4627       }
4628       break;
4629     }
4630 
4631     case Primitive::kPrimLong: {
4632       if (is_volatile) {
4633         XmmRegister temp = locations->GetTemp(0).AsFpuRegister<XmmRegister>();
4634         __ movsd(temp, Address(base, offset));
4635         codegen_->MaybeRecordImplicitNullCheck(instruction);
4636         __ movd(out.AsRegisterPairLow<Register>(), temp);
4637         __ psrlq(temp, Immediate(32));
4638         __ movd(out.AsRegisterPairHigh<Register>(), temp);
4639       } else {
4640         DCHECK_NE(base, out.AsRegisterPairLow<Register>());
4641         __ movl(out.AsRegisterPairLow<Register>(), Address(base, offset));
4642         codegen_->MaybeRecordImplicitNullCheck(instruction);
4643         __ movl(out.AsRegisterPairHigh<Register>(), Address(base, kX86WordSize + offset));
4644       }
4645       break;
4646     }
4647 
4648     case Primitive::kPrimFloat: {
4649       __ movss(out.AsFpuRegister<XmmRegister>(), Address(base, offset));
4650       break;
4651     }
4652 
4653     case Primitive::kPrimDouble: {
4654       __ movsd(out.AsFpuRegister<XmmRegister>(), Address(base, offset));
4655       break;
4656     }
4657 
4658     case Primitive::kPrimVoid:
4659       LOG(FATAL) << "Unreachable type " << field_type;
4660       UNREACHABLE();
4661   }
4662 
4663   if (field_type == Primitive::kPrimNot || field_type == Primitive::kPrimLong) {
4664     // Potential implicit null checks, in the case of reference or
4665     // long fields, are handled in the previous switch statement.
4666   } else {
4667     codegen_->MaybeRecordImplicitNullCheck(instruction);
4668   }
4669 
4670   if (is_volatile) {
4671     if (field_type == Primitive::kPrimNot) {
4672       // Memory barriers, in the case of references, are also handled
4673       // in the previous switch statement.
4674     } else {
4675       codegen_->GenerateMemoryBarrier(MemBarrierKind::kLoadAny);
4676     }
4677   }
4678 }
4679 
HandleFieldSet(HInstruction * instruction,const FieldInfo & field_info)4680 void LocationsBuilderX86::HandleFieldSet(HInstruction* instruction, const FieldInfo& field_info) {
4681   DCHECK(instruction->IsInstanceFieldSet() || instruction->IsStaticFieldSet());
4682 
4683   LocationSummary* locations =
4684       new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kNoCall);
4685   locations->SetInAt(0, Location::RequiresRegister());
4686   bool is_volatile = field_info.IsVolatile();
4687   Primitive::Type field_type = field_info.GetFieldType();
4688   bool is_byte_type = (field_type == Primitive::kPrimBoolean)
4689     || (field_type == Primitive::kPrimByte);
4690 
4691   // The register allocator does not support multiple
4692   // inputs that die at entry with one in a specific register.
4693   if (is_byte_type) {
4694     // Ensure the value is in a byte register.
4695     locations->SetInAt(1, Location::RegisterLocation(EAX));
4696   } else if (Primitive::IsFloatingPointType(field_type)) {
4697     if (is_volatile && field_type == Primitive::kPrimDouble) {
4698       // In order to satisfy the semantics of volatile, this must be a single instruction store.
4699       locations->SetInAt(1, Location::RequiresFpuRegister());
4700     } else {
4701       locations->SetInAt(1, Location::FpuRegisterOrConstant(instruction->InputAt(1)));
4702     }
4703   } else if (is_volatile && field_type == Primitive::kPrimLong) {
4704     // In order to satisfy the semantics of volatile, this must be a single instruction store.
4705     locations->SetInAt(1, Location::RequiresRegister());
4706 
4707     // 64bits value can be atomically written to an address with movsd and an XMM register.
4708     // We need two XMM registers because there's no easier way to (bit) copy a register pair
4709     // into a single XMM register (we copy each pair part into the XMMs and then interleave them).
4710     // NB: We could make the register allocator understand fp_reg <-> core_reg moves but given the
4711     // isolated cases when we need this it isn't worth adding the extra complexity.
4712     locations->AddTemp(Location::RequiresFpuRegister());
4713     locations->AddTemp(Location::RequiresFpuRegister());
4714   } else {
4715     locations->SetInAt(1, Location::RegisterOrConstant(instruction->InputAt(1)));
4716 
4717     if (CodeGenerator::StoreNeedsWriteBarrier(field_type, instruction->InputAt(1))) {
4718       // Temporary registers for the write barrier.
4719       locations->AddTemp(Location::RequiresRegister());  // May be used for reference poisoning too.
4720       // Ensure the card is in a byte register.
4721       locations->AddTemp(Location::RegisterLocation(ECX));
4722     }
4723   }
4724 }
4725 
HandleFieldSet(HInstruction * instruction,const FieldInfo & field_info,bool value_can_be_null)4726 void InstructionCodeGeneratorX86::HandleFieldSet(HInstruction* instruction,
4727                                                  const FieldInfo& field_info,
4728                                                  bool value_can_be_null) {
4729   DCHECK(instruction->IsInstanceFieldSet() || instruction->IsStaticFieldSet());
4730 
4731   LocationSummary* locations = instruction->GetLocations();
4732   Register base = locations->InAt(0).AsRegister<Register>();
4733   Location value = locations->InAt(1);
4734   bool is_volatile = field_info.IsVolatile();
4735   Primitive::Type field_type = field_info.GetFieldType();
4736   uint32_t offset = field_info.GetFieldOffset().Uint32Value();
4737   bool needs_write_barrier =
4738       CodeGenerator::StoreNeedsWriteBarrier(field_type, instruction->InputAt(1));
4739 
4740   if (is_volatile) {
4741     codegen_->GenerateMemoryBarrier(MemBarrierKind::kAnyStore);
4742   }
4743 
4744   bool maybe_record_implicit_null_check_done = false;
4745 
4746   switch (field_type) {
4747     case Primitive::kPrimBoolean:
4748     case Primitive::kPrimByte: {
4749       __ movb(Address(base, offset), value.AsRegister<ByteRegister>());
4750       break;
4751     }
4752 
4753     case Primitive::kPrimShort:
4754     case Primitive::kPrimChar: {
4755       if (value.IsConstant()) {
4756         int16_t v = CodeGenerator::GetInt32ValueOf(value.GetConstant());
4757         __ movw(Address(base, offset), Immediate(v));
4758       } else {
4759         __ movw(Address(base, offset), value.AsRegister<Register>());
4760       }
4761       break;
4762     }
4763 
4764     case Primitive::kPrimInt:
4765     case Primitive::kPrimNot: {
4766       if (kPoisonHeapReferences && needs_write_barrier) {
4767         // Note that in the case where `value` is a null reference,
4768         // we do not enter this block, as the reference does not
4769         // need poisoning.
4770         DCHECK_EQ(field_type, Primitive::kPrimNot);
4771         Register temp = locations->GetTemp(0).AsRegister<Register>();
4772         __ movl(temp, value.AsRegister<Register>());
4773         __ PoisonHeapReference(temp);
4774         __ movl(Address(base, offset), temp);
4775       } else if (value.IsConstant()) {
4776         int32_t v = CodeGenerator::GetInt32ValueOf(value.GetConstant());
4777         __ movl(Address(base, offset), Immediate(v));
4778       } else {
4779         DCHECK(value.IsRegister()) << value;
4780         __ movl(Address(base, offset), value.AsRegister<Register>());
4781       }
4782       break;
4783     }
4784 
4785     case Primitive::kPrimLong: {
4786       if (is_volatile) {
4787         XmmRegister temp1 = locations->GetTemp(0).AsFpuRegister<XmmRegister>();
4788         XmmRegister temp2 = locations->GetTemp(1).AsFpuRegister<XmmRegister>();
4789         __ movd(temp1, value.AsRegisterPairLow<Register>());
4790         __ movd(temp2, value.AsRegisterPairHigh<Register>());
4791         __ punpckldq(temp1, temp2);
4792         __ movsd(Address(base, offset), temp1);
4793         codegen_->MaybeRecordImplicitNullCheck(instruction);
4794       } else if (value.IsConstant()) {
4795         int64_t v = CodeGenerator::GetInt64ValueOf(value.GetConstant());
4796         __ movl(Address(base, offset), Immediate(Low32Bits(v)));
4797         codegen_->MaybeRecordImplicitNullCheck(instruction);
4798         __ movl(Address(base, kX86WordSize + offset), Immediate(High32Bits(v)));
4799       } else {
4800         __ movl(Address(base, offset), value.AsRegisterPairLow<Register>());
4801         codegen_->MaybeRecordImplicitNullCheck(instruction);
4802         __ movl(Address(base, kX86WordSize + offset), value.AsRegisterPairHigh<Register>());
4803       }
4804       maybe_record_implicit_null_check_done = true;
4805       break;
4806     }
4807 
4808     case Primitive::kPrimFloat: {
4809       if (value.IsConstant()) {
4810         int32_t v = CodeGenerator::GetInt32ValueOf(value.GetConstant());
4811         __ movl(Address(base, offset), Immediate(v));
4812       } else {
4813         __ movss(Address(base, offset), value.AsFpuRegister<XmmRegister>());
4814       }
4815       break;
4816     }
4817 
4818     case Primitive::kPrimDouble: {
4819       if (value.IsConstant()) {
4820         int64_t v = CodeGenerator::GetInt64ValueOf(value.GetConstant());
4821         __ movl(Address(base, offset), Immediate(Low32Bits(v)));
4822         codegen_->MaybeRecordImplicitNullCheck(instruction);
4823         __ movl(Address(base, kX86WordSize + offset), Immediate(High32Bits(v)));
4824         maybe_record_implicit_null_check_done = true;
4825       } else {
4826         __ movsd(Address(base, offset), value.AsFpuRegister<XmmRegister>());
4827       }
4828       break;
4829     }
4830 
4831     case Primitive::kPrimVoid:
4832       LOG(FATAL) << "Unreachable type " << field_type;
4833       UNREACHABLE();
4834   }
4835 
4836   if (!maybe_record_implicit_null_check_done) {
4837     codegen_->MaybeRecordImplicitNullCheck(instruction);
4838   }
4839 
4840   if (needs_write_barrier) {
4841     Register temp = locations->GetTemp(0).AsRegister<Register>();
4842     Register card = locations->GetTemp(1).AsRegister<Register>();
4843     codegen_->MarkGCCard(temp, card, base, value.AsRegister<Register>(), value_can_be_null);
4844   }
4845 
4846   if (is_volatile) {
4847     codegen_->GenerateMemoryBarrier(MemBarrierKind::kAnyAny);
4848   }
4849 }
4850 
VisitStaticFieldGet(HStaticFieldGet * instruction)4851 void LocationsBuilderX86::VisitStaticFieldGet(HStaticFieldGet* instruction) {
4852   HandleFieldGet(instruction, instruction->GetFieldInfo());
4853 }
4854 
VisitStaticFieldGet(HStaticFieldGet * instruction)4855 void InstructionCodeGeneratorX86::VisitStaticFieldGet(HStaticFieldGet* instruction) {
4856   HandleFieldGet(instruction, instruction->GetFieldInfo());
4857 }
4858 
VisitStaticFieldSet(HStaticFieldSet * instruction)4859 void LocationsBuilderX86::VisitStaticFieldSet(HStaticFieldSet* instruction) {
4860   HandleFieldSet(instruction, instruction->GetFieldInfo());
4861 }
4862 
VisitStaticFieldSet(HStaticFieldSet * instruction)4863 void InstructionCodeGeneratorX86::VisitStaticFieldSet(HStaticFieldSet* instruction) {
4864   HandleFieldSet(instruction, instruction->GetFieldInfo(), instruction->GetValueCanBeNull());
4865 }
4866 
VisitInstanceFieldSet(HInstanceFieldSet * instruction)4867 void LocationsBuilderX86::VisitInstanceFieldSet(HInstanceFieldSet* instruction) {
4868   HandleFieldSet(instruction, instruction->GetFieldInfo());
4869 }
4870 
VisitInstanceFieldSet(HInstanceFieldSet * instruction)4871 void InstructionCodeGeneratorX86::VisitInstanceFieldSet(HInstanceFieldSet* instruction) {
4872   HandleFieldSet(instruction, instruction->GetFieldInfo(), instruction->GetValueCanBeNull());
4873 }
4874 
VisitInstanceFieldGet(HInstanceFieldGet * instruction)4875 void LocationsBuilderX86::VisitInstanceFieldGet(HInstanceFieldGet* instruction) {
4876   HandleFieldGet(instruction, instruction->GetFieldInfo());
4877 }
4878 
VisitInstanceFieldGet(HInstanceFieldGet * instruction)4879 void InstructionCodeGeneratorX86::VisitInstanceFieldGet(HInstanceFieldGet* instruction) {
4880   HandleFieldGet(instruction, instruction->GetFieldInfo());
4881 }
4882 
VisitUnresolvedInstanceFieldGet(HUnresolvedInstanceFieldGet * instruction)4883 void LocationsBuilderX86::VisitUnresolvedInstanceFieldGet(
4884     HUnresolvedInstanceFieldGet* instruction) {
4885   FieldAccessCallingConventionX86 calling_convention;
4886   codegen_->CreateUnresolvedFieldLocationSummary(
4887       instruction, instruction->GetFieldType(), calling_convention);
4888 }
4889 
VisitUnresolvedInstanceFieldGet(HUnresolvedInstanceFieldGet * instruction)4890 void InstructionCodeGeneratorX86::VisitUnresolvedInstanceFieldGet(
4891     HUnresolvedInstanceFieldGet* instruction) {
4892   FieldAccessCallingConventionX86 calling_convention;
4893   codegen_->GenerateUnresolvedFieldAccess(instruction,
4894                                           instruction->GetFieldType(),
4895                                           instruction->GetFieldIndex(),
4896                                           instruction->GetDexPc(),
4897                                           calling_convention);
4898 }
4899 
VisitUnresolvedInstanceFieldSet(HUnresolvedInstanceFieldSet * instruction)4900 void LocationsBuilderX86::VisitUnresolvedInstanceFieldSet(
4901     HUnresolvedInstanceFieldSet* instruction) {
4902   FieldAccessCallingConventionX86 calling_convention;
4903   codegen_->CreateUnresolvedFieldLocationSummary(
4904       instruction, instruction->GetFieldType(), calling_convention);
4905 }
4906 
VisitUnresolvedInstanceFieldSet(HUnresolvedInstanceFieldSet * instruction)4907 void InstructionCodeGeneratorX86::VisitUnresolvedInstanceFieldSet(
4908     HUnresolvedInstanceFieldSet* instruction) {
4909   FieldAccessCallingConventionX86 calling_convention;
4910   codegen_->GenerateUnresolvedFieldAccess(instruction,
4911                                           instruction->GetFieldType(),
4912                                           instruction->GetFieldIndex(),
4913                                           instruction->GetDexPc(),
4914                                           calling_convention);
4915 }
4916 
VisitUnresolvedStaticFieldGet(HUnresolvedStaticFieldGet * instruction)4917 void LocationsBuilderX86::VisitUnresolvedStaticFieldGet(
4918     HUnresolvedStaticFieldGet* instruction) {
4919   FieldAccessCallingConventionX86 calling_convention;
4920   codegen_->CreateUnresolvedFieldLocationSummary(
4921       instruction, instruction->GetFieldType(), calling_convention);
4922 }
4923 
VisitUnresolvedStaticFieldGet(HUnresolvedStaticFieldGet * instruction)4924 void InstructionCodeGeneratorX86::VisitUnresolvedStaticFieldGet(
4925     HUnresolvedStaticFieldGet* instruction) {
4926   FieldAccessCallingConventionX86 calling_convention;
4927   codegen_->GenerateUnresolvedFieldAccess(instruction,
4928                                           instruction->GetFieldType(),
4929                                           instruction->GetFieldIndex(),
4930                                           instruction->GetDexPc(),
4931                                           calling_convention);
4932 }
4933 
VisitUnresolvedStaticFieldSet(HUnresolvedStaticFieldSet * instruction)4934 void LocationsBuilderX86::VisitUnresolvedStaticFieldSet(
4935     HUnresolvedStaticFieldSet* instruction) {
4936   FieldAccessCallingConventionX86 calling_convention;
4937   codegen_->CreateUnresolvedFieldLocationSummary(
4938       instruction, instruction->GetFieldType(), calling_convention);
4939 }
4940 
VisitUnresolvedStaticFieldSet(HUnresolvedStaticFieldSet * instruction)4941 void InstructionCodeGeneratorX86::VisitUnresolvedStaticFieldSet(
4942     HUnresolvedStaticFieldSet* instruction) {
4943   FieldAccessCallingConventionX86 calling_convention;
4944   codegen_->GenerateUnresolvedFieldAccess(instruction,
4945                                           instruction->GetFieldType(),
4946                                           instruction->GetFieldIndex(),
4947                                           instruction->GetDexPc(),
4948                                           calling_convention);
4949 }
4950 
VisitNullCheck(HNullCheck * instruction)4951 void LocationsBuilderX86::VisitNullCheck(HNullCheck* instruction) {
4952   LocationSummary::CallKind call_kind = instruction->CanThrowIntoCatchBlock()
4953       ? LocationSummary::kCallOnSlowPath
4954       : LocationSummary::kNoCall;
4955   LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(instruction, call_kind);
4956   Location loc = codegen_->IsImplicitNullCheckAllowed(instruction)
4957       ? Location::RequiresRegister()
4958       : Location::Any();
4959   locations->SetInAt(0, loc);
4960   if (instruction->HasUses()) {
4961     locations->SetOut(Location::SameAsFirstInput());
4962   }
4963 }
4964 
GenerateImplicitNullCheck(HNullCheck * instruction)4965 void CodeGeneratorX86::GenerateImplicitNullCheck(HNullCheck* instruction) {
4966   if (CanMoveNullCheckToUser(instruction)) {
4967     return;
4968   }
4969   LocationSummary* locations = instruction->GetLocations();
4970   Location obj = locations->InAt(0);
4971 
4972   __ testl(EAX, Address(obj.AsRegister<Register>(), 0));
4973   RecordPcInfo(instruction, instruction->GetDexPc());
4974 }
4975 
GenerateExplicitNullCheck(HNullCheck * instruction)4976 void CodeGeneratorX86::GenerateExplicitNullCheck(HNullCheck* instruction) {
4977   SlowPathCode* slow_path = new (GetGraph()->GetArena()) NullCheckSlowPathX86(instruction);
4978   AddSlowPath(slow_path);
4979 
4980   LocationSummary* locations = instruction->GetLocations();
4981   Location obj = locations->InAt(0);
4982 
4983   if (obj.IsRegister()) {
4984     __ testl(obj.AsRegister<Register>(), obj.AsRegister<Register>());
4985   } else if (obj.IsStackSlot()) {
4986     __ cmpl(Address(ESP, obj.GetStackIndex()), Immediate(0));
4987   } else {
4988     DCHECK(obj.IsConstant()) << obj;
4989     DCHECK(obj.GetConstant()->IsNullConstant());
4990     __ jmp(slow_path->GetEntryLabel());
4991     return;
4992   }
4993   __ j(kEqual, slow_path->GetEntryLabel());
4994 }
4995 
VisitNullCheck(HNullCheck * instruction)4996 void InstructionCodeGeneratorX86::VisitNullCheck(HNullCheck* instruction) {
4997   codegen_->GenerateNullCheck(instruction);
4998 }
4999 
VisitArrayGet(HArrayGet * instruction)5000 void LocationsBuilderX86::VisitArrayGet(HArrayGet* instruction) {
5001   bool object_array_get_with_read_barrier =
5002       kEmitCompilerReadBarrier && (instruction->GetType() == Primitive::kPrimNot);
5003   LocationSummary* locations =
5004       new (GetGraph()->GetArena()) LocationSummary(instruction,
5005                                                    object_array_get_with_read_barrier ?
