1 //===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 //  This file implements semantic analysis for declarations.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "clang/Sema/SemaInternal.h"
15 #include "TypeLocBuilder.h"
16 #include "clang/AST/ASTConsumer.h"
17 #include "clang/AST/ASTContext.h"
18 #include "clang/AST/ASTLambda.h"
19 #include "clang/AST/CXXInheritance.h"
20 #include "clang/AST/CharUnits.h"
21 #include "clang/AST/CommentDiagnostic.h"
22 #include "clang/AST/DeclCXX.h"
23 #include "clang/AST/DeclObjC.h"
24 #include "clang/AST/DeclTemplate.h"
25 #include "clang/AST/EvaluatedExprVisitor.h"
26 #include "clang/AST/ExprCXX.h"
27 #include "clang/AST/StmtCXX.h"
28 #include "clang/Basic/Builtins.h"
29 #include "clang/Basic/PartialDiagnostic.h"
30 #include "clang/Basic/SourceManager.h"
31 #include "clang/Basic/TargetInfo.h"
32 #include "clang/Lex/HeaderSearch.h" // TODO: Sema shouldn't depend on Lex
33 #include "clang/Lex/Lexer.h" // TODO: Extract static functions to fix layering.
34 #include "clang/Lex/ModuleLoader.h" // TODO: Sema shouldn't depend on Lex
35 #include "clang/Lex/Preprocessor.h" // Included for isCodeCompletionEnabled()
36 #include "clang/Sema/CXXFieldCollector.h"
37 #include "clang/Sema/DeclSpec.h"
38 #include "clang/Sema/DelayedDiagnostic.h"
39 #include "clang/Sema/Initialization.h"
40 #include "clang/Sema/Lookup.h"
41 #include "clang/Sema/ParsedTemplate.h"
42 #include "clang/Sema/Scope.h"
43 #include "clang/Sema/ScopeInfo.h"
44 #include "clang/Sema/Template.h"
45 #include "llvm/ADT/SmallString.h"
46 #include "llvm/ADT/Triple.h"
47 #include <algorithm>
48 #include <cstring>
49 #include <functional>
50 using namespace clang;
51 using namespace sema;
52 
ConvertDeclToDeclGroup(Decl * Ptr,Decl * OwnedType)53 Sema::DeclGroupPtrTy Sema::ConvertDeclToDeclGroup(Decl *Ptr, Decl *OwnedType) {
54   if (OwnedType) {
55     Decl *Group[2] = { OwnedType, Ptr };
56     return DeclGroupPtrTy::make(DeclGroupRef::Create(Context, Group, 2));
57   }
58 
59   return DeclGroupPtrTy::make(DeclGroupRef(Ptr));
60 }
61 
62 namespace {
63 
64 class TypeNameValidatorCCC : public CorrectionCandidateCallback {
65  public:
TypeNameValidatorCCC(bool AllowInvalid,bool WantClass=false,bool AllowTemplates=false)66   TypeNameValidatorCCC(bool AllowInvalid, bool WantClass=false,
67                        bool AllowTemplates=false)
68       : AllowInvalidDecl(AllowInvalid), WantClassName(WantClass),
69         AllowClassTemplates(AllowTemplates) {
70     WantExpressionKeywords = false;
71     WantCXXNamedCasts = false;
72     WantRemainingKeywords = false;
73   }
74 
ValidateCandidate(const TypoCorrection & candidate)75   bool ValidateCandidate(const TypoCorrection &candidate) override {
76     if (NamedDecl *ND = candidate.getCorrectionDecl()) {
77       bool IsType = isa<TypeDecl>(ND) || isa<ObjCInterfaceDecl>(ND);
78       bool AllowedTemplate = AllowClassTemplates && isa<ClassTemplateDecl>(ND);
79       return (IsType || AllowedTemplate) &&
80              (AllowInvalidDecl || !ND->isInvalidDecl());
81     }
82     return !WantClassName && candidate.isKeyword();
83   }
84 
85  private:
86   bool AllowInvalidDecl;
87   bool WantClassName;
88   bool AllowClassTemplates;
89 };
90 
91 }
92 
93 /// \brief Determine whether the token kind starts a simple-type-specifier.
isSimpleTypeSpecifier(tok::TokenKind Kind) const94 bool Sema::isSimpleTypeSpecifier(tok::TokenKind Kind) const {
95   switch (Kind) {
96   // FIXME: Take into account the current language when deciding whether a
97   // token kind is a valid type specifier
98   case tok::kw_short:
99   case tok::kw_long:
100   case tok::kw___int64:
101   case tok::kw___int128:
102   case tok::kw_signed:
103   case tok::kw_unsigned:
104   case tok::kw_void:
105   case tok::kw_char:
106   case tok::kw_int:
107   case tok::kw_half:
108   case tok::kw_float:
109   case tok::kw_double:
110   case tok::kw_wchar_t:
111   case tok::kw_bool:
112   case tok::kw___underlying_type:
113   case tok::kw___auto_type:
114     return true;
115 
116   case tok::annot_typename:
117   case tok::kw_char16_t:
118   case tok::kw_char32_t:
119   case tok::kw_typeof:
120   case tok::annot_decltype:
121   case tok::kw_decltype:
122     return getLangOpts().CPlusPlus;
123 
124   default:
125     break;
126   }
127 
128   return false;
129 }
130 
131 namespace {
132 enum class UnqualifiedTypeNameLookupResult {
133   NotFound,
134   FoundNonType,
135   FoundType
136 };
137 } // namespace
138 
139 /// \brief Tries to perform unqualified lookup of the type decls in bases for
140 /// dependent class.
141 /// \return \a NotFound if no any decls is found, \a FoundNotType if found not a
142 /// type decl, \a FoundType if only type decls are found.
143 static UnqualifiedTypeNameLookupResult
lookupUnqualifiedTypeNameInBase(Sema & S,const IdentifierInfo & II,SourceLocation NameLoc,const CXXRecordDecl * RD)144 lookupUnqualifiedTypeNameInBase(Sema &S, const IdentifierInfo &II,
145                                 SourceLocation NameLoc,
146                                 const CXXRecordDecl *RD) {
147   if (!RD->hasDefinition())
148     return UnqualifiedTypeNameLookupResult::NotFound;
149   // Look for type decls in base classes.
150   UnqualifiedTypeNameLookupResult FoundTypeDecl =
151       UnqualifiedTypeNameLookupResult::NotFound;
152   for (const auto &Base : RD->bases()) {
153     const CXXRecordDecl *BaseRD = nullptr;
154     if (auto *BaseTT = Base.getType()->getAs<TagType>())
155       BaseRD = BaseTT->getAsCXXRecordDecl();
156     else if (auto *TST = Base.getType()->getAs<TemplateSpecializationType>()) {
157       // Look for type decls in dependent base classes that have known primary
158       // templates.
159       if (!TST || !TST->isDependentType())
160         continue;
161       auto *TD = TST->getTemplateName().getAsTemplateDecl();
162       if (!TD)
163         continue;
164       auto *BasePrimaryTemplate =
165           dyn_cast_or_null<CXXRecordDecl>(TD->getTemplatedDecl());
166       if (!BasePrimaryTemplate)
167         continue;
168       BaseRD = BasePrimaryTemplate;
169     }
170     if (BaseRD) {
171       for (NamedDecl *ND : BaseRD->lookup(&II)) {
172         if (!isa<TypeDecl>(ND))
173           return UnqualifiedTypeNameLookupResult::FoundNonType;
174         FoundTypeDecl = UnqualifiedTypeNameLookupResult::FoundType;
175       }
176       if (FoundTypeDecl == UnqualifiedTypeNameLookupResult::NotFound) {
177         switch (lookupUnqualifiedTypeNameInBase(S, II, NameLoc, BaseRD)) {
178         case UnqualifiedTypeNameLookupResult::FoundNonType:
179           return UnqualifiedTypeNameLookupResult::FoundNonType;
180         case UnqualifiedTypeNameLookupResult::FoundType:
181           FoundTypeDecl = UnqualifiedTypeNameLookupResult::FoundType;
182           break;
183         case UnqualifiedTypeNameLookupResult::NotFound:
184           break;
185         }
186       }
187     }
188   }
189 
190   return FoundTypeDecl;
191 }
192 
recoverFromTypeInKnownDependentBase(Sema & S,const IdentifierInfo & II,SourceLocation NameLoc)193 static ParsedType recoverFromTypeInKnownDependentBase(Sema &S,
194                                                       const IdentifierInfo &II,
195                                                       SourceLocation NameLoc) {
196   // Lookup in the parent class template context, if any.
197   const CXXRecordDecl *RD = nullptr;
198   UnqualifiedTypeNameLookupResult FoundTypeDecl =
199       UnqualifiedTypeNameLookupResult::NotFound;
200   for (DeclContext *DC = S.CurContext;
201        DC && FoundTypeDecl == UnqualifiedTypeNameLookupResult::NotFound;
202        DC = DC->getParent()) {
203     // Look for type decls in dependent base classes that have known primary
204     // templates.
205     RD = dyn_cast<CXXRecordDecl>(DC);
206     if (RD && RD->getDescribedClassTemplate())
207       FoundTypeDecl = lookupUnqualifiedTypeNameInBase(S, II, NameLoc, RD);
208   }
209   if (FoundTypeDecl != UnqualifiedTypeNameLookupResult::FoundType)
210     return ParsedType();
211 
212   // We found some types in dependent base classes.  Recover as if the user
213   // wrote 'typename MyClass::II' instead of 'II'.  We'll fully resolve the
214   // lookup during template instantiation.
215   S.Diag(NameLoc, diag::ext_found_via_dependent_bases_lookup) << &II;
216 
217   ASTContext &Context = S.Context;
218   auto *NNS = NestedNameSpecifier::Create(Context, nullptr, false,
219                                           cast<Type>(Context.getRecordType(RD)));
220   QualType T = Context.getDependentNameType(ETK_Typename, NNS, &II);
221 
222   CXXScopeSpec SS;
223   SS.MakeTrivial(Context, NNS, SourceRange(NameLoc));
224 
225   TypeLocBuilder Builder;
226   DependentNameTypeLoc DepTL = Builder.push<DependentNameTypeLoc>(T);
227   DepTL.setNameLoc(NameLoc);
228   DepTL.setElaboratedKeywordLoc(SourceLocation());
229   DepTL.setQualifierLoc(SS.getWithLocInContext(Context));
230   return S.CreateParsedType(T, Builder.getTypeSourceInfo(Context, T));
231 }
232 
233 /// \brief If the identifier refers to a type name within this scope,
234 /// return the declaration of that type.
235 ///
236 /// This routine performs ordinary name lookup of the identifier II
237 /// within the given scope, with optional C++ scope specifier SS, to
238 /// determine whether the name refers to a type. If so, returns an
239 /// opaque pointer (actually a QualType) corresponding to that
240 /// type. Otherwise, returns NULL.
getTypeName(const IdentifierInfo & II,SourceLocation NameLoc,Scope * S,CXXScopeSpec * SS,bool isClassName,bool HasTrailingDot,ParsedType ObjectTypePtr,bool IsCtorOrDtorName,bool WantNontrivialTypeSourceInfo,IdentifierInfo ** CorrectedII)241 ParsedType Sema::getTypeName(const IdentifierInfo &II, SourceLocation NameLoc,
242                              Scope *S, CXXScopeSpec *SS,
243                              bool isClassName, bool HasTrailingDot,
244                              ParsedType ObjectTypePtr,
245                              bool IsCtorOrDtorName,
246                              bool WantNontrivialTypeSourceInfo,
247                              IdentifierInfo **CorrectedII) {
248   // Determine where we will perform name lookup.
249   DeclContext *LookupCtx = nullptr;
250   if (ObjectTypePtr) {
251     QualType ObjectType = ObjectTypePtr.get();
252     if (ObjectType->isRecordType())
253       LookupCtx = computeDeclContext(ObjectType);
254   } else if (SS && SS->isNotEmpty()) {
255     LookupCtx = computeDeclContext(*SS, false);
256 
257     if (!LookupCtx) {
258       if (isDependentScopeSpecifier(*SS)) {
259         // C++ [temp.res]p3:
260         //   A qualified-id that refers to a type and in which the
261         //   nested-name-specifier depends on a template-parameter (14.6.2)
262         //   shall be prefixed by the keyword typename to indicate that the
263         //   qualified-id denotes a type, forming an
264         //   elaborated-type-specifier (7.1.5.3).
265         //
266         // We therefore do not perform any name lookup if the result would
267         // refer to a member of an unknown specialization.
268         if (!isClassName && !IsCtorOrDtorName)
269           return ParsedType();
270 
271         // We know from the grammar that this name refers to a type,
272         // so build a dependent node to describe the type.
273         if (WantNontrivialTypeSourceInfo)
274           return ActOnTypenameType(S, SourceLocation(), *SS, II, NameLoc).get();
275 
276         NestedNameSpecifierLoc QualifierLoc = SS->getWithLocInContext(Context);
277         QualType T = CheckTypenameType(ETK_None, SourceLocation(), QualifierLoc,
278                                        II, NameLoc);
279         return ParsedType::make(T);
280       }
281 
282       return ParsedType();
283     }
284 
285     if (!LookupCtx->isDependentContext() &&
286         RequireCompleteDeclContext(*SS, LookupCtx))
287       return ParsedType();
288   }
289 
290   // FIXME: LookupNestedNameSpecifierName isn't the right kind of
291   // lookup for class-names.
292   LookupNameKind Kind = isClassName ? LookupNestedNameSpecifierName :
293                                       LookupOrdinaryName;
294   LookupResult Result(*this, &II, NameLoc, Kind);
295   if (LookupCtx) {
296     // Perform "qualified" name lookup into the declaration context we
297     // computed, which is either the type of the base of a member access
298     // expression or the declaration context associated with a prior
299     // nested-name-specifier.
300     LookupQualifiedName(Result, LookupCtx);
301 
302     if (ObjectTypePtr && Result.empty()) {
303       // C++ [basic.lookup.classref]p3:
304       //   If the unqualified-id is ~type-name, the type-name is looked up
305       //   in the context of the entire postfix-expression. If the type T of
306       //   the object expression is of a class type C, the type-name is also
307       //   looked up in the scope of class C. At least one of the lookups shall
308       //   find a name that refers to (possibly cv-qualified) T.
309       LookupName(Result, S);
310     }
311   } else {
312     // Perform unqualified name lookup.
313     LookupName(Result, S);
314 
315     // For unqualified lookup in a class template in MSVC mode, look into
316     // dependent base classes where the primary class template is known.
317     if (Result.empty() && getLangOpts().MSVCCompat && (!SS || SS->isEmpty())) {
318       if (ParsedType TypeInBase =
319               recoverFromTypeInKnownDependentBase(*this, II, NameLoc))
320         return TypeInBase;
321     }
322   }
323 
324   NamedDecl *IIDecl = nullptr;
325   switch (Result.getResultKind()) {
326   case LookupResult::NotFound:
327   case LookupResult::NotFoundInCurrentInstantiation:
328     if (CorrectedII) {
329       TypoCorrection Correction = CorrectTypo(
330           Result.getLookupNameInfo(), Kind, S, SS,
331           llvm::make_unique<TypeNameValidatorCCC>(true, isClassName),
332           CTK_ErrorRecovery);
333       IdentifierInfo *NewII = Correction.getCorrectionAsIdentifierInfo();
334       TemplateTy Template;
335       bool MemberOfUnknownSpecialization;
336       UnqualifiedId TemplateName;
337       TemplateName.setIdentifier(NewII, NameLoc);
338       NestedNameSpecifier *NNS = Correction.getCorrectionSpecifier();
339       CXXScopeSpec NewSS, *NewSSPtr = SS;
340       if (SS && NNS) {
341         NewSS.MakeTrivial(Context, NNS, SourceRange(NameLoc));
342         NewSSPtr = &NewSS;
343       }
344       if (Correction && (NNS || NewII != &II) &&
345           // Ignore a correction to a template type as the to-be-corrected
346           // identifier is not a template (typo correction for template names
347           // is handled elsewhere).
348           !(getLangOpts().CPlusPlus && NewSSPtr &&
349             isTemplateName(S, *NewSSPtr, false, TemplateName, ParsedType(),
350                            false, Template, MemberOfUnknownSpecialization))) {
351         ParsedType Ty = getTypeName(*NewII, NameLoc, S, NewSSPtr,
352                                     isClassName, HasTrailingDot, ObjectTypePtr,
353                                     IsCtorOrDtorName,
354                                     WantNontrivialTypeSourceInfo);
355         if (Ty) {
356           diagnoseTypo(Correction,
357                        PDiag(diag::err_unknown_type_or_class_name_suggest)
358                          << Result.getLookupName() << isClassName);
359           if (SS && NNS)
360             SS->MakeTrivial(Context, NNS, SourceRange(NameLoc));
361           *CorrectedII = NewII;
362           return Ty;
363         }
364       }
365     }
366     // If typo correction failed or was not performed, fall through
367   case LookupResult::FoundOverloaded:
368   case LookupResult::FoundUnresolvedValue:
369     Result.suppressDiagnostics();
370     return ParsedType();
371 
372   case LookupResult::Ambiguous:
373     // Recover from type-hiding ambiguities by hiding the type.  We'll
374     // do the lookup again when looking for an object, and we can
375     // diagnose the error then.  If we don't do this, then the error
376     // about hiding the type will be immediately followed by an error
377     // that only makes sense if the identifier was treated like a type.
378     if (Result.getAmbiguityKind() == LookupResult::AmbiguousTagHiding) {
379       Result.suppressDiagnostics();
380       return ParsedType();
381     }
382 
383     // Look to see if we have a type anywhere in the list of results.
384     for (LookupResult::iterator Res = Result.begin(), ResEnd = Result.end();
385          Res != ResEnd; ++Res) {
386       if (isa<TypeDecl>(*Res) || isa<ObjCInterfaceDecl>(*Res)) {
387         if (!IIDecl ||
388             (*Res)->getLocation().getRawEncoding() <
389               IIDecl->getLocation().getRawEncoding())
390           IIDecl = *Res;
391       }
392     }
393 
394     if (!IIDecl) {
395       // None of the entities we found is a type, so there is no way
396       // to even assume that the result is a type. In this case, don't
397       // complain about the ambiguity. The parser will either try to
398       // perform this lookup again (e.g., as an object name), which
399       // will produce the ambiguity, or will complain that it expected
400       // a type name.
401       Result.suppressDiagnostics();
402       return ParsedType();
403     }
404 
405     // We found a type within the ambiguous lookup; diagnose the
406     // ambiguity and then return that type. This might be the right
407     // answer, or it might not be, but it suppresses any attempt to
408     // perform the name lookup again.
409     break;
410 
411   case LookupResult::Found:
412     IIDecl = Result.getFoundDecl();
413     break;
414   }
415 
416   assert(IIDecl && "Didn't find decl");
417 
418   QualType T;
419   if (TypeDecl *TD = dyn_cast<TypeDecl>(IIDecl)) {
420     DiagnoseUseOfDecl(IIDecl, NameLoc);
421 
422     T = Context.getTypeDeclType(TD);
423     MarkAnyDeclReferenced(TD->getLocation(), TD, /*OdrUse=*/false);
424 
425     // NOTE: avoid constructing an ElaboratedType(Loc) if this is a
426     // constructor or destructor name (in such a case, the scope specifier
427     // will be attached to the enclosing Expr or Decl node).
428     if (SS && SS->isNotEmpty() && !IsCtorOrDtorName) {
429       if (WantNontrivialTypeSourceInfo) {
430         // Construct a type with type-source information.
431         TypeLocBuilder Builder;
432         Builder.pushTypeSpec(T).setNameLoc(NameLoc);
433 
434         T = getElaboratedType(ETK_None, *SS, T);
435         ElaboratedTypeLoc ElabTL = Builder.push<ElaboratedTypeLoc>(T);
436         ElabTL.setElaboratedKeywordLoc(SourceLocation());
437         ElabTL.setQualifierLoc(SS->getWithLocInContext(Context));
438         return CreateParsedType(T, Builder.getTypeSourceInfo(Context, T));
439       } else {
440         T = getElaboratedType(ETK_None, *SS, T);
441       }
442     }
443   } else if (ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(IIDecl)) {
444     (void)DiagnoseUseOfDecl(IDecl, NameLoc);
445     if (!HasTrailingDot)
446       T = Context.getObjCInterfaceType(IDecl);
447   }
448 
449   if (T.isNull()) {
450     // If it's not plausibly a type, suppress diagnostics.
451     Result.suppressDiagnostics();
452     return ParsedType();
453   }
454   return ParsedType::make(T);
455 }
456 
457 // Builds a fake NNS for the given decl context.
458 static NestedNameSpecifier *
synthesizeCurrentNestedNameSpecifier(ASTContext & Context,DeclContext * DC)459 synthesizeCurrentNestedNameSpecifier(ASTContext &Context, DeclContext *DC) {
460   for (;; DC = DC->getLookupParent()) {
461     DC = DC->getPrimaryContext();
462     auto *ND = dyn_cast<NamespaceDecl>(DC);
463     if (ND && !ND->isInline() && !ND->isAnonymousNamespace())
464       return NestedNameSpecifier::Create(Context, nullptr, ND);
465     else if (auto *RD = dyn_cast<CXXRecordDecl>(DC))
466       return NestedNameSpecifier::Create(Context, nullptr, RD->isTemplateDecl(),
467                                          RD->getTypeForDecl());
468     else if (isa<TranslationUnitDecl>(DC))
469       return NestedNameSpecifier::GlobalSpecifier(Context);
470   }
471   llvm_unreachable("something isn't in TU scope?");
472 }
473 
ActOnDelayedDefaultTemplateArg(const IdentifierInfo & II,SourceLocation NameLoc)474 ParsedType Sema::ActOnDelayedDefaultTemplateArg(const IdentifierInfo &II,
475                                                 SourceLocation NameLoc) {
476   // Accepting an undeclared identifier as a default argument for a template
477   // type parameter is a Microsoft extension.
478   Diag(NameLoc, diag::ext_ms_delayed_template_argument) << &II;
479 
480   // Build a fake DependentNameType that will perform lookup into CurContext at
481   // instantiation time.  The name specifier isn't dependent, so template
482   // instantiation won't transform it.  It will retry the lookup, however.
483   NestedNameSpecifier *NNS =
484       synthesizeCurrentNestedNameSpecifier(Context, CurContext);
485   QualType T = Context.getDependentNameType(ETK_None, NNS, &II);
486 
487   // Build type location information.  We synthesized the qualifier, so we have
488   // to build a fake NestedNameSpecifierLoc.
489   NestedNameSpecifierLocBuilder NNSLocBuilder;
490   NNSLocBuilder.MakeTrivial(Context, NNS, SourceRange(NameLoc));
491   NestedNameSpecifierLoc QualifierLoc = NNSLocBuilder.getWithLocInContext(Context);
492 
493   TypeLocBuilder Builder;
494   DependentNameTypeLoc DepTL = Builder.push<DependentNameTypeLoc>(T);
495   DepTL.setNameLoc(NameLoc);
496   DepTL.setElaboratedKeywordLoc(SourceLocation());
497   DepTL.setQualifierLoc(QualifierLoc);
498   return CreateParsedType(T, Builder.getTypeSourceInfo(Context, T));
499 }
500 
501 /// isTagName() - This method is called *for error recovery purposes only*
502 /// to determine if the specified name is a valid tag name ("struct foo").  If
503 /// so, this returns the TST for the tag corresponding to it (TST_enum,
504 /// TST_union, TST_struct, TST_interface, TST_class).  This is used to diagnose
505 /// cases in C where the user forgot to specify the tag.
isTagName(IdentifierInfo & II,Scope * S)506 DeclSpec::TST Sema::isTagName(IdentifierInfo &II, Scope *S) {
507   // Do a tag name lookup in this scope.
508   LookupResult R(*this, &II, SourceLocation(), LookupTagName);
509   LookupName(R, S, false);
510   R.suppressDiagnostics();
511   if (R.getResultKind() == LookupResult::Found)
512     if (const TagDecl *TD = R.getAsSingle<TagDecl>()) {
513       switch (TD->getTagKind()) {
514       case TTK_Struct: return DeclSpec::TST_struct;
515       case TTK_Interface: return DeclSpec::TST_interface;
516       case TTK_Union:  return DeclSpec::TST_union;
517       case TTK_Class:  return DeclSpec::TST_class;
518       case TTK_Enum:   return DeclSpec::TST_enum;
519       }
520     }
521 
522   return DeclSpec::TST_unspecified;
523 }
524 
525 /// isMicrosoftMissingTypename - In Microsoft mode, within class scope,
526 /// if a CXXScopeSpec's type is equal to the type of one of the base classes
527 /// then downgrade the missing typename error to a warning.
528 /// This is needed for MSVC compatibility; Example:
529 /// @code
530 /// template<class T> class A {
531 /// public:
532 ///   typedef int TYPE;
533 /// };
534 /// template<class T> class B : public A<T> {
535 /// public:
536 ///   A<T>::TYPE a; // no typename required because A<T> is a base class.
537 /// };
538 /// @endcode
isMicrosoftMissingTypename(const CXXScopeSpec * SS,Scope * S)539 bool Sema::isMicrosoftMissingTypename(const CXXScopeSpec *SS, Scope *S) {
540   if (CurContext->isRecord()) {
541     if (SS->getScopeRep()->getKind() == NestedNameSpecifier::Super)
542       return true;
543 
544     const Type *Ty = SS->getScopeRep()->getAsType();
545 
546     CXXRecordDecl *RD = cast<CXXRecordDecl>(CurContext);
547     for (const auto &Base : RD->bases())
548       if (Context.hasSameUnqualifiedType(QualType(Ty, 1), Base.getType()))
549         return true;
550     return S->isFunctionPrototypeScope();
551   }
552   return CurContext->isFunctionOrMethod() || S->isFunctionPrototypeScope();
553 }
554 
DiagnoseUnknownTypeName(IdentifierInfo * & II,SourceLocation IILoc,Scope * S,CXXScopeSpec * SS,ParsedType & SuggestedType,bool AllowClassTemplates)555 void Sema::DiagnoseUnknownTypeName(IdentifierInfo *&II,
556                                    SourceLocation IILoc,
557                                    Scope *S,
558                                    CXXScopeSpec *SS,
559                                    ParsedType &SuggestedType,
560                                    bool AllowClassTemplates) {
561   // We don't have anything to suggest (yet).
562   SuggestedType = ParsedType();
563 
564   // There may have been a typo in the name of the type. Look up typo
565   // results, in case we have something that we can suggest.
566   if (TypoCorrection Corrected =
567           CorrectTypo(DeclarationNameInfo(II, IILoc), LookupOrdinaryName, S, SS,
568                       llvm::make_unique<TypeNameValidatorCCC>(
569                           false, false, AllowClassTemplates),
570                       CTK_ErrorRecovery)) {
571     if (Corrected.isKeyword()) {
572       // We corrected to a keyword.
573       diagnoseTypo(Corrected, PDiag(diag::err_unknown_typename_suggest) << II);
574       II = Corrected.getCorrectionAsIdentifierInfo();
575     } else {
576       // We found a similarly-named type or interface; suggest that.
577       if (!SS || !SS->isSet()) {
578         diagnoseTypo(Corrected,
579                      PDiag(diag::err_unknown_typename_suggest) << II);
580       } else if (DeclContext *DC = computeDeclContext(*SS, false)) {
581         std::string CorrectedStr(Corrected.getAsString(getLangOpts()));
582         bool DroppedSpecifier = Corrected.WillReplaceSpecifier() &&
583                                 II->getName().equals(CorrectedStr);
584         diagnoseTypo(Corrected,
585                      PDiag(diag::err_unknown_nested_typename_suggest)
586                        << II << DC << DroppedSpecifier << SS->getRange());
587       } else {
588         llvm_unreachable("could not have corrected a typo here");
589       }
590 
591       CXXScopeSpec tmpSS;
592       if (Corrected.getCorrectionSpecifier())
593         tmpSS.MakeTrivial(Context, Corrected.getCorrectionSpecifier(),
594                           SourceRange(IILoc));
595       SuggestedType = getTypeName(*Corrected.getCorrectionAsIdentifierInfo(),
596                                   IILoc, S, tmpSS.isSet() ? &tmpSS : SS, false,
597                                   false, ParsedType(),
598                                   /*IsCtorOrDtorName=*/false,
599                                   /*NonTrivialTypeSourceInfo=*/true);
600     }
601     return;
602   }
603 
604   if (getLangOpts().CPlusPlus) {
605     // See if II is a class template that the user forgot to pass arguments to.
606     UnqualifiedId Name;
607     Name.setIdentifier(II, IILoc);
608     CXXScopeSpec EmptySS;
609     TemplateTy TemplateResult;
610     bool MemberOfUnknownSpecialization;
611     if (isTemplateName(S, SS ? *SS : EmptySS, /*hasTemplateKeyword=*/false,
612                        Name, ParsedType(), true, TemplateResult,
613                        MemberOfUnknownSpecialization) == TNK_Type_template) {
614       TemplateName TplName = TemplateResult.get();
615       Diag(IILoc, diag::err_template_missing_args) << TplName;
616       if (TemplateDecl *TplDecl = TplName.getAsTemplateDecl()) {
617         Diag(TplDecl->getLocation(), diag::note_template_decl_here)
618           << TplDecl->getTemplateParameters()->getSourceRange();
619       }
620       return;
621     }
622   }
623 
624   // FIXME: Should we move the logic that tries to recover from a missing tag
625   // (struct, union, enum) from Parser::ParseImplicitInt here, instead?
626 
627   if (!SS || (!SS->isSet() && !SS->isInvalid()))
628     Diag(IILoc, diag::err_unknown_typename) << II;
629   else if (DeclContext *DC = computeDeclContext(*SS, false))
630     Diag(IILoc, diag::err_typename_nested_not_found)
631       << II << DC << SS->getRange();
632   else if (isDependentScopeSpecifier(*SS)) {
633     unsigned DiagID = diag::err_typename_missing;
634     if (getLangOpts().MSVCCompat && isMicrosoftMissingTypename(SS, S))
635       DiagID = diag::ext_typename_missing;
636 
637     Diag(SS->getRange().getBegin(), DiagID)
638       << SS->getScopeRep() << II->getName()
639       << SourceRange(SS->getRange().getBegin(), IILoc)
640       << FixItHint::CreateInsertion(SS->getRange().getBegin(), "typename ");
641     SuggestedType = ActOnTypenameType(S, SourceLocation(),
642                                       *SS, *II, IILoc).get();
643   } else {
644     assert(SS && SS->isInvalid() &&
645            "Invalid scope specifier has already been diagnosed");
646   }
647 }
648 
649 /// \brief Determine whether the given result set contains either a type name
650 /// or
isResultTypeOrTemplate(LookupResult & R,const Token & NextToken)651 static bool isResultTypeOrTemplate(LookupResult &R, const Token &NextToken) {
652   bool CheckTemplate = R.getSema().getLangOpts().CPlusPlus &&
653                        NextToken.is(tok::less);
654 
655   for (LookupResult::iterator I = R.begin(), IEnd = R.end(); I != IEnd; ++I) {
656     if (isa<TypeDecl>(*I) || isa<ObjCInterfaceDecl>(*I))
657       return true;
658 
659     if (CheckTemplate && isa<TemplateDecl>(*I))
660       return true;
661   }
662 
663   return false;
664 }
665 
isTagTypeWithMissingTag(Sema & SemaRef,LookupResult & Result,Scope * S,CXXScopeSpec & SS,IdentifierInfo * & Name,SourceLocation NameLoc)666 static bool isTagTypeWithMissingTag(Sema &SemaRef, LookupResult &Result,
667                                     Scope *S, CXXScopeSpec &SS,
668                                     IdentifierInfo *&Name,
669                                     SourceLocation NameLoc) {
670   LookupResult R(SemaRef, Name, NameLoc, Sema::LookupTagName);
671   SemaRef.LookupParsedName(R, S, &SS);
672   if (TagDecl *Tag = R.getAsSingle<TagDecl>()) {
673     StringRef FixItTagName;
674     switch (Tag->getTagKind()) {
675       case TTK_Class:
676         FixItTagName = "class ";
677         break;
678 
679       case TTK_Enum:
680         FixItTagName = "enum ";
681         break;
682 
683       case TTK_Struct:
684         FixItTagName = "struct ";
685         break;
686 
687       case TTK_Interface:
688         FixItTagName = "__interface ";
689         break;
690 
691       case TTK_Union:
692         FixItTagName = "union ";
693         break;
694     }
695 
696     StringRef TagName = FixItTagName.drop_back();
697     SemaRef.Diag(NameLoc, diag::err_use_of_tag_name_without_tag)
698       << Name << TagName << SemaRef.getLangOpts().CPlusPlus
699       << FixItHint::CreateInsertion(NameLoc, FixItTagName);
700 
701     for (LookupResult::iterator I = Result.begin(), IEnd = Result.end();
702          I != IEnd; ++I)
703       SemaRef.Diag((*I)->getLocation(), diag::note_decl_hiding_tag_type)
704         << Name << TagName;
705 
706     // Replace lookup results with just the tag decl.
707     Result.clear(Sema::LookupTagName);
708     SemaRef.LookupParsedName(Result, S, &SS);
709     return true;
710   }
711 
712   return false;
713 }
714 
715 /// Build a ParsedType for a simple-type-specifier with a nested-name-specifier.
buildNestedType(Sema & S,CXXScopeSpec & SS,QualType T,SourceLocation NameLoc)716 static ParsedType buildNestedType(Sema &S, CXXScopeSpec &SS,
717                                   QualType T, SourceLocation NameLoc) {
718   ASTContext &Context = S.Context;
719 
720   TypeLocBuilder Builder;
721   Builder.pushTypeSpec(T).setNameLoc(NameLoc);
722 
723   T = S.getElaboratedType(ETK_None, SS, T);
724   ElaboratedTypeLoc ElabTL = Builder.push<ElaboratedTypeLoc>(T);
725   ElabTL.setElaboratedKeywordLoc(SourceLocation());
726   ElabTL.setQualifierLoc(SS.getWithLocInContext(Context));
727   return S.CreateParsedType(T, Builder.getTypeSourceInfo(Context, T));
728 }
729 
730 Sema::NameClassification
ClassifyName(Scope * S,CXXScopeSpec & SS,IdentifierInfo * & Name,SourceLocation NameLoc,const Token & NextToken,bool IsAddressOfOperand,std::unique_ptr<CorrectionCandidateCallback> CCC)731 Sema::ClassifyName(Scope *S, CXXScopeSpec &SS, IdentifierInfo *&Name,
732                    SourceLocation NameLoc, const Token &NextToken,
733                    bool IsAddressOfOperand,
734                    std::unique_ptr<CorrectionCandidateCallback> CCC) {
735   DeclarationNameInfo NameInfo(Name, NameLoc);
736   ObjCMethodDecl *CurMethod = getCurMethodDecl();
737 
738   if (NextToken.is(tok::coloncolon)) {
739     BuildCXXNestedNameSpecifier(S, *Name, NameLoc, NextToken.getLocation(),
740                                 QualType(), false, SS, nullptr, false);
741   }
742 
743   LookupResult Result(*this, Name, NameLoc, LookupOrdinaryName);
744   LookupParsedName(Result, S, &SS, !CurMethod);
745 
746   // For unqualified lookup in a class template in MSVC mode, look into
747   // dependent base classes where the primary class template is known.
748   if (Result.empty() && SS.isEmpty() && getLangOpts().MSVCCompat) {
749     if (ParsedType TypeInBase =
750             recoverFromTypeInKnownDependentBase(*this, *Name, NameLoc))
751       return TypeInBase;
752   }
753 
754   // Perform lookup for Objective-C instance variables (including automatically
755   // synthesized instance variables), if we're in an Objective-C method.
756   // FIXME: This lookup really, really needs to be folded in to the normal
757   // unqualified lookup mechanism.
758   if (!SS.isSet() && CurMethod && !isResultTypeOrTemplate(Result, NextToken)) {
759     ExprResult E = LookupInObjCMethod(Result, S, Name, true);
760     if (E.get() || E.isInvalid())
761       return E;
762   }
763 
764   bool SecondTry = false;
765   bool IsFilteredTemplateName = false;
766 
767 Corrected:
768   switch (Result.getResultKind()) {
769   case LookupResult::NotFound:
770     // If an unqualified-id is followed by a '(', then we have a function
771     // call.
772     if (!SS.isSet() && NextToken.is(tok::l_paren)) {
773       // In C++, this is an ADL-only call.
774       // FIXME: Reference?
775       if (getLangOpts().CPlusPlus)
776         return BuildDeclarationNameExpr(SS, Result, /*ADL=*/true);
777 
778       // C90 6.3.2.2:
779       //   If the expression that precedes the parenthesized argument list in a
780       //   function call consists solely of an identifier, and if no
781       //   declaration is visible for this identifier, the identifier is
782       //   implicitly declared exactly as if, in the innermost block containing
783       //   the function call, the declaration
784       //
785       //     extern int identifier ();
786       //
787       //   appeared.
788       //
789       // We also allow this in C99 as an extension.
790       if (NamedDecl *D = ImplicitlyDefineFunction(NameLoc, *Name, S)) {
791         Result.addDecl(D);
792         Result.resolveKind();
793         return BuildDeclarationNameExpr(SS, Result, /*ADL=*/false);
794       }
795     }
796 
797     // In C, we first see whether there is a tag type by the same name, in
798     // which case it's likely that the user just forget to write "enum",
799     // "struct", or "union".
800     if (!getLangOpts().CPlusPlus && !SecondTry &&
801         isTagTypeWithMissingTag(*this, Result, S, SS, Name, NameLoc)) {
802       break;
803     }
804 
805     // Perform typo correction to determine if there is another name that is
806     // close to this name.
807     if (!SecondTry && CCC) {
808       SecondTry = true;
809       if (TypoCorrection Corrected = CorrectTypo(Result.getLookupNameInfo(),
810                                                  Result.getLookupKind(), S,
811                                                  &SS, std::move(CCC),
812                                                  CTK_ErrorRecovery)) {
813         unsigned UnqualifiedDiag = diag::err_undeclared_var_use_suggest;
814         unsigned QualifiedDiag = diag::err_no_member_suggest;
815 
816         NamedDecl *FirstDecl = Corrected.getCorrectionDecl();
817         NamedDecl *UnderlyingFirstDecl
818           = FirstDecl? FirstDecl->getUnderlyingDecl() : nullptr;
819         if (getLangOpts().CPlusPlus && NextToken.is(tok::less) &&
820             UnderlyingFirstDecl && isa<TemplateDecl>(UnderlyingFirstDecl)) {
821           UnqualifiedDiag = diag::err_no_template_suggest;
822           QualifiedDiag = diag::err_no_member_template_suggest;
823         } else if (UnderlyingFirstDecl &&
824                    (isa<TypeDecl>(UnderlyingFirstDecl) ||
825                     isa<ObjCInterfaceDecl>(UnderlyingFirstDecl) ||
826                     isa<ObjCCompatibleAliasDecl>(UnderlyingFirstDecl))) {
827           UnqualifiedDiag = diag::err_unknown_typename_suggest;
828           QualifiedDiag = diag::err_unknown_nested_typename_suggest;
829         }
830 
831         if (SS.isEmpty()) {
832           diagnoseTypo(Corrected, PDiag(UnqualifiedDiag) << Name);
833         } else {// FIXME: is this even reachable? Test it.
834           std::string CorrectedStr(Corrected.getAsString(getLangOpts()));
835           bool DroppedSpecifier = Corrected.WillReplaceSpecifier() &&
836                                   Name->getName().equals(CorrectedStr);
837           diagnoseTypo(Corrected, PDiag(QualifiedDiag)
838                                     << Name << computeDeclContext(SS, false)
839                                     << DroppedSpecifier << SS.getRange());
840         }
841 
842         // Update the name, so that the caller has the new name.
843         Name = Corrected.getCorrectionAsIdentifierInfo();
844 
845         // Typo correction corrected to a keyword.
846         if (Corrected.isKeyword())
847           return Name;
848 
849         // Also update the LookupResult...
850         // FIXME: This should probably go away at some point
851         Result.clear();
852         Result.setLookupName(Corrected.getCorrection());
853         if (FirstDecl)
854           Result.addDecl(FirstDecl);
855 
856         // If we found an Objective-C instance variable, let
857         // LookupInObjCMethod build the appropriate expression to
858         // reference the ivar.
859         // FIXME: This is a gross hack.
860         if (ObjCIvarDecl *Ivar = Result.getAsSingle<ObjCIvarDecl>()) {
861           Result.clear();
862           ExprResult E(LookupInObjCMethod(Result, S, Ivar->getIdentifier()));
863           return E;
864         }
865 
866         goto Corrected;
867       }
868     }
869 
870     // We failed to correct; just fall through and let the parser deal with it.
871     Result.suppressDiagnostics();
872     return NameClassification::Unknown();
873 
874   case LookupResult::NotFoundInCurrentInstantiation: {
875     // We performed name lookup into the current instantiation, and there were
876     // dependent bases, so we treat this result the same way as any other
877     // dependent nested-name-specifier.
878 
879     // C++ [temp.res]p2:
880     //   A name used in a template declaration or definition and that is
881     //   dependent on a template-parameter is assumed not to name a type
882     //   unless the applicable name lookup finds a type name or the name is
883     //   qualified by the keyword typename.
884     //
885     // FIXME: If the next token is '<', we might want to ask the parser to
886     // perform some heroics to see if we actually have a
887     // template-argument-list, which would indicate a missing 'template'
888     // keyword here.
889     return ActOnDependentIdExpression(SS, /*TemplateKWLoc=*/SourceLocation(),
890                                       NameInfo, IsAddressOfOperand,
891                                       /*TemplateArgs=*/nullptr);
892   }
893 
894   case LookupResult::Found:
895   case LookupResult::FoundOverloaded:
896   case LookupResult::FoundUnresolvedValue:
897     break;
898 
899   case LookupResult::Ambiguous:
900     if (getLangOpts().CPlusPlus && NextToken.is(tok::less) &&
901         hasAnyAcceptableTemplateNames(Result)) {
902       // C++ [temp.local]p3:
903       //   A lookup that finds an injected-class-name (10.2) can result in an
904       //   ambiguity in certain cases (for example, if it is found in more than
905       //   one base class). If all of the injected-class-names that are found
906       //   refer to specializations of the same class template, and if the name
907       //   is followed by a template-argument-list, the reference refers to the
908       //   class template itself and not a specialization thereof, and is not
909       //   ambiguous.
910       //
911       // This filtering can make an ambiguous result into an unambiguous one,
912       // so try again after filtering out template names.
913       FilterAcceptableTemplateNames(Result);
914       if (!Result.isAmbiguous()) {
915         IsFilteredTemplateName = true;
916         break;
917       }
918     }
919 
920     // Diagnose the ambiguity and return an error.
921     return NameClassification::Error();
922   }
923 
924   if (getLangOpts().CPlusPlus && NextToken.is(tok::less) &&
925       (IsFilteredTemplateName || hasAnyAcceptableTemplateNames(Result))) {
926     // C++ [temp.names]p3:
927     //   After name lookup (3.4) finds that a name is a template-name or that
928     //   an operator-function-id or a literal- operator-id refers to a set of
929     //   overloaded functions any member of which is a function template if
930     //   this is followed by a <, the < is always taken as the delimiter of a
931     //   template-argument-list and never as the less-than operator.
932     if (!IsFilteredTemplateName)
933       FilterAcceptableTemplateNames(Result);
934 
935     if (!Result.empty()) {
936       bool IsFunctionTemplate;
937       bool IsVarTemplate;
938       TemplateName Template;
939       if (Result.end() - Result.begin() > 1) {
940         IsFunctionTemplate = true;
941         Template = Context.getOverloadedTemplateName(Result.begin(),
942                                                      Result.end());
943       } else {
944         TemplateDecl *TD
945           = cast<TemplateDecl>((*Result.begin())->getUnderlyingDecl());
946         IsFunctionTemplate = isa<FunctionTemplateDecl>(TD);
947         IsVarTemplate = isa<VarTemplateDecl>(TD);
948 
949         if (SS.isSet() && !SS.isInvalid())
950           Template = Context.getQualifiedTemplateName(SS.getScopeRep(),
951                                                     /*TemplateKeyword=*/false,
952                                                       TD);
953         else
954           Template = TemplateName(TD);
955       }
956 
957       if (IsFunctionTemplate) {
958         // Function templates always go through overload resolution, at which
959         // point we'll perform the various checks (e.g., accessibility) we need
960         // to based on which function we selected.
961         Result.suppressDiagnostics();
962 
963         return NameClassification::FunctionTemplate(Template);
964       }
965 
966       return IsVarTemplate ? NameClassification::VarTemplate(Template)
967                            : NameClassification::TypeTemplate(Template);
968     }
969   }
970 
971   NamedDecl *FirstDecl = (*Result.begin())->getUnderlyingDecl();
972   if (TypeDecl *Type = dyn_cast<TypeDecl>(FirstDecl)) {
973     DiagnoseUseOfDecl(Type, NameLoc);
974     MarkAnyDeclReferenced(Type->getLocation(), Type, /*OdrUse=*/false);
975     QualType T = Context.getTypeDeclType(Type);
976     if (SS.isNotEmpty())
977       return buildNestedType(*this, SS, T, NameLoc);
978     return ParsedType::make(T);
979   }
980 
981   ObjCInterfaceDecl *Class = dyn_cast<ObjCInterfaceDecl>(FirstDecl);
982   if (!Class) {
983     // FIXME: It's unfortunate that we don't have a Type node for handling this.
984     if (ObjCCompatibleAliasDecl *Alias =
985             dyn_cast<ObjCCompatibleAliasDecl>(FirstDecl))
986       Class = Alias->getClassInterface();
987   }
988 
989   if (Class) {
990     DiagnoseUseOfDecl(Class, NameLoc);
991 
992     if (NextToken.is(tok::period)) {
993       // Interface. <something> is parsed as a property reference expression.
994       // Just return "unknown" as a fall-through for now.
995       Result.suppressDiagnostics();
996       return NameClassification::Unknown();
997     }
998 
999     QualType T = Context.getObjCInterfaceType(Class);
1000     return ParsedType::make(T);
1001   }
1002 
1003   // We can have a type template here if we're classifying a template argument.
1004   if (isa<TemplateDecl>(FirstDecl) && !isa<FunctionTemplateDecl>(FirstDecl))
1005     return NameClassification::TypeTemplate(
1006         TemplateName(cast<TemplateDecl>(FirstDecl)));
1007 
1008   // Check for a tag type hidden by a non-type decl in a few cases where it
1009   // seems likely a type is wanted instead of the non-type that was found.
1010   bool NextIsOp = NextToken.isOneOf(tok::amp, tok::star);
1011   if ((NextToken.is(tok::identifier) ||
1012        (NextIsOp &&
1013         FirstDecl->getUnderlyingDecl()->isFunctionOrFunctionTemplate())) &&
1014       isTagTypeWithMissingTag(*this, Result, S, SS, Name, NameLoc)) {
1015     TypeDecl *Type = Result.getAsSingle<TypeDecl>();
1016     DiagnoseUseOfDecl(Type, NameLoc);
1017     QualType T = Context.getTypeDeclType(Type);
1018     if (SS.isNotEmpty())
1019       return buildNestedType(*this, SS, T, NameLoc);
1020     return ParsedType::make(T);
1021   }
1022 
1023   if (FirstDecl->isCXXClassMember())
1024     return BuildPossibleImplicitMemberExpr(SS, SourceLocation(), Result,
1025                                            nullptr, S);
1026 
1027   bool ADL = UseArgumentDependentLookup(SS, Result, NextToken.is(tok::l_paren));
1028   return BuildDeclarationNameExpr(SS, Result, ADL);
1029 }
1030 
1031 // Determines the context to return to after temporarily entering a
1032 // context.  This depends in an unnecessarily complicated way on the
1033 // exact ordering of callbacks from the parser.
getContainingDC(DeclContext * DC)1034 DeclContext *Sema::getContainingDC(DeclContext *DC) {
1035 
1036   // Functions defined inline within classes aren't parsed until we've
1037   // finished parsing the top-level class, so the top-level class is
1038   // the context we'll need to return to.
1039   // A Lambda call operator whose parent is a class must not be treated
1040   // as an inline member function.  A Lambda can be used legally
1041   // either as an in-class member initializer or a default argument.  These
1042   // are parsed once the class has been marked complete and so the containing
1043   // context would be the nested class (when the lambda is defined in one);
1044   // If the class is not complete, then the lambda is being used in an
1045   // ill-formed fashion (such as to specify the width of a bit-field, or
1046   // in an array-bound) - in which case we still want to return the
1047   // lexically containing DC (which could be a nested class).
1048   if (isa<FunctionDecl>(DC) && !isLambdaCallOperator(DC)) {
1049     DC = DC->getLexicalParent();
1050 
1051     // A function not defined within a class will always return to its
1052     // lexical context.
1053     if (!isa<CXXRecordDecl>(DC))
1054       return DC;
1055 
1056     // A C++ inline method/friend is parsed *after* the topmost class
1057     // it was declared in is fully parsed ("complete");  the topmost
1058     // class is the context we need to return to.
1059     while (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC->getLexicalParent()))
1060       DC = RD;
1061 
1062     // Return the declaration context of the topmost class the inline method is
1063     // declared in.
1064     return DC;
1065   }
1066 
1067   return DC->getLexicalParent();
1068 }
1069 
PushDeclContext(Scope * S,DeclContext * DC)1070 void Sema::PushDeclContext(Scope *S, DeclContext *DC) {
1071   assert(getContainingDC(DC) == CurContext &&
1072       "The next DeclContext should be lexically contained in the current one.");
1073   CurContext = DC;
1074   S->setEntity(DC);
1075 }
1076 
PopDeclContext()1077 void Sema::PopDeclContext() {
1078   assert(CurContext && "DeclContext imbalance!");
1079 
1080   CurContext = getContainingDC(CurContext);
1081   assert(CurContext && "Popped translation unit!");
1082 }
1083 
ActOnTagStartSkippedDefinition(Scope * S,Decl * D)1084 Sema::SkippedDefinitionContext Sema::ActOnTagStartSkippedDefinition(Scope *S,
1085                                                                     Decl *D) {
1086   // Unlike PushDeclContext, the context to which we return is not necessarily
1087   // the containing DC of TD, because the new context will be some pre-existing
1088   // TagDecl definition instead of a fresh one.
1089   auto Result = static_cast<SkippedDefinitionContext>(CurContext);
1090   CurContext = cast<TagDecl>(D)->getDefinition();
1091   assert(CurContext && "skipping definition of undefined tag");
1092   // Start lookups from the parent of the current context; we don't want to look
1093   // into the pre-existing complete definition.
1094   S->setEntity(CurContext->getLookupParent());
1095   return Result;
1096 }
1097 
ActOnTagFinishSkippedDefinition(SkippedDefinitionContext Context)1098 void Sema::ActOnTagFinishSkippedDefinition(SkippedDefinitionContext Context) {
1099   CurContext = static_cast<decltype(CurContext)>(Context);
1100 }
1101 
1102 /// EnterDeclaratorContext - Used when we must lookup names in the context
1103 /// of a declarator's nested name specifier.
1104 ///
EnterDeclaratorContext(Scope * S,DeclContext * DC)1105 void Sema::EnterDeclaratorContext(Scope *S, DeclContext *DC) {
1106   // C++0x [basic.lookup.unqual]p13:
1107   //   A name used in the definition of a static data member of class
1108   //   X (after the qualified-id of the static member) is looked up as
1109   //   if the name was used in a member function of X.
1110   // C++0x [basic.lookup.unqual]p14:
1111   //   If a variable member of a namespace is defined outside of the
1112   //   scope of its namespace then any name used in the definition of
1113   //   the variable member (after the declarator-id) is looked up as
1114   //   if the definition of the variable member occurred in its
1115   //   namespace.
1116   // Both of these imply that we should push a scope whose context
1117   // is the semantic context of the declaration.  We can't use
1118   // PushDeclContext here because that context is not necessarily
1119   // lexically contained in the current context.  Fortunately,
1120   // the containing scope should have the appropriate information.
1121 
1122   assert(!S->getEntity() && "scope already has entity");
1123 
1124 #ifndef NDEBUG
1125   Scope *Ancestor = S->getParent();
1126   while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
1127   assert(Ancestor->getEntity() == CurContext && "ancestor context mismatch");
1128 #endif
1129 
1130   CurContext = DC;
1131   S->setEntity(DC);
1132 }
1133 
ExitDeclaratorContext(Scope * S)1134 void Sema::ExitDeclaratorContext(Scope *S) {
1135   assert(S->getEntity() == CurContext && "Context imbalance!");
1136 
1137   // Switch back to the lexical context.  The safety of this is
1138   // enforced by an assert in EnterDeclaratorContext.
1139   Scope *Ancestor = S->getParent();
1140   while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
1141   CurContext = Ancestor->getEntity();
1142 
1143   // We don't need to do anything with the scope, which is going to
1144   // disappear.
1145 }
1146 
1147 
ActOnReenterFunctionContext(Scope * S,Decl * D)1148 void Sema::ActOnReenterFunctionContext(Scope* S, Decl *D) {
1149   // We assume that the caller has already called
1150   // ActOnReenterTemplateScope so getTemplatedDecl() works.
1151   FunctionDecl *FD = D->getAsFunction();
1152   if (!FD)
1153     return;
1154 
1155   // Same implementation as PushDeclContext, but enters the context
1156   // from the lexical parent, rather than the top-level class.
1157   assert(CurContext == FD->getLexicalParent() &&
1158     "The next DeclContext should be lexically contained in the current one.");
1159   CurContext = FD;
1160   S->setEntity(CurContext);
1161 
1162   for (unsigned P = 0, NumParams = FD->getNumParams(); P < NumParams; ++P) {
1163     ParmVarDecl *Param = FD->getParamDecl(P);
1164     // If the parameter has an identifier, then add it to the scope
1165     if (Param->getIdentifier()) {
1166       S->AddDecl(Param);
1167       IdResolver.AddDecl(Param);
1168     }
1169   }
1170 }
1171 
1172 
ActOnExitFunctionContext()1173 void Sema::ActOnExitFunctionContext() {
1174   // Same implementation as PopDeclContext, but returns to the lexical parent,
1175   // rather than the top-level class.
1176   assert(CurContext && "DeclContext imbalance!");
1177   CurContext = CurContext->getLexicalParent();
1178   assert(CurContext && "Popped translation unit!");
1179 }
1180 
1181 
1182 /// \brief Determine whether we allow overloading of the function
1183 /// PrevDecl with another declaration.
1184 ///
1185 /// This routine determines whether overloading is possible, not
1186 /// whether some new function is actually an overload. It will return
1187 /// true in C++ (where we can always provide overloads) or, as an
1188 /// extension, in C when the previous function is already an
1189 /// overloaded function declaration or has the "overloadable"
1190 /// attribute.
AllowOverloadingOfFunction(LookupResult & Previous,ASTContext & Context)1191 static bool AllowOverloadingOfFunction(LookupResult &Previous,
1192                                        ASTContext &Context) {
1193   if (Context.getLangOpts().CPlusPlus)
1194     return true;
1195 
1196   if (Previous.getResultKind() == LookupResult::FoundOverloaded)
1197     return true;
1198 
1199   return (Previous.getResultKind() == LookupResult::Found
1200           && Previous.getFoundDecl()->hasAttr<OverloadableAttr>());
1201 }
1202 
1203 /// Add this decl to the scope shadowed decl chains.
PushOnScopeChains(NamedDecl * D,Scope * S,bool AddToContext)1204 void Sema::PushOnScopeChains(NamedDecl *D, Scope *S, bool AddToContext) {
1205   // Move up the scope chain until we find the nearest enclosing
1206   // non-transparent context. The declaration will be introduced into this
1207   // scope.
1208   while (S->getEntity() && S->getEntity()->isTransparentContext())
1209     S = S->getParent();
1210 
1211   // Add scoped declarations into their context, so that they can be
1212   // found later. Declarations without a context won't be inserted
1213   // into any context.
1214   if (AddToContext)
1215     CurContext->addDecl(D);
1216 
1217   // Out-of-line definitions shouldn't be pushed into scope in C++, unless they
1218   // are function-local declarations.
1219   if (getLangOpts().CPlusPlus && D->isOutOfLine() &&
1220       !D->getDeclContext()->getRedeclContext()->Equals(
1221         D->getLexicalDeclContext()->getRedeclContext()) &&
1222       !D->getLexicalDeclContext()->isFunctionOrMethod())
1223     return;
1224 
1225   // Template instantiations should also not be pushed into scope.
1226   if (isa<FunctionDecl>(D) &&
1227       cast<FunctionDecl>(D)->isFunctionTemplateSpecialization())
1228     return;
1229 
1230   // If this replaces anything in the current scope,
1231   IdentifierResolver::iterator I = IdResolver.begin(D->getDeclName()),
1232                                IEnd = IdResolver.end();
1233   for (; I != IEnd; ++I) {
1234     if (S->isDeclScope(*I) && D->declarationReplaces(*I)) {
1235       S->RemoveDecl(*I);
1236       IdResolver.RemoveDecl(*I);
1237 
1238       // Should only need to replace one decl.
1239       break;
1240     }
1241   }
1242 
1243   S->AddDecl(D);
1244 
1245   if (isa<LabelDecl>(D) && !cast<LabelDecl>(D)->isGnuLocal()) {
1246     // Implicitly-generated labels may end up getting generated in an order that
1247     // isn't strictly lexical, which breaks name lookup. Be careful to insert
1248     // the label at the appropriate place in the identifier chain.
1249     for (I = IdResolver.begin(D->getDeclName()); I != IEnd; ++I) {
1250       DeclContext *IDC = (*I)->getLexicalDeclContext()->getRedeclContext();
1251       if (IDC == CurContext) {
1252         if (!S->isDeclScope(*I))
1253           continue;
1254       } else if (IDC->Encloses(CurContext))
1255         break;
1256     }
1257 
1258     IdResolver.InsertDeclAfter(I, D);
1259   } else {
1260     IdResolver.AddDecl(D);
1261   }
1262 }
1263 
pushExternalDeclIntoScope(NamedDecl * D,DeclarationName Name)1264 void Sema::pushExternalDeclIntoScope(NamedDecl *D, DeclarationName Name) {
1265   if (IdResolver.tryAddTopLevelDecl(D, Name) && TUScope)
1266     TUScope->AddDecl(D);
1267 }
1268 
isDeclInScope(NamedDecl * D,DeclContext * Ctx,Scope * S,bool AllowInlineNamespace)1269 bool Sema::isDeclInScope(NamedDecl *D, DeclContext *Ctx, Scope *S,
1270                          bool AllowInlineNamespace) {
1271   return IdResolver.isDeclInScope(D, Ctx, S, AllowInlineNamespace);
1272 }
1273 
getScopeForDeclContext(Scope * S,DeclContext * DC)1274 Scope *Sema::getScopeForDeclContext(Scope *S, DeclContext *DC) {
1275   DeclContext *TargetDC = DC->getPrimaryContext();
1276   do {
1277     if (DeclContext *ScopeDC = S->getEntity())
1278       if (ScopeDC->getPrimaryContext() == TargetDC)
1279         return S;
1280   } while ((S = S->getParent()));
1281 
1282   return nullptr;
1283 }
1284 
1285 static bool isOutOfScopePreviousDeclaration(NamedDecl *,
1286                                             DeclContext*,
1287                                             ASTContext&);
1288 
1289 /// Filters out lookup results that don't fall within the given scope
1290 /// as determined by isDeclInScope.
FilterLookupForScope(LookupResult & R,DeclContext * Ctx,Scope * S,bool ConsiderLinkage,bool AllowInlineNamespace)1291 void Sema::FilterLookupForScope(LookupResult &R, DeclContext *Ctx, Scope *S,
1292                                 bool ConsiderLinkage,
1293                                 bool AllowInlineNamespace) {
1294   LookupResult::Filter F = R.makeFilter();
1295   while (F.hasNext()) {
1296     NamedDecl *D = F.next();
1297 
1298     if (isDeclInScope(D, Ctx, S, AllowInlineNamespace))
1299       continue;
1300 
1301     if (ConsiderLinkage && isOutOfScopePreviousDeclaration(D, Ctx, Context))
1302       continue;
1303 
1304     F.erase();
1305   }
1306 
1307   F.done();
1308 }
1309 
isUsingDecl(NamedDecl * D)1310 static bool isUsingDecl(NamedDecl *D) {
1311   return isa<UsingShadowDecl>(D) ||
1312          isa<UnresolvedUsingTypenameDecl>(D) ||
1313          isa<UnresolvedUsingValueDecl>(D);
1314 }
1315 
1316 /// Removes using shadow declarations from the lookup results.
RemoveUsingDecls(LookupResult & R)1317 static void RemoveUsingDecls(LookupResult &R) {
1318   LookupResult::Filter F = R.makeFilter();
1319   while (F.hasNext())
1320     if (isUsingDecl(F.next()))
1321       F.erase();
1322 
1323   F.done();
1324 }
1325 
1326 /// \brief Check for this common pattern:
1327 /// @code
1328 /// class S {
1329 ///   S(const S&); // DO NOT IMPLEMENT
1330 ///   void operator=(const S&); // DO NOT IMPLEMENT
1331 /// };
1332 /// @endcode
IsDisallowedCopyOrAssign(const CXXMethodDecl * D)1333 static bool IsDisallowedCopyOrAssign(const CXXMethodDecl *D) {
1334   // FIXME: Should check for private access too but access is set after we get
1335   // the decl here.
1336   if (D->doesThisDeclarationHaveABody())
1337     return false;
1338 
1339   if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D))
1340     return CD->isCopyConstructor();
1341   if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D))
1342     return Method->isCopyAssignmentOperator();
1343   return false;
1344 }
1345 
1346 // We need this to handle
1347 //
1348 // typedef struct {
1349 //   void *foo() { return 0; }
1350 // } A;
1351 //
1352 // When we see foo we don't know if after the typedef we will get 'A' or '*A'
1353 // for example. If 'A', foo will have external linkage. If we have '*A',
1354 // foo will have no linkage. Since we can't know until we get to the end
1355 // of the typedef, this function finds out if D might have non-external linkage.
1356 // Callers should verify at the end of the TU if it D has external linkage or
1357 // not.
mightHaveNonExternalLinkage(const DeclaratorDecl * D)1358 bool Sema::mightHaveNonExternalLinkage(const DeclaratorDecl *D) {
1359   const DeclContext *DC = D->getDeclContext();
1360   while (!DC->isTranslationUnit()) {
1361     if (const RecordDecl *RD = dyn_cast<RecordDecl>(DC)){
1362       if (!RD->hasNameForLinkage())
1363         return true;
1364     }
1365     DC = DC->getParent();
1366   }
1367 
1368   return !D->isExternallyVisible();
1369 }
1370 
1371 // FIXME: This needs to be refactored; some other isInMainFile users want
1372 // these semantics.
isMainFileLoc(const Sema & S,SourceLocation Loc)1373 static bool isMainFileLoc(const Sema &S, SourceLocation Loc) {
1374   if (S.TUKind != TU_Complete)
1375     return false;
1376   return S.SourceMgr.isInMainFile(Loc);
1377 }
1378 
ShouldWarnIfUnusedFileScopedDecl(const DeclaratorDecl * D) const1379 bool Sema::ShouldWarnIfUnusedFileScopedDecl(const DeclaratorDecl *D) const {
1380   assert(D);
1381 
1382   if (D->isInvalidDecl() || D->isUsed() || D->hasAttr<UnusedAttr>())
1383     return false;
1384 
1385   // Ignore all entities declared within templates, and out-of-line definitions
1386   // of members of class templates.
1387   if (D->getDeclContext()->isDependentContext() ||
1388       D->getLexicalDeclContext()->isDependentContext())
1389     return false;
1390 
1391   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1392     if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
1393       return false;
1394 
1395     if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
1396       if (MD->isVirtual() || IsDisallowedCopyOrAssign(MD))
1397         return false;
1398     } else {
1399       // 'static inline' functions are defined in headers; don't warn.
1400       if (FD->isInlined() && !isMainFileLoc(*this, FD->getLocation()))
1401         return false;
1402     }
1403 
1404     if (FD->doesThisDeclarationHaveABody() &&
1405         Context.DeclMustBeEmitted(FD))
1406       return false;
1407   } else if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1408     // Constants and utility variables are defined in headers with internal
1409     // linkage; don't warn.  (Unlike functions, there isn't a convenient marker
1410     // like "inline".)
1411     if (!isMainFileLoc(*this, VD->getLocation()))
1412       return false;
1413 
1414     if (Context.DeclMustBeEmitted(VD))
1415       return false;
1416 
1417     if (VD->isStaticDataMember() &&
1418         VD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
1419       return false;
1420   } else {
1421     return false;
1422   }
1423 
1424   // Only warn for unused decls internal to the translation unit.
1425   // FIXME: This seems like a bogus check; it suppresses -Wunused-function
1426   // for inline functions defined in the main source file, for instance.
1427   return mightHaveNonExternalLinkage(D);
1428 }
1429 
MarkUnusedFileScopedDecl(const DeclaratorDecl * D)1430 void Sema::MarkUnusedFileScopedDecl(const DeclaratorDecl *D) {
1431   if (!D)
1432     return;
1433 
1434   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1435     const FunctionDecl *First = FD->getFirstDecl();
1436     if (FD != First && ShouldWarnIfUnusedFileScopedDecl(First))
1437       return; // First should already be in the vector.
1438   }
1439 
1440   if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1441     const VarDecl *First = VD->getFirstDecl();
1442     if (VD != First && ShouldWarnIfUnusedFileScopedDecl(First))
1443       return; // First should already be in the vector.
1444   }
1445 
1446   if (ShouldWarnIfUnusedFileScopedDecl(D))
1447     UnusedFileScopedDecls.push_back(D);
1448 }
1449 
ShouldDiagnoseUnusedDecl(const NamedDecl * D)1450 static bool ShouldDiagnoseUnusedDecl(const NamedDecl *D) {
1451   if (D->isInvalidDecl())
1452     return false;
1453 
1454   if (D->isReferenced() || D->isUsed() || D->hasAttr<UnusedAttr>() ||
1455       D->hasAttr<ObjCPreciseLifetimeAttr>())
1456     return false;
1457 
1458   if (isa<LabelDecl>(D))
1459     return true;
1460 
1461   // Except for labels, we only care about unused decls that are local to
1462   // functions.
1463   bool WithinFunction = D->getDeclContext()->isFunctionOrMethod();
1464   if (const auto *R = dyn_cast<CXXRecordDecl>(D->getDeclContext()))
1465     // For dependent types, the diagnostic is deferred.
1466     WithinFunction =
1467         WithinFunction || (R->isLocalClass() && !R->isDependentType());
1468   if (!WithinFunction)
1469     return false;
1470 
1471   if (isa<TypedefNameDecl>(D))
1472     return true;
1473 
1474   // White-list anything that isn't a local variable.
1475   if (!isa<VarDecl>(D) || isa<ParmVarDecl>(D) || isa<ImplicitParamDecl>(D))
1476     return false;
1477 
1478   // Types of valid local variables should be complete, so this should succeed.
1479   if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1480 
1481     // White-list anything with an __attribute__((unused)) type.
1482     QualType Ty = VD->getType();
1483 
1484     // Only look at the outermost level of typedef.
1485     if (const TypedefType *TT = Ty->getAs<TypedefType>()) {
1486       if (TT->getDecl()->hasAttr<UnusedAttr>())
1487         return false;
1488     }
1489 
1490     // If we failed to complete the type for some reason, or if the type is
1491     // dependent, don't diagnose the variable.
1492     if (Ty->isIncompleteType() || Ty->isDependentType())
1493       return false;
1494 
1495     if (const TagType *TT = Ty->getAs<TagType>()) {
1496       const TagDecl *Tag = TT->getDecl();
1497       if (Tag->hasAttr<UnusedAttr>())
1498         return false;
1499 
1500       if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Tag)) {
1501         if (!RD->hasTrivialDestructor() && !RD->hasAttr<WarnUnusedAttr>())
1502           return false;
1503 
1504         if (const Expr *Init = VD->getInit()) {
1505           if (const ExprWithCleanups *Cleanups =
1506                   dyn_cast<ExprWithCleanups>(Init))
1507             Init = Cleanups->getSubExpr();
1508           const CXXConstructExpr *Construct =
1509             dyn_cast<CXXConstructExpr>(Init);
1510           if (Construct && !Construct->isElidable()) {
1511             CXXConstructorDecl *CD = Construct->getConstructor();
1512             if (!CD->isTrivial() && !RD->hasAttr<WarnUnusedAttr>())
1513               return false;
1514           }
1515         }
1516       }
1517     }
1518 
1519     // TODO: __attribute__((unused)) templates?
1520   }
1521 
1522   return true;
1523 }
1524 
GenerateFixForUnusedDecl(const NamedDecl * D,ASTContext & Ctx,FixItHint & Hint)1525 static void GenerateFixForUnusedDecl(const NamedDecl *D, ASTContext &Ctx,
1526                                      FixItHint &Hint) {
1527   if (isa<LabelDecl>(D)) {
1528     SourceLocation AfterColon = Lexer::findLocationAfterToken(D->getLocEnd(),
1529                 tok::colon, Ctx.getSourceManager(), Ctx.getLangOpts(), true);
1530     if (AfterColon.isInvalid())
1531       return;
1532     Hint = FixItHint::CreateRemoval(CharSourceRange::
1533                                     getCharRange(D->getLocStart(), AfterColon));
1534   }
1535   return;
1536 }
1537 
DiagnoseUnusedNestedTypedefs(const RecordDecl * D)1538 void Sema::DiagnoseUnusedNestedTypedefs(const RecordDecl *D) {
1539   if (D->getTypeForDecl()->isDependentType())
1540     return;
1541 
1542   for (auto *TmpD : D->decls()) {
1543     if (const auto *T = dyn_cast<TypedefNameDecl>(TmpD))
1544       DiagnoseUnusedDecl(T);
1545     else if(const auto *R = dyn_cast<RecordDecl>(TmpD))
1546       DiagnoseUnusedNestedTypedefs(R);
1547   }
1548 }
1549 
1550 /// DiagnoseUnusedDecl - Emit warnings about declarations that are not used
1551 /// unless they are marked attr(unused).
DiagnoseUnusedDecl(const NamedDecl * D)1552 void Sema::DiagnoseUnusedDecl(const NamedDecl *D) {
1553   if (!ShouldDiagnoseUnusedDecl(D))
1554     return;
1555 
1556   if (auto *TD = dyn_cast<TypedefNameDecl>(D)) {
1557     // typedefs can be referenced later on, so the diagnostics are emitted
1558     // at end-of-translation-unit.
1559     UnusedLocalTypedefNameCandidates.insert(TD);
1560     return;
1561   }
1562 
1563   FixItHint Hint;
1564   GenerateFixForUnusedDecl(D, Context, Hint);
1565 
1566   unsigned DiagID;
1567   if (isa<VarDecl>(D) && cast<VarDecl>(D)->isExceptionVariable())
1568     DiagID = diag::warn_unused_exception_param;
1569   else if (isa<LabelDecl>(D))
1570     DiagID = diag::warn_unused_label;
1571   else
1572     DiagID = diag::warn_unused_variable;
1573 
1574   Diag(D->getLocation(), DiagID) << D->getDeclName() << Hint;
1575 }
1576 
CheckPoppedLabel(LabelDecl * L,Sema & S)1577 static void CheckPoppedLabel(LabelDecl *L, Sema &S) {
1578   // Verify that we have no forward references left.  If so, there was a goto
1579   // or address of a label taken, but no definition of it.  Label fwd
1580   // definitions are indicated with a null substmt which is also not a resolved
1581   // MS inline assembly label name.
1582   bool Diagnose = false;
1583   if (L->isMSAsmLabel())
1584     Diagnose = !L->isResolvedMSAsmLabel();
1585   else
1586     Diagnose = L->getStmt() == nullptr;
1587   if (Diagnose)
1588     S.Diag(L->getLocation(), diag::err_undeclared_label_use) <<L->getDeclName();
1589 }
1590 
ActOnPopScope(SourceLocation Loc,Scope * S)1591 void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) {
1592   S->mergeNRVOIntoParent();
1593 
1594   if (S->decl_empty()) return;
1595   assert((S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) &&
1596          "Scope shouldn't contain decls!");
1597 
1598   for (auto *TmpD : S->decls()) {
1599     assert(TmpD && "This decl didn't get pushed??");
1600 
1601     assert(isa<NamedDecl>(TmpD) && "Decl isn't NamedDecl?");
1602     NamedDecl *D = cast<NamedDecl>(TmpD);
1603 
1604     if (!D->getDeclName()) continue;
1605 
1606     // Diagnose unused variables in this scope.
1607     if (!S->hasUnrecoverableErrorOccurred()) {
1608       DiagnoseUnusedDecl(D);
1609       if (const auto *RD = dyn_cast<RecordDecl>(D))
1610         DiagnoseUnusedNestedTypedefs(RD);
1611     }
1612 
1613     // If this was a forward reference to a label, verify it was defined.
1614     if (LabelDecl *LD = dyn_cast<LabelDecl>(D))
1615       CheckPoppedLabel(LD, *this);
1616 
1617     // Remove this name from our lexical scope.
1618     IdResolver.RemoveDecl(D);
1619   }
1620 }
1621 
1622 /// \brief Look for an Objective-C class in the translation unit.
1623 ///
1624 /// \param Id The name of the Objective-C class we're looking for. If
1625 /// typo-correction fixes this name, the Id will be updated
1626 /// to the fixed name.
1627 ///
1628 /// \param IdLoc The location of the name in the translation unit.
1629 ///
1630 /// \param DoTypoCorrection If true, this routine will attempt typo correction
1631 /// if there is no class with the given name.
1632 ///
1633 /// \returns The declaration of the named Objective-C class, or NULL if the
1634 /// class could not be found.
getObjCInterfaceDecl(IdentifierInfo * & Id,SourceLocation IdLoc,bool DoTypoCorrection)1635 ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *&Id,
1636                                               SourceLocation IdLoc,
1637                                               bool DoTypoCorrection) {
1638   // The third "scope" argument is 0 since we aren't enabling lazy built-in
1639   // creation from this context.
1640   NamedDecl *IDecl = LookupSingleName(TUScope, Id, IdLoc, LookupOrdinaryName);
1641 
1642   if (!IDecl && DoTypoCorrection) {
1643     // Perform typo correction at the given location, but only if we
1644     // find an Objective-C class name.
1645     if (TypoCorrection C = CorrectTypo(
1646             DeclarationNameInfo(Id, IdLoc), LookupOrdinaryName, TUScope, nullptr,
1647             llvm::make_unique<DeclFilterCCC<ObjCInterfaceDecl>>(),
1648             CTK_ErrorRecovery)) {
1649       diagnoseTypo(C, PDiag(diag::err_undef_interface_suggest) << Id);
1650       IDecl = C.getCorrectionDeclAs<ObjCInterfaceDecl>();
1651       Id = IDecl->getIdentifier();
1652     }
1653   }
1654   ObjCInterfaceDecl *Def = dyn_cast_or_null<ObjCInterfaceDecl>(IDecl);
1655   // This routine must always return a class definition, if any.
1656   if (Def && Def->getDefinition())
1657       Def = Def->getDefinition();
1658   return Def;
1659 }
1660 
1661 /// getNonFieldDeclScope - Retrieves the innermost scope, starting
1662 /// from S, where a non-field would be declared. This routine copes
1663 /// with the difference between C and C++ scoping rules in structs and
1664 /// unions. For example, the following code is well-formed in C but
1665 /// ill-formed in C++:
1666 /// @code
1667 /// struct S6 {
1668 ///   enum { BAR } e;
1669 /// };
1670 ///
1671 /// void test_S6() {
1672 ///   struct S6 a;
1673 ///   a.e = BAR;
1674 /// }
1675 /// @endcode
1676 /// For the declaration of BAR, this routine will return a different
1677 /// scope. The scope S will be the scope of the unnamed enumeration
1678 /// within S6. In C++, this routine will return the scope associated
1679 /// with S6, because the enumeration's scope is a transparent
1680 /// context but structures can contain non-field names. In C, this
1681 /// routine will return the translation unit scope, since the
1682 /// enumeration's scope is a transparent context and structures cannot
1683 /// contain non-field names.
getNonFieldDeclScope(Scope * S)1684 Scope *Sema::getNonFieldDeclScope(Scope *S) {
1685   while (((S->getFlags() & Scope::DeclScope) == 0) ||
1686          (S->getEntity() && S->getEntity()->isTransparentContext()) ||
1687          (S->isClassScope() && !getLangOpts().CPlusPlus))
1688     S = S->getParent();
1689   return S;
1690 }
1691 
1692 /// \brief Looks up the declaration of "struct objc_super" and
1693 /// saves it for later use in building builtin declaration of
1694 /// objc_msgSendSuper and objc_msgSendSuper_stret. If no such
1695 /// pre-existing declaration exists no action takes place.
LookupPredefedObjCSuperType(Sema & ThisSema,Scope * S,IdentifierInfo * II)1696 static void LookupPredefedObjCSuperType(Sema &ThisSema, Scope *S,
1697                                         IdentifierInfo *II) {
1698   if (!II->isStr("objc_msgSendSuper"))
1699     return;
1700   ASTContext &Context = ThisSema.Context;
1701 
1702   LookupResult Result(ThisSema, &Context.Idents.get("objc_super"),
1703                       SourceLocation(), Sema::LookupTagName);
1704   ThisSema.LookupName(Result, S);
1705   if (Result.getResultKind() == LookupResult::Found)
1706     if (const TagDecl *TD = Result.getAsSingle<TagDecl>())
1707       Context.setObjCSuperType(Context.getTagDeclType(TD));
1708 }
1709 
getHeaderName(ASTContext::GetBuiltinTypeError Error)1710 static StringRef getHeaderName(ASTContext::GetBuiltinTypeError Error) {
1711   switch (Error) {
1712   case ASTContext::GE_None:
1713     return "";
1714   case ASTContext::GE_Missing_stdio:
1715     return "stdio.h";
1716   case ASTContext::GE_Missing_setjmp:
1717     return "setjmp.h";
1718   case ASTContext::GE_Missing_ucontext:
1719     return "ucontext.h";
1720   }
1721   llvm_unreachable("unhandled error kind");
1722 }
1723 
1724 /// LazilyCreateBuiltin - The specified Builtin-ID was first used at
1725 /// file scope.  lazily create a decl for it. ForRedeclaration is true
1726 /// if we're creating this built-in in anticipation of redeclaring the
1727 /// built-in.
LazilyCreateBuiltin(IdentifierInfo * II,unsigned ID,Scope * S,bool ForRedeclaration,SourceLocation Loc)1728 NamedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned ID,
1729                                      Scope *S, bool ForRedeclaration,
1730                                      SourceLocation Loc) {
1731   LookupPredefedObjCSuperType(*this, S, II);
1732 
1733   ASTContext::GetBuiltinTypeError Error;
1734   QualType R = Context.GetBuiltinType(ID, Error);
1735   if (Error) {
1736     if (ForRedeclaration)
1737       Diag(Loc, diag::warn_implicit_decl_requires_sysheader)
1738           << getHeaderName(Error) << Context.BuiltinInfo.getName(ID);
1739     return nullptr;
1740   }
1741 
1742   if (!ForRedeclaration && Context.BuiltinInfo.isPredefinedLibFunction(ID)) {
1743     Diag(Loc, diag::ext_implicit_lib_function_decl)
1744         << Context.BuiltinInfo.getName(ID) << R;
1745     if (Context.BuiltinInfo.getHeaderName(ID) &&
1746         !Diags.isIgnored(diag::ext_implicit_lib_function_decl, Loc))
1747       Diag(Loc, diag::note_include_header_or_declare)
1748           << Context.BuiltinInfo.getHeaderName(ID)
1749           << Context.BuiltinInfo.getName(ID);
1750   }
1751 
1752   DeclContext *Parent = Context.getTranslationUnitDecl();
1753   if (getLangOpts().CPlusPlus) {
1754     LinkageSpecDecl *CLinkageDecl =
1755         LinkageSpecDecl::Create(Context, Parent, Loc, Loc,
1756                                 LinkageSpecDecl::lang_c, false);
1757     CLinkageDecl->setImplicit();
1758     Parent->addDecl(CLinkageDecl);
1759     Parent = CLinkageDecl;
1760   }
1761 
1762   FunctionDecl *New = FunctionDecl::Create(Context,
1763                                            Parent,
1764                                            Loc, Loc, II, R, /*TInfo=*/nullptr,
1765                                            SC_Extern,
1766                                            false,
1767                                            R->isFunctionProtoType());
1768   New->setImplicit();
1769 
1770   // Create Decl objects for each parameter, adding them to the
1771   // FunctionDecl.
1772   if (const FunctionProtoType *FT = dyn_cast<FunctionProtoType>(R)) {
1773     SmallVector<ParmVarDecl*, 16> Params;
1774     for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) {
1775       ParmVarDecl *parm =
1776           ParmVarDecl::Create(Context, New, SourceLocation(), SourceLocation(),
1777                               nullptr, FT->getParamType(i), /*TInfo=*/nullptr,
1778                               SC_None, nullptr);
1779       parm->setScopeInfo(0, i);
1780       Params.push_back(parm);
1781     }
1782     New->setParams(Params);
1783   }
1784 
1785   AddKnownFunctionAttributes(New);
1786   RegisterLocallyScopedExternCDecl(New, S);
1787 
1788   // TUScope is the translation-unit scope to insert this function into.
1789   // FIXME: This is hideous. We need to teach PushOnScopeChains to
1790   // relate Scopes to DeclContexts, and probably eliminate CurContext
1791   // entirely, but we're not there yet.
1792   DeclContext *SavedContext = CurContext;
1793   CurContext = Parent;
1794   PushOnScopeChains(New, TUScope);
1795   CurContext = SavedContext;
1796   return New;
1797 }
1798 
1799 /// Typedef declarations don't have linkage, but they still denote the same
1800 /// entity if their types are the same.
1801 /// FIXME: This is notionally doing the same thing as ASTReaderDecl's
1802 /// isSameEntity.
filterNonConflictingPreviousTypedefDecls(Sema & S,TypedefNameDecl * Decl,LookupResult & Previous)1803 static void filterNonConflictingPreviousTypedefDecls(Sema &S,
1804                                                      TypedefNameDecl *Decl,
1805                                                      LookupResult &Previous) {
1806   // This is only interesting when modules are enabled.
1807   if (!S.getLangOpts().Modules && !S.getLangOpts().ModulesLocalVisibility)
1808     return;
1809 
1810   // Empty sets are uninteresting.
1811   if (Previous.empty())
1812     return;
1813 
1814   LookupResult::Filter Filter = Previous.makeFilter();
1815   while (Filter.hasNext()) {
1816     NamedDecl *Old = Filter.next();
1817 
1818     // Non-hidden declarations are never ignored.
1819     if (S.isVisible(Old))
1820       continue;
1821 
1822     // Declarations of the same entity are not ignored, even if they have
1823     // different linkages.
1824     if (auto *OldTD = dyn_cast<TypedefNameDecl>(Old)) {
1825       if (S.Context.hasSameType(OldTD->getUnderlyingType(),
1826                                 Decl->getUnderlyingType()))
1827         continue;
1828 
1829       // If both declarations give a tag declaration a typedef name for linkage
1830       // purposes, then they declare the same entity.
1831       if (S.getLangOpts().CPlusPlus &&
1832           OldTD->getAnonDeclWithTypedefName(/*AnyRedecl*/true) &&
1833           Decl->getAnonDeclWithTypedefName())
1834         continue;
1835     }
1836 
1837     Filter.erase();
1838   }
1839 
1840   Filter.done();
1841 }
1842 
isIncompatibleTypedef(TypeDecl * Old,TypedefNameDecl * New)1843 bool Sema::isIncompatibleTypedef(TypeDecl *Old, TypedefNameDecl *New) {
1844   QualType OldType;
1845   if (TypedefNameDecl *OldTypedef = dyn_cast<TypedefNameDecl>(Old))
1846     OldType = OldTypedef->getUnderlyingType();
1847   else
1848     OldType = Context.getTypeDeclType(Old);
1849   QualType NewType = New->getUnderlyingType();
1850 
1851   if (NewType->isVariablyModifiedType()) {
1852     // Must not redefine a typedef with a variably-modified type.
1853     int Kind = isa<TypeAliasDecl>(Old) ? 1 : 0;
1854     Diag(New->getLocation(), diag::err_redefinition_variably_modified_typedef)
1855       << Kind << NewType;
1856     if (Old->getLocation().isValid())
1857       Diag(Old->getLocation(), diag::note_previous_definition);
1858     New->setInvalidDecl();
1859     return true;
1860   }
1861 
1862   if (OldType != NewType &&
1863       !OldType->isDependentType() &&
1864       !NewType->isDependentType() &&
1865       !Context.hasSameType(OldType, NewType)) {
1866     int Kind = isa<TypeAliasDecl>(Old) ? 1 : 0;
1867     Diag(New->getLocation(), diag::err_redefinition_different_typedef)
1868       << Kind << NewType << OldType;
1869     if (Old->getLocation().isValid())
1870       Diag(Old->getLocation(), diag::note_previous_definition);
1871     New->setInvalidDecl();
1872     return true;
1873   }
1874   return false;
1875 }
1876 
1877 /// MergeTypedefNameDecl - We just parsed a typedef 'New' which has the
1878 /// same name and scope as a previous declaration 'Old'.  Figure out
1879 /// how to resolve this situation, merging decls or emitting
1880 /// diagnostics as appropriate. If there was an error, set New to be invalid.
1881 ///
MergeTypedefNameDecl(Scope * S,TypedefNameDecl * New,LookupResult & OldDecls)1882 void Sema::MergeTypedefNameDecl(Scope *S, TypedefNameDecl *New,
1883                                 LookupResult &OldDecls) {
1884   // If the new decl is known invalid already, don't bother doing any
1885   // merging checks.
1886   if (New->isInvalidDecl()) return;
1887 
1888   // Allow multiple definitions for ObjC built-in typedefs.
1889   // FIXME: Verify the underlying types are equivalent!
1890   if (getLangOpts().ObjC1) {
1891     const IdentifierInfo *TypeID = New->getIdentifier();
1892     switch (TypeID->getLength()) {
1893     default: break;
1894     case 2:
1895       {
1896         if (!TypeID->isStr("id"))
1897           break;
1898         QualType T = New->getUnderlyingType();
1899         if (!T->isPointerType())
1900           break;
1901         if (!T->isVoidPointerType()) {
1902           QualType PT = T->getAs<PointerType>()->getPointeeType();
1903           if (!PT->isStructureType())
1904             break;
1905         }
1906         Context.setObjCIdRedefinitionType(T);
1907         // Install the built-in type for 'id', ignoring the current definition.
1908         New->setTypeForDecl(Context.getObjCIdType().getTypePtr());
1909         return;
1910       }
1911     case 5:
1912       if (!TypeID->isStr("Class"))
1913         break;
1914       Context.setObjCClassRedefinitionType(New->getUnderlyingType());
1915       // Install the built-in type for 'Class', ignoring the current definition.
1916       New->setTypeForDecl(Context.getObjCClassType().getTypePtr());
1917       return;
1918     case 3:
1919       if (!TypeID->isStr("SEL"))
1920         break;
1921       Context.setObjCSelRedefinitionType(New->getUnderlyingType());
1922       // Install the built-in type for 'SEL', ignoring the current definition.
1923       New->setTypeForDecl(Context.getObjCSelType().getTypePtr());
1924       return;
1925     }
1926     // Fall through - the typedef name was not a builtin type.
1927   }
1928 
1929   // Verify the old decl was also a type.
1930   TypeDecl *Old = OldDecls.getAsSingle<TypeDecl>();
1931   if (!Old) {
1932     Diag(New->getLocation(), diag::err_redefinition_different_kind)
1933       << New->getDeclName();
1934 
1935     NamedDecl *OldD = OldDecls.getRepresentativeDecl();
1936     if (OldD->getLocation().isValid())
1937       Diag(OldD->getLocation(), diag::note_previous_definition);
1938 
1939     return New->setInvalidDecl();
1940   }
1941 
1942   // If the old declaration is invalid, just give up here.
1943   if (Old->isInvalidDecl())
1944     return New->setInvalidDecl();
1945 
1946   if (auto *OldTD = dyn_cast<TypedefNameDecl>(Old)) {
1947     auto *OldTag = OldTD->getAnonDeclWithTypedefName(/*AnyRedecl*/true);
1948     auto *NewTag = New->getAnonDeclWithTypedefName();
1949     NamedDecl *Hidden = nullptr;
1950     if (getLangOpts().CPlusPlus && OldTag && NewTag &&
1951         OldTag->getCanonicalDecl() != NewTag->getCanonicalDecl() &&
1952         !hasVisibleDefinition(OldTag, &Hidden)) {
1953       // There is a definition of this tag, but it is not visible. Use it
1954       // instead of our tag.
1955       New->setTypeForDecl(OldTD->getTypeForDecl());
1956       if (OldTD->isModed())
1957         New->setModedTypeSourceInfo(OldTD->getTypeSourceInfo(),
1958                                     OldTD->getUnderlyingType());
1959       else
1960         New->setTypeSourceInfo(OldTD->getTypeSourceInfo());
1961 
1962       // Make the old tag definition visible.
1963       makeMergedDefinitionVisible(Hidden, NewTag->getLocation());
1964 
1965       // If this was an unscoped enumeration, yank all of its enumerators
1966       // out of the scope.
1967       if (isa<EnumDecl>(NewTag)) {
1968         Scope *EnumScope = getNonFieldDeclScope(S);
1969         for (auto *D : NewTag->decls()) {
1970           auto *ED = cast<EnumConstantDecl>(D);
1971           assert(EnumScope->isDeclScope(ED));
1972           EnumScope->RemoveDecl(ED);
1973           IdResolver.RemoveDecl(ED);
1974           ED->getLexicalDeclContext()->removeDecl(ED);
1975         }
1976       }
1977     }
1978   }
1979 
1980   // If the typedef types are not identical, reject them in all languages and
1981   // with any extensions enabled.
1982   if (isIncompatibleTypedef(Old, New))
1983     return;
1984 
1985   // The types match.  Link up the redeclaration chain and merge attributes if
1986   // the old declaration was a typedef.
1987   if (TypedefNameDecl *Typedef = dyn_cast<TypedefNameDecl>(Old)) {
1988     New->setPreviousDecl(Typedef);
1989     mergeDeclAttributes(New, Old);
1990   }
1991 
1992   if (getLangOpts().MicrosoftExt)
1993     return;
1994 
1995   if (getLangOpts().CPlusPlus) {
1996     // C++ [dcl.typedef]p2:
1997     //   In a given non-class scope, a typedef specifier can be used to
1998     //   redefine the name of any type declared in that scope to refer
1999     //   to the type to which it already refers.
2000     if (!isa<CXXRecordDecl>(CurContext))
2001       return;
2002 
2003     // C++0x [dcl.typedef]p4:
2004     //   In a given class scope, a typedef specifier can be used to redefine
2005     //   any class-name declared in that scope that is not also a typedef-name
2006     //   to refer to the type to which it already refers.
2007     //
2008     // This wording came in via DR424, which was a correction to the
2009     // wording in DR56, which accidentally banned code like:
2010     //
2011     //   struct S {
2012     //     typedef struct A { } A;
2013     //   };
2014     //
2015     // in the C++03 standard. We implement the C++0x semantics, which
2016     // allow the above but disallow
2017     //
2018     //   struct S {
2019     //     typedef int I;
2020     //     typedef int I;
2021     //   };
2022     //
2023     // since that was the intent of DR56.
2024     if (!isa<TypedefNameDecl>(Old))
2025       return;
2026 
2027     Diag(New->getLocation(), diag::err_redefinition)
2028       << New->getDeclName();
2029     Diag(Old->getLocation(), diag::note_previous_definition);
2030     return New->setInvalidDecl();
2031   }
2032 
2033   // Modules always permit redefinition of typedefs, as does C11.
2034   if (getLangOpts().Modules || getLangOpts().C11)
2035     return;
2036 
2037   // If we have a redefinition of a typedef in C, emit a warning.  This warning
2038   // is normally mapped to an error, but can be controlled with
2039   // -Wtypedef-redefinition.  If either the original or the redefinition is
2040   // in a system header, don't emit this for compatibility with GCC.
2041   if (getDiagnostics().getSuppressSystemWarnings() &&
2042       (Context.getSourceManager().isInSystemHeader(Old->getLocation()) ||
2043        Context.getSourceManager().isInSystemHeader(New->getLocation())))
2044     return;
2045 
2046   Diag(New->getLocation(), diag::ext_redefinition_of_typedef)
2047     << New->getDeclName();
2048   Diag(Old->getLocation(), diag::note_previous_definition);
2049 }
2050 
2051 /// DeclhasAttr - returns true if decl Declaration already has the target
2052 /// attribute.
DeclHasAttr(const Decl * D,const Attr * A)2053 static bool DeclHasAttr(const Decl *D, const Attr *A) {
2054   const OwnershipAttr *OA = dyn_cast<OwnershipAttr>(A);
2055   const AnnotateAttr *Ann = dyn_cast<AnnotateAttr>(A);
2056   for (const auto *i : D->attrs())
2057     if (i->getKind() == A->getKind()) {
2058       if (Ann) {
2059         if (Ann->getAnnotation() == cast<AnnotateAttr>(i)->getAnnotation())
2060           return true;
2061         continue;
2062       }
2063       // FIXME: Don't hardcode this check
2064       if (OA && isa<OwnershipAttr>(i))
2065         return OA->getOwnKind() == cast<OwnershipAttr>(i)->getOwnKind();
2066       return true;
2067     }
2068 
2069   return false;
2070 }
2071 
isAttributeTargetADefinition(Decl * D)2072 static bool isAttributeTargetADefinition(Decl *D) {
2073   if (VarDecl *VD = dyn_cast<VarDecl>(D))
2074     return VD->isThisDeclarationADefinition();
2075   if (TagDecl *TD = dyn_cast<TagDecl>(D))
2076     return TD->isCompleteDefinition() || TD->isBeingDefined();
2077   return true;
2078 }
2079 
2080 /// Merge alignment attributes from \p Old to \p New, taking into account the
2081 /// special semantics of C11's _Alignas specifier and C++11's alignas attribute.
2082 ///
2083 /// \return \c true if any attributes were added to \p New.
mergeAlignedAttrs(Sema & S,NamedDecl * New,Decl * Old)2084 static bool mergeAlignedAttrs(Sema &S, NamedDecl *New, Decl *Old) {
2085   // Look for alignas attributes on Old, and pick out whichever attribute
2086   // specifies the strictest alignment requirement.
2087   AlignedAttr *OldAlignasAttr = nullptr;
2088   AlignedAttr *OldStrictestAlignAttr = nullptr;
2089   unsigned OldAlign = 0;
2090   for (auto *I : Old->specific_attrs<AlignedAttr>()) {
2091     // FIXME: We have no way of representing inherited dependent alignments
2092     // in a case like:
2093     //   template<int A, int B> struct alignas(A) X;
2094     //   template<int A, int B> struct alignas(B) X {};
2095     // For now, we just ignore any alignas attributes which are not on the
2096     // definition in such a case.
2097     if (I->isAlignmentDependent())
2098       return false;
2099 
2100     if (I->isAlignas())
2101       OldAlignasAttr = I;
2102 
2103     unsigned Align = I->getAlignment(S.Context);
2104     if (Align > OldAlign) {
2105       OldAlign = Align;
2106       OldStrictestAlignAttr = I;
2107     }
2108   }
2109 
2110   // Look for alignas attributes on New.
2111   AlignedAttr *NewAlignasAttr = nullptr;
2112   unsigned NewAlign = 0;
2113   for (auto *I : New->specific_attrs<AlignedAttr>()) {
2114     if (I->isAlignmentDependent())
2115       return false;
2116 
2117     if (I->isAlignas())
2118       NewAlignasAttr = I;
2119 
2120     unsigned Align = I->getAlignment(S.Context);
2121     if (Align > NewAlign)
2122       NewAlign = Align;
2123   }
2124 
2125   if (OldAlignasAttr && NewAlignasAttr && OldAlign != NewAlign) {
2126     // Both declarations have 'alignas' attributes. We require them to match.
2127     // C++11 [dcl.align]p6 and C11 6.7.5/7 both come close to saying this, but
2128     // fall short. (If two declarations both have alignas, they must both match
2129     // every definition, and so must match each other if there is a definition.)
2130 
2131     // If either declaration only contains 'alignas(0)' specifiers, then it
2132     // specifies the natural alignment for the type.
2133     if (OldAlign == 0 || NewAlign == 0) {
2134       QualType Ty;
2135       if (ValueDecl *VD = dyn_cast<ValueDecl>(New))
2136         Ty = VD->getType();
2137       else
2138         Ty = S.Context.getTagDeclType(cast<TagDecl>(New));
2139 
2140       if (OldAlign == 0)
2141         OldAlign = S.Context.getTypeAlign(Ty);
2142       if (NewAlign == 0)
2143         NewAlign = S.Context.getTypeAlign(Ty);
2144     }
2145 
2146     if (OldAlign != NewAlign) {
2147       S.Diag(NewAlignasAttr->getLocation(), diag::err_alignas_mismatch)
2148         << (unsigned)S.Context.toCharUnitsFromBits(OldAlign).getQuantity()
2149         << (unsigned)S.Context.toCharUnitsFromBits(NewAlign).getQuantity();
2150       S.Diag(OldAlignasAttr->getLocation(), diag::note_previous_declaration);
2151     }
2152   }
2153 
2154   if (OldAlignasAttr && !NewAlignasAttr && isAttributeTargetADefinition(New)) {
2155     // C++11 [dcl.align]p6:
2156     //   if any declaration of an entity has an alignment-specifier,
2157     //   every defining declaration of that entity shall specify an
2158     //   equivalent alignment.
2159     // C11 6.7.5/7:
2160     //   If the definition of an object does not have an alignment
2161     //   specifier, any other declaration of that object shall also
2162     //   have no alignment specifier.
2163     S.Diag(New->getLocation(), diag::err_alignas_missing_on_definition)
2164       << OldAlignasAttr;
2165     S.Diag(OldAlignasAttr->getLocation(), diag::note_alignas_on_declaration)
2166       << OldAlignasAttr;
2167   }
2168 
2169   bool AnyAdded = false;
2170 
2171   // Ensure we have an attribute representing the strictest alignment.
2172   if (OldAlign > NewAlign) {
2173     AlignedAttr *Clone = OldStrictestAlignAttr->clone(S.Context);
2174     Clone->setInherited(true);
2175     New->addAttr(Clone);
2176     AnyAdded = true;
2177   }
2178 
2179   // Ensure we have an alignas attribute if the old declaration had one.
2180   if (OldAlignasAttr && !NewAlignasAttr &&
2181       !(AnyAdded && OldStrictestAlignAttr->isAlignas())) {
2182     AlignedAttr *Clone = OldAlignasAttr->clone(S.Context);
2183     Clone->setInherited(true);
2184     New->addAttr(Clone);
2185     AnyAdded = true;
2186   }
2187 
2188   return AnyAdded;
2189 }
2190 
mergeDeclAttribute(Sema & S,NamedDecl * D,const InheritableAttr * Attr,Sema::AvailabilityMergeKind AMK)2191 static bool mergeDeclAttribute(Sema &S, NamedDecl *D,
2192                                const InheritableAttr *Attr,
2193                                Sema::AvailabilityMergeKind AMK) {
2194   InheritableAttr *NewAttr = nullptr;
2195   unsigned AttrSpellingListIndex = Attr->getSpellingListIndex();
2196   if (const auto *AA = dyn_cast<AvailabilityAttr>(Attr))
2197     NewAttr = S.mergeAvailabilityAttr(D, AA->getRange(), AA->getPlatform(),
2198                                       AA->getIntroduced(), AA->getDeprecated(),
2199                                       AA->getObsoleted(), AA->getUnavailable(),
2200                                       AA->getMessage(), AMK,
2201                                       AttrSpellingListIndex);
2202   else if (const auto *VA = dyn_cast<VisibilityAttr>(Attr))
2203     NewAttr = S.mergeVisibilityAttr(D, VA->getRange(), VA->getVisibility(),
2204                                     AttrSpellingListIndex);
2205   else if (const auto *VA = dyn_cast<TypeVisibilityAttr>(Attr))
2206     NewAttr = S.mergeTypeVisibilityAttr(D, VA->getRange(), VA->getVisibility(),
2207                                         AttrSpellingListIndex);
2208   else if (const auto *ImportA = dyn_cast<DLLImportAttr>(Attr))
2209     NewAttr = S.mergeDLLImportAttr(D, ImportA->getRange(),
2210                                    AttrSpellingListIndex);
2211   else if (const auto *ExportA = dyn_cast<DLLExportAttr>(Attr))
2212     NewAttr = S.mergeDLLExportAttr(D, ExportA->getRange(),
2213                                    AttrSpellingListIndex);
2214   else if (const auto *FA = dyn_cast<FormatAttr>(Attr))
2215     NewAttr = S.mergeFormatAttr(D, FA->getRange(), FA->getType(),
2216                                 FA->getFormatIdx(), FA->getFirstArg(),
2217                                 AttrSpellingListIndex);
2218   else if (const auto *SA = dyn_cast<SectionAttr>(Attr))
2219     NewAttr = S.mergeSectionAttr(D, SA->getRange(), SA->getName(),
2220                                  AttrSpellingListIndex);
2221   else if (const auto *IA = dyn_cast<MSInheritanceAttr>(Attr))
2222     NewAttr = S.mergeMSInheritanceAttr(D, IA->getRange(), IA->getBestCase(),
2223                                        AttrSpellingListIndex,
2224                                        IA->getSemanticSpelling());
2225   else if (const auto *AA = dyn_cast<AlwaysInlineAttr>(Attr))
2226     NewAttr = S.mergeAlwaysInlineAttr(D, AA->getRange(),
2227                                       &S.Context.Idents.get(AA->getSpelling()),
2228                                       AttrSpellingListIndex);
2229   else if (const auto *MA = dyn_cast<MinSizeAttr>(Attr))
2230     NewAttr = S.mergeMinSizeAttr(D, MA->getRange(), AttrSpellingListIndex);
2231   else if (const auto *OA = dyn_cast<OptimizeNoneAttr>(Attr))
2232     NewAttr = S.mergeOptimizeNoneAttr(D, OA->getRange(), AttrSpellingListIndex);
2233   else if (const auto *InternalLinkageA = dyn_cast<InternalLinkageAttr>(Attr))
2234     NewAttr = S.mergeInternalLinkageAttr(
2235         D, InternalLinkageA->getRange(),
2236         &S.Context.Idents.get(InternalLinkageA->getSpelling()),
2237         AttrSpellingListIndex);
2238   else if (const auto *CommonA = dyn_cast<CommonAttr>(Attr))
2239     NewAttr = S.mergeCommonAttr(D, CommonA->getRange(),
2240                                 &S.Context.Idents.get(CommonA->getSpelling()),
2241                                 AttrSpellingListIndex);
2242   else if (isa<AlignedAttr>(Attr))
2243     // AlignedAttrs are handled separately, because we need to handle all
2244     // such attributes on a declaration at the same time.
2245     NewAttr = nullptr;
2246   else if ((isa<DeprecatedAttr>(Attr) || isa<UnavailableAttr>(Attr)) &&
2247            (AMK == Sema::AMK_Override ||
2248             AMK == Sema::AMK_ProtocolImplementation))
2249     NewAttr = nullptr;
2250   else if (Attr->duplicatesAllowed() || !DeclHasAttr(D, Attr))
2251     NewAttr = cast<InheritableAttr>(Attr->clone(S.Context));
2252 
2253   if (NewAttr) {
2254     NewAttr->setInherited(true);
2255     D->addAttr(NewAttr);
2256     return true;
2257   }
2258 
2259   return false;
2260 }
2261 
getDefinition(const Decl * D)2262 static const Decl *getDefinition(const Decl *D) {
2263   if (const TagDecl *TD = dyn_cast<TagDecl>(D))
2264     return TD->getDefinition();
2265   if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
2266     const VarDecl *Def = VD->getDefinition();
2267     if (Def)
2268       return Def;
2269     return VD->getActingDefinition();
2270   }
2271   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
2272     const FunctionDecl* Def;
2273     if (FD->isDefined(Def))
2274       return Def;
2275   }
2276   return nullptr;
2277 }
2278 
hasAttribute(const Decl * D,attr::Kind Kind)2279 static bool hasAttribute(const Decl *D, attr::Kind Kind) {
2280   for (const auto *Attribute : D->attrs())
2281     if (Attribute->getKind() == Kind)
2282       return true;
2283   return false;
2284 }
2285 
2286 /// checkNewAttributesAfterDef - If we already have a definition, check that
2287 /// there are no new attributes in this declaration.
checkNewAttributesAfterDef(Sema & S,Decl * New,const Decl * Old)2288 static void checkNewAttributesAfterDef(Sema &S, Decl *New, const Decl *Old) {
2289   if (!New->hasAttrs())
2290     return;
2291 
2292   const Decl *Def = getDefinition(Old);
2293   if (!Def || Def == New)
2294     return;
2295 
2296   AttrVec &NewAttributes = New->getAttrs();
2297   for (unsigned I = 0, E = NewAttributes.size(); I != E;) {
2298     const Attr *NewAttribute = NewAttributes[I];
2299 
2300     if (isa<AliasAttr>(NewAttribute)) {
2301       if (FunctionDecl *FD = dyn_cast<FunctionDecl>(New)) {
2302         Sema::SkipBodyInfo SkipBody;
2303         S.CheckForFunctionRedefinition(FD, cast<FunctionDecl>(Def), &SkipBody);
2304 
2305         // If we're skipping this definition, drop the "alias" attribute.
2306         if (SkipBody.ShouldSkip) {
2307           NewAttributes.erase(NewAttributes.begin() + I);
2308           --E;
2309           continue;
2310         }
2311       } else {
2312         VarDecl *VD = cast<VarDecl>(New);
2313         unsigned Diag = cast<VarDecl>(Def)->isThisDeclarationADefinition() ==
2314                                 VarDecl::TentativeDefinition
2315                             ? diag::err_alias_after_tentative
2316                             : diag::err_redefinition;
2317         S.Diag(VD->getLocation(), Diag) << VD->getDeclName();
2318         S.Diag(Def->getLocation(), diag::note_previous_definition);
2319         VD->setInvalidDecl();
2320       }
2321       ++I;
2322       continue;
2323     }
2324 
2325     if (const VarDecl *VD = dyn_cast<VarDecl>(Def)) {
2326       // Tentative definitions are only interesting for the alias check above.
2327       if (VD->isThisDeclarationADefinition() != VarDecl::Definition) {
2328         ++I;
2329         continue;
2330       }
2331     }
2332 
2333     if (hasAttribute(Def, NewAttribute->getKind())) {
2334       ++I;
2335       continue; // regular attr merging will take care of validating this.
2336     }
2337 
2338     if (isa<C11NoReturnAttr>(NewAttribute)) {
2339       // C's _Noreturn is allowed to be added to a function after it is defined.
2340       ++I;
2341       continue;
2342     } else if (const AlignedAttr *AA = dyn_cast<AlignedAttr>(NewAttribute)) {
2343       if (AA->isAlignas()) {
2344         // C++11 [dcl.align]p6:
2345         //   if any declaration of an entity has an alignment-specifier,
2346         //   every defining declaration of that entity shall specify an
2347         //   equivalent alignment.
2348         // C11 6.7.5/7:
2349         //   If the definition of an object does not have an alignment
2350         //   specifier, any other declaration of that object shall also
2351         //   have no alignment specifier.
2352         S.Diag(Def->getLocation(), diag::err_alignas_missing_on_definition)
2353           << AA;
2354         S.Diag(NewAttribute->getLocation(), diag::note_alignas_on_declaration)
2355           << AA;
2356         NewAttributes.erase(NewAttributes.begin() + I);
2357         --E;
2358         continue;
2359       }
2360     }
2361 
2362     S.Diag(NewAttribute->getLocation(),
2363            diag::warn_attribute_precede_definition);
2364     S.Diag(Def->getLocation(), diag::note_previous_definition);
2365     NewAttributes.erase(NewAttributes.begin() + I);
2366     --E;
2367   }
2368 }
2369 
2370 /// mergeDeclAttributes - Copy attributes from the Old decl to the New one.
mergeDeclAttributes(NamedDecl * New,Decl * Old,AvailabilityMergeKind AMK)2371 void Sema::mergeDeclAttributes(NamedDecl *New, Decl *Old,
2372                                AvailabilityMergeKind AMK) {
2373   if (UsedAttr *OldAttr = Old->getMostRecentDecl()->getAttr<UsedAttr>()) {
2374     UsedAttr *NewAttr = OldAttr->clone(Context);
2375     NewAttr->setInherited(true);
2376     New->addAttr(NewAttr);
2377   }
2378 
2379   if (!Old->hasAttrs() && !New->hasAttrs())
2380     return;
2381 
2382   // Attributes declared post-definition are currently ignored.
2383   checkNewAttributesAfterDef(*this, New, Old);
2384 
2385   if (AsmLabelAttr *NewA = New->getAttr<AsmLabelAttr>()) {
2386     if (AsmLabelAttr *OldA = Old->getAttr<AsmLabelAttr>()) {
2387       if (OldA->getLabel() != NewA->getLabel()) {
2388         // This redeclaration changes __asm__ label.
2389         Diag(New->getLocation(), diag::err_different_asm_label);
2390         Diag(OldA->getLocation(), diag::note_previous_declaration);
2391       }
2392     } else if (Old->isUsed()) {
2393       // This redeclaration adds an __asm__ label to a declaration that has
2394       // already been ODR-used.
2395       Diag(New->getLocation(), diag::err_late_asm_label_name)
2396         << isa<FunctionDecl>(Old) << New->getAttr<AsmLabelAttr>()->getRange();
2397     }
2398   }
2399 
2400   if (!Old->hasAttrs())
2401     return;
2402 
2403   bool foundAny = New->hasAttrs();
2404 
2405   // Ensure that any moving of objects within the allocated map is done before
2406   // we process them.
2407   if (!foundAny) New->setAttrs(AttrVec());
2408 
2409   for (auto *I : Old->specific_attrs<InheritableAttr>()) {
2410     // Ignore deprecated/unavailable/availability attributes if requested.
2411     AvailabilityMergeKind LocalAMK = AMK_None;
2412     if (isa<DeprecatedAttr>(I) ||
2413         isa<UnavailableAttr>(I) ||
2414         isa<AvailabilityAttr>(I)) {
2415       switch (AMK) {
2416       case AMK_None:
2417         continue;
2418 
2419       case AMK_Redeclaration:
2420       case AMK_Override:
2421       case AMK_ProtocolImplementation:
2422         LocalAMK = AMK;
2423         break;
2424       }
2425     }
2426 
2427     // Already handled.
2428     if (isa<UsedAttr>(I))
2429       continue;
2430 
2431     if (mergeDeclAttribute(*this, New, I, LocalAMK))
2432       foundAny = true;
2433   }
2434 
2435   if (mergeAlignedAttrs(*this, New, Old))
2436     foundAny = true;
2437 
2438   if (!foundAny) New->dropAttrs();
2439 }
2440 
2441 /// mergeParamDeclAttributes - Copy attributes from the old parameter
2442 /// to the new one.
mergeParamDeclAttributes(ParmVarDecl * newDecl,const ParmVarDecl * oldDecl,Sema & S)2443 static void mergeParamDeclAttributes(ParmVarDecl *newDecl,
2444                                      const ParmVarDecl *oldDecl,
2445                                      Sema &S) {
2446   // C++11 [dcl.attr.depend]p2:
2447   //   The first declaration of a function shall specify the
2448   //   carries_dependency attribute for its declarator-id if any declaration
2449   //   of the function specifies the carries_dependency attribute.
2450   const CarriesDependencyAttr *CDA = newDecl->getAttr<CarriesDependencyAttr>();
2451   if (CDA && !oldDecl->hasAttr<CarriesDependencyAttr>()) {
2452     S.Diag(CDA->getLocation(),
2453            diag::err_carries_dependency_missing_on_first_decl) << 1/*Param*/;
2454     // Find the first declaration of the parameter.
2455     // FIXME: Should we build redeclaration chains for function parameters?
2456     const FunctionDecl *FirstFD =
2457       cast<FunctionDecl>(oldDecl->getDeclContext())->getFirstDecl();
2458     const ParmVarDecl *FirstVD =
2459       FirstFD->getParamDecl(oldDecl->getFunctionScopeIndex());
2460     S.Diag(FirstVD->getLocation(),
2461            diag::note_carries_dependency_missing_first_decl) << 1/*Param*/;
2462   }
2463 
2464   if (!oldDecl->hasAttrs())
2465     return;
2466 
2467   bool foundAny = newDecl->hasAttrs();
2468 
2469   // Ensure that any moving of objects within the allocated map is
2470   // done before we process them.
2471   if (!foundAny) newDecl->setAttrs(AttrVec());
2472 
2473   for (const auto *I : oldDecl->specific_attrs<InheritableParamAttr>()) {
2474     if (!DeclHasAttr(newDecl, I)) {
2475       InheritableAttr *newAttr =
2476         cast<InheritableParamAttr>(I->clone(S.Context));
2477       newAttr->setInherited(true);
2478       newDecl->addAttr(newAttr);
2479       foundAny = true;
2480     }
2481   }
2482 
2483   if (!foundAny) newDecl->dropAttrs();
2484 }
2485 
mergeParamDeclTypes(ParmVarDecl * NewParam,const ParmVarDecl * OldParam,Sema & S)2486 static void mergeParamDeclTypes(ParmVarDecl *NewParam,
2487                                 const ParmVarDecl *OldParam,
2488                                 Sema &S) {
2489   if (auto Oldnullability = OldParam->getType()->getNullability(S.Context)) {
2490     if (auto Newnullability = NewParam->getType()->getNullability(S.Context)) {
2491       if (*Oldnullability != *Newnullability) {
2492         S.Diag(NewParam->getLocation(), diag::warn_mismatched_nullability_attr)
2493           << DiagNullabilityKind(
2494                *Newnullability,
2495                ((NewParam->getObjCDeclQualifier() & Decl::OBJC_TQ_CSNullability)
2496                 != 0))
2497           << DiagNullabilityKind(
2498                *Oldnullability,
2499                ((OldParam->getObjCDeclQualifier() & Decl::OBJC_TQ_CSNullability)
2500                 != 0));
2501         S.Diag(OldParam->getLocation(), diag::note_previous_declaration);
2502       }
2503     } else {
2504       QualType NewT = NewParam->getType();
2505       NewT = S.Context.getAttributedType(
2506                          AttributedType::getNullabilityAttrKind(*Oldnullability),
2507                          NewT, NewT);
2508       NewParam->setType(NewT);
2509     }
2510   }
2511 }
2512 
2513 namespace {
2514 
2515 /// Used in MergeFunctionDecl to keep track of function parameters in
2516 /// C.
2517 struct GNUCompatibleParamWarning {
2518   ParmVarDecl *OldParm;
2519   ParmVarDecl *NewParm;
2520   QualType PromotedType;
2521 };
2522 
2523 }
2524 
2525 /// getSpecialMember - get the special member enum for a method.
getSpecialMember(const CXXMethodDecl * MD)2526 Sema::CXXSpecialMember Sema::getSpecialMember(const CXXMethodDecl *MD) {
2527   if (const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(MD)) {
2528     if (Ctor->isDefaultConstructor())
2529       return Sema::CXXDefaultConstructor;
2530 
2531     if (Ctor->isCopyConstructor())
2532       return Sema::CXXCopyConstructor;
2533 
2534     if (Ctor->isMoveConstructor())
2535       return Sema::CXXMoveConstructor;
2536   } else if (isa<CXXDestructorDecl>(MD)) {
2537     return Sema::CXXDestructor;
2538   } else if (MD->isCopyAssignmentOperator()) {
2539     return Sema::CXXCopyAssignment;
2540   } else if (MD->isMoveAssignmentOperator()) {
2541     return Sema::CXXMoveAssignment;
2542   }
2543 
2544   return Sema::CXXInvalid;
2545 }
2546 
2547 // Determine whether the previous declaration was a definition, implicit
2548 // declaration, or a declaration.
2549 template <typename T>
2550 static std::pair<diag::kind, SourceLocation>
getNoteDiagForInvalidRedeclaration(const T * Old,const T * New)2551 getNoteDiagForInvalidRedeclaration(const T *Old, const T *New) {
2552   diag::kind PrevDiag;
2553   SourceLocation OldLocation = Old->getLocation();
2554   if (Old->isThisDeclarationADefinition())
2555     PrevDiag = diag::note_previous_definition;
2556   else if (Old->isImplicit()) {
2557     PrevDiag = diag::note_previous_implicit_declaration;
2558     if (OldLocation.isInvalid())
2559       OldLocation = New->getLocation();
2560   } else
2561     PrevDiag = diag::note_previous_declaration;
2562   return std::make_pair(PrevDiag, OldLocation);
2563 }
2564 
2565 /// canRedefineFunction - checks if a function can be redefined. Currently,
2566 /// only extern inline functions can be redefined, and even then only in
2567 /// GNU89 mode.
canRedefineFunction(const FunctionDecl * FD,const LangOptions & LangOpts)2568 static bool canRedefineFunction(const FunctionDecl *FD,
2569                                 const LangOptions& LangOpts) {
2570   return ((FD->hasAttr<GNUInlineAttr>() || LangOpts.GNUInline) &&
2571           !LangOpts.CPlusPlus &&
2572           FD->isInlineSpecified() &&
2573           FD->getStorageClass() == SC_Extern);
2574 }
2575 
getCallingConvAttributedType(QualType T) const2576 const AttributedType *Sema::getCallingConvAttributedType(QualType T) const {
2577   const AttributedType *AT = T->getAs<AttributedType>();
2578   while (AT && !AT->isCallingConv())
2579     AT = AT->getModifiedType()->getAs<AttributedType>();
2580   return AT;
2581 }
2582 
2583 template <typename T>
haveIncompatibleLanguageLinkages(const T * Old,const T * New)2584 static bool haveIncompatibleLanguageLinkages(const T *Old, const T *New) {
2585   const DeclContext *DC = Old->getDeclContext();
2586   if (DC->isRecord())
2587     return false;
2588 
2589   LanguageLinkage OldLinkage = Old->getLanguageLinkage();
2590   if (OldLinkage == CXXLanguageLinkage && New->isInExternCContext())
2591     return true;
2592   if (OldLinkage == CLanguageLinkage && New->isInExternCXXContext())
2593     return true;
2594   return false;
2595 }
2596 
isExternC(T * D)2597 template<typename T> static bool isExternC(T *D) { return D->isExternC(); }
isExternC(VarTemplateDecl *)2598 static bool isExternC(VarTemplateDecl *) { return false; }
2599 
2600 /// \brief Check whether a redeclaration of an entity introduced by a
2601 /// using-declaration is valid, given that we know it's not an overload
2602 /// (nor a hidden tag declaration).
2603 template<typename ExpectedDecl>
checkUsingShadowRedecl(Sema & S,UsingShadowDecl * OldS,ExpectedDecl * New)2604 static bool checkUsingShadowRedecl(Sema &S, UsingShadowDecl *OldS,
2605                                    ExpectedDecl *New) {
2606   // C++11 [basic.scope.declarative]p4:
2607   //   Given a set of declarations in a single declarative region, each of
2608   //   which specifies the same unqualified name,
2609   //   -- they shall all refer to the same entity, or all refer to functions
2610   //      and function templates; or
2611   //   -- exactly one declaration shall declare a class name or enumeration
2612   //      name that is not a typedef name and the other declarations shall all
2613   //      refer to the same variable or enumerator, or all refer to functions
2614   //      and function templates; in this case the class name or enumeration
2615   //      name is hidden (3.3.10).
2616 
2617   // C++11 [namespace.udecl]p14:
2618   //   If a function declaration in namespace scope or block scope has the
2619   //   same name and the same parameter-type-list as a function introduced
2620   //   by a using-declaration, and the declarations do not declare the same
2621   //   function, the program is ill-formed.
2622 
2623   auto *Old = dyn_cast<ExpectedDecl>(OldS->getTargetDecl());
2624   if (Old &&
2625       !Old->getDeclContext()->getRedeclContext()->Equals(
2626           New->getDeclContext()->getRedeclContext()) &&
2627       !(isExternC(Old) && isExternC(New)))
2628     Old = nullptr;
2629 
2630   if (!Old) {
2631     S.Diag(New->getLocation(), diag::err_using_decl_conflict_reverse);
2632     S.Diag(OldS->getTargetDecl()->getLocation(), diag::note_using_decl_target);
2633     S.Diag(OldS->getUsingDecl()->getLocation(), diag::note_using_decl) << 0;
2634     return true;
2635   }
2636   return false;
2637 }
2638 
hasIdenticalPassObjectSizeAttrs(const FunctionDecl * A,const FunctionDecl * B)2639 static bool hasIdenticalPassObjectSizeAttrs(const FunctionDecl *A,
2640                                             const FunctionDecl *B) {
2641   assert(A->getNumParams() == B->getNumParams());
2642 
2643   auto AttrEq = [](const ParmVarDecl *A, const ParmVarDecl *B) {
2644     const auto *AttrA = A->getAttr<PassObjectSizeAttr>();
2645     const auto *AttrB = B->getAttr<PassObjectSizeAttr>();
2646     if (AttrA == AttrB)
2647       return true;
2648     return AttrA && AttrB && AttrA->getType() == AttrB->getType();
2649   };
2650 
2651   return std::equal(A->param_begin(), A->param_end(), B->param_begin(), AttrEq);
2652 }
2653 
2654 /// MergeFunctionDecl - We just parsed a function 'New' from
2655 /// declarator D which has the same name and scope as a previous
2656 /// declaration 'Old'.  Figure out how to resolve this situation,
2657 /// merging decls or emitting diagnostics as appropriate.
2658 ///
2659 /// In C++, New and Old must be declarations that are not
2660 /// overloaded. Use IsOverload to determine whether New and Old are
2661 /// overloaded, and to select the Old declaration that New should be
2662 /// merged with.
2663 ///
2664 /// Returns true if there was an error, false otherwise.
MergeFunctionDecl(FunctionDecl * New,NamedDecl * & OldD,Scope * S,bool MergeTypeWithOld)2665 bool Sema::MergeFunctionDecl(FunctionDecl *New, NamedDecl *&OldD,
2666                              Scope *S, bool MergeTypeWithOld) {
2667   // Verify the old decl was also a function.
2668   FunctionDecl *Old = OldD->getAsFunction();
2669   if (!Old) {
2670     if (UsingShadowDecl *Shadow = dyn_cast<UsingShadowDecl>(OldD)) {
2671       if (New->getFriendObjectKind()) {
2672         Diag(New->getLocation(), diag::err_using_decl_friend);
2673         Diag(Shadow->getTargetDecl()->getLocation(),
2674              diag::note_using_decl_target);
2675         Diag(Shadow->getUsingDecl()->getLocation(),
2676              diag::note_using_decl) << 0;
2677         return true;
2678       }
2679 
2680       // Check whether the two declarations might declare the same function.
2681       if (checkUsingShadowRedecl<FunctionDecl>(*this, Shadow, New))
2682         return true;
2683       OldD = Old = cast<FunctionDecl>(Shadow->getTargetDecl());
2684     } else {
2685       Diag(New->getLocation(), diag::err_redefinition_different_kind)
2686         << New->getDeclName();
2687       Diag(OldD->getLocation(), diag::note_previous_definition);
2688       return true;
2689     }
2690   }
2691 
2692   // If the old declaration is invalid, just give up here.
2693   if (Old->isInvalidDecl())
2694     return true;
2695 
2696   diag::kind PrevDiag;
2697   SourceLocation OldLocation;
2698   std::tie(PrevDiag, OldLocation) =
2699       getNoteDiagForInvalidRedeclaration(Old, New);
2700 
2701   // Don't complain about this if we're in GNU89 mode and the old function
2702   // is an extern inline function.
2703   // Don't complain about specializations. They are not supposed to have
2704   // storage classes.
2705   if (!isa<CXXMethodDecl>(New) && !isa<CXXMethodDecl>(Old) &&
2706       New->getStorageClass() == SC_Static &&
2707       Old->hasExternalFormalLinkage() &&
2708       !New->getTemplateSpecializationInfo() &&
2709       !canRedefineFunction(Old, getLangOpts())) {
2710     if (getLangOpts().MicrosoftExt) {
2711       Diag(New->getLocation(), diag::ext_static_non_static) << New;
2712       Diag(OldLocation, PrevDiag);
2713     } else {
2714       Diag(New->getLocation(), diag::err_static_non_static) << New;
2715       Diag(OldLocation, PrevDiag);
2716       return true;
2717     }
2718   }
2719 
2720   if (New->hasAttr<InternalLinkageAttr>() &&
2721       !Old->hasAttr<InternalLinkageAttr>()) {
2722     Diag(New->getLocation(), diag::err_internal_linkage_redeclaration)
2723         << New->getDeclName();
2724     Diag(Old->getLocation(), diag::note_previous_definition);
2725     New->dropAttr<InternalLinkageAttr>();
2726   }
2727 
2728   // If a function is first declared with a calling convention, but is later
2729   // declared or defined without one, all following decls assume the calling
2730   // convention of the first.
2731   //
2732   // It's OK if a function is first declared without a calling convention,
2733   // but is later declared or defined with the default calling convention.
2734   //
2735   // To test if either decl has an explicit calling convention, we look for
2736   // AttributedType sugar nodes on the type as written.  If they are missing or
2737   // were canonicalized away, we assume the calling convention was implicit.
2738   //
2739   // Note also that we DO NOT return at this point, because we still have
2740   // other tests to run.
2741   QualType OldQType = Context.getCanonicalType(Old->getType());
2742   QualType NewQType = Context.getCanonicalType(New->getType());
2743   const FunctionType *OldType = cast<FunctionType>(OldQType);
2744   const FunctionType *NewType = cast<FunctionType>(NewQType);
2745   FunctionType::ExtInfo OldTypeInfo = OldType->getExtInfo();
2746   FunctionType::ExtInfo NewTypeInfo = NewType->getExtInfo();
2747   bool RequiresAdjustment = false;
2748 
2749   if (OldTypeInfo.getCC() != NewTypeInfo.getCC()) {
2750     FunctionDecl *First = Old->getFirstDecl();
2751     const FunctionType *FT =
2752         First->getType().getCanonicalType()->castAs<FunctionType>();
2753     FunctionType::ExtInfo FI = FT->getExtInfo();
2754     bool NewCCExplicit = getCallingConvAttributedType(New->getType());
2755     if (!NewCCExplicit) {
2756       // Inherit the CC from the previous declaration if it was specified
2757       // there but not here.
2758       NewTypeInfo = NewTypeInfo.withCallingConv(OldTypeInfo.getCC());
2759       RequiresAdjustment = true;
2760     } else {
2761       // Calling conventions aren't compatible, so complain.
2762       bool FirstCCExplicit = getCallingConvAttributedType(First->getType());
2763       Diag(New->getLocation(), diag::err_cconv_change)
2764         << FunctionType::getNameForCallConv(NewTypeInfo.getCC())
2765         << !FirstCCExplicit
2766         << (!FirstCCExplicit ? "" :
2767             FunctionType::getNameForCallConv(FI.getCC()));
2768 
2769       // Put the note on the first decl, since it is the one that matters.
2770       Diag(First->getLocation(), diag::note_previous_declaration);
2771       return true;
2772     }
2773   }
2774 
2775   // FIXME: diagnose the other way around?
2776   if (OldTypeInfo.getNoReturn() && !NewTypeInfo.getNoReturn()) {
2777     NewTypeInfo = NewTypeInfo.withNoReturn(true);
2778     RequiresAdjustment = true;
2779   }
2780 
2781   // Merge regparm attribute.
2782   if (OldTypeInfo.getHasRegParm() != NewTypeInfo.getHasRegParm() ||
2783       OldTypeInfo.getRegParm() != NewTypeInfo.getRegParm()) {
2784     if (NewTypeInfo.getHasRegParm()) {
2785       Diag(New->getLocation(), diag::err_regparm_mismatch)
2786         << NewType->getRegParmType()
2787         << OldType->getRegParmType();
2788       Diag(OldLocation, diag::note_previous_declaration);
2789       return true;
2790     }
2791 
2792     NewTypeInfo = NewTypeInfo.withRegParm(OldTypeInfo.getRegParm());
2793     RequiresAdjustment = true;
2794   }
2795 
2796   // Merge ns_returns_retained attribute.
2797   if (OldTypeInfo.getProducesResult() != NewTypeInfo.getProducesResult()) {
2798     if (NewTypeInfo.getProducesResult()) {
2799       Diag(New->getLocation(), diag::err_returns_retained_mismatch);
2800       Diag(OldLocation, diag::note_previous_declaration);
2801       return true;
2802     }
2803 
2804     NewTypeInfo = NewTypeInfo.withProducesResult(true);
2805     RequiresAdjustment = true;
2806   }
2807 
2808   if (RequiresAdjustment) {
2809     const FunctionType *AdjustedType = New->getType()->getAs<FunctionType>();
2810     AdjustedType = Context.adjustFunctionType(AdjustedType, NewTypeInfo);
2811     New->setType(QualType(AdjustedType, 0));
2812     NewQType = Context.getCanonicalType(New->getType());
2813     NewType = cast<FunctionType>(NewQType);
2814   }
2815 
2816   // If this redeclaration makes the function inline, we may need to add it to
2817   // UndefinedButUsed.
2818   if (!Old->isInlined() && New->isInlined() &&
2819       !New->hasAttr<GNUInlineAttr>() &&
2820       !getLangOpts().GNUInline &&
2821       Old->isUsed(false) &&
2822       !Old->isDefined() && !New->isThisDeclarationADefinition())
2823     UndefinedButUsed.insert(std::make_pair(Old->getCanonicalDecl(),
2824                                            SourceLocation()));
2825 
2826   // If this redeclaration makes it newly gnu_inline, we don't want to warn
2827   // about it.
2828   if (New->hasAttr<GNUInlineAttr>() &&
2829       Old->isInlined() && !Old->hasAttr<GNUInlineAttr>()) {
2830     UndefinedButUsed.erase(Old->getCanonicalDecl());
2831   }
2832 
2833   // If pass_object_size params don't match up perfectly, this isn't a valid
2834   // redeclaration.
2835   if (Old->getNumParams() > 0 && Old->getNumParams() == New->getNumParams() &&
2836       !hasIdenticalPassObjectSizeAttrs(Old, New)) {
2837     Diag(New->getLocation(), diag::err_different_pass_object_size_params)
2838         << New->getDeclName();
2839     Diag(OldLocation, PrevDiag) << Old << Old->getType();
2840     return true;
2841   }
2842 
2843   if (getLangOpts().CPlusPlus) {
2844     // (C++98 13.1p2):
2845     //   Certain function declarations cannot be overloaded:
2846     //     -- Function declarations that differ only in the return type
2847     //        cannot be overloaded.
2848 
2849     // Go back to the type source info to compare the declared return types,
2850     // per C++1y [dcl.type.auto]p13:
2851     //   Redeclarations or specializations of a function or function template
2852     //   with a declared return type that uses a placeholder type shall also
2853     //   use that placeholder, not a deduced type.
2854     QualType OldDeclaredReturnType =
2855         (Old->getTypeSourceInfo()
2856              ? Old->getTypeSourceInfo()->getType()->castAs<FunctionType>()
2857              : OldType)->getReturnType();
2858     QualType NewDeclaredReturnType =
2859         (New->getTypeSourceInfo()
2860              ? New->getTypeSourceInfo()->getType()->castAs<FunctionType>()
2861              : NewType)->getReturnType();
2862     QualType ResQT;
2863     if (!Context.hasSameType(OldDeclaredReturnType, NewDeclaredReturnType) &&
2864         !((NewQType->isDependentType() || OldQType->isDependentType()) &&
2865           New->isLocalExternDecl())) {
2866       if (NewDeclaredReturnType->isObjCObjectPointerType() &&
2867           OldDeclaredReturnType->isObjCObjectPointerType())
2868         ResQT = Context.mergeObjCGCQualifiers(NewQType, OldQType);
2869       if (ResQT.isNull()) {
2870         if (New->isCXXClassMember() && New->isOutOfLine())
2871           Diag(New->getLocation(), diag::err_member_def_does_not_match_ret_type)
2872               << New << New->getReturnTypeSourceRange();
2873         else
2874           Diag(New->getLocation(), diag::err_ovl_diff_return_type)
2875               << New->getReturnTypeSourceRange();
2876         Diag(OldLocation, PrevDiag) << Old << Old->getType()
2877                                     << Old->getReturnTypeSourceRange();
2878         return true;
2879       }
2880       else
2881         NewQType = ResQT;
2882     }
2883 
2884     QualType OldReturnType = OldType->getReturnType();
2885     QualType NewReturnType = cast<FunctionType>(NewQType)->getReturnType();
2886     if (OldReturnType != NewReturnType) {
2887       // If this function has a deduced return type and has already been
2888       // defined, copy the deduced value from the old declaration.
2889       AutoType *OldAT = Old->getReturnType()->getContainedAutoType();
2890       if (OldAT && OldAT->isDeduced()) {
2891         New->setType(
2892             SubstAutoType(New->getType(),
2893                           OldAT->isDependentType() ? Context.DependentTy
2894                                                    : OldAT->getDeducedType()));
2895         NewQType = Context.getCanonicalType(
2896             SubstAutoType(NewQType,
2897                           OldAT->isDependentType() ? Context.DependentTy
2898                                                    : OldAT->getDeducedType()));
2899       }
2900     }
2901 
2902     const CXXMethodDecl *OldMethod = dyn_cast<CXXMethodDecl>(Old);
2903     CXXMethodDecl *NewMethod = dyn_cast<CXXMethodDecl>(New);
2904     if (OldMethod && NewMethod) {
2905       // Preserve triviality.
2906       NewMethod->setTrivial(OldMethod->isTrivial());
2907 
2908       // MSVC allows explicit template specialization at class scope:
2909       // 2 CXXMethodDecls referring to the same function will be injected.
2910       // We don't want a redeclaration error.
2911       bool IsClassScopeExplicitSpecialization =
2912                               OldMethod->isFunctionTemplateSpecialization() &&
2913                               NewMethod->isFunctionTemplateSpecialization();
2914       bool isFriend = NewMethod->getFriendObjectKind();
2915 
2916       if (!isFriend && NewMethod->getLexicalDeclContext()->isRecord() &&
2917           !IsClassScopeExplicitSpecialization) {
2918         //    -- Member function declarations with the same name and the
2919         //       same parameter types cannot be overloaded if any of them
2920         //       is a static member function declaration.
2921         if (OldMethod->isStatic() != NewMethod->isStatic()) {
2922           Diag(New->getLocation(), diag::err_ovl_static_nonstatic_member);
2923           Diag(OldLocation, PrevDiag) << Old << Old->getType();
2924           return true;
2925         }
2926 
2927         // C++ [class.mem]p1:
2928         //   [...] A member shall not be declared twice in the
2929         //   member-specification, except that a nested class or member
2930         //   class template can be declared and then later defined.
2931         if (ActiveTemplateInstantiations.empty()) {
2932           unsigned NewDiag;
2933           if (isa<CXXConstructorDecl>(OldMethod))
2934             NewDiag = diag::err_constructor_redeclared;
2935           else if (isa<CXXDestructorDecl>(NewMethod))
2936             NewDiag = diag::err_destructor_redeclared;
2937           else if (isa<CXXConversionDecl>(NewMethod))
2938             NewDiag = diag::err_conv_function_redeclared;
2939           else
2940             NewDiag = diag::err_member_redeclared;
2941 
2942           Diag(New->getLocation(), NewDiag);
2943         } else {
2944           Diag(New->getLocation(), diag::err_member_redeclared_in_instantiation)
2945             << New << New->getType();
2946         }
2947         Diag(OldLocation, PrevDiag) << Old << Old->getType();
2948         return true;
2949 
2950       // Complain if this is an explicit declaration of a special
2951       // member that was initially declared implicitly.
2952       //
2953       // As an exception, it's okay to befriend such methods in order
2954       // to permit the implicit constructor/destructor/operator calls.
2955       } else if (OldMethod->isImplicit()) {
2956         if (isFriend) {
2957           NewMethod->setImplicit();
2958         } else {
2959           Diag(NewMethod->getLocation(),
2960                diag::err_definition_of_implicitly_declared_member)
2961             << New << getSpecialMember(OldMethod);
2962           return true;
2963         }
2964       } else if (OldMethod->isExplicitlyDefaulted() && !isFriend) {
2965         Diag(NewMethod->getLocation(),
2966              diag::err_definition_of_explicitly_defaulted_member)
2967           << getSpecialMember(OldMethod);
2968         return true;
2969       }
2970     }
2971 
2972     // C++11 [dcl.attr.noreturn]p1:
2973     //   The first declaration of a function shall specify the noreturn
2974     //   attribute if any declaration of that function specifies the noreturn
2975     //   attribute.
2976     const CXX11NoReturnAttr *NRA = New->getAttr<CXX11NoReturnAttr>();
2977     if (NRA && !Old->hasAttr<CXX11NoReturnAttr>()) {
2978       Diag(NRA->getLocation(), diag::err_noreturn_missing_on_first_decl);
2979       Diag(Old->getFirstDecl()->getLocation(),
2980            diag::note_noreturn_missing_first_decl);
2981     }
2982 
2983     // C++11 [dcl.attr.depend]p2:
2984     //   The first declaration of a function shall specify the
2985     //   carries_dependency attribute for its declarator-id if any declaration
2986     //   of the function specifies the carries_dependency attribute.
2987     const CarriesDependencyAttr *CDA = New->getAttr<CarriesDependencyAttr>();
2988     if (CDA && !Old->hasAttr<CarriesDependencyAttr>()) {
2989       Diag(CDA->getLocation(),
2990            diag::err_carries_dependency_missing_on_first_decl) << 0/*Function*/;
2991       Diag(Old->getFirstDecl()->getLocation(),
2992            diag::note_carries_dependency_missing_first_decl) << 0/*Function*/;
2993     }
2994 
2995     // (C++98 8.3.5p3):
2996     //   All declarations for a function shall agree exactly in both the
2997     //   return type and the parameter-type-list.
2998     // We also want to respect all the extended bits except noreturn.
2999 
3000     // noreturn should now match unless the old type info didn't have it.
3001     QualType OldQTypeForComparison = OldQType;
3002     if (!OldTypeInfo.getNoReturn() && NewTypeInfo.getNoReturn()) {
3003       assert(OldQType == QualType(OldType, 0));
3004       const FunctionType *OldTypeForComparison
3005         = Context.adjustFunctionType(OldType, OldTypeInfo.withNoReturn(true));
3006       OldQTypeForComparison = QualType(OldTypeForComparison, 0);
3007       assert(OldQTypeForComparison.isCanonical());
3008     }
3009 
3010     if (haveIncompatibleLanguageLinkages(Old, New)) {
3011       // As a special case, retain the language linkage from previous
3012       // declarations of a friend function as an extension.
3013       //
3014       // This liberal interpretation of C++ [class.friend]p3 matches GCC/MSVC
3015       // and is useful because there's otherwise no way to specify language
3016       // linkage within class scope.
3017       //
3018       // Check cautiously as the friend object kind isn't yet complete.
3019       if (New->getFriendObjectKind() != Decl::FOK_None) {
3020         Diag(New->getLocation(), diag::ext_retained_language_linkage) << New;
3021         Diag(OldLocation, PrevDiag);
3022       } else {
3023         Diag(New->getLocation(), diag::err_different_language_linkage) << New;
3024         Diag(OldLocation, PrevDiag);
3025         return true;
3026       }
3027     }
3028 
3029     if (OldQTypeForComparison == NewQType)
3030       return MergeCompatibleFunctionDecls(New, Old, S, MergeTypeWithOld);
3031 
3032     if ((NewQType->isDependentType() || OldQType->isDependentType()) &&
3033         New->isLocalExternDecl()) {
3034       // It's OK if we couldn't merge types for a local function declaraton
3035       // if either the old or new type is dependent. We'll merge the types
3036       // when we instantiate the function.
3037       return false;
3038     }
3039 
3040     // Fall through for conflicting redeclarations and redefinitions.
3041   }
3042 
3043   // C: Function types need to be compatible, not identical. This handles
3044   // duplicate function decls like "void f(int); void f(enum X);" properly.
3045   if (!getLangOpts().CPlusPlus &&
3046       Context.typesAreCompatible(OldQType, NewQType)) {
3047     const FunctionType *OldFuncType = OldQType->getAs<FunctionType>();
3048     const FunctionType *NewFuncType = NewQType->getAs<FunctionType>();
3049     const FunctionProtoType *OldProto = nullptr;
3050     if (MergeTypeWithOld && isa<FunctionNoProtoType>(NewFuncType) &&
3051         (OldProto = dyn_cast<FunctionProtoType>(OldFuncType))) {
3052       // The old declaration provided a function prototype, but the
3053       // new declaration does not. Merge in the prototype.
3054       assert(!OldProto->hasExceptionSpec() && "Exception spec in C");
3055       SmallVector<QualType, 16> ParamTypes(OldProto->param_types());
3056       NewQType =
3057           Context.getFunctionType(NewFuncType->getReturnType(), ParamTypes,
3058                                   OldProto->getExtProtoInfo());
3059       New->setType(NewQType);
3060       New->setHasInheritedPrototype();
3061 
3062       // Synthesize parameters with the same types.
3063       SmallVector<ParmVarDecl*, 16> Params;
3064       for (const auto &ParamType : OldProto->param_types()) {
3065         ParmVarDecl *Param = ParmVarDecl::Create(Context, New, SourceLocation(),
3066                                                  SourceLocation(), nullptr,
3067                                                  ParamType, /*TInfo=*/nullptr,
3068                                                  SC_None, nullptr);
3069         Param->setScopeInfo(0, Params.size());
3070         Param->setImplicit();
3071         Params.push_back(Param);
3072       }
3073 
3074       New->setParams(Params);
3075     }
3076 
3077     return MergeCompatibleFunctionDecls(New, Old, S, MergeTypeWithOld);
3078   }
3079 
3080   // GNU C permits a K&R definition to follow a prototype declaration
3081   // if the declared types of the parameters in the K&R definition
3082   // match the types in the prototype declaration, even when the
3083   // promoted types of the parameters from the K&R definition differ
3084   // from the types in the prototype. GCC then keeps the types from
3085   // the prototype.