5006                                                        LocationSummary::kCallOnSlowPath :
5007                                                        LocationSummary::kNoCall);
5008   locations->SetInAt(0, Location::RequiresRegister());
5009   locations->SetInAt(1, Location::RegisterOrConstant(instruction->InputAt(1)));
5010   if (Primitive::IsFloatingPointType(instruction->GetType())) {
5011     locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap);
5012   } else {
5013     // The output overlaps in case of long: we don't want the low move
5014     // to overwrite the array's location.  Likewise, in the case of an
5015     // object array get with read barriers enabled, we do not want the
5016     // move to overwrite the array's location, as we need it to emit
5017     // the read barrier.
5018     locations->SetOut(
5019         Location::RequiresRegister(),
5020         (instruction->GetType() == Primitive::kPrimLong || object_array_get_with_read_barrier) ?
5021             Location::kOutputOverlap :
5022             Location::kNoOutputOverlap);
5023   }
5024   // We need a temporary register for the read barrier marking slow
5025   // path in CodeGeneratorX86::GenerateArrayLoadWithBakerReadBarrier.
5026   if (object_array_get_with_read_barrier && kUseBakerReadBarrier) {
5027     locations->AddTemp(Location::RequiresRegister());
5028   }
5029 }
5030 
VisitArrayGet(HArrayGet * instruction)5031 void InstructionCodeGeneratorX86::VisitArrayGet(HArrayGet* instruction) {
5032   LocationSummary* locations = instruction->GetLocations();
5033   Location obj_loc = locations->InAt(0);
5034   Register obj = obj_loc.AsRegister<Register>();
5035   Location index = locations->InAt(1);
5036   Location out_loc = locations->Out();
5037 
5038   Primitive::Type type = instruction->GetType();
5039   switch (type) {
5040     case Primitive::kPrimBoolean: {
5041       uint32_t data_offset = mirror::Array::DataOffset(sizeof(uint8_t)).Uint32Value();
5042       Register out = out_loc.AsRegister<Register>();
5043       if (index.IsConstant()) {
5044         __ movzxb(out, Address(obj,
5045             (index.GetConstant()->AsIntConstant()->GetValue() << TIMES_1) + data_offset));
5046       } else {
5047         __ movzxb(out, Address(obj, index.AsRegister<Register>(), TIMES_1, data_offset));
5048       }
5049       break;
5050     }
5051 
5052     case Primitive::kPrimByte: {
5053       uint32_t data_offset = mirror::Array::DataOffset(sizeof(int8_t)).Uint32Value();
5054       Register out = out_loc.AsRegister<Register>();
5055       if (index.IsConstant()) {
5056         __ movsxb(out, Address(obj,
5057             (index.GetConstant()->AsIntConstant()->GetValue() << TIMES_1) + data_offset));
5058       } else {
5059         __ movsxb(out, Address(obj, index.AsRegister<Register>(), TIMES_1, data_offset));
5060       }
5061       break;
5062     }
5063 
5064     case Primitive::kPrimShort: {
5065       uint32_t data_offset = mirror::Array::DataOffset(sizeof(int16_t)).Uint32Value();
5066       Register out = out_loc.AsRegister<Register>();
5067       if (index.IsConstant()) {
5068         __ movsxw(out, Address(obj,
5069             (index.GetConstant()->AsIntConstant()->GetValue() << TIMES_2) + data_offset));
5070       } else {
5071         __ movsxw(out, Address(obj, index.AsRegister<Register>(), TIMES_2, data_offset));
5072       }
5073       break;
5074     }
5075 
5076     case Primitive::kPrimChar: {
5077       uint32_t data_offset = mirror::Array::DataOffset(sizeof(uint16_t)).Uint32Value();
5078       Register out = out_loc.AsRegister<Register>();
5079       if (index.IsConstant()) {
5080         __ movzxw(out, Address(obj,
5081             (index.GetConstant()->AsIntConstant()->GetValue() << TIMES_2) + data_offset));
5082       } else {
5083         __ movzxw(out, Address(obj, index.AsRegister<Register>(), TIMES_2, data_offset));
5084       }
5085       break;
5086     }
5087 
5088     case Primitive::kPrimInt: {
5089       uint32_t data_offset = mirror::Array::DataOffset(sizeof(int32_t)).Uint32Value();
5090       Register out = out_loc.AsRegister<Register>();
5091       if (index.IsConstant()) {
5092         __ movl(out, Address(obj,
5093             (index.GetConstant()->AsIntConstant()->GetValue() << TIMES_4) + data_offset));
5094       } else {
5095         __ movl(out, Address(obj, index.AsRegister<Register>(), TIMES_4, data_offset));
5096       }
5097       break;
5098     }
5099 
5100     case Primitive::kPrimNot: {
5101       static_assert(
5102           sizeof(mirror::HeapReference<mirror::Object>) == sizeof(int32_t),
5103           "art::mirror::HeapReference<art::mirror::Object> and int32_t have different sizes.");
5104       uint32_t data_offset = mirror::Array::DataOffset(sizeof(int32_t)).Uint32Value();
5105       // /* HeapReference<Object> */ out =
5106       //     *(obj + data_offset + index * sizeof(HeapReference<Object>))
5107       if (kEmitCompilerReadBarrier && kUseBakerReadBarrier) {
5108         Location temp = locations->GetTemp(0);
5109         // Note that a potential implicit null check is handled in this
5110         // CodeGeneratorX86::GenerateArrayLoadWithBakerReadBarrier call.
5111         codegen_->GenerateArrayLoadWithBakerReadBarrier(
5112             instruction, out_loc, obj, data_offset, index, temp, /* needs_null_check */ true);
5113       } else {
5114         Register out = out_loc.AsRegister<Register>();
5115         if (index.IsConstant()) {
5116           uint32_t offset =
5117               (index.GetConstant()->AsIntConstant()->GetValue() << TIMES_4) + data_offset;
5118           __ movl(out, Address(obj, offset));
5119           codegen_->MaybeRecordImplicitNullCheck(instruction);
5120           // If read barriers are enabled, emit read barriers other than
5121           // Baker's using a slow path (and also unpoison the loaded
5122           // reference, if heap poisoning is enabled).
5123           codegen_->MaybeGenerateReadBarrierSlow(instruction, out_loc, out_loc, obj_loc, offset);
5124         } else {
5125           __ movl(out, Address(obj, index.AsRegister<Register>(), TIMES_4, data_offset));
5126           codegen_->MaybeRecordImplicitNullCheck(instruction);
5127           // If read barriers are enabled, emit read barriers other than
5128           // Baker's using a slow path (and also unpoison the loaded
5129           // reference, if heap poisoning is enabled).
5130           codegen_->MaybeGenerateReadBarrierSlow(
5131               instruction, out_loc, out_loc, obj_loc, data_offset, index);
5132         }
5133       }
5134       break;
5135     }
5136 
5137     case Primitive::kPrimLong: {
5138       uint32_t data_offset = mirror::Array::DataOffset(sizeof(int64_t)).Uint32Value();
5139       DCHECK_NE(obj, out_loc.AsRegisterPairLow<Register>());
5140       if (index.IsConstant()) {
5141         size_t offset = (index.GetConstant()->AsIntConstant()->GetValue() << TIMES_8) + data_offset;
5142         __ movl(out_loc.AsRegisterPairLow<Register>(), Address(obj, offset));
5143         codegen_->MaybeRecordImplicitNullCheck(instruction);
5144         __ movl(out_loc.AsRegisterPairHigh<Register>(), Address(obj, offset + kX86WordSize));
5145       } else {
5146         __ movl(out_loc.AsRegisterPairLow<Register>(),
5147                 Address(obj, index.AsRegister<Register>(), TIMES_8, data_offset));
5148         codegen_->MaybeRecordImplicitNullCheck(instruction);
5149         __ movl(out_loc.AsRegisterPairHigh<Register>(),
5150                 Address(obj, index.AsRegister<Register>(), TIMES_8, data_offset + kX86WordSize));
5151       }
5152       break;
5153     }
5154 
5155     case Primitive::kPrimFloat: {
5156       uint32_t data_offset = mirror::Array::DataOffset(sizeof(float)).Uint32Value();
5157       XmmRegister out = out_loc.AsFpuRegister<XmmRegister>();
5158       if (index.IsConstant()) {
5159         __ movss(out, Address(obj,
5160             (index.GetConstant()->AsIntConstant()->GetValue() << TIMES_4) + data_offset));
5161       } else {
5162         __ movss(out, Address(obj, index.AsRegister<Register>(), TIMES_4, data_offset));
5163       }
5164       break;
5165     }
5166 
5167     case Primitive::kPrimDouble: {
5168       uint32_t data_offset = mirror::Array::DataOffset(sizeof(double)).Uint32Value();
5169       XmmRegister out = out_loc.AsFpuRegister<XmmRegister>();
5170       if (index.IsConstant()) {
5171         __ movsd(out, Address(obj,
5172             (index.GetConstant()->AsIntConstant()->GetValue() << TIMES_8) + data_offset));
5173       } else {
5174         __ movsd(out, Address(obj, index.AsRegister<Register>(), TIMES_8, data_offset));
5175       }
5176       break;
5177     }
5178 
5179     case Primitive::kPrimVoid:
5180       LOG(FATAL) << "Unreachable type " << type;
5181       UNREACHABLE();
5182   }
5183 
5184   if (type == Primitive::kPrimNot || type == Primitive::kPrimLong) {
5185     // Potential implicit null checks, in the case of reference or
5186     // long arrays, are handled in the previous switch statement.
5187   } else {
5188     codegen_->MaybeRecordImplicitNullCheck(instruction);
5189   }
5190 }
5191 
VisitArraySet(HArraySet * instruction)5192 void LocationsBuilderX86::VisitArraySet(HArraySet* instruction) {
5193   Primitive::Type value_type = instruction->GetComponentType();
5194 
5195   bool needs_write_barrier =
5196       CodeGenerator::StoreNeedsWriteBarrier(value_type, instruction->GetValue());
5197   bool may_need_runtime_call_for_type_check = instruction->NeedsTypeCheck();
5198   bool object_array_set_with_read_barrier =
5199       kEmitCompilerReadBarrier && (value_type == Primitive::kPrimNot);
5200 
5201   LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(
5202       instruction,
5203       (may_need_runtime_call_for_type_check || object_array_set_with_read_barrier) ?
5204           LocationSummary::kCallOnSlowPath :
5205           LocationSummary::kNoCall);
5206 
5207   bool is_byte_type = (value_type == Primitive::kPrimBoolean)
5208       || (value_type == Primitive::kPrimByte);
5209   // We need the inputs to be different than the output in case of long operation.
5210   // In case of a byte operation, the register allocator does not support multiple
5211   // inputs that die at entry with one in a specific register.
5212   locations->SetInAt(0, Location::RequiresRegister());
5213   locations->SetInAt(1, Location::RegisterOrConstant(instruction->InputAt(1)));
5214   if (is_byte_type) {
5215     // Ensure the value is in a byte register.
5216     locations->SetInAt(2, Location::ByteRegisterOrConstant(EAX, instruction->InputAt(2)));
5217   } else if (Primitive::IsFloatingPointType(value_type)) {
5218     locations->SetInAt(2, Location::FpuRegisterOrConstant(instruction->InputAt(2)));
5219   } else {
5220     locations->SetInAt(2, Location::RegisterOrConstant(instruction->InputAt(2)));
5221   }
5222   if (needs_write_barrier) {
5223     // Temporary registers for the write barrier.
5224     locations->AddTemp(Location::RequiresRegister());  // Possibly used for ref. poisoning too.
5225     // Ensure the card is in a byte register.
5226     locations->AddTemp(Location::RegisterLocation(ECX));
5227   }
5228 }
5229 
VisitArraySet(HArraySet * instruction)5230 void InstructionCodeGeneratorX86::VisitArraySet(HArraySet* instruction) {
5231   LocationSummary* locations = instruction->GetLocations();
5232   Location array_loc = locations->InAt(0);
5233   Register array = array_loc.AsRegister<Register>();
5234   Location index = locations->InAt(1);
5235   Location value = locations->InAt(2);
5236   Primitive::Type value_type = instruction->GetComponentType();
5237   uint32_t class_offset = mirror::Object::ClassOffset().Int32Value();
5238   uint32_t super_offset = mirror::Class::SuperClassOffset().Int32Value();
5239   uint32_t component_offset = mirror::Class::ComponentTypeOffset().Int32Value();
5240   bool may_need_runtime_call_for_type_check = instruction->NeedsTypeCheck();
5241   bool needs_write_barrier =
5242       CodeGenerator::StoreNeedsWriteBarrier(value_type, instruction->GetValue());
5243 
5244   switch (value_type) {
5245     case Primitive::kPrimBoolean:
5246     case Primitive::kPrimByte: {
5247       uint32_t offset = mirror::Array::DataOffset(sizeof(uint8_t)).Uint32Value();
5248       Address address = index.IsConstant()
5249           ? Address(array, (index.GetConstant()->AsIntConstant()->GetValue() << TIMES_1) + offset)
5250           : Address(array, index.AsRegister<Register>(), TIMES_1, offset);
5251       if (value.IsRegister()) {
5252         __ movb(address, value.AsRegister<ByteRegister>());
5253       } else {
5254         __ movb(address, Immediate(value.GetConstant()->AsIntConstant()->GetValue()));
5255       }
5256       codegen_->MaybeRecordImplicitNullCheck(instruction);
5257       break;
5258     }
5259 
5260     case Primitive::kPrimShort:
5261     case Primitive::kPrimChar: {
5262       uint32_t offset = mirror::Array::DataOffset(sizeof(uint16_t)).Uint32Value();
5263       Address address = index.IsConstant()
5264           ? Address(array, (index.GetConstant()->AsIntConstant()->GetValue() << TIMES_2) + offset)
5265           : Address(array, index.AsRegister<Register>(), TIMES_2, offset);
5266       if (value.IsRegister()) {
5267         __ movw(address, value.AsRegister<Register>());
5268       } else {
5269         __ movw(address, Immediate(value.GetConstant()->AsIntConstant()->GetValue()));
5270       }
5271       codegen_->MaybeRecordImplicitNullCheck(instruction);
5272       break;
5273     }
5274 
5275     case Primitive::kPrimNot: {
5276       uint32_t offset = mirror::Array::DataOffset(sizeof(int32_t)).Uint32Value();
5277       Address address = index.IsConstant()
5278           ? Address(array, (index.GetConstant()->AsIntConstant()->GetValue() << TIMES_4) + offset)
5279           : Address(array, index.AsRegister<Register>(), TIMES_4, offset);
5280 
5281       if (!value.IsRegister()) {
5282         // Just setting null.
5283         DCHECK(instruction->InputAt(2)->IsNullConstant());
5284         DCHECK(value.IsConstant()) << value;
5285         __ movl(address, Immediate(0));
5286         codegen_->MaybeRecordImplicitNullCheck(instruction);
5287         DCHECK(!needs_write_barrier);
5288         DCHECK(!may_need_runtime_call_for_type_check);
5289         break;
5290       }
5291 
5292       DCHECK(needs_write_barrier);
5293       Register register_value = value.AsRegister<Register>();
5294       NearLabel done, not_null, do_put;
5295       SlowPathCode* slow_path = nullptr;
5296       Register temp = locations->GetTemp(0).AsRegister<Register>();
5297       if (may_need_runtime_call_for_type_check) {
5298         slow_path = new (GetGraph()->GetArena()) ArraySetSlowPathX86(instruction);
5299         codegen_->AddSlowPath(slow_path);
5300         if (instruction->GetValueCanBeNull()) {
5301           __ testl(register_value, register_value);
5302           __ j(kNotEqual, &not_null);
5303           __ movl(address, Immediate(0));
5304           codegen_->MaybeRecordImplicitNullCheck(instruction);
5305           __ jmp(&done);
5306           __ Bind(&not_null);
5307         }
5308 
5309         if (kEmitCompilerReadBarrier) {
5310           // When read barriers are enabled, the type checking
5311           // instrumentation requires two read barriers:
5312           //
5313           //   __ movl(temp2, temp);
5314           //   // /* HeapReference<Class> */ temp = temp->component_type_
5315           //   __ movl(temp, Address(temp, component_offset));
5316           //   codegen_->GenerateReadBarrierSlow(
5317           //       instruction, temp_loc, temp_loc, temp2_loc, component_offset);
5318           //
5319           //   // /* HeapReference<Class> */ temp2 = register_value->klass_
5320           //   __ movl(temp2, Address(register_value, class_offset));
5321           //   codegen_->GenerateReadBarrierSlow(
5322           //       instruction, temp2_loc, temp2_loc, value, class_offset, temp_loc);
5323           //
5324           //   __ cmpl(temp, temp2);
5325           //
5326           // However, the second read barrier may trash `temp`, as it
5327           // is a temporary register, and as such would not be saved
5328           // along with live registers before calling the runtime (nor
5329           // restored afterwards).  So in this case, we bail out and
5330           // delegate the work to the array set slow path.