3086   //
3087   // If a variadic prototype is followed by a non-variadic K&R definition,
3088   // the K&R definition becomes variadic.  This is sort of an edge case, but
3089   // it's legal per the standard depending on how you read C99 6.7.5.3p15 and
3090   // C99 6.9.1p8.
3091   if (!getLangOpts().CPlusPlus &&
3092       Old->hasPrototype() && !New->hasPrototype() &&
3093       New->getType()->getAs<FunctionProtoType>() &&
3094       Old->getNumParams() == New->getNumParams()) {
3095     SmallVector<QualType, 16> ArgTypes;
3096     SmallVector<GNUCompatibleParamWarning, 16> Warnings;
3097     const FunctionProtoType *OldProto
3098       = Old->getType()->getAs<FunctionProtoType>();
3099     const FunctionProtoType *NewProto
3100       = New->getType()->getAs<FunctionProtoType>();
3101 
3102     // Determine whether this is the GNU C extension.
3103     QualType MergedReturn = Context.mergeTypes(OldProto->getReturnType(),
3104                                                NewProto->getReturnType());
3105     bool LooseCompatible = !MergedReturn.isNull();
3106     for (unsigned Idx = 0, End = Old->getNumParams();
3107          LooseCompatible && Idx != End; ++Idx) {
3108       ParmVarDecl *OldParm = Old->getParamDecl(Idx);
3109       ParmVarDecl *NewParm = New->getParamDecl(Idx);
3110       if (Context.typesAreCompatible(OldParm->getType(),
3111                                      NewProto->getParamType(Idx))) {
3112         ArgTypes.push_back(NewParm->getType());
3113       } else if (Context.typesAreCompatible(OldParm->getType(),
3114                                             NewParm->getType(),
3115                                             /*CompareUnqualified=*/true)) {
3116         GNUCompatibleParamWarning Warn = { OldParm, NewParm,
3117                                            NewProto->getParamType(Idx) };
3118         Warnings.push_back(Warn);
3119         ArgTypes.push_back(NewParm->getType());
3120       } else
3121         LooseCompatible = false;
3122     }
3123 
3124     if (LooseCompatible) {
3125       for (unsigned Warn = 0; Warn < Warnings.size(); ++Warn) {
3126         Diag(Warnings[Warn].NewParm->getLocation(),
3127              diag::ext_param_promoted_not_compatible_with_prototype)
3128           << Warnings[Warn].PromotedType
3129           << Warnings[Warn].OldParm->getType();
3130         if (Warnings[Warn].OldParm->getLocation().isValid())
3131           Diag(Warnings[Warn].OldParm->getLocation(),
3132                diag::note_previous_declaration);
3133       }
3134 
3135       if (MergeTypeWithOld)
3136         New->setType(Context.getFunctionType(MergedReturn, ArgTypes,
3137                                              OldProto->getExtProtoInfo()));
3138       return MergeCompatibleFunctionDecls(New, Old, S, MergeTypeWithOld);
3139     }
3140 
3141     // Fall through to diagnose conflicting types.
3142   }
3143 
3144   // A function that has already been declared has been redeclared or
3145   // defined with a different type; show an appropriate diagnostic.
3146 
3147   // If the previous declaration was an implicitly-generated builtin
3148   // declaration, then at the very least we should use a specialized note.
3149   unsigned BuiltinID;
3150   if (Old->isImplicit() && (BuiltinID = Old->getBuiltinID())) {
3151     // If it's actually a library-defined builtin function like 'malloc'
3152     // or 'printf', just warn about the incompatible redeclaration.
3153     if (Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
3154       Diag(New->getLocation(), diag::warn_redecl_library_builtin) << New;
3155       Diag(OldLocation, diag::note_previous_builtin_declaration)
3156         << Old << Old->getType();
3157 
3158       // If this is a global redeclaration, just forget hereafter
3159       // about the "builtin-ness" of the function.
3160       //
3161       // Doing this for local extern declarations is problematic.  If
3162       // the builtin declaration remains visible, a second invalid
3163       // local declaration will produce a hard error; if it doesn't
3164       // remain visible, a single bogus local redeclaration (which is
3165       // actually only a warning) could break all the downstream code.
3166       if (!New->getLexicalDeclContext()->isFunctionOrMethod())
3167         New->getIdentifier()->revertBuiltin();
3168 
3169       return false;
3170     }
3171 
3172     PrevDiag = diag::note_previous_builtin_declaration;
3173   }
3174 
3175   Diag(New->getLocation(), diag::err_conflicting_types) << New->getDeclName();
3176   Diag(OldLocation, PrevDiag) << Old << Old->getType();
3177   return true;
3178 }
3179 
3180 /// \brief Completes the merge of two function declarations that are
3181 /// known to be compatible.
3182 ///
3183 /// This routine handles the merging of attributes and other
3184 /// properties of function declarations from the old declaration to
3185 /// the new declaration, once we know that New is in fact a
3186 /// redeclaration of Old.
3187 ///
3188 /// \returns false
MergeCompatibleFunctionDecls(FunctionDecl * New,FunctionDecl * Old,Scope * S,bool MergeTypeWithOld)3189 bool Sema::MergeCompatibleFunctionDecls(FunctionDecl *New, FunctionDecl *Old,
3190                                         Scope *S, bool MergeTypeWithOld) {
3191   // Merge the attributes
3192   mergeDeclAttributes(New, Old);
3193 
3194   // Merge "pure" flag.
3195   if (Old->isPure())
3196     New->setPure();
3197 
3198   // Merge "used" flag.
3199   if (Old->getMostRecentDecl()->isUsed(false))
3200     New->setIsUsed();
3201 
3202   // Merge attributes from the parameters.  These can mismatch with K&R
3203   // declarations.
3204   if (New->getNumParams() == Old->getNumParams())
3205       for (unsigned i = 0, e = New->getNumParams(); i != e; ++i) {
3206         ParmVarDecl *NewParam = New->getParamDecl(i);
3207         ParmVarDecl *OldParam = Old->getParamDecl(i);
3208         mergeParamDeclAttributes(NewParam, OldParam, *this);
3209         mergeParamDeclTypes(NewParam, OldParam, *this);
3210       }
3211 
3212   if (getLangOpts().CPlusPlus)
3213     return MergeCXXFunctionDecl(New, Old, S);
3214 
3215   // Merge the function types so the we get the composite types for the return
3216   // and argument types. Per C11 6.2.7/4, only update the type if the old decl
3217   // was visible.
3218   QualType Merged = Context.mergeTypes(Old->getType(), New->getType());
3219   if (!Merged.isNull() && MergeTypeWithOld)
3220     New->setType(Merged);
3221 
3222   return false;
3223 }
3224 
3225 
mergeObjCMethodDecls(ObjCMethodDecl * newMethod,ObjCMethodDecl * oldMethod)3226 void Sema::mergeObjCMethodDecls(ObjCMethodDecl *newMethod,
3227                                 ObjCMethodDecl *oldMethod) {
3228 
3229   // Merge the attributes, including deprecated/unavailable
3230   AvailabilityMergeKind MergeKind =
3231     isa<ObjCProtocolDecl>(oldMethod->getDeclContext())
3232       ? AMK_ProtocolImplementation
3233       : isa<ObjCImplDecl>(newMethod->getDeclContext()) ? AMK_Redeclaration
3234                                                        : AMK_Override;
3235 
3236   mergeDeclAttributes(newMethod, oldMethod, MergeKind);
3237 
3238   // Merge attributes from the parameters.
3239   ObjCMethodDecl::param_const_iterator oi = oldMethod->param_begin(),
3240                                        oe = oldMethod->param_end();
3241   for (ObjCMethodDecl::param_iterator
3242          ni = newMethod->param_begin(), ne = newMethod->param_end();
3243        ni != ne && oi != oe; ++ni, ++oi)
3244     mergeParamDeclAttributes(*ni, *oi, *this);
3245 
3246   CheckObjCMethodOverride(newMethod, oldMethod);
3247 }
3248 
3249 /// MergeVarDeclTypes - We parsed a variable 'New' which has the same name and
3250 /// scope as a previous declaration 'Old'.  Figure out how to merge their types,
3251 /// emitting diagnostics as appropriate.
3252 ///
3253 /// Declarations using the auto type specifier (C++ [decl.spec.auto]) call back
3254 /// to here in AddInitializerToDecl. We can't check them before the initializer
3255 /// is attached.
MergeVarDeclTypes(VarDecl * New,VarDecl * Old,bool MergeTypeWithOld)3256 void Sema::MergeVarDeclTypes(VarDecl *New, VarDecl *Old,
3257                              bool MergeTypeWithOld) {
3258   if (New->isInvalidDecl() || Old->isInvalidDecl())
3259     return;
3260 
3261   QualType MergedT;
3262   if (getLangOpts().CPlusPlus) {
3263     if (New->getType()->isUndeducedType()) {
3264       // We don't know what the new type is until the initializer is attached.
3265       return;
3266     } else if (Context.hasSameType(New->getType(), Old->getType())) {
3267       // These could still be something that needs exception specs checked.
3268       return MergeVarDeclExceptionSpecs(New, Old);
3269     }
3270     // C++ [basic.link]p10:
3271     //   [...] the types specified by all declarations referring to a given
3272     //   object or function shall be identical, except that declarations for an
3273     //   array object can specify array types that differ by the presence or
3274     //   absence of a major array bound (8.3.4).
3275     else if (Old->getType()->isIncompleteArrayType() &&
3276              New->getType()->isArrayType()) {
3277       const ArrayType *OldArray = Context.getAsArrayType(Old->getType());
3278       const ArrayType *NewArray = Context.getAsArrayType(New->getType());
3279       if (Context.hasSameType(OldArray->getElementType(),
3280                               NewArray->getElementType()))
3281         MergedT = New->getType();
3282     } else if (Old->getType()->isArrayType() &&
3283                New->getType()->isIncompleteArrayType()) {
3284       const ArrayType *OldArray = Context.getAsArrayType(Old->getType());
3285       const ArrayType *NewArray = Context.getAsArrayType(New->getType());
3286       if (Context.hasSameType(OldArray->getElementType(),
3287                               NewArray->getElementType()))
3288         MergedT = Old->getType();
3289     } else if (New->getType()->isObjCObjectPointerType() &&
3290                Old->getType()->isObjCObjectPointerType()) {
3291       MergedT = Context.mergeObjCGCQualifiers(New->getType(),
3292                                               Old->getType());
3293     }
3294   } else {
3295     // C 6.2.7p2:
3296     //   All declarations that refer to the same object or function shall have
3297     //   compatible type.
3298     MergedT = Context.mergeTypes(New->getType(), Old->getType());
3299   }
3300   if (MergedT.isNull()) {
3301     // It's OK if we couldn't merge types if either type is dependent, for a
3302     // block-scope variable. In other cases (static data members of class
3303     // templates, variable templates, ...), we require the types to be
3304     // equivalent.
3305     // FIXME: The C++ standard doesn't say anything about this.
3306     if ((New->getType()->isDependentType() ||
3307          Old->getType()->isDependentType()) && New->isLocalVarDecl()) {
3308       // If the old type was dependent, we can't merge with it, so the new type
3309       // becomes dependent for now. We'll reproduce the original type when we
3310       // instantiate the TypeSourceInfo for the variable.
3311       if (!New->getType()->isDependentType() && MergeTypeWithOld)
3312         New->setType(Context.DependentTy);
3313       return;
3314     }
3315 
3316     // FIXME: Even if this merging succeeds, some other non-visible declaration
3317     // of this variable might have an incompatible type. For instance:
3318     //
3319     //   extern int arr[];
3320     //   void f() { extern int arr[2]; }
3321     //   void g() { extern int arr[3]; }
3322     //
3323     // Neither C nor C++ requires a diagnostic for this, but we should still try
3324     // to diagnose it.
3325     Diag(New->getLocation(), New->isThisDeclarationADefinition()
3326                                  ? diag::err_redefinition_different_type
3327                                  : diag::err_redeclaration_different_type)
3328         << New->getDeclName() << New->getType() << Old->getType();
3329 
3330     diag::kind PrevDiag;
3331     SourceLocation OldLocation;
3332     std::tie(PrevDiag, OldLocation) =
3333         getNoteDiagForInvalidRedeclaration(Old, New);
3334     Diag(OldLocation, PrevDiag);
3335     return New->setInvalidDecl();
3336   }
3337 
3338   // Don't actually update the type on the new declaration if the old
3339   // declaration was an extern declaration in a different scope.
3340   if (MergeTypeWithOld)
3341     New->setType(MergedT);
3342 }
3343 
mergeTypeWithPrevious(Sema & S,VarDecl * NewVD,VarDecl * OldVD,LookupResult & Previous)3344 static bool mergeTypeWithPrevious(Sema &S, VarDecl *NewVD, VarDecl *OldVD,
3345                                   LookupResult &Previous) {
3346   // C11 6.2.7p4:
3347   //   For an identifier with internal or external linkage declared
3348   //   in a scope in which a prior declaration of that identifier is
3349   //   visible, if the prior declaration specifies internal or
3350   //   external linkage, the type of the identifier at the later
3351   //   declaration becomes the composite type.
3352   //
3353   // If the variable isn't visible, we do not merge with its type.
3354   if (Previous.isShadowed())
3355     return false;
3356 
3357   if (S.getLangOpts().CPlusPlus) {
3358     // C++11 [dcl.array]p3:
3359     //   If there is a preceding declaration of the entity in the same
3360     //   scope in which the bound was specified, an omitted array bound
3361     //   is taken to be the same as in that earlier declaration.
3362     return NewVD->isPreviousDeclInSameBlockScope() ||
3363            (!OldVD->getLexicalDeclContext()->isFunctionOrMethod() &&
3364             !NewVD->getLexicalDeclContext()->isFunctionOrMethod());
3365   } else {
3366     // If the old declaration was function-local, don't merge with its
3367     // type unless we're in the same function.
3368     return !OldVD->getLexicalDeclContext()->isFunctionOrMethod() ||
3369            OldVD->getLexicalDeclContext() == NewVD->getLexicalDeclContext();
3370   }
3371 }
3372 
3373 /// MergeVarDecl - We just parsed a variable 'New' which has the same name
3374 /// and scope as a previous declaration 'Old'.  Figure out how to resolve this
3375 /// situation, merging decls or emitting diagnostics as appropriate.
3376 ///
3377 /// Tentative definition rules (C99 6.9.2p2) are checked by
3378 /// FinalizeDeclaratorGroup. Unfortunately, we can't analyze tentative
3379 /// definitions here, since the initializer hasn't been attached.
3380 ///
MergeVarDecl(VarDecl * New,LookupResult & Previous)3381 void Sema::MergeVarDecl(VarDecl *New, LookupResult &Previous) {
3382   // If the new decl is already invalid, don't do any other checking.
3383   if (New->isInvalidDecl())
3384     return;
3385 
3386   if (!shouldLinkPossiblyHiddenDecl(Previous, New))
3387     return;
3388 
3389   VarTemplateDecl *NewTemplate = New->getDescribedVarTemplate();
3390 
3391   // Verify the old decl was also a variable or variable template.
3392   VarDecl *Old = nullptr;
3393   VarTemplateDecl *OldTemplate = nullptr;
3394   if (Previous.isSingleResult()) {
3395     if (NewTemplate) {
3396       OldTemplate = dyn_cast<VarTemplateDecl>(Previous.getFoundDecl());
3397       Old = OldTemplate ? OldTemplate->getTemplatedDecl() : nullptr;
3398 
3399       if (auto *Shadow =
3400               dyn_cast<UsingShadowDecl>(Previous.getRepresentativeDecl()))
3401         if (checkUsingShadowRedecl<VarTemplateDecl>(*this, Shadow, NewTemplate))
3402           return New->setInvalidDecl();
3403     } else {
3404       Old = dyn_cast<VarDecl>(Previous.getFoundDecl());
3405 
3406       if (auto *Shadow =
3407               dyn_cast<UsingShadowDecl>(Previous.getRepresentativeDecl()))
3408         if (checkUsingShadowRedecl<VarDecl>(*this, Shadow, New))
3409           return New->setInvalidDecl();
3410     }
3411   }
3412   if (!Old) {
3413     Diag(New->getLocation(), diag::err_redefinition_different_kind)
3414       << New->getDeclName();
3415     Diag(Previous.getRepresentativeDecl()->getLocation(),
3416          diag::note_previous_definition);
3417     return New->setInvalidDecl();
3418   }
3419 
3420   // Ensure the template parameters are compatible.
3421   if (NewTemplate &&
3422       !TemplateParameterListsAreEqual(NewTemplate->getTemplateParameters(),
3423                                       OldTemplate->getTemplateParameters(),
3424                                       /*Complain=*/true, TPL_TemplateMatch))
3425     return New->setInvalidDecl();
3426 
3427   // C++ [class.mem]p1:
3428   //   A member shall not be declared twice in the member-specification [...]
3429   //
3430   // Here, we need only consider static data members.
3431   if (Old->isStaticDataMember() && !New->isOutOfLine()) {
3432     Diag(New->getLocation(), diag::err_duplicate_member)
3433       << New->getIdentifier();
3434     Diag(Old->getLocation(), diag::note_previous_declaration);
3435     New->setInvalidDecl();
3436   }
3437 
3438   mergeDeclAttributes(New, Old);
3439   // Warn if an already-declared variable is made a weak_import in a subsequent
3440   // declaration
3441   if (New->hasAttr<WeakImportAttr>() &&
3442       Old->getStorageClass() == SC_None &&
3443       !Old->hasAttr<WeakImportAttr>()) {
3444     Diag(New->getLocation(), diag::warn_weak_import) << New->getDeclName();
3445     Diag(Old->getLocation(), diag::note_previous_definition);
3446     // Remove weak_import attribute on new declaration.
3447     New->dropAttr<WeakImportAttr>();
3448   }
3449 
3450   if (New->hasAttr<InternalLinkageAttr>() &&
3451       !Old->hasAttr<InternalLinkageAttr>()) {
3452     Diag(New->getLocation(), diag::err_internal_linkage_redeclaration)
3453         << New->getDeclName();
3454     Diag(Old->getLocation(), diag::note_previous_definition);
3455     New->dropAttr<InternalLinkageAttr>();
3456   }
3457 
3458   // Merge the types.
3459   VarDecl *MostRecent = Old->getMostRecentDecl();
3460   if (MostRecent != Old) {
3461     MergeVarDeclTypes(New, MostRecent,
3462                       mergeTypeWithPrevious(*this, New, MostRecent, Previous));
3463     if (New->isInvalidDecl())
3464       return;
3465   }
3466 
3467   MergeVarDeclTypes(New, Old, mergeTypeWithPrevious(*this, New, Old, Previous));
3468   if (New->isInvalidDecl())
3469     return;
3470 
3471   diag::kind PrevDiag;
3472   SourceLocation OldLocation;
3473   std::tie(PrevDiag, OldLocation) =
3474       getNoteDiagForInvalidRedeclaration(Old, New);
3475 
3476   // [dcl.stc]p8: Check if we have a non-static decl followed by a static.
3477   if (New->getStorageClass() == SC_Static &&
3478       !New->isStaticDataMember() &&
3479       Old->hasExternalFormalLinkage()) {
3480     if (getLangOpts().MicrosoftExt) {
3481       Diag(New->getLocation(), diag::ext_static_non_static)
3482           << New->getDeclName();
3483       Diag(OldLocation, PrevDiag);
3484     } else {
3485       Diag(New->getLocation(), diag::err_static_non_static)
3486           << New->getDeclName();
3487       Diag(OldLocation, PrevDiag);
3488       return New->setInvalidDecl();
3489     }
3490   }
3491   // C99 6.2.2p4:
3492   //   For an identifier declared with the storage-class specifier
3493   //   extern in a scope in which a prior declaration of that
3494   //   identifier is visible,23) if the prior declaration specifies
3495   //   internal or external linkage, the linkage of the identifier at
3496   //   the later declaration is the same as the linkage specified at
3497   //   the prior declaration. If no prior declaration is visible, or
3498   //   if the prior declaration specifies no linkage, then the
3499   //   identifier has external linkage.
3500   if (New->hasExternalStorage() && Old->hasLinkage())
3501     /* Okay */;
3502   else if (New->getCanonicalDecl()->getStorageClass() != SC_Static &&
3503            !New->isStaticDataMember() &&
3504            Old->getCanonicalDecl()->getStorageClass() == SC_Static) {
3505     Diag(New->getLocation(), diag::err_non_static_static) << New->getDeclName();
3506     Diag(OldLocation, PrevDiag);
3507     return New->setInvalidDecl();
3508   }
3509 
3510   // Check if extern is followed by non-extern and vice-versa.
3511   if (New->hasExternalStorage() &&
3512       !Old->hasLinkage() && Old->isLocalVarDeclOrParm()) {
3513     Diag(New->getLocation(), diag::err_extern_non_extern) << New->getDeclName();
3514     Diag(OldLocation, PrevDiag);
3515     return New->setInvalidDecl();
3516   }
3517   if (Old->hasLinkage() && New->isLocalVarDeclOrParm() &&
3518       !New->hasExternalStorage()) {
3519     Diag(New->getLocation(), diag::err_non_extern_extern) << New->getDeclName();
3520     Diag(OldLocation, PrevDiag);
3521     return New->setInvalidDecl();
3522   }
3523 
3524   // Variables with external linkage are analyzed in FinalizeDeclaratorGroup.
3525 
3526   // FIXME: The test for external storage here seems wrong? We still
3527   // need to check for mismatches.
3528   if (!New->hasExternalStorage() && !New->isFileVarDecl() &&
3529       // Don't complain about out-of-line definitions of static members.
3530       !(Old->getLexicalDeclContext()->isRecord() &&
3531         !New->getLexicalDeclContext()->isRecord())) {
3532     Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
3533     Diag(OldLocation, PrevDiag);
3534     return New->setInvalidDecl();
3535   }
3536 
3537   if (New->getTLSKind() != Old->getTLSKind()) {
3538     if (!Old->getTLSKind()) {
3539       Diag(New->getLocation(), diag::err_thread_non_thread) << New->getDeclName();
3540       Diag(OldLocation, PrevDiag);
3541     } else if (!New->getTLSKind()) {
3542       Diag(New->getLocation(), diag::err_non_thread_thread) << New->getDeclName();
3543       Diag(OldLocation, PrevDiag);
3544     } else {
3545       // Do not allow redeclaration to change the variable between requiring
3546       // static and dynamic initialization.
3547       // FIXME: GCC allows this, but uses the TLS keyword on the first
3548       // declaration to determine the kind. Do we need to be compatible here?
3549       Diag(New->getLocation(), diag::err_thread_thread_different_kind)
3550         << New->getDeclName() << (New->getTLSKind() == VarDecl::TLS_Dynamic);
3551       Diag(OldLocation, PrevDiag);
3552     }
3553   }
3554 
3555   // C++ doesn't have tentative definitions, so go right ahead and check here.
3556   VarDecl *Def;
3557   if (getLangOpts().CPlusPlus &&
3558       New->isThisDeclarationADefinition() == VarDecl::Definition &&
3559       (Def = Old->getDefinition())) {
3560     NamedDecl *Hidden = nullptr;
3561     if (!hasVisibleDefinition(Def, &Hidden) &&
3562         (New->getFormalLinkage() == InternalLinkage ||
3563          New->getDescribedVarTemplate() ||
3564          New->getNumTemplateParameterLists() ||
3565          New->getDeclContext()->isDependentContext())) {
3566       // The previous definition is hidden, and multiple definitions are
3567       // permitted (in separate TUs). Form another definition of it.
3568     } else {
3569       Diag(New->getLocation(), diag::err_redefinition) << New;
3570       Diag(Def->getLocation(), diag::note_previous_definition);
3571       New->setInvalidDecl();
3572       return;
3573     }
3574   }
3575 
3576   if (haveIncompatibleLanguageLinkages(Old, New)) {
3577     Diag(New->getLocation(), diag::err_different_language_linkage) << New;
3578     Diag(OldLocation, PrevDiag);
3579     New->setInvalidDecl();
3580     return;
3581   }
3582 
3583   // Merge "used" flag.
3584   if (Old->getMostRecentDecl()->isUsed(false))
3585     New->setIsUsed();
3586 
3587   // Keep a chain of previous declarations.
3588   New->setPreviousDecl(Old);
3589   if (NewTemplate)
3590     NewTemplate->setPreviousDecl(OldTemplate);
3591 
3592   // Inherit access appropriately.
3593   New->setAccess(Old->getAccess());
3594   if (NewTemplate)
3595     NewTemplate->setAccess(New->getAccess());
3596 }
3597 
3598 /// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
3599 /// no declarator (e.g. "struct foo;") is parsed.
ParsedFreeStandingDeclSpec(Scope * S,AccessSpecifier AS,DeclSpec & DS)3600 Decl *Sema::ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS,
3601                                        DeclSpec &DS) {
3602   return ParsedFreeStandingDeclSpec(S, AS, DS, MultiTemplateParamsArg());
3603 }
3604 
3605 // The MS ABI changed between VS2013 and VS2015 with regard to numbers used to
3606 // disambiguate entities defined in different scopes.
3607 // While the VS2015 ABI fixes potential miscompiles, it is also breaks
3608 // compatibility.
3609 // We will pick our mangling number depending on which version of MSVC is being
3610 // targeted.
getMSManglingNumber(const LangOptions & LO,Scope * S)3611 static unsigned getMSManglingNumber(const LangOptions &LO, Scope *S) {
3612   return LO.isCompatibleWithMSVC(LangOptions::MSVC2015)
3613              ? S->getMSCurManglingNumber()
3614              : S->getMSLastManglingNumber();
3615 }
3616 
handleTagNumbering(const TagDecl * Tag,Scope * TagScope)3617 void Sema::handleTagNumbering(const TagDecl *Tag, Scope *TagScope) {
3618   if (!Context.getLangOpts().CPlusPlus)
3619     return;
3620 
3621   if (isa<CXXRecordDecl>(Tag->getParent())) {
3622     // If this tag is the direct child of a class, number it if
3623     // it is anonymous.
3624     if (!Tag->getName().empty() || Tag->getTypedefNameForAnonDecl())
3625       return;
3626     MangleNumberingContext &MCtx =
3627         Context.getManglingNumberContext(Tag->getParent());
3628     Context.setManglingNumber(
3629         Tag, MCtx.getManglingNumber(
3630                  Tag, getMSManglingNumber(getLangOpts(), TagScope)));
3631     return;
3632   }
3633 
3634   // If this tag isn't a direct child of a class, number it if it is local.
3635   Decl *ManglingContextDecl;
3636   if (MangleNumberingContext *MCtx = getCurrentMangleNumberContext(
3637           Tag->getDeclContext(), ManglingContextDecl)) {
3638     Context.setManglingNumber(
3639         Tag, MCtx->getManglingNumber(
3640                  Tag, getMSManglingNumber(getLangOpts(), TagScope)));
3641   }
3642 }
3643 
setTagNameForLinkagePurposes(TagDecl * TagFromDeclSpec,TypedefNameDecl * NewTD)3644 void Sema::setTagNameForLinkagePurposes(TagDecl *TagFromDeclSpec,
3645                                         TypedefNameDecl *NewTD) {
3646   if (TagFromDeclSpec->isInvalidDecl())
3647     return;
3648 
3649   // Do nothing if the tag already has a name for linkage purposes.
3650   if (TagFromDeclSpec->hasNameForLinkage())
3651     return;
3652 
3653   // A well-formed anonymous tag must always be a TUK_Definition.
3654   assert(TagFromDeclSpec->isThisDeclarationADefinition());
3655 
3656   // The type must match the tag exactly;  no qualifiers allowed.
3657   if (!Context.hasSameType(NewTD->getUnderlyingType(),
3658                            Context.getTagDeclType(TagFromDeclSpec))) {
3659     if (getLangOpts().CPlusPlus)
3660       Context.addTypedefNameForUnnamedTagDecl(TagFromDeclSpec, NewTD);
3661     return;
3662   }
3663 
3664   // If we've already computed linkage for the anonymous tag, then
3665   // adding a typedef name for the anonymous decl can change that
3666   // linkage, which might be a serious problem.  Diagnose this as
3667   // unsupported and ignore the typedef name.  TODO: we should
3668   // pursue this as a language defect and establish a formal rule
3669   // for how to handle it.
3670   if (TagFromDeclSpec->hasLinkageBeenComputed()) {
3671     Diag(NewTD->getLocation(), diag::err_typedef_changes_linkage);
3672 
3673     SourceLocation tagLoc = TagFromDeclSpec->getInnerLocStart();
3674     tagLoc = getLocForEndOfToken(tagLoc);
3675 
3676     llvm::SmallString<40> textToInsert;
3677     textToInsert += ' ';
3678     textToInsert += NewTD->getIdentifier()->getName();
3679     Diag(tagLoc, diag::note_typedef_changes_linkage)
3680         << FixItHint::CreateInsertion(tagLoc, textToInsert);
3681     return;
3682   }
3683 
3684   // Otherwise, set this is the anon-decl typedef for the tag.
3685   TagFromDeclSpec->setTypedefNameForAnonDecl(NewTD);
3686 }
3687 
GetDiagnosticTypeSpecifierID(DeclSpec::TST T)3688 static unsigned GetDiagnosticTypeSpecifierID(DeclSpec::TST T) {
3689   switch (T) {
3690   case DeclSpec::TST_class:
3691     return 0;
3692   case DeclSpec::TST_struct:
3693     return 1;
3694   case DeclSpec::TST_interface:
3695     return 2;
3696   case DeclSpec::TST_union:
3697     return 3;
3698   case DeclSpec::TST_enum:
3699     return 4;
3700   default:
3701     llvm_unreachable("unexpected type specifier");
3702   }
3703 }
3704 
3705 /// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
3706 /// no declarator (e.g. "struct foo;") is parsed. It also accepts template
3707 /// parameters to cope with template friend declarations.
ParsedFreeStandingDeclSpec(Scope * S,AccessSpecifier AS,DeclSpec & DS,MultiTemplateParamsArg TemplateParams,bool IsExplicitInstantiation)3708 Decl *Sema::ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS,
3709                                        DeclSpec &DS,
3710                                        MultiTemplateParamsArg TemplateParams,
3711                                        bool IsExplicitInstantiation) {
3712   Decl *TagD = nullptr;
3713   TagDecl *Tag = nullptr;
3714   if (DS.getTypeSpecType() == DeclSpec::TST_class ||
3715       DS.getTypeSpecType() == DeclSpec::TST_struct ||
3716       DS.getTypeSpecType() == DeclSpec::TST_interface ||
3717       DS.getTypeSpecType() == DeclSpec::TST_union ||
3718       DS.getTypeSpecType() == DeclSpec::TST_enum) {
3719     TagD = DS.getRepAsDecl();
3720 
3721     if (!TagD) // We probably had an error
3722       return nullptr;
3723 
3724     // Note that the above type specs guarantee that the
3725     // type rep is a Decl, whereas in many of the others
3726     // it's a Type.
3727     if (isa<TagDecl>(TagD))
3728       Tag = cast<TagDecl>(TagD);
3729     else if (ClassTemplateDecl *CTD = dyn_cast<ClassTemplateDecl>(TagD))
3730       Tag = CTD->getTemplatedDecl();
3731   }
3732 
3733   if (Tag) {
3734     handleTagNumbering(Tag, S);
3735     Tag->setFreeStanding();
3736     if (Tag->isInvalidDecl())
3737       return Tag;
3738   }
3739 
3740   if (unsigned TypeQuals = DS.getTypeQualifiers()) {
3741     // Enforce C99 6.7.3p2: "Types other than pointer types derived from object
3742     // or incomplete types shall not be restrict-qualified."
3743     if (TypeQuals & DeclSpec::TQ_restrict)
3744       Diag(DS.getRestrictSpecLoc(),
3745            diag::err_typecheck_invalid_restrict_not_pointer_noarg)
3746            << DS.getSourceRange();
3747   }
3748 
3749   if (DS.isConstexprSpecified()) {
3750     // C++0x [dcl.constexpr]p1: constexpr can only be applied to declarations
3751     // and definitions of functions and variables.
3752     if (Tag)
3753       Diag(DS.getConstexprSpecLoc(), diag::err_constexpr_tag)
3754           << GetDiagnosticTypeSpecifierID(DS.getTypeSpecType());
3755     else
3756       Diag(DS.getConstexprSpecLoc(), diag::err_constexpr_no_declarators);
3757     // Don't emit warnings after this error.
3758     return TagD;
3759   }
3760 
3761   if (DS.isConceptSpecified()) {
3762     // C++ Concepts TS [dcl.spec.concept]p1: A concept definition refers to
3763     // either a function concept and its definition or a variable concept and
3764     // its initializer.
3765     Diag(DS.getConceptSpecLoc(), diag::err_concept_wrong_decl_kind);
3766     return TagD;
3767   }
3768 
3769   DiagnoseFunctionSpecifiers(DS);
3770 
3771   if (DS.isFriendSpecified()) {
3772     // If we're dealing with a decl but not a TagDecl, assume that
3773     // whatever routines created it handled the friendship aspect.
3774     if (TagD && !Tag)
3775       return nullptr;
3776     return ActOnFriendTypeDecl(S, DS, TemplateParams);
3777   }
3778 
3779   const CXXScopeSpec &SS = DS.getTypeSpecScope();
3780   bool IsExplicitSpecialization =
3781     !TemplateParams.empty() && TemplateParams.back()->size() == 0;
3782   if (Tag && SS.isNotEmpty() && !Tag->isCompleteDefinition() &&
3783       !IsExplicitInstantiation && !IsExplicitSpecialization &&
3784       !isa<ClassTemplatePartialSpecializationDecl>(Tag)) {
3785     // Per C++ [dcl.type.elab]p1, a class declaration cannot have a
3786     // nested-name-specifier unless it is an explicit instantiation
3787     // or an explicit specialization.
3788     //
3789     // FIXME: We allow class template partial specializations here too, per the
3790     // obvious intent of DR1819.
3791     //
3792     // Per C++ [dcl.enum]p1, an opaque-enum-declaration can't either.
3793     Diag(SS.getBeginLoc(), diag::err_standalone_class_nested_name_specifier)
3794         << GetDiagnosticTypeSpecifierID(DS.getTypeSpecType()) << SS.getRange();
3795     return nullptr;
3796   }
3797 
3798   // Track whether this decl-specifier declares anything.
3799   bool DeclaresAnything = true;
3800 
3801   // Handle anonymous struct definitions.
3802   if (RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag)) {
3803     if (!Record->getDeclName() && Record->isCompleteDefinition() &&
3804         DS.getStorageClassSpec() != DeclSpec::SCS_typedef) {
3805       if (getLangOpts().CPlusPlus ||
3806           Record->getDeclContext()->isRecord())
3807         return BuildAnonymousStructOrUnion(S, DS, AS, Record,
3808                                            Context.getPrintingPolicy());
3809 
3810       DeclaresAnything = false;
3811     }
3812   }
3813 
3814   // C11 6.7.2.1p2:
3815   //   A struct-declaration that does not declare an anonymous structure or
3816   //   anonymous union shall contain a struct-declarator-list.
3817   //
3818   // This rule also existed in C89 and C99; the grammar for struct-declaration
3819   // did not permit a struct-declaration without a struct-declarator-list.
3820   if (!getLangOpts().CPlusPlus && CurContext->isRecord() &&
3821       DS.getStorageClassSpec() == DeclSpec::SCS_unspecified) {
3822     // Check for Microsoft C extension: anonymous struct/union member.
3823     // Handle 2 kinds of anonymous struct/union:
3824     //   struct STRUCT;
3825     //   union UNION;
3826     // and
3827     //   STRUCT_TYPE;  <- where STRUCT_TYPE is a typedef struct.
3828     //   UNION_TYPE;   <- where UNION_TYPE is a typedef union.
3829     if ((Tag && Tag->getDeclName()) ||
3830         DS.getTypeSpecType() == DeclSpec::TST_typename) {
3831       RecordDecl *Record = nullptr;
3832       if (Tag)
3833         Record = dyn_cast<RecordDecl>(Tag);
3834       else if (const RecordType *RT =
3835                    DS.getRepAsType().get()->getAsStructureType())
3836         Record = RT->getDecl();
3837       else if (const RecordType *UT = DS.getRepAsType().get()->getAsUnionType())
3838         Record = UT->getDecl();
3839 
3840       if (Record && getLangOpts().MicrosoftExt) {
3841         Diag(DS.getLocStart(), diag::ext_ms_anonymous_record)
3842           << Record->isUnion() << DS.getSourceRange();
3843         return BuildMicrosoftCAnonymousStruct(S, DS, Record);
3844       }
3845 
3846       DeclaresAnything = false;
3847     }
3848   }
3849 
3850   // Skip all the checks below if we have a type error.
3851   if (DS.getTypeSpecType() == DeclSpec::TST_error ||
3852       (TagD && TagD->isInvalidDecl()))
3853     return TagD;
3854 
3855   if (getLangOpts().CPlusPlus &&
3856       DS.getStorageClassSpec() != DeclSpec::SCS_typedef)
3857     if (EnumDecl *Enum = dyn_cast_or_null<EnumDecl>(Tag))
3858       if (Enum->enumerator_begin() == Enum->enumerator_end() &&
3859           !Enum->getIdentifier() && !Enum->isInvalidDecl())
3860         DeclaresAnything = false;
3861 
3862   if (!DS.isMissingDeclaratorOk()) {
3863     // Customize diagnostic for a typedef missing a name.
3864     if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef)
3865       Diag(DS.getLocStart(), diag::ext_typedef_without_a_name)
3866         << DS.getSourceRange();
3867     else
3868       DeclaresAnything = false;
3869   }
3870 
3871   if (DS.isModulePrivateSpecified() &&
3872       Tag && Tag->getDeclContext()->isFunctionOrMethod())
3873     Diag(DS.getModulePrivateSpecLoc(), diag::err_module_private_local_class)
3874       << Tag->getTagKind()
3875       << FixItHint::CreateRemoval(DS.getModulePrivateSpecLoc());
3876 
3877   ActOnDocumentableDecl(TagD);
3878 
3879   // C 6.7/2:
3880   //   A declaration [...] shall declare at least a declarator [...], a tag,
3881   //   or the members of an enumeration.
3882   // C++ [dcl.dcl]p3:
3883   //   [If there are no declarators], and except for the declaration of an
3884   //   unnamed bit-field, the decl-specifier-seq shall introduce one or more
3885   //   names into the program, or shall redeclare a name introduced by a
3886   //   previous declaration.
3887   if (!DeclaresAnything) {
3888     // In C, we allow this as a (popular) extension / bug. Don't bother
3889     // producing further diagnostics for redundant qualifiers after this.
3890     Diag(DS.getLocStart(), diag::ext_no_declarators) << DS.getSourceRange();
3891     return TagD;
3892   }
3893 
3894   // C++ [dcl.stc]p1:
3895   //   If a storage-class-specifier appears in a decl-specifier-seq, [...] the
3896   //   init-declarator-list of the declaration shall not be empty.
3897   // C++ [dcl.fct.spec]p1:
3898   //   If a cv-qualifier appears in a decl-specifier-seq, the
3899   //   init-declarator-list of the declaration shall not be empty.
3900   //
3901   // Spurious qualifiers here appear to be valid in C.
3902   unsigned DiagID = diag::warn_standalone_specifier;
3903   if (getLangOpts().CPlusPlus)
3904     DiagID = diag::ext_standalone_specifier;
3905 
3906   // Note that a linkage-specification sets a storage class, but
3907   // 'extern "C" struct foo;' is actually valid and not theoretically
3908   // useless.
3909   if (DeclSpec::SCS SCS = DS.getStorageClassSpec()) {
3910     if (SCS == DeclSpec::SCS_mutable)
3911       // Since mutable is not a viable storage class specifier in C, there is
3912       // no reason to treat it as an extension. Instead, diagnose as an error.
3913       Diag(DS.getStorageClassSpecLoc(), diag::err_mutable_nonmember);
3914     else if (!DS.isExternInLinkageSpec() && SCS != DeclSpec::SCS_typedef)
3915       Diag(DS.getStorageClassSpecLoc(), DiagID)
3916         << DeclSpec::getSpecifierName(SCS);
3917   }
3918 
3919   if (DeclSpec::TSCS TSCS = DS.getThreadStorageClassSpec())
3920     Diag(DS.getThreadStorageClassSpecLoc(), DiagID)
3921       << DeclSpec::getSpecifierName(TSCS);
3922   if (DS.getTypeQualifiers()) {
3923     if (DS.getTypeQualifiers() & DeclSpec::TQ_const)
3924       Diag(DS.getConstSpecLoc(), DiagID) << "const";
3925     if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile)
3926       Diag(DS.getConstSpecLoc(), DiagID) << "volatile";
3927     // Restrict is covered above.
3928     if (DS.getTypeQualifiers() & DeclSpec::TQ_atomic)
3929       Diag(DS.getAtomicSpecLoc(), DiagID) << "_Atomic";
3930   }
3931 
3932   // Warn about ignored type attributes, for example:
3933   // __attribute__((aligned)) struct A;
3934   // Attributes should be placed after tag to apply to type declaration.
3935   if (!DS.getAttributes().empty()) {
3936     DeclSpec::TST TypeSpecType = DS.getTypeSpecType();
3937     if (TypeSpecType == DeclSpec::TST_class ||
3938         TypeSpecType == DeclSpec::TST_struct ||
3939         TypeSpecType == DeclSpec::TST_interface ||
3940         TypeSpecType == DeclSpec::TST_union ||
3941         TypeSpecType == DeclSpec::TST_enum) {
3942       for (AttributeList* attrs = DS.getAttributes().getList(); attrs;
3943            attrs = attrs->getNext())
3944         Diag(attrs->getLoc(), diag::warn_declspec_attribute_ignored)
3945             << attrs->getName() << GetDiagnosticTypeSpecifierID(TypeSpecType);
3946     }
3947   }
3948 
3949   return TagD;
3950 }
3951 
3952 /// We are trying to inject an anonymous member into the given scope;
3953 /// check if there's an existing declaration that can't be overloaded.
3954 ///
3955 /// \return true if this is a forbidden redeclaration
CheckAnonMemberRedeclaration(Sema & SemaRef,Scope * S,DeclContext * Owner,DeclarationName Name,SourceLocation NameLoc,bool IsUnion)3956 static bool CheckAnonMemberRedeclaration(Sema &SemaRef,
3957                                          Scope *S,
3958                                          DeclContext *Owner,
3959                                          DeclarationName Name,
3960                                          SourceLocation NameLoc,
3961                                          bool IsUnion) {
3962   LookupResult R(SemaRef, Name, NameLoc, Sema::LookupMemberName,
3963                  Sema::ForRedeclaration);
3964   if (!SemaRef.LookupName(R, S)) return false;
3965 
3966   if (R.getAsSingle<TagDecl>())
3967     return false;
3968 
3969   // Pick a representative declaration.
3970   NamedDecl *PrevDecl = R.getRepresentativeDecl()->getUnderlyingDecl();
3971   assert(PrevDecl && "Expected a non-null Decl");
3972 
3973   if (!SemaRef.isDeclInScope(PrevDecl, Owner, S))
3974     return false;
3975 
3976   SemaRef.Diag(NameLoc, diag::err_anonymous_record_member_redecl)
3977     << IsUnion << Name;
3978   SemaRef.Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
3979 
3980   return true;
3981 }
3982 
3983 /// InjectAnonymousStructOrUnionMembers - Inject the members of the
3984 /// anonymous struct or union AnonRecord into the owning context Owner
3985 /// and scope S. This routine will be invoked just after we realize
3986 /// that an unnamed union or struct is actually an anonymous union or
3987 /// struct, e.g.,
3988 ///
3989 /// @code
3990 /// union {
3991 ///   int i;
3992 ///   float f;
3993 /// }; // InjectAnonymousStructOrUnionMembers called here to inject i and
3994 ///    // f into the surrounding scope.x
3995 /// @endcode
3996 ///
3997 /// This routine is recursive, injecting the names of nested anonymous
3998 /// structs/unions into the owning context and scope as well.
InjectAnonymousStructOrUnionMembers(Sema & SemaRef,Scope * S,DeclContext * Owner,RecordDecl * AnonRecord,AccessSpecifier AS,SmallVectorImpl<NamedDecl * > & Chaining,bool MSAnonStruct)3999 static bool InjectAnonymousStructOrUnionMembers(Sema &SemaRef, Scope *S,
4000                                          DeclContext *Owner,
4001                                          RecordDecl *AnonRecord,
4002                                          AccessSpecifier AS,
4003                                          SmallVectorImpl<NamedDecl *> &Chaining,
4004                                          bool MSAnonStruct) {
4005   bool Invalid = false;
4006 
4007   // Look every FieldDecl and IndirectFieldDecl with a name.
4008   for (auto *D : AnonRecord->decls()) {
4009     if ((isa<FieldDecl>(D) || isa<IndirectFieldDecl>(D)) &&
4010         cast<NamedDecl>(D)->getDeclName()) {
4011       ValueDecl *VD = cast<ValueDecl>(D);
4012       if (CheckAnonMemberRedeclaration(SemaRef, S, Owner, VD->getDeclName(),
4013                                        VD->getLocation(),
4014                                        AnonRecord->isUnion())) {
4015         // C++ [class.union]p2:
4016         //   The names of the members of an anonymous union shall be
4017         //   distinct from the names of any other entity in the
4018         //   scope in which the anonymous union is declared.
4019         Invalid = true;
4020       } else {
4021         // C++ [class.union]p2:
4022         //   For the purpose of name lookup, after the anonymous union
4023         //   definition, the members of the anonymous union are
4024         //   considered to have been defined in the scope in which the
4025         //   anonymous union is declared.
4026         unsigned OldChainingSize = Chaining.size();
4027         if (IndirectFieldDecl *IF = dyn_cast<IndirectFieldDecl>(VD))
4028           Chaining.append(IF->chain_begin(), IF->chain_end());
4029         else
4030           Chaining.push_back(VD);
4031 
4032         assert(Chaining.size() >= 2);
4033         NamedDecl **NamedChain =
4034           new (SemaRef.Context)NamedDecl*[Chaining.size()];
4035         for (unsigned i = 0; i < Chaining.size(); i++)
4036           NamedChain[i] = Chaining[i];
4037 
4038         IndirectFieldDecl *IndirectField = IndirectFieldDecl::Create(
4039             SemaRef.Context, Owner, VD->getLocation(), VD->getIdentifier(),
4040             VD->getType(), NamedChain, Chaining.size());
4041 
4042         for (const auto *Attr : VD->attrs())
4043           IndirectField->addAttr(Attr->clone(SemaRef.Context));
4044 
4045         IndirectField->setAccess(AS);
4046         IndirectField->setImplicit();
4047         SemaRef.PushOnScopeChains(IndirectField, S);
4048 
4049         // That includes picking up the appropriate access specifier.
4050         if (AS != AS_none) IndirectField->setAccess(AS);
4051 
4052         Chaining.resize(OldChainingSize);
4053       }
4054     }
4055   }
4056 
4057   return Invalid;
4058 }
4059 
4060 /// StorageClassSpecToVarDeclStorageClass - Maps a DeclSpec::SCS to
4061 /// a VarDecl::StorageClass. Any error reporting is up to the caller:
4062 /// illegal input values are mapped to SC_None.
4063 static StorageClass
StorageClassSpecToVarDeclStorageClass(const DeclSpec & DS)4064 StorageClassSpecToVarDeclStorageClass(const DeclSpec &DS) {
4065   DeclSpec::SCS StorageClassSpec = DS.getStorageClassSpec();
4066   assert(StorageClassSpec != DeclSpec::SCS_typedef &&
4067          "Parser allowed 'typedef' as storage class VarDecl.");
4068   switch (StorageClassSpec) {
4069   case DeclSpec::SCS_unspecified:    return SC_None;
4070   case DeclSpec::SCS_extern:
4071     if (DS.isExternInLinkageSpec())
4072       return SC_None;
4073     return SC_Extern;
4074   case DeclSpec::SCS_static:         return SC_Static;
4075   case DeclSpec::SCS_auto:           return SC_Auto;
4076   case DeclSpec::SCS_register:       return SC_Register;
4077   case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
4078     // Illegal SCSs map to None: error reporting is up to the caller.
4079   case DeclSpec::SCS_mutable:        // Fall through.
4080   case DeclSpec::SCS_typedef:        return SC_None;
4081   }
4082   llvm_unreachable("unknown storage class specifier");
4083 }
4084 
findDefaultInitializer(const CXXRecordDecl * Record)4085 static SourceLocation findDefaultInitializer(const CXXRecordDecl *Record) {
4086   assert(Record->hasInClassInitializer());
4087 
4088   for (const auto *I : Record->decls()) {
4089     const auto *FD = dyn_cast<FieldDecl>(I);
4090     if (const auto *IFD = dyn_cast<IndirectFieldDecl>(I))
4091       FD = IFD->getAnonField();
4092     if (FD && FD->hasInClassInitializer())
4093       return FD->getLocation();
4094   }
4095 
4096   llvm_unreachable("couldn't find in-class initializer");
4097 }
4098 
checkDuplicateDefaultInit(Sema & S,CXXRecordDecl * Parent,SourceLocation DefaultInitLoc)4099 static void checkDuplicateDefaultInit(Sema &S, CXXRecordDecl *Parent,
4100                                       SourceLocation DefaultInitLoc) {
4101   if (!Parent->isUnion() || !Parent->hasInClassInitializer())
4102     return;
4103 
4104   S.Diag(DefaultInitLoc, diag::err_multiple_mem_union_initialization);
4105   S.Diag(findDefaultInitializer(Parent), diag::note_previous_initializer) << 0;
4106 }
4107 
checkDuplicateDefaultInit(Sema & S,CXXRecordDecl * Parent,CXXRecordDecl * AnonUnion)4108 static void checkDuplicateDefaultInit(Sema &S, CXXRecordDecl *Parent,
4109                                       CXXRecordDecl *AnonUnion) {
4110   if (!Parent->isUnion() || !Parent->hasInClassInitializer())
4111     return;
4112 
4113   checkDuplicateDefaultInit(S, Parent, findDefaultInitializer(AnonUnion));
4114 }
4115 
4116 /// BuildAnonymousStructOrUnion - Handle the declaration of an
4117 /// anonymous structure or union. Anonymous unions are a C++ feature
4118 /// (C++ [class.union]) and a C11 feature; anonymous structures
4119 /// are a C11 feature and GNU C++ extension.
BuildAnonymousStructOrUnion(Scope * S,DeclSpec & DS,AccessSpecifier AS,RecordDecl * Record,const PrintingPolicy & Policy)4120 Decl *Sema::BuildAnonymousStructOrUnion(Scope *S, DeclSpec &DS,
4121                                         AccessSpecifier AS,
4122                                         RecordDecl *Record,
4123                                         const PrintingPolicy &Policy) {
4124   DeclContext *Owner = Record->getDeclContext();
4125 
4126   // Diagnose whether this anonymous struct/union is an extension.
4127   if (Record->isUnion() && !getLangOpts().CPlusPlus && !getLangOpts().C11)
4128     Diag(Record->getLocation(), diag::ext_anonymous_union);
4129   else if (!Record->isUnion() && getLangOpts().CPlusPlus)
4130     Diag(Record->getLocation(), diag::ext_gnu_anonymous_struct);
4131   else if (!Record->isUnion() && !getLangOpts().C11)
4132     Diag(Record->getLocation(), diag::ext_c11_anonymous_struct);
4133 
4134   // C and C++ require different kinds of checks for anonymous
4135   // structs/unions.
4136   bool Invalid = false;
4137   if (getLangOpts().CPlusPlus) {
4138     const char *PrevSpec = nullptr;
4139     unsigned DiagID;
4140     if (Record->isUnion()) {
4141       // C++ [class.union]p6:
4142       //   Anonymous unions declared in a named namespace or in the
4143       //   global namespace shall be declared static.
4144       if (DS.getStorageClassSpec() != DeclSpec::SCS_static &&
4145           (isa<TranslationUnitDecl>(Owner) ||
4146            (isa<NamespaceDecl>(Owner) &&
4147             cast<NamespaceDecl>(Owner)->getDeclName()))) {
4148         Diag(Record->getLocation(), diag::err_anonymous_union_not_static)
4149           << FixItHint::CreateInsertion(Record->getLocation(), "static ");
4150 
4151         // Recover by adding 'static'.
4152         DS.SetStorageClassSpec(*this, DeclSpec::SCS_static, SourceLocation(),
4153                                PrevSpec, DiagID, Policy);
4154       }
4155       // C++ [class.union]p6:
4156       //   A storage class is not allowed in a declaration of an
4157       //   anonymous union in a class scope.
4158       else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified &&
4159                isa<RecordDecl>(Owner)) {
4160         Diag(DS.getStorageClassSpecLoc(),
4161              diag::err_anonymous_union_with_storage_spec)
4162           << FixItHint::CreateRemoval(DS.getStorageClassSpecLoc());
4163 
4164         // Recover by removing the storage specifier.
4165         DS.SetStorageClassSpec(*this, DeclSpec::SCS_unspecified,
4166                                SourceLocation(),
4167                                PrevSpec, DiagID, Context.getPrintingPolicy());
4168       }
4169     }
4170 
4171     // Ignore const/volatile/restrict qualifiers.
4172     if (DS.getTypeQualifiers()) {
4173       if (DS.getTypeQualifiers() & DeclSpec::TQ_const)
4174         Diag(DS.getConstSpecLoc(), diag::ext_anonymous_struct_union_qualified)
4175           << Record->isUnion() << "const"
4176           << FixItHint::CreateRemoval(DS.getConstSpecLoc());
4177       if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile)
4178         Diag(DS.getVolatileSpecLoc(),
4179              diag::ext_anonymous_struct_union_qualified)
4180           << Record->isUnion() << "volatile"
4181           << FixItHint::CreateRemoval(DS.getVolatileSpecLoc());
4182       if (DS.getTypeQualifiers() & DeclSpec::TQ_restrict)
4183         Diag(DS.getRestrictSpecLoc(),
4184              diag::ext_anonymous_struct_union_qualified)
4185           << Record->isUnion() << "restrict"
4186           << FixItHint::CreateRemoval(DS.getRestrictSpecLoc());
4187       if (DS.getTypeQualifiers() & DeclSpec::TQ_atomic)
4188         Diag(DS.getAtomicSpecLoc(),
4189              diag::ext_anonymous_struct_union_qualified)
4190           << Record->isUnion() << "_Atomic"
4191           << FixItHint::CreateRemoval(DS.getAtomicSpecLoc());
4192 
4193       DS.ClearTypeQualifiers();
4194     }
4195 
4196     // C++ [class.union]p2:
4197     //   The member-specification of an anonymous union shall only
4198     //   define non-static data members. [Note: nested types and
4199     //   functions cannot be declared within an anonymous union. ]
4200     for (auto *Mem : Record->decls()) {
4201       if (auto *FD = dyn_cast<FieldDecl>(Mem)) {
4202         // C++ [class.union]p3:
4203         //   An anonymous union shall not have private or protected
4204         //   members (clause 11).
4205         assert(FD->getAccess() != AS_none);
4206         if (FD->getAccess() != AS_public) {
4207           Diag(FD->getLocation(), diag::err_anonymous_record_nonpublic_member)
4208             << Record->isUnion() << (FD->getAccess() == AS_protected);
4209           Invalid = true;
4210         }
4211 
4212         // C++ [class.union]p1
4213         //   An object of a class with a non-trivial constructor, a non-trivial
4214         //   copy constructor, a non-trivial destructor, or a non-trivial copy
4215         //   assignment operator cannot be a member of a union, nor can an
4216         //   array of such objects.
4217         if (CheckNontrivialField(FD))
4218           Invalid = true;
4219       } else if (Mem->isImplicit()) {
4220         // Any implicit members are fine.
4221       } else if (isa<TagDecl>(Mem) && Mem->getDeclContext() != Record) {
4222         // This is a type that showed up in an
4223         // elaborated-type-specifier inside the anonymous struct or
4224         // union, but which actually declares a type outside of the
4225         // anonymous struct or union. It's okay.
4226       } else if (auto *MemRecord = dyn_cast<RecordDecl>(Mem)) {
4227         if (!MemRecord->isAnonymousStructOrUnion() &&
4228             MemRecord->getDeclName()) {
4229           // Visual C++ allows type definition in anonymous struct or union.
4230           if (getLangOpts().MicrosoftExt)
4231             Diag(MemRecord->getLocation(), diag::ext_anonymous_record_with_type)
4232               << Record->isUnion();
4233           else {
4234             // This is a nested type declaration.
4235             Diag(MemRecord->getLocation(), diag::err_anonymous_record_with_type)
4236               << Record->isUnion();
4237             Invalid = true;
4238           }
4239         } else {
4240           // This is an anonymous type definition within another anonymous type.
4241           // This is a popular extension, provided by Plan9, MSVC and GCC, but
4242           // not part of standard C++.
4243           Diag(MemRecord->getLocation(),
4244                diag::ext_anonymous_record_with_anonymous_type)
4245             << Record->isUnion();
4246         }
4247       } else if (isa<AccessSpecDecl>(Mem)) {
4248         // Any access specifier is fine.
4249       } else if (isa<StaticAssertDecl>(Mem)) {
4250         // In C++1z, static_assert declarations are also fine.
4251       } else {
4252         // We have something that isn't a non-static data
4253         // member. Complain about it.
4254         unsigned DK = diag::err_anonymous_record_bad_member;
4255         if (isa<TypeDecl>(Mem))
4256           DK = diag::err_anonymous_record_with_type;
4257         else if (isa<FunctionDecl>(Mem))
4258           DK = diag::err_anonymous_record_with_function;
4259         else if (isa<VarDecl>(Mem))
4260           DK = diag::err_anonymous_record_with_static;
4261 
4262         // Visual C++ allows type definition in anonymous struct or union.
4263         if (getLangOpts().MicrosoftExt &&
4264             DK == diag::err_anonymous_record_with_type)
4265           Diag(Mem->getLocation(), diag::ext_anonymous_record_with_type)
4266             << Record->isUnion();
4267         else {
4268           Diag(Mem->getLocation(), DK) << Record->isUnion();
4269           Invalid = true;
4270         }
4271       }
4272     }
4273 
4274     // C++11 [class.union]p8 (DR1460):
4275     //   At most one variant member of a union may have a
4276     //   brace-or-equal-initializer.
4277     if (cast<CXXRecordDecl>(Record)->hasInClassInitializer() &&
4278         Owner->isRecord())
4279       checkDuplicateDefaultInit(*this, cast<CXXRecordDecl>(Owner),
4280                                 cast<CXXRecordDecl>(Record));
4281   }
4282 
4283   if (!Record->isUnion() && !Owner->isRecord()) {
4284     Diag(Record->getLocation(), diag::err_anonymous_struct_not_member)
4285       << getLangOpts().CPlusPlus;
4286     Invalid = true;
4287   }
4288 
4289   // Mock up a declarator.
4290   Declarator Dc(DS, Declarator::MemberContext);
4291   TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc, S);
4292   assert(TInfo && "couldn't build declarator info for anonymous struct/union");
4293 
4294   // Create a declaration for this anonymous struct/union.
4295   NamedDecl *Anon = nullptr;
4296   if (RecordDecl *OwningClass = dyn_cast<RecordDecl>(Owner)) {
4297     Anon = FieldDecl::Create(Context, OwningClass,
4298                              DS.getLocStart(),
4299                              Record->getLocation(),
4300                              /*IdentifierInfo=*/nullptr,
4301                              Context.getTypeDeclType(Record),
4302                              TInfo,
4303                              /*BitWidth=*/nullptr, /*Mutable=*/false,
4304                              /*InitStyle=*/ICIS_NoInit);
4305     Anon->setAccess(AS);
4306     if (getLangOpts().CPlusPlus)
4307       FieldCollector->Add(cast<FieldDecl>(Anon));
4308   } else {
4309     DeclSpec::SCS SCSpec = DS.getStorageClassSpec();
4310     StorageClass SC = StorageClassSpecToVarDeclStorageClass(DS);
4311     if (SCSpec == DeclSpec::SCS_mutable) {
4312       // mutable can only appear on non-static class members, so it's always
4313       // an error here
4314       Diag(Record->getLocation(), diag::err_mutable_nonmember);
4315       Invalid = true;
4316       SC = SC_None;
4317     }
4318 
4319     Anon = VarDecl::Create(Context, Owner,
4320                            DS.getLocStart(),
4321                            Record->getLocation(), /*IdentifierInfo=*/nullptr,
4322                            Context.getTypeDeclType(Record),
4323                            TInfo, SC);
4324 
4325     // Default-initialize the implicit variable. This initialization will be
4326     // trivial in almost all cases, except if a union member has an in-class
4327     // initializer:
4328     //   union { int n = 0; };
4329     ActOnUninitializedDecl(Anon, /*TypeMayContainAuto=*/false);
4330   }
4331   Anon->setImplicit();
4332 
4333   // Mark this as an anonymous struct/union type.
4334   Record->setAnonymousStructOrUnion(true);
4335 
4336   // Add the anonymous struct/union object to the current
4337   // context. We'll be referencing this object when we refer to one of
4338   // its members.
4339   Owner->addDecl(Anon);
4340 
4341   // Inject the members of the anonymous struct/union into the owning
4342   // context and into the identifier resolver chain for name lookup
4343   // purposes.
4344   SmallVector<NamedDecl*, 2> Chain;
4345   Chain.push_back(Anon);
4346 
4347   if (InjectAnonymousStructOrUnionMembers(*this, S, Owner, Record, AS,
4348                                           Chain, false))
4349     Invalid = true;
4350 
4351   if (VarDecl *NewVD = dyn_cast<VarDecl>(Anon)) {
4352     if (getLangOpts().CPlusPlus && NewVD->isStaticLocal()) {
4353       Decl *ManglingContextDecl;
4354       if (MangleNumberingContext *MCtx = getCurrentMangleNumberContext(
4355               NewVD->getDeclContext(), ManglingContextDecl)) {
4356         Context.setManglingNumber(
4357             NewVD, MCtx->getManglingNumber(
4358                        NewVD, getMSManglingNumber(getLangOpts(), S)));
4359         Context.setStaticLocalNumber(NewVD, MCtx->getStaticLocalNumber(NewVD));
4360       }
4361     }
4362   }
4363 
4364   if (Invalid)
4365     Anon->setInvalidDecl();
4366 
4367   return Anon;
4368 }
4369 
4370 /// BuildMicrosoftCAnonymousStruct - Handle the declaration of an
4371 /// Microsoft C anonymous structure.
4372 /// Ref: http://msdn.microsoft.com/en-us/library/z2cx9y4f.aspx
4373 /// Example:
4374 ///
4375 /// struct A { int a; };
4376 /// struct B { struct A; int b; };
4377 ///
4378 /// void foo() {
4379 ///   B var;
4380 ///   var.a = 3;
4381 /// }
4382 ///
BuildMicrosoftCAnonymousStruct(Scope * S,DeclSpec & DS,RecordDecl * Record)4383 Decl *Sema::BuildMicrosoftCAnonymousStruct(Scope *S, DeclSpec &DS,
4384                                            RecordDecl *Record) {
4385   assert(Record && "expected a record!");
4386 
4387   // Mock up a declarator.
4388   Declarator Dc(DS, Declarator::TypeNameContext);
4389   TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc, S);
4390   assert(TInfo && "couldn't build declarator info for anonymous struct");
4391 
4392   auto *ParentDecl = cast<RecordDecl>(CurContext);
4393   QualType RecTy = Context.getTypeDeclType(Record);
4394 
4395   // Create a declaration for this anonymous struct.
4396   NamedDecl *Anon = FieldDecl::Create(Context,
4397                              ParentDecl,
4398                              DS.getLocStart(),
4399                              DS.getLocStart(),
4400                              /*IdentifierInfo=*/nullptr,
4401                              RecTy,
4402                              TInfo,
4403                              /*BitWidth=*/nullptr, /*Mutable=*/false,
4404                              /*InitStyle=*/ICIS_NoInit);
4405   Anon->setImplicit();
4406 
4407   // Add the anonymous struct object to the current context.
4408   CurContext->addDecl(Anon);
4409 
4410   // Inject the members of the anonymous struct into the current
4411   // context and into the identifier resolver chain for name lookup
4412   // purposes.
4413   SmallVector<NamedDecl*, 2> Chain;
4414   Chain.push_back(Anon);
4415 
4416   RecordDecl *RecordDef = Record->getDefinition();
4417   if (RequireCompleteType(Anon->getLocation(), RecTy,
4418                           diag::err_field_incomplete) ||
4419       InjectAnonymousStructOrUnionMembers(*this, S, CurContext, RecordDef,
4420                                           AS_none, Chain, true)) {
4421     Anon->setInvalidDecl();
4422     ParentDecl->setInvalidDecl();
4423   }
4424 
4425   return Anon;
4426 }
4427 
4428 /// GetNameForDeclarator - Determine the full declaration name for the
4429 /// given Declarator.
GetNameForDeclarator(Declarator & D)4430 DeclarationNameInfo Sema::GetNameForDeclarator(Declarator &D) {
4431   return GetNameFromUnqualifiedId(D.getName());
4432 }
4433 
4434 /// \brief Retrieves the declaration name from a parsed unqualified-id.
4435 DeclarationNameInfo
GetNameFromUnqualifiedId(const UnqualifiedId & Name)4436 Sema::GetNameFromUnqualifiedId(const UnqualifiedId &Name) {
4437   DeclarationNameInfo NameInfo;
4438   NameInfo.setLoc(Name.StartLocation);
4439 
4440   switch (Name.getKind()) {
4441 
4442   case UnqualifiedId::IK_ImplicitSelfParam:
4443   case UnqualifiedId::IK_Identifier:
4444     NameInfo.setName(Name.Identifier);
4445     NameInfo.setLoc(Name.StartLocation);
4446     return NameInfo;
4447 
4448   case UnqualifiedId::IK_OperatorFunctionId:
4449     NameInfo.setName(Context.DeclarationNames.getCXXOperatorName(
4450                                            Name.OperatorFunctionId.Operator));
4451     NameInfo.setLoc(Name.StartLocation);
4452     NameInfo.getInfo().CXXOperatorName.BeginOpNameLoc
4453       = Name.OperatorFunctionId.SymbolLocations[0];
4454     NameInfo.getInfo().CXXOperatorName.EndOpNameLoc
4455       = Name.EndLocation.getRawEncoding();
4456     return NameInfo;
4457 
4458   case UnqualifiedId::IK_LiteralOperatorId:
4459     NameInfo.setName(Context.DeclarationNames.getCXXLiteralOperatorName(
4460                                                            Name.Identifier));
4461     NameInfo.setLoc(Name.StartLocation);
4462     NameInfo.setCXXLiteralOperatorNameLoc(Name.EndLocation);
4463     return NameInfo;
4464 
4465   case UnqualifiedId::IK_ConversionFunctionId: {
4466     TypeSourceInfo *TInfo;
4467     QualType Ty = GetTypeFromParser(Name.ConversionFunctionId, &TInfo);
4468     if (Ty.isNull())
4469       return DeclarationNameInfo();
4470     NameInfo.setName(Context.DeclarationNames.getCXXConversionFunctionName(
4471                                                Context.getCanonicalType(Ty)));
4472     NameInfo.setLoc(Name.StartLocation);
4473     NameInfo.setNamedTypeInfo(TInfo);
4474     return NameInfo;
4475   }
4476 
4477   case UnqualifiedId::IK_ConstructorName: {
4478     TypeSourceInfo *TInfo;
4479     QualType Ty = GetTypeFromParser(Name.ConstructorName, &TInfo);
4480     if (Ty.isNull())
4481       return DeclarationNameInfo();
4482     NameInfo.setName(Context.DeclarationNames.getCXXConstructorName(
4483                                               Context.getCanonicalType(Ty)));
4484     NameInfo.setLoc(Name.StartLocation);
4485     NameInfo.setNamedTypeInfo(TInfo);
4486     return NameInfo;
4487   }
4488 
4489   case UnqualifiedId::IK_ConstructorTemplateId: {
4490     // In well-formed code, we can only have a constructor
4491     // template-id that refers to the current context, so go there
4492     // to find the actual type being constructed.
4493     CXXRecordDecl *CurClass = dyn_cast<CXXRecordDecl>(CurContext);
4494     if (!CurClass || CurClass->getIdentifier() != Name.TemplateId->Name)
4495       return DeclarationNameInfo();
4496 
4497     // Determine the type of the class being constructed.
4498     QualType CurClassType = Context.getTypeDeclType(CurClass);
4499 
4500     // FIXME: Check two things: that the template-id names the same type as
4501     // CurClassType, and that the template-id does not occur when the name
4502     // was qualified.
4503 
4504     NameInfo.setName(Context.DeclarationNames.getCXXConstructorName(
4505                                     Context.getCanonicalType(CurClassType)));
4506     NameInfo.setLoc(Name.StartLocation);
4507     // FIXME: should we retrieve TypeSourceInfo?
4508     NameInfo.setNamedTypeInfo(nullptr);
4509     return NameInfo;
4510   }
4511 
4512   case UnqualifiedId::IK_DestructorName: {
4513     TypeSourceInfo *TInfo;
4514     QualType Ty = GetTypeFromParser(Name.DestructorName, &TInfo);
4515     if (Ty.isNull())
4516       return DeclarationNameInfo();
4517     NameInfo.setName(Context.DeclarationNames.getCXXDestructorName(
4518                                               Context.getCanonicalType(Ty)));
4519     NameInfo.setLoc(Name.StartLocation);
4520     NameInfo.setNamedTypeInfo(TInfo);
4521     return NameInfo;
4522   }
4523 
4524   case UnqualifiedId::IK_TemplateId: {
4525     TemplateName TName = Name.TemplateId->Template.get();
4526     SourceLocation TNameLoc = Name.TemplateId->TemplateNameLoc;
4527     return Context.getNameForTemplate(TName, TNameLoc);
4528   }
4529 
4530   } // switch (Name.getKind())
4531 
4532   llvm_unreachable("Unknown name kind");
4533 }
4534 
getCoreType(QualType Ty)4535 static QualType getCoreType(QualType Ty) {
4536   do {
4537     if (Ty->isPointerType() || Ty->isReferenceType())
4538       Ty = Ty->getPointeeType();
4539     else if (Ty->isArrayType())
4540       Ty = Ty->castAsArrayTypeUnsafe()->getElementType();
4541     else
4542       return Ty.withoutLocalFastQualifiers();
4543   } while (true);
4544 }
4545 
4546 /// hasSimilarParameters - Determine whether the C++ functions Declaration
4547 /// and Definition have "nearly" matching parameters. This heuristic is
4548 /// used to improve diagnostics in the case where an out-of-line function
4549 /// definition doesn't match any declaration within the class or namespace.