5331           //
5332           // TODO: Extend the register allocator to support a new
5333           // "(locally) live temp" location so as to avoid always
5334           // going into the slow path when read barriers are enabled.
5335           __ jmp(slow_path->GetEntryLabel());
5336         } else {
5337           // /* HeapReference<Class> */ temp = array->klass_
5338           __ movl(temp, Address(array, class_offset));
5339           codegen_->MaybeRecordImplicitNullCheck(instruction);
5340           __ MaybeUnpoisonHeapReference(temp);
5341 
5342           // /* HeapReference<Class> */ temp = temp->component_type_
5343           __ movl(temp, Address(temp, component_offset));
5344           // If heap poisoning is enabled, no need to unpoison `temp`
5345           // nor the object reference in `register_value->klass`, as
5346           // we are comparing two poisoned references.
5347           __ cmpl(temp, Address(register_value, class_offset));
5348 
5349           if (instruction->StaticTypeOfArrayIsObjectArray()) {
5350             __ j(kEqual, &do_put);
5351             // If heap poisoning is enabled, the `temp` reference has
5352             // not been unpoisoned yet; unpoison it now.
5353             __ MaybeUnpoisonHeapReference(temp);
5354 
5355             // /* HeapReference<Class> */ temp = temp->super_class_
5356             __ movl(temp, Address(temp, super_offset));
5357             // If heap poisoning is enabled, no need to unpoison
5358             // `temp`, as we are comparing against null below.
5359             __ testl(temp, temp);
5360             __ j(kNotEqual, slow_path->GetEntryLabel());
5361             __ Bind(&do_put);
5362           } else {
5363             __ j(kNotEqual, slow_path->GetEntryLabel());
5364           }
5365         }
5366       }
5367 
5368       if (kPoisonHeapReferences) {
5369         __ movl(temp, register_value);
5370         __ PoisonHeapReference(temp);
5371         __ movl(address, temp);
5372       } else {
5373         __ movl(address, register_value);
5374       }
5375       if (!may_need_runtime_call_for_type_check) {
5376         codegen_->MaybeRecordImplicitNullCheck(instruction);
5377       }
5378 
5379       Register card = locations->GetTemp(1).AsRegister<Register>();
5380       codegen_->MarkGCCard(
5381           temp, card, array, value.AsRegister<Register>(), instruction->GetValueCanBeNull());
5382       __ Bind(&done);
5383 
5384       if (slow_path != nullptr) {
5385         __ Bind(slow_path->GetExitLabel());
5386       }
5387 
5388       break;
5389     }
5390 
5391     case Primitive::kPrimInt: {
5392       uint32_t offset = mirror::Array::DataOffset(sizeof(int32_t)).Uint32Value();
5393       Address address = index.IsConstant()
5394           ? Address(array, (index.GetConstant()->AsIntConstant()->GetValue() << TIMES_4) + offset)
5395           : Address(array, index.AsRegister<Register>(), TIMES_4, offset);
5396       if (value.IsRegister()) {
5397         __ movl(address, value.AsRegister<Register>());
5398       } else {
5399         DCHECK(value.IsConstant()) << value;
5400         int32_t v = CodeGenerator::GetInt32ValueOf(value.GetConstant());
5401         __ movl(address, Immediate(v));
5402       }
5403       codegen_->MaybeRecordImplicitNullCheck(instruction);
5404       break;
5405     }
5406 
5407     case Primitive::kPrimLong: {
5408       uint32_t data_offset = mirror::Array::DataOffset(sizeof(int64_t)).Uint32Value();
5409       if (index.IsConstant()) {
5410         size_t offset = (index.GetConstant()->AsIntConstant()->GetValue() << TIMES_8) + data_offset;
5411         if (value.IsRegisterPair()) {
5412           __ movl(Address(array, offset), value.AsRegisterPairLow<Register>());
5413           codegen_->MaybeRecordImplicitNullCheck(instruction);
5414           __ movl(Address(array, offset + kX86WordSize), value.AsRegisterPairHigh<Register>());
5415         } else {
5416           DCHECK(value.IsConstant());
5417           int64_t val = value.GetConstant()->AsLongConstant()->GetValue();
5418           __ movl(Address(array, offset), Immediate(Low32Bits(val)));
5419           codegen_->MaybeRecordImplicitNullCheck(instruction);
5420           __ movl(Address(array, offset + kX86WordSize), Immediate(High32Bits(val)));
5421         }
5422       } else {
5423         if (value.IsRegisterPair()) {
5424           __ movl(Address(array, index.AsRegister<Register>(), TIMES_8, data_offset),
5425                   value.AsRegisterPairLow<Register>());
5426           codegen_->MaybeRecordImplicitNullCheck(instruction);
5427           __ movl(Address(array, index.AsRegister<Register>(), TIMES_8, data_offset + kX86WordSize),
5428                   value.AsRegisterPairHigh<Register>());
5429         } else {
5430           DCHECK(value.IsConstant());
5431           int64_t val = value.GetConstant()->AsLongConstant()->GetValue();
5432           __ movl(Address(array, index.AsRegister<Register>(), TIMES_8, data_offset),
5433                   Immediate(Low32Bits(val)));
5434           codegen_->MaybeRecordImplicitNullCheck(instruction);
5435           __ movl(Address(array, index.AsRegister<Register>(), TIMES_8, data_offset + kX86WordSize),
5436                   Immediate(High32Bits(val)));
5437         }
5438       }
5439       break;
5440     }
5441 
5442     case Primitive::kPrimFloat: {
5443       uint32_t offset = mirror::Array::DataOffset(sizeof(float)).Uint32Value();
5444       Address address = index.IsConstant()
5445           ? Address(array, (index.GetConstant()->AsIntConstant()->GetValue() << TIMES_4) + offset)
5446           : Address(array, index.AsRegister<Register>(), TIMES_4, offset);
5447       if (value.IsFpuRegister()) {
5448         __ movss(address, value.AsFpuRegister<XmmRegister>());
5449       } else {
5450         DCHECK(value.IsConstant());
5451         int32_t v = bit_cast<int32_t, float>(value.GetConstant()->AsFloatConstant()->GetValue());
5452         __ movl(address, Immediate(v));
5453       }
5454       codegen_->MaybeRecordImplicitNullCheck(instruction);
5455       break;
5456     }
5457 
5458     case Primitive::kPrimDouble: {
5459       uint32_t offset = mirror::Array::DataOffset(sizeof(double)).Uint32Value();
5460       Address address = index.IsConstant()
5461           ? Address(array, (index.GetConstant()->AsIntConstant()->GetValue() << TIMES_8) + offset)
5462           : Address(array, index.AsRegister<Register>(), TIMES_8, offset);
5463       if (value.IsFpuRegister()) {
5464         __ movsd(address, value.AsFpuRegister<XmmRegister>());
5465       } else {
5466         DCHECK(value.IsConstant());
5467         Address address_hi = index.IsConstant() ?
5468             Address(array, (index.GetConstant()->AsIntConstant()->GetValue() << TIMES_8) +
5469                            offset + kX86WordSize) :
5470             Address(array, index.AsRegister<Register>(), TIMES_8, offset + kX86WordSize);
5471         int64_t v = bit_cast<int64_t, double>(value.GetConstant()->AsDoubleConstant()->GetValue());
5472         __ movl(address, Immediate(Low32Bits(v)));
5473         codegen_->MaybeRecordImplicitNullCheck(instruction);
5474         __ movl(address_hi, Immediate(High32Bits(v)));
5475       }
5476       break;
5477     }
5478 
5479     case Primitive::kPrimVoid:
5480       LOG(FATAL) << "Unreachable type " << instruction->GetType();
5481       UNREACHABLE();
5482   }
5483 }
5484 
VisitArrayLength(HArrayLength * instruction)5485 void LocationsBuilderX86::VisitArrayLength(HArrayLength* instruction) {
5486   LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(instruction);
5487   locations->SetInAt(0, Location::RequiresRegister());
5488   locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
5489 }
5490 
VisitArrayLength(HArrayLength * instruction)5491 void InstructionCodeGeneratorX86::VisitArrayLength(HArrayLength* instruction) {
5492   LocationSummary* locations = instruction->GetLocations();
5493   uint32_t offset = mirror::Array::LengthOffset().Uint32Value();
5494   Register obj = locations->InAt(0).AsRegister<Register>();
5495   Register out = locations->Out().AsRegister<Register>();
5496   __ movl(out, Address(obj, offset));
5497   codegen_->MaybeRecordImplicitNullCheck(instruction);
5498 }
5499 
VisitBoundsCheck(HBoundsCheck * instruction)5500 void LocationsBuilderX86::VisitBoundsCheck(HBoundsCheck* instruction) {
5501   LocationSummary::CallKind call_kind = instruction->CanThrowIntoCatchBlock()
5502       ? LocationSummary::kCallOnSlowPath
5503       : LocationSummary::kNoCall;
5504   LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(instruction, call_kind);
5505   locations->SetInAt(0, Location::RegisterOrConstant(instruction->InputAt(0)));
5506   locations->SetInAt(1, Location::RegisterOrConstant(instruction->InputAt(1)));
5507   if (instruction->HasUses()) {
5508     locations->SetOut(Location::SameAsFirstInput());
5509   }
5510 }
5511 
VisitBoundsCheck(HBoundsCheck * instruction)5512 void InstructionCodeGeneratorX86::VisitBoundsCheck(HBoundsCheck* instruction) {
5513   LocationSummary* locations = instruction->GetLocations();
5514   Location index_loc = locations->InAt(0);
5515   Location length_loc = locations->InAt(1);
5516   SlowPathCode* slow_path =
5517     new (GetGraph()->GetArena()) BoundsCheckSlowPathX86(instruction);
5518 
5519   if (length_loc.IsConstant()) {
5520     int32_t length = CodeGenerator::GetInt32ValueOf(length_loc.GetConstant());
5521     if (index_loc.IsConstant()) {
5522       // BCE will remove the bounds check if we are guarenteed to pass.
5523       int32_t index = CodeGenerator::GetInt32ValueOf(index_loc.GetConstant());
5524       if (index < 0 || index >= length) {
5525         codegen_->AddSlowPath(slow_path);
5526         __ jmp(slow_path->GetEntryLabel());
5527       } else {
5528         // Some optimization after BCE may have generated this, and we should not
5529         // generate a bounds check if it is a valid range.
5530       }
5531       return;
5532     }
5533 
5534     // We have to reverse the jump condition because the length is the constant.
5535     Register index_reg = index_loc.AsRegister<Register>();
5536     __ cmpl(index_reg, Immediate(length));
5537     codegen_->AddSlowPath(slow_path);
5538     __ j(kAboveEqual, slow_path->GetEntryLabel());
5539   } else {
5540     Register length = length_loc.AsRegister<Register>();
5541     if (index_loc.IsConstant()) {
5542       int32_t value = CodeGenerator::GetInt32ValueOf(index_loc.GetConstant());
5543       __ cmpl(length, Immediate(value));
5544     } else {
5545       __ cmpl(length, index_loc.AsRegister<Register>());
5546     }
5547     codegen_->AddSlowPath(slow_path);
5548     __ j(kBelowEqual, slow_path->GetEntryLabel());
5549   }
5550 }
5551 
VisitParallelMove(HParallelMove * instruction ATTRIBUTE_UNUSED)5552 void LocationsBuilderX86::VisitParallelMove(HParallelMove* instruction ATTRIBUTE_UNUSED) {
5553   LOG(FATAL) << "Unreachable";
5554 }
5555 
VisitParallelMove(HParallelMove * instruction)5556 void InstructionCodeGeneratorX86::VisitParallelMove(HParallelMove* instruction) {
5557   codegen_->GetMoveResolver()->EmitNativeCode(instruction);
5558 }
5559 
VisitSuspendCheck(HSuspendCheck * instruction)5560 void LocationsBuilderX86::VisitSuspendCheck(HSuspendCheck* instruction) {
5561   new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kCallOnSlowPath);
5562 }
5563 
VisitSuspendCheck(HSuspendCheck * instruction)5564 void InstructionCodeGeneratorX86::VisitSuspendCheck(HSuspendCheck* instruction) {
5565   HBasicBlock* block = instruction->GetBlock();
5566   if (block->GetLoopInformation() != nullptr) {
5567     DCHECK(block->GetLoopInformation()->GetSuspendCheck() == instruction);
5568     // The back edge will generate the suspend check.
5569     return;
5570   }
5571   if (block->IsEntryBlock() && instruction->GetNext()->IsGoto()) {
5572     // The goto will generate the suspend check.
5573     return;
5574   }
5575   GenerateSuspendCheck(instruction, nullptr);
5576 }
5577 
GenerateSuspendCheck(HSuspendCheck * instruction,HBasicBlock * successor)5578 void InstructionCodeGeneratorX86::GenerateSuspendCheck(HSuspendCheck* instruction,
5579                                                        HBasicBlock* successor) {
5580   SuspendCheckSlowPathX86* slow_path =
5581       down_cast<SuspendCheckSlowPathX86*>(instruction->GetSlowPath());
5582   if (slow_path == nullptr) {
5583     slow_path = new (GetGraph()->GetArena()) SuspendCheckSlowPathX86(instruction, successor);
5584     instruction->SetSlowPath(slow_path);
5585     codegen_->AddSlowPath(slow_path);
5586     if (successor != nullptr) {
5587       DCHECK(successor->IsLoopHeader());
5588       codegen_->ClearSpillSlotsFromLoopPhisInStackMap(instruction);
5589     }
5590   } else {
5591     DCHECK_EQ(slow_path->GetSuccessor(), successor);
5592   }
5593 
5594   __ fs()->cmpw(Address::Absolute(Thread::ThreadFlagsOffset<kX86WordSize>().Int32Value()),
5595                 Immediate(0));
5596   if (successor == nullptr) {
5597     __ j(kNotEqual, slow_path->GetEntryLabel());
5598     __ Bind(slow_path->GetReturnLabel());
5599   } else {
5600     __ j(kEqual, codegen_->GetLabelOf(successor));
5601     __ jmp(slow_path->GetEntryLabel());
5602   }
5603 }
5604 
GetAssembler() const5605 X86Assembler* ParallelMoveResolverX86::GetAssembler() const {
5606   return codegen_->GetAssembler();
5607 }
5608 
MoveMemoryToMemory32(int dst,int src)5609 void ParallelMoveResolverX86::MoveMemoryToMemory32(int dst, int src) {
5610   ScratchRegisterScope ensure_scratch(
5611       this, kNoRegister, EAX, codegen_->GetNumberOfCoreRegisters());
5612   Register temp_reg = static_cast<Register>(ensure_scratch.GetRegister());
5613   int stack_offset = ensure_scratch.IsSpilled() ? kX86WordSize : 0;
5614   __ movl(temp_reg, Address(ESP, src + stack_offset));
5615   __ movl(Address(ESP, dst + stack_offset), temp_reg);
5616 }
5617 
MoveMemoryToMemory64(int dst,int src)5618 void ParallelMoveResolverX86::MoveMemoryToMemory64(int dst, int src) {
5619   ScratchRegisterScope ensure_scratch(
5620       this, kNoRegister, EAX, codegen_->GetNumberOfCoreRegisters());
5621   Register temp_reg = static_cast<Register>(ensure_scratch.GetRegister());
5622   int stack_offset = ensure_scratch.IsSpilled() ? kX86WordSize : 0;
5623   __ movl(temp_reg, Address(ESP, src + stack_offset));
5624   __ movl(Address(ESP, dst + stack_offset), temp_reg);
5625   __ movl(temp_reg, Address(ESP, src + stack_offset + kX86WordSize));
5626   __ movl(Address(ESP, dst + stack_offset + kX86WordSize), temp_reg);
5627 }
5628 
EmitMove(size_t index)5629 void ParallelMoveResolverX86::EmitMove(size_t index) {
5630   MoveOperands* move = moves_[index];
5631   Location source = move->GetSource();
5632   Location destination = move->GetDestination();
5633 
5634   if (source.IsRegister()) {
5635     if (destination.IsRegister()) {
5636       __ movl(destination.AsRegister<Register>(), source.AsRegister<Register>());
5637     } else if (destination.IsFpuRegister()) {
5638       __ movd(destination.AsFpuRegister<XmmRegister>(), source.AsRegister<Register>());
5639     } else {
5640       DCHECK(destination.IsStackSlot());
5641       __ movl(Address(ESP, destination.GetStackIndex()), source.AsRegister<Register>());
5642     }
5643   } else if (source.IsRegisterPair()) {
5644       size_t elem_size = Primitive::ComponentSize(Primitive::kPrimInt);
5645       // Create stack space for 2 elements.
5646       __ subl(ESP, Immediate(2 * elem_size));
5647       __ movl(Address(ESP, 0), source.AsRegisterPairLow<Register>());
5648       __ movl(Address(ESP, elem_size), source.AsRegisterPairHigh<Register>());
5649       __ movsd(destination.AsFpuRegister<XmmRegister>(), Address(ESP, 0));
5650       // And remove the temporary stack space we allocated.