4550 /// Also sets Params to the list of indices to the parameters that differ
4551 /// between the declaration and the definition. If hasSimilarParameters
4552 /// returns true and Params is empty, then all of the parameters match.
hasSimilarParameters(ASTContext & Context,FunctionDecl * Declaration,FunctionDecl * Definition,SmallVectorImpl<unsigned> & Params)4553 static bool hasSimilarParameters(ASTContext &Context,
4554                                      FunctionDecl *Declaration,
4555                                      FunctionDecl *Definition,
4556                                      SmallVectorImpl<unsigned> &Params) {
4557   Params.clear();
4558   if (Declaration->param_size() != Definition->param_size())
4559     return false;
4560   for (unsigned Idx = 0; Idx < Declaration->param_size(); ++Idx) {
4561     QualType DeclParamTy = Declaration->getParamDecl(Idx)->getType();
4562     QualType DefParamTy = Definition->getParamDecl(Idx)->getType();
4563 
4564     // The parameter types are identical
4565     if (Context.hasSameType(DefParamTy, DeclParamTy))
4566       continue;
4567 
4568     QualType DeclParamBaseTy = getCoreType(DeclParamTy);
4569     QualType DefParamBaseTy = getCoreType(DefParamTy);
4570     const IdentifierInfo *DeclTyName = DeclParamBaseTy.getBaseTypeIdentifier();
4571     const IdentifierInfo *DefTyName = DefParamBaseTy.getBaseTypeIdentifier();
4572 
4573     if (Context.hasSameUnqualifiedType(DeclParamBaseTy, DefParamBaseTy) ||
4574         (DeclTyName && DeclTyName == DefTyName))
4575       Params.push_back(Idx);
4576     else  // The two parameters aren't even close
4577       return false;
4578   }
4579 
4580   return true;
4581 }
4582 
4583 /// NeedsRebuildingInCurrentInstantiation - Checks whether the given
4584 /// declarator needs to be rebuilt in the current instantiation.
4585 /// Any bits of declarator which appear before the name are valid for
4586 /// consideration here.  That's specifically the type in the decl spec
4587 /// and the base type in any member-pointer chunks.
RebuildDeclaratorInCurrentInstantiation(Sema & S,Declarator & D,DeclarationName Name)4588 static bool RebuildDeclaratorInCurrentInstantiation(Sema &S, Declarator &D,
4589                                                     DeclarationName Name) {
4590   // The types we specifically need to rebuild are:
4591   //   - typenames, typeofs, and decltypes
4592   //   - types which will become injected class names
4593   // Of course, we also need to rebuild any type referencing such a
4594   // type.  It's safest to just say "dependent", but we call out a
4595   // few cases here.
4596 
4597   DeclSpec &DS = D.getMutableDeclSpec();
4598   switch (DS.getTypeSpecType()) {
4599   case DeclSpec::TST_typename:
4600   case DeclSpec::TST_typeofType:
4601   case DeclSpec::TST_underlyingType:
4602   case DeclSpec::TST_atomic: {
4603     // Grab the type from the parser.
4604     TypeSourceInfo *TSI = nullptr;
4605     QualType T = S.GetTypeFromParser(DS.getRepAsType(), &TSI);
4606     if (T.isNull() || !T->isDependentType()) break;
4607 
4608     // Make sure there's a type source info.  This isn't really much
4609     // of a waste; most dependent types should have type source info
4610     // attached already.
4611     if (!TSI)
4612       TSI = S.Context.getTrivialTypeSourceInfo(T, DS.getTypeSpecTypeLoc());
4613 
4614     // Rebuild the type in the current instantiation.
4615     TSI = S.RebuildTypeInCurrentInstantiation(TSI, D.getIdentifierLoc(), Name);
4616     if (!TSI) return true;
4617 
4618     // Store the new type back in the decl spec.
4619     ParsedType LocType = S.CreateParsedType(TSI->getType(), TSI);
4620     DS.UpdateTypeRep(LocType);
4621     break;
4622   }
4623 
4624   case DeclSpec::TST_decltype:
4625   case DeclSpec::TST_typeofExpr: {
4626     Expr *E = DS.getRepAsExpr();
4627     ExprResult Result = S.RebuildExprInCurrentInstantiation(E);
4628     if (Result.isInvalid()) return true;
4629     DS.UpdateExprRep(Result.get());
4630     break;
4631   }
4632 
4633   default:
4634     // Nothing to do for these decl specs.
4635     break;
4636   }
4637 
4638   // It doesn't matter what order we do this in.
4639   for (unsigned I = 0, E = D.getNumTypeObjects(); I != E; ++I) {
4640     DeclaratorChunk &Chunk = D.getTypeObject(I);
4641 
4642     // The only type information in the declarator which can come
4643     // before the declaration name is the base type of a member
4644     // pointer.
4645     if (Chunk.Kind != DeclaratorChunk::MemberPointer)
4646       continue;
4647 
4648     // Rebuild the scope specifier in-place.
4649     CXXScopeSpec &SS = Chunk.Mem.Scope();
4650     if (S.RebuildNestedNameSpecifierInCurrentInstantiation(SS))
4651       return true;
4652   }
4653 
4654   return false;
4655 }
4656 
ActOnDeclarator(Scope * S,Declarator & D)4657 Decl *Sema::ActOnDeclarator(Scope *S, Declarator &D) {
4658   D.setFunctionDefinitionKind(FDK_Declaration);
4659   Decl *Dcl = HandleDeclarator(S, D, MultiTemplateParamsArg());
4660 
4661   if (OriginalLexicalContext && OriginalLexicalContext->isObjCContainer() &&
4662       Dcl && Dcl->getDeclContext()->isFileContext())
4663     Dcl->setTopLevelDeclInObjCContainer();
4664 
4665   return Dcl;
4666 }
4667 
4668 /// DiagnoseClassNameShadow - Implement C++ [class.mem]p13:
4669 ///   If T is the name of a class, then each of the following shall have a
4670 ///   name different from T:
4671 ///     - every static data member of class T;
4672 ///     - every member function of class T
4673 ///     - every member of class T that is itself a type;
4674 /// \returns true if the declaration name violates these rules.
DiagnoseClassNameShadow(DeclContext * DC,DeclarationNameInfo NameInfo)4675 bool Sema::DiagnoseClassNameShadow(DeclContext *DC,
4676                                    DeclarationNameInfo NameInfo) {
4677   DeclarationName Name = NameInfo.getName();
4678 
4679   if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC))
4680     if (Record->getIdentifier() && Record->getDeclName() == Name) {
4681       Diag(NameInfo.getLoc(), diag::err_member_name_of_class) << Name;
4682       return true;
4683     }
4684 
4685   return false;
4686 }
4687 
4688 /// \brief Diagnose a declaration whose declarator-id has the given
4689 /// nested-name-specifier.
4690 ///
4691 /// \param SS The nested-name-specifier of the declarator-id.
4692 ///
4693 /// \param DC The declaration context to which the nested-name-specifier
4694 /// resolves.
4695 ///
4696 /// \param Name The name of the entity being declared.
4697 ///
4698 /// \param Loc The location of the name of the entity being declared.
4699 ///
4700 /// \returns true if we cannot safely recover from this error, false otherwise.
diagnoseQualifiedDeclaration(CXXScopeSpec & SS,DeclContext * DC,DeclarationName Name,SourceLocation Loc)4701 bool Sema::diagnoseQualifiedDeclaration(CXXScopeSpec &SS, DeclContext *DC,
4702                                         DeclarationName Name,
4703                                         SourceLocation Loc) {
4704   DeclContext *Cur = CurContext;
4705   while (isa<LinkageSpecDecl>(Cur) || isa<CapturedDecl>(Cur))
4706     Cur = Cur->getParent();
4707 
4708   // If the user provided a superfluous scope specifier that refers back to the
4709   // class in which the entity is already declared, diagnose and ignore it.
4710   //
4711   // class X {
4712   //   void X::f();
4713   // };
4714   //
4715   // Note, it was once ill-formed to give redundant qualification in all
4716   // contexts, but that rule was removed by DR482.
4717   if (Cur->Equals(DC)) {
4718     if (Cur->isRecord()) {
4719       Diag(Loc, LangOpts.MicrosoftExt ? diag::warn_member_extra_qualification
4720                                       : diag::err_member_extra_qualification)
4721         << Name << FixItHint::CreateRemoval(SS.getRange());
4722       SS.clear();
4723     } else {
4724       Diag(Loc, diag::warn_namespace_member_extra_qualification) << Name;
4725     }
4726     return false;
4727   }
4728 
4729   // Check whether the qualifying scope encloses the scope of the original
4730   // declaration.
4731   if (!Cur->Encloses(DC)) {
4732     if (Cur->isRecord())
4733       Diag(Loc, diag::err_member_qualification)
4734         << Name << SS.getRange();
4735     else if (isa<TranslationUnitDecl>(DC))
4736       Diag(Loc, diag::err_invalid_declarator_global_scope)
4737         << Name << SS.getRange();
4738     else if (isa<FunctionDecl>(Cur))
4739       Diag(Loc, diag::err_invalid_declarator_in_function)
4740         << Name << SS.getRange();
4741     else if (isa<BlockDecl>(Cur))
4742       Diag(Loc, diag::err_invalid_declarator_in_block)
4743         << Name << SS.getRange();
4744     else
4745       Diag(Loc, diag::err_invalid_declarator_scope)
4746       << Name << cast<NamedDecl>(Cur) << cast<NamedDecl>(DC) << SS.getRange();
4747 
4748     return true;
4749   }
4750 
4751   if (Cur->isRecord()) {
4752     // Cannot qualify members within a class.
4753     Diag(Loc, diag::err_member_qualification)
4754       << Name << SS.getRange();
4755     SS.clear();
4756 
4757     // C++ constructors and destructors with incorrect scopes can break
4758     // our AST invariants by having the wrong underlying types. If
4759     // that's the case, then drop this declaration entirely.
4760     if ((Name.getNameKind() == DeclarationName::CXXConstructorName ||
4761          Name.getNameKind() == DeclarationName::CXXDestructorName) &&
4762         !Context.hasSameType(Name.getCXXNameType(),
4763                              Context.getTypeDeclType(cast<CXXRecordDecl>(Cur))))
4764       return true;
4765 
4766     return false;
4767   }
4768 
4769   // C++11 [dcl.meaning]p1:
4770   //   [...] "The nested-name-specifier of the qualified declarator-id shall
4771   //   not begin with a decltype-specifer"
4772   NestedNameSpecifierLoc SpecLoc(SS.getScopeRep(), SS.location_data());
4773   while (SpecLoc.getPrefix())
4774     SpecLoc = SpecLoc.getPrefix();
4775   if (dyn_cast_or_null<DecltypeType>(
4776         SpecLoc.getNestedNameSpecifier()->getAsType()))
4777     Diag(Loc, diag::err_decltype_in_declarator)
4778       << SpecLoc.getTypeLoc().getSourceRange();
4779 
4780   return false;
4781 }
4782 
HandleDeclarator(Scope * S,Declarator & D,MultiTemplateParamsArg TemplateParamLists)4783 NamedDecl *Sema::HandleDeclarator(Scope *S, Declarator &D,
4784                                   MultiTemplateParamsArg TemplateParamLists) {
4785   // TODO: consider using NameInfo for diagnostic.
4786   DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
4787   DeclarationName Name = NameInfo.getName();
4788 
4789   // All of these full declarators require an identifier.  If it doesn't have
4790   // one, the ParsedFreeStandingDeclSpec action should be used.
4791   if (!Name) {
4792     if (!D.isInvalidType())  // Reject this if we think it is valid.
4793       Diag(D.getDeclSpec().getLocStart(),
4794            diag::err_declarator_need_ident)
4795         << D.getDeclSpec().getSourceRange() << D.getSourceRange();
4796     return nullptr;
4797   } else if (DiagnoseUnexpandedParameterPack(NameInfo, UPPC_DeclarationType))
4798     return nullptr;
4799 
4800   // The scope passed in may not be a decl scope.  Zip up the scope tree until
4801   // we find one that is.
4802   while ((S->getFlags() & Scope::DeclScope) == 0 ||
4803          (S->getFlags() & Scope::TemplateParamScope) != 0)
4804     S = S->getParent();
4805 
4806   DeclContext *DC = CurContext;
4807   if (D.getCXXScopeSpec().isInvalid())
4808     D.setInvalidType();
4809   else if (D.getCXXScopeSpec().isSet()) {
4810     if (DiagnoseUnexpandedParameterPack(D.getCXXScopeSpec(),
4811                                         UPPC_DeclarationQualifier))
4812       return nullptr;
4813 
4814     bool EnteringContext = !D.getDeclSpec().isFriendSpecified();
4815     DC = computeDeclContext(D.getCXXScopeSpec(), EnteringContext);
4816     if (!DC || isa<EnumDecl>(DC)) {
4817       // If we could not compute the declaration context, it's because the
4818       // declaration context is dependent but does not refer to a class,
4819       // class template, or class template partial specialization. Complain
4820       // and return early, to avoid the coming semantic disaster.
4821       Diag(D.getIdentifierLoc(),
4822            diag::err_template_qualified_declarator_no_match)
4823         << D.getCXXScopeSpec().getScopeRep()
4824         << D.getCXXScopeSpec().getRange();
4825       return nullptr;
4826     }
4827     bool IsDependentContext = DC->isDependentContext();
4828 
4829     if (!IsDependentContext &&
4830         RequireCompleteDeclContext(D.getCXXScopeSpec(), DC))
4831       return nullptr;
4832 
4833     // If a class is incomplete, do not parse entities inside it.
4834     if (isa<CXXRecordDecl>(DC) && !cast<CXXRecordDecl>(DC)->hasDefinition()) {
4835       Diag(D.getIdentifierLoc(),
4836            diag::err_member_def_undefined_record)
4837         << Name << DC << D.getCXXScopeSpec().getRange();
4838       return nullptr;
4839     }
4840     if (!D.getDeclSpec().isFriendSpecified()) {
4841       if (diagnoseQualifiedDeclaration(D.getCXXScopeSpec(), DC,
4842                                       Name, D.getIdentifierLoc())) {
4843         if (DC->isRecord())
4844           return nullptr;
4845 
4846         D.setInvalidType();
4847       }
4848     }
4849 
4850     // Check whether we need to rebuild the type of the given
4851     // declaration in the current instantiation.
4852     if (EnteringContext && IsDependentContext &&
4853         TemplateParamLists.size() != 0) {
4854       ContextRAII SavedContext(*this, DC);
4855       if (RebuildDeclaratorInCurrentInstantiation(*this, D, Name))
4856         D.setInvalidType();
4857     }
4858   }
4859 
4860   TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
4861   QualType R = TInfo->getType();
4862 
4863   if (!R->isFunctionType() && DiagnoseClassNameShadow(DC, NameInfo))
4864     // If this is a typedef, we'll end up spewing multiple diagnostics.
4865     // Just return early; it's safer. If this is a function, let the
4866     // "constructor cannot have a return type" diagnostic handle it.
4867     if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
4868       return nullptr;
4869 
4870   if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
4871                                       UPPC_DeclarationType))
4872     D.setInvalidType();
4873 
4874   LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
4875                         ForRedeclaration);
4876 
4877   // See if this is a redefinition of a variable in the same scope.
4878   if (!D.getCXXScopeSpec().isSet()) {
4879     bool IsLinkageLookup = false;
4880     bool CreateBuiltins = false;
4881 
4882     // If the declaration we're planning to build will be a function
4883     // or object with linkage, then look for another declaration with
4884     // linkage (C99 6.2.2p4-5 and C++ [basic.link]p6).
4885     //
4886     // If the declaration we're planning to build will be declared with
4887     // external linkage in the translation unit, create any builtin with
4888     // the same name.
4889     if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
4890       /* Do nothing*/;
4891     else if (CurContext->isFunctionOrMethod() &&
4892              (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_extern ||
4893               R->isFunctionType())) {
4894       IsLinkageLookup = true;
4895       CreateBuiltins =
4896           CurContext->getEnclosingNamespaceContext()->isTranslationUnit();
4897     } else if (CurContext->getRedeclContext()->isTranslationUnit() &&
4898                D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
4899       CreateBuiltins = true;
4900 
4901     if (IsLinkageLookup)
4902       Previous.clear(LookupRedeclarationWithLinkage);
4903 
4904     LookupName(Previous, S, CreateBuiltins);
4905   } else { // Something like "int foo::x;"
4906     LookupQualifiedName(Previous, DC);
4907 
4908     // C++ [dcl.meaning]p1:
4909     //   When the declarator-id is qualified, the declaration shall refer to a
4910     //  previously declared member of the class or namespace to which the
4911     //  qualifier refers (or, in the case of a namespace, of an element of the
4912     //  inline namespace set of that namespace (7.3.1)) or to a specialization
4913     //  thereof; [...]
4914     //
4915     // Note that we already checked the context above, and that we do not have
4916     // enough information to make sure that Previous contains the declaration
4917     // we want to match. For example, given:
4918     //
4919     //   class X {
4920     //     void f();
4921     //     void f(float);
4922     //   };
4923     //
4924     //   void X::f(int) { } // ill-formed
4925     //
4926     // In this case, Previous will point to the overload set
4927     // containing the two f's declared in X, but neither of them
4928     // matches.
4929 
4930     // C++ [dcl.meaning]p1:
4931     //   [...] the member shall not merely have been introduced by a
4932     //   using-declaration in the scope of the class or namespace nominated by
4933     //   the nested-name-specifier of the declarator-id.
4934     RemoveUsingDecls(Previous);
4935   }
4936 
4937   if (Previous.isSingleResult() &&
4938       Previous.getFoundDecl()->isTemplateParameter()) {
4939     // Maybe we will complain about the shadowed template parameter.
4940     if (!D.isInvalidType())
4941       DiagnoseTemplateParameterShadow(D.getIdentifierLoc(),
4942                                       Previous.getFoundDecl());
4943 
4944     // Just pretend that we didn't see the previous declaration.
4945     Previous.clear();
4946   }
4947 
4948   // In C++, the previous declaration we find might be a tag type
4949   // (class or enum). In this case, the new declaration will hide the
4950   // tag type. Note that this does does not apply if we're declaring a
4951   // typedef (C++ [dcl.typedef]p4).
4952   if (Previous.isSingleTagDecl() &&
4953       D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef)
4954     Previous.clear();
4955 
4956   // Check that there are no default arguments other than in the parameters
4957   // of a function declaration (C++ only).
4958   if (getLangOpts().CPlusPlus)
4959     CheckExtraCXXDefaultArguments(D);
4960 
4961   if (D.getDeclSpec().isConceptSpecified()) {
4962     // C++ Concepts TS [dcl.spec.concept]p1: The concept specifier shall be
4963     // applied only to the definition of a function template or variable
4964     // template, declared in namespace scope
4965     if (!TemplateParamLists.size()) {
4966       Diag(D.getDeclSpec().getConceptSpecLoc(),
4967            diag:: err_concept_wrong_decl_kind);
4968       return nullptr;
4969     }
4970 
4971     if (!DC->getRedeclContext()->isFileContext()) {
4972       Diag(D.getIdentifierLoc(),
4973            diag::err_concept_decls_may_only_appear_in_namespace_scope);
4974       return nullptr;
4975     }
4976   }
4977 
4978   NamedDecl *New;
4979 
4980   bool AddToScope = true;
4981   if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
4982     if (TemplateParamLists.size()) {
4983       Diag(D.getIdentifierLoc(), diag::err_template_typedef);
4984       return nullptr;
4985     }
4986 
4987     New = ActOnTypedefDeclarator(S, D, DC, TInfo, Previous);
4988   } else if (R->isFunctionType()) {
4989     New = ActOnFunctionDeclarator(S, D, DC, TInfo, Previous,
4990                                   TemplateParamLists,
4991                                   AddToScope);
4992   } else {
4993     New = ActOnVariableDeclarator(S, D, DC, TInfo, Previous, TemplateParamLists,
4994                                   AddToScope);
4995   }
4996 
4997   if (!New)
4998     return nullptr;
4999 
5000   // If this has an identifier and is not an invalid redeclaration or
5001   // function template specialization, add it to the scope stack.
5002   if (New->getDeclName() && AddToScope &&
5003        !(D.isRedeclaration() && New->isInvalidDecl())) {
5004     // Only make a locally-scoped extern declaration visible if it is the first
5005     // declaration of this entity. Qualified lookup for such an entity should
5006     // only find this declaration if there is no visible declaration of it.
5007     bool AddToContext = !D.isRedeclaration() || !New->isLocalExternDecl();
5008     PushOnScopeChains(New, S, AddToContext);
5009     if (!AddToContext)
5010       CurContext->addHiddenDecl(New);
5011   }
5012 
5013   return New;
5014 }
5015 
5016 /// Helper method to turn variable array types into constant array
5017 /// types in certain situations which would otherwise be errors (for
5018 /// GCC compatibility).
TryToFixInvalidVariablyModifiedType(QualType T,ASTContext & Context,bool & SizeIsNegative,llvm::APSInt & Oversized)5019 static QualType TryToFixInvalidVariablyModifiedType(QualType T,
5020                                                     ASTContext &Context,
5021                                                     bool &SizeIsNegative,
5022                                                     llvm::APSInt &Oversized) {
5023   // This method tries to turn a variable array into a constant
5024   // array even when the size isn't an ICE.  This is necessary
5025   // for compatibility with code that depends on gcc's buggy
5026   // constant expression folding, like struct {char x[(int)(char*)2];}
5027   SizeIsNegative = false;
5028   Oversized = 0;
5029 
5030   if (T->isDependentType())
5031     return QualType();
5032 
5033   QualifierCollector Qs;
5034   const Type *Ty = Qs.strip(T);
5035 
5036   if (const PointerType* PTy = dyn_cast<PointerType>(Ty)) {
5037     QualType Pointee = PTy->getPointeeType();
5038     QualType FixedType =
5039         TryToFixInvalidVariablyModifiedType(Pointee, Context, SizeIsNegative,
5040                                             Oversized);
5041     if (FixedType.isNull()) return FixedType;
5042     FixedType = Context.getPointerType(FixedType);
5043     return Qs.apply(Context, FixedType);
5044   }
5045   if (const ParenType* PTy = dyn_cast<ParenType>(Ty)) {
5046     QualType Inner = PTy->getInnerType();
5047     QualType FixedType =
5048         TryToFixInvalidVariablyModifiedType(Inner, Context, SizeIsNegative,
5049                                             Oversized);
5050     if (FixedType.isNull()) return FixedType;
5051     FixedType = Context.getParenType(FixedType);
5052     return Qs.apply(Context, FixedType);
5053   }
5054 
5055   const VariableArrayType* VLATy = dyn_cast<VariableArrayType>(T);
5056   if (!VLATy)
5057     return QualType();
5058   // FIXME: We should probably handle this case
5059   if (VLATy->getElementType()->isVariablyModifiedType())
5060     return QualType();
5061 
5062   llvm::APSInt Res;
5063   if (!VLATy->getSizeExpr() ||
5064       !VLATy->getSizeExpr()->EvaluateAsInt(Res, Context))
5065     return QualType();
5066 
5067   // Check whether the array size is negative.
5068   if (Res.isSigned() && Res.isNegative()) {
5069     SizeIsNegative = true;
5070     return QualType();
5071   }
5072 
5073   // Check whether the array is too large to be addressed.
5074   unsigned ActiveSizeBits
5075     = ConstantArrayType::getNumAddressingBits(Context, VLATy->getElementType(),
5076                                               Res);
5077   if (ActiveSizeBits > ConstantArrayType::getMaxSizeBits(Context)) {
5078     Oversized = Res;
5079     return QualType();
5080   }
5081 
5082   return Context.getConstantArrayType(VLATy->getElementType(),
5083                                       Res, ArrayType::Normal, 0);
5084 }
5085 
5086 static void
FixInvalidVariablyModifiedTypeLoc(TypeLoc SrcTL,TypeLoc DstTL)5087 FixInvalidVariablyModifiedTypeLoc(TypeLoc SrcTL, TypeLoc DstTL) {
5088   SrcTL = SrcTL.getUnqualifiedLoc();
5089   DstTL = DstTL.getUnqualifiedLoc();
5090   if (PointerTypeLoc SrcPTL = SrcTL.getAs<PointerTypeLoc>()) {
5091     PointerTypeLoc DstPTL = DstTL.castAs<PointerTypeLoc>();
5092     FixInvalidVariablyModifiedTypeLoc(SrcPTL.getPointeeLoc(),
5093                                       DstPTL.getPointeeLoc());
5094     DstPTL.setStarLoc(SrcPTL.getStarLoc());
5095     return;
5096   }
5097   if (ParenTypeLoc SrcPTL = SrcTL.getAs<ParenTypeLoc>()) {
5098     ParenTypeLoc DstPTL = DstTL.castAs<ParenTypeLoc>();
5099     FixInvalidVariablyModifiedTypeLoc(SrcPTL.getInnerLoc(),
5100                                       DstPTL.getInnerLoc());
5101     DstPTL.setLParenLoc(SrcPTL.getLParenLoc());
5102     DstPTL.setRParenLoc(SrcPTL.getRParenLoc());
5103     return;
5104   }
5105   ArrayTypeLoc SrcATL = SrcTL.castAs<ArrayTypeLoc>();
5106   ArrayTypeLoc DstATL = DstTL.castAs<ArrayTypeLoc>();
5107   TypeLoc SrcElemTL = SrcATL.getElementLoc();
5108   TypeLoc DstElemTL = DstATL.getElementLoc();
5109   DstElemTL.initializeFullCopy(SrcElemTL);
5110   DstATL.setLBracketLoc(SrcATL.getLBracketLoc());
5111   DstATL.setSizeExpr(SrcATL.getSizeExpr());
5112   DstATL.setRBracketLoc(SrcATL.getRBracketLoc());
5113 }
5114 
5115 /// Helper method to turn variable array types into constant array
5116 /// types in certain situations which would otherwise be errors (for
5117 /// GCC compatibility).
5118 static TypeSourceInfo*
TryToFixInvalidVariablyModifiedTypeSourceInfo(TypeSourceInfo * TInfo,ASTContext & Context,bool & SizeIsNegative,llvm::APSInt & Oversized)5119 TryToFixInvalidVariablyModifiedTypeSourceInfo(TypeSourceInfo *TInfo,
5120                                               ASTContext &Context,
5121                                               bool &SizeIsNegative,
5122                                               llvm::APSInt &Oversized) {
5123   QualType FixedTy
5124     = TryToFixInvalidVariablyModifiedType(TInfo->getType(), Context,
5125                                           SizeIsNegative, Oversized);
5126   if (FixedTy.isNull())
5127     return nullptr;
5128   TypeSourceInfo *FixedTInfo = Context.getTrivialTypeSourceInfo(FixedTy);
5129   FixInvalidVariablyModifiedTypeLoc(TInfo->getTypeLoc(),
5130                                     FixedTInfo->getTypeLoc());
5131   return FixedTInfo;
5132 }
5133 
5134 /// \brief Register the given locally-scoped extern "C" declaration so
5135 /// that it can be found later for redeclarations. We include any extern "C"
5136 /// declaration that is not visible in the translation unit here, not just
5137 /// function-scope declarations.
5138 void
RegisterLocallyScopedExternCDecl(NamedDecl * ND,Scope * S)5139 Sema::RegisterLocallyScopedExternCDecl(NamedDecl *ND, Scope *S) {
5140   if (!getLangOpts().CPlusPlus &&
5141       ND->getLexicalDeclContext()->getRedeclContext()->isTranslationUnit())
5142     // Don't need to track declarations in the TU in C.
5143     return;
5144 
5145   // Note that we have a locally-scoped external with this name.
5146   Context.getExternCContextDecl()->makeDeclVisibleInContext(ND);
5147 }
5148 
findLocallyScopedExternCDecl(DeclarationName Name)5149 NamedDecl *Sema::findLocallyScopedExternCDecl(DeclarationName Name) {
5150   // FIXME: We can have multiple results via __attribute__((overloadable)).
5151   auto Result = Context.getExternCContextDecl()->lookup(Name);
5152   return Result.empty() ? nullptr : *Result.begin();
5153 }
5154 
5155 /// \brief Diagnose function specifiers on a declaration of an identifier that
5156 /// does not identify a function.
DiagnoseFunctionSpecifiers(const DeclSpec & DS)5157 void Sema::DiagnoseFunctionSpecifiers(const DeclSpec &DS) {
5158   // FIXME: We should probably indicate the identifier in question to avoid
5159   // confusion for constructs like "inline int a(), b;"
5160   if (DS.isInlineSpecified())
5161     Diag(DS.getInlineSpecLoc(),
5162          diag::err_inline_non_function);
5163 
5164   if (DS.isVirtualSpecified())
5165     Diag(DS.getVirtualSpecLoc(),
5166          diag::err_virtual_non_function);
5167 
5168   if (DS.isExplicitSpecified())
5169     Diag(DS.getExplicitSpecLoc(),
5170          diag::err_explicit_non_function);
5171 
5172   if (DS.isNoreturnSpecified())
5173     Diag(DS.getNoreturnSpecLoc(),
5174          diag::err_noreturn_non_function);
5175 }
5176 
5177 NamedDecl*
ActOnTypedefDeclarator(Scope * S,Declarator & D,DeclContext * DC,TypeSourceInfo * TInfo,LookupResult & Previous)5178 Sema::ActOnTypedefDeclarator(Scope* S, Declarator& D, DeclContext* DC,
5179                              TypeSourceInfo *TInfo, LookupResult &Previous) {
5180   // Typedef declarators cannot be qualified (C++ [dcl.meaning]p1).
5181   if (D.getCXXScopeSpec().isSet()) {
5182     Diag(D.getIdentifierLoc(), diag::err_qualified_typedef_declarator)
5183       << D.getCXXScopeSpec().getRange();
5184     D.setInvalidType();
5185     // Pretend we didn't see the scope specifier.
5186     DC = CurContext;
5187     Previous.clear();
5188   }
5189 
5190   DiagnoseFunctionSpecifiers(D.getDeclSpec());
5191 
5192   if (D.getDeclSpec().isConstexprSpecified())
5193     Diag(D.getDeclSpec().getConstexprSpecLoc(), diag::err_invalid_constexpr)
5194       << 1;
5195   if (D.getDeclSpec().isConceptSpecified())
5196     Diag(D.getDeclSpec().getConceptSpecLoc(),
5197          diag::err_concept_wrong_decl_kind);
5198 
5199   if (D.getName().Kind != UnqualifiedId::IK_Identifier) {
5200     Diag(D.getName().StartLocation, diag::err_typedef_not_identifier)
5201       << D.getName().getSourceRange();
5202     return nullptr;
5203   }
5204 
5205   TypedefDecl *NewTD = ParseTypedefDecl(S, D, TInfo->getType(), TInfo);
5206   if (!NewTD) return nullptr;
5207 
5208   // Handle attributes prior to checking for duplicates in MergeVarDecl
5209   ProcessDeclAttributes(S, NewTD, D);
5210 
5211   CheckTypedefForVariablyModifiedType(S, NewTD);
5212 
5213   bool Redeclaration = D.isRedeclaration();
5214   NamedDecl *ND = ActOnTypedefNameDecl(S, DC, NewTD, Previous, Redeclaration);
5215   D.setRedeclaration(Redeclaration);
5216   return ND;
5217 }
5218 
5219 void
CheckTypedefForVariablyModifiedType(Scope * S,TypedefNameDecl * NewTD)5220 Sema::CheckTypedefForVariablyModifiedType(Scope *S, TypedefNameDecl *NewTD) {
5221   // C99 6.7.7p2: If a typedef name specifies a variably modified type
5222   // then it shall have block scope.
5223   // Note that variably modified types must be fixed before merging the decl so
5224   // that redeclarations will match.
5225   TypeSourceInfo *TInfo = NewTD->getTypeSourceInfo();
5226   QualType T = TInfo->getType();
5227   if (T->isVariablyModifiedType()) {
5228     getCurFunction()->setHasBranchProtectedScope();
5229 
5230     if (S->getFnParent() == nullptr) {
5231       bool SizeIsNegative;
5232       llvm::APSInt Oversized;
5233       TypeSourceInfo *FixedTInfo =
5234         TryToFixInvalidVariablyModifiedTypeSourceInfo(TInfo, Context,
5235                                                       SizeIsNegative,
5236                                                       Oversized);
5237       if (FixedTInfo) {
5238         Diag(NewTD->getLocation(), diag::warn_illegal_constant_array_size);
5239         NewTD->setTypeSourceInfo(FixedTInfo);
5240       } else {
5241         if (SizeIsNegative)
5242           Diag(NewTD->getLocation(), diag::err_typecheck_negative_array_size);
5243         else if (T->isVariableArrayType())
5244           Diag(NewTD->getLocation(), diag::err_vla_decl_in_file_scope);
5245         else if (Oversized.getBoolValue())
5246           Diag(NewTD->getLocation(), diag::err_array_too_large)
5247             << Oversized.toString(10);
5248         else
5249           Diag(NewTD->getLocation(), diag::err_vm_decl_in_file_scope);
5250         NewTD->setInvalidDecl();
5251       }
5252     }
5253   }
5254 }
5255 
5256 
5257 /// ActOnTypedefNameDecl - Perform semantic checking for a declaration which
5258 /// declares a typedef-name, either using the 'typedef' type specifier or via
5259 /// a C++0x [dcl.typedef]p2 alias-declaration: 'using T = A;'.
5260 NamedDecl*
ActOnTypedefNameDecl(Scope * S,DeclContext * DC,TypedefNameDecl * NewTD,LookupResult & Previous,bool & Redeclaration)5261 Sema::ActOnTypedefNameDecl(Scope *S, DeclContext *DC, TypedefNameDecl *NewTD,
5262                            LookupResult &Previous, bool &Redeclaration) {
5263   // Merge the decl with the existing one if appropriate. If the decl is
5264   // in an outer scope, it isn't the same thing.
5265   FilterLookupForScope(Previous, DC, S, /*ConsiderLinkage*/false,
5266                        /*AllowInlineNamespace*/false);
5267   filterNonConflictingPreviousTypedefDecls(*this, NewTD, Previous);
5268   if (!Previous.empty()) {
5269     Redeclaration = true;
5270     MergeTypedefNameDecl(S, NewTD, Previous);
5271   }
5272 
5273   // If this is the C FILE type, notify the AST context.
5274   if (IdentifierInfo *II = NewTD->getIdentifier())
5275     if (!NewTD->isInvalidDecl() &&
5276         NewTD->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
5277       if (II->isStr("FILE"))
5278         Context.setFILEDecl(NewTD);
5279       else if (II->isStr("jmp_buf"))
5280         Context.setjmp_bufDecl(NewTD);
5281       else if (II->isStr("sigjmp_buf"))
5282         Context.setsigjmp_bufDecl(NewTD);
5283       else if (II->isStr("ucontext_t"))
5284         Context.setucontext_tDecl(NewTD);
5285     }
5286 
5287   return NewTD;
5288 }
5289 
5290 /// \brief Determines whether the given declaration is an out-of-scope
5291 /// previous declaration.
5292 ///
5293 /// This routine should be invoked when name lookup has found a
5294 /// previous declaration (PrevDecl) that is not in the scope where a
5295 /// new declaration by the same name is being introduced. If the new
5296 /// declaration occurs in a local scope, previous declarations with
5297 /// linkage may still be considered previous declarations (C99
5298 /// 6.2.2p4-5, C++ [basic.link]p6).
5299 ///
5300 /// \param PrevDecl the previous declaration found by name
5301 /// lookup
5302 ///
5303 /// \param DC the context in which the new declaration is being
5304 /// declared.
5305 ///
5306 /// \returns true if PrevDecl is an out-of-scope previous declaration
5307 /// for a new delcaration with the same name.
5308 static bool
isOutOfScopePreviousDeclaration(NamedDecl * PrevDecl,DeclContext * DC,ASTContext & Context)5309 isOutOfScopePreviousDeclaration(NamedDecl *PrevDecl, DeclContext *DC,
5310                                 ASTContext &Context) {
5311   if (!PrevDecl)
5312     return false;
5313 
5314   if (!PrevDecl->hasLinkage())
5315     return false;
5316 
5317   if (Context.getLangOpts().CPlusPlus) {
5318     // C++ [basic.link]p6:
5319     //   If there is a visible declaration of an entity with linkage
5320     //   having the same name and type, ignoring entities declared
5321     //   outside the innermost enclosing namespace scope, the block
5322     //   scope declaration declares that same entity and receives the
5323     //   linkage of the previous declaration.
5324     DeclContext *OuterContext = DC->getRedeclContext();
5325     if (!OuterContext->isFunctionOrMethod())
5326       // This rule only applies to block-scope declarations.
5327       return false;
5328 
5329     DeclContext *PrevOuterContext = PrevDecl->getDeclContext();
5330     if (PrevOuterContext->isRecord())
5331       // We found a member function: ignore it.
5332       return false;
5333 
5334     // Find the innermost enclosing namespace for the new and
5335     // previous declarations.
5336     OuterContext = OuterContext->getEnclosingNamespaceContext();
5337     PrevOuterContext = PrevOuterContext->getEnclosingNamespaceContext();
5338 
5339     // The previous declaration is in a different namespace, so it
5340     // isn't the same function.
5341     if (!OuterContext->Equals(PrevOuterContext))
5342       return false;
5343   }
5344 
5345   return true;
5346 }
5347 
SetNestedNameSpecifier(DeclaratorDecl * DD,Declarator & D)5348 static void SetNestedNameSpecifier(DeclaratorDecl *DD, Declarator &D) {
5349   CXXScopeSpec &SS = D.getCXXScopeSpec();
5350   if (!SS.isSet()) return;
5351   DD->setQualifierInfo(SS.getWithLocInContext(DD->getASTContext()));
5352 }
5353 
inferObjCARCLifetime(ValueDecl * decl)5354 bool Sema::inferObjCARCLifetime(ValueDecl *decl) {
5355   QualType type = decl->getType();
5356   Qualifiers::ObjCLifetime lifetime = type.getObjCLifetime();
5357   if (lifetime == Qualifiers::OCL_Autoreleasing) {
5358     // Various kinds of declaration aren't allowed to be __autoreleasing.
5359     unsigned kind = -1U;
5360     if (VarDecl *var = dyn_cast<VarDecl>(decl)) {
5361       if (var->hasAttr<BlocksAttr>())
5362         kind = 0; // __block
5363       else if (!var->hasLocalStorage())
5364         kind = 1; // global
5365     } else if (isa<ObjCIvarDecl>(decl)) {
5366       kind = 3; // ivar
5367     } else if (isa<FieldDecl>(decl)) {
5368       kind = 2; // field
5369     }
5370 
5371     if (kind != -1U) {
5372       Diag(decl->getLocation(), diag::err_arc_autoreleasing_var)
5373         << kind;
5374     }
5375   } else if (lifetime == Qualifiers::OCL_None) {
5376     // Try to infer lifetime.
5377     if (!type->isObjCLifetimeType())
5378       return false;
5379 
5380     lifetime = type->getObjCARCImplicitLifetime();
5381     type = Context.getLifetimeQualifiedType(type, lifetime);
5382     decl->setType(type);
5383   }
5384 
5385   if (VarDecl *var = dyn_cast<VarDecl>(decl)) {
5386     // Thread-local variables cannot have lifetime.
5387     if (lifetime && lifetime != Qualifiers::OCL_ExplicitNone &&
5388         var->getTLSKind()) {
5389       Diag(var->getLocation(), diag::err_arc_thread_ownership)
5390         << var->getType();
5391       return true;
5392     }
5393   }
5394 
5395   return false;
5396 }
5397 
checkAttributesAfterMerging(Sema & S,NamedDecl & ND)5398 static void checkAttributesAfterMerging(Sema &S, NamedDecl &ND) {
5399   // Ensure that an auto decl is deduced otherwise the checks below might cache
5400   // the wrong linkage.
5401   assert(S.ParsingInitForAutoVars.count(&ND) == 0);
5402 
5403   // 'weak' only applies to declarations with external linkage.
5404   if (WeakAttr *Attr = ND.getAttr<WeakAttr>()) {
5405     if (!ND.isExternallyVisible()) {
5406       S.Diag(Attr->getLocation(), diag::err_attribute_weak_static);
5407       ND.dropAttr<WeakAttr>();
5408     }
5409   }
5410   if (WeakRefAttr *Attr = ND.getAttr<WeakRefAttr>()) {
5411     if (ND.isExternallyVisible()) {
5412       S.Diag(Attr->getLocation(), diag::err_attribute_weakref_not_static);
5413       ND.dropAttr<WeakRefAttr>();
5414       ND.dropAttr<AliasAttr>();
5415     }
5416   }
5417 
5418   if (auto *VD = dyn_cast<VarDecl>(&ND)) {
5419     if (VD->hasInit()) {
5420       if (const auto *Attr = VD->getAttr<AliasAttr>()) {
5421         assert(VD->isThisDeclarationADefinition() &&
5422                !VD->isExternallyVisible() && "Broken AliasAttr handled late!");
5423         S.Diag(Attr->getLocation(), diag::err_alias_is_definition) << VD;
5424         VD->dropAttr<AliasAttr>();
5425       }
5426     }
5427   }
5428 
5429   // 'selectany' only applies to externally visible variable declarations.
5430   // It does not apply to functions.
5431   if (SelectAnyAttr *Attr = ND.getAttr<SelectAnyAttr>()) {
5432     if (isa<FunctionDecl>(ND) || !ND.isExternallyVisible()) {
5433       S.Diag(Attr->getLocation(),
5434              diag::err_attribute_selectany_non_extern_data);
5435       ND.dropAttr<SelectAnyAttr>();
5436     }
5437   }
5438 
5439   if (const InheritableAttr *Attr = getDLLAttr(&ND)) {
5440     // dll attributes require external linkage. Static locals may have external
5441     // linkage but still cannot be explicitly imported or exported.
5442     auto *VD = dyn_cast<VarDecl>(&ND);
5443     if (!ND.isExternallyVisible() || (VD && VD->isStaticLocal())) {
5444       S.Diag(ND.getLocation(), diag::err_attribute_dll_not_extern)
5445         << &ND << Attr;
5446       ND.setInvalidDecl();
5447     }
5448   }
5449 
5450   // Virtual functions cannot be marked as 'notail'.
5451   if (auto *Attr = ND.getAttr<NotTailCalledAttr>())
5452     if (auto *MD = dyn_cast<CXXMethodDecl>(&ND))
5453       if (MD->isVirtual()) {
5454         S.Diag(ND.getLocation(),
5455                diag::err_invalid_attribute_on_virtual_function)
5456             << Attr;
5457         ND.dropAttr<NotTailCalledAttr>();
5458       }
5459 }
5460 
checkDLLAttributeRedeclaration(Sema & S,NamedDecl * OldDecl,NamedDecl * NewDecl,bool IsSpecialization)5461 static void checkDLLAttributeRedeclaration(Sema &S, NamedDecl *OldDecl,
5462                                            NamedDecl *NewDecl,
5463                                            bool IsSpecialization) {
5464   if (TemplateDecl *OldTD = dyn_cast<TemplateDecl>(OldDecl))
5465     OldDecl = OldTD->getTemplatedDecl();
5466   if (TemplateDecl *NewTD = dyn_cast<TemplateDecl>(NewDecl))
5467     NewDecl = NewTD->getTemplatedDecl();
5468 
5469   if (!OldDecl || !NewDecl)
5470     return;
5471 
5472   const DLLImportAttr *OldImportAttr = OldDecl->getAttr<DLLImportAttr>();
5473   const DLLExportAttr *OldExportAttr = OldDecl->getAttr<DLLExportAttr>();
5474   const DLLImportAttr *NewImportAttr = NewDecl->getAttr<DLLImportAttr>();
5475   const DLLExportAttr *NewExportAttr = NewDecl->getAttr<DLLExportAttr>();
5476 
5477   // dllimport and dllexport are inheritable attributes so we have to exclude
5478   // inherited attribute instances.
5479   bool HasNewAttr = (NewImportAttr && !NewImportAttr->isInherited()) ||
5480                     (NewExportAttr && !NewExportAttr->isInherited());
5481 
5482   // A redeclaration is not allowed to add a dllimport or dllexport attribute,
5483   // the only exception being explicit specializations.
5484   // Implicitly generated declarations are also excluded for now because there
5485   // is no other way to switch these to use dllimport or dllexport.
5486   bool AddsAttr = !(OldImportAttr || OldExportAttr) && HasNewAttr;
5487 
5488   if (AddsAttr && !IsSpecialization && !OldDecl->isImplicit()) {
5489     // Allow with a warning for free functions and global variables.
5490     bool JustWarn = false;
5491     if (!OldDecl->isCXXClassMember()) {
5492       auto *VD = dyn_cast<VarDecl>(OldDecl);
5493       if (VD && !VD->getDescribedVarTemplate())
5494         JustWarn = true;
5495       auto *FD = dyn_cast<FunctionDecl>(OldDecl);
5496       if (FD && FD->getTemplatedKind() == FunctionDecl::TK_NonTemplate)
5497         JustWarn = true;
5498     }
5499 
5500     // We cannot change a declaration that's been used because IR has already
5501     // been emitted. Dllimported functions will still work though (modulo
5502     // address equality) as they can use the thunk.
5503     if (OldDecl->isUsed())
5504       if (!isa<FunctionDecl>(OldDecl) || !NewImportAttr)
5505         JustWarn = false;
5506 
5507     unsigned DiagID = JustWarn ? diag::warn_attribute_dll_redeclaration
5508                                : diag::err_attribute_dll_redeclaration;
5509     S.Diag(NewDecl->getLocation(), DiagID)
5510         << NewDecl
5511         << (NewImportAttr ? (const Attr *)NewImportAttr : NewExportAttr);
5512     S.Diag(OldDecl->getLocation(), diag::note_previous_declaration);
5513     if (!JustWarn) {
5514       NewDecl->setInvalidDecl();
5515       return;
5516     }
5517   }
5518 
5519   // A redeclaration is not allowed to drop a dllimport attribute, the only
5520   // exceptions being inline function definitions, local extern declarations,
5521   // and qualified friend declarations.
5522   // NB: MSVC converts such a declaration to dllexport.
5523   bool IsInline = false, IsStaticDataMember = false, IsQualifiedFriend = false;
5524   if (const auto *VD = dyn_cast<VarDecl>(NewDecl))
5525     // Ignore static data because out-of-line definitions are diagnosed
5526     // separately.
5527     IsStaticDataMember = VD->isStaticDataMember();
5528   else if (const auto *FD = dyn_cast<FunctionDecl>(NewDecl)) {
5529     IsInline = FD->isInlined();
5530     IsQualifiedFriend = FD->getQualifier() &&
5531                         FD->getFriendObjectKind() == Decl::FOK_Declared;
5532   }
5533 
5534   if (OldImportAttr && !HasNewAttr && !IsInline && !IsStaticDataMember &&
5535       !NewDecl->isLocalExternDecl() && !IsQualifiedFriend) {
5536     S.Diag(NewDecl->getLocation(),
5537            diag::warn_redeclaration_without_attribute_prev_attribute_ignored)
5538       << NewDecl << OldImportAttr;
5539     S.Diag(OldDecl->getLocation(), diag::note_previous_declaration);
5540     S.Diag(OldImportAttr->getLocation(), diag::note_previous_attribute);
5541     OldDecl->dropAttr<DLLImportAttr>();
5542     NewDecl->dropAttr<DLLImportAttr>();
5543   } else if (IsInline && OldImportAttr &&
5544              !S.Context.getTargetInfo().getCXXABI().isMicrosoft()) {
5545     // In MinGW, seeing a function declared inline drops the dllimport attribute.
5546     OldDecl->dropAttr<DLLImportAttr>();
5547     NewDecl->dropAttr<DLLImportAttr>();
5548     S.Diag(NewDecl->getLocation(),
5549            diag::warn_dllimport_dropped_from_inline_function)
5550         << NewDecl << OldImportAttr;
5551   }
5552 }
5553 
5554 /// Given that we are within the definition of the given function,
5555 /// will that definition behave like C99's 'inline', where the
5556 /// definition is discarded except for optimization purposes?
isFunctionDefinitionDiscarded(Sema & S,FunctionDecl * FD)5557 static bool isFunctionDefinitionDiscarded(Sema &S, FunctionDecl *FD) {
5558   // Try to avoid calling GetGVALinkageForFunction.
5559 
5560   // All cases of this require the 'inline' keyword.
5561   if (!FD->isInlined()) return false;
5562 
5563   // This is only possible in C++ with the gnu_inline attribute.
5564   if (S.getLangOpts().CPlusPlus && !FD->hasAttr<GNUInlineAttr>())
5565     return false;
5566 
5567   // Okay, go ahead and call the relatively-more-expensive function.
5568 
5569 #ifndef NDEBUG
5570   // AST quite reasonably asserts that it's working on a function
5571   // definition.  We don't really have a way to tell it that we're
5572   // currently defining the function, so just lie to it in +Asserts
5573   // builds.  This is an awful hack.
5574   FD->setLazyBody(1);
5575 #endif
5576 
5577   bool isC99Inline =
5578       S.Context.GetGVALinkageForFunction(FD) == GVA_AvailableExternally;
5579 
5580 #ifndef NDEBUG
5581   FD->setLazyBody(0);
5582 #endif
5583 
5584   return isC99Inline;
5585 }
5586 
5587 /// Determine whether a variable is extern "C" prior to attaching
5588 /// an initializer. We can't just call isExternC() here, because that
5589 /// will also compute and cache whether the declaration is externally
5590 /// visible, which might change when we attach the initializer.
5591 ///
5592 /// This can only be used if the declaration is known to not be a
5593 /// redeclaration of an internal linkage declaration.
5594 ///
5595 /// For instance:
5596 ///
5597 ///   auto x = []{};
5598 ///
5599 /// Attaching the initializer here makes this declaration not externally
5600 /// visible, because its type has internal linkage.
5601 ///
5602 /// FIXME: This is a hack.
5603 template<typename T>
isIncompleteDeclExternC(Sema & S,const T * D)5604 static bool isIncompleteDeclExternC(Sema &S, const T *D) {
5605   if (S.getLangOpts().CPlusPlus) {
5606     // In C++, the overloadable attribute negates the effects of extern "C".
5607     if (!D->isInExternCContext() || D->template hasAttr<OverloadableAttr>())
5608       return false;
5609 
5610     // So do CUDA's host/device attributes if overloading is enabled.
5611     if (S.getLangOpts().CUDA && S.getLangOpts().CUDATargetOverloads &&
5612         (D->template hasAttr<CUDADeviceAttr>() ||
5613          D->template hasAttr<CUDAHostAttr>()))
5614       return false;
5615   }
5616   return D->isExternC();
5617 }
5618 
shouldConsiderLinkage(const VarDecl * VD)5619 static bool shouldConsiderLinkage(const VarDecl *VD) {
5620   const DeclContext *DC = VD->getDeclContext()->getRedeclContext();
5621   if (DC->isFunctionOrMethod())
5622     return VD->hasExternalStorage();
5623   if (DC->isFileContext())
5624     return true;
5625   if (DC->isRecord())
5626     return false;
5627   llvm_unreachable("Unexpected context");
5628 }
5629 
shouldConsiderLinkage(const FunctionDecl * FD)5630 static bool shouldConsiderLinkage(const FunctionDecl *FD) {
5631   const DeclContext *DC = FD->getDeclContext()->getRedeclContext();
5632   if (DC->isFileContext() || DC->isFunctionOrMethod())
5633     return true;
5634   if (DC->isRecord())
5635     return false;
5636   llvm_unreachable("Unexpected context");
5637 }
5638 
hasParsedAttr(Scope * S,const AttributeList * AttrList,AttributeList::Kind Kind)5639 static bool hasParsedAttr(Scope *S, const AttributeList *AttrList,
5640                           AttributeList::Kind Kind) {
5641   for (const AttributeList *L = AttrList; L; L = L->getNext())
5642     if (L->getKind() == Kind)
5643       return true;
5644   return false;
5645 }
5646 
hasParsedAttr(Scope * S,const Declarator & PD,AttributeList::Kind Kind)5647 static bool hasParsedAttr(Scope *S, const Declarator &PD,
5648                           AttributeList::Kind Kind) {
5649   // Check decl attributes on the DeclSpec.
5650   if (hasParsedAttr(S, PD.getDeclSpec().getAttributes().getList(), Kind))
5651     return true;
5652 
5653   // Walk the declarator structure, checking decl attributes that were in a type
5654   // position to the decl itself.
5655   for (unsigned I = 0, E = PD.getNumTypeObjects(); I != E; ++I) {
5656     if (hasParsedAttr(S, PD.getTypeObject(I).getAttrs(), Kind))
5657       return true;
5658   }
5659 
5660   // Finally, check attributes on the decl itself.
5661   return hasParsedAttr(S, PD.getAttributes(), Kind);
5662 }
5663 
5664 /// Adjust the \c DeclContext for a function or variable that might be a
5665 /// function-local external declaration.
adjustContextForLocalExternDecl(DeclContext * & DC)5666 bool Sema::adjustContextForLocalExternDecl(DeclContext *&DC) {
5667   if (!DC->isFunctionOrMethod())
5668     return false;
5669 
5670   // If this is a local extern function or variable declared within a function
5671   // template, don't add it into the enclosing namespace scope until it is
5672   // instantiated; it might have a dependent type right now.
5673   if (DC->isDependentContext())
5674     return true;
5675 
5676   // C++11 [basic.link]p7:
5677   //   When a block scope declaration of an entity with linkage is not found to
5678   //   refer to some other declaration, then that entity is a member of the
5679   //   innermost enclosing namespace.
5680   //
5681   // Per C++11 [namespace.def]p6, the innermost enclosing namespace is a
5682   // semantically-enclosing namespace, not a lexically-enclosing one.
5683   while (!DC->isFileContext() && !isa<LinkageSpecDecl>(DC))
5684     DC = DC->getParent();
5685   return true;
5686 }
5687 
5688 /// \brief Returns true if given declaration has external C language linkage.
isDeclExternC(const Decl * D)5689 static bool isDeclExternC(const Decl *D) {
5690   if (const auto *FD = dyn_cast<FunctionDecl>(D))
5691     return FD->isExternC();
5692   if (const auto *VD = dyn_cast<VarDecl>(D))
5693     return VD->isExternC();
5694 
5695   llvm_unreachable("Unknown type of decl!");
5696 }
5697 
5698 NamedDecl *
ActOnVariableDeclarator(Scope * S,Declarator & D,DeclContext * DC,TypeSourceInfo * TInfo,LookupResult & Previous,MultiTemplateParamsArg TemplateParamLists,bool & AddToScope)5699 Sema::ActOnVariableDeclarator(Scope *S, Declarator &D, DeclContext *DC,
5700                               TypeSourceInfo *TInfo, LookupResult &Previous,
5701                               MultiTemplateParamsArg TemplateParamLists,
5702                               bool &AddToScope) {
5703   QualType R = TInfo->getType();
5704   DeclarationName Name = GetNameForDeclarator(D).getName();
5705 
5706   DeclSpec::SCS SCSpec = D.getDeclSpec().getStorageClassSpec();
5707   StorageClass SC = StorageClassSpecToVarDeclStorageClass(D.getDeclSpec());
5708 
5709   // dllimport globals without explicit storage class are treated as extern. We
5710   // have to change the storage class this early to get the right DeclContext.
5711   if (SC == SC_None && !DC->isRecord() &&
5712       hasParsedAttr(S, D, AttributeList::AT_DLLImport) &&
5713       !hasParsedAttr(S, D, AttributeList::AT_DLLExport))
5714     SC = SC_Extern;
5715 
5716   DeclContext *OriginalDC = DC;
5717   bool IsLocalExternDecl = SC == SC_Extern &&
5718                            adjustContextForLocalExternDecl(DC);
5719 
5720   if (getLangOpts().OpenCL) {
5721     // OpenCL v1.0 s6.8.a.3: Pointers to functions are not allowed.
5722     QualType NR = R;
5723     while (NR->isPointerType()) {
5724       if (NR->isFunctionPointerType()) {
5725         Diag(D.getIdentifierLoc(), diag::err_opencl_function_pointer_variable);
5726         D.setInvalidType();
5727         break;
5728       }
5729       NR = NR->getPointeeType();
5730     }
5731 
5732     if (!getOpenCLOptions().cl_khr_fp16) {
5733       // OpenCL v1.2 s6.1.1.1: reject declaring variables of the half and
5734       // half array type (unless the cl_khr_fp16 extension is enabled).
5735       if (Context.getBaseElementType(R)->isHalfType()) {
5736         Diag(D.getIdentifierLoc(), diag::err_opencl_half_declaration) << R;
5737         D.setInvalidType();
5738       }
5739     }
5740   }
5741 
5742   if (SCSpec == DeclSpec::SCS_mutable) {
5743     // mutable can only appear on non-static class members, so it's always
5744     // an error here
5745     Diag(D.getIdentifierLoc(), diag::err_mutable_nonmember);
5746     D.setInvalidType();
5747     SC = SC_None;
5748   }
5749 
5750   if (getLangOpts().CPlusPlus11 && SCSpec == DeclSpec::SCS_register &&
5751       !D.getAsmLabel() && !getSourceManager().isInSystemMacro(
5752                               D.getDeclSpec().getStorageClassSpecLoc())) {
5753     // In C++11, the 'register' storage class specifier is deprecated.
5754     // Suppress the warning in system macros, it's used in macros in some
5755     // popular C system headers, such as in glibc's htonl() macro.
5756     Diag(D.getDeclSpec().getStorageClassSpecLoc(),
5757          getLangOpts().CPlusPlus1z ? diag::ext_register_storage_class
5758                                    : diag::warn_deprecated_register)
5759       << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
5760   }
5761 
5762   IdentifierInfo *II = Name.getAsIdentifierInfo();
5763   if (!II) {
5764     Diag(D.getIdentifierLoc(), diag::err_bad_variable_name)
5765       << Name;
5766     return nullptr;
5767   }
5768 
5769   DiagnoseFunctionSpecifiers(D.getDeclSpec());
5770 
5771   if (!DC->isRecord() && S->getFnParent() == nullptr) {
5772     // C99 6.9p2: The storage-class specifiers auto and register shall not
5773     // appear in the declaration specifiers in an external declaration.
5774     // Global Register+Asm is a GNU extension we support.
5775     if (SC == SC_Auto || (SC == SC_Register && !D.getAsmLabel())) {
5776       Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope);
5777       D.setInvalidType();
5778     }
5779   }
5780 
5781   if (getLangOpts().OpenCL) {
5782     // OpenCL v1.2 s6.9.b p4:
5783     // The sampler type cannot be used with the __local and __global address
5784     // space qualifiers.
5785     if (R->isSamplerT() && (R.getAddressSpace() == LangAS::opencl_local ||
5786       R.getAddressSpace() == LangAS::opencl_global)) {
5787       Diag(D.getIdentifierLoc(), diag::err_wrong_sampler_addressspace);
5788     }
5789 
5790     // OpenCL 1.2 spec, p6.9 r:
5791     // The event type cannot be used to declare a program scope variable.
5792     // The event type cannot be used with the __local, __constant and __global
5793     // address space qualifiers.
5794     if (R->isEventT()) {
5795       if (S->getParent() == nullptr) {
5796         Diag(D.getLocStart(), diag::err_event_t_global_var);
5797         D.setInvalidType();
5798       }
5799 
5800       if (R.getAddressSpace()) {
5801         Diag(D.getLocStart(), diag::err_event_t_addr_space_qual);
5802         D.setInvalidType();
5803       }
5804     }
5805   }
5806 
5807   bool IsExplicitSpecialization = false;
5808   bool IsVariableTemplateSpecialization = false;
5809   bool IsPartialSpecialization = false;
5810   bool IsVariableTemplate = false;
5811   VarDecl *NewVD = nullptr;
5812   VarTemplateDecl *NewTemplate = nullptr;
5813   TemplateParameterList *TemplateParams = nullptr;
5814   if (!getLangOpts().CPlusPlus) {
5815     NewVD = VarDecl::Create(Context, DC, D.getLocStart(),
5816                             D.getIdentifierLoc(), II,
5817                             R, TInfo, SC);
5818 
5819     if (D.getDeclSpec().containsPlaceholderType() && R->getContainedAutoType())
5820       ParsingInitForAutoVars.insert(NewVD);
5821 
5822     if (D.isInvalidType())
5823       NewVD->setInvalidDecl();
5824   } else {
5825     bool Invalid = false;
5826 
5827     if (DC->isRecord() && !CurContext->isRecord()) {
5828       // This is an out-of-line definition of a static data member.
5829       switch (SC) {
5830       case SC_None:
5831         break;
5832       case SC_Static:
5833         Diag(D.getDeclSpec().getStorageClassSpecLoc(),
5834              diag::err_static_out_of_line)
5835           << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
5836         break;
5837       case SC_Auto:
5838       case SC_Register:
5839       case SC_Extern:
5840         // [dcl.stc] p2: The auto or register specifiers shall be applied only
5841         // to names of variables declared in a block or to function parameters.
5842         // [dcl.stc] p6: The extern specifier cannot be used in the declaration
5843         // of class members
5844 
5845         Diag(D.getDeclSpec().getStorageClassSpecLoc(),
5846              diag::err_storage_class_for_static_member)
5847           << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
5848         break;
5849       case SC_PrivateExtern:
5850         llvm_unreachable("C storage class in c++!");
5851       }
5852     }
5853 
5854     if (SC == SC_Static && CurContext->isRecord()) {
5855       if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC)) {
5856         if (RD->isLocalClass())
5857           Diag(D.getIdentifierLoc(),
5858                diag::err_static_data_member_not_allowed_in_local_class)
5859             << Name << RD->getDeclName();
5860 
5861         // C++98 [class.union]p1: If a union contains a static data member,
5862         // the program is ill-formed. C++11 drops this restriction.
5863         if (RD->isUnion())
5864           Diag(D.getIdentifierLoc(),
5865                getLangOpts().CPlusPlus11
5866                  ? diag::warn_cxx98_compat_static_data_member_in_union
5867                  : diag::ext_static_data_member_in_union) << Name;
5868         // We conservatively disallow static data members in anonymous structs.
5869         else if (!RD->getDeclName())
5870           Diag(D.getIdentifierLoc(),
5871                diag::err_static_data_member_not_allowed_in_anon_struct)
5872             << Name << RD->isUnion();
5873       }
5874     }
5875 
5876     // Match up the template parameter lists with the scope specifier, then
5877     // determine whether we have a template or a template specialization.
5878     TemplateParams = MatchTemplateParametersToScopeSpecifier(
5879         D.getDeclSpec().getLocStart(), D.getIdentifierLoc(),
5880         D.getCXXScopeSpec(),
5881         D.getName().getKind() == UnqualifiedId::IK_TemplateId
5882             ? D.getName().TemplateId
5883             : nullptr,
5884         TemplateParamLists,
5885         /*never a friend*/ false, IsExplicitSpecialization, Invalid);
5886 
5887     if (TemplateParams) {
5888       if (!TemplateParams->size() &&
5889           D.getName().getKind() != UnqualifiedId::IK_TemplateId) {
5890         // There is an extraneous 'template<>' for this variable. Complain
5891         // about it, but allow the declaration of the variable.
5892         Diag(TemplateParams->getTemplateLoc(),
5893              diag::err_template_variable_noparams)
5894           << II
5895           << SourceRange(TemplateParams->getTemplateLoc(),
5896                          TemplateParams->getRAngleLoc());
5897         TemplateParams = nullptr;
5898       } else {
5899         if (D.getName().getKind() == UnqualifiedId::IK_TemplateId) {
5900           // This is an explicit specialization or a partial specialization.
5901           // FIXME: Check that we can declare a specialization here.
5902           IsVariableTemplateSpecialization = true;
5903           IsPartialSpecialization = TemplateParams->size() > 0;
5904         } else { // if (TemplateParams->size() > 0)
5905           // This is a template declaration.
5906           IsVariableTemplate = true;
5907 
5908           // Check that we can declare a template here.
5909           if (CheckTemplateDeclScope(S, TemplateParams))
5910             return nullptr;
5911 
5912           // Only C++1y supports variable templates (N3651).
5913           Diag(D.getIdentifierLoc(),
5914                getLangOpts().CPlusPlus14
5915                    ? diag::warn_cxx11_compat_variable_template
5916                    : diag::ext_variable_template);
5917         }
5918       }
5919     } else {
5920       assert(
5921           (Invalid || D.getName().getKind() != UnqualifiedId::IK_TemplateId) &&
5922           "should have a 'template<>' for this decl");
5923     }
5924 
5925     if (IsVariableTemplateSpecialization) {
5926       SourceLocation TemplateKWLoc =
5927           TemplateParamLists.size() > 0
5928               ? TemplateParamLists[0]->getTemplateLoc()
5929               : SourceLocation();
5930       DeclResult Res = ActOnVarTemplateSpecialization(
5931           S, D, TInfo, TemplateKWLoc, TemplateParams, SC,
5932           IsPartialSpecialization);
5933       if (Res.isInvalid())
5934         return nullptr;
5935       NewVD = cast<VarDecl>(Res.get());
5936       AddToScope = false;
5937     } else
5938       NewVD = VarDecl::Create(Context, DC, D.getLocStart(),
5939                               D.getIdentifierLoc(), II, R, TInfo, SC);
5940 
5941     // If this is supposed to be a variable template, create it as such.
5942     if (IsVariableTemplate) {
5943       NewTemplate =
5944           VarTemplateDecl::Create(Context, DC, D.getIdentifierLoc(), Name,
5945                                   TemplateParams, NewVD);
5946       NewVD->setDescribedVarTemplate(NewTemplate);
5947     }
5948 
5949     // If this decl has an auto type in need of deduction, make a note of the
5950     // Decl so we can diagnose uses of it in its own initializer.
5951     if (D.getDeclSpec().containsPlaceholderType() && R->getContainedAutoType())
5952       ParsingInitForAutoVars.insert(NewVD);
5953 
5954     if (D.isInvalidType() || Invalid) {
5955       NewVD->setInvalidDecl();
5956       if (NewTemplate)
5957         NewTemplate->setInvalidDecl();
5958     }
5959 
5960     SetNestedNameSpecifier(NewVD, D);
5961 
5962     // If we have any template parameter lists that don't directly belong to
5963     // the variable (matching the scope specifier), store them.
5964     unsigned VDTemplateParamLists = TemplateParams ? 1 : 0;
5965     if (TemplateParamLists.size() > VDTemplateParamLists)
5966       NewVD->setTemplateParameterListsInfo(
5967           Context, TemplateParamLists.drop_back(VDTemplateParamLists));
5968 
5969     if (D.getDeclSpec().isConstexprSpecified())
5970       NewVD->setConstexpr(true);
5971 
5972     if (D.getDeclSpec().isConceptSpecified()) {
5973       NewVD->setConcept(true);
5974 
5975       // C++ Concepts TS [dcl.spec.concept]p2: A concept definition shall not
5976       // be declared with the thread_local, inline, friend, or constexpr
5977       // specifiers, [...]
5978       if (D.getDeclSpec().getThreadStorageClassSpec() == TSCS_thread_local) {
5979         Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(),
5980              diag::err_concept_decl_invalid_specifiers)
5981             << 0 << 0;
5982         NewVD->setInvalidDecl(true);
5983       }
5984 
5985       if (D.getDeclSpec().isConstexprSpecified()) {
5986         Diag(D.getDeclSpec().getConstexprSpecLoc(),
5987              diag::err_concept_decl_invalid_specifiers)
5988             << 0 << 3;
5989         NewVD->setInvalidDecl(true);
5990       }
5991     }
5992   }
5993 
5994   // Set the lexical context. If the declarator has a C++ scope specifier, the
5995   // lexical context will be different from the semantic context.
5996   NewVD->setLexicalDeclContext(CurContext);
5997   if (NewTemplate)
5998     NewTemplate->setLexicalDeclContext(CurContext);
5999 
6000   if (IsLocalExternDecl)
6001     NewVD->setLocalExternDecl();
6002 
6003   bool EmitTLSUnsupportedError = false;
6004   if (DeclSpec::TSCS TSCS = D.getDeclSpec().getThreadStorageClassSpec()) {
6005     // C++11 [dcl.stc]p4:
6006     //   When thread_local is applied to a variable of block scope the
6007     //   storage-class-specifier static is implied if it does not appear
6008     //   explicitly.
6009     // Core issue: 'static' is not implied if the variable is declared
6010     //   'extern'.
6011     if (NewVD->hasLocalStorage() &&
6012         (SCSpec != DeclSpec::SCS_unspecified ||
6013          TSCS != DeclSpec::TSCS_thread_local ||
6014          !DC->isFunctionOrMethod()))
6015       Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(),
6016            diag::err_thread_non_global)
6017         << DeclSpec::getSpecifierName(TSCS);
6018     else if (!Context.getTargetInfo().isTLSSupported()) {
6019       if (getLangOpts().CUDA) {
6020         // Postpone error emission until we've collected attributes required to
6021         // figure out whether it's a host or device variable and whether the
6022         // error should be ignored.
6023         EmitTLSUnsupportedError = true;
6024         // We still need to mark the variable as TLS so it shows up in AST with
6025         // proper storage class for other tools to use even if we're not going
6026         // to emit any code for it.
6027         NewVD->setTSCSpec(TSCS);
6028       } else
6029         Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(),
6030              diag::err_thread_unsupported);
6031     } else
6032       NewVD->setTSCSpec(TSCS);
6033   }
6034 
6035   // C99 6.7.4p3
6036   //   An inline definition of a function with external linkage shall
6037   //   not contain a definition of a modifiable object with static or
6038   //   thread storage duration...
6039   // We only apply this when the function is required to be defined
6040   // elsewhere, i.e. when the function is not 'extern inline'.  Note
6041   // that a local variable with thread storage duration still has to
6042   // be marked 'static'.  Also note that it's possible to get these
6043   // semantics in C++ using __attribute__((gnu_inline)).
6044   if (SC == SC_Static && S->getFnParent() != nullptr &&
6045       !NewVD->getType().isConstQualified()) {
6046     FunctionDecl *CurFD = getCurFunctionDecl();
6047     if (CurFD && isFunctionDefinitionDiscarded(*this, CurFD)) {
6048       Diag(D.getDeclSpec().getStorageClassSpecLoc(),
6049            diag::warn_static_local_in_extern_inline);
6050       MaybeSuggestAddingStaticToDecl(CurFD);
6051     }
6052   }
6053 
6054   if (D.getDeclSpec().isModulePrivateSpecified()) {
6055     if (IsVariableTemplateSpecialization)
6056       Diag(NewVD->getLocation(), diag::err_module_private_specialization)
6057           << (IsPartialSpecialization ? 1 : 0)
6058           << FixItHint::CreateRemoval(
6059                  D.getDeclSpec().getModulePrivateSpecLoc());
6060     else if (IsExplicitSpecialization)
6061       Diag(NewVD->getLocation(), diag::err_module_private_specialization)
6062         << 2
6063         << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
6064     else if (NewVD->hasLocalStorage())
6065       Diag(NewVD->getLocation(), diag::err_module_private_local)
6066         << 0 << NewVD->getDeclName()
6067         << SourceRange(D.getDeclSpec().getModulePrivateSpecLoc())
6068         << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
6069     else {
6070       NewVD->setModulePrivate();
6071       if (NewTemplate)
6072         NewTemplate->setModulePrivate();
6073     }
6074   }
6075 
6076   // Handle attributes prior to checking for duplicates in MergeVarDecl
6077   ProcessDeclAttributes(S, NewVD, D);
6078 
6079   if (getLangOpts().CUDA) {
6080     if (EmitTLSUnsupportedError && DeclAttrsMatchCUDAMode(getLangOpts(), NewVD))
6081       Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(),
6082            diag::err_thread_unsupported);
6083     // CUDA B.2.5: "__shared__ and __constant__ variables have implied static
6084     // storage [duration]."
6085     if (SC == SC_None && S->getFnParent() != nullptr &&
6086         (NewVD->hasAttr<CUDASharedAttr>() ||
6087          NewVD->hasAttr<CUDAConstantAttr>())) {
6088       NewVD->setStorageClass(SC_Static);
6089     }
6090   }
6091 
6092   // Ensure that dllimport globals without explicit storage class are treated as
6093   // extern. The storage class is set above using parsed attributes. Now we can
6094   // check the VarDecl itself.
6095   assert(!NewVD->hasAttr<DLLImportAttr>() ||
6096          NewVD->getAttr<DLLImportAttr>()->isInherited() ||
6097          NewVD->isStaticDataMember() || NewVD->getStorageClass() != SC_None);
6098 
6099   // In auto-retain/release, infer strong retension for variables of
6100   // retainable type.
6101   if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(NewVD))
6102     NewVD->setInvalidDecl();
6103 
6104   // Handle GNU asm-label extension (encoded as an attribute).
6105   if (Expr *E = (Expr*)D.getAsmLabel()) {
6106     // The parser guarantees this is a string.
6107     StringLiteral *SE = cast<StringLiteral>(E);
6108     StringRef Label = SE->getString();
6109     if (S->getFnParent() != nullptr) {
6110       switch (SC) {
6111       case SC_None:
6112       case SC_Auto:
6113         Diag(E->getExprLoc(), diag::warn_asm_label_on_auto_decl) << Label;
6114         break;
6115       case SC_Register:
6116         // Local Named register
6117         if (!Context.getTargetInfo().isValidGCCRegisterName(Label) &&
6118             DeclAttrsMatchCUDAMode(getLangOpts(), getCurFunctionDecl()))
6119           Diag(E->getExprLoc(), diag::err_asm_unknown_register_name) << Label;
6120         break;
6121       case SC_Static:
6122       case SC_Extern:
6123       case SC_PrivateExtern:
6124         break;
6125       }
6126     } else if (SC == SC_Register) {
6127       // Global Named register
6128       if (DeclAttrsMatchCUDAMode(getLangOpts(), NewVD)) {
6129         const auto &TI = Context.getTargetInfo();
6130         bool HasSizeMismatch;
6131 
6132         if (!TI.isValidGCCRegisterName(Label))
6133           Diag(E->getExprLoc(), diag::err_asm_unknown_register_name) << Label;
6134         else if (!TI.validateGlobalRegisterVariable(Label,
6135                                                     Context.getTypeSize(R),
6136                                                     HasSizeMismatch))
6137           Diag(E->getExprLoc(), diag::err_asm_invalid_global_var_reg) << Label;
6138         else if (HasSizeMismatch)
6139           Diag(E->getExprLoc(), diag::err_asm_register_size_mismatch) << Label;
6140       }
6141 
6142       if (!R->isIntegralType(Context) && !R->isPointerType()) {
6143         Diag(D.getLocStart(), diag::err_asm_bad_register_type);
6144         NewVD->setInvalidDecl(true);
6145       }
6146     }
6147 
6148     NewVD->addAttr(::new (Context) AsmLabelAttr(SE->getStrTokenLoc(0),
6149                                                 Context, Label, 0));
6150   } else if (!ExtnameUndeclaredIdentifiers.empty()) {
6151     llvm::DenseMap<IdentifierInfo*,AsmLabelAttr*>::iterator I =
6152       ExtnameUndeclaredIdentifiers.find(NewVD->getIdentifier());
6153     if (I != ExtnameUndeclaredIdentifiers.end()) {
6154       if (isDeclExternC(NewVD)) {
6155         NewVD->addAttr(I->second);
6156         ExtnameUndeclaredIdentifiers.erase(I);
6157       } else
6158         Diag(NewVD->getLocation(), diag::warn_redefine_extname_not_applied)
6159             << /*Variable*/1 << NewVD;
6160     }
6161   }
6162 
6163   // Diagnose shadowed variables before filtering for scope.
6164   if (D.getCXXScopeSpec().isEmpty())
6165     CheckShadow(S, NewVD, Previous);
6166 
6167   // Don't consider existing declarations that are in a different
6168   // scope and are out-of-semantic-context declarations (if the new
6169   // declaration has linkage).
6170   FilterLookupForScope(Previous, OriginalDC, S, shouldConsiderLinkage(NewVD),
6171                        D.getCXXScopeSpec().isNotEmpty() ||
6172                        IsExplicitSpecialization ||
6173                        IsVariableTemplateSpecialization);
6174 
6175   // Check whether the previous declaration is in the same block scope. This
6176   // affects whether we merge types with it, per C++11 [dcl.array]p3.
6177   if (getLangOpts().CPlusPlus &&
6178       NewVD->isLocalVarDecl() && NewVD->hasExternalStorage())
6179     NewVD->setPreviousDeclInSameBlockScope(
6180         Previous.isSingleResult() && !Previous.isShadowed() &&
6181         isDeclInScope(Previous.getFoundDecl(), OriginalDC, S, false));
6182 
6183   if (!getLangOpts().CPlusPlus) {
6184     D.setRedeclaration(CheckVariableDeclaration(NewVD, Previous));
6185   } else {
6186     // If this is an explicit specialization of a static data member, check it.
6187     if (IsExplicitSpecialization && !NewVD->isInvalidDecl() &&
6188         CheckMemberSpecialization(NewVD, Previous))
6189       NewVD->setInvalidDecl();
6190 
6191     // Merge the decl with the existing one if appropriate.
6192     if (!Previous.empty()) {
6193       if (Previous.isSingleResult() &&
6194           isa<FieldDecl>(Previous.getFoundDecl()) &&
6195           D.getCXXScopeSpec().isSet()) {
6196         // The user tried to define a non-static data member
6197         // out-of-line (C++ [dcl.meaning]p1).
6198         Diag(NewVD->getLocation(), diag::err_nonstatic_member_out_of_line)
6199           << D.getCXXScopeSpec().getRange();
6200         Previous.clear();
6201         NewVD->setInvalidDecl();
6202       }
6203     } else if (D.getCXXScopeSpec().isSet()) {
6204       // No previous declaration in the qualifying scope.
6205       Diag(D.getIdentifierLoc(), diag::err_no_member)
6206         << Name << computeDeclContext(D.getCXXScopeSpec(), true)
6207         << D.getCXXScopeSpec().getRange();
6208       NewVD->setInvalidDecl();
6209     }
6210 
6211     if (!IsVariableTemplateSpecialization)
6212       D.setRedeclaration(CheckVariableDeclaration(NewVD, Previous));
6213 
6214     if (NewTemplate) {
6215       VarTemplateDecl *PrevVarTemplate =
6216           NewVD->getPreviousDecl()
6217               ? NewVD->getPreviousDecl()->getDescribedVarTemplate()
6218               : nullptr;
6219 
6220       // Check the template parameter list of this declaration, possibly
6221       // merging in the template parameter list from the previous variable
6222       // template declaration.
6223       if (CheckTemplateParameterList(
6224               TemplateParams,
6225               PrevVarTemplate ? PrevVarTemplate->getTemplateParameters()
6226                               : nullptr,
6227               (D.getCXXScopeSpec().isSet() && DC && DC->isRecord() &&
6228                DC->isDependentContext())
6229                   ? TPC_ClassTemplateMember
6230                   : TPC_VarTemplate))
6231         NewVD->setInvalidDecl();
6232 
6233       // If we are providing an explicit specialization of a static variable
6234       // template, make a note of that.
6235       if (PrevVarTemplate &&
6236           PrevVarTemplate->getInstantiatedFromMemberTemplate())
6237         PrevVarTemplate->setMemberSpecialization();
6238     }
6239   }
6240 
6241   ProcessPragmaWeak(S, NewVD);
6242 
6243   // If this is the first declaration of an extern C variable, update
6244   // the map of such variables.
6245   if (NewVD->isFirstDecl() && !NewVD->isInvalidDecl() &&
6246       isIncompleteDeclExternC(*this, NewVD))
6247     RegisterLocallyScopedExternCDecl(NewVD, S);
6248 
6249   if (getLangOpts().CPlusPlus && NewVD->isStaticLocal()) {
6250     Decl *ManglingContextDecl;
6251     if (MangleNumberingContext *MCtx = getCurrentMangleNumberContext(
6252             NewVD->getDeclContext(), ManglingContextDecl)) {
6253       Context.setManglingNumber(
6254           NewVD, MCtx->getManglingNumber(
6255                      NewVD, getMSManglingNumber(getLangOpts(), S)));
6256       Context.setStaticLocalNumber(NewVD, MCtx->getStaticLocalNumber(NewVD));
6257     }
6258   }
6259 
6260   // Special handling of variable named 'main'.
6261   if (Name.isIdentifier() && Name.getAsIdentifierInfo()->isStr("main") &&
6262       NewVD->getDeclContext()->getRedeclContext()->isTranslationUnit() &&
6263       !getLangOpts().Freestanding && !NewVD->getDescribedVarTemplate()) {
6264 
6265     // C++ [basic.start.main]p3
6266     // A program that declares a variable main at global scope is ill-formed.
6267     if (getLangOpts().CPlusPlus)
6268       Diag(D.getLocStart(), diag::err_main_global_variable);
6269 
6270     // In C, and external-linkage variable named main results in undefined
6271     // behavior.
6272     else if (NewVD->hasExternalFormalLinkage())
6273       Diag(D.getLocStart(), diag::warn_main_redefined);
6274   }
6275 
6276   if (D.isRedeclaration() && !Previous.empty()) {
6277     checkDLLAttributeRedeclaration(
6278         *this, dyn_cast<NamedDecl>(Previous.getRepresentativeDecl()), NewVD,
6279         IsExplicitSpecialization);
6280   }
6281 
6282   if (NewTemplate) {
6283     if (NewVD->isInvalidDecl())
6284       NewTemplate->setInvalidDecl();
6285     ActOnDocumentableDecl(NewTemplate);
6286     return NewTemplate;
6287   }
6288 
6289   return NewVD;
6290 }
6291 
6292 /// \brief Diagnose variable or built-in function shadowing.  Implements
6293 /// -Wshadow.
6294 ///
6295 /// This method is called whenever a VarDecl is added to a "useful"
6296 /// scope.
6297 ///
6298 /// \param S the scope in which the shadowing name is being declared
6299 /// \param R the lookup of the name
6300 ///
CheckShadow(Scope * S,VarDecl * D,const LookupResult & R)6301 void Sema::CheckShadow(Scope *S, VarDecl *D, const LookupResult& R) {
6302   // Return if warning is ignored.
6303   if (Diags.isIgnored(diag::warn_decl_shadow, R.getNameLoc()))
6304     return;
6305 
6306   // Don't diagnose declarations at file scope.
6307   if (D->hasGlobalStorage())
6308     return;
6309 
6310   DeclContext *NewDC = D->getDeclContext();
6311 
6312   // Only diagnose if we're shadowing an unambiguous field or variable.
6313   if (R.getResultKind() != LookupResult::Found)
6314     return;
6315 
6316   NamedDecl* ShadowedDecl = R.getFoundDecl();
6317   if (!isa<VarDecl>(ShadowedDecl) && !isa<FieldDecl>(ShadowedDecl))
6318     return;
6319 
6320   // Fields are not shadowed by variables in C++ static methods.
6321   if (isa<FieldDecl>(ShadowedDecl))
6322     if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewDC))
6323       if (MD->isStatic())
6324         return;
6325 
6326   if (VarDecl *shadowedVar = dyn_cast<VarDecl>(ShadowedDecl))
6327     if (shadowedVar->isExternC()) {
6328       // For shadowing external vars, make sure that we point to the global
6329       // declaration, not a locally scoped extern declaration.
6330       for (auto I : shadowedVar->redecls())
6331         if (I->isFileVarDecl()) {
6332           ShadowedDecl = I;
6333           break;
6334         }
6335     }
6336 
6337   DeclContext *OldDC = ShadowedDecl->getDeclContext();
6338 
6339   // Only warn about certain kinds of shadowing for class members.
6340   if (NewDC && NewDC->isRecord()) {
6341     // In particular, don't warn about shadowing non-class members.
6342     if (!OldDC->isRecord())
6343       return;
6344 
6345     // TODO: should we warn about static data members shadowing
6346     // static data members from base classes?
6347 
6348     // TODO: don't diagnose for inaccessible shadowed members.
6349     // This is hard to do perfectly because we might friend the
6350     // shadowing context, but that's just a false negative.
6351   }
6352 
6353   // Determine what kind of declaration we're shadowing.
6354   unsigned Kind;
6355   if (isa<RecordDecl>(OldDC)) {
6356     if (isa<FieldDecl>(ShadowedDecl))
6357       Kind = 3; // field
6358     else
6359       Kind = 2; // static data member
6360   } else if (OldDC->isFileContext())
6361     Kind = 1; // global
6362   else
6363     Kind = 0; // local
6364 
6365   DeclarationName Name = R.getLookupName();
6366 
6367   // Emit warning and note.
6368   if (getSourceManager().isInSystemMacro(R.getNameLoc()))
6369     return;
6370   Diag(R.getNameLoc(), diag::warn_decl_shadow) << Name << Kind << OldDC;
6371   Diag(ShadowedDecl->getLocation(), diag::note_previous_declaration);
6372 }
6373 
6374 /// \brief Check -Wshadow without the advantage of a previous lookup.
CheckShadow(Scope * S,VarDecl * D)6375 void Sema::CheckShadow(Scope *S, VarDecl *D) {
6376   if (Diags.isIgnored(diag::warn_decl_shadow, D->getLocation()))
6377     return;
6378 
6379   LookupResult R(*this, D->getDeclName(), D->getLocation(),
6380                  Sema::LookupOrdinaryName, Sema::ForRedeclaration);
6381   LookupName(R, S);
6382   CheckShadow(S, D, R);
6383 }
6384 
6385 /// Check for conflict between this global or extern "C" declaration and
6386 /// previous global or extern "C" declarations. This is only used in C++.
6387 template<typename T>
checkGlobalOrExternCConflict(Sema & S,const T * ND,bool IsGlobal,LookupResult & Previous)6388 static bool checkGlobalOrExternCConflict(
6389     Sema &S, const T *ND, bool IsGlobal, LookupResult &Previous) {
6390   assert(S.getLangOpts().CPlusPlus && "only C++ has extern \"C\"");
6391   NamedDecl *Prev = S.findLocallyScopedExternCDecl(ND->getDeclName());
6392 
6393   if (!Prev && IsGlobal && !isIncompleteDeclExternC(S, ND)) {
6394     // The common case: this global doesn't conflict with any extern "C"
6395     // declaration.
6396     return false;
6397   }
6398 
6399   if (Prev) {
6400     if (!IsGlobal || isIncompleteDeclExternC(S, ND)) {
6401       // Both the old and new declarations have C language linkage. This is a
6402       // redeclaration.
6403       Previous.clear();
6404       Previous.addDecl(Prev);
6405       return true;
6406     }
6407 
6408     // This is a global, non-extern "C" declaration, and there is a previous
6409     // non-global extern "C" declaration. Diagnose if this is a variable
6410     // declaration.
6411     if (!isa<VarDecl>(ND))
6412       return false;
6413   } else {
6414     // The declaration is extern "C". Check for any declaration in the
6415     // translation unit which might conflict.
6416     if (IsGlobal) {
6417       // We have already performed the lookup into the translation unit.
6418       IsGlobal = false;
6419       for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
6420            I != E; ++I) {
6421         if (isa<VarDecl>(*I)) {
6422           Prev = *I;
6423           break;
6424         }
6425       }
6426     } else {
6427       DeclContext::lookup_result R =
6428           S.Context.getTranslationUnitDecl()->lookup(ND->getDeclName());
6429       for (DeclContext::lookup_result::iterator I = R.begin(), E = R.end();
6430            I != E; ++I) {
6431         if (isa<VarDecl>(*I)) {
6432           Prev = *I;
6433           break;
6434         }
6435         // FIXME: If we have any other entity with this name in global scope,
6436         // the declaration is ill-formed, but that is a defect: it breaks the
6437         // 'stat' hack, for instance. Only variables can have mangled name
6438         // clashes with extern "C" declarations, so only they deserve a
6439         // diagnostic.
6440       }
6441     }
6442 
6443     if (!Prev)
6444       return false;
6445   }
6446 
6447   // Use the first declaration's location to ensure we point at something which
6448   // is lexically inside an extern "C" linkage-spec.
6449   assert(Prev && "should have found a previous declaration to diagnose");
6450   if (FunctionDecl *FD = dyn_cast<FunctionDecl>(Prev))
6451     Prev = FD->getFirstDecl();
6452   else
6453     Prev = cast<VarDecl>(Prev)->getFirstDecl();
6454 
6455   S.Diag(ND->getLocation(), diag::err_extern_c_global_conflict)
6456     << IsGlobal << ND;
6457   S.Diag(Prev->getLocation(), diag::note_extern_c_global_conflict)
6458     << IsGlobal;
6459   return false;
6460 }
6461 
6462 /// Apply special rules for handling extern "C" declarations. Returns \c true
6463 /// if we have found that this is a redeclaration of some prior entity.
6464 ///
6465 /// Per C++ [dcl.link]p6:
6466 ///   Two declarations [for a function or variable] with C language linkage
6467 ///   with the same name that appear in different scopes refer to the same
6468 ///   [entity]. An entity with C language linkage shall not be declared with
6469 ///   the same name as an entity in global scope.
6470 template<typename T>
checkForConflictWithNonVisibleExternC(Sema & S,const T * ND,LookupResult & Previous)6471 static bool checkForConflictWithNonVisibleExternC(Sema &S, const T *ND,
6472                                                   LookupResult &Previous) {
6473   if (!S.getLangOpts().CPlusPlus) {
6474     // In C, when declaring a global variable, look for a corresponding 'extern'
6475     // variable declared in function scope. We don't need this in C++, because
6476     // we find local extern decls in the surrounding file-scope DeclContext.
6477     if (ND->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
6478       if (NamedDecl *Prev = S.findLocallyScopedExternCDecl(ND->getDeclName())) {
6479         Previous.clear();
6480         Previous.addDecl(Prev);
6481         return true;
6482       }
6483     }
6484     return false;
6485   }
6486 
6487   // A declaration in the translation unit can conflict with an extern "C"
6488   // declaration.
6489   if (ND->getDeclContext()->getRedeclContext()->isTranslationUnit())
6490     return checkGlobalOrExternCConflict(S, ND, /*IsGlobal*/true, Previous);
6491 
6492   // An extern "C" declaration can conflict with a declaration in the
6493   // translation unit or can be a redeclaration of an extern "C" declaration
6494   // in another scope.
6495   if (isIncompleteDeclExternC(S,ND))
6496     return checkGlobalOrExternCConflict(S, ND, /*IsGlobal*/false, Previous);
6497 
6498   // Neither global nor extern "C": nothing to do.
6499   return false;
6500 }
6501 
CheckVariableDeclarationType(VarDecl * NewVD)6502 void Sema::CheckVariableDeclarationType(VarDecl *NewVD) {
6503   // If the decl is already known invalid, don't check it.
6504   if (NewVD->isInvalidDecl())
6505     return;
6506 
6507   TypeSourceInfo *TInfo = NewVD->getTypeSourceInfo();
6508   QualType T = TInfo->getType();
6509 
6510   // Defer checking an 'auto' type until its initializer is attached.
6511   if (T->isUndeducedType())
6512     return;
6513 
6514   if (NewVD->hasAttrs())
6515     CheckAlignasUnderalignment(NewVD);
6516 
6517   if (T->isObjCObjectType()) {
6518     Diag(NewVD->getLocation(), diag::err_statically_allocated_object)
6519       << FixItHint::CreateInsertion(NewVD->getLocation(), "*");
6520     T = Context.getObjCObjectPointerType(T);
6521     NewVD->setType(T);
6522   }
6523 
6524   // Emit an error if an address space was applied to decl with local storage.
6525   // This includes arrays of objects with address space qualifiers, but not
6526   // automatic variables that point to other address spaces.
6527   // ISO/IEC TR 18037 S5.1.2
6528   if (!getLangOpts().OpenCL
6529       && NewVD->hasLocalStorage() && T.getAddressSpace() != 0) {
6530     Diag(NewVD->getLocation(), diag::err_as_qualified_auto_decl);
6531     NewVD->setInvalidDecl();
6532     return;
6533   }
6534 
6535   // OpenCL v1.2 s6.8 -- The static qualifier is valid only in program
6536   // scope.
6537   if (getLangOpts().OpenCLVersion == 120 &&
6538       !getOpenCLOptions().cl_clang_storage_class_specifiers &&
6539       NewVD->isStaticLocal()) {
6540     Diag(NewVD->getLocation(), diag::err_static_function_scope);
6541     NewVD->setInvalidDecl();
6542     return;
6543   }
6544 
6545   // OpenCL v1.2 s6.5 - All program scope variables must be declared in the
6546   // __constant address space.
6547   // OpenCL v2.0 s6.5.1 - Variables defined at program scope and static
6548   // variables inside a function can also be declared in the global
6549   // address space.
6550   if (getLangOpts().OpenCL) {
6551     if (NewVD->isFileVarDecl()) {
6552       if (!T->isSamplerT() &&
6553           !(T.getAddressSpace() == LangAS::opencl_constant ||
6554             (T.getAddressSpace() == LangAS::opencl_global &&
6555              getLangOpts().OpenCLVersion == 200))) {
6556         if (getLangOpts().OpenCLVersion == 200)
6557           Diag(NewVD->getLocation(), diag::err_opencl_global_invalid_addr_space)
6558               << "global or constant";
6559         else
6560           Diag(NewVD->getLocation(), diag::err_opencl_global_invalid_addr_space)
6561               << "constant";
6562         NewVD->setInvalidDecl();
6563         return;
6564       }
6565     } else {
6566       // OpenCL v2.0 s6.5.1 - Variables defined at program scope and static
6567       // variables inside a function can also be declared in the global
6568       // address space.
6569       if (NewVD->isStaticLocal() &&
6570           !(T.getAddressSpace() == LangAS::opencl_constant ||
6571             (T.getAddressSpace() == LangAS::opencl_global &&
6572              getLangOpts().OpenCLVersion == 200))) {
6573         if (getLangOpts().OpenCLVersion == 200)
6574           Diag(NewVD->getLocation(), diag::err_opencl_global_invalid_addr_space)
6575               << "global or constant";
6576         else
6577           Diag(NewVD->getLocation(), diag::err_opencl_global_invalid_addr_space)
6578               << "constant";
6579         NewVD->setInvalidDecl();
6580         return;
6581       }
6582       // OpenCL v1.1 s6.5.2 and s6.5.3 no local or constant variables
6583       // in functions.
6584       if (T.getAddressSpace() == LangAS::opencl_constant ||
6585           T.getAddressSpace() == LangAS::opencl_local) {
6586         FunctionDecl *FD = getCurFunctionDecl();
6587         if (FD && !FD->hasAttr<OpenCLKernelAttr>()) {
6588           if (T.getAddressSpace() == LangAS::opencl_constant)
6589             Diag(NewVD->getLocation(), diag::err_opencl_non_kernel_variable)
6590                 << "constant";
6591           else
6592             Diag(NewVD->getLocation(), diag::err_opencl_non_kernel_variable)
6593                 << "local";
6594           NewVD->setInvalidDecl();
6595           return;
6596         }
6597       }
6598     }
6599   }
6600 
6601   if (NewVD->hasLocalStorage() && T.isObjCGCWeak()
6602       && !NewVD->hasAttr<BlocksAttr>()) {
6603     if (getLangOpts().getGC() != LangOptions::NonGC)
6604       Diag(NewVD->getLocation(), diag::warn_gc_attribute_weak_on_local);
6605     else {
6606       assert(!getLangOpts().ObjCAutoRefCount);
6607       Diag(NewVD->getLocation(), diag::warn_attribute_weak_on_local);
6608     }
6609   }
6610 
6611   bool isVM = T->isVariablyModifiedType();
6612   if (isVM || NewVD->hasAttr<CleanupAttr>() ||
6613       NewVD->hasAttr<BlocksAttr>())
6614     getCurFunction()->setHasBranchProtectedScope();
6615 
6616   if ((isVM && NewVD->hasLinkage()) ||
6617       (T->isVariableArrayType() && NewVD->hasGlobalStorage())) {
6618     bool SizeIsNegative;
6619     llvm::APSInt Oversized;
6620     TypeSourceInfo *FixedTInfo =
6621       TryToFixInvalidVariablyModifiedTypeSourceInfo(TInfo, Context,
6622                                                     SizeIsNegative, Oversized);
6623     if (!FixedTInfo && T->isVariableArrayType()) {
6624       const VariableArrayType *VAT = Context.getAsVariableArrayType(T);
6625       // FIXME: This won't give the correct result for
6626       // int a[10][n];
6627       SourceRange SizeRange = VAT->getSizeExpr()->getSourceRange();
6628 
6629       if (NewVD->isFileVarDecl())
6630         Diag(NewVD->getLocation(), diag::err_vla_decl_in_file_scope)
6631         << SizeRange;
6632       else if (NewVD->isStaticLocal())
6633         Diag(NewVD->getLocation(), diag::err_vla_decl_has_static_storage)
6634         << SizeRange;
6635       else
6636         Diag(NewVD->getLocation(), diag::err_vla_decl_has_extern_linkage)
6637         << SizeRange;
6638       NewVD->setInvalidDecl();
6639       return;
6640     }
6641 
6642     if (!FixedTInfo) {
6643       if (NewVD->isFileVarDecl())
6644         Diag(NewVD->getLocation(), diag::err_vm_decl_in_file_scope);
6645       else
6646         Diag(NewVD->getLocation(), diag::err_vm_decl_has_extern_linkage);
6647       NewVD->setInvalidDecl();
6648       return;
6649     }
6650 
6651     Diag(NewVD->getLocation(), diag::warn_illegal_constant_array_size);
6652     NewVD->setType(FixedTInfo->getType());
6653     NewVD->setTypeSourceInfo(FixedTInfo);
6654   }
6655 
6656   if (T->isVoidType()) {
6657     // C++98 [dcl.stc]p5: The extern specifier can be applied only to the names
6658     //                    of objects and functions.
6659     if (NewVD->isThisDeclarationADefinition() || getLangOpts().CPlusPlus) {
6660       Diag(NewVD->getLocation(), diag::err_typecheck_decl_incomplete_type)
6661         << T;
6662       NewVD->setInvalidDecl();
6663       return;
6664     }
6665   }
6666 
6667   if (!NewVD->hasLocalStorage() && NewVD->hasAttr<BlocksAttr>()) {
6668     Diag(NewVD->getLocation(), diag::err_block_on_nonlocal);
6669     NewVD->setInvalidDecl();
6670     return;
6671   }
6672 
6673   if (isVM && NewVD->hasAttr<BlocksAttr>()) {
6674     Diag(NewVD->getLocation(), diag::err_block_on_vm);
6675     NewVD->setInvalidDecl();
6676     return;
6677   }
6678 
6679   if (NewVD->isConstexpr() && !T->isDependentType() &&
6680       RequireLiteralType(NewVD->getLocation(), T,
6681                          diag::err_constexpr_var_non_literal)) {
6682     NewVD->setInvalidDecl();
6683     return;
6684   }
6685 }
6686 
6687 /// \brief Perform semantic checking on a newly-created variable
6688 /// declaration.
6689 ///
6690 /// This routine performs all of the type-checking required for a
6691 /// variable declaration once it has been built. It is used both to
6692 /// check variables after they have been parsed and their declarators
6693 /// have been translated into a declaration, and to check variables
6694 /// that have been instantiated from a template.
6695 ///
6696 /// Sets NewVD->isInvalidDecl() if an error was encountered.
6697 ///
6698 /// Returns true if the variable declaration is a redeclaration.
CheckVariableDeclaration(VarDecl * NewVD,LookupResult & Previous)6699 bool Sema::CheckVariableDeclaration(VarDecl *NewVD, LookupResult &Previous) {
6700   CheckVariableDeclarationType(NewVD);
6701 
6702   // If the decl is already known invalid, don't check it.
6703   if (NewVD->isInvalidDecl())
6704     return false;
6705 
6706   // If we did not find anything by this name, look for a non-visible
6707   // extern "C" declaration with the same name.
6708   if (Previous.empty() &&
6709       checkForConflictWithNonVisibleExternC(*this, NewVD, Previous))
6710     Previous.setShadowed();
6711 
6712   if (!Previous.empty()) {
6713     MergeVarDecl(NewVD, Previous);
6714     return true;
6715   }
6716   return false;
6717 }
6718 
6719 namespace {
6720 struct FindOverriddenMethod {
6721   Sema *S;
6722   CXXMethodDecl *Method;
6723 
6724   /// Member lookup function that determines whether a given C++
6725   /// method overrides a method in a base class, to be used with
6726   /// CXXRecordDecl::lookupInBases().
operator ()__anonb54c7a2f0511::FindOverriddenMethod6727   bool operator()(const CXXBaseSpecifier *Specifier, CXXBasePath &Path) {
6728     RecordDecl *BaseRecord =
6729         Specifier->getType()->getAs<RecordType>()->getDecl();
6730 
6731     DeclarationName Name = Method->getDeclName();
6732 
6733     // FIXME: Do we care about other names here too?
6734     if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
6735       // We really want to find the base class destructor here.
6736       QualType T = S->Context.getTypeDeclType(BaseRecord);
6737       CanQualType CT = S->Context.getCanonicalType(T);
6738 
6739       Name = S->Context.DeclarationNames.getCXXDestructorName(CT);
6740     }
6741 
6742     for (Path.Decls = BaseRecord->lookup(Name); !Path.Decls.empty();
6743          Path.Decls = Path.Decls.slice(1)) {
6744       NamedDecl *D = Path.Decls.front();
6745       if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
6746         if (MD->isVirtual() && !S->IsOverload(Method, MD, false))
6747           return true;
6748       }
6749     }
6750 
6751     return false;
6752   }
6753 };
6754 
6755 enum OverrideErrorKind { OEK_All, OEK_NonDeleted, OEK_Deleted };
6756 } // end anonymous namespace
6757 
6758 /// \brief Report an error regarding overriding, along with any relevant
6759 /// overriden methods.
6760 ///
6761 /// \param DiagID the primary error to report.
6762 /// \param MD the overriding method.
6763 /// \param OEK which overrides to include as notes.
ReportOverrides(Sema & S,unsigned DiagID,const CXXMethodDecl * MD,OverrideErrorKind OEK=OEK_All)6764 static void ReportOverrides(Sema& S, unsigned DiagID, const CXXMethodDecl *MD,
6765                             OverrideErrorKind OEK = OEK_All) {
6766   S.Diag(MD->getLocation(), DiagID) << MD->getDeclName();
6767   for (CXXMethodDecl::method_iterator I = MD->begin_overridden_methods(),
6768                                       E = MD->end_overridden_methods();
6769        I != E; ++I) {
6770     // This check (& the OEK parameter) could be replaced by a predicate, but
6771     // without lambdas that would be overkill. This is still nicer than writing
6772     // out the diag loop 3 times.
6773     if ((OEK == OEK_All) ||
6774         (OEK == OEK_NonDeleted && !(*I)->isDeleted()) ||
6775         (OEK == OEK_Deleted && (*I)->isDeleted()))
6776       S.Diag((*I)->getLocation(), diag::note_overridden_virtual_function);
6777   }
6778 }
6779 
6780 /// AddOverriddenMethods - See if a method overrides any in the base classes,
6781 /// and if so, check that it's a valid override and remember it.
AddOverriddenMethods(CXXRecordDecl * DC,CXXMethodDecl * MD)6782 bool Sema::AddOverriddenMethods(CXXRecordDecl *DC, CXXMethodDecl *MD) {
6783   // Look for methods in base classes that this method might override.
6784   CXXBasePaths Paths;
6785   FindOverriddenMethod FOM;
6786   FOM.Method = MD;
6787   FOM.S = this;
6788   bool hasDeletedOverridenMethods = false;
6789   bool hasNonDeletedOverridenMethods = false;
6790   bool AddedAny = false;
6791   if (DC->lookupInBases(FOM, Paths)) {
6792     for (auto *I : Paths.found_decls()) {
6793       if (CXXMethodDecl *OldMD = dyn_cast<CXXMethodDecl>(I)) {
6794         MD->addOverriddenMethod(OldMD->getCanonicalDecl());
6795         if (!CheckOverridingFunctionReturnType(MD, OldMD) &&
6796             !CheckOverridingFunctionAttributes(MD, OldMD) &&
6797             !CheckOverridingFunctionExceptionSpec(MD, OldMD) &&
6798             !CheckIfOverriddenFunctionIsMarkedFinal(MD, OldMD)) {
6799           hasDeletedOverridenMethods |= OldMD->isDeleted();
6800           hasNonDeletedOverridenMethods |= !OldMD->isDeleted();
6801           AddedAny = true;
6802         }
6803       }
6804     }
6805   }
6806 
6807   if (hasDeletedOverridenMethods && !MD->isDeleted()) {
6808     ReportOverrides(*this, diag::err_non_deleted_override, MD, OEK_Deleted);
6809   }
6810   if (hasNonDeletedOverridenMethods && MD->isDeleted()) {
6811     ReportOverrides(*this, diag::err_deleted_override, MD, OEK_NonDeleted);
6812   }
6813 
6814   return AddedAny;
6815 }
6816 
6817 namespace {
6818   // Struct for holding all of the extra arguments needed by
6819   // DiagnoseInvalidRedeclaration to call Sema::ActOnFunctionDeclarator.
6820   struct ActOnFDArgs {
6821     Scope *S;
6822     Declarator &D;
6823     MultiTemplateParamsArg TemplateParamLists;
6824     bool AddToScope;
6825   };
6826 }
6827 
6828 namespace {
6829 
6830 // Callback to only accept typo corrections that have a non-zero edit distance.
6831 // Also only accept corrections that have the same parent decl.
6832 class DifferentNameValidatorCCC : public CorrectionCandidateCallback {
6833  public:
DifferentNameValidatorCCC(ASTContext & Context,FunctionDecl * TypoFD,CXXRecordDecl * Parent)6834   DifferentNameValidatorCCC(ASTContext &Context, FunctionDecl *TypoFD,
6835                             CXXRecordDecl *Parent)
6836       : Context(Context), OriginalFD(TypoFD),
6837         ExpectedParent(Parent ? Parent->getCanonicalDecl() : nullptr) {}
6838 
ValidateCandidate(const TypoCorrection & candidate)6839   bool ValidateCandidate(const TypoCorrection &candidate) override {
6840     if (candidate.getEditDistance() == 0)
6841       return false;
6842 
6843     SmallVector<unsigned, 1> MismatchedParams;
6844     for (TypoCorrection::const_decl_iterator CDecl = candidate.begin(),
6845                                           CDeclEnd = candidate.end();
6846          CDecl != CDeclEnd; ++CDecl) {
6847       FunctionDecl *FD = dyn_cast<FunctionDecl>(*CDecl);
6848 
6849       if (FD && !FD->hasBody() &&
6850           hasSimilarParameters(Context, FD, OriginalFD, MismatchedParams)) {
6851         if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
6852           CXXRecordDecl *Parent = MD->getParent();
6853           if (Parent && Parent->getCanonicalDecl() == ExpectedParent)
6854             return true;
6855         } else if (!ExpectedParent) {
6856           return true;
6857         }
6858       }
6859     }
6860 
6861     return false;
6862   }
6863 
6864  private:
6865   ASTContext &Context;
6866   FunctionDecl *OriginalFD;
6867   CXXRecordDecl *ExpectedParent;
6868 };
6869 
6870 }
6871 
6872 /// \brief Generate diagnostics for an invalid function redeclaration.
6873 ///
6874 /// This routine handles generating the diagnostic messages for an invalid
6875 /// function redeclaration, including finding possible similar declarations
6876 /// or performing typo correction if there are no previous declarations with
6877 /// the same name.
6878 ///
6879 /// Returns a NamedDecl iff typo correction was performed and substituting in
6880 /// the new declaration name does not cause new errors.
DiagnoseInvalidRedeclaration(Sema & SemaRef,LookupResult & Previous,FunctionDecl * NewFD,ActOnFDArgs & ExtraArgs,bool IsLocalFriend,Scope * S)6881 static NamedDecl *DiagnoseInvalidRedeclaration(
6882     Sema &SemaRef, LookupResult &Previous, FunctionDecl *NewFD,
6883     ActOnFDArgs &ExtraArgs, bool IsLocalFriend, Scope *S) {
6884   DeclarationName Name = NewFD->getDeclName();
6885   DeclContext *NewDC = NewFD->getDeclContext();
6886   SmallVector<unsigned, 1> MismatchedParams;
6887   SmallVector<std::pair<FunctionDecl *, unsigned>, 1> NearMatches;
6888   TypoCorrection Correction;
6889   bool IsDefinition = ExtraArgs.D.isFunctionDefinition();
6890   unsigned DiagMsg = IsLocalFriend ? diag::err_no_matching_local_friend
6891                                    : diag::err_member_decl_does_not_match;
6892   LookupResult Prev(SemaRef, Name, NewFD->getLocation(),
6893                     IsLocalFriend ? Sema::LookupLocalFriendName
6894                                   : Sema::LookupOrdinaryName,
6895                     Sema::ForRedeclaration);
6896 
6897   NewFD->setInvalidDecl();
6898   if (IsLocalFriend)
6899     SemaRef.LookupName(Prev, S);
6900   else
6901     SemaRef.LookupQualifiedName(Prev, NewDC);
6902   assert(!Prev.isAmbiguous() &&
6903          "Cannot have an ambiguity in previous-declaration lookup");
6904   CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewFD);
6905   if (!Prev.empty()) {
6906     for (LookupResult::iterator Func = Prev.begin(), FuncEnd = Prev.end();
6907          Func != FuncEnd; ++Func) {
6908       FunctionDecl *FD = dyn_cast<FunctionDecl>(*Func);
6909       if (FD &&
6910           hasSimilarParameters(SemaRef.Context, FD, NewFD, MismatchedParams)) {
6911         // Add 1 to the index so that 0 can mean the mismatch didn't
6912         // involve a parameter
6913         unsigned ParamNum =
6914             MismatchedParams.empty() ? 0 : MismatchedParams.front() + 1;
6915         NearMatches.push_back(std::make_pair(FD, ParamNum));
6916       }
6917     }
6918   // If the qualified name lookup yielded nothing, try typo correction
6919   } else if ((Correction = SemaRef.CorrectTypo(
6920                   Prev.getLookupNameInfo(), Prev.getLookupKind(), S,
6921                   &ExtraArgs.D.getCXXScopeSpec(),
6922                   llvm::make_unique<DifferentNameValidatorCCC>(
6923                       SemaRef.Context, NewFD, MD ? MD->getParent() : nullptr),
6924                   Sema::CTK_ErrorRecovery, IsLocalFriend ? nullptr : NewDC))) {
6925     // Set up everything for the call to ActOnFunctionDeclarator
6926     ExtraArgs.D.SetIdentifier(Correction.getCorrectionAsIdentifierInfo(),
6927                               ExtraArgs.D.getIdentifierLoc());
6928     Previous.clear();
6929     Previous.setLookupName(Correction.getCorrection());
6930     for (TypoCorrection::decl_iterator CDecl = Correction.begin(),
6931                                     CDeclEnd = Correction.end();
6932          CDecl != CDeclEnd; ++CDecl) {
6933       FunctionDecl *FD = dyn_cast<FunctionDecl>(*CDecl);
6934       if (FD && !FD->hasBody() &&
6935           hasSimilarParameters(SemaRef.Context, FD, NewFD, MismatchedParams)) {
6936         Previous.addDecl(FD);
6937       }
6938     }
6939     bool wasRedeclaration = ExtraArgs.D.isRedeclaration();
6940 
6941     NamedDecl *Result;
6942     // Retry building the function declaration with the new previous
6943     // declarations, and with errors suppressed.
6944     {
6945       // Trap errors.
6946       Sema::SFINAETrap Trap(SemaRef);
6947 
6948       // TODO: Refactor ActOnFunctionDeclarator so that we can call only the
6949       // pieces need to verify the typo-corrected C++ declaration and hopefully
6950       // eliminate the need for the parameter pack ExtraArgs.
6951       Result = SemaRef.ActOnFunctionDeclarator(
6952           ExtraArgs.S, ExtraArgs.D,
6953           Correction.getCorrectionDecl()->getDeclContext(),
6954           NewFD->getTypeSourceInfo(), Previous, ExtraArgs.TemplateParamLists,
6955           ExtraArgs.AddToScope);
6956 
6957       if (Trap.hasErrorOccurred())
6958         Result = nullptr;
6959     }
6960 
6961     if (Result) {
6962       // Determine which correction we picked.
6963       Decl *Canonical = Result->getCanonicalDecl();
6964       for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
6965            I != E; ++I)
6966         if ((*I)->getCanonicalDecl() == Canonical)
6967           Correction.setCorrectionDecl(*I);
6968 
6969       SemaRef.diagnoseTypo(
6970           Correction,
6971           SemaRef.PDiag(IsLocalFriend
6972                           ? diag::err_no_matching_local_friend_suggest
6973                           : diag::err_member_decl_does_not_match_suggest)
6974             << Name << NewDC << IsDefinition);
6975       return Result;
6976     }
6977 
6978     // Pretend the typo correction never occurred
6979     ExtraArgs.D.SetIdentifier(Name.getAsIdentifierInfo(),
6980                               ExtraArgs.D.getIdentifierLoc());
6981     ExtraArgs.D.setRedeclaration(wasRedeclaration);
6982     Previous.clear();
6983     Previous.setLookupName(Name);
6984   }
6985 
6986   SemaRef.Diag(NewFD->getLocation(), DiagMsg)
6987       << Name << NewDC << IsDefinition << NewFD->getLocation();
6988 
6989   bool NewFDisConst = false;
6990   if (CXXMethodDecl *NewMD = dyn_cast<CXXMethodDecl>(NewFD))
6991     NewFDisConst = NewMD->isConst();
6992 
6993   for (SmallVectorImpl<std::pair<FunctionDecl *, unsigned> >::iterator
6994        NearMatch = NearMatches.begin(), NearMatchEnd = NearMatches.end();
6995        NearMatch != NearMatchEnd; ++NearMatch) {
6996     FunctionDecl *FD = NearMatch->first;
6997     CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD);
6998     bool FDisConst = MD && MD->isConst();
6999     bool IsMember = MD || !IsLocalFriend;
7000 
7001     // FIXME: These notes are poorly worded for the local friend case.
7002     if (unsigned Idx = NearMatch->second) {
7003       ParmVarDecl *FDParam = FD->getParamDecl(Idx-1);
7004       SourceLocation Loc = FDParam->getTypeSpecStartLoc();
7005       if (Loc.isInvalid()) Loc = FD->getLocation();
7006       SemaRef.Diag(Loc, IsMember ? diag::note_member_def_close_param_match
7007                                  : diag::note_local_decl_close_param_match)
7008         << Idx << FDParam->getType()
7009         << NewFD->getParamDecl(Idx - 1)->getType();
7010     } else if (FDisConst != NewFDisConst) {
7011       SemaRef.Diag(FD->getLocation(), diag::note_member_def_close_const_match)
7012           << NewFDisConst << FD->getSourceRange().getEnd();
7013     } else
7014       SemaRef.Diag(FD->getLocation(),
7015                    IsMember ? diag::note_member_def_close_match
7016                             : diag::note_local_decl_close_match);
7017   }
7018   return nullptr;
7019 }
7020 
getFunctionStorageClass(Sema & SemaRef,Declarator & D)7021 static StorageClass getFunctionStorageClass(Sema &SemaRef, Declarator &D) {
7022   switch (D.getDeclSpec().getStorageClassSpec()) {
7023   default: llvm_unreachable("Unknown storage class!");
7024   case DeclSpec::SCS_auto:
7025   case DeclSpec::SCS_register:
7026   case DeclSpec::SCS_mutable:
7027     SemaRef.Diag(D.getDeclSpec().getStorageClassSpecLoc(),
7028                  diag::err_typecheck_sclass_func);
7029     D.setInvalidType();
7030     break;
7031   case DeclSpec::SCS_unspecified: break;
7032   case DeclSpec::SCS_extern:
7033     if (D.getDeclSpec().isExternInLinkageSpec())
7034       return SC_None;
7035     return SC_Extern;
7036   case DeclSpec::SCS_static: {
7037     if (SemaRef.CurContext->getRedeclContext()->isFunctionOrMethod()) {
7038       // C99 6.7.1p5:
7039       //   The declaration of an identifier for a function that has
7040       //   block scope shall have no explicit storage-class specifier
7041       //   other than extern
7042       // See also (C++ [dcl.stc]p4).
7043       SemaRef.Diag(D.getDeclSpec().getStorageClassSpecLoc(),
7044                    diag::err_static_block_func);
7045       break;
7046     } else
7047       return SC_Static;
7048   }
7049   case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
7050   }
7051 
7052   // No explicit storage class has already been returned
7053   return SC_None;
7054 }
7055 
CreateNewFunctionDecl(Sema & SemaRef,Declarator & D,DeclContext * DC,QualType & R,TypeSourceInfo * TInfo,StorageClass SC,bool & IsVirtualOkay)7056 static FunctionDecl* CreateNewFunctionDecl(Sema &SemaRef, Declarator &D,
7057                                            DeclContext *DC, QualType &R,
7058                                            TypeSourceInfo *TInfo,
7059                                            StorageClass SC,
7060                                            bool &IsVirtualOkay) {
7061   DeclarationNameInfo NameInfo = SemaRef.GetNameForDeclarator(D);
7062   DeclarationName Name = NameInfo.getName();
7063 
7064   FunctionDecl *NewFD = nullptr;
7065   bool isInline = D.getDeclSpec().isInlineSpecified();
7066 
7067   if (!SemaRef.getLangOpts().CPlusPlus) {
7068     // Determine whether the function was written with a
7069     // prototype. This true when:
7070     //   - there is a prototype in the declarator, or
7071     //   - the type R of the function is some kind of typedef or other reference
7072     //     to a type name (which eventually refers to a function type).
7073     bool HasPrototype =
7074       (D.isFunctionDeclarator() && D.getFunctionTypeInfo().hasPrototype) ||
7075       (!isa<FunctionType>(R.getTypePtr()) && R->isFunctionProtoType());
7076 
7077     NewFD = FunctionDecl::Create(SemaRef.Context, DC,
7078                                  D.getLocStart(), NameInfo, R,
7079                                  TInfo, SC, isInline,
7080                                  HasPrototype, false);
7081     if (D.isInvalidType())
7082       NewFD->setInvalidDecl();
7083 
7084     return NewFD;
7085   }
7086 
7087   bool isExplicit = D.getDeclSpec().isExplicitSpecified();
7088   bool isConstexpr = D.getDeclSpec().isConstexprSpecified();
7089 
7090   // Check that the return type is not an abstract class type.
7091   // For record types, this is done by the AbstractClassUsageDiagnoser once
7092   // the class has been completely parsed.
7093   if (!DC->isRecord() &&
7094       SemaRef.RequireNonAbstractType(
7095           D.getIdentifierLoc(), R->getAs<FunctionType>()->getReturnType(),
7096           diag::err_abstract_type_in_decl, SemaRef.AbstractReturnType))
7097     D.setInvalidType();
7098 
7099   if (Name.getNameKind() == DeclarationName::CXXConstructorName) {
7100     // This is a C++ constructor declaration.
7101     assert(DC->isRecord() &&
7102            "Constructors can only be declared in a member context");
7103 
7104     R = SemaRef.CheckConstructorDeclarator(D, R, SC);
7105     return CXXConstructorDecl::Create(SemaRef.Context, cast<CXXRecordDecl>(DC),
7106                                       D.getLocStart(), NameInfo,
7107                                       R, TInfo, isExplicit, isInline,
7108                                       /*isImplicitlyDeclared=*/false,
7109                                       isConstexpr);
7110 
7111   } else if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
7112     // This is a C++ destructor declaration.
7113     if (DC->isRecord()) {
7114       R = SemaRef.CheckDestructorDeclarator(D, R, SC);
7115       CXXRecordDecl *Record = cast<CXXRecordDecl>(DC);
7116       CXXDestructorDecl *NewDD = CXXDestructorDecl::Create(
7117                                         SemaRef.Context, Record,
7118                                         D.getLocStart(),
7119                                         NameInfo, R, TInfo, isInline,
7120                                         /*isImplicitlyDeclared=*/false);
7121 
7122       // If the class is complete, then we now create the implicit exception
7123       // specification. If the class is incomplete or dependent, we can't do
7124       // it yet.
7125       if (SemaRef.getLangOpts().CPlusPlus11 && !Record->isDependentType() &&
7126           Record->getDefinition() && !Record->isBeingDefined() &&
7127           R->getAs<FunctionProtoType>()->getExceptionSpecType() == EST_None) {
7128         SemaRef.AdjustDestructorExceptionSpec(Record, NewDD);
7129       }
7130 
7131       IsVirtualOkay = true;
7132       return NewDD;
7133 
7134     } else {
7135       SemaRef.Diag(D.getIdentifierLoc(), diag::err_destructor_not_member);
7136       D.setInvalidType();
7137 
7138       // Create a FunctionDecl to satisfy the function definition parsing
7139       // code path.
7140       return FunctionDecl::Create(SemaRef.Context, DC,
7141                                   D.getLocStart(),
7142                                   D.getIdentifierLoc(), Name, R, TInfo,
7143                                   SC, isInline,
7144                                   /*hasPrototype=*/true, isConstexpr);
7145     }
7146 
7147   } else if (Name.getNameKind() == DeclarationName::CXXConversionFunctionName) {
7148     if (!DC->isRecord()) {
7149       SemaRef.Diag(D.getIdentifierLoc(),
7150            diag::err_conv_function_not_member);
7151       return nullptr;
7152     }
7153 
7154     SemaRef.CheckConversionDeclarator(D, R, SC);
7155     IsVirtualOkay = true;
7156     return CXXConversionDecl::Create(SemaRef.Context, cast<CXXRecordDecl>(DC),
7157                                      D.getLocStart(), NameInfo,
7158                                      R, TInfo, isInline, isExplicit,
7159                                      isConstexpr, SourceLocation());
7160 
7161   } else if (DC->isRecord()) {
7162     // If the name of the function is the same as the name of the record,
7163     // then this must be an invalid constructor that has a return type.
7164     // (The parser checks for a return type and makes the declarator a
7165     // constructor if it has no return type).
7166     if (Name.getAsIdentifierInfo() &&
7167         Name.getAsIdentifierInfo() == cast<CXXRecordDecl>(DC)->getIdentifier()){
7168       SemaRef.Diag(D.getIdentifierLoc(), diag::err_constructor_return_type)
7169         << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
7170         << SourceRange(D.getIdentifierLoc());
7171       return nullptr;
7172     }
7173 
7174     // This is a C++ method declaration.
7175     CXXMethodDecl *Ret = CXXMethodDecl::Create(SemaRef.Context,
7176                                                cast<CXXRecordDecl>(DC),
7177                                                D.getLocStart(), NameInfo, R,
7178                                                TInfo, SC, isInline,
7179                                                isConstexpr, SourceLocation());
7180     IsVirtualOkay = !Ret->isStatic();
7181     return Ret;
7182   } else {
7183     bool isFriend =
7184         SemaRef.getLangOpts().CPlusPlus && D.getDeclSpec().isFriendSpecified();
7185     if (!isFriend && SemaRef.CurContext->isRecord())
7186       return nullptr;
7187 
7188     // Determine whether the function was written with a
7189     // prototype. This true when:
7190     //   - we're in C++ (where every function has a prototype),
7191     return FunctionDecl::Create(SemaRef.Context, DC,
7192                                 D.getLocStart(),
7193                                 NameInfo, R, TInfo, SC, isInline,
7194                                 true/*HasPrototype*/, isConstexpr);
7195   }
7196 }
7197 
7198 enum OpenCLParamType {
7199   ValidKernelParam,
7200   PtrPtrKernelParam,
7201   PtrKernelParam,
7202   PrivatePtrKernelParam,
7203   InvalidKernelParam,
7204   RecordKernelParam
7205 };
7206 
getOpenCLKernelParameterType(QualType PT)7207 static OpenCLParamType getOpenCLKernelParameterType(QualType PT) {
7208   if (PT->isPointerType()) {
7209     QualType PointeeType = PT->getPointeeType();
7210     if (PointeeType->isPointerType())
7211       return PtrPtrKernelParam;
7212     return PointeeType.getAddressSpace() == 0 ? PrivatePtrKernelParam
7213                                               : PtrKernelParam;
7214   }
7215 
7216   // TODO: Forbid the other integer types (size_t, ptrdiff_t...) when they can
7217   // be used as builtin types.
7218 
7219   if (PT->isImageType())
7220     return PtrKernelParam;
7221 
7222   if (PT->isBooleanType())
7223     return InvalidKernelParam;
7224 
7225   if (PT->isEventT())
7226     return InvalidKernelParam;
7227 
7228   if (PT->isHalfType())
7229     return InvalidKernelParam;
7230 
7231   if (PT->isRecordType())
7232     return RecordKernelParam;
7233 
7234   return ValidKernelParam;
7235 }
7236 
checkIsValidOpenCLKernelParameter(Sema & S,Declarator & D,ParmVarDecl * Param,llvm::SmallPtrSetImpl<const Type * > & ValidTypes)7237 static void checkIsValidOpenCLKernelParameter(
7238   Sema &S,
7239   Declarator &D,
7240   ParmVarDecl *Param,
7241   llvm::SmallPtrSetImpl<const Type *> &ValidTypes) {
7242   QualType PT = Param->getType();
7243 
7244   // Cache the valid types we encounter to avoid rechecking structs that are
7245   // used again
7246   if (ValidTypes.count(PT.getTypePtr()))
7247     return;
7248 
7249   switch (getOpenCLKernelParameterType(PT)) {
7250   case PtrPtrKernelParam:
7251     // OpenCL v1.2 s6.9.a:
7252     // A kernel function argument cannot be declared as a
7253     // pointer to a pointer type.
7254     S.Diag(Param->getLocation(), diag::err_opencl_ptrptr_kernel_param);
7255     D.setInvalidType();
7256     return;
7257 
7258   case PrivatePtrKernelParam:
7259     // OpenCL v1.2 s6.9.a:
7260     // A kernel function argument cannot be declared as a
7261     // pointer to the private address space.
7262     S.Diag(Param->getLocation(), diag::err_opencl_private_ptr_kernel_param);
7263     D.setInvalidType();
7264     return;
7265 
7266     // OpenCL v1.2 s6.9.k:
7267     // Arguments to kernel functions in a program cannot be declared with the
7268     // built-in scalar types bool, half, size_t, ptrdiff_t, intptr_t, and
7269     // uintptr_t or a struct and/or union that contain fields declared to be
7270     // one of these built-in scalar types.
7271 
7272   case InvalidKernelParam:
7273     // OpenCL v1.2 s6.8 n:
7274     // A kernel function argument cannot be declared
7275     // of event_t type.
7276     S.Diag(Param->getLocation(), diag::err_bad_kernel_param_type) << PT;
7277     D.setInvalidType();
7278     return;
7279 
7280   case PtrKernelParam:
7281   case ValidKernelParam:
7282     ValidTypes.insert(PT.getTypePtr());
7283     return;
7284 
7285   case RecordKernelParam:
7286     break;
7287   }
7288 
7289   // Track nested structs we will inspect
7290   SmallVector<const Decl *, 4> VisitStack;
7291 
7292   // Track where we are in the nested structs. Items will migrate from
7293   // VisitStack to HistoryStack as we do the DFS for bad field.
7294   SmallVector<const FieldDecl *, 4> HistoryStack;
7295   HistoryStack.push_back(nullptr);
7296 
7297   const RecordDecl *PD = PT->castAs<RecordType>()->getDecl();
7298   VisitStack.push_back(PD);
7299 
7300   assert(VisitStack.back() && "First decl null?");
7301 
7302   do {
7303     const Decl *Next = VisitStack.pop_back_val();
7304     if (!Next) {
7305       assert(!HistoryStack.empty());
7306       // Found a marker, we have gone up a level
7307       if (const FieldDecl *Hist = HistoryStack.pop_back_val())
7308         ValidTypes.insert(Hist->getType().getTypePtr());
7309 
7310       continue;
7311     }
7312 
7313     // Adds everything except the original parameter declaration (which is not a
7314     // field itself) to the history stack.
7315     const RecordDecl *RD;
7316     if (const FieldDecl *Field = dyn_cast<FieldDecl>(Next)) {
7317       HistoryStack.push_back(Field);
7318       RD = Field->getType()->castAs<RecordType>()->getDecl();
7319     } else {
7320       RD = cast<RecordDecl>(Next);
7321     }
7322 
7323     // Add a null marker so we know when we've gone back up a level
7324     VisitStack.push_back(nullptr);
7325 
7326     for (const auto *FD : RD->fields()) {
7327       QualType QT = FD->getType();
7328 
7329       if (ValidTypes.count(QT.getTypePtr()))
7330         continue;
7331 
7332       OpenCLParamType ParamType = getOpenCLKernelParameterType(QT);
7333       if (ParamType == ValidKernelParam)
7334         continue;
7335 
7336       if (ParamType == RecordKernelParam) {
7337         VisitStack.push_back(FD);
7338         continue;
7339       }
7340 
7341       // OpenCL v1.2 s6.9.p:
7342       // Arguments to kernel functions that are declared to be a struct or union
7343       // do not allow OpenCL objects to be passed as elements of the struct or
7344       // union.
7345       if (ParamType == PtrKernelParam || ParamType == PtrPtrKernelParam ||
7346           ParamType == PrivatePtrKernelParam) {
7347         S.Diag(Param->getLocation(),
7348                diag::err_record_with_pointers_kernel_param)
7349           << PT->isUnionType()
7350           << PT;
7351       } else {
7352         S.Diag(Param->getLocation(), diag::err_bad_kernel_param_type) << PT;
7353       }
7354 
7355       S.Diag(PD->getLocation(), diag::note_within_field_of_type)
7356         << PD->getDeclName();
7357 
7358       // We have an error, now let's go back up through history and show where
7359       // the offending field came from
7360       for (ArrayRef<const FieldDecl *>::const_iterator
7361                I = HistoryStack.begin() + 1,
7362                E = HistoryStack.end();
7363            I != E; ++I) {
7364         const FieldDecl *OuterField = *I;
7365         S.Diag(OuterField->getLocation(), diag::note_within_field_of_type)
7366           << OuterField->getType();
7367       }
7368 
7369       S.Diag(FD->getLocation(), diag::note_illegal_field_declared_here)
7370         << QT->isPointerType()
7371         << QT;
7372       D.setInvalidType();
7373       return;
7374     }
7375   } while (!VisitStack.empty());
7376 }
7377 
7378 NamedDecl*
ActOnFunctionDeclarator(Scope * S,Declarator & D,DeclContext * DC,TypeSourceInfo * TInfo,LookupResult & Previous,MultiTemplateParamsArg TemplateParamLists,bool & AddToScope)7379 Sema::ActOnFunctionDeclarator(Scope *S, Declarator &D, DeclContext *DC,
7380                               TypeSourceInfo *TInfo, LookupResult &Previous,
7381                               MultiTemplateParamsArg TemplateParamLists,
7382                               bool &AddToScope) {
7383   QualType R = TInfo->getType();
7384 
7385   assert(R.getTypePtr()->isFunctionType());
7386 
7387   // TODO: consider using NameInfo for diagnostic.
7388   DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
7389   DeclarationName Name = NameInfo.getName();
7390   StorageClass SC = getFunctionStorageClass(*this, D);
7391 
7392   if (DeclSpec::TSCS TSCS = D.getDeclSpec().getThreadStorageClassSpec())
7393     Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(),
7394          diag::err_invalid_thread)
7395       << DeclSpec::getSpecifierName(TSCS);
7396 
7397   if (D.isFirstDeclarationOfMember())
7398     adjustMemberFunctionCC(R, D.isStaticMember(), D.isCtorOrDtor(),
7399                            D.getIdentifierLoc());
7400 
7401   bool isFriend = false;
7402   FunctionTemplateDecl *FunctionTemplate = nullptr;
7403   bool isExplicitSpecialization = false;
7404   bool isFunctionTemplateSpecialization = false;
7405 
7406   bool isDependentClassScopeExplicitSpecialization = false;
7407   bool HasExplicitTemplateArgs = false;
7408   TemplateArgumentListInfo TemplateArgs;
7409 
7410   bool isVirtualOkay = false;
7411 
7412   DeclContext *OriginalDC = DC;
7413   bool IsLocalExternDecl = adjustContextForLocalExternDecl(DC);
7414 
7415   FunctionDecl *NewFD = CreateNewFunctionDecl(*this, D, DC, R, TInfo, SC,
7416                                               isVirtualOkay);
7417   if (!NewFD) return nullptr;
7418 
7419   if (OriginalLexicalContext && OriginalLexicalContext->isObjCContainer())
7420     NewFD->setTopLevelDeclInObjCContainer();
7421 
7422   // Set the lexical context. If this is a function-scope declaration, or has a
7423   // C++ scope specifier, or is the object of a friend declaration, the lexical
7424   // context will be different from the semantic context.
7425   NewFD->setLexicalDeclContext(CurContext);
7426 
7427   if (IsLocalExternDecl)
7428     NewFD->setLocalExternDecl();
7429 
7430   if (getLangOpts().CPlusPlus) {
7431     bool isInline = D.getDeclSpec().isInlineSpecified();
7432     bool isVirtual = D.getDeclSpec().isVirtualSpecified();
7433     bool isExplicit = D.getDeclSpec().isExplicitSpecified();
7434     bool isConstexpr = D.getDeclSpec().isConstexprSpecified();
7435     bool isConcept = D.getDeclSpec().isConceptSpecified();
7436     isFriend = D.getDeclSpec().isFriendSpecified();
7437     if (isFriend && !isInline && D.isFunctionDefinition()) {
7438       // C++ [class.friend]p5
7439       //   A function can be defined in a friend declaration of a
7440       //   class . . . . Such a function is implicitly inline.
7441       NewFD->setImplicitlyInline();
7442     }
7443 
7444     // If this is a method defined in an __interface, and is not a constructor
7445     // or an overloaded operator, then set the pure flag (isVirtual will already
7446     // return true).
7447     if (const CXXRecordDecl *Parent =
7448           dyn_cast<CXXRecordDecl>(NewFD->getDeclContext())) {
7449       if (Parent->isInterface() && cast<CXXMethodDecl>(NewFD)->isUserProvided())
7450         NewFD->setPure(true);
7451 
7452       // C++ [class.union]p2
7453       //   A union can have member functions, but not virtual functions.
7454       if (isVirtual && Parent->isUnion())
7455         Diag(D.getDeclSpec().getVirtualSpecLoc(), diag::err_virtual_in_union);
7456     }
7457 
7458     SetNestedNameSpecifier(NewFD, D);
7459     isExplicitSpecialization = false;
7460     isFunctionTemplateSpecialization = false;
7461     if (D.isInvalidType())
7462       NewFD->setInvalidDecl();
7463 
7464     // Match up the template parameter lists with the scope specifier, then
7465     // determine whether we have a template or a template specialization.
7466     bool Invalid = false;
7467     if (TemplateParameterList *TemplateParams =
7468             MatchTemplateParametersToScopeSpecifier(
7469                 D.getDeclSpec().getLocStart(), D.getIdentifierLoc(),
7470                 D.getCXXScopeSpec(),
7471                 D.getName().getKind() == UnqualifiedId::IK_TemplateId
7472                     ? D.getName().TemplateId
7473                     : nullptr,
7474                 TemplateParamLists, isFriend, isExplicitSpecialization,
7475                 Invalid)) {
7476       if (TemplateParams->size() > 0) {
7477         // This is a function template
7478 
7479         // Check that we can declare a template here.
7480         if (CheckTemplateDeclScope(S, TemplateParams))
7481           NewFD->setInvalidDecl();
7482 
7483         // A destructor cannot be a template.
7484         if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
7485           Diag(NewFD->getLocation(), diag::err_destructor_template);
7486           NewFD->setInvalidDecl();
7487         }
7488 
7489         // If we're adding a template to a dependent context, we may need to
7490         // rebuilding some of the types used within the template parameter list,
7491         // now that we know what the current instantiation is.
7492         if (DC->isDependentContext()) {
7493           ContextRAII SavedContext(*this, DC);
7494           if (RebuildTemplateParamsInCurrentInstantiation(TemplateParams))
7495             Invalid = true;
7496         }
7497 
7498 
7499         FunctionTemplate = FunctionTemplateDecl::Create(Context, DC,
7500                                                         NewFD->getLocation(),
7501                                                         Name, TemplateParams,
7502                                                         NewFD);
7503         FunctionTemplate->setLexicalDeclContext(CurContext);
7504         NewFD->setDescribedFunctionTemplate(FunctionTemplate);
7505 
7506         // For source fidelity, store the other template param lists.
7507         if (TemplateParamLists.size() > 1) {
7508           NewFD->setTemplateParameterListsInfo(Context,
7509                                                TemplateParamLists.drop_back(1));
7510         }
7511       } else {
7512         // This is a function template specialization.
7513         isFunctionTemplateSpecialization = true;
7514         // For source fidelity, store all the template param lists.
7515         if (TemplateParamLists.size() > 0)
7516           NewFD->setTemplateParameterListsInfo(Context, TemplateParamLists);
7517 
7518         // C++0x [temp.expl.spec]p20 forbids "template<> friend void foo(int);".
7519         if (isFriend) {
7520           // We want to remove the "template<>", found here.
7521           SourceRange RemoveRange = TemplateParams->getSourceRange();
7522 
7523           // If we remove the template<> and the name is not a
7524           // template-id, we're actually silently creating a problem:
7525           // the friend declaration will refer to an untemplated decl,
7526           // and clearly the user wants a template specialization.  So
7527           // we need to insert '<>' after the name.
7528           SourceLocation InsertLoc;
7529           if (D.getName().getKind() != UnqualifiedId::IK_TemplateId) {
7530             InsertLoc = D.getName().getSourceRange().getEnd();
7531             InsertLoc = getLocForEndOfToken(InsertLoc);
7532           }
7533 
7534           Diag(D.getIdentifierLoc(), diag::err_template_spec_decl_friend)
7535             << Name << RemoveRange
7536             << FixItHint::CreateRemoval(RemoveRange)
7537             << FixItHint::CreateInsertion(InsertLoc, "<>");
7538         }
7539       }
7540     }
7541     else {
7542       // All template param lists were matched against the scope specifier:
7543       // this is NOT (an explicit specialization of) a template.
7544       if (TemplateParamLists.size() > 0)
7545         // For source fidelity, store all the template param lists.
7546         NewFD->setTemplateParameterListsInfo(Context, TemplateParamLists);
7547     }
7548 
7549     if (Invalid) {
7550       NewFD->setInvalidDecl();
7551       if (FunctionTemplate)
7552         FunctionTemplate->setInvalidDecl();
7553     }
7554 
7555     // C++ [dcl.fct.spec]p5:
7556     //   The virtual specifier shall only be used in declarations of
7557     //   nonstatic class member functions that appear within a
7558     //   member-specification of a class declaration; see 10.3.
7559     //
7560     if (isVirtual && !NewFD->isInvalidDecl()) {
7561       if (!isVirtualOkay) {
7562         Diag(D.getDeclSpec().getVirtualSpecLoc(),
7563              diag::err_virtual_non_function);
7564       } else if (!CurContext->isRecord()) {
7565         // 'virtual' was specified outside of the class.
7566         Diag(D.getDeclSpec().getVirtualSpecLoc(),
7567              diag::err_virtual_out_of_class)
7568           << FixItHint::CreateRemoval(D.getDeclSpec().getVirtualSpecLoc());
7569       } else if (NewFD->getDescribedFunctionTemplate()) {
7570         // C++ [temp.mem]p3:
7571         //  A member function template shall not be virtual.
7572         Diag(D.getDeclSpec().getVirtualSpecLoc(),
7573              diag::err_virtual_member_function_template)
7574           << FixItHint::CreateRemoval(D.getDeclSpec().getVirtualSpecLoc());
7575       } else {
7576         // Okay: Add virtual to the method.
7577         NewFD->setVirtualAsWritten(true);
7578       }
7579 
7580       if (getLangOpts().CPlusPlus14 &&
7581           NewFD->getReturnType()->isUndeducedType())
7582         Diag(D.getDeclSpec().getVirtualSpecLoc(), diag::err_auto_fn_virtual);
7583     }
7584 
7585     if (getLangOpts().CPlusPlus14 &&
7586         (NewFD->isDependentContext() ||
7587          (isFriend && CurContext->isDependentContext())) &&
7588         NewFD->getReturnType()->isUndeducedType()) {
7589       // If the function template is referenced directly (for instance, as a
7590       // member of the current instantiation), pretend it has a dependent type.
7591       // This is not really justified by the standard, but is the only sane
7592       // thing to do.
7593       // FIXME: For a friend function, we have not marked the function as being
7594       // a friend yet, so 'isDependentContext' on the FD doesn't work.
7595       const FunctionProtoType *FPT =
7596           NewFD->getType()->castAs<FunctionProtoType>();
7597       QualType Result =
7598           SubstAutoType(FPT->getReturnType(), Context.DependentTy);
7599       NewFD->setType(Context.getFunctionType(Result, FPT->getParamTypes(),
7600                                              FPT->getExtProtoInfo()));
7601     }
7602 
7603     // C++ [dcl.fct.spec]p3:
7604     //  The inline specifier shall not appear on a block scope function
7605     //  declaration.
7606     if (isInline && !NewFD->isInvalidDecl()) {
7607       if (CurContext->isFunctionOrMethod()) {
7608         // 'inline' is not allowed on block scope function declaration.
7609         Diag(D.getDeclSpec().getInlineSpecLoc(),
7610              diag::err_inline_declaration_block_scope) << Name
7611           << FixItHint::CreateRemoval(D.getDeclSpec().getInlineSpecLoc());
7612       }
7613     }
7614 
7615     // C++ [dcl.fct.spec]p6:
7616     //  The explicit specifier shall be used only in the declaration of a
7617     //  constructor or conversion function within its class definition;
7618     //  see 12.3.1 and 12.3.2.
7619     if (isExplicit && !NewFD->isInvalidDecl()) {
7620       if (!CurContext->isRecord()) {
7621         // 'explicit' was specified outside of the class.
7622         Diag(D.getDeclSpec().getExplicitSpecLoc(),
7623              diag::err_explicit_out_of_class)
7624           << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecLoc());
7625       } else if (!isa<CXXConstructorDecl>(NewFD) &&
7626                  !isa<CXXConversionDecl>(NewFD)) {
7627         // 'explicit' was specified on a function that wasn't a constructor
7628         // or conversion function.
7629         Diag(D.getDeclSpec().getExplicitSpecLoc(),
7630              diag::err_explicit_non_ctor_or_conv_function)
7631           << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecLoc());
7632       }
7633     }
7634 
7635     if (isConstexpr) {
7636       // C++11 [dcl.constexpr]p2: constexpr functions and constexpr constructors
7637       // are implicitly inline.
7638       NewFD->setImplicitlyInline();
7639 
7640       // C++11 [dcl.constexpr]p3: functions declared constexpr are required to
7641       // be either constructors or to return a literal type. Therefore,
7642       // destructors cannot be declared constexpr.
7643       if (isa<CXXDestructorDecl>(NewFD))
7644         Diag(D.getDeclSpec().getConstexprSpecLoc(), diag::err_constexpr_dtor);
7645     }
7646 
7647     if (isConcept) {
7648       // C++ Concepts TS [dcl.spec.concept]p1: The concept specifier shall be
7649       // applied only to the definition of a function template [...]
7650       if (!D.isFunctionDefinition()) {
7651         Diag(D.getDeclSpec().getConceptSpecLoc(),
7652              diag::err_function_concept_not_defined);
7653         NewFD->setInvalidDecl();
7654       }
7655 
7656       // C++ Concepts TS [dcl.spec.concept]p1: [...] A function concept shall
7657       // have no exception-specification and is treated as if it were specified
7658       // with noexcept(true) (15.4). [...]