5651       __ addl(ESP, Immediate(2 * elem_size));
5652   } else if (source.IsFpuRegister()) {
5653     if (destination.IsRegister()) {
5654       __ movd(destination.AsRegister<Register>(), source.AsFpuRegister<XmmRegister>());
5655     } else if (destination.IsFpuRegister()) {
5656       __ movaps(destination.AsFpuRegister<XmmRegister>(), source.AsFpuRegister<XmmRegister>());
5657     } else if (destination.IsRegisterPair()) {
5658       XmmRegister src_reg = source.AsFpuRegister<XmmRegister>();
5659       __ movd(destination.AsRegisterPairLow<Register>(), src_reg);
5660       __ psrlq(src_reg, Immediate(32));
5661       __ movd(destination.AsRegisterPairHigh<Register>(), src_reg);
5662     } else if (destination.IsStackSlot()) {
5663       __ movss(Address(ESP, destination.GetStackIndex()), source.AsFpuRegister<XmmRegister>());
5664     } else {
5665       DCHECK(destination.IsDoubleStackSlot());
5666       __ movsd(Address(ESP, destination.GetStackIndex()), source.AsFpuRegister<XmmRegister>());
5667     }
5668   } else if (source.IsStackSlot()) {
5669     if (destination.IsRegister()) {
5670       __ movl(destination.AsRegister<Register>(), Address(ESP, source.GetStackIndex()));
5671     } else if (destination.IsFpuRegister()) {
5672       __ movss(destination.AsFpuRegister<XmmRegister>(), Address(ESP, source.GetStackIndex()));
5673     } else {
5674       DCHECK(destination.IsStackSlot());
5675       MoveMemoryToMemory32(destination.GetStackIndex(), source.GetStackIndex());
5676     }
5677   } else if (source.IsDoubleStackSlot()) {
5678     if (destination.IsRegisterPair()) {
5679       __ movl(destination.AsRegisterPairLow<Register>(), Address(ESP, source.GetStackIndex()));
5680       __ movl(destination.AsRegisterPairHigh<Register>(),
5681               Address(ESP, source.GetHighStackIndex(kX86WordSize)));
5682     } else if (destination.IsFpuRegister()) {
5683       __ movsd(destination.AsFpuRegister<XmmRegister>(), Address(ESP, source.GetStackIndex()));
5684     } else {
5685       DCHECK(destination.IsDoubleStackSlot()) << destination;
5686       MoveMemoryToMemory64(destination.GetStackIndex(), source.GetStackIndex());
5687     }
5688   } else if (source.IsConstant()) {
5689     HConstant* constant = source.GetConstant();
5690     if (constant->IsIntConstant() || constant->IsNullConstant()) {
5691       int32_t value = CodeGenerator::GetInt32ValueOf(constant);
5692       if (destination.IsRegister()) {
5693         if (value == 0) {
5694           __ xorl(destination.AsRegister<Register>(), destination.AsRegister<Register>());
5695         } else {
5696           __ movl(destination.AsRegister<Register>(), Immediate(value));
5697         }
5698       } else {
5699         DCHECK(destination.IsStackSlot()) << destination;
5700         __ movl(Address(ESP, destination.GetStackIndex()), Immediate(value));
5701       }
5702     } else if (constant->IsFloatConstant()) {
5703       float fp_value = constant->AsFloatConstant()->GetValue();
5704       int32_t value = bit_cast<int32_t, float>(fp_value);
5705       Immediate imm(value);
5706       if (destination.IsFpuRegister()) {
5707         XmmRegister dest = destination.AsFpuRegister<XmmRegister>();
5708         if (value == 0) {
5709           // Easy handling of 0.0.
5710           __ xorps(dest, dest);
5711         } else {
5712           ScratchRegisterScope ensure_scratch(
5713               this, kNoRegister, EAX, codegen_->GetNumberOfCoreRegisters());
5714           Register temp = static_cast<Register>(ensure_scratch.GetRegister());
5715           __ movl(temp, Immediate(value));
5716           __ movd(dest, temp);
5717         }
5718       } else {
5719         DCHECK(destination.IsStackSlot()) << destination;
5720         __ movl(Address(ESP, destination.GetStackIndex()), imm);
5721       }
5722     } else if (constant->IsLongConstant()) {
5723       int64_t value = constant->AsLongConstant()->GetValue();
5724       int32_t low_value = Low32Bits(value);
5725       int32_t high_value = High32Bits(value);
5726       Immediate low(low_value);
5727       Immediate high(high_value);
5728       if (destination.IsDoubleStackSlot()) {
5729         __ movl(Address(ESP, destination.GetStackIndex()), low);
5730         __ movl(Address(ESP, destination.GetHighStackIndex(kX86WordSize)), high);
5731       } else {
5732         __ movl(destination.AsRegisterPairLow<Register>(), low);
5733         __ movl(destination.AsRegisterPairHigh<Register>(), high);
5734       }
5735     } else {
5736       DCHECK(constant->IsDoubleConstant());
5737       double dbl_value = constant->AsDoubleConstant()->GetValue();
5738       int64_t value = bit_cast<int64_t, double>(dbl_value);
5739       int32_t low_value = Low32Bits(value);
5740       int32_t high_value = High32Bits(value);
5741       Immediate low(low_value);
5742       Immediate high(high_value);
5743       if (destination.IsFpuRegister()) {
5744         XmmRegister dest = destination.AsFpuRegister<XmmRegister>();
5745         if (value == 0) {
5746           // Easy handling of 0.0.
5747           __ xorpd(dest, dest);
5748         } else {
5749           __ pushl(high);
5750           __ pushl(low);
5751           __ movsd(dest, Address(ESP, 0));
5752           __ addl(ESP, Immediate(8));
5753         }
5754       } else {
5755         DCHECK(destination.IsDoubleStackSlot()) << destination;
5756         __ movl(Address(ESP, destination.GetStackIndex()), low);
5757         __ movl(Address(ESP, destination.GetHighStackIndex(kX86WordSize)), high);
5758       }
5759     }
5760   } else {
5761     LOG(FATAL) << "Unimplemented move: " << destination << " <- " << source;
5762   }
5763 }
5764 
Exchange(Register reg,int mem)5765 void ParallelMoveResolverX86::Exchange(Register reg, int mem) {
5766   Register suggested_scratch = reg == EAX ? EBX : EAX;
5767   ScratchRegisterScope ensure_scratch(
5768       this, reg, suggested_scratch, codegen_->GetNumberOfCoreRegisters());
5769 
5770   int stack_offset = ensure_scratch.IsSpilled() ? kX86WordSize : 0;
5771   __ movl(static_cast<Register>(ensure_scratch.GetRegister()), Address(ESP, mem + stack_offset));
5772   __ movl(Address(ESP, mem + stack_offset), reg);
5773   __ movl(reg, static_cast<Register>(ensure_scratch.GetRegister()));
5774 }
5775 
Exchange32(XmmRegister reg,int mem)5776 void ParallelMoveResolverX86::Exchange32(XmmRegister reg, int mem) {
5777   ScratchRegisterScope ensure_scratch(
5778       this, kNoRegister, EAX, codegen_->GetNumberOfCoreRegisters());
5779 
5780   Register temp_reg = static_cast<Register>(ensure_scratch.GetRegister());
5781   int stack_offset = ensure_scratch.IsSpilled() ? kX86WordSize : 0;
5782   __ movl(temp_reg, Address(ESP, mem + stack_offset));
5783   __ movss(Address(ESP, mem + stack_offset), reg);
5784   __ movd(reg, temp_reg);
5785 }
5786 
Exchange(int mem1,int mem2)5787 void ParallelMoveResolverX86::Exchange(int mem1, int mem2) {
5788   ScratchRegisterScope ensure_scratch1(
5789       this, kNoRegister, EAX, codegen_->GetNumberOfCoreRegisters());
5790 
5791   Register suggested_scratch = ensure_scratch1.GetRegister() == EAX ? EBX : EAX;
5792   ScratchRegisterScope ensure_scratch2(
5793       this, ensure_scratch1.GetRegister(), suggested_scratch, codegen_->GetNumberOfCoreRegisters());
5794 
5795   int stack_offset = ensure_scratch1.IsSpilled() ? kX86WordSize : 0;
5796   stack_offset += ensure_scratch2.IsSpilled() ? kX86WordSize : 0;
5797   __ movl(static_cast<Register>(ensure_scratch1.GetRegister()), Address(ESP, mem1 + stack_offset));
5798   __ movl(static_cast<Register>(ensure_scratch2.GetRegister()), Address(ESP, mem2 + stack_offset));
5799   __ movl(Address(ESP, mem2 + stack_offset), static_cast<Register>(ensure_scratch1.GetRegister()));
5800   __ movl(Address(ESP, mem1 + stack_offset), static_cast<Register>(ensure_scratch2.GetRegister()));
5801 }
5802 
EmitSwap(size_t index)5803 void ParallelMoveResolverX86::EmitSwap(size_t index) {
5804   MoveOperands* move = moves_[index];
5805   Location source = move->GetSource();
5806   Location destination = move->GetDestination();
5807 
5808   if (source.IsRegister() && destination.IsRegister()) {
5809     // Use XOR swap algorithm to avoid serializing XCHG instruction or using a temporary.
5810     DCHECK_NE(destination.AsRegister<Register>(), source.AsRegister<Register>());
5811     __ xorl(destination.AsRegister<Register>(), source.AsRegister<Register>());
5812     __ xorl(source.AsRegister<Register>(), destination.AsRegister<Register>());
5813     __ xorl(destination.AsRegister<Register>(), source.AsRegister<Register>());
5814   } else if (source.IsRegister() && destination.IsStackSlot()) {
5815     Exchange(source.AsRegister<Register>(), destination.GetStackIndex());
5816   } else if (source.IsStackSlot() && destination.IsRegister()) {
5817     Exchange(destination.AsRegister<Register>(), source.GetStackIndex());
5818   } else if (source.IsStackSlot() && destination.IsStackSlot()) {
5819     Exchange(destination.GetStackIndex(), source.GetStackIndex());
5820   } else if (source.IsFpuRegister() && destination.IsFpuRegister()) {
5821     // Use XOR Swap algorithm to avoid a temporary.
5822     DCHECK_NE(source.reg(), destination.reg());
5823     __ xorpd(destination.AsFpuRegister<XmmRegister>(), source.AsFpuRegister<XmmRegister>());
5824     __ xorpd(source.AsFpuRegister<XmmRegister>(), destination.AsFpuRegister<XmmRegister>());
5825     __ xorpd(destination.AsFpuRegister<XmmRegister>(), source.AsFpuRegister<XmmRegister>());
5826   } else if (source.IsFpuRegister() && destination.IsStackSlot()) {
5827     Exchange32(source.AsFpuRegister<XmmRegister>(), destination.GetStackIndex());
5828   } else if (destination.IsFpuRegister() && source.IsStackSlot()) {
5829     Exchange32(destination.AsFpuRegister<XmmRegister>(), source.GetStackIndex());
5830   } else if (source.IsFpuRegister() && destination.IsDoubleStackSlot()) {
5831     // Take advantage of the 16 bytes in the XMM register.
5832     XmmRegister reg = source.AsFpuRegister<XmmRegister>();
5833     Address stack(ESP, destination.GetStackIndex());
5834     // Load the double into the high doubleword.
5835     __ movhpd(reg, stack);
5836 
5837     // Store the low double into the destination.
5838     __ movsd(stack, reg);
5839 
5840     // Move the high double to the low double.
5841     __ psrldq(reg, Immediate(8));
5842   } else if (destination.IsFpuRegister() && source.IsDoubleStackSlot()) {
5843     // Take advantage of the 16 bytes in the XMM register.
5844     XmmRegister reg = destination.AsFpuRegister<XmmRegister>();
5845     Address stack(ESP, source.GetStackIndex());
5846     // Load the double into the high doubleword.
5847     __ movhpd(reg, stack);
5848 
5849     // Store the low double into the destination.
5850     __ movsd(stack, reg);
5851 
5852     // Move the high double to the low double.
5853     __ psrldq(reg, Immediate(8));
5854   } else if (destination.IsDoubleStackSlot() && source.IsDoubleStackSlot()) {
5855     Exchange(destination.GetStackIndex(), source.GetStackIndex());
5856     Exchange(destination.GetHighStackIndex(kX86WordSize), source.GetHighStackIndex(kX86WordSize));
5857   } else {
5858     LOG(FATAL) << "Unimplemented: source: " << source << ", destination: " << destination;
5859   }
5860 }
5861 
SpillScratch(int reg)5862 void ParallelMoveResolverX86::SpillScratch(int reg) {
5863   __ pushl(static_cast<Register>(reg));
5864 }
5865 
RestoreScratch(int reg)5866 void ParallelMoveResolverX86::RestoreScratch(int reg) {
5867   __ popl(static_cast<Register>(reg));
5868 }
5869 
VisitLoadClass(HLoadClass * cls)5870 void LocationsBuilderX86::VisitLoadClass(HLoadClass* cls) {
5871   InvokeRuntimeCallingConvention calling_convention;
5872   CodeGenerator::CreateLoadClassLocationSummary(
5873       cls,
5874       Location::RegisterLocation(calling_convention.GetRegisterAt(0)),
5875       Location::RegisterLocation(EAX),
5876       /* code_generator_supports_read_barrier */ true);
5877 }
5878 
VisitLoadClass(HLoadClass * cls)5879 void InstructionCodeGeneratorX86::VisitLoadClass(HLoadClass* cls) {
5880   LocationSummary* locations = cls->GetLocations();
5881   if (cls->NeedsAccessCheck()) {
5882     codegen_->MoveConstant(locations->GetTemp(0), cls->GetTypeIndex());
5883     codegen_->InvokeRuntime(QUICK_ENTRY_POINT(pInitializeTypeAndVerifyAccess),
5884                             cls,
5885                             cls->GetDexPc(),
5886                             nullptr);
5887     CheckEntrypointTypes<kQuickInitializeTypeAndVerifyAccess, void*, uint32_t>();
5888     return;
5889   }
5890 
5891   Location out_loc = locations->Out();
5892   Register out = out_loc.AsRegister<Register>();
5893   Register current_method = locations->InAt(0).AsRegister<Register>();
5894 
5895   if (cls->IsReferrersClass()) {
5896     DCHECK(!cls->CanCallRuntime());
5897     DCHECK(!cls->MustGenerateClinitCheck());
5898     // /* GcRoot<mirror::Class> */ out = current_method->declaring_class_
5899     GenerateGcRootFieldLoad(
5900         cls, out_loc, Address(current_method, ArtMethod::DeclaringClassOffset().Int32Value()));
5901   } else {
5902     // /* GcRoot<mirror::Class>[] */ out =
5903     //        current_method.ptr_sized_fields_->dex_cache_resolved_types_
5904     __ movl(out, Address(current_method,
5905                          ArtMethod::DexCacheResolvedTypesOffset(kX86PointerSize).Int32Value()));
5906     // /* GcRoot<mirror::Class> */ out = out[type_index]
5907     GenerateGcRootFieldLoad(
5908         cls, out_loc, Address(out, CodeGenerator::GetCacheOffset(cls->GetTypeIndex())));
5909 
5910     if (!cls->IsInDexCache() || cls->MustGenerateClinitCheck()) {
5911       DCHECK(cls->CanCallRuntime());
5912       SlowPathCode* slow_path = new (GetGraph()->GetArena()) LoadClassSlowPathX86(
5913           cls, cls, cls->GetDexPc(), cls->MustGenerateClinitCheck());
5914       codegen_->AddSlowPath(slow_path);
5915 
5916       if (!cls->IsInDexCache()) {
5917         __ testl(out, out);
5918         __ j(kEqual, slow_path->GetEntryLabel());
5919       }
5920 
5921       if (cls->MustGenerateClinitCheck()) {
5922         GenerateClassInitializationCheck(slow_path, out);
5923       } else {
5924         __ Bind(slow_path->GetExitLabel());
5925       }
5926     }
5927   }
5928 }
5929 
VisitClinitCheck(HClinitCheck * check)5930 void LocationsBuilderX86::VisitClinitCheck(HClinitCheck* check) {
5931   LocationSummary* locations =
5932       new (GetGraph()->GetArena()) LocationSummary(check, LocationSummary::kCallOnSlowPath);
5933   locations->SetInAt(0, Location::RequiresRegister());
5934   if (check->HasUses()) {
5935     locations->SetOut(Location::SameAsFirstInput());
5936   }
5937 }
5938 
VisitClinitCheck(HClinitCheck * check)5939 void InstructionCodeGeneratorX86::VisitClinitCheck(HClinitCheck* check) {
5940   // We assume the class to not be null.
5941   SlowPathCode* slow_path = new (GetGraph()->GetArena()) LoadClassSlowPathX86(
5942       check->GetLoadClass(), check, check->GetDexPc(), true);
5943   codegen_->AddSlowPath(slow_path);
5944   GenerateClassInitializationCheck(slow_path,
5945                                    check->GetLocations()->InAt(0).AsRegister<Register>());
5946 }
5947 
GenerateClassInitializationCheck(SlowPathCode * slow_path,Register class_reg)5948 void InstructionCodeGeneratorX86::GenerateClassInitializationCheck(
5949     SlowPathCode* slow_path, Register class_reg) {
5950   __ cmpl(Address(class_reg,  mirror::Class::StatusOffset().Int32Value()),
5951           Immediate(mirror::Class::kStatusInitialized));
5952   __ j(kLess, slow_path->GetEntryLabel());
5953   __ Bind(slow_path->GetExitLabel());
5954   // No need for memory fence, thanks to the X86 memory model.
5955 }
5956 
GetSupportedLoadStringKind(HLoadString::LoadKind desired_string_load_kind)5957 HLoadString::LoadKind CodeGeneratorX86::GetSupportedLoadStringKind(
5958     HLoadString::LoadKind desired_string_load_kind) {
5959   if (kEmitCompilerReadBarrier) {
5960     switch (desired_string_load_kind) {
5961       case HLoadString::LoadKind::kBootImageLinkTimeAddress:
5962       case HLoadString::LoadKind::kBootImageLinkTimePcRelative:
5963       case HLoadString::LoadKind::kBootImageAddress:
5964         // TODO: Implement for read barrier.