7659       if (const FunctionProtoType *FPT = R->getAs<FunctionProtoType>()) {
7660         if (FPT->hasExceptionSpec()) {
7661           SourceRange Range;
7662           if (D.isFunctionDeclarator())
7663             Range = D.getFunctionTypeInfo().getExceptionSpecRange();
7664           Diag(NewFD->getLocation(), diag::err_function_concept_exception_spec)
7665               << FixItHint::CreateRemoval(Range);
7666           NewFD->setInvalidDecl();
7667         } else {
7668           Context.adjustExceptionSpec(NewFD, EST_BasicNoexcept);
7669         }
7670 
7671         // C++ Concepts TS [dcl.spec.concept]p5: A function concept has the
7672         // following restrictions:
7673         // - The declaration's parameter list shall be equivalent to an empty
7674         //   parameter list.
7675         if (FPT->getNumParams() > 0 || FPT->isVariadic())
7676           Diag(NewFD->getLocation(), diag::err_function_concept_with_params);
7677       }
7678 
7679       // C++ Concepts TS [dcl.spec.concept]p2: Every concept definition is
7680       // implicity defined to be a constexpr declaration (implicitly inline)
7681       NewFD->setImplicitlyInline();
7682 
7683       // C++ Concepts TS [dcl.spec.concept]p2: A concept definition shall not
7684       // be declared with the thread_local, inline, friend, or constexpr
7685       // specifiers, [...]
7686       if (isInline) {
7687         Diag(D.getDeclSpec().getInlineSpecLoc(),
7688              diag::err_concept_decl_invalid_specifiers)
7689             << 1 << 1;
7690         NewFD->setInvalidDecl(true);
7691       }
7692 
7693       if (isFriend) {
7694         Diag(D.getDeclSpec().getFriendSpecLoc(),
7695              diag::err_concept_decl_invalid_specifiers)
7696             << 1 << 2;
7697         NewFD->setInvalidDecl(true);
7698       }
7699 
7700       if (isConstexpr) {
7701         Diag(D.getDeclSpec().getConstexprSpecLoc(),
7702              diag::err_concept_decl_invalid_specifiers)
7703             << 1 << 3;
7704         NewFD->setInvalidDecl(true);
7705       }
7706     }
7707 
7708     // If __module_private__ was specified, mark the function accordingly.
7709     if (D.getDeclSpec().isModulePrivateSpecified()) {
7710       if (isFunctionTemplateSpecialization) {
7711         SourceLocation ModulePrivateLoc
7712           = D.getDeclSpec().getModulePrivateSpecLoc();
7713         Diag(ModulePrivateLoc, diag::err_module_private_specialization)
7714           << 0
7715           << FixItHint::CreateRemoval(ModulePrivateLoc);
7716       } else {
7717         NewFD->setModulePrivate();
7718         if (FunctionTemplate)
7719           FunctionTemplate->setModulePrivate();
7720       }
7721     }
7722 
7723     if (isFriend) {
7724       if (FunctionTemplate) {
7725         FunctionTemplate->setObjectOfFriendDecl();
7726         FunctionTemplate->setAccess(AS_public);
7727       }
7728       NewFD->setObjectOfFriendDecl();
7729       NewFD->setAccess(AS_public);
7730     }
7731 
7732     // If a function is defined as defaulted or deleted, mark it as such now.
7733     // FIXME: Does this ever happen? ActOnStartOfFunctionDef forces the function
7734     // definition kind to FDK_Definition.
7735     switch (D.getFunctionDefinitionKind()) {
7736       case FDK_Declaration:
7737       case FDK_Definition:
7738         break;
7739 
7740       case FDK_Defaulted:
7741         NewFD->setDefaulted();
7742         break;
7743 
7744       case FDK_Deleted:
7745         NewFD->setDeletedAsWritten();
7746         break;
7747     }
7748 
7749     if (isa<CXXMethodDecl>(NewFD) && DC == CurContext &&
7750         D.isFunctionDefinition()) {
7751       // C++ [class.mfct]p2:
7752       //   A member function may be defined (8.4) in its class definition, in
7753       //   which case it is an inline member function (7.1.2)
7754       NewFD->setImplicitlyInline();
7755     }
7756 
7757     if (SC == SC_Static && isa<CXXMethodDecl>(NewFD) &&
7758         !CurContext->isRecord()) {
7759       // C++ [class.static]p1:
7760       //   A data or function member of a class may be declared static
7761       //   in a class definition, in which case it is a static member of
7762       //   the class.
7763 
7764       // Complain about the 'static' specifier if it's on an out-of-line
7765       // member function definition.
7766       Diag(D.getDeclSpec().getStorageClassSpecLoc(),
7767            diag::err_static_out_of_line)
7768         << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
7769     }
7770 
7771     // C++11 [except.spec]p15:
7772     //   A deallocation function with no exception-specification is treated
7773     //   as if it were specified with noexcept(true).
7774     const FunctionProtoType *FPT = R->getAs<FunctionProtoType>();
7775     if ((Name.getCXXOverloadedOperator() == OO_Delete ||
7776          Name.getCXXOverloadedOperator() == OO_Array_Delete) &&
7777         getLangOpts().CPlusPlus11 && FPT && !FPT->hasExceptionSpec())
7778       NewFD->setType(Context.getFunctionType(
7779           FPT->getReturnType(), FPT->getParamTypes(),
7780           FPT->getExtProtoInfo().withExceptionSpec(EST_BasicNoexcept)));
7781   }
7782 
7783   // Filter out previous declarations that don't match the scope.
7784   FilterLookupForScope(Previous, OriginalDC, S, shouldConsiderLinkage(NewFD),
7785                        D.getCXXScopeSpec().isNotEmpty() ||
7786                        isExplicitSpecialization ||
7787                        isFunctionTemplateSpecialization);
7788 
7789   // Handle GNU asm-label extension (encoded as an attribute).
7790   if (Expr *E = (Expr*) D.getAsmLabel()) {
7791     // The parser guarantees this is a string.
7792     StringLiteral *SE = cast<StringLiteral>(E);
7793     NewFD->addAttr(::new (Context) AsmLabelAttr(SE->getStrTokenLoc(0), Context,
7794                                                 SE->getString(), 0));
7795   } else if (!ExtnameUndeclaredIdentifiers.empty()) {
7796     llvm::DenseMap<IdentifierInfo*,AsmLabelAttr*>::iterator I =
7797       ExtnameUndeclaredIdentifiers.find(NewFD->getIdentifier());
7798     if (I != ExtnameUndeclaredIdentifiers.end()) {
7799       if (isDeclExternC(NewFD)) {
7800         NewFD->addAttr(I->second);
7801         ExtnameUndeclaredIdentifiers.erase(I);
7802       } else
7803         Diag(NewFD->getLocation(), diag::warn_redefine_extname_not_applied)
7804             << /*Variable*/0 << NewFD;
7805     }
7806   }
7807 
7808   // Copy the parameter declarations from the declarator D to the function
7809   // declaration NewFD, if they are available.  First scavenge them into Params.
7810   SmallVector<ParmVarDecl*, 16> Params;
7811   if (D.isFunctionDeclarator()) {
7812     DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
7813 
7814     // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs
7815     // function that takes no arguments, not a function that takes a
7816     // single void argument.
7817     // We let through "const void" here because Sema::GetTypeForDeclarator
7818     // already checks for that case.
7819     if (FTIHasNonVoidParameters(FTI) && FTI.Params[0].Param) {
7820       for (unsigned i = 0, e = FTI.NumParams; i != e; ++i) {
7821         ParmVarDecl *Param = cast<ParmVarDecl>(FTI.Params[i].Param);
7822         assert(Param->getDeclContext() != NewFD && "Was set before ?");
7823         Param->setDeclContext(NewFD);
7824         Params.push_back(Param);
7825 
7826         if (Param->isInvalidDecl())
7827           NewFD->setInvalidDecl();
7828       }
7829     }
7830 
7831   } else if (const FunctionProtoType *FT = R->getAs<FunctionProtoType>()) {
7832     // When we're declaring a function with a typedef, typeof, etc as in the
7833     // following example, we'll need to synthesize (unnamed)
7834     // parameters for use in the declaration.
7835     //
7836     // @code
7837     // typedef void fn(int);
7838     // fn f;
7839     // @endcode
7840 
7841     // Synthesize a parameter for each argument type.
7842     for (const auto &AI : FT->param_types()) {
7843       ParmVarDecl *Param =
7844           BuildParmVarDeclForTypedef(NewFD, D.getIdentifierLoc(), AI);
7845       Param->setScopeInfo(0, Params.size());
7846       Params.push_back(Param);
7847     }
7848   } else {
7849     assert(R->isFunctionNoProtoType() && NewFD->getNumParams() == 0 &&
7850            "Should not need args for typedef of non-prototype fn");
7851   }
7852 
7853   // Finally, we know we have the right number of parameters, install them.
7854   NewFD->setParams(Params);
7855 
7856   // Find all anonymous symbols defined during the declaration of this function
7857   // and add to NewFD. This lets us track decls such 'enum Y' in:
7858   //
7859   //   void f(enum Y {AA} x) {}
7860   //
7861   // which would otherwise incorrectly end up in the translation unit scope.
7862   NewFD->setDeclsInPrototypeScope(DeclsInPrototypeScope);
7863   DeclsInPrototypeScope.clear();
7864 
7865   if (D.getDeclSpec().isNoreturnSpecified())
7866     NewFD->addAttr(
7867         ::new(Context) C11NoReturnAttr(D.getDeclSpec().getNoreturnSpecLoc(),
7868                                        Context, 0));
7869 
7870   // Functions returning a variably modified type violate C99 6.7.5.2p2
7871   // because all functions have linkage.
7872   if (!NewFD->isInvalidDecl() &&
7873       NewFD->getReturnType()->isVariablyModifiedType()) {
7874     Diag(NewFD->getLocation(), diag::err_vm_func_decl);
7875     NewFD->setInvalidDecl();
7876   }
7877 
7878   // Apply an implicit SectionAttr if #pragma code_seg is active.
7879   if (CodeSegStack.CurrentValue && D.isFunctionDefinition() &&
7880       !NewFD->hasAttr<SectionAttr>()) {
7881     NewFD->addAttr(
7882         SectionAttr::CreateImplicit(Context, SectionAttr::Declspec_allocate,
7883                                     CodeSegStack.CurrentValue->getString(),
7884                                     CodeSegStack.CurrentPragmaLocation));
7885     if (UnifySection(CodeSegStack.CurrentValue->getString(),
7886                      ASTContext::PSF_Implicit | ASTContext::PSF_Execute |
7887                          ASTContext::PSF_Read,
7888                      NewFD))
7889       NewFD->dropAttr<SectionAttr>();
7890   }
7891 
7892   // Handle attributes.
7893   ProcessDeclAttributes(S, NewFD, D);
7894 
7895   if (getLangOpts().OpenCL) {
7896     // OpenCL v1.1 s6.5: Using an address space qualifier in a function return
7897     // type declaration will generate a compilation error.
7898     unsigned AddressSpace = NewFD->getReturnType().getAddressSpace();
7899     if (AddressSpace == LangAS::opencl_local ||
7900         AddressSpace == LangAS::opencl_global ||
7901         AddressSpace == LangAS::opencl_constant) {
7902       Diag(NewFD->getLocation(),
7903            diag::err_opencl_return_value_with_address_space);
7904       NewFD->setInvalidDecl();
7905     }
7906   }
7907 
7908   if (!getLangOpts().CPlusPlus) {
7909     // Perform semantic checking on the function declaration.
7910     bool isExplicitSpecialization=false;
7911     if (!NewFD->isInvalidDecl() && NewFD->isMain())
7912       CheckMain(NewFD, D.getDeclSpec());
7913 
7914     if (!NewFD->isInvalidDecl() && NewFD->isMSVCRTEntryPoint())
7915       CheckMSVCRTEntryPoint(NewFD);
7916 
7917     if (!NewFD->isInvalidDecl())
7918       D.setRedeclaration(CheckFunctionDeclaration(S, NewFD, Previous,
7919                                                   isExplicitSpecialization));
7920     else if (!Previous.empty())
7921       // Recover gracefully from an invalid redeclaration.
7922       D.setRedeclaration(true);
7923     assert((NewFD->isInvalidDecl() || !D.isRedeclaration() ||
7924             Previous.getResultKind() != LookupResult::FoundOverloaded) &&
7925            "previous declaration set still overloaded");
7926 
7927     // Diagnose no-prototype function declarations with calling conventions that
7928     // don't support variadic calls. Only do this in C and do it after merging
7929     // possibly prototyped redeclarations.
7930     const FunctionType *FT = NewFD->getType()->castAs<FunctionType>();
7931     if (isa<FunctionNoProtoType>(FT) && !D.isFunctionDefinition()) {
7932       CallingConv CC = FT->getExtInfo().getCC();
7933       if (!supportsVariadicCall(CC)) {
7934         // Windows system headers sometimes accidentally use stdcall without
7935         // (void) parameters, so we relax this to a warning.
7936         int DiagID =
7937             CC == CC_X86StdCall ? diag::warn_cconv_knr : diag::err_cconv_knr;
7938         Diag(NewFD->getLocation(), DiagID)
7939             << FunctionType::getNameForCallConv(CC);
7940       }
7941     }
7942   } else {
7943     // C++11 [replacement.functions]p3:
7944     //  The program's definitions shall not be specified as inline.
7945     //
7946     // N.B. We diagnose declarations instead of definitions per LWG issue 2340.
7947     //
7948     // Suppress the diagnostic if the function is __attribute__((used)), since
7949     // that forces an external definition to be emitted.
7950     if (D.getDeclSpec().isInlineSpecified() &&
7951         NewFD->isReplaceableGlobalAllocationFunction() &&
7952         !NewFD->hasAttr<UsedAttr>())
7953       Diag(D.getDeclSpec().getInlineSpecLoc(),
7954            diag::ext_operator_new_delete_declared_inline)
7955         << NewFD->getDeclName();
7956 
7957     // If the declarator is a template-id, translate the parser's template
7958     // argument list into our AST format.
7959     if (D.getName().getKind() == UnqualifiedId::IK_TemplateId) {
7960       TemplateIdAnnotation *TemplateId = D.getName().TemplateId;
7961       TemplateArgs.setLAngleLoc(TemplateId->LAngleLoc);
7962       TemplateArgs.setRAngleLoc(TemplateId->RAngleLoc);
7963       ASTTemplateArgsPtr TemplateArgsPtr(TemplateId->getTemplateArgs(),
7964                                          TemplateId->NumArgs);
7965       translateTemplateArguments(TemplateArgsPtr,
7966                                  TemplateArgs);
7967 
7968       HasExplicitTemplateArgs = true;
7969 
7970       if (NewFD->isInvalidDecl()) {
7971         HasExplicitTemplateArgs = false;
7972       } else if (FunctionTemplate) {
7973         // Function template with explicit template arguments.
7974         Diag(D.getIdentifierLoc(), diag::err_function_template_partial_spec)
7975           << SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc);
7976 
7977         HasExplicitTemplateArgs = false;
7978       } else {
7979         assert((isFunctionTemplateSpecialization ||
7980                 D.getDeclSpec().isFriendSpecified()) &&
7981                "should have a 'template<>' for this decl");
7982         // "friend void foo<>(int);" is an implicit specialization decl.
7983         isFunctionTemplateSpecialization = true;
7984       }
7985     } else if (isFriend && isFunctionTemplateSpecialization) {
7986       // This combination is only possible in a recovery case;  the user
7987       // wrote something like:
7988       //   template <> friend void foo(int);
7989       // which we're recovering from as if the user had written:
7990       //   friend void foo<>(int);
7991       // Go ahead and fake up a template id.
7992       HasExplicitTemplateArgs = true;
7993       TemplateArgs.setLAngleLoc(D.getIdentifierLoc());
7994       TemplateArgs.setRAngleLoc(D.getIdentifierLoc());
7995     }
7996 
7997     // If it's a friend (and only if it's a friend), it's possible
7998     // that either the specialized function type or the specialized
7999     // template is dependent, and therefore matching will fail.  In
8000     // this case, don't check the specialization yet.
8001     bool InstantiationDependent = false;
8002     if (isFunctionTemplateSpecialization && isFriend &&
8003         (NewFD->getType()->isDependentType() || DC->isDependentContext() ||
8004          TemplateSpecializationType::anyDependentTemplateArguments(
8005             TemplateArgs.getArgumentArray(), TemplateArgs.size(),
8006             InstantiationDependent))) {
8007       assert(HasExplicitTemplateArgs &&
8008              "friend function specialization without template args");
8009       if (CheckDependentFunctionTemplateSpecialization(NewFD, TemplateArgs,
8010                                                        Previous))
8011         NewFD->setInvalidDecl();
8012     } else if (isFunctionTemplateSpecialization) {
8013       if (CurContext->isDependentContext() && CurContext->isRecord()
8014           && !isFriend) {
8015         isDependentClassScopeExplicitSpecialization = true;
8016         Diag(NewFD->getLocation(), getLangOpts().MicrosoftExt ?
8017           diag::ext_function_specialization_in_class :
8018           diag::err_function_specialization_in_class)
8019           << NewFD->getDeclName();
8020       } else if (CheckFunctionTemplateSpecialization(NewFD,
8021                                   (HasExplicitTemplateArgs ? &TemplateArgs
8022                                                            : nullptr),
8023                                                      Previous))
8024         NewFD->setInvalidDecl();
8025 
8026       // C++ [dcl.stc]p1:
8027       //   A storage-class-specifier shall not be specified in an explicit
8028       //   specialization (14.7.3)
8029       FunctionTemplateSpecializationInfo *Info =
8030           NewFD->getTemplateSpecializationInfo();
8031       if (Info && SC != SC_None) {
8032         if (SC != Info->getTemplate()->getTemplatedDecl()->getStorageClass())
8033           Diag(NewFD->getLocation(),
8034                diag::err_explicit_specialization_inconsistent_storage_class)
8035             << SC
8036             << FixItHint::CreateRemoval(
8037                                       D.getDeclSpec().getStorageClassSpecLoc());
8038 
8039         else
8040           Diag(NewFD->getLocation(),
8041                diag::ext_explicit_specialization_storage_class)
8042             << FixItHint::CreateRemoval(
8043                                       D.getDeclSpec().getStorageClassSpecLoc());
8044       }
8045 
8046     } else if (isExplicitSpecialization && isa<CXXMethodDecl>(NewFD)) {
8047       if (CheckMemberSpecialization(NewFD, Previous))
8048           NewFD->setInvalidDecl();
8049     }
8050 
8051     // Perform semantic checking on the function declaration.
8052     if (!isDependentClassScopeExplicitSpecialization) {
8053       if (!NewFD->isInvalidDecl() && NewFD->isMain())
8054         CheckMain(NewFD, D.getDeclSpec());
8055 
8056       if (!NewFD->isInvalidDecl() && NewFD->isMSVCRTEntryPoint())
8057         CheckMSVCRTEntryPoint(NewFD);
8058 
8059       if (!NewFD->isInvalidDecl())
8060         D.setRedeclaration(CheckFunctionDeclaration(S, NewFD, Previous,
8061                                                     isExplicitSpecialization));
8062       else if (!Previous.empty())
8063         // Recover gracefully from an invalid redeclaration.
8064         D.setRedeclaration(true);
8065     }
8066 
8067     assert((NewFD->isInvalidDecl() || !D.isRedeclaration() ||
8068             Previous.getResultKind() != LookupResult::FoundOverloaded) &&
8069            "previous declaration set still overloaded");
8070 
8071     NamedDecl *PrincipalDecl = (FunctionTemplate
8072                                 ? cast<NamedDecl>(FunctionTemplate)
8073                                 : NewFD);
8074 
8075     if (isFriend && D.isRedeclaration()) {
8076       AccessSpecifier Access = AS_public;
8077       if (!NewFD->isInvalidDecl())
8078         Access = NewFD->getPreviousDecl()->getAccess();
8079 
8080       NewFD->setAccess(Access);
8081       if (FunctionTemplate) FunctionTemplate->setAccess(Access);
8082     }
8083 
8084     if (NewFD->isOverloadedOperator() && !DC->isRecord() &&
8085         PrincipalDecl->isInIdentifierNamespace(Decl::IDNS_Ordinary))
8086       PrincipalDecl->setNonMemberOperator();
8087 
8088     // If we have a function template, check the template parameter
8089     // list. This will check and merge default template arguments.
8090     if (FunctionTemplate) {
8091       FunctionTemplateDecl *PrevTemplate =
8092                                      FunctionTemplate->getPreviousDecl();
8093       CheckTemplateParameterList(FunctionTemplate->getTemplateParameters(),
8094                        PrevTemplate ? PrevTemplate->getTemplateParameters()
8095                                     : nullptr,
8096                             D.getDeclSpec().isFriendSpecified()
8097                               ? (D.isFunctionDefinition()
8098                                    ? TPC_FriendFunctionTemplateDefinition
8099                                    : TPC_FriendFunctionTemplate)
8100                               : (D.getCXXScopeSpec().isSet() &&
8101                                  DC && DC->isRecord() &&
8102                                  DC->isDependentContext())
8103                                   ? TPC_ClassTemplateMember
8104                                   : TPC_FunctionTemplate);
8105     }
8106 
8107     if (NewFD->isInvalidDecl()) {
8108       // Ignore all the rest of this.
8109     } else if (!D.isRedeclaration()) {
8110       struct ActOnFDArgs ExtraArgs = { S, D, TemplateParamLists,
8111                                        AddToScope };
8112       // Fake up an access specifier if it's supposed to be a class member.
8113       if (isa<CXXRecordDecl>(NewFD->getDeclContext()))
8114         NewFD->setAccess(AS_public);
8115 
8116       // Qualified decls generally require a previous declaration.
8117       if (D.getCXXScopeSpec().isSet()) {
8118         // ...with the major exception of templated-scope or
8119         // dependent-scope friend declarations.
8120 
8121         // TODO: we currently also suppress this check in dependent
8122         // contexts because (1) the parameter depth will be off when
8123         // matching friend templates and (2) we might actually be
8124         // selecting a friend based on a dependent factor.  But there
8125         // are situations where these conditions don't apply and we
8126         // can actually do this check immediately.
8127         if (isFriend &&
8128             (TemplateParamLists.size() ||
8129              D.getCXXScopeSpec().getScopeRep()->isDependent() ||
8130              CurContext->isDependentContext())) {
8131           // ignore these
8132         } else {
8133           // The user tried to provide an out-of-line definition for a
8134           // function that is a member of a class or namespace, but there
8135           // was no such member function declared (C++ [class.mfct]p2,
8136           // C++ [namespace.memdef]p2). For example:
8137           //
8138           // class X {
8139           //   void f() const;
8140           // };
8141           //
8142           // void X::f() { } // ill-formed
8143           //
8144           // Complain about this problem, and attempt to suggest close
8145           // matches (e.g., those that differ only in cv-qualifiers and
8146           // whether the parameter types are references).
8147 
8148           if (NamedDecl *Result = DiagnoseInvalidRedeclaration(
8149                   *this, Previous, NewFD, ExtraArgs, false, nullptr)) {
8150             AddToScope = ExtraArgs.AddToScope;
8151             return Result;
8152           }
8153         }
8154 
8155         // Unqualified local friend declarations are required to resolve
8156         // to something.
8157       } else if (isFriend && cast<CXXRecordDecl>(CurContext)->isLocalClass()) {
8158         if (NamedDecl *Result = DiagnoseInvalidRedeclaration(
8159                 *this, Previous, NewFD, ExtraArgs, true, S)) {
8160           AddToScope = ExtraArgs.AddToScope;
8161           return Result;
8162         }
8163       }
8164 
8165     } else if (!D.isFunctionDefinition() &&
8166                isa<CXXMethodDecl>(NewFD) && NewFD->isOutOfLine() &&
8167                !isFriend && !isFunctionTemplateSpecialization &&
8168                !isExplicitSpecialization) {
8169       // An out-of-line member function declaration must also be a
8170       // definition (C++ [class.mfct]p2).
8171       // Note that this is not the case for explicit specializations of
8172       // function templates or member functions of class templates, per
8173       // C++ [temp.expl.spec]p2. We also allow these declarations as an
8174       // extension for compatibility with old SWIG code which likes to
8175       // generate them.
8176       Diag(NewFD->getLocation(), diag::ext_out_of_line_declaration)
8177         << D.getCXXScopeSpec().getRange();
8178     }
8179   }
8180 
8181   ProcessPragmaWeak(S, NewFD);
8182   checkAttributesAfterMerging(*this, *NewFD);
8183 
8184   AddKnownFunctionAttributes(NewFD);
8185 
8186   if (NewFD->hasAttr<OverloadableAttr>() &&
8187       !NewFD->getType()->getAs<FunctionProtoType>()) {
8188     Diag(NewFD->getLocation(),
8189          diag::err_attribute_overloadable_no_prototype)
8190       << NewFD;
8191 
8192     // Turn this into a variadic function with no parameters.
8193     const FunctionType *FT = NewFD->getType()->getAs<FunctionType>();
8194     FunctionProtoType::ExtProtoInfo EPI(
8195         Context.getDefaultCallingConvention(true, false));
8196     EPI.Variadic = true;
8197     EPI.ExtInfo = FT->getExtInfo();
8198 
8199     QualType R = Context.getFunctionType(FT->getReturnType(), None, EPI);
8200     NewFD->setType(R);
8201   }
8202 
8203   // If there's a #pragma GCC visibility in scope, and this isn't a class
8204   // member, set the visibility of this function.
8205   if (!DC->isRecord() && NewFD->isExternallyVisible())
8206     AddPushedVisibilityAttribute(NewFD);
8207 
8208   // If there's a #pragma clang arc_cf_code_audited in scope, consider
8209   // marking the function.
8210   AddCFAuditedAttribute(NewFD);
8211 
8212   // If this is a function definition, check if we have to apply optnone due to
8213   // a pragma.
8214   if(D.isFunctionDefinition())
8215     AddRangeBasedOptnone(NewFD);
8216 
8217   // If this is the first declaration of an extern C variable, update
8218   // the map of such variables.
8219   if (NewFD->isFirstDecl() && !NewFD->isInvalidDecl() &&
8220       isIncompleteDeclExternC(*this, NewFD))
8221     RegisterLocallyScopedExternCDecl(NewFD, S);
8222 
8223   // Set this FunctionDecl's range up to the right paren.
8224   NewFD->setRangeEnd(D.getSourceRange().getEnd());
8225 
8226   if (D.isRedeclaration() && !Previous.empty()) {
8227     checkDLLAttributeRedeclaration(
8228         *this, dyn_cast<NamedDecl>(Previous.getRepresentativeDecl()), NewFD,
8229         isExplicitSpecialization || isFunctionTemplateSpecialization);
8230   }
8231 
8232   if (getLangOpts().CPlusPlus) {
8233     if (FunctionTemplate) {
8234       if (NewFD->isInvalidDecl())
8235         FunctionTemplate->setInvalidDecl();
8236       return FunctionTemplate;
8237     }
8238   }
8239 
8240   if (NewFD->hasAttr<OpenCLKernelAttr>()) {
8241     // OpenCL v1.2 s6.8 static is invalid for kernel functions.
8242     if ((getLangOpts().OpenCLVersion >= 120)
8243         && (SC == SC_Static)) {
8244       Diag(D.getIdentifierLoc(), diag::err_static_kernel);
8245       D.setInvalidType();
8246     }
8247 
8248     // OpenCL v1.2, s6.9 -- Kernels can only have return type void.
8249     if (!NewFD->getReturnType()->isVoidType()) {
8250       SourceRange RTRange = NewFD->getReturnTypeSourceRange();
8251       Diag(D.getIdentifierLoc(), diag::err_expected_kernel_void_return_type)
8252           << (RTRange.isValid() ? FixItHint::CreateReplacement(RTRange, "void")
8253                                 : FixItHint());
8254       D.setInvalidType();
8255     }
8256 
8257     llvm::SmallPtrSet<const Type *, 16> ValidTypes;
8258     for (auto Param : NewFD->params())
8259       checkIsValidOpenCLKernelParameter(*this, D, Param, ValidTypes);
8260   }
8261 
8262   MarkUnusedFileScopedDecl(NewFD);
8263 
8264   if (getLangOpts().CUDA)
8265     if (IdentifierInfo *II = NewFD->getIdentifier())
8266       if (!NewFD->isInvalidDecl() &&
8267           NewFD->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
8268         if (II->isStr("cudaConfigureCall")) {
8269           if (!R->getAs<FunctionType>()->getReturnType()->isScalarType())
8270             Diag(NewFD->getLocation(), diag::err_config_scalar_return);
8271 
8272           Context.setcudaConfigureCallDecl(NewFD);
8273         }
8274       }
8275 
8276   // Here we have an function template explicit specialization at class scope.
8277   // The actually specialization will be postponed to template instatiation
8278   // time via the ClassScopeFunctionSpecializationDecl node.
8279   if (isDependentClassScopeExplicitSpecialization) {
8280     ClassScopeFunctionSpecializationDecl *NewSpec =
8281                          ClassScopeFunctionSpecializationDecl::Create(
8282                                 Context, CurContext, SourceLocation(),
8283                                 cast<CXXMethodDecl>(NewFD),
8284                                 HasExplicitTemplateArgs, TemplateArgs);
8285     CurContext->addDecl(NewSpec);
8286     AddToScope = false;
8287   }
8288 
8289   return NewFD;
8290 }
8291 
8292 /// \brief Perform semantic checking of a new function declaration.
8293 ///
8294 /// Performs semantic analysis of the new function declaration
8295 /// NewFD. This routine performs all semantic checking that does not
8296 /// require the actual declarator involved in the declaration, and is
8297 /// used both for the declaration of functions as they are parsed
8298 /// (called via ActOnDeclarator) and for the declaration of functions
8299 /// that have been instantiated via C++ template instantiation (called
8300 /// via InstantiateDecl).
8301 ///
8302 /// \param IsExplicitSpecialization whether this new function declaration is
8303 /// an explicit specialization of the previous declaration.
8304 ///
8305 /// This sets NewFD->isInvalidDecl() to true if there was an error.
8306 ///
8307 /// \returns true if the function declaration is a redeclaration.
CheckFunctionDeclaration(Scope * S,FunctionDecl * NewFD,LookupResult & Previous,bool IsExplicitSpecialization)8308 bool Sema::CheckFunctionDeclaration(Scope *S, FunctionDecl *NewFD,
8309                                     LookupResult &Previous,
8310                                     bool IsExplicitSpecialization) {
8311   assert(!NewFD->getReturnType()->isVariablyModifiedType() &&
8312          "Variably modified return types are not handled here");
8313 
8314   // Determine whether the type of this function should be merged with
8315   // a previous visible declaration. This never happens for functions in C++,
8316   // and always happens in C if the previous declaration was visible.
8317   bool MergeTypeWithPrevious = !getLangOpts().CPlusPlus &&
8318                                !Previous.isShadowed();
8319 
8320   bool Redeclaration = false;
8321   NamedDecl *OldDecl = nullptr;
8322 
8323   // Merge or overload the declaration with an existing declaration of
8324   // the same name, if appropriate.
8325   if (!Previous.empty()) {
8326     // Determine whether NewFD is an overload of PrevDecl or
8327     // a declaration that requires merging. If it's an overload,
8328     // there's no more work to do here; we'll just add the new
8329     // function to the scope.
8330     if (!AllowOverloadingOfFunction(Previous, Context)) {
8331       NamedDecl *Candidate = Previous.getRepresentativeDecl();
8332       if (shouldLinkPossiblyHiddenDecl(Candidate, NewFD)) {
8333         Redeclaration = true;
8334         OldDecl = Candidate;
8335       }
8336     } else {
8337       switch (CheckOverload(S, NewFD, Previous, OldDecl,
8338                             /*NewIsUsingDecl*/ false)) {
8339       case Ovl_Match:
8340         Redeclaration = true;
8341         break;
8342 
8343       case Ovl_NonFunction:
8344         Redeclaration = true;
8345         break;
8346 
8347       case Ovl_Overload:
8348         Redeclaration = false;
8349         break;
8350       }
8351 
8352       if (!getLangOpts().CPlusPlus && !NewFD->hasAttr<OverloadableAttr>()) {
8353         // If a function name is overloadable in C, then every function
8354         // with that name must be marked "overloadable".
8355         Diag(NewFD->getLocation(), diag::err_attribute_overloadable_missing)
8356           << Redeclaration << NewFD;
8357         NamedDecl *OverloadedDecl = nullptr;
8358         if (Redeclaration)
8359           OverloadedDecl = OldDecl;
8360         else if (!Previous.empty())
8361           OverloadedDecl = Previous.getRepresentativeDecl();
8362         if (OverloadedDecl)
8363           Diag(OverloadedDecl->getLocation(),
8364                diag::note_attribute_overloadable_prev_overload);
8365         NewFD->addAttr(OverloadableAttr::CreateImplicit(Context));
8366       }
8367     }
8368   }
8369 
8370   // Check for a previous extern "C" declaration with this name.
8371   if (!Redeclaration &&
8372       checkForConflictWithNonVisibleExternC(*this, NewFD, Previous)) {
8373     if (!Previous.empty()) {
8374       // This is an extern "C" declaration with the same name as a previous
8375       // declaration, and thus redeclares that entity...
8376       Redeclaration = true;
8377       OldDecl = Previous.getFoundDecl();
8378       MergeTypeWithPrevious = false;
8379 
8380       // ... except in the presence of __attribute__((overloadable)).
8381       if (OldDecl->hasAttr<OverloadableAttr>()) {
8382         if (!getLangOpts().CPlusPlus && !NewFD->hasAttr<OverloadableAttr>()) {
8383           Diag(NewFD->getLocation(), diag::err_attribute_overloadable_missing)
8384             << Redeclaration << NewFD;
8385           Diag(Previous.getFoundDecl()->getLocation(),
8386                diag::note_attribute_overloadable_prev_overload);
8387           NewFD->addAttr(OverloadableAttr::CreateImplicit(Context));
8388         }
8389         if (IsOverload(NewFD, cast<FunctionDecl>(OldDecl), false)) {
8390           Redeclaration = false;
8391           OldDecl = nullptr;
8392         }
8393       }
8394     }
8395   }
8396 
8397   // C++11 [dcl.constexpr]p8:
8398   //   A constexpr specifier for a non-static member function that is not
8399   //   a constructor declares that member function to be const.
8400   //
8401   // This needs to be delayed until we know whether this is an out-of-line
8402   // definition of a static member function.
8403   //
8404   // This rule is not present in C++1y, so we produce a backwards
8405   // compatibility warning whenever it happens in C++11.
8406   CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewFD);
8407   if (!getLangOpts().CPlusPlus14 && MD && MD->isConstexpr() &&
8408       !MD->isStatic() && !isa<CXXConstructorDecl>(MD) &&
8409       (MD->getTypeQualifiers() & Qualifiers::Const) == 0) {
8410     CXXMethodDecl *OldMD = nullptr;
8411     if (OldDecl)
8412       OldMD = dyn_cast_or_null<CXXMethodDecl>(OldDecl->getAsFunction());
8413     if (!OldMD || !OldMD->isStatic()) {
8414       const FunctionProtoType *FPT =
8415         MD->getType()->castAs<FunctionProtoType>();
8416       FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
8417       EPI.TypeQuals |= Qualifiers::Const;
8418       MD->setType(Context.getFunctionType(FPT->getReturnType(),
8419                                           FPT->getParamTypes(), EPI));
8420 
8421       // Warn that we did this, if we're not performing template instantiation.
8422       // In that case, we'll have warned already when the template was defined.
8423       if (ActiveTemplateInstantiations.empty()) {
8424         SourceLocation AddConstLoc;
8425         if (FunctionTypeLoc FTL = MD->getTypeSourceInfo()->getTypeLoc()
8426                 .IgnoreParens().getAs<FunctionTypeLoc>())
8427           AddConstLoc = getLocForEndOfToken(FTL.getRParenLoc());
8428 
8429         Diag(MD->getLocation(), diag::warn_cxx14_compat_constexpr_not_const)
8430           << FixItHint::CreateInsertion(AddConstLoc, " const");
8431       }
8432     }
8433   }
8434 
8435   if (Redeclaration) {
8436     // NewFD and OldDecl represent declarations that need to be
8437     // merged.
8438     if (MergeFunctionDecl(NewFD, OldDecl, S, MergeTypeWithPrevious)) {
8439       NewFD->setInvalidDecl();
8440       return Redeclaration;
8441     }
8442 
8443     Previous.clear();
8444     Previous.addDecl(OldDecl);
8445 
8446     if (FunctionTemplateDecl *OldTemplateDecl
8447                                   = dyn_cast<FunctionTemplateDecl>(OldDecl)) {
8448       NewFD->setPreviousDeclaration(OldTemplateDecl->getTemplatedDecl());
8449       FunctionTemplateDecl *NewTemplateDecl
8450         = NewFD->getDescribedFunctionTemplate();
8451       assert(NewTemplateDecl && "Template/non-template mismatch");
8452       if (CXXMethodDecl *Method
8453             = dyn_cast<CXXMethodDecl>(NewTemplateDecl->getTemplatedDecl())) {
8454         Method->setAccess(OldTemplateDecl->getAccess());
8455         NewTemplateDecl->setAccess(OldTemplateDecl->getAccess());
8456       }
8457 
8458       // If this is an explicit specialization of a member that is a function
8459       // template, mark it as a member specialization.
8460       if (IsExplicitSpecialization &&
8461           NewTemplateDecl->getInstantiatedFromMemberTemplate()) {
8462         NewTemplateDecl->setMemberSpecialization();
8463         assert(OldTemplateDecl->isMemberSpecialization());
8464       }
8465 
8466     } else {
8467       // This needs to happen first so that 'inline' propagates.
8468       NewFD->setPreviousDeclaration(cast<FunctionDecl>(OldDecl));
8469 
8470       if (isa<CXXMethodDecl>(NewFD))
8471         NewFD->setAccess(OldDecl->getAccess());
8472     }
8473   }
8474 
8475   // Semantic checking for this function declaration (in isolation).
8476 
8477   if (getLangOpts().CPlusPlus) {
8478     // C++-specific checks.
8479     if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(NewFD)) {
8480       CheckConstructor(Constructor);
8481     } else if (CXXDestructorDecl *Destructor =
8482                 dyn_cast<CXXDestructorDecl>(NewFD)) {
8483       CXXRecordDecl *Record = Destructor->getParent();
8484       QualType ClassType = Context.getTypeDeclType(Record);
8485 
8486       // FIXME: Shouldn't we be able to perform this check even when the class
8487       // type is dependent? Both gcc and edg can handle that.
8488       if (!ClassType->isDependentType()) {
8489         DeclarationName Name
8490           = Context.DeclarationNames.getCXXDestructorName(
8491                                         Context.getCanonicalType(ClassType));
8492         if (NewFD->getDeclName() != Name) {
8493           Diag(NewFD->getLocation(), diag::err_destructor_name);
8494           NewFD->setInvalidDecl();
8495           return Redeclaration;
8496         }
8497       }
8498     } else if (CXXConversionDecl *Conversion
8499                = dyn_cast<CXXConversionDecl>(NewFD)) {
8500       ActOnConversionDeclarator(Conversion);
8501     }
8502 
8503     // Find any virtual functions that this function overrides.
8504     if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(NewFD)) {
8505       if (!Method->isFunctionTemplateSpecialization() &&
8506           !Method->getDescribedFunctionTemplate() &&
8507           Method->isCanonicalDecl()) {
8508         if (AddOverriddenMethods(Method->getParent(), Method)) {
8509           // If the function was marked as "static", we have a problem.
8510           if (NewFD->getStorageClass() == SC_Static) {
8511             ReportOverrides(*this, diag::err_static_overrides_virtual, Method);
8512           }
8513         }
8514       }
8515 
8516       if (Method->isStatic())
8517         checkThisInStaticMemberFunctionType(Method);
8518     }
8519 
8520     // Extra checking for C++ overloaded operators (C++ [over.oper]).
8521     if (NewFD->isOverloadedOperator() &&
8522         CheckOverloadedOperatorDeclaration(NewFD)) {
8523       NewFD->setInvalidDecl();
8524       return Redeclaration;
8525     }
8526 
8527     // Extra checking for C++0x literal operators (C++0x [over.literal]).
8528     if (NewFD->getLiteralIdentifier() &&
8529         CheckLiteralOperatorDeclaration(NewFD)) {
8530       NewFD->setInvalidDecl();
8531       return Redeclaration;
8532     }
8533 
8534     // In C++, check default arguments now that we have merged decls. Unless
8535     // the lexical context is the class, because in this case this is done
8536     // during delayed parsing anyway.
8537     if (!CurContext->isRecord())
8538       CheckCXXDefaultArguments(NewFD);
8539 
8540     // If this function declares a builtin function, check the type of this
8541     // declaration against the expected type for the builtin.
8542     if (unsigned BuiltinID = NewFD->getBuiltinID()) {
8543       ASTContext::GetBuiltinTypeError Error;
8544       LookupPredefedObjCSuperType(*this, S, NewFD->getIdentifier());
8545       QualType T = Context.GetBuiltinType(BuiltinID, Error);
8546       if (!T.isNull() && !Context.hasSameType(T, NewFD->getType())) {
8547         // The type of this function differs from the type of the builtin,
8548         // so forget about the builtin entirely.
8549         Context.BuiltinInfo.forgetBuiltin(BuiltinID, Context.Idents);
8550       }
8551     }
8552 
8553     // If this function is declared as being extern "C", then check to see if
8554     // the function returns a UDT (class, struct, or union type) that is not C
8555     // compatible, and if it does, warn the user.
8556     // But, issue any diagnostic on the first declaration only.
8557     if (Previous.empty() && NewFD->isExternC()) {
8558       QualType R = NewFD->getReturnType();
8559       if (R->isIncompleteType() && !R->isVoidType())
8560         Diag(NewFD->getLocation(), diag::warn_return_value_udt_incomplete)
8561             << NewFD << R;
8562       else if (!R.isPODType(Context) && !R->isVoidType() &&
8563                !R->isObjCObjectPointerType())
8564         Diag(NewFD->getLocation(), diag::warn_return_value_udt) << NewFD << R;
8565     }
8566   }
8567   return Redeclaration;
8568 }
8569 
CheckMain(FunctionDecl * FD,const DeclSpec & DS)8570 void Sema::CheckMain(FunctionDecl* FD, const DeclSpec& DS) {
8571   // C++11 [basic.start.main]p3:
8572   //   A program that [...] declares main to be inline, static or
8573   //   constexpr is ill-formed.
8574   // C11 6.7.4p4:  In a hosted environment, no function specifier(s) shall
8575   //   appear in a declaration of main.
8576   // static main is not an error under C99, but we should warn about it.
8577   // We accept _Noreturn main as an extension.
8578   if (FD->getStorageClass() == SC_Static)
8579     Diag(DS.getStorageClassSpecLoc(), getLangOpts().CPlusPlus
8580          ? diag::err_static_main : diag::warn_static_main)
8581       << FixItHint::CreateRemoval(DS.getStorageClassSpecLoc());
8582   if (FD->isInlineSpecified())
8583     Diag(DS.getInlineSpecLoc(), diag::err_inline_main)
8584       << FixItHint::CreateRemoval(DS.getInlineSpecLoc());
8585   if (DS.isNoreturnSpecified()) {
8586     SourceLocation NoreturnLoc = DS.getNoreturnSpecLoc();
8587     SourceRange NoreturnRange(NoreturnLoc, getLocForEndOfToken(NoreturnLoc));
8588     Diag(NoreturnLoc, diag::ext_noreturn_main);
8589     Diag(NoreturnLoc, diag::note_main_remove_noreturn)
8590       << FixItHint::CreateRemoval(NoreturnRange);
8591   }
8592   if (FD->isConstexpr()) {
8593     Diag(DS.getConstexprSpecLoc(), diag::err_constexpr_main)
8594       << FixItHint::CreateRemoval(DS.getConstexprSpecLoc());
8595     FD->setConstexpr(false);
8596   }
8597 
8598   if (getLangOpts().OpenCL) {
8599     Diag(FD->getLocation(), diag::err_opencl_no_main)
8600         << FD->hasAttr<OpenCLKernelAttr>();
8601     FD->setInvalidDecl();
8602     return;
8603   }
8604 
8605   QualType T = FD->getType();
8606   assert(T->isFunctionType() && "function decl is not of function type");
8607   const FunctionType* FT = T->castAs<FunctionType>();
8608 
8609   if (getLangOpts().GNUMode && !getLangOpts().CPlusPlus) {
8610     // In C with GNU extensions we allow main() to have non-integer return
8611     // type, but we should warn about the extension, and we disable the
8612     // implicit-return-zero rule.
8613 
8614     // GCC in C mode accepts qualified 'int'.
8615     if (Context.hasSameUnqualifiedType(FT->getReturnType(), Context.IntTy))
8616       FD->setHasImplicitReturnZero(true);
8617     else {
8618       Diag(FD->getTypeSpecStartLoc(), diag::ext_main_returns_nonint);
8619       SourceRange RTRange = FD->getReturnTypeSourceRange();
8620       if (RTRange.isValid())
8621         Diag(RTRange.getBegin(), diag::note_main_change_return_type)
8622             << FixItHint::CreateReplacement(RTRange, "int");
8623     }
8624   } else {
8625     // In C and C++, main magically returns 0 if you fall off the end;
8626     // set the flag which tells us that.
8627     // This is C++ [basic.start.main]p5 and C99 5.1.2.2.3.
8628 
8629     // All the standards say that main() should return 'int'.
8630     if (Context.hasSameType(FT->getReturnType(), Context.IntTy))
8631       FD->setHasImplicitReturnZero(true);
8632     else {
8633       // Otherwise, this is just a flat-out error.
8634       SourceRange RTRange = FD->getReturnTypeSourceRange();
8635       Diag(FD->getTypeSpecStartLoc(), diag::err_main_returns_nonint)
8636           << (RTRange.isValid() ? FixItHint::CreateReplacement(RTRange, "int")
8637                                 : FixItHint());
8638       FD->setInvalidDecl(true);
8639     }
8640   }
8641 
8642   // Treat protoless main() as nullary.
8643   if (isa<FunctionNoProtoType>(FT)) return;
8644 
8645   const FunctionProtoType* FTP = cast<const FunctionProtoType>(FT);
8646   unsigned nparams = FTP->getNumParams();
8647   assert(FD->getNumParams() == nparams);
8648 
8649   bool HasExtraParameters = (nparams > 3);
8650 
8651   if (FTP->isVariadic()) {
8652     Diag(FD->getLocation(), diag::ext_variadic_main);
8653     // FIXME: if we had information about the location of the ellipsis, we
8654     // could add a FixIt hint to remove it as a parameter.
8655   }
8656 
8657   // Darwin passes an undocumented fourth argument of type char**.  If
8658   // other platforms start sprouting these, the logic below will start
8659   // getting shifty.
8660   if (nparams == 4 && Context.getTargetInfo().getTriple().isOSDarwin())
8661     HasExtraParameters = false;
8662 
8663   if (HasExtraParameters) {
8664     Diag(FD->getLocation(), diag::err_main_surplus_args) << nparams;
8665     FD->setInvalidDecl(true);
8666     nparams = 3;
8667   }
8668 
8669   // FIXME: a lot of the following diagnostics would be improved
8670   // if we had some location information about types.
8671 
8672   QualType CharPP =
8673     Context.getPointerType(Context.getPointerType(Context.CharTy));
8674   QualType Expected[] = { Context.IntTy, CharPP, CharPP, CharPP };
8675 
8676   for (unsigned i = 0; i < nparams; ++i) {
8677     QualType AT = FTP->getParamType(i);
8678 
8679     bool mismatch = true;
8680 
8681     if (Context.hasSameUnqualifiedType(AT, Expected[i]))
8682       mismatch = false;
8683     else if (Expected[i] == CharPP) {
8684       // As an extension, the following forms are okay:
8685       //   char const **
8686       //   char const * const *
8687       //   char * const *
8688 
8689       QualifierCollector qs;
8690       const PointerType* PT;
8691       if ((PT = qs.strip(AT)->getAs<PointerType>()) &&
8692           (PT = qs.strip(PT->getPointeeType())->getAs<PointerType>()) &&
8693           Context.hasSameType(QualType(qs.strip(PT->getPointeeType()), 0),
8694                               Context.CharTy)) {
8695         qs.removeConst();
8696         mismatch = !qs.empty();
8697       }
8698     }
8699 
8700     if (mismatch) {
8701       Diag(FD->getLocation(), diag::err_main_arg_wrong) << i << Expected[i];
8702       // TODO: suggest replacing given type with expected type
8703       FD->setInvalidDecl(true);
8704     }
8705   }
8706 
8707   if (nparams == 1 && !FD->isInvalidDecl()) {
8708     Diag(FD->getLocation(), diag::warn_main_one_arg);
8709   }
8710 
8711   if (!FD->isInvalidDecl() && FD->getDescribedFunctionTemplate()) {
8712     Diag(FD->getLocation(), diag::err_mainlike_template_decl) << FD;
8713     FD->setInvalidDecl();
8714   }
8715 }
8716 
CheckMSVCRTEntryPoint(FunctionDecl * FD)8717 void Sema::CheckMSVCRTEntryPoint(FunctionDecl *FD) {
8718   QualType T = FD->getType();
8719   assert(T->isFunctionType() && "function decl is not of function type");
8720   const FunctionType *FT = T->castAs<FunctionType>();
8721 
8722   // Set an implicit return of 'zero' if the function can return some integral,
8723   // enumeration, pointer or nullptr type.
8724   if (FT->getReturnType()->isIntegralOrEnumerationType() ||
8725       FT->getReturnType()->isAnyPointerType() ||
8726       FT->getReturnType()->isNullPtrType())
8727     // DllMain is exempt because a return value of zero means it failed.
8728     if (FD->getName() != "DllMain")
8729       FD->setHasImplicitReturnZero(true);
8730 
8731   if (!FD->isInvalidDecl() && FD->getDescribedFunctionTemplate()) {
8732     Diag(FD->getLocation(), diag::err_mainlike_template_decl) << FD;
8733     FD->setInvalidDecl();
8734   }
8735 }
8736 
CheckForConstantInitializer(Expr * Init,QualType DclT)8737 bool Sema::CheckForConstantInitializer(Expr *Init, QualType DclT) {
8738   // FIXME: Need strict checking.  In C89, we need to check for
8739   // any assignment, increment, decrement, function-calls, or
8740   // commas outside of a sizeof.  In C99, it's the same list,
8741   // except that the aforementioned are allowed in unevaluated
8742   // expressions.  Everything else falls under the
8743   // "may accept other forms of constant expressions" exception.
8744   // (We never end up here for C++, so the constant expression
8745   // rules there don't matter.)
8746   const Expr *Culprit;
8747   if (Init->isConstantInitializer(Context, false, &Culprit))
8748     return false;
8749   Diag(Culprit->getExprLoc(), diag::err_init_element_not_constant)
8750     << Culprit->getSourceRange();
8751   return true;
8752 }
8753 
8754 namespace {
8755   // Visits an initialization expression to see if OrigDecl is evaluated in
8756   // its own initialization and throws a warning if it does.
8757   class SelfReferenceChecker
8758       : public EvaluatedExprVisitor<SelfReferenceChecker> {
8759     Sema &S;
8760     Decl *OrigDecl;
8761     bool isRecordType;
8762     bool isPODType;
8763     bool isReferenceType;
8764 
8765     bool isInitList;
8766     llvm::SmallVector<unsigned, 4> InitFieldIndex;
8767   public:
8768     typedef EvaluatedExprVisitor<SelfReferenceChecker> Inherited;
8769 
SelfReferenceChecker(Sema & S,Decl * OrigDecl)8770     SelfReferenceChecker(Sema &S, Decl *OrigDecl) : Inherited(S.Context),
8771                                                     S(S), OrigDecl(OrigDecl) {
8772       isPODType = false;
8773       isRecordType = false;
8774       isReferenceType = false;
8775       isInitList = false;
8776       if (ValueDecl *VD = dyn_cast<ValueDecl>(OrigDecl)) {
8777         isPODType = VD->getType().isPODType(S.Context);
8778         isRecordType = VD->getType()->isRecordType();
8779         isReferenceType = VD->getType()->isReferenceType();
8780       }
8781     }
8782 
8783     // For most expressions, just call the visitor.  For initializer lists,
8784     // track the index of the field being initialized since fields are
8785     // initialized in order allowing use of previously initialized fields.
CheckExpr(Expr * E)8786     void CheckExpr(Expr *E) {
8787       InitListExpr *InitList = dyn_cast<InitListExpr>(E);
8788       if (!InitList) {
8789         Visit(E);
8790         return;
8791       }
8792 
8793       // Track and increment the index here.
8794       isInitList = true;
8795       InitFieldIndex.push_back(0);
8796       for (auto Child : InitList->children()) {
8797         CheckExpr(cast<Expr>(Child));
8798         ++InitFieldIndex.back();
8799       }
8800       InitFieldIndex.pop_back();
8801     }
8802 
8803     // Returns true if MemberExpr is checked and no futher checking is needed.
8804     // Returns false if additional checking is required.
CheckInitListMemberExpr(MemberExpr * E,bool CheckReference)8805     bool CheckInitListMemberExpr(MemberExpr *E, bool CheckReference) {
8806       llvm::SmallVector<FieldDecl*, 4> Fields;
8807       Expr *Base = E;
8808       bool ReferenceField = false;
8809 
8810       // Get the field memebers used.
8811       while (MemberExpr *ME = dyn_cast<MemberExpr>(Base)) {
8812         FieldDecl *FD = dyn_cast<FieldDecl>(ME->getMemberDecl());
8813         if (!FD)
8814           return false;
8815         Fields.push_back(FD);
8816         if (FD->getType()->isReferenceType())
8817           ReferenceField = true;
8818         Base = ME->getBase()->IgnoreParenImpCasts();
8819       }
8820 
8821       // Keep checking only if the base Decl is the same.
8822       DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Base);
8823       if (!DRE || DRE->getDecl() != OrigDecl)
8824         return false;
8825 
8826       // A reference field can be bound to an unininitialized field.
8827       if (CheckReference && !ReferenceField)
8828         return true;
8829 
8830       // Convert FieldDecls to their index number.
8831       llvm::SmallVector<unsigned, 4> UsedFieldIndex;
8832       for (const FieldDecl *I : llvm::reverse(Fields))
8833         UsedFieldIndex.push_back(I->getFieldIndex());
8834 
8835       // See if a warning is needed by checking the first difference in index
8836       // numbers.  If field being used has index less than the field being
8837       // initialized, then the use is safe.
8838       for (auto UsedIter = UsedFieldIndex.begin(),
8839                 UsedEnd = UsedFieldIndex.end(),
8840                 OrigIter = InitFieldIndex.begin(),
8841                 OrigEnd = InitFieldIndex.end();
8842            UsedIter != UsedEnd && OrigIter != OrigEnd; ++UsedIter, ++OrigIter) {
8843         if (*UsedIter < *OrigIter)
8844           return true;
8845         if (*UsedIter > *OrigIter)
8846           break;
8847       }
8848 
8849       // TODO: Add a different warning which will print the field names.
8850       HandleDeclRefExpr(DRE);
8851       return true;
8852     }
8853 
8854     // For most expressions, the cast is directly above the DeclRefExpr.
8855     // For conditional operators, the cast can be outside the conditional
8856     // operator if both expressions are DeclRefExpr's.
HandleValue(Expr * E)8857     void HandleValue(Expr *E) {
8858       E = E->IgnoreParens();
8859       if (DeclRefExpr* DRE = dyn_cast<DeclRefExpr>(E)) {
8860         HandleDeclRefExpr(DRE);
8861         return;
8862       }
8863 
8864       if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) {
8865         Visit(CO->getCond());
8866         HandleValue(CO->getTrueExpr());
8867         HandleValue(CO->getFalseExpr());
8868         return;
8869       }
8870 
8871       if (BinaryConditionalOperator *BCO =
8872               dyn_cast<BinaryConditionalOperator>(E)) {
8873         Visit(BCO->getCond());
8874         HandleValue(BCO->getFalseExpr());
8875         return;
8876       }
8877 
8878       if (OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(E)) {
8879         HandleValue(OVE->getSourceExpr());
8880         return;
8881       }
8882 
8883       if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
8884         if (BO->getOpcode() == BO_Comma) {
8885           Visit(BO->getLHS());
8886           HandleValue(BO->getRHS());
8887           return;
8888         }
8889       }
8890 
8891       if (isa<MemberExpr>(E)) {
8892         if (isInitList) {
8893           if (CheckInitListMemberExpr(cast<MemberExpr>(E),
8894                                       false /*CheckReference*/))
8895             return;
8896         }
8897 
8898         Expr *Base = E->IgnoreParenImpCasts();
8899         while (MemberExpr *ME = dyn_cast<MemberExpr>(Base)) {
8900           // Check for static member variables and don't warn on them.
8901           if (!isa<FieldDecl>(ME->getMemberDecl()))
8902             return;
8903           Base = ME->getBase()->IgnoreParenImpCasts();
8904         }
8905         if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Base))
8906           HandleDeclRefExpr(DRE);
8907         return;
8908       }
8909 
8910       Visit(E);
8911     }
8912 
8913     // Reference types not handled in HandleValue are handled here since all
8914     // uses of references are bad, not just r-value uses.
VisitDeclRefExpr(DeclRefExpr * E)8915     void VisitDeclRefExpr(DeclRefExpr *E) {
8916       if (isReferenceType)
8917         HandleDeclRefExpr(E);
8918     }
8919 
VisitImplicitCastExpr(ImplicitCastExpr * E)8920     void VisitImplicitCastExpr(ImplicitCastExpr *E) {
8921       if (E->getCastKind() == CK_LValueToRValue) {
8922         HandleValue(E->getSubExpr());
8923         return;
8924       }
8925 
8926       Inherited::VisitImplicitCastExpr(E);
8927     }
8928 
VisitMemberExpr(MemberExpr * E)8929     void VisitMemberExpr(MemberExpr *E) {
8930       if (isInitList) {
8931         if (CheckInitListMemberExpr(E, true /*CheckReference*/))
8932           return;
8933       }
8934 
8935       // Don't warn on arrays since they can be treated as pointers.
8936       if (E->getType()->canDecayToPointerType()) return;
8937 
8938       // Warn when a non-static method call is followed by non-static member
8939       // field accesses, which is followed by a DeclRefExpr.
8940       CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(E->getMemberDecl());
8941       bool Warn = (MD && !MD->isStatic());
8942       Expr *Base = E->getBase()->IgnoreParenImpCasts();
8943       while (MemberExpr *ME = dyn_cast<MemberExpr>(Base)) {
8944         if (!isa<FieldDecl>(ME->getMemberDecl()))
8945           Warn = false;
8946         Base = ME->getBase()->IgnoreParenImpCasts();
8947       }
8948 
8949       if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Base)) {
8950         if (Warn)
8951           HandleDeclRefExpr(DRE);
8952         return;
8953       }
8954 
8955       // The base of a MemberExpr is not a MemberExpr or a DeclRefExpr.
8956       // Visit that expression.
8957       Visit(Base);
8958     }
8959 
VisitCXXOperatorCallExpr(CXXOperatorCallExpr * E)8960     void VisitCXXOperatorCallExpr(CXXOperatorCallExpr *E) {
8961       Expr *Callee = E->getCallee();
8962 
8963       if (isa<UnresolvedLookupExpr>(Callee))
8964         return Inherited::VisitCXXOperatorCallExpr(E);
8965 
8966       Visit(Callee);
8967       for (auto Arg: E->arguments())
8968         HandleValue(Arg->IgnoreParenImpCasts());
8969     }
8970 
VisitUnaryOperator(UnaryOperator * E)8971     void VisitUnaryOperator(UnaryOperator *E) {
8972       // For POD record types, addresses of its own members are well-defined.
8973       if (E->getOpcode() == UO_AddrOf && isRecordType &&
8974           isa<MemberExpr>(E->getSubExpr()->IgnoreParens())) {
8975         if (!isPODType)
8976           HandleValue(E->getSubExpr());
8977         return;
8978       }
8979 
8980       if (E->isIncrementDecrementOp()) {
8981         HandleValue(E->getSubExpr());
8982         return;
8983       }
8984 
8985       Inherited::VisitUnaryOperator(E);
8986     }
8987 
VisitObjCMessageExpr(ObjCMessageExpr * E)8988     void VisitObjCMessageExpr(ObjCMessageExpr *E) { return; }
8989 
VisitCXXConstructExpr(CXXConstructExpr * E)8990     void VisitCXXConstructExpr(CXXConstructExpr *E) {
8991       if (E->getConstructor()->isCopyConstructor()) {
8992         Expr *ArgExpr = E->getArg(0);
8993         if (InitListExpr *ILE = dyn_cast<InitListExpr>(ArgExpr))
8994           if (ILE->getNumInits() == 1)
8995             ArgExpr = ILE->getInit(0);
8996         if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(ArgExpr))
8997           if (ICE->getCastKind() == CK_NoOp)
8998             ArgExpr = ICE->getSubExpr();
8999         HandleValue(ArgExpr);
9000         return;
9001       }
9002       Inherited::VisitCXXConstructExpr(E);
9003     }
9004 
VisitCallExpr(CallExpr * E)9005     void VisitCallExpr(CallExpr *E) {
9006       // Treat std::move as a use.
9007       if (E->getNumArgs() == 1) {
9008         if (FunctionDecl *FD = E->getDirectCallee()) {
9009           if (FD->isInStdNamespace() && FD->getIdentifier() &&
9010               FD->getIdentifier()->isStr("move")) {
9011             HandleValue(E->getArg(0));
9012             return;
9013           }
9014         }
9015       }
9016 
9017       Inherited::VisitCallExpr(E);
9018     }
9019 
VisitBinaryOperator(BinaryOperator * E)9020     void VisitBinaryOperator(BinaryOperator *E) {
9021       if (E->isCompoundAssignmentOp()) {
9022         HandleValue(E->getLHS());
9023         Visit(E->getRHS());
9024         return;
9025       }
9026 
9027       Inherited::VisitBinaryOperator(E);
9028     }
9029 
9030     // A custom visitor for BinaryConditionalOperator is needed because the
9031     // regular visitor would check the condition and true expression separately
9032     // but both point to the same place giving duplicate diagnostics.
VisitBinaryConditionalOperator(BinaryConditionalOperator * E)9033     void VisitBinaryConditionalOperator(BinaryConditionalOperator *E) {
9034       Visit(E->getCond());
9035       Visit(E->getFalseExpr());
9036     }
9037 
HandleDeclRefExpr(DeclRefExpr * DRE)9038     void HandleDeclRefExpr(DeclRefExpr *DRE) {
9039       Decl* ReferenceDecl = DRE->getDecl();
9040       if (OrigDecl != ReferenceDecl) return;
9041       unsigned diag;
9042       if (isReferenceType) {
9043         diag = diag::warn_uninit_self_reference_in_reference_init;
9044       } else if (cast<VarDecl>(OrigDecl)->isStaticLocal()) {
9045         diag = diag::warn_static_self_reference_in_init;
9046       } else if (isa<TranslationUnitDecl>(OrigDecl->getDeclContext()) ||
9047                  isa<NamespaceDecl>(OrigDecl->getDeclContext()) ||
9048                  DRE->getDecl()->getType()->isRecordType()) {
9049         diag = diag::warn_uninit_self_reference_in_init;
9050       } else {
9051         // Local variables will be handled by the CFG analysis.
9052         return;
9053       }
9054 
9055       S.DiagRuntimeBehavior(DRE->getLocStart(), DRE,
9056                             S.PDiag(diag)
9057                               << DRE->getNameInfo().getName()
9058                               << OrigDecl->getLocation()
9059                               << DRE->getSourceRange());
9060     }
9061   };
9062 
9063   /// CheckSelfReference - Warns if OrigDecl is used in expression E.
CheckSelfReference(Sema & S,Decl * OrigDecl,Expr * E,bool DirectInit)9064   static void CheckSelfReference(Sema &S, Decl* OrigDecl, Expr *E,
9065                                  bool DirectInit) {
9066     // Parameters arguments are occassionially constructed with itself,
9067     // for instance, in recursive functions.  Skip them.
9068     if (isa<ParmVarDecl>(OrigDecl))
9069       return;
9070 
9071     E = E->IgnoreParens();
9072 
9073     // Skip checking T a = a where T is not a record or reference type.
9074     // Doing so is a way to silence uninitialized warnings.
9075     if (!DirectInit && !cast<VarDecl>(OrigDecl)->getType()->isRecordType())
9076       if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E))
9077         if (ICE->getCastKind() == CK_LValueToRValue)
9078           if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ICE->getSubExpr()))
9079             if (DRE->getDecl() == OrigDecl)
9080               return;
9081 
9082     SelfReferenceChecker(S, OrigDecl).CheckExpr(E);
9083   }
9084 }
9085 
deduceVarTypeFromInitializer(VarDecl * VDecl,DeclarationName Name,QualType Type,TypeSourceInfo * TSI,SourceRange Range,bool DirectInit,Expr * Init)9086 QualType Sema::deduceVarTypeFromInitializer(VarDecl *VDecl,
9087                                             DeclarationName Name, QualType Type,
9088                                             TypeSourceInfo *TSI,
9089                                             SourceRange Range, bool DirectInit,
9090                                             Expr *Init) {
9091   bool IsInitCapture = !VDecl;
9092   assert((!VDecl || !VDecl->isInitCapture()) &&
9093          "init captures are expected to be deduced prior to initialization");
9094 
9095   ArrayRef<Expr *> DeduceInits = Init;
9096   if (DirectInit) {
9097     if (auto *PL = dyn_cast<ParenListExpr>(Init))
9098       DeduceInits = PL->exprs();
9099     else if (auto *IL = dyn_cast<InitListExpr>(Init))
9100       DeduceInits = IL->inits();
9101   }
9102 
9103   // Deduction only works if we have exactly one source expression.
9104   if (DeduceInits.empty()) {
9105     // It isn't possible to write this directly, but it is possible to
9106     // end up in this situation with "auto x(some_pack...);"
9107     Diag(Init->getLocStart(), IsInitCapture
9108                                   ? diag::err_init_capture_no_expression
9109                                   : diag::err_auto_var_init_no_expression)
9110         << Name << Type << Range;
9111     return QualType();
9112   }
9113 
9114   if (DeduceInits.size() > 1) {
9115     Diag(DeduceInits[1]->getLocStart(),
9116          IsInitCapture ? diag::err_init_capture_multiple_expressions
9117                        : diag::err_auto_var_init_multiple_expressions)
9118         << Name << Type << Range;
9119     return QualType();
9120   }
9121 
9122   Expr *DeduceInit = DeduceInits[0];
9123   if (DirectInit && isa<InitListExpr>(DeduceInit)) {
9124     Diag(Init->getLocStart(), IsInitCapture
9125                                   ? diag::err_init_capture_paren_braces
9126                                   : diag::err_auto_var_init_paren_braces)
9127         << isa<InitListExpr>(Init) << Name << Type << Range;
9128     return QualType();
9129   }
9130 
9131   // Expressions default to 'id' when we're in a debugger.
9132   bool DefaultedAnyToId = false;
9133   if (getLangOpts().DebuggerCastResultToId &&
9134       Init->getType() == Context.UnknownAnyTy && !IsInitCapture) {
9135     ExprResult Result = forceUnknownAnyToType(Init, Context.getObjCIdType());
9136     if (Result.isInvalid()) {
9137       return QualType();
9138     }
9139     Init = Result.get();
9140     DefaultedAnyToId = true;
9141   }
9142 
9143   QualType DeducedType;
9144   if (DeduceAutoType(TSI, DeduceInit, DeducedType) == DAR_Failed) {
9145     if (!IsInitCapture)
9146       DiagnoseAutoDeductionFailure(VDecl, DeduceInit);
9147     else if (isa<InitListExpr>(Init))
9148       Diag(Range.getBegin(),
9149            diag::err_init_capture_deduction_failure_from_init_list)
9150           << Name
9151           << (DeduceInit->getType().isNull() ? TSI->getType()
9152                                              : DeduceInit->getType())
9153           << DeduceInit->getSourceRange();
9154     else
9155       Diag(Range.getBegin(), diag::err_init_capture_deduction_failure)
9156           << Name << TSI->getType()
9157           << (DeduceInit->getType().isNull() ? TSI->getType()
9158                                              : DeduceInit->getType())
9159           << DeduceInit->getSourceRange();
9160   }
9161 
9162   // Warn if we deduced 'id'. 'auto' usually implies type-safety, but using
9163   // 'id' instead of a specific object type prevents most of our usual
9164   // checks.
9165   // We only want to warn outside of template instantiations, though:
9166   // inside a template, the 'id' could have come from a parameter.
9167   if (ActiveTemplateInstantiations.empty() && !DefaultedAnyToId &&
9168       !IsInitCapture && !DeducedType.isNull() && DeducedType->isObjCIdType()) {
9169     SourceLocation Loc = TSI->getTypeLoc().getBeginLoc();
9170     Diag(Loc, diag::warn_auto_var_is_id) << Name << Range;
9171   }
9172 
9173   return DeducedType;
9174 }
9175 
9176 /// AddInitializerToDecl - Adds the initializer Init to the
9177 /// declaration dcl. If DirectInit is true, this is C++ direct
9178 /// initialization rather than copy initialization.
AddInitializerToDecl(Decl * RealDecl,Expr * Init,bool DirectInit,bool TypeMayContainAuto)9179 void Sema::AddInitializerToDecl(Decl *RealDecl, Expr *Init,
9180                                 bool DirectInit, bool TypeMayContainAuto) {
9181   // If there is no declaration, there was an error parsing it.  Just ignore
9182   // the initializer.
9183   if (!RealDecl || RealDecl->isInvalidDecl()) {
9184     CorrectDelayedTyposInExpr(Init, dyn_cast_or_null<VarDecl>(RealDecl));
9185     return;
9186   }
9187 
9188   if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(RealDecl)) {
9189     // Pure-specifiers are handled in ActOnPureSpecifier.
9190     Diag(Method->getLocation(), diag::err_member_function_initialization)
9191       << Method->getDeclName() << Init->getSourceRange();
9192     Method->setInvalidDecl();
9193     return;
9194   }
9195 
9196   VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
9197   if (!VDecl) {
9198     assert(!isa<FieldDecl>(RealDecl) && "field init shouldn't get here");
9199     Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
9200     RealDecl->setInvalidDecl();
9201     return;
9202   }
9203 
9204   // C++11 [decl.spec.auto]p6. Deduce the type which 'auto' stands in for.
9205   if (TypeMayContainAuto && VDecl->getType()->isUndeducedType()) {
9206     // Attempt typo correction early so that the type of the init expression can
9207     // be deduced based on the chosen correction if the original init contains a
9208     // TypoExpr.
9209     ExprResult Res = CorrectDelayedTyposInExpr(Init, VDecl);
9210     if (!Res.isUsable()) {
9211       RealDecl->setInvalidDecl();
9212       return;
9213     }
9214     Init = Res.get();
9215 
9216     QualType DeducedType = deduceVarTypeFromInitializer(
9217         VDecl, VDecl->getDeclName(), VDecl->getType(),
9218         VDecl->getTypeSourceInfo(), VDecl->getSourceRange(), DirectInit, Init);
9219     if (DeducedType.isNull()) {
9220       RealDecl->setInvalidDecl();
9221       return;
9222     }
9223 
9224     VDecl->setType(DeducedType);
9225     assert(VDecl->isLinkageValid());
9226 
9227     // In ARC, infer lifetime.
9228     if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(VDecl))
9229       VDecl->setInvalidDecl();
9230 
9231     // If this is a redeclaration, check that the type we just deduced matches
9232     // the previously declared type.
9233     if (VarDecl *Old = VDecl->getPreviousDecl()) {
9234       // We never need to merge the type, because we cannot form an incomplete
9235       // array of auto, nor deduce such a type.
9236       MergeVarDeclTypes(VDecl, Old, /*MergeTypeWithPrevious*/ false);
9237     }
9238 
9239     // Check the deduced type is valid for a variable declaration.
9240     CheckVariableDeclarationType(VDecl);
9241     if (VDecl->isInvalidDecl())
9242       return;
9243   }
9244 
9245   // dllimport cannot be used on variable definitions.
9246   if (VDecl->hasAttr<DLLImportAttr>() && !VDecl->isStaticDataMember()) {
9247     Diag(VDecl->getLocation(), diag::err_attribute_dllimport_data_definition);
9248     VDecl->setInvalidDecl();
9249     return;
9250   }
9251 
9252   if (VDecl->isLocalVarDecl() && VDecl->hasExternalStorage()) {
9253     // C99 6.7.8p5. C++ has no such restriction, but that is a defect.
9254     Diag(VDecl->getLocation(), diag::err_block_extern_cant_init);
9255     VDecl->setInvalidDecl();
9256     return;
9257   }
9258 
9259   if (!VDecl->getType()->isDependentType()) {
9260     // A definition must end up with a complete type, which means it must be
9261     // complete with the restriction that an array type might be completed by
9262     // the initializer; note that later code assumes this restriction.
9263     QualType BaseDeclType = VDecl->getType();
9264     if (const ArrayType *Array = Context.getAsIncompleteArrayType(BaseDeclType))
9265       BaseDeclType = Array->getElementType();
9266     if (RequireCompleteType(VDecl->getLocation(), BaseDeclType,
9267                             diag::err_typecheck_decl_incomplete_type)) {
9268       RealDecl->setInvalidDecl();
9269       return;
9270     }
9271 
9272     // The variable can not have an abstract class type.
9273     if (RequireNonAbstractType(VDecl->getLocation(), VDecl->getType(),
9274                                diag::err_abstract_type_in_decl,
9275                                AbstractVariableType))
9276       VDecl->setInvalidDecl();
9277   }
9278 
9279   VarDecl *Def;
9280   if ((Def = VDecl->getDefinition()) && Def != VDecl) {
9281     NamedDecl *Hidden = nullptr;
9282     if (!hasVisibleDefinition(Def, &Hidden) &&
9283         (VDecl->getFormalLinkage() == InternalLinkage ||
9284          VDecl->getDescribedVarTemplate() ||
9285          VDecl->getNumTemplateParameterLists() ||
9286          VDecl->getDeclContext()->isDependentContext())) {
9287       // The previous definition is hidden, and multiple definitions are
9288       // permitted (in separate TUs). Form another definition of it.
9289     } else {
9290       Diag(VDecl->getLocation(), diag::err_redefinition)
9291         << VDecl->getDeclName();
9292       Diag(Def->getLocation(), diag::note_previous_definition);
9293       VDecl->setInvalidDecl();
9294       return;
9295     }
9296   }
9297 
9298   if (getLangOpts().CPlusPlus) {
9299     // C++ [class.static.data]p4
9300     //   If a static data member is of const integral or const
9301     //   enumeration type, its declaration in the class definition can
9302     //   specify a constant-initializer which shall be an integral
9303     //   constant expression (5.19). In that case, the member can appear
9304     //   in integral constant expressions. The member shall still be
9305     //   defined in a namespace scope if it is used in the program and the
9306     //   namespace scope definition shall not contain an initializer.
9307     //
9308     // We already performed a redefinition check above, but for static
9309     // data members we also need to check whether there was an in-class
9310     // declaration with an initializer.
9311     if (VDecl->isStaticDataMember() && VDecl->getCanonicalDecl()->hasInit()) {
9312       Diag(Init->getExprLoc(), diag::err_static_data_member_reinitialization)
9313           << VDecl->getDeclName();
9314       Diag(VDecl->getCanonicalDecl()->getInit()->getExprLoc(),
9315            diag::note_previous_initializer)
9316           << 0;
9317       return;
9318     }
9319 
9320     if (VDecl->hasLocalStorage())
9321       getCurFunction()->setHasBranchProtectedScope();
9322 
9323     if (DiagnoseUnexpandedParameterPack(Init, UPPC_Initializer)) {
9324       VDecl->setInvalidDecl();
9325       return;
9326     }
9327   }
9328 
9329   // OpenCL 1.1 6.5.2: "Variables allocated in the __local address space inside
9330   // a kernel function cannot be initialized."
9331   if (VDecl->getType().getAddressSpace() == LangAS::opencl_local) {
9332     Diag(VDecl->getLocation(), diag::err_local_cant_init);
9333     VDecl->setInvalidDecl();
9334     return;
9335   }
9336 
9337   // Get the decls type and save a reference for later, since
9338   // CheckInitializerTypes may change it.
9339   QualType DclT = VDecl->getType(), SavT = DclT;
9340 
9341   // Expressions default to 'id' when we're in a debugger
9342   // and we are assigning it to a variable of Objective-C pointer type.
9343   if (getLangOpts().DebuggerCastResultToId && DclT->isObjCObjectPointerType() &&
9344       Init->getType() == Context.UnknownAnyTy) {
9345     ExprResult Result = forceUnknownAnyToType(Init, Context.getObjCIdType());
9346     if (Result.isInvalid()) {
9347       VDecl->setInvalidDecl();
9348       return;
9349     }
9350     Init = Result.get();
9351   }
9352 
9353   // Perform the initialization.
9354   ParenListExpr *CXXDirectInit = dyn_cast<ParenListExpr>(Init);
9355   if (!VDecl->isInvalidDecl()) {
9356     InitializedEntity Entity = InitializedEntity::InitializeVariable(VDecl);
9357     InitializationKind Kind =
9358         DirectInit
9359             ? CXXDirectInit
9360                   ? InitializationKind::CreateDirect(VDecl->getLocation(),
9361                                                      Init->getLocStart(),
9362                                                      Init->getLocEnd())
9363                   : InitializationKind::CreateDirectList(VDecl->getLocation())
9364             : InitializationKind::CreateCopy(VDecl->getLocation(),
9365                                              Init->getLocStart());
9366 
9367     MultiExprArg Args = Init;
9368     if (CXXDirectInit)
9369       Args = MultiExprArg(CXXDirectInit->getExprs(),
9370                           CXXDirectInit->getNumExprs());
9371 
9372     // Try to correct any TypoExprs in the initialization arguments.
9373     for (size_t Idx = 0; Idx < Args.size(); ++Idx) {
9374       ExprResult Res = CorrectDelayedTyposInExpr(
9375           Args[Idx], VDecl, [this, Entity, Kind](Expr *E) {
9376             InitializationSequence Init(*this, Entity, Kind, MultiExprArg(E));
9377             return Init.Failed() ? ExprError() : E;
9378           });
9379       if (Res.isInvalid()) {
9380         VDecl->setInvalidDecl();
9381       } else if (Res.get() != Args[Idx]) {
9382         Args[Idx] = Res.get();
9383       }
9384     }
9385     if (VDecl->isInvalidDecl())
9386       return;
9387 
9388     InitializationSequence InitSeq(*this, Entity, Kind, Args);
9389     ExprResult Result = InitSeq.Perform(*this, Entity, Kind, Args, &DclT);
9390     if (Result.isInvalid()) {
9391       VDecl->setInvalidDecl();
9392       return;
9393     }
9394 
9395     Init = Result.getAs<Expr>();
9396   }
9397 
9398   // Check for self-references within variable initializers.
9399   // Variables declared within a function/method body (except for references)
9400   // are handled by a dataflow analysis.
9401   if (!VDecl->hasLocalStorage() || VDecl->getType()->isRecordType() ||
9402       VDecl->getType()->isReferenceType()) {
9403     CheckSelfReference(*this, RealDecl, Init, DirectInit);
9404   }
9405 
9406   // If the type changed, it means we had an incomplete type that was
9407   // completed by the initializer. For example:
9408   //   int ary[] = { 1, 3, 5 };
9409   // "ary" transitions from an IncompleteArrayType to a ConstantArrayType.
9410   if (!VDecl->isInvalidDecl() && (DclT != SavT))
9411     VDecl->setType(DclT);
9412 
9413   if (!VDecl->isInvalidDecl()) {
9414     checkUnsafeAssigns(VDecl->getLocation(), VDecl->getType(), Init);
9415 
9416     if (VDecl->hasAttr<BlocksAttr>())
9417       checkRetainCycles(VDecl, Init);
9418 
9419     // It is safe to assign a weak reference into a strong variable.
9420     // Although this code can still have problems:
9421     //   id x = self.weakProp;
9422     //   id y = self.weakProp;
9423     // we do not warn to warn spuriously when 'x' and 'y' are on separate
9424     // paths through the function. This should be revisited if
9425     // -Wrepeated-use-of-weak is made flow-sensitive.
9426     if (VDecl->getType().getObjCLifetime() == Qualifiers::OCL_Strong &&
9427         !Diags.isIgnored(diag::warn_arc_repeated_use_of_weak,
9428                          Init->getLocStart()))
9429       getCurFunction()->markSafeWeakUse(Init);
9430   }
9431 
9432   // The initialization is usually a full-expression.
9433   //
9434   // FIXME: If this is a braced initialization of an aggregate, it is not
9435   // an expression, and each individual field initializer is a separate
9436   // full-expression. For instance, in:
9437   //
9438   //   struct Temp { ~Temp(); };
9439   //   struct S { S(Temp); };
9440   //   struct T { S a, b; } t = { Temp(), Temp() }
9441   //
9442   // we should destroy the first Temp before constructing the second.
9443   ExprResult Result = ActOnFinishFullExpr(Init, VDecl->getLocation(),
9444                                           false,
9445                                           VDecl->isConstexpr());
9446   if (Result.isInvalid()) {
9447     VDecl->setInvalidDecl();
9448     return;
9449   }
9450   Init = Result.get();
9451 
9452   // Attach the initializer to the decl.
9453   VDecl->setInit(Init);
9454 
9455   if (VDecl->isLocalVarDecl()) {
9456     // C99 6.7.8p4: All the expressions in an initializer for an object that has
9457     // static storage duration shall be constant expressions or string literals.
9458     // C++ does not have this restriction.
9459     if (!getLangOpts().CPlusPlus && !VDecl->isInvalidDecl()) {
9460       const Expr *Culprit;
9461       if (VDecl->getStorageClass() == SC_Static)
9462         CheckForConstantInitializer(Init, DclT);
9463       // C89 is stricter than C99 for non-static aggregate types.
9464       // C89 6.5.7p3: All the expressions [...] in an initializer list
9465       // for an object that has aggregate or union type shall be
9466       // constant expressions.
9467       else if (!getLangOpts().C99 && VDecl->getType()->isAggregateType() &&
9468                isa<InitListExpr>(Init) &&
9469                !Init->isConstantInitializer(Context, false, &Culprit))
9470         Diag(Culprit->getExprLoc(),
9471              diag::ext_aggregate_init_not_constant)
9472           << Culprit->getSourceRange();
9473     }
9474   } else if (VDecl->isStaticDataMember() &&
9475              VDecl->getLexicalDeclContext()->isRecord()) {
9476     // This is an in-class initialization for a static data member, e.g.,
9477     //
9478     // struct S {
9479     //   static const int value = 17;
9480     // };
9481 
9482     // C++ [class.mem]p4:
9483     //   A member-declarator can contain a constant-initializer only
9484     //   if it declares a static member (9.4) of const integral or
9485     //   const enumeration type, see 9.4.2.
9486     //
9487     // C++11 [class.static.data]p3:
9488     //   If a non-volatile const static data member is of integral or
9489     //   enumeration type, its declaration in the class definition can
9490     //   specify a brace-or-equal-initializer in which every initalizer-clause
9491     //   that is an assignment-expression is a constant expression. A static
9492     //   data member of literal type can be declared in the class definition
9493     //   with the constexpr specifier; if so, its declaration shall specify a
9494     //   brace-or-equal-initializer in which every initializer-clause that is
9495     //   an assignment-expression is a constant expression.
9496 
9497     // Do nothing on dependent types.
9498     if (DclT->isDependentType()) {
9499 
9500     // Allow any 'static constexpr' members, whether or not they are of literal
9501     // type. We separately check that every constexpr variable is of literal
9502     // type.
9503     } else if (VDecl->isConstexpr()) {
9504 
9505     // Require constness.
9506     } else if (!DclT.isConstQualified()) {
9507       Diag(VDecl->getLocation(), diag::err_in_class_initializer_non_const)
9508         << Init->getSourceRange();
9509       VDecl->setInvalidDecl();
9510 
9511     // We allow integer constant expressions in all cases.
9512     } else if (DclT->isIntegralOrEnumerationType()) {
9513       // Check whether the expression is a constant expression.
9514       SourceLocation Loc;
9515       if (getLangOpts().CPlusPlus11 && DclT.isVolatileQualified())
9516         // In C++11, a non-constexpr const static data member with an
9517         // in-class initializer cannot be volatile.
9518         Diag(VDecl->getLocation(), diag::err_in_class_initializer_volatile);
9519       else if (Init->isValueDependent())
9520         ; // Nothing to check.
9521       else if (Init->isIntegerConstantExpr(Context, &Loc))
9522         ; // Ok, it's an ICE!
9523       else if (Init->isEvaluatable(Context)) {
9524         // If we can constant fold the initializer through heroics, accept it,
9525         // but report this as a use of an extension for -pedantic.
9526         Diag(Loc, diag::ext_in_class_initializer_non_constant)
9527           << Init->getSourceRange();
9528       } else {
9529         // Otherwise, this is some crazy unknown case.  Report the issue at the
9530         // location provided by the isIntegerConstantExpr failed check.
9531         Diag(Loc, diag::err_in_class_initializer_non_constant)
9532           << Init->getSourceRange();
9533         VDecl->setInvalidDecl();
9534       }
9535 
9536     // We allow foldable floating-point constants as an extension.
9537     } else if (DclT->isFloatingType()) { // also permits complex, which is ok
9538       // In C++98, this is a GNU extension. In C++11, it is not, but we support
9539       // it anyway and provide a fixit to add the 'constexpr'.
9540       if (getLangOpts().CPlusPlus11) {
9541         Diag(VDecl->getLocation(),
9542              diag::ext_in_class_initializer_float_type_cxx11)
9543             << DclT << Init->getSourceRange();
9544         Diag(VDecl->getLocStart(),
9545              diag::note_in_class_initializer_float_type_cxx11)
9546             << FixItHint::CreateInsertion(VDecl->getLocStart(), "constexpr ");
9547       } else {
9548         Diag(VDecl->getLocation(), diag::ext_in_class_initializer_float_type)
9549           << DclT << Init->getSourceRange();
9550 
9551         if (!Init->isValueDependent() && !Init->isEvaluatable(Context)) {
9552           Diag(Init->getExprLoc(), diag::err_in_class_initializer_non_constant)
9553             << Init->getSourceRange();
9554           VDecl->setInvalidDecl();
9555         }
9556       }
9557 
9558     // Suggest adding 'constexpr' in C++11 for literal types.
9559     } else if (getLangOpts().CPlusPlus11 && DclT->isLiteralType(Context)) {
9560       Diag(VDecl->getLocation(), diag::err_in_class_initializer_literal_type)
9561         << DclT << Init->getSourceRange()
9562         << FixItHint::CreateInsertion(VDecl->getLocStart(), "constexpr ");
9563       VDecl->setConstexpr(true);
9564 
9565     } else {
9566       Diag(VDecl->getLocation(), diag::err_in_class_initializer_bad_type)
9567         << DclT << Init->getSourceRange();
9568       VDecl->setInvalidDecl();
9569     }
9570   } else if (VDecl->isFileVarDecl()) {
9571     if (VDecl->getStorageClass() == SC_Extern &&
9572         (!getLangOpts().CPlusPlus ||
9573          !(Context.getBaseElementType(VDecl->getType()).isConstQualified() ||
9574            VDecl->isExternC())) &&
9575         !isTemplateInstantiation(VDecl->getTemplateSpecializationKind()))
9576       Diag(VDecl->getLocation(), diag::warn_extern_init);
9577 
9578     // C99 6.7.8p4. All file scoped initializers need to be constant.
9579     if (!getLangOpts().CPlusPlus && !VDecl->isInvalidDecl())
9580       CheckForConstantInitializer(Init, DclT);
9581   }
9582 
9583   // We will represent direct-initialization similarly to copy-initialization:
9584   //    int x(1);  -as-> int x = 1;
9585   //    ClassType x(a,b,c); -as-> ClassType x = ClassType(a,b,c);
9586   //
9587   // Clients that want to distinguish between the two forms, can check for
9588   // direct initializer using VarDecl::getInitStyle().
9589   // A major benefit is that clients that don't particularly care about which
9590   // exactly form was it (like the CodeGen) can handle both cases without
9591   // special case code.
9592 
9593   // C++ 8.5p11:
9594   // The form of initialization (using parentheses or '=') is generally
9595   // insignificant, but does matter when the entity being initialized has a
9596   // class type.
9597   if (CXXDirectInit) {
9598     assert(DirectInit && "Call-style initializer must be direct init.");
9599     VDecl->setInitStyle(VarDecl::CallInit);
9600   } else if (DirectInit) {
9601     // This must be list-initialization. No other way is direct-initialization.
9602     VDecl->setInitStyle(VarDecl::ListInit);
9603   }
9604 
9605   CheckCompleteVariableDeclaration(VDecl);
9606 }
9607 
9608 /// ActOnInitializerError - Given that there was an error parsing an
9609 /// initializer for the given declaration, try to return to some form
9610 /// of sanity.
ActOnInitializerError(Decl * D)9611 void Sema::ActOnInitializerError(Decl *D) {
9612   // Our main concern here is re-establishing invariants like "a
9613   // variable's type is either dependent or complete".
9614   if (!D || D->isInvalidDecl()) return;
9615 
9616   VarDecl *VD = dyn_cast<VarDecl>(D);
9617   if (!VD) return;
9618 
9619   // Auto types are meaningless if we can't make sense of the initializer.
9620   if (ParsingInitForAutoVars.count(D)) {
9621     D->setInvalidDecl();
9622     return;
9623   }
9624 
9625   QualType Ty = VD->getType();
9626   if (Ty->isDependentType()) return;
9627 
9628   // Require a complete type.
9629   if (RequireCompleteType(VD->getLocation(),
9630                           Context.getBaseElementType(Ty),
9631                           diag::err_typecheck_decl_incomplete_type)) {
9632     VD->setInvalidDecl();
9633     return;
9634   }
9635 
9636   // Require a non-abstract type.
9637   if (RequireNonAbstractType(VD->getLocation(), Ty,
9638                              diag::err_abstract_type_in_decl,
9639                              AbstractVariableType)) {
9640     VD->setInvalidDecl();
9641     return;
9642   }
9643 
9644   // Don't bother complaining about constructors or destructors,
9645   // though.
9646 }
9647 
ActOnUninitializedDecl(Decl * RealDecl,bool TypeMayContainAuto)9648 void Sema::ActOnUninitializedDecl(Decl *RealDecl,
9649                                   bool TypeMayContainAuto) {
9650   // If there is no declaration, there was an error parsing it. Just ignore it.
9651   if (!RealDecl)
9652     return;
9653 
9654   if (VarDecl *Var = dyn_cast<VarDecl>(RealDecl)) {
9655     QualType Type = Var->getType();
9656 
9657     // C++11 [dcl.spec.auto]p3
9658     if (TypeMayContainAuto && Type->getContainedAutoType()) {
9659       Diag(Var->getLocation(), diag::err_auto_var_requires_init)
9660         << Var->getDeclName() << Type;
9661       Var->setInvalidDecl();
9662       return;
9663     }
9664 
9665     // C++11 [class.static.data]p3: A static data member can be declared with
9666     // the constexpr specifier; if so, its declaration shall specify
9667     // a brace-or-equal-initializer.
9668     // C++11 [dcl.constexpr]p1: The constexpr specifier shall be applied only to
9669     // the definition of a variable [...] or the declaration of a static data
9670     // member.
9671     if (Var->isConstexpr() && !Var->isThisDeclarationADefinition()) {
9672       if (Var->isStaticDataMember())
9673         Diag(Var->getLocation(),
9674              diag::err_constexpr_static_mem_var_requires_init)
9675           << Var->getDeclName();
9676       else
9677         Diag(Var->getLocation(), diag::err_invalid_constexpr_var_decl);
9678       Var->setInvalidDecl();
9679       return;
9680     }
9681 
9682     // C++ Concepts TS [dcl.spec.concept]p1: [...]  A variable template
9683     // definition having the concept specifier is called a variable concept. A
9684     // concept definition refers to [...] a variable concept and its initializer.
9685     if (Var->isConcept()) {
9686       Diag(Var->getLocation(), diag::err_var_concept_not_initialized);
9687       Var->setInvalidDecl();
9688       return;
9689     }
9690 
9691     // OpenCL v1.1 s6.5.3: variables declared in the constant address space must
9692     // be initialized.
9693     if (!Var->isInvalidDecl() &&
9694         Var->getType().getAddressSpace() == LangAS::opencl_constant &&
9695         Var->getStorageClass() != SC_Extern && !Var->getInit()) {
9696       Diag(Var->getLocation(), diag::err_opencl_constant_no_init);
9697       Var->setInvalidDecl();
9698       return;
9699     }
9700 
9701     switch (Var->isThisDeclarationADefinition()) {
9702     case VarDecl::Definition:
9703       if (!Var->isStaticDataMember() || !Var->getAnyInitializer())
9704         break;
9705 
9706       // We have an out-of-line definition of a static data member
9707       // that has an in-class initializer, so we type-check this like
9708       // a declaration.
9709       //
9710       // Fall through
9711 
9712     case VarDecl::DeclarationOnly:
9713       // It's only a declaration.
9714 
9715       // Block scope. C99 6.7p7: If an identifier for an object is
9716       // declared with no linkage (C99 6.2.2p6), the type for the
9717       // object shall be complete.
9718       if (!Type->isDependentType() && Var->isLocalVarDecl() &&
9719           !Var->hasLinkage() && !Var->isInvalidDecl() &&
9720           RequireCompleteType(Var->getLocation(), Type,
9721                               diag::err_typecheck_decl_incomplete_type))
9722         Var->setInvalidDecl();
9723 
9724       // Make sure that the type is not abstract.
9725       if (!Type->isDependentType() && !Var->isInvalidDecl() &&
9726           RequireNonAbstractType(Var->getLocation(), Type,
9727                                  diag::err_abstract_type_in_decl,
9728                                  AbstractVariableType))
9729         Var->setInvalidDecl();
9730       if (!Type->isDependentType() && !Var->isInvalidDecl() &&
9731           Var->getStorageClass() == SC_PrivateExtern) {
9732         Diag(Var->getLocation(), diag::warn_private_extern);
9733         Diag(Var->getLocation(), diag::note_private_extern);
9734       }
9735 
9736       return;
9737 
9738     case VarDecl::TentativeDefinition:
9739       // File scope. C99 6.9.2p2: A declaration of an identifier for an
9740       // object that has file scope without an initializer, and without a
9741       // storage-class specifier or with the storage-class specifier "static",
9742       // constitutes a tentative definition. Note: A tentative definition with
9743       // external linkage is valid (C99 6.2.2p5).
9744       if (!Var->isInvalidDecl()) {
9745         if (const IncompleteArrayType *ArrayT
9746                                     = Context.getAsIncompleteArrayType(Type)) {
9747           if (RequireCompleteType(Var->getLocation(),
9748                                   ArrayT->getElementType(),
9749                                   diag::err_illegal_decl_array_incomplete_type))
9750             Var->setInvalidDecl();
9751         } else if (Var->getStorageClass() == SC_Static) {
9752           // C99 6.9.2p3: If the declaration of an identifier for an object is
9753           // a tentative definition and has internal linkage (C99 6.2.2p3), the
9754           // declared type shall not be an incomplete type.
9755           // NOTE: code such as the following
9756           //     static struct s;
9757           //     struct s { int a; };
9758           // is accepted by gcc. Hence here we issue a warning instead of
9759           // an error and we do not invalidate the static declaration.
9760           // NOTE: to avoid multiple warnings, only check the first declaration.
9761           if (Var->isFirstDecl())
9762             RequireCompleteType(Var->getLocation(), Type,
9763                                 diag::ext_typecheck_decl_incomplete_type);
9764         }
9765       }
9766 
9767       // Record the tentative definition; we're done.
9768       if (!Var->isInvalidDecl())
9769         TentativeDefinitions.push_back(Var);
9770       return;
9771     }
9772 
9773     // Provide a specific diagnostic for uninitialized variable
9774     // definitions with incomplete array type.
9775     if (Type->isIncompleteArrayType()) {
9776       Diag(Var->getLocation(),
9777            diag::err_typecheck_incomplete_array_needs_initializer);
9778       Var->setInvalidDecl();
9779       return;
9780     }
9781 
9782     // Provide a specific diagnostic for uninitialized variable
9783     // definitions with reference type.
9784     if (Type->isReferenceType()) {
9785       Diag(Var->getLocation(), diag::err_reference_var_requires_init)
9786         << Var->getDeclName()
9787         << SourceRange(Var->getLocation(), Var->getLocation());
9788       Var->setInvalidDecl();
9789       return;
9790     }
9791 
9792     // Do not attempt to type-check the default initializer for a
9793     // variable with dependent type.
9794     if (Type->isDependentType())
9795       return;
9796 
9797     if (Var->isInvalidDecl())
9798       return;
9799 
9800     if (!Var->hasAttr<AliasAttr>()) {
9801       if (RequireCompleteType(Var->getLocation(),
9802                               Context.getBaseElementType(Type),
9803                               diag::err_typecheck_decl_incomplete_type)) {
9804         Var->setInvalidDecl();
9805         return;
9806       }
9807     } else {
9808       return;
9809     }
9810 
9811     // The variable can not have an abstract class type.
9812     if (RequireNonAbstractType(Var->getLocation(), Type,
9813                                diag::err_abstract_type_in_decl,
9814                                AbstractVariableType)) {
9815       Var->setInvalidDecl();
9816       return;
9817     }
9818 
9819     // Check for jumps past the implicit initializer.  C++0x
9820     // clarifies that this applies to a "variable with automatic
9821     // storage duration", not a "local variable".
9822     // C++11 [stmt.dcl]p3
9823     //   A program that jumps from a point where a variable with automatic
9824     //   storage duration is not in scope to a point where it is in scope is
9825     //   ill-formed unless the variable has scalar type, class type with a
9826     //   trivial default constructor and a trivial destructor, a cv-qualified
9827     //   version of one of these types, or an array of one of the preceding
9828     //   types and is declared without an initializer.
9829     if (getLangOpts().CPlusPlus && Var->hasLocalStorage()) {
9830       if (const RecordType *Record
9831             = Context.getBaseElementType(Type)->getAs<RecordType>()) {
9832         CXXRecordDecl *CXXRecord = cast<CXXRecordDecl>(Record->getDecl());
9833         // Mark the function for further checking even if the looser rules of
9834         // C++11 do not require such checks, so that we can diagnose
9835         // incompatibilities with C++98.
9836         if (!CXXRecord->isPOD())
9837           getCurFunction()->setHasBranchProtectedScope();
9838       }
9839     }
9840 
9841     // C++03 [dcl.init]p9:
9842     //   If no initializer is specified for an object, and the
9843     //   object is of (possibly cv-qualified) non-POD class type (or
9844     //   array thereof), the object shall be default-initialized; if
9845     //   the object is of const-qualified type, the underlying class
9846     //   type shall have a user-declared default
9847     //   constructor. Otherwise, if no initializer is specified for
9848     //   a non- static object, the object and its subobjects, if
9849     //   any, have an indeterminate initial value); if the object
9850     //   or any of its subobjects are of const-qualified type, the
9851     //   program is ill-formed.
9852     // C++0x [dcl.init]p11:
9853     //   If no initializer is specified for an object, the object is
9854     //   default-initialized; [...].
9855     InitializedEntity Entity = InitializedEntity::InitializeVariable(Var);
9856     InitializationKind Kind
9857       = InitializationKind::CreateDefault(Var->getLocation());
9858 
9859     InitializationSequence InitSeq(*this, Entity, Kind, None);
9860     ExprResult Init = InitSeq.Perform(*this, Entity, Kind, None);
9861     if (Init.isInvalid())
9862       Var->setInvalidDecl();
9863     else if (Init.get()) {
9864       Var->setInit(MaybeCreateExprWithCleanups(Init.get()));
9865       // This is important for template substitution.
9866       Var->setInitStyle(VarDecl::CallInit);
9867     }
9868 
9869     CheckCompleteVariableDeclaration(Var);
9870   }
9871 }
9872 
ActOnCXXForRangeDecl(Decl * D)9873 void Sema::ActOnCXXForRangeDecl(Decl *D) {
9874   VarDecl *VD = dyn_cast<VarDecl>(D);
9875   if (!VD) {
9876     Diag(D->getLocation(), diag::err_for_range_decl_must_be_var);
9877     D->setInvalidDecl();
9878     return;
9879   }
9880 
9881   VD->setCXXForRangeDecl(true);
9882 
9883   // for-range-declaration cannot be given a storage class specifier.
9884   int Error = -1;
9885   switch (VD->getStorageClass()) {
9886   case SC_None:
9887     break;
9888   case SC_Extern:
9889     Error = 0;
9890     break;
9891   case SC_Static:
9892     Error = 1;
9893     break;
9894   case SC_PrivateExtern:
9895     Error = 2;
9896     break;
9897   case SC_Auto:
9898     Error = 3;
9899     break;
9900   case SC_Register:
9901     Error = 4;
9902     break;
9903   }
9904   if (Error != -1) {
9905     Diag(VD->getOuterLocStart(), diag::err_for_range_storage_class)
9906       << VD->getDeclName() << Error;
9907     D->setInvalidDecl();
9908   }
9909 }
9910 
9911 StmtResult
ActOnCXXForRangeIdentifier(Scope * S,SourceLocation IdentLoc,IdentifierInfo * Ident,ParsedAttributes & Attrs,SourceLocation AttrEnd)9912 Sema::ActOnCXXForRangeIdentifier(Scope *S, SourceLocation IdentLoc,
9913                                  IdentifierInfo *Ident,
9914                                  ParsedAttributes &Attrs,
9915                                  SourceLocation AttrEnd) {
9916   // C++1y [stmt.iter]p1:
9917   //   A range-based for statement of the form
9918   //      for ( for-range-identifier : for-range-initializer ) statement
9919   //   is equivalent to
9920   //      for ( auto&& for-range-identifier : for-range-initializer ) statement
9921   DeclSpec DS(Attrs.getPool().getFactory());
9922 
9923   const char *PrevSpec;
9924   unsigned DiagID;
9925   DS.SetTypeSpecType(DeclSpec::TST_auto, IdentLoc, PrevSpec, DiagID,
9926                      getPrintingPolicy());
9927 
9928   Declarator D(DS, Declarator::ForContext);
9929   D.SetIdentifier(Ident, IdentLoc);
9930   D.takeAttributes(Attrs, AttrEnd);
9931 
9932   ParsedAttributes EmptyAttrs(Attrs.getPool().getFactory());
9933   D.AddTypeInfo(DeclaratorChunk::getReference(0, IdentLoc, /*lvalue*/false),
9934                 EmptyAttrs, IdentLoc);
9935   Decl *Var = ActOnDeclarator(S, D);
9936   cast<VarDecl>(Var)->setCXXForRangeDecl(true);
9937   FinalizeDeclaration(Var);
9938   return ActOnDeclStmt(FinalizeDeclaratorGroup(S, DS, Var), IdentLoc,
9939                        AttrEnd.isValid() ? AttrEnd : IdentLoc);
9940 }
9941 
CheckCompleteVariableDeclaration(VarDecl * var)9942 void Sema::CheckCompleteVariableDeclaration(VarDecl *var) {
9943   if (var->isInvalidDecl()) return;
9944 
9945   // In Objective-C, don't allow jumps past the implicit initialization of a
9946   // local retaining variable.
9947   if (getLangOpts().ObjC1 &&
9948       var->hasLocalStorage()) {
9949     switch (var->getType().getObjCLifetime()) {
9950     case Qualifiers::OCL_None:
9951     case Qualifiers::OCL_ExplicitNone:
9952     case Qualifiers::OCL_Autoreleasing:
9953       break;
9954 
9955     case Qualifiers::OCL_Weak:
9956     case Qualifiers::OCL_Strong:
9957       getCurFunction()->setHasBranchProtectedScope();
9958       break;
9959     }
9960   }
9961 
9962   // Warn about externally-visible variables being defined without a
9963   // prior declaration.  We only want to do this for global
9964   // declarations, but we also specifically need to avoid doing it for
9965   // class members because the linkage of an anonymous class can
9966   // change if it's later given a typedef name.
9967   if (var->isThisDeclarationADefinition() &&
9968       var->getDeclContext()->getRedeclContext()->isFileContext() &&
9969       var->isExternallyVisible() && var->hasLinkage() &&
9970       !getDiagnostics().isIgnored(diag::warn_missing_variable_declarations,
9971                                   var->getLocation())) {
9972     // Find a previous declaration that's not a definition.
9973     VarDecl *prev = var->getPreviousDecl();
9974     while (prev && prev->isThisDeclarationADefinition())
9975       prev = prev->getPreviousDecl();
9976 
9977     if (!prev)
9978       Diag(var->getLocation(), diag::warn_missing_variable_declarations) << var;
9979   }
9980 
9981   if (var->getTLSKind() == VarDecl::TLS_Static) {
9982     const Expr *Culprit;
9983     if (var->getType().isDestructedType()) {
9984       // GNU C++98 edits for __thread, [basic.start.term]p3:
9985       //   The type of an object with thread storage duration shall not
9986       //   have a non-trivial destructor.
9987       Diag(var->getLocation(), diag::err_thread_nontrivial_dtor);
9988       if (getLangOpts().CPlusPlus11)
9989         Diag(var->getLocation(), diag::note_use_thread_local);
9990     } else if (getLangOpts().CPlusPlus && var->hasInit() &&
9991                !var->getInit()->isConstantInitializer(
9992                    Context, var->getType()->isReferenceType(), &Culprit)) {
9993       // GNU C++98 edits for __thread, [basic.start.init]p4:
9994       //   An object of thread storage duration shall not require dynamic
9995       //   initialization.
9996       // FIXME: Need strict checking here.
9997       Diag(Culprit->getExprLoc(), diag::err_thread_dynamic_init)
9998         << Culprit->getSourceRange();
9999       if (getLangOpts().CPlusPlus11)
10000         Diag(var->getLocation(), diag::note_use_thread_local);
10001     }
10002 
10003   }
10004 
10005   // Apply section attributes and pragmas to global variables.
10006   bool GlobalStorage = var->hasGlobalStorage();
10007   if (GlobalStorage && var->isThisDeclarationADefinition() &&
10008       ActiveTemplateInstantiations.empty()) {
10009     PragmaStack<StringLiteral *> *Stack = nullptr;
10010     int SectionFlags = ASTContext::PSF_Implicit | ASTContext::PSF_Read;
10011     if (var->getType().isConstQualified())
10012       Stack = &ConstSegStack;
10013     else if (!var->getInit()) {
10014       Stack = &BSSSegStack;
10015       SectionFlags |= ASTContext::PSF_Write;
10016     } else {
10017       Stack = &DataSegStack;
10018       SectionFlags |= ASTContext::PSF_Write;
10019     }
10020     if (Stack->CurrentValue && !var->hasAttr<SectionAttr>()) {
10021       var->addAttr(SectionAttr::CreateImplicit(
10022           Context, SectionAttr::Declspec_allocate,
10023           Stack->CurrentValue->getString(), Stack->CurrentPragmaLocation));
10024     }
10025     if (const SectionAttr *SA = var->getAttr<SectionAttr>())
10026       if (UnifySection(SA->getName(), SectionFlags, var))
10027         var->dropAttr<SectionAttr>();
10028 
10029     // Apply the init_seg attribute if this has an initializer.  If the
10030     // initializer turns out to not be dynamic, we'll end up ignoring this
10031     // attribute.
10032     if (CurInitSeg && var->getInit())
10033       var->addAttr(InitSegAttr::CreateImplicit(Context, CurInitSeg->getString(),
10034                                                CurInitSegLoc));
10035   }
10036 
10037   // All the following checks are C++ only.
10038   if (!getLangOpts().CPlusPlus) return;
10039 
10040   QualType type = var->getType();
10041   if (type->isDependentType()) return;
10042 
10043   // __block variables might require us to capture a copy-initializer.
10044   if (var->hasAttr<BlocksAttr>()) {
10045     // It's currently invalid to ever have a __block variable with an
10046     // array type; should we diagnose that here?
10047 
10048     // Regardless, we don't want to ignore array nesting when
10049     // constructing this copy.
10050     if (type->isStructureOrClassType()) {
10051       EnterExpressionEvaluationContext scope(*this, PotentiallyEvaluated);
10052       SourceLocation poi = var->getLocation();
10053       Expr *varRef =new (Context) DeclRefExpr(var, false, type, VK_LValue, poi);
10054       ExprResult result
10055         = PerformMoveOrCopyInitialization(
10056             InitializedEntity::InitializeBlock(poi, type, false),
10057             var, var->getType(), varRef, /*AllowNRVO=*/true);
10058       if (!result.isInvalid()) {
10059         result = MaybeCreateExprWithCleanups(result);
10060         Expr *init = result.getAs<Expr>();
10061         Context.setBlockVarCopyInits(var, init);
10062       }
10063     }
10064   }
10065 
10066   Expr *Init = var->getInit();
10067   bool IsGlobal = GlobalStorage && !var->isStaticLocal();
10068   QualType baseType = Context.getBaseElementType(type);
10069 
10070   if (!var->getDeclContext()->isDependentContext() &&
10071       Init && !Init->isValueDependent()) {
10072     if (IsGlobal && !var->isConstexpr() &&
10073         !getDiagnostics().isIgnored(diag::warn_global_constructor,
10074                                     var->getLocation())) {
10075       // Warn about globals which don't have a constant initializer.  Don't
10076       // warn about globals with a non-trivial destructor because we already
10077       // warned about them.
10078       CXXRecordDecl *RD = baseType->getAsCXXRecordDecl();
10079       if (!(RD && !RD->hasTrivialDestructor()) &&
10080           !Init->isConstantInitializer(Context, baseType->isReferenceType()))
10081         Diag(var->getLocation(), diag::warn_global_constructor)
10082           << Init->getSourceRange();
10083     }
10084 
10085     if (var->isConstexpr()) {
10086       SmallVector<PartialDiagnosticAt, 8> Notes;
10087       if (!var->evaluateValue(Notes) || !var->isInitICE()) {
10088         SourceLocation DiagLoc = var->getLocation();
10089         // If the note doesn't add any useful information other than a source
10090         // location, fold it into the primary diagnostic.
10091         if (Notes.size() == 1 && Notes[0].second.getDiagID() ==
10092               diag::note_invalid_subexpr_in_const_expr) {
10093           DiagLoc = Notes[0].first;
10094           Notes.clear();
10095         }
10096         Diag(DiagLoc, diag::err_constexpr_var_requires_const_init)
10097           << var << Init->getSourceRange();
10098         for (unsigned I = 0, N = Notes.size(); I != N; ++I)
10099           Diag(Notes[I].first, Notes[I].second);
10100       }
10101     } else if (var->isUsableInConstantExpressions(Context)) {
10102       // Check whether the initializer of a const variable of integral or
10103       // enumeration type is an ICE now, since we can't tell whether it was
10104       // initialized by a constant expression if we check later.
10105       var->checkInitIsICE();
10106     }
10107   }
10108 
10109   // Require the destructor.
10110   if (const RecordType *recordType = baseType->getAs<RecordType>())
10111     FinalizeVarWithDestructor(var, recordType);
10112 }
10113 
10114 /// \brief Determines if a variable's alignment is dependent.
hasDependentAlignment(VarDecl * VD)10115 static bool hasDependentAlignment(VarDecl *VD) {
10116   if (VD->getType()->isDependentType())
10117     return true;
10118   for (auto *I : VD->specific_attrs<AlignedAttr>())
10119     if (I->isAlignmentDependent())
10120       return true;
10121   return false;
10122 }
10123 
10124 /// FinalizeDeclaration - called by ParseDeclarationAfterDeclarator to perform
10125 /// any semantic actions necessary after any initializer has been attached.
10126 void
FinalizeDeclaration(Decl * ThisDecl)10127 Sema::FinalizeDeclaration(Decl *ThisDecl) {
10128   // Note that we are no longer parsing the initializer for this declaration.
10129   ParsingInitForAutoVars.erase(ThisDecl);
10130 
10131   VarDecl *VD = dyn_cast_or_null<VarDecl>(ThisDecl);
10132   if (!VD)
10133     return;
10134 
10135   checkAttributesAfterMerging(*this, *VD);
10136 
10137   // Perform TLS alignment check here after attributes attached to the variable
10138   // which may affect the alignment have been processed. Only perform the check
10139   // if the target has a maximum TLS alignment (zero means no constraints).
10140   if (unsigned MaxAlign = Context.getTargetInfo().getMaxTLSAlign()) {
10141     // Protect the check so that it's not performed on dependent types and
10142     // dependent alignments (we can't determine the alignment in that case).
10143     if (VD->getTLSKind() && !hasDependentAlignment(VD)) {
10144       CharUnits MaxAlignChars = Context.toCharUnitsFromBits(MaxAlign);
10145       if (Context.getDeclAlign(VD) > MaxAlignChars) {
10146         Diag(VD->getLocation(), diag::err_tls_var_aligned_over_maximum)
10147           << (unsigned)Context.getDeclAlign(VD).getQuantity() << VD
10148           << (unsigned)MaxAlignChars.getQuantity();
10149       }
10150     }
10151   }
10152 
10153   // Static locals inherit dll attributes from their function.
10154   if (VD->isStaticLocal()) {
10155     if (FunctionDecl *FD =
10156             dyn_cast_or_null<FunctionDecl>(VD->getParentFunctionOrMethod())) {
10157       if (Attr *A = getDLLAttr(FD)) {
10158         auto *NewAttr = cast<InheritableAttr>(A->clone(getASTContext()));
10159         NewAttr->setInherited(true);
10160         VD->addAttr(NewAttr);
10161       }
10162     }
10163   }
10164 
10165   // Grab the dllimport or dllexport attribute off of the VarDecl.
10166   const InheritableAttr *DLLAttr = getDLLAttr(VD);
10167 
10168   // Imported static data members cannot be defined out-of-line.
10169   if (const auto *IA = dyn_cast_or_null<DLLImportAttr>(DLLAttr)) {
10170     if (VD->isStaticDataMember() && VD->isOutOfLine() &&
10171         VD->isThisDeclarationADefinition()) {
10172       // We allow definitions of dllimport class template static data members
10173       // with a warning.
10174       CXXRecordDecl *Context =
10175         cast<CXXRecordDecl>(VD->getFirstDecl()->getDeclContext());
10176       bool IsClassTemplateMember =
10177           isa<ClassTemplatePartialSpecializationDecl>(Context) ||
10178           Context->getDescribedClassTemplate();
10179 
10180       Diag(VD->getLocation(),
10181            IsClassTemplateMember
10182                ? diag::warn_attribute_dllimport_static_field_definition
10183                : diag::err_attribute_dllimport_static_field_definition);
10184       Diag(IA->getLocation(), diag::note_attribute);
10185       if (!IsClassTemplateMember)
10186         VD->setInvalidDecl();
10187     }
10188   }
10189 
10190   // dllimport/dllexport variables cannot be thread local, their TLS index
10191   // isn't exported with the variable.
10192   if (DLLAttr && VD->getTLSKind()) {
10193     auto *F = dyn_cast_or_null<FunctionDecl>(VD->getParentFunctionOrMethod());
10194     if (F && getDLLAttr(F)) {
10195       assert(VD->isStaticLocal());
10196       // But if this is a static local in a dlimport/dllexport function, the
10197       // function will never be inlined, which means the var would never be
10198       // imported, so having it marked import/export is safe.
10199     } else {
10200       Diag(VD->getLocation(), diag::err_attribute_dll_thread_local) << VD
10201                                                                     << DLLAttr;
10202       VD->setInvalidDecl();
10203     }
10204   }
10205 
10206   if (UsedAttr *Attr = VD->getAttr<UsedAttr>()) {
10207     if (!Attr->isInherited() && !VD->isThisDeclarationADefinition()) {
10208       Diag(Attr->getLocation(), diag::warn_attribute_ignored) << Attr;
10209       VD->dropAttr<UsedAttr>();
10210     }
10211   }
10212 
10213   const DeclContext *DC = VD->getDeclContext();
10214   // If there's a #pragma GCC visibility in scope, and this isn't a class
10215   // member, set the visibility of this variable.
10216   if (DC->getRedeclContext()->isFileContext() && VD->isExternallyVisible())
10217     AddPushedVisibilityAttribute(VD);
10218 
10219   // FIXME: Warn on unused templates.
10220   if (VD->isFileVarDecl() && !VD->getDescribedVarTemplate() &&
10221       !isa<VarTemplatePartialSpecializationDecl>(VD))
10222     MarkUnusedFileScopedDecl(VD);
10223 
10224   // Now we have parsed the initializer and can update the table of magic
10225   // tag values.
10226   if (!VD->hasAttr<TypeTagForDatatypeAttr>() ||
10227       !VD->getType()->isIntegralOrEnumerationType())
10228     return;
10229 
10230   for (const auto *I : ThisDecl->specific_attrs<TypeTagForDatatypeAttr>()) {
10231     const Expr *MagicValueExpr = VD->getInit();
10232     if (!MagicValueExpr) {
10233       continue;
10234     }
10235     llvm::APSInt MagicValueInt;
10236     if (!MagicValueExpr->isIntegerConstantExpr(MagicValueInt, Context)) {
10237       Diag(I->getRange().getBegin(),
10238            diag::err_type_tag_for_datatype_not_ice)
10239         << LangOpts.CPlusPlus << MagicValueExpr->getSourceRange();
10240       continue;
10241     }
10242     if (MagicValueInt.getActiveBits() > 64) {
10243       Diag(I->getRange().getBegin(),
10244            diag::err_type_tag_for_datatype_too_large)
10245         << LangOpts.CPlusPlus << MagicValueExpr->getSourceRange();
10246       continue;
10247     }
10248     uint64_t MagicValue = MagicValueInt.getZExtValue();
10249     RegisterTypeTagForDatatype(I->getArgumentKind(),
10250                                MagicValue,
10251                                I->getMatchingCType(),
10252                                I->getLayoutCompatible(),
10253                                I->getMustBeNull());
10254   }
10255 }
10256 
FinalizeDeclaratorGroup(Scope * S,const DeclSpec & DS,ArrayRef<Decl * > Group)10257 Sema::DeclGroupPtrTy Sema::FinalizeDeclaratorGroup(Scope *S, const DeclSpec &DS,
10258                                                    ArrayRef<Decl *> Group) {
10259   SmallVector<Decl*, 8> Decls;
10260 
10261   if (DS.isTypeSpecOwned())
10262     Decls.push_back(DS.getRepAsDecl());
10263 
10264   DeclaratorDecl *FirstDeclaratorInGroup = nullptr;
10265   for (unsigned i = 0, e = Group.size(); i != e; ++i)
10266     if (Decl *D = Group[i]) {
10267       if (DeclaratorDecl *DD = dyn_cast<DeclaratorDecl>(D))
10268         if (!FirstDeclaratorInGroup)
10269           FirstDeclaratorInGroup = DD;
10270       Decls.push_back(D);
10271     }
10272 
10273   if (DeclSpec::isDeclRep(DS.getTypeSpecType())) {
10274     if (TagDecl *Tag = dyn_cast_or_null<TagDecl>(DS.getRepAsDecl())) {
10275       handleTagNumbering(Tag, S);
10276       if (FirstDeclaratorInGroup && !Tag->hasNameForLinkage() &&
10277           getLangOpts().CPlusPlus)
10278         Context.addDeclaratorForUnnamedTagDecl(Tag, FirstDeclaratorInGroup);
10279     }
10280   }
10281 
10282   return BuildDeclaratorGroup(Decls, DS.containsPlaceholderType());
10283 }
10284 
10285 /// BuildDeclaratorGroup - convert a list of declarations into a declaration
10286 /// group, performing any necessary semantic checking.
10287 Sema::DeclGroupPtrTy
BuildDeclaratorGroup(MutableArrayRef<Decl * > Group,bool TypeMayContainAuto)10288 Sema::BuildDeclaratorGroup(MutableArrayRef<Decl *> Group,
10289                            bool TypeMayContainAuto) {
10290   // C++0x [dcl.spec.auto]p7:
10291   //   If the type deduced for the template parameter U is not the same in each
10292   //   deduction, the program is ill-formed.
10293   // FIXME: When initializer-list support is added, a distinction is needed
10294   // between the deduced type U and the deduced type which 'auto' stands for.
10295   //   auto a = 0, b = { 1, 2, 3 };
10296   // is legal because the deduced type U is 'int' in both cases.
10297   if (TypeMayContainAuto && Group.size() > 1) {
10298     QualType Deduced;
10299     CanQualType DeducedCanon;
10300     VarDecl *DeducedDecl = nullptr;
10301     for (unsigned i = 0, e = Group.size(); i != e; ++i) {
10302       if (VarDecl *D = dyn_cast<VarDecl>(Group[i])) {
10303         AutoType *AT = D->getType()->getContainedAutoType();
10304         // Don't reissue diagnostics when instantiating a template.
10305         if (AT && D->isInvalidDecl())
10306           break;
10307         QualType U = AT ? AT->getDeducedType() : QualType();
10308         if (!U.isNull()) {
10309           CanQualType UCanon = Context.getCanonicalType(U);
10310           if (Deduced.isNull()) {
10311             Deduced = U;
10312             DeducedCanon = UCanon;
10313             DeducedDecl = D;
10314           } else if (DeducedCanon != UCanon) {
10315             Diag(D->getTypeSourceInfo()->getTypeLoc().getBeginLoc(),
10316                  diag::err_auto_different_deductions)
10317               << (unsigned)AT->getKeyword()
10318               << Deduced << DeducedDecl->getDeclName()
10319               << U << D->getDeclName()
10320               << DeducedDecl->getInit()->getSourceRange()
10321               << D->getInit()->getSourceRange();
10322             D->setInvalidDecl();
10323             break;
10324           }
10325         }
10326       }
10327     }
10328   }
10329 
10330   ActOnDocumentableDecls(Group);
10331 
10332   return DeclGroupPtrTy::make(
10333       DeclGroupRef::Create(Context, Group.data(), Group.size()));
10334 }
10335 
ActOnDocumentableDecl(Decl * D)10336 void Sema::ActOnDocumentableDecl(Decl *D) {
10337   ActOnDocumentableDecls(D);
10338 }
10339 
ActOnDocumentableDecls(ArrayRef<Decl * > Group)10340 void Sema::ActOnDocumentableDecls(ArrayRef<Decl *> Group) {
10341   // Don't parse the comment if Doxygen diagnostics are ignored.
10342   if (Group.empty() || !Group[0])
10343     return;
10344 
10345   if (Diags.isIgnored(diag::warn_doc_param_not_found,
10346                       Group[0]->getLocation()) &&
10347       Diags.isIgnored(diag::warn_unknown_comment_command_name,
10348                       Group[0]->getLocation()))
10349     return;
10350 
10351   if (Group.size() >= 2) {
10352     // This is a decl group.  Normally it will contain only declarations
10353     // produced from declarator list.  But in case we have any definitions or
10354     // additional declaration references:
10355     //   'typedef struct S {} S;'
10356     //   'typedef struct S *S;'
10357     //   'struct S *pS;'
10358     // FinalizeDeclaratorGroup adds these as separate declarations.
10359     Decl *MaybeTagDecl = Group[0];
10360     if (MaybeTagDecl && isa<TagDecl>(MaybeTagDecl)) {
10361       Group = Group.slice(1);
10362     }
10363   }
10364 
10365   // See if there are any new comments that are not attached to a decl.
10366   ArrayRef<RawComment *> Comments = Context.getRawCommentList().getComments();
10367   if (!Comments.empty() &&
10368       !Comments.back()->isAttached()) {
10369     // There is at least one comment that not attached to a decl.
10370     // Maybe it should be attached to one of these decls?
10371     //
10372     // Note that this way we pick up not only comments that precede the
10373     // declaration, but also comments that *follow* the declaration -- thanks to
10374     // the lookahead in the lexer: we've consumed the semicolon and looked
10375     // ahead through comments.
10376     for (unsigned i = 0, e = Group.size(); i != e; ++i)
10377       Context.getCommentForDecl(Group[i], &PP);
10378   }
10379 }
10380 
10381 /// ActOnParamDeclarator - Called from Parser::ParseFunctionDeclarator()
10382 /// to introduce parameters into function prototype scope.
ActOnParamDeclarator(Scope * S,Declarator & D)10383 Decl *Sema::ActOnParamDeclarator(Scope *S, Declarator &D) {
10384   const DeclSpec &DS = D.getDeclSpec();
10385 
10386   // Verify C99 6.7.5.3p2: The only SCS allowed is 'register'.
10387 
10388   // C++03 [dcl.stc]p2 also permits 'auto'.
10389   StorageClass SC = SC_None;
10390   if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
10391     SC = SC_Register;
10392   } else if (getLangOpts().CPlusPlus &&
10393              DS.getStorageClassSpec() == DeclSpec::SCS_auto) {
10394     SC = SC_Auto;
10395   } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) {
10396     Diag(DS.getStorageClassSpecLoc(),
10397          diag::err_invalid_storage_class_in_func_decl);
10398     D.getMutableDeclSpec().ClearStorageClassSpecs();
10399   }
10400 
10401   if (DeclSpec::TSCS TSCS = DS.getThreadStorageClassSpec())
10402     Diag(DS.getThreadStorageClassSpecLoc(), diag::err_invalid_thread)
10403       << DeclSpec::getSpecifierName(TSCS);
10404   if (DS.isConstexprSpecified())
10405     Diag(DS.getConstexprSpecLoc(), diag::err_invalid_constexpr)
10406       << 0;
10407   if (DS.isConceptSpecified())
10408     Diag(DS.getConceptSpecLoc(), diag::err_concept_wrong_decl_kind);
10409 
10410   DiagnoseFunctionSpecifiers(DS);
10411 
10412   TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
10413   QualType parmDeclType = TInfo->getType();
10414 
10415   if (getLangOpts().CPlusPlus) {
10416     // Check that there are no default arguments inside the type of this
10417     // parameter.
10418     CheckExtraCXXDefaultArguments(D);
10419 
10420     // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
10421     if (D.getCXXScopeSpec().isSet()) {
10422       Diag(D.getIdentifierLoc(), diag::err_qualified_param_declarator)
10423         << D.getCXXScopeSpec().getRange();
10424       D.getCXXScopeSpec().clear();
10425     }
10426   }
10427 
10428   // Ensure we have a valid name
10429   IdentifierInfo *II = nullptr;
10430   if (D.hasName()) {
10431     II = D.getIdentifier();
10432     if (!II) {
10433       Diag(D.getIdentifierLoc(), diag::err_bad_parameter_name)
10434         << GetNameForDeclarator(D).getName();
10435       D.setInvalidType(true);
10436     }
10437   }
10438 
10439   // Check for redeclaration of parameters, e.g. int foo(int x, int x);
10440   if (II) {
10441     LookupResult R(*this, II, D.getIdentifierLoc(), LookupOrdinaryName,
10442                    ForRedeclaration);
10443     LookupName(R, S);
10444     if (R.isSingleResult()) {
10445       NamedDecl *PrevDecl = R.getFoundDecl();
10446       if (PrevDecl->isTemplateParameter()) {
10447         // Maybe we will complain about the shadowed template parameter.
10448         DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
10449         // Just pretend that we didn't see the previous declaration.
10450         PrevDecl = nullptr;
10451       } else if (S->isDeclScope(PrevDecl)) {
10452         Diag(D.getIdentifierLoc(), diag::err_param_redefinition) << II;
10453         Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
10454 
10455         // Recover by removing the name
10456         II = nullptr;
10457         D.SetIdentifier(nullptr, D.getIdentifierLoc());
10458         D.setInvalidType(true);
10459       }
10460     }
10461   }
10462 
10463   // Temporarily put parameter variables in the translation unit, not
10464   // the enclosing context.  This prevents them from accidentally
10465   // looking like class members in C++.
10466   ParmVarDecl *New = CheckParameter(Context.getTranslationUnitDecl(),
10467                                     D.getLocStart(),
10468                                     D.getIdentifierLoc(), II,
10469                                     parmDeclType, TInfo,
10470                                     SC);
10471 
10472   if (D.isInvalidType())
10473     New->setInvalidDecl();
10474 
10475   assert(S->isFunctionPrototypeScope());
10476   assert(S->getFunctionPrototypeDepth() >= 1);
10477   New->setScopeInfo(S->getFunctionPrototypeDepth() - 1,
10478                     S->getNextFunctionPrototypeIndex());
10479 
10480   // Add the parameter declaration into this scope.
10481   S->AddDecl(New);
10482   if (II)
10483     IdResolver.AddDecl(New);
10484 
10485   ProcessDeclAttributes(S, New, D);
10486 
10487   if (D.getDeclSpec().isModulePrivateSpecified())
10488     Diag(New->getLocation(), diag::err_module_private_local)
10489       << 1 << New->getDeclName()
10490       << SourceRange(D.getDeclSpec().getModulePrivateSpecLoc())
10491       << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
10492 
10493   if (New->hasAttr<BlocksAttr>()) {
10494     Diag(New->getLocation(), diag::err_block_on_nonlocal);
10495   }
10496   return New;
10497 }
10498 
10499 /// \brief Synthesizes a variable for a parameter arising from a
10500 /// typedef.
BuildParmVarDeclForTypedef(DeclContext * DC,SourceLocation Loc,QualType T)10501 ParmVarDecl *Sema::BuildParmVarDeclForTypedef(DeclContext *DC,
10502                                               SourceLocation Loc,
10503                                               QualType T) {
10504   /* FIXME: setting StartLoc == Loc.
10505      Would it be worth to modify callers so as to provide proper source
10506      location for the unnamed parameters, embedding the parameter's type? */
10507   ParmVarDecl *Param = ParmVarDecl::Create(Context, DC, Loc, Loc, nullptr,
10508                                 T, Context.getTrivialTypeSourceInfo(T, Loc),
10509                                            SC_None, nullptr);
10510   Param->setImplicit();
10511   return Param;
10512 }
10513 
DiagnoseUnusedParameters(ParmVarDecl * const * Param,ParmVarDecl * const * ParamEnd)10514 void Sema::DiagnoseUnusedParameters(ParmVarDecl * const *Param,
10515                                     ParmVarDecl * const *ParamEnd) {
10516   // Don't diagnose unused-parameter errors in template instantiations; we
10517   // will already have done so in the template itself.
10518   if (!ActiveTemplateInstantiations.empty())
10519     return;
10520 
10521   for (; Param != ParamEnd; ++Param) {
10522     if (!(*Param)->isReferenced() && (*Param)->getDeclName() &&
10523         !(*Param)->hasAttr<UnusedAttr>()) {
10524       Diag((*Param)->getLocation(), diag::warn_unused_parameter)
10525         << (*Param)->getDeclName();
10526     }
10527   }
10528 }
10529 
DiagnoseSizeOfParametersAndReturnValue(ParmVarDecl * const * Param,ParmVarDecl * const * ParamEnd,QualType ReturnTy,NamedDecl * D)10530 void Sema::DiagnoseSizeOfParametersAndReturnValue(ParmVarDecl * const *Param,
10531                                                   ParmVarDecl * const *ParamEnd,
10532                                                   QualType ReturnTy,
10533                                                   NamedDecl *D) {
10534   if (LangOpts.NumLargeByValueCopy == 0) // No check.
10535     return;
10536 
10537   // Warn if the return value is pass-by-value and larger than the specified
10538   // threshold.
10539   if (!ReturnTy->isDependentType() && ReturnTy.isPODType(Context)) {
10540     unsigned Size = Context.getTypeSizeInChars(ReturnTy).getQuantity();
10541     if (Size > LangOpts.NumLargeByValueCopy)
10542       Diag(D->getLocation(), diag::warn_return_value_size)
10543           << D->getDeclName() << Size;
10544   }
10545 
10546   // Warn if any parameter is pass-by-value and larger than the specified
10547   // threshold.
10548   for (; Param != ParamEnd; ++Param) {
10549     QualType T = (*Param)->getType();
10550     if (T->isDependentType() || !T.isPODType(Context))
10551       continue;
10552     unsigned Size = Context.getTypeSizeInChars(T).getQuantity();
10553     if (Size > LangOpts.NumLargeByValueCopy)
10554       Diag((*Param)->getLocation(), diag::warn_parameter_size)
10555           << (*Param)->getDeclName() << Size;
10556   }
10557 }
10558 
CheckParameter(DeclContext * DC,SourceLocation StartLoc,SourceLocation NameLoc,IdentifierInfo * Name,QualType T,TypeSourceInfo * TSInfo,StorageClass SC)10559 ParmVarDecl *Sema::CheckParameter(DeclContext *DC, SourceLocation StartLoc,
10560                                   SourceLocation NameLoc, IdentifierInfo *Name,
10561                                   QualType T, TypeSourceInfo *TSInfo,
10562                                   StorageClass SC) {
10563   // In ARC, infer a lifetime qualifier for appropriate parameter types.
10564   if (getLangOpts().ObjCAutoRefCount &&
10565       T.getObjCLifetime() == Qualifiers::OCL_None &&
10566       T->isObjCLifetimeType()) {
10567 
10568     Qualifiers::ObjCLifetime lifetime;
10569 
10570     // Special cases for arrays:
10571     //   - if it's const, use __unsafe_unretained
10572     //   - otherwise, it's an error
10573     if (T->isArrayType()) {
10574       if (!T.isConstQualified()) {
10575         DelayedDiagnostics.add(
10576             sema::DelayedDiagnostic::makeForbiddenType(
10577             NameLoc, diag::err_arc_array_param_no_ownership, T, false));
10578       }
10579       lifetime = Qualifiers::OCL_ExplicitNone;
10580     } else {
10581       lifetime = T->getObjCARCImplicitLifetime();
10582     }
10583     T = Context.getLifetimeQualifiedType(T, lifetime);
10584   }
10585 
10586   ParmVarDecl *New = ParmVarDecl::Create(Context, DC, StartLoc, NameLoc, Name,
10587                                          Context.getAdjustedParameterType(T),
10588                                          TSInfo, SC, nullptr);
10589 
10590   // Parameters can not be abstract class types.
10591   // For record types, this is done by the AbstractClassUsageDiagnoser once
10592   // the class has been completely parsed.
10593   if (!CurContext->isRecord() &&
10594       RequireNonAbstractType(NameLoc, T, diag::err_abstract_type_in_decl,
10595                              AbstractParamType))
10596     New->setInvalidDecl();
10597 
10598   // Parameter declarators cannot be interface types. All ObjC objects are
10599   // passed by reference.
10600   if (T->isObjCObjectType()) {
10601     SourceLocation TypeEndLoc = TSInfo->getTypeLoc().getLocEnd();
10602     Diag(NameLoc,
10603          diag::err_object_cannot_be_passed_returned_by_value) << 1 << T
10604       << FixItHint::CreateInsertion(TypeEndLoc, "*");
10605     T = Context.getObjCObjectPointerType(T);
10606     New->setType(T);
10607   }
10608 
10609   // ISO/IEC TR 18037 S6.7.3: "The type of an object with automatic storage
10610   // duration shall not be qualified by an address-space qualifier."
10611   // Since all parameters have automatic store duration, they can not have
10612   // an address space.
10613   if (T.getAddressSpace() != 0) {
10614     // OpenCL allows function arguments declared to be an array of a type
10615     // to be qualified with an address space.
10616     if (!(getLangOpts().OpenCL && T->isArrayType())) {
10617       Diag(NameLoc, diag::err_arg_with_address_space);
10618       New->setInvalidDecl();
10619     }
10620   }
10621 
10622   return New;
10623 }
10624 
ActOnFinishKNRParamDeclarations(Scope * S,Declarator & D,SourceLocation LocAfterDecls)10625 void Sema::ActOnFinishKNRParamDeclarations(Scope *S, Declarator &D,
10626                                            SourceLocation LocAfterDecls) {
10627   DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
10628 
10629   // Verify 6.9.1p6: 'every identifier in the identifier list shall be declared'
10630   // for a K&R function.
10631   if (!FTI.hasPrototype) {
10632     for (int i = FTI.NumParams; i != 0; /* decrement in loop */) {
10633       --i;
10634       if (FTI.Params[i].Param == nullptr) {
10635         SmallString<256> Code;
10636         llvm::raw_svector_ostream(Code)
10637             << "  int " << FTI.Params[i].Ident->getName() << ";\n";
10638         Diag(FTI.Params[i].IdentLoc, diag::ext_param_not_declared)
10639             << FTI.Params[i].Ident
10640             << FixItHint::CreateInsertion(LocAfterDecls, Code);
10641 
10642         // Implicitly declare the argument as type 'int' for lack of a better
10643         // type.
10644         AttributeFactory attrs;
10645         DeclSpec DS(attrs);
10646         const char* PrevSpec; // unused
10647         unsigned DiagID; // unused
10648         DS.SetTypeSpecType(DeclSpec::TST_int, FTI.Params[i].IdentLoc, PrevSpec,
10649                            DiagID, Context.getPrintingPolicy());
10650         // Use the identifier location for the type source range.
10651         DS.SetRangeStart(FTI.Params[i].IdentLoc);
10652         DS.SetRangeEnd(FTI.Params[i].IdentLoc);
10653         Declarator ParamD(DS, Declarator::KNRTypeListContext);
10654         ParamD.SetIdentifier(FTI.Params[i].Ident, FTI.Params[i].IdentLoc);
10655         FTI.Params[i].Param = ActOnParamDeclarator(S, ParamD);
10656       }
10657     }
10658   }
10659 }
10660 
10661 Decl *
ActOnStartOfFunctionDef(Scope * FnBodyScope,Declarator & D,MultiTemplateParamsArg TemplateParameterLists,SkipBodyInfo * SkipBody)10662 Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, Declarator &D,
10663                               MultiTemplateParamsArg TemplateParameterLists,
10664                               SkipBodyInfo *SkipBody) {
10665   assert(getCurFunctionDecl() == nullptr && "Function parsing confused");
10666   assert(D.isFunctionDeclarator() && "Not a function declarator!");
10667   Scope *ParentScope = FnBodyScope->getParent();
10668 
10669   D.setFunctionDefinitionKind(FDK_Definition);
10670   Decl *DP = HandleDeclarator(ParentScope, D, TemplateParameterLists);
10671   return ActOnStartOfFunctionDef(FnBodyScope, DP, SkipBody);
10672 }
10673 
ActOnFinishInlineMethodDef(CXXMethodDecl * D)10674 void Sema::ActOnFinishInlineMethodDef(CXXMethodDecl *D) {
10675   Consumer.HandleInlineMethodDefinition(D);
10676 }
10677 
ShouldWarnAboutMissingPrototype(const FunctionDecl * FD,const FunctionDecl * & PossibleZeroParamPrototype)10678 static bool ShouldWarnAboutMissingPrototype(const FunctionDecl *FD,
10679                              const FunctionDecl*& PossibleZeroParamPrototype) {
10680   // Don't warn about invalid declarations.
10681   if (FD->isInvalidDecl())
10682     return false;
10683 
10684   // Or declarations that aren't global.
10685   if (!FD->isGlobal())
10686     return false;
10687 
10688   // Don't warn about C++ member functions.
10689   if (isa<CXXMethodDecl>(FD))
10690     return false;
10691 
10692   // Don't warn about 'main'.
10693   if (FD->isMain())
10694     return false;
10695 
10696   // Don't warn about inline functions.
10697   if (FD->isInlined())
10698     return false;
10699 
10700   // Don't warn about function templates.
10701   if (FD->getDescribedFunctionTemplate())
10702     return false;
10703 
10704   // Don't warn about function template specializations.
10705   if (FD->isFunctionTemplateSpecialization())
10706     return false;
10707 
10708   // Don't warn for OpenCL kernels.
10709   if (FD->hasAttr<OpenCLKernelAttr>())
10710     return false;
10711 
10712   // Don't warn on explicitly deleted functions.
10713   if (FD->isDeleted())
10714     return false;
10715 
10716   bool MissingPrototype = true;
10717   for (const FunctionDecl *Prev = FD->getPreviousDecl();
10718        Prev; Prev = Prev->getPreviousDecl()) {
10719     // Ignore any declarations that occur in function or method
10720     // scope, because they aren't visible from the header.
10721     if (Prev->getLexicalDeclContext()->isFunctionOrMethod())
10722       continue;
10723 
10724     MissingPrototype = !Prev->getType()->isFunctionProtoType();
10725     if (FD->getNumParams() == 0)
10726       PossibleZeroParamPrototype = Prev;
10727     break;
10728   }
10729 
10730   return MissingPrototype;
10731 }
10732 
10733 void
CheckForFunctionRedefinition(FunctionDecl * FD,const FunctionDecl * EffectiveDefinition,SkipBodyInfo * SkipBody)10734 Sema::CheckForFunctionRedefinition(FunctionDecl *FD,
10735                                    const FunctionDecl *EffectiveDefinition,
10736                                    SkipBodyInfo *SkipBody) {
10737   // Don't complain if we're in GNU89 mode and the previous definition
10738   // was an extern inline function.
10739   const FunctionDecl *Definition = EffectiveDefinition;
10740   if (!Definition)
10741     if (!FD->isDefined(Definition))
10742       return;
10743 
10744   if (canRedefineFunction(Definition, getLangOpts()))
10745     return;
10746 
10747   // If we don't have a visible definition of the function, and it's inline or
10748   // a template, skip the new definition.