5965         return HLoadString::LoadKind::kDexCacheViaMethod;
5966       default:
5967         break;
5968     }
5969   }
5970   switch (desired_string_load_kind) {
5971     case HLoadString::LoadKind::kBootImageLinkTimeAddress:
5972       DCHECK(!GetCompilerOptions().GetCompilePic());
5973       break;
5974     case HLoadString::LoadKind::kBootImageLinkTimePcRelative:
5975       DCHECK(GetCompilerOptions().GetCompilePic());
5976       FALLTHROUGH_INTENDED;
5977     case HLoadString::LoadKind::kDexCachePcRelative:
5978       DCHECK(!Runtime::Current()->UseJitCompilation());  // Note: boot image is also non-JIT.
5979       // We disable pc-relative load when there is an irreducible loop, as the optimization
5980       // is incompatible with it.
5981       // TODO: Create as many X86ComputeBaseMethodAddress instructions as needed for methods
5982       // with irreducible loops.
5983       if (GetGraph()->HasIrreducibleLoops()) {
5984         return HLoadString::LoadKind::kDexCacheViaMethod;
5985       }
5986       break;
5987     case HLoadString::LoadKind::kBootImageAddress:
5988       break;
5989     case HLoadString::LoadKind::kDexCacheAddress:
5990       DCHECK(Runtime::Current()->UseJitCompilation());
5991       break;
5992     case HLoadString::LoadKind::kDexCacheViaMethod:
5993       break;
5994   }
5995   return desired_string_load_kind;
5996 }
5997 
VisitLoadString(HLoadString * load)5998 void LocationsBuilderX86::VisitLoadString(HLoadString* load) {
5999   LocationSummary::CallKind call_kind = (load->NeedsEnvironment() || kEmitCompilerReadBarrier)
6000       ? LocationSummary::kCallOnSlowPath
6001       : LocationSummary::kNoCall;
6002   LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(load, call_kind);
6003   HLoadString::LoadKind load_kind = load->GetLoadKind();
6004   if (load_kind == HLoadString::LoadKind::kDexCacheViaMethod ||
6005       load_kind == HLoadString::LoadKind::kBootImageLinkTimePcRelative ||
6006       load_kind == HLoadString::LoadKind::kDexCachePcRelative) {
6007     locations->SetInAt(0, Location::RequiresRegister());
6008   }
6009   locations->SetOut(Location::RequiresRegister());
6010 }
6011 
VisitLoadString(HLoadString * load)6012 void InstructionCodeGeneratorX86::VisitLoadString(HLoadString* load) {
6013   LocationSummary* locations = load->GetLocations();
6014   Location out_loc = locations->Out();
6015   Register out = out_loc.AsRegister<Register>();
6016 
6017   switch (load->GetLoadKind()) {
6018     case HLoadString::LoadKind::kBootImageLinkTimeAddress: {
6019       DCHECK(!kEmitCompilerReadBarrier);
6020       __ movl(out, Immediate(/* placeholder */ 0));
6021       codegen_->RecordStringPatch(load);
6022       return;  // No dex cache slow path.
6023     }
6024     case HLoadString::LoadKind::kBootImageLinkTimePcRelative: {
6025       DCHECK(!kEmitCompilerReadBarrier);
6026       Register method_address = locations->InAt(0).AsRegister<Register>();
6027       __ leal(out, Address(method_address, CodeGeneratorX86::kDummy32BitOffset));
6028       codegen_->RecordStringPatch(load);
6029       return;  // No dex cache slow path.
6030     }
6031     case HLoadString::LoadKind::kBootImageAddress: {
6032       DCHECK(!kEmitCompilerReadBarrier);
6033       DCHECK_NE(load->GetAddress(), 0u);
6034       uint32_t address = dchecked_integral_cast<uint32_t>(load->GetAddress());
6035       __ movl(out, Immediate(address));
6036       codegen_->RecordSimplePatch();
6037       return;  // No dex cache slow path.
6038     }
6039     case HLoadString::LoadKind::kDexCacheAddress: {
6040       DCHECK_NE(load->GetAddress(), 0u);
6041       uint32_t address = dchecked_integral_cast<uint32_t>(load->GetAddress());
6042       GenerateGcRootFieldLoad(load, out_loc, Address::Absolute(address));
6043       break;
6044     }
6045     case HLoadString::LoadKind::kDexCachePcRelative: {
6046       Register base_reg = locations->InAt(0).AsRegister<Register>();
6047       uint32_t offset = load->GetDexCacheElementOffset();
6048       Label* fixup_label = codegen_->NewPcRelativeDexCacheArrayPatch(load->GetDexFile(), offset);
6049       GenerateGcRootFieldLoad(
6050           load, out_loc, Address(base_reg, CodeGeneratorX86::kDummy32BitOffset), fixup_label);
6051       break;
6052     }
6053     case HLoadString::LoadKind::kDexCacheViaMethod: {
6054       Register current_method = locations->InAt(0).AsRegister<Register>();
6055 
6056       // /* GcRoot<mirror::Class> */ out = current_method->declaring_class_
6057       GenerateGcRootFieldLoad(
6058           load, out_loc, Address(current_method, ArtMethod::DeclaringClassOffset().Int32Value()));
6059 
6060       // /* GcRoot<mirror::String>[] */ out = out->dex_cache_strings_
6061       __ movl(out, Address(out, mirror::Class::DexCacheStringsOffset().Int32Value()));
6062       // /* GcRoot<mirror::String> */ out = out[string_index]
6063       GenerateGcRootFieldLoad(
6064           load, out_loc, Address(out, CodeGenerator::GetCacheOffset(load->GetStringIndex())));
6065       break;
6066     }
6067     default:
6068       LOG(FATAL) << "Unexpected load kind: " << load->GetLoadKind();
6069       UNREACHABLE();
6070   }
6071 
6072   if (!load->IsInDexCache()) {
6073     SlowPathCode* slow_path = new (GetGraph()->GetArena()) LoadStringSlowPathX86(load);
6074     codegen_->AddSlowPath(slow_path);
6075     __ testl(out, out);
6076     __ j(kEqual, slow_path->GetEntryLabel());
6077     __ Bind(slow_path->GetExitLabel());
6078   }
6079 }
6080 
GetExceptionTlsAddress()6081 static Address GetExceptionTlsAddress() {
6082   return Address::Absolute(Thread::ExceptionOffset<kX86WordSize>().Int32Value());
6083 }
6084 
VisitLoadException(HLoadException * load)6085 void LocationsBuilderX86::VisitLoadException(HLoadException* load) {
6086   LocationSummary* locations =
6087       new (GetGraph()->GetArena()) LocationSummary(load, LocationSummary::kNoCall);
6088   locations->SetOut(Location::RequiresRegister());
6089 }
6090 
VisitLoadException(HLoadException * load)6091 void InstructionCodeGeneratorX86::VisitLoadException(HLoadException* load) {
6092   __ fs()->movl(load->GetLocations()->Out().AsRegister<Register>(), GetExceptionTlsAddress());
6093 }
6094 
VisitClearException(HClearException * clear)6095 void LocationsBuilderX86::VisitClearException(HClearException* clear) {
6096   new (GetGraph()->GetArena()) LocationSummary(clear, LocationSummary::kNoCall);
6097 }
6098 
VisitClearException(HClearException * clear ATTRIBUTE_UNUSED)6099 void InstructionCodeGeneratorX86::VisitClearException(HClearException* clear ATTRIBUTE_UNUSED) {
6100   __ fs()->movl(GetExceptionTlsAddress(), Immediate(0));
6101 }
6102 
VisitThrow(HThrow * instruction)6103 void LocationsBuilderX86::VisitThrow(HThrow* instruction) {
6104   LocationSummary* locations =
6105       new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kCall);
6106   InvokeRuntimeCallingConvention calling_convention;
6107   locations->SetInAt(0, Location::RegisterLocation(calling_convention.GetRegisterAt(0)));
6108 }
6109 
VisitThrow(HThrow * instruction)6110 void InstructionCodeGeneratorX86::VisitThrow(HThrow* instruction) {
6111   codegen_->InvokeRuntime(QUICK_ENTRY_POINT(pDeliverException),
6112                           instruction,
6113                           instruction->GetDexPc(),
6114                           nullptr);
6115   CheckEntrypointTypes<kQuickDeliverException, void, mirror::Object*>();
6116 }
6117 
TypeCheckNeedsATemporary(TypeCheckKind type_check_kind)6118 static bool TypeCheckNeedsATemporary(TypeCheckKind type_check_kind) {
6119   return kEmitCompilerReadBarrier &&
6120       (kUseBakerReadBarrier ||
6121        type_check_kind == TypeCheckKind::kAbstractClassCheck ||
6122        type_check_kind == TypeCheckKind::kClassHierarchyCheck ||
6123        type_check_kind == TypeCheckKind::kArrayObjectCheck);
6124 }
6125 
VisitInstanceOf(HInstanceOf * instruction)6126 void LocationsBuilderX86::VisitInstanceOf(HInstanceOf* instruction) {
6127   LocationSummary::CallKind call_kind = LocationSummary::kNoCall;
6128   TypeCheckKind type_check_kind = instruction->GetTypeCheckKind();
6129   switch (type_check_kind) {
6130     case TypeCheckKind::kExactCheck:
6131     case TypeCheckKind::kAbstractClassCheck:
6132     case TypeCheckKind::kClassHierarchyCheck:
6133     case TypeCheckKind::kArrayObjectCheck:
6134       call_kind =
6135           kEmitCompilerReadBarrier ? LocationSummary::kCallOnSlowPath : LocationSummary::kNoCall;
6136       break;
6137     case TypeCheckKind::kArrayCheck:
6138     case TypeCheckKind::kUnresolvedCheck:
6139     case TypeCheckKind::kInterfaceCheck:
6140       call_kind = LocationSummary::kCallOnSlowPath;
6141       break;
6142   }
6143 
6144   LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(instruction, call_kind);
6145   locations->SetInAt(0, Location::RequiresRegister());
6146   locations->SetInAt(1, Location::Any());
6147   // Note that TypeCheckSlowPathX86 uses this "out" register too.
6148   locations->SetOut(Location::RequiresRegister());
6149   // When read barriers are enabled, we need a temporary register for
6150   // some cases.
6151   if (TypeCheckNeedsATemporary(type_check_kind)) {
6152     locations->AddTemp(Location::RequiresRegister());
6153   }
6154 }
6155 
VisitInstanceOf(HInstanceOf * instruction)6156 void InstructionCodeGeneratorX86::VisitInstanceOf(HInstanceOf* instruction) {
6157   TypeCheckKind type_check_kind = instruction->GetTypeCheckKind();
6158   LocationSummary* locations = instruction->GetLocations();
6159   Location obj_loc = locations->InAt(0);
6160   Register obj = obj_loc.AsRegister<Register>();
6161   Location cls = locations->InAt(1);
6162   Location out_loc = locations->Out();
6163   Register out = out_loc.AsRegister<Register>();
6164   Location maybe_temp_loc = TypeCheckNeedsATemporary(type_check_kind) ?
6165       locations->GetTemp(0) :
6166       Location::NoLocation();
6167   uint32_t class_offset = mirror::Object::ClassOffset().Int32Value();
6168   uint32_t super_offset = mirror::Class::SuperClassOffset().Int32Value();
6169   uint32_t component_offset = mirror::Class::ComponentTypeOffset().Int32Value();
6170   uint32_t primitive_offset = mirror::Class::PrimitiveTypeOffset().Int32Value();
6171   SlowPathCode* slow_path = nullptr;
6172   NearLabel done, zero;
6173 
6174   // Return 0 if `obj` is null.
6175   // Avoid null check if we know obj is not null.
6176   if (instruction->MustDoNullCheck()) {
6177     __ testl(obj, obj);
6178     __ j(kEqual, &zero);
6179   }
6180 
6181   // /* HeapReference<Class> */ out = obj->klass_
6182   GenerateReferenceLoadTwoRegisters(instruction, out_loc, obj_loc, class_offset, maybe_temp_loc);
6183 
6184   switch (type_check_kind) {
6185     case TypeCheckKind::kExactCheck: {
6186       if (cls.IsRegister()) {
6187         __ cmpl(out, cls.AsRegister<Register>());
6188       } else {
6189         DCHECK(cls.IsStackSlot()) << cls;
6190         __ cmpl(out, Address(ESP, cls.GetStackIndex()));
6191       }
6192 
6193       // Classes must be equal for the instanceof to succeed.
6194       __ j(kNotEqual, &zero);
6195       __ movl(out, Immediate(1));
6196       __ jmp(&done);
6197       break;
6198     }
6199 
6200     case TypeCheckKind::kAbstractClassCheck: {
6201       // If the class is abstract, we eagerly fetch the super class of the
6202       // object to avoid doing a comparison we know will fail.
6203       NearLabel loop;
6204       __ Bind(&loop);
6205       // /* HeapReference<Class> */ out = out->super_class_
6206       GenerateReferenceLoadOneRegister(instruction, out_loc, super_offset, maybe_temp_loc);
6207       __ testl(out, out);
6208       // If `out` is null, we use it for the result, and jump to `done`.
6209       __ j(kEqual, &done);
6210       if (cls.IsRegister()) {
6211         __ cmpl(out, cls.AsRegister<Register>());
6212       } else {
6213         DCHECK(cls.IsStackSlot()) << cls;
6214         __ cmpl(out, Address(ESP, cls.GetStackIndex()));
6215       }
6216       __ j(kNotEqual, &loop);
6217       __ movl(out, Immediate(1));
6218       if (zero.IsLinked()) {
6219         __ jmp(&done);
6220       }
6221       break;
6222     }
6223 
6224     case TypeCheckKind::kClassHierarchyCheck: {
6225       // Walk over the class hierarchy to find a match.
6226       NearLabel loop, success;
6227       __ Bind(&loop);
6228       if (cls.IsRegister()) {
6229         __ cmpl(out, cls.AsRegister<Register>());
6230       } else {
6231         DCHECK(cls.IsStackSlot()) << cls;
6232         __ cmpl(out, Address(ESP, cls.GetStackIndex()));
6233       }
6234       __ j(kEqual, &success);
6235       // /* HeapReference<Class> */ out = out->super_class_
6236       GenerateReferenceLoadOneRegister(instruction, out_loc, super_offset, maybe_temp_loc);
6237       __ testl(out, out);
6238       __ j(kNotEqual, &loop);
6239       // If `out` is null, we use it for the result, and jump to `done`.
6240       __ jmp(&done);
6241       __ Bind(&success);
6242       __ movl(out, Immediate(1));
6243       if (zero.IsLinked()) {
6244         __ jmp(&done);
6245       }
6246       break;
6247     }
6248 
6249     case TypeCheckKind::kArrayObjectCheck: {
6250       // Do an exact check.
6251       NearLabel exact_check;
6252       if (cls.IsRegister()) {
6253         __ cmpl(out, cls.AsRegister<Register>());
6254       } else {
6255         DCHECK(cls.IsStackSlot()) << cls;
6256         __ cmpl(out, Address(ESP, cls.GetStackIndex()));
6257       }
6258       __ j(kEqual, &exact_check);
6259       // Otherwise, we need to check that the object's class is a non-primitive array.
6260       // /* HeapReference<Class> */ out = out->component_type_
6261       GenerateReferenceLoadOneRegister(instruction, out_loc, component_offset, maybe_temp_loc);
6262       __ testl(out, out);
6263       // If `out` is null, we use it for the result, and jump to `done`.
6264       __ j(kEqual, &done);
6265       __ cmpw(Address(out, primitive_offset), Immediate(Primitive::kPrimNot));
6266       __ j(kNotEqual, &zero);
6267       __ Bind(&exact_check);
6268       __ movl(out, Immediate(1));
6269       __ jmp(&done);
6270       break;
6271     }
6272 
6273     case TypeCheckKind::kArrayCheck: {
6274       if (cls.IsRegister()) {
6275         __ cmpl(out, cls.AsRegister<Register>());
6276       } else {
6277         DCHECK(cls.IsStackSlot()) << cls;
6278         __ cmpl(out, Address(ESP, cls.GetStackIndex()));
6279       }
6280       DCHECK(locations->OnlyCallsOnSlowPath());
6281       slow_path = new (GetGraph()->GetArena()) TypeCheckSlowPathX86(instruction,
6282                                                                     /* is_fatal */ false);
6283       codegen_->AddSlowPath(slow_path);
6284       __ j(kNotEqual, slow_path->GetEntryLabel());
6285       __ movl(out, Immediate(1));
6286       if (zero.IsLinked()) {
6287         __ jmp(&done);
6288       }
6289       break;
6290     }
6291 
6292     case TypeCheckKind::kUnresolvedCheck:
6293     case TypeCheckKind::kInterfaceCheck: {
6294       // Note that we indeed only call on slow path, but we always go
6295       // into the slow path for the unresolved and interface check
6296       // cases.
6297       //
6298       // We cannot directly call the InstanceofNonTrivial runtime
6299       // entry point without resorting to a type checking slow path
6300       // here (i.e. by calling InvokeRuntime directly), as it would
6301       // require to assign fixed registers for the inputs of this
6302       // HInstanceOf instruction (following the runtime calling
6303       // convention), which might be cluttered by the potential first
6304       // read barrier emission at the beginning of this method.
6305       //
6306       // TODO: Introduce a new runtime entry point taking the object
6307       // to test (instead of its class) as argument, and let it deal
6308       // with the read barrier issues. This will let us refactor this
6309       // case of the `switch` code as it was previously (with a direct
6310       // call to the runtime not using a type checking slow path).
6311       // This should also be beneficial for the other cases above.
6312       DCHECK(locations->OnlyCallsOnSlowPath());
6313       slow_path = new (GetGraph()->GetArena()) TypeCheckSlowPathX86(instruction,
6314                                                                     /* is_fatal */ false);
6315       codegen_->AddSlowPath(slow_path);
6316       __ jmp(slow_path->GetEntryLabel());
6317       if (zero.IsLinked()) {
6318         __ jmp(&done);
6319       }
6320       break;
6321     }
6322   }
6323 
6324   if (zero.IsLinked()) {
6325     __ Bind(&zero);
6326     __ xorl(out, out);
6327   }
6328 
6329   if (done.IsLinked()) {
6330     __ Bind(&done);
6331   }
6332 
6333   if (slow_path != nullptr) {
6334     __ Bind(slow_path->GetExitLabel());
6335   }
6336 }
6337 
VisitCheckCast(HCheckCast * instruction)6338 void LocationsBuilderX86::VisitCheckCast(HCheckCast* instruction) {
6339   LocationSummary::CallKind call_kind = LocationSummary::kNoCall;
6340   bool throws_into_catch = instruction->CanThrowIntoCatchBlock();
6341   TypeCheckKind type_check_kind = instruction->GetTypeCheckKind();
6342   switch (type_check_kind) {
6343     case TypeCheckKind::kExactCheck:
6344     case TypeCheckKind::kAbstractClassCheck:
6345     case TypeCheckKind::kClassHierarchyCheck:
6346     case TypeCheckKind::kArrayObjectCheck:
6347       call_kind = (throws_into_catch || kEmitCompilerReadBarrier) ?
6348           LocationSummary::kCallOnSlowPath :
6349           LocationSummary::kNoCall;  // In fact, call on a fatal (non-returning) slow path.
6350       break;
6351     case TypeCheckKind::kArrayCheck:
6352     case TypeCheckKind::kUnresolvedCheck:
6353     case TypeCheckKind::kInterfaceCheck:
6354       call_kind = LocationSummary::kCallOnSlowPath;
6355       break;
6356   }
6357   LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(instruction, call_kind);
6358   locations->SetInAt(0, Location::RequiresRegister());
6359   locations->SetInAt(1, Location::Any());
6360   // Note that TypeCheckSlowPathX86 uses this "temp" register too.
6361   locations->AddTemp(Location::RequiresRegister());
6362   // When read barriers are enabled, we need an additional temporary
6363   // register for some cases.
6364   if (TypeCheckNeedsATemporary(type_check_kind)) {
6365     locations->AddTemp(Location::RequiresRegister());
6366   }
6367 }
6368 
VisitCheckCast(HCheckCast * instruction)6369 void InstructionCodeGeneratorX86::VisitCheckCast(HCheckCast* instruction) {
6370   TypeCheckKind type_check_kind = instruction->GetTypeCheckKind();
6371   LocationSummary* locations = instruction->GetLocations();
6372   Location obj_loc = locations->InAt(0);
6373   Register obj = obj_loc.AsRegister<Register>();
6374   Location cls = locations->InAt(1);
6375   Location temp_loc = locations->GetTemp(0);
6376   Register temp = temp_loc.AsRegister<Register>();
6377   Location maybe_temp2_loc = TypeCheckNeedsATemporary(type_check_kind) ?
6378       locations->GetTemp(1) :
6379       Location::NoLocation();
6380   uint32_t class_offset = mirror::Object::ClassOffset().Int32Value();
6381   uint32_t super_offset = mirror::Class::SuperClassOffset().Int32Value();
6382   uint32_t component_offset = mirror::Class::ComponentTypeOffset().Int32Value();
6383   uint32_t primitive_offset = mirror::Class::PrimitiveTypeOffset().Int32Value();
6384 
6385   bool is_type_check_slow_path_fatal =
6386       (type_check_kind == TypeCheckKind::kExactCheck ||
6387        type_check_kind == TypeCheckKind::kAbstractClassCheck ||
6388        type_check_kind == TypeCheckKind::kClassHierarchyCheck ||
6389        type_check_kind == TypeCheckKind::kArrayObjectCheck) &&
6390       !instruction->CanThrowIntoCatchBlock();
6391   SlowPathCode* type_check_slow_path =
6392       new (GetGraph()->GetArena()) TypeCheckSlowPathX86(instruction,
6393                                                         is_type_check_slow_path_fatal);
6394   codegen_->AddSlowPath(type_check_slow_path);
6395 
6396   NearLabel done;
6397   // Avoid null check if we know obj is not null.
6398   if (instruction->MustDoNullCheck()) {
6399     __ testl(obj, obj);
6400     __ j(kEqual, &done);
6401   }
6402 
6403   // /* HeapReference<Class> */ temp = obj->klass_
6404   GenerateReferenceLoadTwoRegisters(instruction, temp_loc, obj_loc, class_offset, maybe_temp2_loc);
6405 
6406   switch (type_check_kind) {
6407     case TypeCheckKind::kExactCheck:
6408     case TypeCheckKind::kArrayCheck: {
6409       if (cls.IsRegister()) {
6410         __ cmpl(temp, cls.AsRegister<Register>());
6411       } else {
6412         DCHECK(cls.IsStackSlot()) << cls;
6413         __ cmpl(temp, Address(ESP, cls.GetStackIndex()));
6414       }
6415       // Jump to slow path for throwing the exception or doing a
6416       // more involved array check.
6417       __ j(kNotEqual, type_check_slow_path->GetEntryLabel());
6418       break;
6419     }
6420 
6421     case TypeCheckKind::kAbstractClassCheck: {
6422       // If the class is abstract, we eagerly fetch the super class of the
6423       // object to avoid doing a comparison we know will fail.
6424       NearLabel loop, compare_classes;
6425       __ Bind(&loop);
6426       // /* HeapReference<Class> */ temp = temp->super_class_
6427       GenerateReferenceLoadOneRegister(instruction, temp_loc, super_offset, maybe_temp2_loc);
6428 
6429       // If the class reference currently in `temp` is not null, jump
6430       // to the `compare_classes` label to compare it with the checked
6431       // class.
6432       __ testl(temp, temp);
6433       __ j(kNotEqual, &compare_classes);
6434       // Otherwise, jump to the slow path to throw the exception.
6435       //
6436       // But before, move back the object's class into `temp` before
6437       // going into the slow path, as it has been overwritten in the
6438       // meantime.
6439       // /* HeapReference<Class> */ temp = obj->klass_
6440       GenerateReferenceLoadTwoRegisters(
6441           instruction, temp_loc, obj_loc, class_offset, maybe_temp2_loc);
6442       __ jmp(type_check_slow_path->GetEntryLabel());
6443 
6444       __ Bind(&compare_classes);
6445       if (cls.IsRegister()) {
6446         __ cmpl(temp, cls.AsRegister<Register>());
6447       } else {
6448         DCHECK(cls.IsStackSlot()) << cls;
6449         __ cmpl(temp, Address(ESP, cls.GetStackIndex()));
6450       }
6451       __ j(kNotEqual, &loop);
6452       break;
6453     }
6454 
6455     case TypeCheckKind::kClassHierarchyCheck: {
6456       // Walk over the class hierarchy to find a match.
6457       NearLabel loop;
6458       __ Bind(&loop);
6459       if (cls.IsRegister()) {
6460         __ cmpl(temp, cls.AsRegister<Register>());
6461       } else {
6462         DCHECK(cls.IsStackSlot()) << cls;
6463         __ cmpl(temp, Address(ESP, cls.GetStackIndex()));
6464       }
6465       __ j(kEqual, &done);
6466 
6467       // /* HeapReference<Class> */ temp = temp->super_class_
6468       GenerateReferenceLoadOneRegister(instruction, temp_loc, super_offset, maybe_temp2_loc);
6469 
6470       // If the class reference currently in `temp` is not null, jump
6471       // back at the beginning of the loop.
6472       __ testl(temp, temp);
6473       __ j(kNotEqual, &loop);
6474       // Otherwise, jump to the slow path to throw the exception.
6475       //
6476       // But before, move back the object's class into `temp` before
6477       // going into the slow path, as it has been overwritten in the
6478       // meantime.
6479       // /* HeapReference<Class> */ temp = obj->klass_
6480       GenerateReferenceLoadTwoRegisters(
6481           instruction, temp_loc, obj_loc, class_offset, maybe_temp2_loc);
6482       __ jmp(type_check_slow_path->GetEntryLabel());
6483       break;
6484     }
6485 
6486     case TypeCheckKind::kArrayObjectCheck: {
6487       // Do an exact check.
6488       NearLabel check_non_primitive_component_type;
6489       if (cls.IsRegister()) {
6490         __ cmpl(temp, cls.AsRegister<Register>());
6491       } else {
6492         DCHECK(cls.IsStackSlot()) << cls;
6493         __ cmpl(temp, Address(ESP, cls.GetStackIndex()));
6494       }
6495       __ j(kEqual, &done);
6496 
6497       // Otherwise, we need to check that the object's class is a non-primitive array.
6498       // /* HeapReference<Class> */ temp = temp->component_type_
6499       GenerateReferenceLoadOneRegister(instruction, temp_loc, component_offset, maybe_temp2_loc);
6500 
6501       // If the component type is not null (i.e. the object is indeed
6502       // an array), jump to label `check_non_primitive_component_type`
6503       // to further check that this component type is not a primitive
6504       // type.
6505       __ testl(temp, temp);
6506       __ j(kNotEqual, &check_non_primitive_component_type);
6507       // Otherwise, jump to the slow path to throw the exception.
6508       //
6509       // But before, move back the object's class into `temp` before
6510       // going into the slow path, as it has been overwritten in the
6511       // meantime.
6512       // /* HeapReference<Class> */ temp = obj->klass_
6513       GenerateReferenceLoadTwoRegisters(
6514           instruction, temp_loc, obj_loc, class_offset, maybe_temp2_loc);
6515       __ jmp(type_check_slow_path->GetEntryLabel());
6516 
6517       __ Bind(&check_non_primitive_component_type);
6518       __ cmpw(Address(temp, primitive_offset), Immediate(Primitive::kPrimNot));
6519       __ j(kEqual, &done);
6520       // Same comment as above regarding `temp` and the slow path.
6521       // /* HeapReference<Class> */ temp = obj->klass_
6522       GenerateReferenceLoadTwoRegisters(
6523           instruction, temp_loc, obj_loc, class_offset, maybe_temp2_loc);
6524       __ jmp(type_check_slow_path->GetEntryLabel());
6525       break;
6526     }
6527 
6528     case TypeCheckKind::kUnresolvedCheck:
6529     case TypeCheckKind::kInterfaceCheck:
6530       // We always go into the type check slow path for the unresolved
6531       // and interface check cases.
6532       //
6533       // We cannot directly call the CheckCast runtime entry point
6534       // without resorting to a type checking slow path here (i.e. by
6535       // calling InvokeRuntime directly), as it would require to
6536       // assign fixed registers for the inputs of this HInstanceOf
6537       // instruction (following the runtime calling convention), which
6538       // might be cluttered by the potential first read barrier
6539       // emission at the beginning of this method.
6540       //
6541       // TODO: Introduce a new runtime entry point taking the object
6542       // to test (instead of its class) as argument, and let it deal
6543       // with the read barrier issues. This will let us refactor this
6544       // case of the `switch` code as it was previously (with a direct
6545       // call to the runtime not using a type checking slow path).
6546       // This should also be beneficial for the other cases above.
6547       __ jmp(type_check_slow_path->GetEntryLabel());
6548       break;
6549   }
6550   __ Bind(&done);
6551 
6552   __ Bind(type_check_slow_path->GetExitLabel());
6553 }
6554 
VisitMonitorOperation(HMonitorOperation * instruction)6555 void LocationsBuilderX86::VisitMonitorOperation(HMonitorOperation* instruction) {
6556   LocationSummary* locations =
6557       new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kCall);
6558   InvokeRuntimeCallingConvention calling_convention;
6559   locations->SetInAt(0, Location::RegisterLocation(calling_convention.GetRegisterAt(0)));
6560 }
6561 
VisitMonitorOperation(HMonitorOperation * instruction)6562 void InstructionCodeGeneratorX86::VisitMonitorOperation(HMonitorOperation* instruction) {
6563   codegen_->InvokeRuntime(instruction->IsEnter() ? QUICK_ENTRY_POINT(pLockObject)
6564                                                  : QUICK_ENTRY_POINT(pUnlockObject),
6565                           instruction,
6566                           instruction->GetDexPc(),
6567                           nullptr);
6568   if (instruction->IsEnter()) {
6569     CheckEntrypointTypes<kQuickLockObject, void, mirror::Object*>();
6570   } else {
6571     CheckEntrypointTypes<kQuickUnlockObject, void, mirror::Object*>();
6572   }
6573 }
6574 
VisitAnd(HAnd * instruction)6575 void LocationsBuilderX86::VisitAnd(HAnd* instruction) { HandleBitwiseOperation(instruction); }
VisitOr(HOr * instruction)6576 void LocationsBuilderX86::VisitOr(HOr* instruction) { HandleBitwiseOperation(instruction); }
VisitXor(HXor * instruction)6577 void LocationsBuilderX86::VisitXor(HXor* instruction) { HandleBitwiseOperation(instruction); }
6578 
HandleBitwiseOperation(HBinaryOperation * instruction)6579 void LocationsBuilderX86::HandleBitwiseOperation(HBinaryOperation* instruction) {
6580   LocationSummary* locations =
6581       new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kNoCall);
6582   DCHECK(instruction->GetResultType() == Primitive::kPrimInt
6583          || instruction->GetResultType() == Primitive::kPrimLong);
6584   locations->SetInAt(0, Location::RequiresRegister());
6585   locations->SetInAt(1, Location::Any());
6586   locations->SetOut(Location::SameAsFirstInput());
6587 }
6588 
VisitAnd(HAnd * instruction)6589 void InstructionCodeGeneratorX86::VisitAnd(HAnd* instruction) {
6590   HandleBitwiseOperation(instruction);
6591 }
6592 
VisitOr(HOr * instruction)6593 void InstructionCodeGeneratorX86::VisitOr(HOr* instruction) {
6594   HandleBitwiseOperation(instruction);
6595 }
6596 
VisitXor(HXor * instruction)6597 void InstructionCodeGeneratorX86::VisitXor(HXor* instruction) {
6598   HandleBitwiseOperation(instruction);
6599 }
6600 
HandleBitwiseOperation(HBinaryOperation * instruction)6601 void InstructionCodeGeneratorX86::HandleBitwiseOperation(HBinaryOperation* instruction) {
6602   LocationSummary* locations = instruction->GetLocations();
6603   Location first = locations->InAt(0);
6604   Location second = locations->InAt(1);
6605   DCHECK(first.Equals(locations->Out()));
6606 
6607   if (instruction->GetResultType() == Primitive::kPrimInt) {
6608     if (second.IsRegister()) {
6609       if (instruction->IsAnd()) {
6610         __ andl(first.AsRegister<Register>(), second.AsRegister<Register>());
6611       } else if (instruction->IsOr()) {
6612         __ orl(first.AsRegister<Register>(), second.AsRegister<Register>());
6613       } else {
6614         DCHECK(instruction->IsXor());
6615         __ xorl(first.AsRegister<Register>(), second.AsRegister<Register>());
6616       }
6617     } else if (second.IsConstant()) {
6618       if (instruction->IsAnd()) {
6619         __ andl(first.AsRegister<Register>(),
6620                 Immediate(second.GetConstant()->AsIntConstant()->GetValue()));
6621       } else if (instruction->IsOr()) {
6622         __ orl(first.AsRegister<Register>(),
6623                Immediate(second.GetConstant()->AsIntConstant()->GetValue()));
6624       } else {
6625         DCHECK(instruction->IsXor());
6626         __ xorl(first.AsRegister<Register>(),
6627                 Immediate(second.GetConstant()->AsIntConstant()->GetValue()));
6628       }
6629     } else {
6630       if (instruction->IsAnd()) {
6631         __ andl(first.AsRegister<Register>(), Address(ESP, second.GetStackIndex()));
6632       } else if (instruction->IsOr()) {
6633         __ orl(first.AsRegister<Register>(), Address(ESP, second.GetStackIndex()));
6634       } else {
6635         DCHECK(instruction->IsXor());
6636         __ xorl(first.AsRegister<Register>(), Address(ESP, second.GetStackIndex()));
6637       }
6638     }
6639   } else {
6640     DCHECK_EQ(instruction->GetResultType(), Primitive::kPrimLong);
6641     if (second.IsRegisterPair()) {
6642       if (instruction->IsAnd()) {
6643         __ andl(first.AsRegisterPairLow<Register>(), second.AsRegisterPairLow<Register>());
6644         __ andl(first.AsRegisterPairHigh<Register>(), second.AsRegisterPairHigh<Register>());
6645       } else if (instruction->IsOr()) {
6646         __ orl(first.AsRegisterPairLow<Register>(), second.AsRegisterPairLow<Register>());
6647         __ orl(first.AsRegisterPairHigh<Register>(), second.AsRegisterPairHigh<Register>());
6648       } else {
6649         DCHECK(instruction->IsXor());
6650         __ xorl(first.AsRegisterPairLow<Register>(), second.AsRegisterPairLow<Register>());
6651         __ xorl(first.AsRegisterPairHigh<Register>(), second.AsRegisterPairHigh<Register>());
6652       }
6653     } else if (second.IsDoubleStackSlot()) {
6654       if (instruction->IsAnd()) {
6655         __ andl(first.AsRegisterPairLow<Register>(), Address(ESP, second.GetStackIndex()));
6656         __ andl(first.AsRegisterPairHigh<Register>(),
6657                 Address(ESP, second.GetHighStackIndex(kX86WordSize)));
6658       } else if (instruction->IsOr()) {
6659         __ orl(first.AsRegisterPairLow<Register>(), Address(ESP, second.GetStackIndex()));
6660         __ orl(first.AsRegisterPairHigh<Register>(),
6661                 Address(ESP, second.GetHighStackIndex(kX86WordSize)));
6662       } else {
6663         DCHECK(instruction->IsXor());
6664         __ xorl(first.AsRegisterPairLow<Register>(), Address(ESP, second.GetStackIndex()));
6665         __ xorl(first.AsRegisterPairHigh<Register>(),
6666                 Address(ESP, second.GetHighStackIndex(kX86WordSize)));
6667       }
6668     } else {
6669       DCHECK(second.IsConstant()) << second;
6670       int64_t value = second.GetConstant()->AsLongConstant()->GetValue();
6671       int32_t low_value = Low32Bits(value);
6672       int32_t high_value = High32Bits(value);
6673       Immediate low(low_value);
6674       Immediate high(high_value);
6675       Register first_low = first.AsRegisterPairLow<Register>();
6676       Register first_high = first.AsRegisterPairHigh<Register>();
6677       if (instruction->IsAnd()) {
6678         if (low_value == 0) {
6679           __ xorl(first_low, first_low);
6680         } else if (low_value != -1) {
6681           __ andl(first_low, low);
6682         }
6683         if (high_value == 0) {
6684           __ xorl(first_high, first_high);
6685         } else if (high_value != -1) {
6686           __ andl(first_high, high);
6687         }
6688       } else if (instruction->IsOr()) {
6689         if (low_value != 0) {
6690           __ orl(first_low, low);
6691         }
6692         if (high_value != 0) {
6693           __ orl(first_high, high);
6694         }
6695       } else {
6696         DCHECK(instruction->IsXor());
6697         if (low_value != 0) {
6698           __ xorl(first_low, low);
6699         }
6700         if (high_value != 0) {
6701           __ xorl(first_high, high);
6702         }
6703       }
6704     }
6705   }
6706 }
6707 
GenerateReferenceLoadOneRegister(HInstruction * instruction,Location out,uint32_t offset,Location maybe_temp)6708 void InstructionCodeGeneratorX86::GenerateReferenceLoadOneRegister(HInstruction* instruction,
6709                                                                    Location out,
6710                                                                    uint32_t offset,
6711                                                                    Location maybe_temp) {
6712   Register out_reg = out.AsRegister<Register>();
6713   if (kEmitCompilerReadBarrier) {
6714     DCHECK(maybe_temp.IsRegister()) << maybe_temp;
6715     if (kUseBakerReadBarrier) {
6716       // Load with fast path based Baker's read barrier.
6717       // /* HeapReference<Object> */ out = *(out + offset)
6718       codegen_->GenerateFieldLoadWithBakerReadBarrier(
6719           instruction, out, out_reg, offset, maybe_temp, /* needs_null_check */ false);
6720     } else {
6721       // Load with slow path based read barrier.
6722       // Save the value of `out` into `maybe_temp` before overwriting it
6723       // in the following move operation, as we will need it for the
6724       // read barrier below.
6725       __ movl(maybe_temp.AsRegister<Register>(), out_reg);
6726       // /* HeapReference<Object> */ out = *(out + offset)
6727       __ movl(out_reg, Address(out_reg, offset));
6728       codegen_->GenerateReadBarrierSlow(instruction, out, out, maybe_temp, offset);
6729     }
6730   } else {
6731     // Plain load with no read barrier.
6732     // /* HeapReference<Object> */ out = *(out + offset)
6733     __ movl(out_reg, Address(out_reg, offset));
6734     __ MaybeUnpoisonHeapReference(out_reg);
6735   }
6736 }
6737 
GenerateReferenceLoadTwoRegisters(HInstruction * instruction,Location out,Location obj,uint32_t offset,Location maybe_temp)6738 void InstructionCodeGeneratorX86::GenerateReferenceLoadTwoRegisters(HInstruction* instruction,
6739                                                                     Location out,
6740                                                                     Location obj,
6741                                                                     uint32_t offset,
6742                                                                     Location maybe_temp) {
6743   Register out_reg = out.AsRegister<Register>();
6744   Register obj_reg = obj.AsRegister<Register>();
6745   if (kEmitCompilerReadBarrier) {
6746     if (kUseBakerReadBarrier) {
6747       DCHECK(maybe_temp.IsRegister()) << maybe_temp;
6748       // Load with fast path based Baker's read barrier.
6749       // /* HeapReference<Object> */ out = *(obj + offset)
6750       codegen_->GenerateFieldLoadWithBakerReadBarrier(
6751           instruction, out, obj_reg, offset, maybe_temp, /* needs_null_check */ false);
6752     } else {
6753       // Load with slow path based read barrier.
6754       // /* HeapReference<Object> */ out = *(obj + offset)
6755       __ movl(out_reg, Address(obj_reg, offset));
6756       codegen_->GenerateReadBarrierSlow(instruction, out, out, obj, offset);
6757     }
6758   } else {
6759     // Plain load with no read barrier.
6760     // /* HeapReference<Object> */ out = *(obj + offset)
6761     __ movl(out_reg, Address(obj_reg, offset));
6762     __ MaybeUnpoisonHeapReference(out_reg);
6763   }
6764 }
6765 
GenerateGcRootFieldLoad(HInstruction * instruction,Location root,const Address & address,Label * fixup_label)6766 void InstructionCodeGeneratorX86::GenerateGcRootFieldLoad(HInstruction* instruction,
6767                                                           Location root,
6768                                                           const Address& address,
6769                                                           Label* fixup_label) {
6770   Register root_reg = root.AsRegister<Register>();
6771   if (kEmitCompilerReadBarrier) {
6772     if (kUseBakerReadBarrier) {
6773       // Fast path implementation of art::ReadBarrier::BarrierForRoot when
6774       // Baker's read barrier are used:
6775       //
6776       //   root = *address;
6777       //   if (Thread::Current()->GetIsGcMarking()) {
6778       //     root = ReadBarrier::Mark(root)
6779       //   }
6780 
6781       // /* GcRoot<mirror::Object> */ root = *address
6782       __ movl(root_reg, address);
6783       if (fixup_label != nullptr) {
6784         __ Bind(fixup_label);
6785       }
6786       static_assert(
6787           sizeof(mirror::CompressedReference<mirror::Object>) == sizeof(GcRoot<mirror::Object>),
6788           "art::mirror::CompressedReference<mirror::Object> and art::GcRoot<mirror::Object> "
6789           "have different sizes.");
6790       static_assert(sizeof(mirror::CompressedReference<mirror::Object>) == sizeof(int32_t),
6791                     "art::mirror::CompressedReference<mirror::Object> and int32_t "
6792                     "have different sizes.");
6793 
6794       // Slow path used to mark the GC root `root`.
6795       SlowPathCode* slow_path =
6796           new (GetGraph()->GetArena()) ReadBarrierMarkSlowPathX86(instruction, root, root);
6797       codegen_->AddSlowPath(slow_path);
6798 
6799       __ fs()->cmpl(Address::Absolute(Thread::IsGcMarkingOffset<kX86WordSize>().Int32Value()),
6800                     Immediate(0));
6801       __ j(kNotEqual, slow_path->GetEntryLabel());
6802       __ Bind(slow_path->GetExitLabel());
6803     } else {
6804       // GC root loaded through a slow path for read barriers other
6805       // than Baker's.
6806       // /* GcRoot<mirror::Object>* */ root = address
6807       __ leal(root_reg, address);
6808       if (fixup_label != nullptr) {
6809         __ Bind(fixup_label);
6810       }
6811       // /* mirror::Object* */ root = root->Read()
6812       codegen_->GenerateReadBarrierForRootSlow(instruction, root, root);
6813     }
6814   } else {
6815     // Plain GC root load with no read barrier.
6816     // /* GcRoot<mirror::Object> */ root = *address
6817     __ movl(root_reg, address);
6818     if (fixup_label != nullptr) {
6819       __ Bind(fixup_label);
6820     }
6821     // Note that GC roots are not affected by heap poisoning, thus we
6822     // do not have to unpoison `root_reg` here.
6823   }
6824 }
6825 
GenerateFieldLoadWithBakerReadBarrier(HInstruction * instruction,Location ref,Register obj,uint32_t offset,Location temp,bool needs_null_check)6826 void CodeGeneratorX86::GenerateFieldLoadWithBakerReadBarrier(HInstruction* instruction,
6827                                                              Location ref,
6828                                                              Register obj,
6829                                                              uint32_t offset,
6830                                                              Location temp,
6831                                                              bool needs_null_check) {
6832   DCHECK(kEmitCompilerReadBarrier);
6833   DCHECK(kUseBakerReadBarrier);
6834 
6835   // /* HeapReference<Object> */ ref = *(obj + offset)
6836   Address src(obj, offset);
6837   GenerateReferenceLoadWithBakerReadBarrier(instruction, ref, obj, src, temp, needs_null_check);
6838 }
6839 
GenerateArrayLoadWithBakerReadBarrier(HInstruction * instruction,Location ref,Register obj,uint32_t data_offset,Location index,Location temp,bool needs_null_check)6840 void CodeGeneratorX86::GenerateArrayLoadWithBakerReadBarrier(HInstruction* instruction,
6841                                                              Location ref,
6842                                                              Register obj,
6843                                                              uint32_t data_offset,
6844                                                              Location index,
6845                                                              Location temp,
6846                                                              bool needs_null_check) {
6847   DCHECK(kEmitCompilerReadBarrier);
6848   DCHECK(kUseBakerReadBarrier);
6849 
6850   // /* HeapReference<Object> */ ref =
6851   //     *(obj + data_offset + index * sizeof(HeapReference<Object>))
6852   Address src = index.IsConstant() ?
6853       Address(obj, (index.GetConstant()->AsIntConstant()->GetValue() << TIMES_4) + data_offset) :
6854       Address(obj, index.AsRegister<Register>(), TIMES_4, data_offset);
6855   GenerateReferenceLoadWithBakerReadBarrier(instruction, ref, obj, src, temp, needs_null_check);
6856 }
6857 
GenerateReferenceLoadWithBakerReadBarrier(HInstruction * instruction,Location ref,Register obj,const Address & src,Location temp,bool needs_null_check)6858 void CodeGeneratorX86::GenerateReferenceLoadWithBakerReadBarrier(HInstruction* instruction,
6859                                                                  Location ref,
6860                                                                  Register obj,
6861                                                                  const Address& src,
6862                                                                  Location temp,
6863                                                                  bool needs_null_check) {
6864   DCHECK(kEmitCompilerReadBarrier);
6865   DCHECK(kUseBakerReadBarrier);
6866 
6867   // In slow path based read barriers, the read barrier call is
6868   // inserted after the original load. However, in fast path based
6869   // Baker's read barriers, we need to perform the load of
6870   // mirror::Object::monitor_ *before* the original reference load.
6871   // This load-load ordering is required by the read barrier.
6872   // The fast path/slow path (for Baker's algorithm) should look like:
6873   //
6874   //   uint32_t rb_state = Lockword(obj->monitor_).ReadBarrierState();
6875   //   lfence;  // Load fence or artificial data dependency to prevent load-load reordering
6876   //   HeapReference<Object> ref = *src;  // Original reference load.
6877   //   bool is_gray = (rb_state == ReadBarrier::gray_ptr_);
6878   //   if (is_gray) {
6879   //     ref = ReadBarrier::Mark(ref);  // Performed by runtime entrypoint slow path.
6880   //   }
6881   //
6882   // Note: the original implementation in ReadBarrier::Barrier is
6883   // slightly more complex as:
6884   // - it implements the load-load fence using a data dependency on
6885   //   the high-bits of rb_state, which are expected to be all zeroes
6886   //   (we use CodeGeneratorX86::GenerateMemoryBarrier instead here,
6887   //   which is a no-op thanks to the x86 memory model);
6888   // - it performs additional checks that we do not do here for
6889   //   performance reasons.
6890 
6891   Register ref_reg = ref.AsRegister<Register>();
6892   Register temp_reg = temp.AsRegister<Register>();
6893   uint32_t monitor_offset = mirror::Object::MonitorOffset().Int32Value();
6894 
6895   // /* int32_t */ monitor = obj->monitor_
6896   __ movl(temp_reg, Address(obj, monitor_offset));
6897   if (needs_null_check) {
6898     MaybeRecordImplicitNullCheck(instruction);
6899   }
6900   // /* LockWord */ lock_word = LockWord(monitor)
6901   static_assert(sizeof(LockWord) == sizeof(int32_t),
6902                 "art::LockWord and int32_t have different sizes.");
6903   // /* uint32_t */ rb_state = lock_word.ReadBarrierState()
6904   __ shrl(temp_reg, Immediate(LockWord::kReadBarrierStateShift));
6905   __ andl(temp_reg, Immediate(LockWord::kReadBarrierStateMask));
6906   static_assert(
6907       LockWord::kReadBarrierStateMask == ReadBarrier::rb_ptr_mask_,
6908       "art::LockWord::kReadBarrierStateMask is not equal to art::ReadBarrier::rb_ptr_mask_.");
6909 
6910   // Load fence to prevent load-load reordering.
6911   // Note that this is a no-op, thanks to the x86 memory model.
6912   GenerateMemoryBarrier(MemBarrierKind::kLoadAny);
6913 
6914   // The actual reference load.
6915   // /* HeapReference<Object> */ ref = *src
6916   __ movl(ref_reg, src);
6917 
6918   // Object* ref = ref_addr->AsMirrorPtr()
6919   __ MaybeUnpoisonHeapReference(ref_reg);
6920 
6921   // Slow path used to mark the object `ref` when it is gray.
6922   SlowPathCode* slow_path =
6923       new (GetGraph()->GetArena()) ReadBarrierMarkSlowPathX86(instruction, ref, ref);
6924   AddSlowPath(slow_path);
6925 
6926   // if (rb_state == ReadBarrier::gray_ptr_)
6927   //   ref = ReadBarrier::Mark(ref);
6928   __ cmpl(temp_reg, Immediate(ReadBarrier::gray_ptr_));
6929   __ j(kEqual, slow_path->GetEntryLabel());
6930   __ Bind(slow_path->GetExitLabel());
6931 }
6932 
GenerateReadBarrierSlow(HInstruction * instruction,Location out,Location ref,Location obj,uint32_t offset,Location index)6933 void CodeGeneratorX86::GenerateReadBarrierSlow(HInstruction* instruction,
6934                                                Location out,
6935                                                Location ref,
6936                                                Location obj,
6937                                                uint32_t offset,
6938                                                Location index) {
6939   DCHECK(kEmitCompilerReadBarrier);
6940 
6941   // Insert a slow path based read barrier *after* the reference load.
6942   //
6943   // If heap poisoning is enabled, the unpoisoning of the loaded
6944   // reference will be carried out by the runtime within the slow
6945   // path.
6946   //
6947   // Note that `ref` currently does not get unpoisoned (when heap
6948   // poisoning is enabled), which is alright as the `ref` argument is
6949   // not used by the artReadBarrierSlow entry point.
6950   //
6951   // TODO: Unpoison `ref` when it is used by artReadBarrierSlow.
6952   SlowPathCode* slow_path = new (GetGraph()->GetArena())
6953       ReadBarrierForHeapReferenceSlowPathX86(instruction, out, ref, obj, offset, index);
6954   AddSlowPath(slow_path);
6955 
6956   __ jmp(slow_path->GetEntryLabel());
6957   __ Bind(slow_path->GetExitLabel());
6958 }
6959 
MaybeGenerateReadBarrierSlow(HInstruction * instruction,Location out,Location ref,Location obj,uint32_t offset,Location index)6960 void CodeGeneratorX86::MaybeGenerateReadBarrierSlow(HInstruction* instruction,
6961                                                     Location out,
6962                                                     Location ref,
6963                                                     Location obj,
6964                                                     uint32_t offset,
6965                                                     Location index) {
6966   if (kEmitCompilerReadBarrier) {
6967     // Baker's read barriers shall be handled by the fast path
6968     // (CodeGeneratorX86::GenerateReferenceLoadWithBakerReadBarrier).
6969     DCHECK(!kUseBakerReadBarrier);
6970     // If heap poisoning is enabled, unpoisoning will be taken care of
6971     // by the runtime within the slow path.
6972     GenerateReadBarrierSlow(instruction, out, ref, obj, offset, index);
6973   } else if (kPoisonHeapReferences) {
6974     __ UnpoisonHeapReference(out.AsRegister<Register>());
6975   }
6976 }
6977 
GenerateReadBarrierForRootSlow(HInstruction * instruction,Location out,Location root)6978 void CodeGeneratorX86::GenerateReadBarrierForRootSlow(HInstruction* instruction,
6979                                                       Location out,
6980                                                       Location root) {
6981   DCHECK(kEmitCompilerReadBarrier);
6982 
6983   // Insert a slow path based read barrier *after* the GC root load.
6984   //
6985   // Note that GC roots are not affected by heap poisoning, so we do
6986   // not need to do anything special for this here.
6987   SlowPathCode* slow_path =
6988       new (GetGraph()->GetArena()) ReadBarrierForRootSlowPathX86(instruction, out, root);
6989   AddSlowPath(slow_path);
6990 
6991   __ jmp(slow_path->GetEntryLabel());
6992   __ Bind(slow_path->GetExitLabel());
6993 }
6994 
VisitBoundType(HBoundType * instruction ATTRIBUTE_UNUSED)6995 void LocationsBuilderX86::VisitBoundType(HBoundType* instruction ATTRIBUTE_UNUSED) {
6996   // Nothing to do, this should be removed during prepare for register allocator.
6997   LOG(FATAL) << "Unreachable";
6998 }
6999 
VisitBoundType(HBoundType * instruction ATTRIBUTE_UNUSED)7000 void InstructionCodeGeneratorX86::VisitBoundType(HBoundType* instruction ATTRIBUTE_UNUSED) {
7001   // Nothing to do, this should be removed during prepare for register allocator.
7002   LOG(FATAL) << "Unreachable";
7003 }
7004 
7005 // Simple implementation of packed switch - generate cascaded compare/jumps.
VisitPackedSwitch(HPackedSwitch * switch_instr)7006 void LocationsBuilderX86::VisitPackedSwitch(HPackedSwitch* switch_instr) {
7007   LocationSummary* locations =
7008       new (GetGraph()->GetArena()) LocationSummary(switch_instr, LocationSummary::kNoCall);
7009   locations->SetInAt(0, Location::RequiresRegister());
7010 }
7011 
GenPackedSwitchWithCompares(Register value_reg,int32_t lower_bound,uint32_t num_entries,HBasicBlock * switch_block,HBasicBlock * default_block)7012 void InstructionCodeGeneratorX86::GenPackedSwitchWithCompares(Register value_reg,
7013                                                               int32_t lower_bound,
7014                                                               uint32_t num_entries,
7015                                                               HBasicBlock* switch_block,
7016                                                               HBasicBlock* default_block) {
7017   // Figure out the correct compare values and jump conditions.
7018   // Handle the first compare/branch as a special case because it might
7019   // jump to the default case.
7020   DCHECK_GT(num_entries, 2u);
7021   Condition first_condition;
7022   uint32_t index;
7023   const ArenaVector<HBasicBlock*>& successors = switch_block->GetSuccessors();
7024   if (lower_bound != 0) {
7025     first_condition = kLess;
7026     __ cmpl(value_reg, Immediate(lower_bound));
7027     __ j(first_condition, codegen_->GetLabelOf(default_block));
7028     __ j(kEqual, codegen_->GetLabelOf(successors[0]));
7029 
7030     index = 1;
7031   } else {
7032     // Handle all the compare/jumps below.
7033     first_condition = kBelow;
7034     index = 0;
7035   }
7036 
7037   // Handle the rest of the compare/jumps.
7038   for (; index + 1 < num_entries; index += 2) {
7039     int32_t compare_to_value = lower_bound + index + 1;
7040     __ cmpl(value_reg, Immediate(compare_to_value));
7041     // Jump to successors[index] if value < case_value[index].
7042     __ j(first_condition, codegen_->GetLabelOf(successors[index]));
7043     // Jump to successors[index + 1] if value == case_value[index + 1].
7044     __ j(kEqual, codegen_->GetLabelOf(successors[index + 1]));
7045   }
7046 
7047   if (index != num_entries) {
7048     // There are an odd number of entries. Handle the last one.
7049     DCHECK_EQ(index + 1, num_entries);
7050     __ cmpl(value_reg, Immediate(lower_bound + index));
7051     __ j(kEqual, codegen_->GetLabelOf(successors[index]));
7052   }
7053 
7054   // And the default for any other value.
7055   if (!codegen_->GoesToNextBlock(switch_block, default_block)) {
7056     __ jmp(codegen_->GetLabelOf(default_block));
7057   }
7058 }
7059 
VisitPackedSwitch(HPackedSwitch * switch_instr)7060 void InstructionCodeGeneratorX86::VisitPackedSwitch(HPackedSwitch* switch_instr) {
7061   int32_t lower_bound = switch_instr->GetStartValue();
7062   uint32_t num_entries = switch_instr->GetNumEntries();
7063   LocationSummary* locations = switch_instr->GetLocations();
7064   Register value_reg = locations->InAt(0).AsRegister<Register>();
7065 
7066   GenPackedSwitchWithCompares(value_reg,
7067                               lower_bound,
7068                               num_entries,
7069                               switch_instr->GetBlock(),
7070                               switch_instr->GetDefaultBlock());
7071 }
7072 
VisitX86PackedSwitch(HX86PackedSwitch * switch_instr)7073 void LocationsBuilderX86::VisitX86PackedSwitch(HX86PackedSwitch* switch_instr) {
7074   LocationSummary* locations =
7075       new (GetGraph()->GetArena()) LocationSummary(switch_instr, LocationSummary::kNoCall);
7076   locations->SetInAt(0, Location::RequiresRegister());
7077 
7078   // Constant area pointer.
7079   locations->SetInAt(1, Location::RequiresRegister());
7080 
7081   // And the temporary we need.
7082   locations->AddTemp(Location::RequiresRegister());
7083 }
7084 
VisitX86PackedSwitch(HX86PackedSwitch * switch_instr)7085 void InstructionCodeGeneratorX86::VisitX86PackedSwitch(HX86PackedSwitch* switch_instr) {
7086   int32_t lower_bound = switch_instr->GetStartValue();
7087   uint32_t num_entries = switch_instr->GetNumEntries();
7088   LocationSummary* locations = switch_instr->GetLocations();
7089   Register value_reg = locations->InAt(0).AsRegister<Register>();
7090   HBasicBlock* default_block = switch_instr->GetDefaultBlock();
7091 
7092   if (num_entries <= kPackedSwitchJumpTableThreshold) {
7093     GenPackedSwitchWithCompares(value_reg,
7094                                 lower_bound,
7095                                 num_entries,
7096                                 switch_instr->GetBlock(),
7097                                 default_block);
7098     return;
7099   }
7100 
7101   // Optimizing has a jump area.
7102   Register temp_reg = locations->GetTemp(0).AsRegister<Register>();
7103   Register constant_area = locations->InAt(1).AsRegister<Register>();
7104 
7105   // Remove the bias, if needed.
7106   if (lower_bound != 0) {
7107     __ leal(temp_reg, Address(value_reg, -lower_bound));
7108     value_reg = temp_reg;
7109   }
7110 
7111   // Is the value in range?
7112   DCHECK_GE(num_entries, 1u);
7113   __ cmpl(value_reg, Immediate(num_entries - 1));
7114   __ j(kAbove, codegen_->GetLabelOf(default_block));
7115 
7116   // We are in the range of the table.
7117   // Load (target-constant_area) from the jump table, indexing by the value.
7118   __ movl(temp_reg, codegen_->LiteralCaseTable(switch_instr, constant_area, value_reg));
7119 
7120   // Compute the actual target address by adding in constant_area.
7121   __ addl(temp_reg, constant_area);
7122 
7123   // And jump.
7124   __ jmp(temp_reg);
7125 }
7126 
VisitX86ComputeBaseMethodAddress(HX86ComputeBaseMethodAddress * insn)7127 void LocationsBuilderX86::VisitX86ComputeBaseMethodAddress(
7128     HX86ComputeBaseMethodAddress* insn) {
7129   LocationSummary* locations =
7130       new (GetGraph()->GetArena()) LocationSummary(insn, LocationSummary::kNoCall);
7131   locations->SetOut(Location::RequiresRegister());
7132 }
7133 
VisitX86ComputeBaseMethodAddress(HX86ComputeBaseMethodAddress * insn)7134 void InstructionCodeGeneratorX86::VisitX86ComputeBaseMethodAddress(
7135     HX86ComputeBaseMethodAddress* insn) {
7136   LocationSummary* locations = insn->GetLocations();
7137   Register reg = locations->Out().AsRegister<Register>();
7138 
7139   // Generate call to next instruction.
7140   Label next_instruction;
7141   __ call(&next_instruction);
7142   __ Bind(&next_instruction);
7143 
7144   // Remember this offset for later use with constant area.
7145   codegen_->SetMethodAddressOffset(GetAssembler()->CodeSize());
7146 
7147   // Grab the return address off the stack.
7148   __ popl(reg);
7149 }
7150 
VisitX86LoadFromConstantTable(HX86LoadFromConstantTable * insn)7151 void LocationsBuilderX86::VisitX86LoadFromConstantTable(
7152     HX86LoadFromConstantTable* insn) {
7153   LocationSummary* locations =
7154       new (GetGraph()->GetArena()) LocationSummary(insn, LocationSummary::kNoCall);
7155 
7156   locations->SetInAt(0, Location::RequiresRegister());
7157   locations->SetInAt(1, Location::ConstantLocation(insn->GetConstant()));
7158 
7159   // If we don't need to be materialized, we only need the inputs to be set.
7160   if (insn->IsEmittedAtUseSite()) {
7161     return;
7162   }
7163 
7164   switch (insn->GetType()) {
7165     case Primitive::kPrimFloat:
7166     case Primitive::kPrimDouble:
7167       locations->SetOut(Location::RequiresFpuRegister());
7168       break;
7169 
7170     case Primitive::kPrimInt:
7171       locations->SetOut(Location::RequiresRegister());
7172       break;
7173 
7174     default:
7175       LOG(FATAL) << "Unsupported x86 constant area type " << insn->GetType();
7176   }
7177 }
7178 
VisitX86LoadFromConstantTable(HX86LoadFromConstantTable * insn)7179 void InstructionCodeGeneratorX86::VisitX86LoadFromConstantTable(HX86LoadFromConstantTable* insn) {
7180   if (insn->IsEmittedAtUseSite()) {
7181     return;
7182   }
7183 
7184   LocationSummary* locations = insn->GetLocations();
7185   Location out = locations->Out();
7186   Register const_area = locations->InAt(0).AsRegister<Register>();
7187   HConstant *value = insn->GetConstant();
7188 
7189   switch (insn->GetType()) {
7190     case Primitive::kPrimFloat:
7191       __ movss(out.AsFpuRegister<XmmRegister>(),
7192                codegen_->LiteralFloatAddress(value->AsFloatConstant()->GetValue(), const_area));
7193       break;
7194 
7195     case Primitive::kPrimDouble:
7196       __ movsd(out.AsFpuRegister<XmmRegister>(),
7197                codegen_->LiteralDoubleAddress(value->AsDoubleConstant()->GetValue(), const_area));
7198       break;
7199 
7200     case Primitive::kPrimInt:
7201       __ movl(out.AsRegister<Register>(),
7202               codegen_->LiteralInt32Address(value->AsIntConstant()->GetValue(), const_area));
7203       break;
7204 
7205     default:
7206       LOG(FATAL) << "Unsupported x86 constant area type " << insn->GetType();
7207   }
7208 }
7209 
7210 /**
7211  * Class to handle late fixup of offsets into constant area.
7212  */
7213 class RIPFixup : public AssemblerFixup, public ArenaObject<kArenaAllocCodeGenerator> {
7214  public:
RIPFixup(CodeGeneratorX86 & codegen,size_t offset)7215   RIPFixup(CodeGeneratorX86& codegen, size_t offset)
7216       : codegen_(&codegen), offset_into_constant_area_(offset) {}
7217 
7218  protected:
SetOffset(size_t offset)7219   void SetOffset(size_t offset) { offset_into_constant_area_ = offset; }
7220 
7221   CodeGeneratorX86* codegen_;
7222 
7223  private:
Process(const MemoryRegion & region,int pos)7224   void Process(const MemoryRegion& region, int pos) OVERRIDE {
7225     // Patch the correct offset for the instruction.  The place to patch is the
7226     // last 4 bytes of the instruction.
7227     // The value to patch is the distance from the offset in the constant area
7228     // from the address computed by the HX86ComputeBaseMethodAddress instruction.
7229     int32_t constant_offset = codegen_->ConstantAreaStart() + offset_into_constant_area_;
7230     int32_t relative_position = constant_offset - codegen_->GetMethodAddressOffset();;
7231 
7232     // Patch in the right value.
7233     region.StoreUnaligned<int32_t>(pos - 4, relative_position);
7234   }
7235 
7236   // Location in constant area that the fixup refers to.
7237   int32_t offset_into_constant_area_;
7238 };
7239 
7240 /**
7241  * Class to handle late fixup of offsets to a jump table that will be created in the
7242  * constant area.
7243  */
7244 class JumpTableRIPFixup : public RIPFixup {
7245  public:
JumpTableRIPFixup(CodeGeneratorX86 & codegen,HX86PackedSwitch * switch_instr)7246   JumpTableRIPFixup(CodeGeneratorX86& codegen, HX86PackedSwitch* switch_instr)
7247       : RIPFixup(codegen, static_cast<size_t>(-1)), switch_instr_(switch_instr) {}
7248 
CreateJumpTable()7249   void CreateJumpTable() {
7250     X86Assembler* assembler = codegen_->GetAssembler();
7251 
7252     // Ensure that the reference to the jump table has the correct offset.
7253     const int32_t offset_in_constant_table = assembler->ConstantAreaSize();
7254     SetOffset(offset_in_constant_table);
7255 
7256     // The label values in the jump table are computed relative to the
7257     // instruction addressing the constant area.
7258     const int32_t relative_offset = codegen_->GetMethodAddressOffset();
7259 
7260     // Populate the jump table with the correct values for the jump table.
7261     int32_t num_entries = switch_instr_->GetNumEntries();
7262     HBasicBlock* block = switch_instr_->GetBlock();
7263     const ArenaVector<HBasicBlock*>& successors = block->GetSuccessors();
7264     // The value that we want is the target offset - the position of the table.
7265     for (int32_t i = 0; i < num_entries; i++) {
7266       HBasicBlock* b = successors[i];
7267       Label* l = codegen_->GetLabelOf(b);
7268       DCHECK(l->IsBound());
7269       int32_t offset_to_block = l->Position() - relative_offset;
7270       assembler->AppendInt32(offset_to_block);
7271     }
7272   }
7273 
7274  private:
7275   const HX86PackedSwitch* switch_instr_;
7276 };
7277 
Finalize(CodeAllocator * allocator)7278 void CodeGeneratorX86::Finalize(CodeAllocator* allocator) {
7279   // Generate the constant area if needed.
7280   X86Assembler* assembler = GetAssembler();
7281   if (!assembler->IsConstantAreaEmpty() || !fixups_to_jump_tables_.empty()) {
7282     // Align to 4 byte boundary to reduce cache misses, as the data is 4 and 8
7283     // byte values.
7284     assembler->Align(4, 0);
7285     constant_area_start_ = assembler->CodeSize();
7286 
7287     // Populate any jump tables.
7288     for (auto jump_table : fixups_to_jump_tables_) {
7289       jump_table->CreateJumpTable();
7290     }
7291 
7292     // And now add the constant area to the generated code.
7293     assembler->AddConstantArea();
7294   }
7295 
7296   // And finish up.
7297   CodeGenerator::Finalize(allocator);
7298 }
7299 
LiteralDoubleAddress(double v,Register reg)7300 Address CodeGeneratorX86::LiteralDoubleAddress(double v, Register reg) {
7301   AssemblerFixup* fixup = new (GetGraph()->GetArena()) RIPFixup(*this, __ AddDouble(v));
7302   return Address(reg, kDummy32BitOffset, fixup);
7303 }
7304 
LiteralFloatAddress(float v,Register reg)7305 Address CodeGeneratorX86::LiteralFloatAddress(float v, Register reg) {
7306   AssemblerFixup* fixup = new (GetGraph()->GetArena()) RIPFixup(*this, __ AddFloat(v));
7307   return Address(reg, kDummy32BitOffset, fixup);
7308 }
7309 
LiteralInt32Address(int32_t v,Register reg)7310 Address CodeGeneratorX86::LiteralInt32Address(int32_t v, Register reg) {
7311   AssemblerFixup* fixup = new (GetGraph()->GetArena()) RIPFixup(*this, __ AddInt32(v));
7312   return Address(reg, kDummy32BitOffset, fixup);
7313 }
7314 
LiteralInt64Address(int64_t v,Register reg)7315 Address CodeGeneratorX86::LiteralInt64Address(int64_t v, Register reg) {
7316   AssemblerFixup* fixup = new (GetGraph()->GetArena()) RIPFixup(*this, __ AddInt64(v));
7317   return Address(reg, kDummy32BitOffset, fixup);
7318 }
7319 
Load32BitValue(Register dest,int32_t value)7320 void CodeGeneratorX86::Load32BitValue(Register dest, int32_t value) {
7321   if (value == 0) {
7322     __ xorl(dest, dest);
7323   } else {
7324     __ movl(dest, Immediate(value));
7325   }
7326 }
7327 
Compare32BitValue(Register dest,int32_t value)7328 void CodeGeneratorX86::Compare32BitValue(Register dest, int32_t value) {
7329   if (value == 0) {
7330     __ testl(dest, dest);
7331   } else {
7332     __ cmpl(dest, Immediate(value));
7333   }
7334 }
7335 
LiteralCaseTable(HX86PackedSwitch * switch_instr,Register reg,Register value)7336 Address CodeGeneratorX86::LiteralCaseTable(HX86PackedSwitch* switch_instr,
7337                                            Register reg,
7338                                            Register value) {
7339   // Create a fixup to be used to create and address the jump table.
7340   JumpTableRIPFixup* table_fixup =
7341       new (GetGraph()->GetArena()) JumpTableRIPFixup(*this, switch_instr);
7342 
7343   // We have to populate the jump tables.
7344   fixups_to_jump_tables_.push_back(table_fixup);
7345 
7346   // We want a scaled address, as we are extracting the correct offset from the table.
7347   return Address(reg, value, TIMES_4, kDummy32BitOffset, table_fixup);
7348 }
7349 
7350 // TODO: target as memory.
MoveFromReturnRegister(Location target,Primitive::Type type)7351 void CodeGeneratorX86::MoveFromReturnRegister(Location target, Primitive::Type type) {
7352   if (!target.IsValid()) {
7353     DCHECK_EQ(type, Primitive::kPrimVoid);
7354     return;
7355   }
7356 
7357   DCHECK_NE(type, Primitive::kPrimVoid);
7358 
7359   Location return_loc = InvokeDexCallingConventionVisitorX86().GetReturnLocation(type);
7360   if (target.Equals(return_loc)) {
7361     return;
7362   }
7363 
7364   // TODO: Consider pairs in the parallel move resolver, then this could be nicely merged
7365   //       with the else branch.
7366   if (type == Primitive::kPrimLong) {
7367     HParallelMove parallel_move(GetGraph()->GetArena());
7368     parallel_move.AddMove(return_loc.ToLow(), target.ToLow(), Primitive::kPrimInt, nullptr);
7369     parallel_move.AddMove(return_loc.ToHigh(), target.ToHigh(), Primitive::kPrimInt, nullptr);
7370     GetMoveResolver()->EmitNativeCode(&parallel_move);
7371   } else {
7372     // Let the parallel move resolver take care of all of this.
7373     HParallelMove parallel_move(GetGraph()->GetArena());
7374     parallel_move.AddMove(return_loc, target, type, nullptr);
7375     GetMoveResolver()->EmitNativeCode(&parallel_move);
7376   }
7377 }
7378 
7379 #undef __
7380 
7381 }  // namespace x86
7382 }  // namespace art
7383