10749   if (SkipBody && !hasVisibleDefinition(Definition) &&
10750       (Definition->getFormalLinkage() == InternalLinkage ||
10751        Definition->isInlined() ||
10752        Definition->getDescribedFunctionTemplate() ||
10753        Definition->getNumTemplateParameterLists())) {
10754     SkipBody->ShouldSkip = true;
10755     if (auto *TD = Definition->getDescribedFunctionTemplate())
10756       makeMergedDefinitionVisible(TD, FD->getLocation());
10757     else
10758       makeMergedDefinitionVisible(const_cast<FunctionDecl*>(Definition),
10759                                   FD->getLocation());
10760     return;
10761   }
10762 
10763   if (getLangOpts().GNUMode && Definition->isInlineSpecified() &&
10764       Definition->getStorageClass() == SC_Extern)
10765     Diag(FD->getLocation(), diag::err_redefinition_extern_inline)
10766         << FD->getDeclName() << getLangOpts().CPlusPlus;
10767   else
10768     Diag(FD->getLocation(), diag::err_redefinition) << FD->getDeclName();
10769 
10770   Diag(Definition->getLocation(), diag::note_previous_definition);
10771   FD->setInvalidDecl();
10772 }
10773 
10774 
RebuildLambdaScopeInfo(CXXMethodDecl * CallOperator,Sema & S)10775 static void RebuildLambdaScopeInfo(CXXMethodDecl *CallOperator,
10776                                    Sema &S) {
10777   CXXRecordDecl *const LambdaClass = CallOperator->getParent();
10778 
10779   LambdaScopeInfo *LSI = S.PushLambdaScope();
10780   LSI->CallOperator = CallOperator;
10781   LSI->Lambda = LambdaClass;
10782   LSI->ReturnType = CallOperator->getReturnType();
10783   const LambdaCaptureDefault LCD = LambdaClass->getLambdaCaptureDefault();
10784 
10785   if (LCD == LCD_None)
10786     LSI->ImpCaptureStyle = CapturingScopeInfo::ImpCap_None;
10787   else if (LCD == LCD_ByCopy)
10788     LSI->ImpCaptureStyle = CapturingScopeInfo::ImpCap_LambdaByval;
10789   else if (LCD == LCD_ByRef)
10790     LSI->ImpCaptureStyle = CapturingScopeInfo::ImpCap_LambdaByref;
10791   DeclarationNameInfo DNI = CallOperator->getNameInfo();
10792 
10793   LSI->IntroducerRange = DNI.getCXXOperatorNameRange();
10794   LSI->Mutable = !CallOperator->isConst();
10795 
10796   // Add the captures to the LSI so they can be noted as already
10797   // captured within tryCaptureVar.
10798   auto I = LambdaClass->field_begin();
10799   for (const auto &C : LambdaClass->captures()) {
10800     if (C.capturesVariable()) {
10801       VarDecl *VD = C.getCapturedVar();
10802       if (VD->isInitCapture())
10803         S.CurrentInstantiationScope->InstantiatedLocal(VD, VD);
10804       QualType CaptureType = VD->getType();
10805       const bool ByRef = C.getCaptureKind() == LCK_ByRef;
10806       LSI->addCapture(VD, /*IsBlock*/false, ByRef,
10807           /*RefersToEnclosingVariableOrCapture*/true, C.getLocation(),
10808           /*EllipsisLoc*/C.isPackExpansion()
10809                          ? C.getEllipsisLoc() : SourceLocation(),
10810           CaptureType, /*Expr*/ nullptr);
10811 
10812     } else if (C.capturesThis()) {
10813       LSI->addThisCapture(/*Nested*/ false, C.getLocation(),
10814                               S.getCurrentThisType(), /*Expr*/ nullptr);
10815     } else {
10816       LSI->addVLATypeCapture(C.getLocation(), I->getType());
10817     }
10818     ++I;
10819   }
10820 }
10821 
ActOnStartOfFunctionDef(Scope * FnBodyScope,Decl * D,SkipBodyInfo * SkipBody)10822 Decl *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, Decl *D,
10823                                     SkipBodyInfo *SkipBody) {
10824   // Clear the last template instantiation error context.
10825   LastTemplateInstantiationErrorContext = ActiveTemplateInstantiation();
10826 
10827   if (!D)
10828     return D;
10829   FunctionDecl *FD = nullptr;
10830 
10831   if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(D))
10832     FD = FunTmpl->getTemplatedDecl();
10833   else
10834     FD = cast<FunctionDecl>(D);
10835 
10836   // See if this is a redefinition.
10837   if (!FD->isLateTemplateParsed()) {
10838     CheckForFunctionRedefinition(FD, nullptr, SkipBody);
10839 
10840     // If we're skipping the body, we're done. Don't enter the scope.
10841     if (SkipBody && SkipBody->ShouldSkip)
10842       return D;
10843   }
10844 
10845   // If we are instantiating a generic lambda call operator, push
10846   // a LambdaScopeInfo onto the function stack.  But use the information
10847   // that's already been calculated (ActOnLambdaExpr) to prime the current
10848   // LambdaScopeInfo.
10849   // When the template operator is being specialized, the LambdaScopeInfo,
10850   // has to be properly restored so that tryCaptureVariable doesn't try
10851   // and capture any new variables. In addition when calculating potential
10852   // captures during transformation of nested lambdas, it is necessary to
10853   // have the LSI properly restored.
10854   if (isGenericLambdaCallOperatorSpecialization(FD)) {
10855     assert(ActiveTemplateInstantiations.size() &&
10856       "There should be an active template instantiation on the stack "
10857       "when instantiating a generic lambda!");
10858     RebuildLambdaScopeInfo(cast<CXXMethodDecl>(D), *this);
10859   }
10860   else
10861     // Enter a new function scope
10862     PushFunctionScope();
10863 
10864   // Builtin functions cannot be defined.
10865   if (unsigned BuiltinID = FD->getBuiltinID()) {
10866     if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID) &&
10867         !Context.BuiltinInfo.isPredefinedRuntimeFunction(BuiltinID)) {
10868       Diag(FD->getLocation(), diag::err_builtin_definition) << FD;
10869       FD->setInvalidDecl();
10870     }
10871   }
10872 
10873   // The return type of a function definition must be complete
10874   // (C99 6.9.1p3, C++ [dcl.fct]p6).
10875   QualType ResultType = FD->getReturnType();
10876   if (!ResultType->isDependentType() && !ResultType->isVoidType() &&
10877       !FD->isInvalidDecl() &&
10878       RequireCompleteType(FD->getLocation(), ResultType,
10879                           diag::err_func_def_incomplete_result))
10880     FD->setInvalidDecl();
10881 
10882   if (FnBodyScope)
10883     PushDeclContext(FnBodyScope, FD);
10884 
10885   // Check the validity of our function parameters
10886   CheckParmsForFunctionDef(FD->param_begin(), FD->param_end(),
10887                            /*CheckParameterNames=*/true);
10888 
10889   // Introduce our parameters into the function scope
10890   for (auto Param : FD->params()) {
10891     Param->setOwningFunction(FD);
10892 
10893     // If this has an identifier, add it to the scope stack.
10894     if (Param->getIdentifier() && FnBodyScope) {
10895       CheckShadow(FnBodyScope, Param);
10896 
10897       PushOnScopeChains(Param, FnBodyScope);
10898     }
10899   }
10900 
10901   // If we had any tags defined in the function prototype,
10902   // introduce them into the function scope.
10903   if (FnBodyScope) {
10904     for (ArrayRef<NamedDecl *>::iterator
10905              I = FD->getDeclsInPrototypeScope().begin(),
10906              E = FD->getDeclsInPrototypeScope().end();
10907          I != E; ++I) {
10908       NamedDecl *D = *I;
10909 
10910       // Some of these decls (like enums) may have been pinned to the
10911       // translation unit for lack of a real context earlier. If so, remove
10912       // from the translation unit and reattach to the current context.
10913       if (D->getLexicalDeclContext() == Context.getTranslationUnitDecl()) {
10914         // Is the decl actually in the context?
10915         for (const auto *DI : Context.getTranslationUnitDecl()->decls()) {
10916           if (DI == D) {
10917             Context.getTranslationUnitDecl()->removeDecl(D);
10918             break;
10919           }
10920         }
10921         // Either way, reassign the lexical decl context to our FunctionDecl.
10922         D->setLexicalDeclContext(CurContext);
10923       }
10924 
10925       // If the decl has a non-null name, make accessible in the current scope.
10926       if (!D->getName().empty())
10927         PushOnScopeChains(D, FnBodyScope, /*AddToContext=*/false);
10928 
10929       // Similarly, dive into enums and fish their constants out, making them
10930       // accessible in this scope.
10931       if (auto *ED = dyn_cast<EnumDecl>(D)) {
10932         for (auto *EI : ED->enumerators())
10933           PushOnScopeChains(EI, FnBodyScope, /*AddToContext=*/false);
10934       }
10935     }
10936   }
10937 
10938   // Ensure that the function's exception specification is instantiated.
10939   if (const FunctionProtoType *FPT = FD->getType()->getAs<FunctionProtoType>())
10940     ResolveExceptionSpec(D->getLocation(), FPT);
10941 
10942   // dllimport cannot be applied to non-inline function definitions.
10943   if (FD->hasAttr<DLLImportAttr>() && !FD->isInlined() &&
10944       !FD->isTemplateInstantiation()) {
10945     assert(!FD->hasAttr<DLLExportAttr>());
10946     Diag(FD->getLocation(), diag::err_attribute_dllimport_function_definition);
10947     FD->setInvalidDecl();
10948     return D;
10949   }
10950   // We want to attach documentation to original Decl (which might be
10951   // a function template).
10952   ActOnDocumentableDecl(D);
10953   if (getCurLexicalContext()->isObjCContainer() &&
10954       getCurLexicalContext()->getDeclKind() != Decl::ObjCCategoryImpl &&
10955       getCurLexicalContext()->getDeclKind() != Decl::ObjCImplementation)
10956     Diag(FD->getLocation(), diag::warn_function_def_in_objc_container);
10957 
10958   return D;
10959 }
10960 
10961 /// \brief Given the set of return statements within a function body,
10962 /// compute the variables that are subject to the named return value
10963 /// optimization.
10964 ///
10965 /// Each of the variables that is subject to the named return value
10966 /// optimization will be marked as NRVO variables in the AST, and any
10967 /// return statement that has a marked NRVO variable as its NRVO candidate can
10968 /// use the named return value optimization.
10969 ///
10970 /// This function applies a very simplistic algorithm for NRVO: if every return
10971 /// statement in the scope of a variable has the same NRVO candidate, that
10972 /// candidate is an NRVO variable.
computeNRVO(Stmt * Body,FunctionScopeInfo * Scope)10973 void Sema::computeNRVO(Stmt *Body, FunctionScopeInfo *Scope) {
10974   ReturnStmt **Returns = Scope->Returns.data();
10975 
10976   for (unsigned I = 0, E = Scope->Returns.size(); I != E; ++I) {
10977     if (const VarDecl *NRVOCandidate = Returns[I]->getNRVOCandidate()) {
10978       if (!NRVOCandidate->isNRVOVariable())
10979         Returns[I]->setNRVOCandidate(nullptr);
10980     }
10981   }
10982 }
10983 
canDelayFunctionBody(const Declarator & D)10984 bool Sema::canDelayFunctionBody(const Declarator &D) {
10985   // We can't delay parsing the body of a constexpr function template (yet).
10986   if (D.getDeclSpec().isConstexprSpecified())
10987     return false;
10988 
10989   // We can't delay parsing the body of a function template with a deduced
10990   // return type (yet).
10991   if (D.getDeclSpec().containsPlaceholderType()) {
10992     // If the placeholder introduces a non-deduced trailing return type,
10993     // we can still delay parsing it.
10994     if (D.getNumTypeObjects()) {
10995       const auto &Outer = D.getTypeObject(D.getNumTypeObjects() - 1);
10996       if (Outer.Kind == DeclaratorChunk::Function &&
10997           Outer.Fun.hasTrailingReturnType()) {
10998         QualType Ty = GetTypeFromParser(Outer.Fun.getTrailingReturnType());
10999         return Ty.isNull() || !Ty->isUndeducedType();
11000       }
11001     }
11002     return false;
11003   }
11004 
11005   return true;
11006 }
11007 
canSkipFunctionBody(Decl * D)11008 bool Sema::canSkipFunctionBody(Decl *D) {
11009   // We cannot skip the body of a function (or function template) which is
11010   // constexpr, since we may need to evaluate its body in order to parse the
11011   // rest of the file.
11012   // We cannot skip the body of a function with an undeduced return type,
11013   // because any callers of that function need to know the type.
11014   if (const FunctionDecl *FD = D->getAsFunction())
11015     if (FD->isConstexpr() || FD->getReturnType()->isUndeducedType())
11016       return false;
11017   return Consumer.shouldSkipFunctionBody(D);
11018 }
11019 
ActOnSkippedFunctionBody(Decl * Decl)11020 Decl *Sema::ActOnSkippedFunctionBody(Decl *Decl) {
11021   if (FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(Decl))
11022     FD->setHasSkippedBody();
11023   else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(Decl))
11024     MD->setHasSkippedBody();
11025   return ActOnFinishFunctionBody(Decl, nullptr);
11026 }
11027 
ActOnFinishFunctionBody(Decl * D,Stmt * BodyArg)11028 Decl *Sema::ActOnFinishFunctionBody(Decl *D, Stmt *BodyArg) {
11029   return ActOnFinishFunctionBody(D, BodyArg, false);
11030 }
11031 
ActOnFinishFunctionBody(Decl * dcl,Stmt * Body,bool IsInstantiation)11032 Decl *Sema::ActOnFinishFunctionBody(Decl *dcl, Stmt *Body,
11033                                     bool IsInstantiation) {
11034   FunctionDecl *FD = dcl ? dcl->getAsFunction() : nullptr;
11035 
11036   sema::AnalysisBasedWarnings::Policy WP = AnalysisWarnings.getDefaultPolicy();
11037   sema::AnalysisBasedWarnings::Policy *ActivePolicy = nullptr;
11038 
11039   if (getLangOpts().Coroutines && !getCurFunction()->CoroutineStmts.empty())
11040     CheckCompletedCoroutineBody(FD, Body);
11041 
11042   if (FD) {
11043     FD->setBody(Body);
11044 
11045     if (getLangOpts().CPlusPlus14 && !FD->isInvalidDecl() && Body &&
11046         !FD->isDependentContext() && FD->getReturnType()->isUndeducedType()) {
11047       // If the function has a deduced result type but contains no 'return'
11048       // statements, the result type as written must be exactly 'auto', and
11049       // the deduced result type is 'void'.
11050       if (!FD->getReturnType()->getAs<AutoType>()) {
11051         Diag(dcl->getLocation(), diag::err_auto_fn_no_return_but_not_auto)
11052             << FD->getReturnType();
11053         FD->setInvalidDecl();
11054       } else {
11055         // Substitute 'void' for the 'auto' in the type.
11056         TypeLoc ResultType = getReturnTypeLoc(FD);
11057         Context.adjustDeducedFunctionResultType(
11058             FD, SubstAutoType(ResultType.getType(), Context.VoidTy));
11059       }
11060     } else if (getLangOpts().CPlusPlus11 && isLambdaCallOperator(FD)) {
11061       auto *LSI = getCurLambda();
11062       if (LSI->HasImplicitReturnType) {
11063         deduceClosureReturnType(*LSI);
11064 
11065         // C++11 [expr.prim.lambda]p4:
11066         //   [...] if there are no return statements in the compound-statement
11067         //   [the deduced type is] the type void
11068         QualType RetType =
11069             LSI->ReturnType.isNull() ? Context.VoidTy : LSI->ReturnType;
11070 
11071         // Update the return type to the deduced type.
11072         const FunctionProtoType *Proto =
11073             FD->getType()->getAs<FunctionProtoType>();
11074         FD->setType(Context.getFunctionType(RetType, Proto->getParamTypes(),
11075                                             Proto->getExtProtoInfo()));
11076       }
11077     }
11078 
11079     // The only way to be included in UndefinedButUsed is if there is an
11080     // ODR use before the definition. Avoid the expensive map lookup if this
11081     // is the first declaration.
11082     if (!FD->isFirstDecl() && FD->getPreviousDecl()->isUsed()) {
11083       if (!FD->isExternallyVisible())
11084         UndefinedButUsed.erase(FD);
11085       else if (FD->isInlined() &&
11086                !LangOpts.GNUInline &&
11087                (!FD->getPreviousDecl()->hasAttr<GNUInlineAttr>()))
11088         UndefinedButUsed.erase(FD);
11089     }
11090 
11091     // If the function implicitly returns zero (like 'main') or is naked,
11092     // don't complain about missing return statements.
11093     if (FD->hasImplicitReturnZero() || FD->hasAttr<NakedAttr>())
11094       WP.disableCheckFallThrough();
11095 
11096     // MSVC permits the use of pure specifier (=0) on function definition,
11097     // defined at class scope, warn about this non-standard construct.
11098     if (getLangOpts().MicrosoftExt && FD->isPure() && FD->isCanonicalDecl())
11099       Diag(FD->getLocation(), diag::ext_pure_function_definition);
11100 
11101     if (!FD->isInvalidDecl()) {
11102       // Don't diagnose unused parameters of defaulted or deleted functions.
11103       if (!FD->isDeleted() && !FD->isDefaulted())
11104         DiagnoseUnusedParameters(FD->param_begin(), FD->param_end());
11105       DiagnoseSizeOfParametersAndReturnValue(FD->param_begin(), FD->param_end(),
11106                                              FD->getReturnType(), FD);
11107 
11108       // If this is a structor, we need a vtable.
11109       if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(FD))
11110         MarkVTableUsed(FD->getLocation(), Constructor->getParent());
11111       else if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(FD))
11112         MarkVTableUsed(FD->getLocation(), Destructor->getParent());
11113 
11114       // Try to apply the named return value optimization. We have to check
11115       // if we can do this here because lambdas keep return statements around
11116       // to deduce an implicit return type.
11117       if (getLangOpts().CPlusPlus && FD->getReturnType()->isRecordType() &&
11118           !FD->isDependentContext())
11119         computeNRVO(Body, getCurFunction());
11120     }
11121 
11122     // GNU warning -Wmissing-prototypes:
11123     //   Warn if a global function is defined without a previous
11124     //   prototype declaration. This warning is issued even if the
11125     //   definition itself provides a prototype. The aim is to detect
11126     //   global functions that fail to be declared in header files.
11127     const FunctionDecl *PossibleZeroParamPrototype = nullptr;
11128     if (ShouldWarnAboutMissingPrototype(FD, PossibleZeroParamPrototype)) {
11129       Diag(FD->getLocation(), diag::warn_missing_prototype) << FD;
11130 
11131       if (PossibleZeroParamPrototype) {
11132         // We found a declaration that is not a prototype,
11133         // but that could be a zero-parameter prototype
11134         if (TypeSourceInfo *TI =
11135                 PossibleZeroParamPrototype->getTypeSourceInfo()) {
11136           TypeLoc TL = TI->getTypeLoc();
11137           if (FunctionNoProtoTypeLoc FTL = TL.getAs<FunctionNoProtoTypeLoc>())
11138             Diag(PossibleZeroParamPrototype->getLocation(),
11139                  diag::note_declaration_not_a_prototype)
11140                 << PossibleZeroParamPrototype
11141                 << FixItHint::CreateInsertion(FTL.getRParenLoc(), "void");
11142         }
11143       }
11144     }
11145 
11146     if (auto *MD = dyn_cast<CXXMethodDecl>(FD)) {
11147       const CXXMethodDecl *KeyFunction;
11148       if (MD->isOutOfLine() && (MD = MD->getCanonicalDecl()) &&
11149           MD->isVirtual() &&
11150           (KeyFunction = Context.getCurrentKeyFunction(MD->getParent())) &&
11151           MD == KeyFunction->getCanonicalDecl()) {
11152         // Update the key-function state if necessary for this ABI.
11153         if (FD->isInlined() &&
11154             !Context.getTargetInfo().getCXXABI().canKeyFunctionBeInline()) {
11155           Context.setNonKeyFunction(MD);
11156 
11157           // If the newly-chosen key function is already defined, then we
11158           // need to mark the vtable as used retroactively.
11159           KeyFunction = Context.getCurrentKeyFunction(MD->getParent());
11160           const FunctionDecl *Definition;
11161           if (KeyFunction && KeyFunction->isDefined(Definition))
11162             MarkVTableUsed(Definition->getLocation(), MD->getParent(), true);
11163         } else {
11164           // We just defined they key function; mark the vtable as used.
11165           MarkVTableUsed(FD->getLocation(), MD->getParent(), true);
11166         }
11167       }
11168     }
11169 
11170     assert((FD == getCurFunctionDecl() || getCurLambda()->CallOperator == FD) &&
11171            "Function parsing confused");
11172   } else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(dcl)) {
11173     assert(MD == getCurMethodDecl() && "Method parsing confused");
11174     MD->setBody(Body);
11175     if (!MD->isInvalidDecl()) {
11176       DiagnoseUnusedParameters(MD->param_begin(), MD->param_end());
11177       DiagnoseSizeOfParametersAndReturnValue(MD->param_begin(), MD->param_end(),
11178                                              MD->getReturnType(), MD);
11179 
11180       if (Body)
11181         computeNRVO(Body, getCurFunction());
11182     }
11183     if (getCurFunction()->ObjCShouldCallSuper) {
11184       Diag(MD->getLocEnd(), diag::warn_objc_missing_super_call)
11185         << MD->getSelector().getAsString();
11186       getCurFunction()->ObjCShouldCallSuper = false;
11187     }
11188     if (getCurFunction()->ObjCWarnForNoDesignatedInitChain) {
11189       const ObjCMethodDecl *InitMethod = nullptr;
11190       bool isDesignated =
11191           MD->isDesignatedInitializerForTheInterface(&InitMethod);
11192       assert(isDesignated && InitMethod);
11193       (void)isDesignated;
11194 
11195       auto superIsNSObject = [&](const ObjCMethodDecl *MD) {
11196         auto IFace = MD->getClassInterface();
11197         if (!IFace)
11198           return false;
11199         auto SuperD = IFace->getSuperClass();
11200         if (!SuperD)
11201           return false;
11202         return SuperD->getIdentifier() ==
11203             NSAPIObj->getNSClassId(NSAPI::ClassId_NSObject);
11204       };
11205       // Don't issue this warning for unavailable inits or direct subclasses
11206       // of NSObject.
11207       if (!MD->isUnavailable() && !superIsNSObject(MD)) {
11208         Diag(MD->getLocation(),
11209              diag::warn_objc_designated_init_missing_super_call);
11210         Diag(InitMethod->getLocation(),
11211              diag::note_objc_designated_init_marked_here);
11212       }
11213       getCurFunction()->ObjCWarnForNoDesignatedInitChain = false;
11214     }
11215     if (getCurFunction()->ObjCWarnForNoInitDelegation) {
11216       // Don't issue this warning for unavaialable inits.
11217       if (!MD->isUnavailable())
11218         Diag(MD->getLocation(),
11219              diag::warn_objc_secondary_init_missing_init_call);
11220       getCurFunction()->ObjCWarnForNoInitDelegation = false;
11221     }
11222   } else {
11223     return nullptr;
11224   }
11225 
11226   assert(!getCurFunction()->ObjCShouldCallSuper &&
11227          "This should only be set for ObjC methods, which should have been "
11228          "handled in the block above.");
11229 
11230   // Verify and clean out per-function state.
11231   if (Body && (!FD || !FD->isDefaulted())) {
11232     // C++ constructors that have function-try-blocks can't have return
11233     // statements in the handlers of that block. (C++ [except.handle]p14)
11234     // Verify this.
11235     if (FD && isa<CXXConstructorDecl>(FD) && isa<CXXTryStmt>(Body))
11236       DiagnoseReturnInConstructorExceptionHandler(cast<CXXTryStmt>(Body));
11237 
11238     // Verify that gotos and switch cases don't jump into scopes illegally.
11239     if (getCurFunction()->NeedsScopeChecking() &&
11240         !PP.isCodeCompletionEnabled())
11241       DiagnoseInvalidJumps(Body);
11242 
11243     if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(dcl)) {
11244       if (!Destructor->getParent()->isDependentType())
11245         CheckDestructor(Destructor);
11246 
11247       MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(),
11248                                              Destructor->getParent());
11249     }
11250 
11251     // If any errors have occurred, clear out any temporaries that may have
11252     // been leftover. This ensures that these temporaries won't be picked up for
11253     // deletion in some later function.
11254     if (getDiagnostics().hasErrorOccurred() ||
11255         getDiagnostics().getSuppressAllDiagnostics()) {
11256       DiscardCleanupsInEvaluationContext();
11257     }
11258     if (!getDiagnostics().hasUncompilableErrorOccurred() &&
11259         !isa<FunctionTemplateDecl>(dcl)) {
11260       // Since the body is valid, issue any analysis-based warnings that are
11261       // enabled.
11262       ActivePolicy = &WP;
11263     }
11264 
11265     if (!IsInstantiation && FD && FD->isConstexpr() && !FD->isInvalidDecl() &&
11266         (!CheckConstexprFunctionDecl(FD) ||
11267          !CheckConstexprFunctionBody(FD, Body)))
11268       FD->setInvalidDecl();
11269 
11270     if (FD && FD->hasAttr<NakedAttr>()) {
11271       for (const Stmt *S : Body->children()) {
11272         if (!isa<AsmStmt>(S) && !isa<NullStmt>(S)) {
11273           Diag(S->getLocStart(), diag::err_non_asm_stmt_in_naked_function);
11274           Diag(FD->getAttr<NakedAttr>()->getLocation(), diag::note_attribute);
11275           FD->setInvalidDecl();
11276           break;
11277         }
11278       }
11279     }
11280 
11281     assert(ExprCleanupObjects.size() ==
11282                ExprEvalContexts.back().NumCleanupObjects &&
11283            "Leftover temporaries in function");
11284     assert(!ExprNeedsCleanups && "Unaccounted cleanups in function");
11285     assert(MaybeODRUseExprs.empty() &&
11286            "Leftover expressions for odr-use checking");
11287   }
11288 
11289   if (!IsInstantiation)
11290     PopDeclContext();
11291 
11292   PopFunctionScopeInfo(ActivePolicy, dcl);
11293   // If any errors have occurred, clear out any temporaries that may have
11294   // been leftover. This ensures that these temporaries won't be picked up for
11295   // deletion in some later function.
11296   if (getDiagnostics().hasErrorOccurred()) {
11297     DiscardCleanupsInEvaluationContext();
11298   }
11299 
11300   return dcl;
11301 }
11302 
11303 
11304 /// When we finish delayed parsing of an attribute, we must attach it to the
11305 /// relevant Decl.
ActOnFinishDelayedAttribute(Scope * S,Decl * D,ParsedAttributes & Attrs)11306 void Sema::ActOnFinishDelayedAttribute(Scope *S, Decl *D,
11307                                        ParsedAttributes &Attrs) {
11308   // Always attach attributes to the underlying decl.
11309   if (TemplateDecl *TD = dyn_cast<TemplateDecl>(D))
11310     D = TD->getTemplatedDecl();
11311   ProcessDeclAttributeList(S, D, Attrs.getList());
11312 
11313   if (CXXMethodDecl *Method = dyn_cast_or_null<CXXMethodDecl>(D))
11314     if (Method->isStatic())
11315       checkThisInStaticMemberFunctionAttributes(Method);
11316 }
11317 
11318 
11319 /// ImplicitlyDefineFunction - An undeclared identifier was used in a function
11320 /// call, forming a call to an implicitly defined function (per C99 6.5.1p2).
ImplicitlyDefineFunction(SourceLocation Loc,IdentifierInfo & II,Scope * S)11321 NamedDecl *Sema::ImplicitlyDefineFunction(SourceLocation Loc,
11322                                           IdentifierInfo &II, Scope *S) {
11323   // Before we produce a declaration for an implicitly defined
11324   // function, see whether there was a locally-scoped declaration of
11325   // this name as a function or variable. If so, use that
11326   // (non-visible) declaration, and complain about it.
11327   if (NamedDecl *ExternCPrev = findLocallyScopedExternCDecl(&II)) {
11328     Diag(Loc, diag::warn_use_out_of_scope_declaration) << ExternCPrev;
11329     Diag(ExternCPrev->getLocation(), diag::note_previous_declaration);
11330     return ExternCPrev;
11331   }
11332 
11333   // Extension in C99.  Legal in C90, but warn about it.
11334   unsigned diag_id;
11335   if (II.getName().startswith("__builtin_"))
11336     diag_id = diag::warn_builtin_unknown;
11337   else if (getLangOpts().C99)
11338     diag_id = diag::ext_implicit_function_decl;
11339   else
11340     diag_id = diag::warn_implicit_function_decl;
11341   Diag(Loc, diag_id) << &II;
11342 
11343   // Because typo correction is expensive, only do it if the implicit
11344   // function declaration is going to be treated as an error.
11345   if (Diags.getDiagnosticLevel(diag_id, Loc) >= DiagnosticsEngine::Error) {
11346     TypoCorrection Corrected;
11347     if (S &&
11348         (Corrected = CorrectTypo(
11349              DeclarationNameInfo(&II, Loc), LookupOrdinaryName, S, nullptr,
11350              llvm::make_unique<DeclFilterCCC<FunctionDecl>>(), CTK_NonError)))
11351       diagnoseTypo(Corrected, PDiag(diag::note_function_suggestion),
11352                    /*ErrorRecovery*/false);
11353   }
11354 
11355   // Set a Declarator for the implicit definition: int foo();
11356   const char *Dummy;
11357   AttributeFactory attrFactory;
11358   DeclSpec DS(attrFactory);
11359   unsigned DiagID;
11360   bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy, DiagID,
11361                                   Context.getPrintingPolicy());
11362   (void)Error; // Silence warning.
11363   assert(!Error && "Error setting up implicit decl!");
11364   SourceLocation NoLoc;
11365   Declarator D(DS, Declarator::BlockContext);
11366   D.AddTypeInfo(DeclaratorChunk::getFunction(/*HasProto=*/false,
11367                                              /*IsAmbiguous=*/false,
11368                                              /*LParenLoc=*/NoLoc,
11369                                              /*Params=*/nullptr,
11370                                              /*NumParams=*/0,
11371                                              /*EllipsisLoc=*/NoLoc,
11372                                              /*RParenLoc=*/NoLoc,
11373                                              /*TypeQuals=*/0,
11374                                              /*RefQualifierIsLvalueRef=*/true,
11375                                              /*RefQualifierLoc=*/NoLoc,
11376                                              /*ConstQualifierLoc=*/NoLoc,
11377                                              /*VolatileQualifierLoc=*/NoLoc,
11378                                              /*RestrictQualifierLoc=*/NoLoc,
11379                                              /*MutableLoc=*/NoLoc,
11380                                              EST_None,
11381                                              /*ESpecRange=*/SourceRange(),
11382                                              /*Exceptions=*/nullptr,
11383                                              /*ExceptionRanges=*/nullptr,
11384                                              /*NumExceptions=*/0,
11385                                              /*NoexceptExpr=*/nullptr,
11386                                              /*ExceptionSpecTokens=*/nullptr,
11387                                              Loc, Loc, D),
11388                 DS.getAttributes(),
11389                 SourceLocation());
11390   D.SetIdentifier(&II, Loc);
11391 
11392   // Insert this function into translation-unit scope.
11393 
11394   DeclContext *PrevDC = CurContext;
11395   CurContext = Context.getTranslationUnitDecl();
11396 
11397   FunctionDecl *FD = cast<FunctionDecl>(ActOnDeclarator(TUScope, D));
11398   FD->setImplicit();
11399 
11400   CurContext = PrevDC;
11401 
11402   AddKnownFunctionAttributes(FD);
11403 
11404   return FD;
11405 }
11406 
11407 /// \brief Adds any function attributes that we know a priori based on
11408 /// the declaration of this function.
11409 ///
11410 /// These attributes can apply both to implicitly-declared builtins
11411 /// (like __builtin___printf_chk) or to library-declared functions
11412 /// like NSLog or printf.
11413 ///
11414 /// We need to check for duplicate attributes both here and where user-written
11415 /// attributes are applied to declarations.
AddKnownFunctionAttributes(FunctionDecl * FD)11416 void Sema::AddKnownFunctionAttributes(FunctionDecl *FD) {
11417   if (FD->isInvalidDecl())
11418     return;
11419 
11420   // If this is a built-in function, map its builtin attributes to
11421   // actual attributes.
11422   if (unsigned BuiltinID = FD->getBuiltinID()) {
11423     // Handle printf-formatting attributes.
11424     unsigned FormatIdx;
11425     bool HasVAListArg;
11426     if (Context.BuiltinInfo.isPrintfLike(BuiltinID, FormatIdx, HasVAListArg)) {
11427       if (!FD->hasAttr<FormatAttr>()) {
11428         const char *fmt = "printf";
11429         unsigned int NumParams = FD->getNumParams();
11430         if (FormatIdx < NumParams && // NumParams may be 0 (e.g. vfprintf)
11431             FD->getParamDecl(FormatIdx)->getType()->isObjCObjectPointerType())
11432           fmt = "NSString";
11433         FD->addAttr(FormatAttr::CreateImplicit(Context,
11434                                                &Context.Idents.get(fmt),
11435                                                FormatIdx+1,
11436                                                HasVAListArg ? 0 : FormatIdx+2,
11437                                                FD->getLocation()));
11438       }
11439     }
11440     if (Context.BuiltinInfo.isScanfLike(BuiltinID, FormatIdx,
11441                                              HasVAListArg)) {
11442      if (!FD->hasAttr<FormatAttr>())
11443        FD->addAttr(FormatAttr::CreateImplicit(Context,
11444                                               &Context.Idents.get("scanf"),
11445                                               FormatIdx+1,
11446                                               HasVAListArg ? 0 : FormatIdx+2,
11447                                               FD->getLocation()));
11448     }
11449 
11450     // Mark const if we don't care about errno and that is the only
11451     // thing preventing the function from being const. This allows
11452     // IRgen to use LLVM intrinsics for such functions.
11453     if (!getLangOpts().MathErrno &&
11454         Context.BuiltinInfo.isConstWithoutErrno(BuiltinID)) {
11455       if (!FD->hasAttr<ConstAttr>())
11456         FD->addAttr(ConstAttr::CreateImplicit(Context, FD->getLocation()));
11457     }
11458 
11459     if (Context.BuiltinInfo.isReturnsTwice(BuiltinID) &&
11460         !FD->hasAttr<ReturnsTwiceAttr>())
11461       FD->addAttr(ReturnsTwiceAttr::CreateImplicit(Context,
11462                                          FD->getLocation()));
11463     if (Context.BuiltinInfo.isNoThrow(BuiltinID) && !FD->hasAttr<NoThrowAttr>())
11464       FD->addAttr(NoThrowAttr::CreateImplicit(Context, FD->getLocation()));
11465     if (Context.BuiltinInfo.isConst(BuiltinID) && !FD->hasAttr<ConstAttr>())
11466       FD->addAttr(ConstAttr::CreateImplicit(Context, FD->getLocation()));
11467     if (getLangOpts().CUDA && getLangOpts().CUDATargetOverloads &&
11468         Context.BuiltinInfo.isTSBuiltin(BuiltinID) &&
11469         !FD->hasAttr<CUDADeviceAttr>() && !FD->hasAttr<CUDAHostAttr>()) {
11470       // Assign appropriate attribute depending on CUDA compilation
11471       // mode and the target builtin belongs to. E.g. during host
11472       // compilation, aux builtins are __device__, the rest are __host__.
11473       if (getLangOpts().CUDAIsDevice !=
11474           Context.BuiltinInfo.isAuxBuiltinID(BuiltinID))
11475         FD->addAttr(CUDADeviceAttr::CreateImplicit(Context, FD->getLocation()));
11476       else
11477         FD->addAttr(CUDAHostAttr::CreateImplicit(Context, FD->getLocation()));
11478     }
11479   }
11480 
11481   IdentifierInfo *Name = FD->getIdentifier();
11482   if (!Name)
11483     return;
11484   if ((!getLangOpts().CPlusPlus &&
11485        FD->getDeclContext()->isTranslationUnit()) ||
11486       (isa<LinkageSpecDecl>(FD->getDeclContext()) &&
11487        cast<LinkageSpecDecl>(FD->getDeclContext())->getLanguage() ==
11488        LinkageSpecDecl::lang_c)) {
11489     // Okay: this could be a libc/libm/Objective-C function we know
11490     // about.
11491   } else
11492     return;
11493 
11494   if (Name->isStr("asprintf") || Name->isStr("vasprintf")) {
11495     // FIXME: asprintf and vasprintf aren't C99 functions. Should they be
11496     // target-specific builtins, perhaps?
11497     if (!FD->hasAttr<FormatAttr>())
11498       FD->addAttr(FormatAttr::CreateImplicit(Context,
11499                                              &Context.Idents.get("printf"), 2,
11500                                              Name->isStr("vasprintf") ? 0 : 3,
11501                                              FD->getLocation()));
11502   }
11503 
11504   if (Name->isStr("__CFStringMakeConstantString")) {
11505     // We already have a __builtin___CFStringMakeConstantString,
11506     // but builds that use -fno-constant-cfstrings don't go through that.
11507     if (!FD->hasAttr<FormatArgAttr>())
11508       FD->addAttr(FormatArgAttr::CreateImplicit(Context, 1,
11509                                                 FD->getLocation()));
11510   }
11511 }
11512 
ParseTypedefDecl(Scope * S,Declarator & D,QualType T,TypeSourceInfo * TInfo)11513 TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, QualType T,
11514                                     TypeSourceInfo *TInfo) {
11515   assert(D.getIdentifier() && "Wrong callback for declspec without declarator");
11516   assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
11517 
11518   if (!TInfo) {
11519     assert(D.isInvalidType() && "no declarator info for valid type");
11520     TInfo = Context.getTrivialTypeSourceInfo(T);
11521   }
11522 
11523   // Scope manipulation handled by caller.
11524   TypedefDecl *NewTD = TypedefDecl::Create(Context, CurContext,
11525                                            D.getLocStart(),
11526                                            D.getIdentifierLoc(),
11527                                            D.getIdentifier(),
11528                                            TInfo);
11529 
11530   // Bail out immediately if we have an invalid declaration.
11531   if (D.isInvalidType()) {
11532     NewTD->setInvalidDecl();
11533     return NewTD;
11534   }
11535 
11536   if (D.getDeclSpec().isModulePrivateSpecified()) {
11537     if (CurContext->isFunctionOrMethod())
11538       Diag(NewTD->getLocation(), diag::err_module_private_local)
11539         << 2 << NewTD->getDeclName()
11540         << SourceRange(D.getDeclSpec().getModulePrivateSpecLoc())
11541         << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
11542     else
11543       NewTD->setModulePrivate();
11544   }
11545 
11546   // C++ [dcl.typedef]p8:
11547   //   If the typedef declaration defines an unnamed class (or
11548   //   enum), the first typedef-name declared by the declaration
11549   //   to be that class type (or enum type) is used to denote the
11550   //   class type (or enum type) for linkage purposes only.
11551   // We need to check whether the type was declared in the declaration.
11552   switch (D.getDeclSpec().getTypeSpecType()) {
11553   case TST_enum:
11554   case TST_struct:
11555   case TST_interface:
11556   case TST_union:
11557   case TST_class: {
11558     TagDecl *tagFromDeclSpec = cast<TagDecl>(D.getDeclSpec().getRepAsDecl());
11559     setTagNameForLinkagePurposes(tagFromDeclSpec, NewTD);
11560     break;
11561   }
11562 
11563   default:
11564     break;
11565   }
11566 
11567   return NewTD;
11568 }
11569 
11570 
11571 /// \brief Check that this is a valid underlying type for an enum declaration.
CheckEnumUnderlyingType(TypeSourceInfo * TI)11572 bool Sema::CheckEnumUnderlyingType(TypeSourceInfo *TI) {
11573   SourceLocation UnderlyingLoc = TI->getTypeLoc().getBeginLoc();
11574   QualType T = TI->getType();
11575 
11576   if (T->isDependentType())
11577     return false;
11578 
11579   if (const BuiltinType *BT = T->getAs<BuiltinType>())
11580     if (BT->isInteger())
11581       return false;
11582 
11583   Diag(UnderlyingLoc, diag::err_enum_invalid_underlying) << T;
11584   return true;
11585 }
11586 
11587 /// Check whether this is a valid redeclaration of a previous enumeration.
11588 /// \return true if the redeclaration was invalid.
CheckEnumRedeclaration(SourceLocation EnumLoc,bool IsScoped,QualType EnumUnderlyingTy,bool EnumUnderlyingIsImplicit,const EnumDecl * Prev)11589 bool Sema::CheckEnumRedeclaration(
11590     SourceLocation EnumLoc, bool IsScoped, QualType EnumUnderlyingTy,
11591     bool EnumUnderlyingIsImplicit, const EnumDecl *Prev) {
11592   bool IsFixed = !EnumUnderlyingTy.isNull();
11593 
11594   if (IsScoped != Prev->isScoped()) {
11595     Diag(EnumLoc, diag::err_enum_redeclare_scoped_mismatch)
11596       << Prev->isScoped();
11597     Diag(Prev->getLocation(), diag::note_previous_declaration);
11598     return true;
11599   }
11600 
11601   if (IsFixed && Prev->isFixed()) {
11602     if (!EnumUnderlyingTy->isDependentType() &&
11603         !Prev->getIntegerType()->isDependentType() &&
11604         !Context.hasSameUnqualifiedType(EnumUnderlyingTy,
11605                                         Prev->getIntegerType())) {
11606       // TODO: Highlight the underlying type of the redeclaration.
11607       Diag(EnumLoc, diag::err_enum_redeclare_type_mismatch)
11608         << EnumUnderlyingTy << Prev->getIntegerType();
11609       Diag(Prev->getLocation(), diag::note_previous_declaration)
11610           << Prev->getIntegerTypeRange();
11611       return true;
11612     }
11613   } else if (IsFixed && !Prev->isFixed() && EnumUnderlyingIsImplicit) {
11614     ;
11615   } else if (!IsFixed && Prev->isFixed() && !Prev->getIntegerTypeSourceInfo()) {
11616     ;
11617   } else if (IsFixed != Prev->isFixed()) {
11618     Diag(EnumLoc, diag::err_enum_redeclare_fixed_mismatch)
11619       << Prev->isFixed();
11620     Diag(Prev->getLocation(), diag::note_previous_declaration);
11621     return true;
11622   }
11623 
11624   return false;
11625 }
11626 
11627 /// \brief Get diagnostic %select index for tag kind for
11628 /// redeclaration diagnostic message.
11629 /// WARNING: Indexes apply to particular diagnostics only!
11630 ///
11631 /// \returns diagnostic %select index.
getRedeclDiagFromTagKind(TagTypeKind Tag)11632 static unsigned getRedeclDiagFromTagKind(TagTypeKind Tag) {
11633   switch (Tag) {
11634   case TTK_Struct: return 0;
11635   case TTK_Interface: return 1;
11636   case TTK_Class:  return 2;
11637   default: llvm_unreachable("Invalid tag kind for redecl diagnostic!");
11638   }
11639 }
11640 
11641 /// \brief Determine if tag kind is a class-key compatible with
11642 /// class for redeclaration (class, struct, or __interface).
11643 ///
11644 /// \returns true iff the tag kind is compatible.
isClassCompatTagKind(TagTypeKind Tag)11645 static bool isClassCompatTagKind(TagTypeKind Tag)
11646 {
11647   return Tag == TTK_Struct || Tag == TTK_Class || Tag == TTK_Interface;
11648 }
11649 
11650 /// \brief Determine whether a tag with a given kind is acceptable
11651 /// as a redeclaration of the given tag declaration.
11652 ///
11653 /// \returns true if the new tag kind is acceptable, false otherwise.
isAcceptableTagRedeclaration(const TagDecl * Previous,TagTypeKind NewTag,bool isDefinition,SourceLocation NewTagLoc,const IdentifierInfo * Name)11654 bool Sema::isAcceptableTagRedeclaration(const TagDecl *Previous,
11655                                         TagTypeKind NewTag, bool isDefinition,
11656                                         SourceLocation NewTagLoc,
11657                                         const IdentifierInfo *Name) {
11658   // C++ [dcl.type.elab]p3:
11659   //   The class-key or enum keyword present in the
11660   //   elaborated-type-specifier shall agree in kind with the
11661   //   declaration to which the name in the elaborated-type-specifier
11662   //   refers. This rule also applies to the form of
11663   //   elaborated-type-specifier that declares a class-name or
11664   //   friend class since it can be construed as referring to the
11665   //   definition of the class. Thus, in any
11666   //   elaborated-type-specifier, the enum keyword shall be used to
11667   //   refer to an enumeration (7.2), the union class-key shall be
11668   //   used to refer to a union (clause 9), and either the class or
11669   //   struct class-key shall be used to refer to a class (clause 9)
11670   //   declared using the class or struct class-key.
11671   TagTypeKind OldTag = Previous->getTagKind();
11672   if (!isDefinition || !isClassCompatTagKind(NewTag))
11673     if (OldTag == NewTag)
11674       return true;
11675 
11676   if (isClassCompatTagKind(OldTag) && isClassCompatTagKind(NewTag)) {
11677     // Warn about the struct/class tag mismatch.
11678     bool isTemplate = false;
11679     if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Previous))
11680       isTemplate = Record->getDescribedClassTemplate();
11681 
11682     if (!ActiveTemplateInstantiations.empty()) {
11683       // In a template instantiation, do not offer fix-its for tag mismatches
11684       // since they usually mess up the template instead of fixing the problem.
11685       Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
11686         << getRedeclDiagFromTagKind(NewTag) << isTemplate << Name
11687         << getRedeclDiagFromTagKind(OldTag);
11688       return true;
11689     }
11690 
11691     if (isDefinition) {
11692       // On definitions, check previous tags and issue a fix-it for each
11693       // one that doesn't match the current tag.
11694       if (Previous->getDefinition()) {
11695         // Don't suggest fix-its for redefinitions.
11696         return true;
11697       }
11698 
11699       bool previousMismatch = false;
11700       for (auto I : Previous->redecls()) {
11701         if (I->getTagKind() != NewTag) {
11702           if (!previousMismatch) {
11703             previousMismatch = true;
11704             Diag(NewTagLoc, diag::warn_struct_class_previous_tag_mismatch)
11705               << getRedeclDiagFromTagKind(NewTag) << isTemplate << Name
11706               << getRedeclDiagFromTagKind(I->getTagKind());
11707           }
11708           Diag(I->getInnerLocStart(), diag::note_struct_class_suggestion)
11709             << getRedeclDiagFromTagKind(NewTag)
11710             << FixItHint::CreateReplacement(I->getInnerLocStart(),
11711                  TypeWithKeyword::getTagTypeKindName(NewTag));
11712         }
11713       }
11714       return true;
11715     }
11716 
11717     // Check for a previous definition.  If current tag and definition
11718     // are same type, do nothing.  If no definition, but disagree with
11719     // with previous tag type, give a warning, but no fix-it.
11720     const TagDecl *Redecl = Previous->getDefinition() ?
11721                             Previous->getDefinition() : Previous;
11722     if (Redecl->getTagKind() == NewTag) {
11723       return true;
11724     }
11725 
11726     Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
11727       << getRedeclDiagFromTagKind(NewTag) << isTemplate << Name
11728       << getRedeclDiagFromTagKind(OldTag);
11729     Diag(Redecl->getLocation(), diag::note_previous_use);
11730 
11731     // If there is a previous definition, suggest a fix-it.
11732     if (Previous->getDefinition()) {
11733         Diag(NewTagLoc, diag::note_struct_class_suggestion)
11734           << getRedeclDiagFromTagKind(Redecl->getTagKind())
11735           << FixItHint::CreateReplacement(SourceRange(NewTagLoc),
11736                TypeWithKeyword::getTagTypeKindName(Redecl->getTagKind()));
11737     }
11738 
11739     return true;
11740   }
11741   return false;
11742 }
11743 
11744 /// Add a minimal nested name specifier fixit hint to allow lookup of a tag name
11745 /// from an outer enclosing namespace or file scope inside a friend declaration.
11746 /// This should provide the commented out code in the following snippet:
11747 ///   namespace N {
11748 ///     struct X;
11749 ///     namespace M {
11750 ///       struct Y { friend struct /*N::*/ X; };
11751 ///     }
11752 ///   }
createFriendTagNNSFixIt(Sema & SemaRef,NamedDecl * ND,Scope * S,SourceLocation NameLoc)11753 static FixItHint createFriendTagNNSFixIt(Sema &SemaRef, NamedDecl *ND, Scope *S,
11754                                          SourceLocation NameLoc) {
11755   // While the decl is in a namespace, do repeated lookup of that name and see
11756   // if we get the same namespace back.  If we do not, continue until
11757   // translation unit scope, at which point we have a fully qualified NNS.
11758   SmallVector<IdentifierInfo *, 4> Namespaces;
11759   DeclContext *DC = ND->getDeclContext()->getRedeclContext();
11760   for (; !DC->isTranslationUnit(); DC = DC->getParent()) {
11761     // This tag should be declared in a namespace, which can only be enclosed by
11762     // other namespaces.  Bail if there's an anonymous namespace in the chain.
11763     NamespaceDecl *Namespace = dyn_cast<NamespaceDecl>(DC);
11764     if (!Namespace || Namespace->isAnonymousNamespace())
11765       return FixItHint();
11766     IdentifierInfo *II = Namespace->getIdentifier();
11767     Namespaces.push_back(II);
11768     NamedDecl *Lookup = SemaRef.LookupSingleName(
11769         S, II, NameLoc, Sema::LookupNestedNameSpecifierName);
11770     if (Lookup == Namespace)
11771       break;
11772   }
11773 
11774   // Once we have all the namespaces, reverse them to go outermost first, and
11775   // build an NNS.
11776   SmallString<64> Insertion;
11777   llvm::raw_svector_ostream OS(Insertion);
11778   if (DC->isTranslationUnit())
11779     OS << "::";
11780   std::reverse(Namespaces.begin(), Namespaces.end());
11781   for (auto *II : Namespaces)
11782     OS << II->getName() << "::";
11783   return FixItHint::CreateInsertion(NameLoc, Insertion);
11784 }
11785 
11786 /// \brief Determine whether a tag originally declared in context \p OldDC can
11787 /// be redeclared with an unqualfied name in \p NewDC (assuming name lookup
11788 /// found a declaration in \p OldDC as a previous decl, perhaps through a
11789 /// using-declaration).
isAcceptableTagRedeclContext(Sema & S,DeclContext * OldDC,DeclContext * NewDC)11790 static bool isAcceptableTagRedeclContext(Sema &S, DeclContext *OldDC,
11791                                          DeclContext *NewDC) {
11792   OldDC = OldDC->getRedeclContext();
11793   NewDC = NewDC->getRedeclContext();
11794 
11795   if (OldDC->Equals(NewDC))
11796     return true;
11797 
11798   // In MSVC mode, we allow a redeclaration if the contexts are related (either
11799   // encloses the other).
11800   if (S.getLangOpts().MSVCCompat &&
11801       (OldDC->Encloses(NewDC) || NewDC->Encloses(OldDC)))
11802     return true;
11803 
11804   return false;
11805 }
11806 
11807 /// \brief This is invoked when we see 'struct foo' or 'struct {'.  In the
11808 /// former case, Name will be non-null.  In the later case, Name will be null.
11809 /// TagSpec indicates what kind of tag this is. TUK indicates whether this is a
11810 /// reference/declaration/definition of a tag.
11811 ///
11812 /// \param IsTypeSpecifier \c true if this is a type-specifier (or
11813 /// trailing-type-specifier) other than one in an alias-declaration.
11814 ///
11815 /// \param SkipBody If non-null, will be set to indicate if the caller should
11816 /// skip the definition of this tag and treat it as if it were a declaration.
ActOnTag(Scope * S,unsigned TagSpec,TagUseKind TUK,SourceLocation KWLoc,CXXScopeSpec & SS,IdentifierInfo * Name,SourceLocation NameLoc,AttributeList * Attr,AccessSpecifier AS,SourceLocation ModulePrivateLoc,MultiTemplateParamsArg TemplateParameterLists,bool & OwnedDecl,bool & IsDependent,SourceLocation ScopedEnumKWLoc,bool ScopedEnumUsesClassTag,TypeResult UnderlyingType,bool IsTypeSpecifier,SkipBodyInfo * SkipBody)11817 Decl *Sema::ActOnTag(Scope *S, unsigned TagSpec, TagUseKind TUK,
11818                      SourceLocation KWLoc, CXXScopeSpec &SS,
11819                      IdentifierInfo *Name, SourceLocation NameLoc,
11820                      AttributeList *Attr, AccessSpecifier AS,
11821                      SourceLocation ModulePrivateLoc,
11822                      MultiTemplateParamsArg TemplateParameterLists,
11823                      bool &OwnedDecl, bool &IsDependent,
11824                      SourceLocation ScopedEnumKWLoc,
11825                      bool ScopedEnumUsesClassTag,
11826                      TypeResult UnderlyingType,
11827                      bool IsTypeSpecifier, SkipBodyInfo *SkipBody) {
11828   // If this is not a definition, it must have a name.
11829   IdentifierInfo *OrigName = Name;
11830   assert((Name != nullptr || TUK == TUK_Definition) &&
11831          "Nameless record must be a definition!");
11832   assert(TemplateParameterLists.size() == 0 || TUK != TUK_Reference);
11833 
11834   OwnedDecl = false;
11835   TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
11836   bool ScopedEnum = ScopedEnumKWLoc.isValid();
11837 
11838   // FIXME: Check explicit specializations more carefully.
11839   bool isExplicitSpecialization = false;
11840   bool Invalid = false;
11841 
11842   // We only need to do this matching if we have template parameters
11843   // or a scope specifier, which also conveniently avoids this work
11844   // for non-C++ cases.
11845   if (TemplateParameterLists.size() > 0 ||
11846       (SS.isNotEmpty() && TUK != TUK_Reference)) {
11847     if (TemplateParameterList *TemplateParams =
11848             MatchTemplateParametersToScopeSpecifier(
11849                 KWLoc, NameLoc, SS, nullptr, TemplateParameterLists,
11850                 TUK == TUK_Friend, isExplicitSpecialization, Invalid)) {
11851       if (Kind == TTK_Enum) {
11852         Diag(KWLoc, diag::err_enum_template);
11853         return nullptr;
11854       }
11855 
11856       if (TemplateParams->size() > 0) {
11857         // This is a declaration or definition of a class template (which may
11858         // be a member of another template).
11859 
11860         if (Invalid)
11861           return nullptr;
11862 
11863         OwnedDecl = false;
11864         DeclResult Result = CheckClassTemplate(S, TagSpec, TUK, KWLoc,
11865                                                SS, Name, NameLoc, Attr,
11866                                                TemplateParams, AS,
11867                                                ModulePrivateLoc,
11868                                                /*FriendLoc*/SourceLocation(),
11869                                                TemplateParameterLists.size()-1,
11870                                                TemplateParameterLists.data(),
11871                                                SkipBody);
11872         return Result.get();
11873       } else {
11874         // The "template<>" header is extraneous.
11875         Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams)
11876           << TypeWithKeyword::getTagTypeKindName(Kind) << Name;
11877         isExplicitSpecialization = true;
11878       }
11879     }
11880   }
11881 
11882   // Figure out the underlying type if this a enum declaration. We need to do
11883   // this early, because it's needed to detect if this is an incompatible
11884   // redeclaration.
11885   llvm::PointerUnion<const Type*, TypeSourceInfo*> EnumUnderlying;
11886   bool EnumUnderlyingIsImplicit = false;
11887 
11888   if (Kind == TTK_Enum) {
11889     if (UnderlyingType.isInvalid() || (!UnderlyingType.get() && ScopedEnum))
11890       // No underlying type explicitly specified, or we failed to parse the
11891       // type, default to int.
11892       EnumUnderlying = Context.IntTy.getTypePtr();
11893     else if (UnderlyingType.get()) {
11894       // C++0x 7.2p2: The type-specifier-seq of an enum-base shall name an
11895       // integral type; any cv-qualification is ignored.
11896       TypeSourceInfo *TI = nullptr;
11897       GetTypeFromParser(UnderlyingType.get(), &TI);
11898       EnumUnderlying = TI;
11899 
11900       if (CheckEnumUnderlyingType(TI))
11901         // Recover by falling back to int.
11902         EnumUnderlying = Context.IntTy.getTypePtr();
11903 
11904       if (DiagnoseUnexpandedParameterPack(TI->getTypeLoc().getBeginLoc(), TI,
11905                                           UPPC_FixedUnderlyingType))
11906         EnumUnderlying = Context.IntTy.getTypePtr();
11907 
11908     } else if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
11909       if (getLangOpts().MSVCCompat || TUK == TUK_Definition) {
11910         // Microsoft enums are always of int type.
11911         EnumUnderlying = Context.IntTy.getTypePtr();
11912         EnumUnderlyingIsImplicit = true;
11913       }
11914     }
11915   }
11916 
11917   DeclContext *SearchDC = CurContext;
11918   DeclContext *DC = CurContext;
11919   bool isStdBadAlloc = false;
11920 
11921   RedeclarationKind Redecl = ForRedeclaration;
11922   if (TUK == TUK_Friend || TUK == TUK_Reference)
11923     Redecl = NotForRedeclaration;
11924 
11925   LookupResult Previous(*this, Name, NameLoc, LookupTagName, Redecl);
11926   if (Name && SS.isNotEmpty()) {
11927     // We have a nested-name tag ('struct foo::bar').
11928 
11929     // Check for invalid 'foo::'.
11930     if (SS.isInvalid()) {
11931       Name = nullptr;
11932       goto CreateNewDecl;
11933     }
11934 
11935     // If this is a friend or a reference to a class in a dependent
11936     // context, don't try to make a decl for it.
11937     if (TUK == TUK_Friend || TUK == TUK_Reference) {
11938       DC = computeDeclContext(SS, false);
11939       if (!DC) {
11940         IsDependent = true;
11941         return nullptr;
11942       }
11943     } else {
11944       DC = computeDeclContext(SS, true);
11945       if (!DC) {
11946         Diag(SS.getRange().getBegin(), diag::err_dependent_nested_name_spec)
11947           << SS.getRange();
11948         return nullptr;
11949       }
11950     }
11951 
11952     if (RequireCompleteDeclContext(SS, DC))
11953       return nullptr;
11954 
11955     SearchDC = DC;
11956     // Look-up name inside 'foo::'.
11957     LookupQualifiedName(Previous, DC);
11958 
11959     if (Previous.isAmbiguous())
11960       return nullptr;
11961 
11962     if (Previous.empty()) {
11963       // Name lookup did not find anything. However, if the
11964       // nested-name-specifier refers to the current instantiation,
11965       // and that current instantiation has any dependent base
11966       // classes, we might find something at instantiation time: treat
11967       // this as a dependent elaborated-type-specifier.
11968       // But this only makes any sense for reference-like lookups.
11969       if (Previous.wasNotFoundInCurrentInstantiation() &&
11970           (TUK == TUK_Reference || TUK == TUK_Friend)) {
11971         IsDependent = true;
11972         return nullptr;
11973       }
11974 
11975       // A tag 'foo::bar' must already exist.
11976       Diag(NameLoc, diag::err_not_tag_in_scope)
11977         << Kind << Name << DC << SS.getRange();
11978       Name = nullptr;
11979       Invalid = true;
11980       goto CreateNewDecl;
11981     }
11982   } else if (Name) {
11983     // C++14 [class.mem]p14:
11984     //   If T is the name of a class, then each of the following shall have a
11985     //   name different from T:
11986     //    -- every member of class T that is itself a type
11987     if (TUK != TUK_Reference && TUK != TUK_Friend &&
11988         DiagnoseClassNameShadow(SearchDC, DeclarationNameInfo(Name, NameLoc)))
11989       return nullptr;
11990 
11991     // If this is a named struct, check to see if there was a previous forward
11992     // declaration or definition.
11993     // FIXME: We're looking into outer scopes here, even when we
11994     // shouldn't be. Doing so can result in ambiguities that we
11995     // shouldn't be diagnosing.
11996     LookupName(Previous, S);
11997 
11998     // When declaring or defining a tag, ignore ambiguities introduced
11999     // by types using'ed into this scope.
12000     if (Previous.isAmbiguous() &&
12001         (TUK == TUK_Definition || TUK == TUK_Declaration)) {
12002       LookupResult::Filter F = Previous.makeFilter();
12003       while (F.hasNext()) {
12004         NamedDecl *ND = F.next();
12005         if (ND->getDeclContext()->getRedeclContext() != SearchDC)
12006           F.erase();
12007       }
12008       F.done();
12009     }
12010 
12011     // C++11 [namespace.memdef]p3:
12012     //   If the name in a friend declaration is neither qualified nor
12013     //   a template-id and the declaration is a function or an
12014     //   elaborated-type-specifier, the lookup to determine whether
12015     //   the entity has been previously declared shall not consider
12016     //   any scopes outside the innermost enclosing namespace.
12017     //
12018     // MSVC doesn't implement the above rule for types, so a friend tag
12019     // declaration may be a redeclaration of a type declared in an enclosing
12020     // scope.  They do implement this rule for friend functions.
12021     //
12022     // Does it matter that this should be by scope instead of by
12023     // semantic context?
12024     if (!Previous.empty() && TUK == TUK_Friend) {
12025       DeclContext *EnclosingNS = SearchDC->getEnclosingNamespaceContext();
12026       LookupResult::Filter F = Previous.makeFilter();
12027       bool FriendSawTagOutsideEnclosingNamespace = false;
12028       while (F.hasNext()) {
12029         NamedDecl *ND = F.next();
12030         DeclContext *DC = ND->getDeclContext()->getRedeclContext();
12031         if (DC->isFileContext() &&
12032             !EnclosingNS->Encloses(ND->getDeclContext())) {
12033           if (getLangOpts().MSVCCompat)
12034             FriendSawTagOutsideEnclosingNamespace = true;
12035           else
12036             F.erase();
12037         }
12038       }
12039       F.done();
12040 
12041       // Diagnose this MSVC extension in the easy case where lookup would have
12042       // unambiguously found something outside the enclosing namespace.
12043       if (Previous.isSingleResult() && FriendSawTagOutsideEnclosingNamespace) {
12044         NamedDecl *ND = Previous.getFoundDecl();
12045         Diag(NameLoc, diag::ext_friend_tag_redecl_outside_namespace)
12046             << createFriendTagNNSFixIt(*this, ND, S, NameLoc);
12047       }
12048     }
12049 
12050     // Note:  there used to be some attempt at recovery here.
12051     if (Previous.isAmbiguous())
12052       return nullptr;
12053 
12054     if (!getLangOpts().CPlusPlus && TUK != TUK_Reference) {
12055       // FIXME: This makes sure that we ignore the contexts associated
12056       // with C structs, unions, and enums when looking for a matching
12057       // tag declaration or definition. See the similar lookup tweak
12058       // in Sema::LookupName; is there a better way to deal with this?
12059       while (isa<RecordDecl>(SearchDC) || isa<EnumDecl>(SearchDC))
12060         SearchDC = SearchDC->getParent();
12061     }
12062   }
12063 
12064   if (Previous.isSingleResult() &&
12065       Previous.getFoundDecl()->isTemplateParameter()) {
12066     // Maybe we will complain about the shadowed template parameter.
12067     DiagnoseTemplateParameterShadow(NameLoc, Previous.getFoundDecl());
12068     // Just pretend that we didn't see the previous declaration.
12069     Previous.clear();
12070   }
12071 
12072   if (getLangOpts().CPlusPlus && Name && DC && StdNamespace &&
12073       DC->Equals(getStdNamespace()) && Name->isStr("bad_alloc")) {
12074     // This is a declaration of or a reference to "std::bad_alloc".
12075     isStdBadAlloc = true;
12076 
12077     if (Previous.empty() && StdBadAlloc) {
12078       // std::bad_alloc has been implicitly declared (but made invisible to
12079       // name lookup). Fill in this implicit declaration as the previous
12080       // declaration, so that the declarations get chained appropriately.
12081       Previous.addDecl(getStdBadAlloc());
12082     }
12083   }
12084 
12085   // If we didn't find a previous declaration, and this is a reference
12086   // (or friend reference), move to the correct scope.  In C++, we
12087   // also need to do a redeclaration lookup there, just in case
12088   // there's a shadow friend decl.
12089   if (Name && Previous.empty() &&
12090       (TUK == TUK_Reference || TUK == TUK_Friend)) {
12091     if (Invalid) goto CreateNewDecl;
12092     assert(SS.isEmpty());
12093 
12094     if (TUK == TUK_Reference) {
12095       // C++ [basic.scope.pdecl]p5:
12096       //   -- for an elaborated-type-specifier of the form
12097       //
12098       //          class-key identifier
12099       //
12100       //      if the elaborated-type-specifier is used in the
12101       //      decl-specifier-seq or parameter-declaration-clause of a
12102       //      function defined in namespace scope, the identifier is
12103       //      declared as a class-name in the namespace that contains
12104       //      the declaration; otherwise, except as a friend
12105       //      declaration, the identifier is declared in the smallest
12106       //      non-class, non-function-prototype scope that contains the
12107       //      declaration.
12108       //
12109       // C99 6.7.2.3p8 has a similar (but not identical!) provision for
12110       // C structs and unions.
12111       //
12112       // It is an error in C++ to declare (rather than define) an enum
12113       // type, including via an elaborated type specifier.  We'll
12114       // diagnose that later; for now, declare the enum in the same
12115       // scope as we would have picked for any other tag type.
12116       //
12117       // GNU C also supports this behavior as part of its incomplete
12118       // enum types extension, while GNU C++ does not.
12119       //
12120       // Find the context where we'll be declaring the tag.
12121       // FIXME: We would like to maintain the current DeclContext as the
12122       // lexical context,
12123       while (!SearchDC->isFileContext() && !SearchDC->isFunctionOrMethod())
12124         SearchDC = SearchDC->getParent();
12125 
12126       // Find the scope where we'll be declaring the tag.
12127       while (S->isClassScope() ||
12128              (getLangOpts().CPlusPlus &&
12129               S->isFunctionPrototypeScope()) ||
12130              ((S->getFlags() & Scope::DeclScope) == 0) ||
12131              (S->getEntity() && S->getEntity()->isTransparentContext()))
12132         S = S->getParent();
12133     } else {
12134       assert(TUK == TUK_Friend);
12135       // C++ [namespace.memdef]p3:
12136       //   If a friend declaration in a non-local class first declares a
12137       //   class or function, the friend class or function is a member of
12138       //   the innermost enclosing namespace.
12139       SearchDC = SearchDC->getEnclosingNamespaceContext();
12140     }
12141 
12142     // In C++, we need to do a redeclaration lookup to properly
12143     // diagnose some problems.
12144     // FIXME: redeclaration lookup is also used (with and without C++) to find a
12145     // hidden declaration so that we don't get ambiguity errors when using a
12146     // type declared by an elaborated-type-specifier.  In C that is not correct
12147     // and we should instead merge compatible types found by lookup.
12148     if (getLangOpts().CPlusPlus) {
12149       Previous.setRedeclarationKind(ForRedeclaration);
12150       LookupQualifiedName(Previous, SearchDC);
12151     } else {
12152       Previous.setRedeclarationKind(ForRedeclaration);
12153       LookupName(Previous, S);
12154     }
12155   }
12156 
12157   // If we have a known previous declaration to use, then use it.
12158   if (Previous.empty() && SkipBody && SkipBody->Previous)
12159     Previous.addDecl(SkipBody->Previous);
12160 
12161   if (!Previous.empty()) {
12162     NamedDecl *PrevDecl = Previous.getFoundDecl();
12163     NamedDecl *DirectPrevDecl = Previous.getRepresentativeDecl();
12164 
12165     // It's okay to have a tag decl in the same scope as a typedef
12166     // which hides a tag decl in the same scope.  Finding this
12167     // insanity with a redeclaration lookup can only actually happen
12168     // in C++.
12169     //
12170     // This is also okay for elaborated-type-specifiers, which is
12171     // technically forbidden by the current standard but which is
12172     // okay according to the likely resolution of an open issue;
12173     // see http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#407
12174     if (getLangOpts().CPlusPlus) {
12175       if (TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(PrevDecl)) {
12176         if (const TagType *TT = TD->getUnderlyingType()->getAs<TagType>()) {
12177           TagDecl *Tag = TT->getDecl();
12178           if (Tag->getDeclName() == Name &&
12179               Tag->getDeclContext()->getRedeclContext()
12180                           ->Equals(TD->getDeclContext()->getRedeclContext())) {
12181             PrevDecl = Tag;
12182             Previous.clear();
12183             Previous.addDecl(Tag);
12184             Previous.resolveKind();
12185           }
12186         }
12187       }
12188     }
12189 
12190     // If this is a redeclaration of a using shadow declaration, it must
12191     // declare a tag in the same context. In MSVC mode, we allow a
12192     // redefinition if either context is within the other.
12193     if (auto *Shadow = dyn_cast<UsingShadowDecl>(DirectPrevDecl)) {
12194       auto *OldTag = dyn_cast<TagDecl>(PrevDecl);
12195       if (SS.isEmpty() && TUK != TUK_Reference && TUK != TUK_Friend &&
12196           isDeclInScope(Shadow, SearchDC, S, isExplicitSpecialization) &&
12197           !(OldTag && isAcceptableTagRedeclContext(
12198                           *this, OldTag->getDeclContext(), SearchDC))) {
12199         Diag(KWLoc, diag::err_using_decl_conflict_reverse);
12200         Diag(Shadow->getTargetDecl()->getLocation(),
12201              diag::note_using_decl_target);
12202         Diag(Shadow->getUsingDecl()->getLocation(), diag::note_using_decl)
12203             << 0;
12204         // Recover by ignoring the old declaration.
12205         Previous.clear();
12206         goto CreateNewDecl;
12207       }
12208     }
12209 
12210     if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) {
12211       // If this is a use of a previous tag, or if the tag is already declared
12212       // in the same scope (so that the definition/declaration completes or
12213       // rementions the tag), reuse the decl.
12214       if (TUK == TUK_Reference || TUK == TUK_Friend ||
12215           isDeclInScope(DirectPrevDecl, SearchDC, S,
12216                         SS.isNotEmpty() || isExplicitSpecialization)) {
12217         // Make sure that this wasn't declared as an enum and now used as a
12218         // struct or something similar.
12219         if (!isAcceptableTagRedeclaration(PrevTagDecl, Kind,
12220                                           TUK == TUK_Definition, KWLoc,
12221                                           Name)) {
12222           bool SafeToContinue
12223             = (PrevTagDecl->getTagKind() != TTK_Enum &&
12224                Kind != TTK_Enum);
12225           if (SafeToContinue)
12226             Diag(KWLoc, diag::err_use_with_wrong_tag)
12227               << Name
12228               << FixItHint::CreateReplacement(SourceRange(KWLoc),
12229                                               PrevTagDecl->getKindName());
12230           else
12231             Diag(KWLoc, diag::err_use_with_wrong_tag) << Name;
12232           Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
12233 
12234           if (SafeToContinue)
12235             Kind = PrevTagDecl->getTagKind();
12236           else {
12237             // Recover by making this an anonymous redefinition.
12238             Name = nullptr;
12239             Previous.clear();
12240             Invalid = true;
12241           }
12242         }
12243 
12244         if (Kind == TTK_Enum && PrevTagDecl->getTagKind() == TTK_Enum) {
12245           const EnumDecl *PrevEnum = cast<EnumDecl>(PrevTagDecl);
12246 
12247           // If this is an elaborated-type-specifier for a scoped enumeration,
12248           // the 'class' keyword is not necessary and not permitted.
12249           if (TUK == TUK_Reference || TUK == TUK_Friend) {
12250             if (ScopedEnum)
12251               Diag(ScopedEnumKWLoc, diag::err_enum_class_reference)
12252                 << PrevEnum->isScoped()
12253                 << FixItHint::CreateRemoval(ScopedEnumKWLoc);
12254             return PrevTagDecl;
12255           }
12256 
12257           QualType EnumUnderlyingTy;
12258           if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo*>())
12259             EnumUnderlyingTy = TI->getType().getUnqualifiedType();
12260           else if (const Type *T = EnumUnderlying.dyn_cast<const Type*>())
12261             EnumUnderlyingTy = QualType(T, 0);
12262 
12263           // All conflicts with previous declarations are recovered by
12264           // returning the previous declaration, unless this is a definition,
12265           // in which case we want the caller to bail out.
12266           if (CheckEnumRedeclaration(NameLoc.isValid() ? NameLoc : KWLoc,
12267                                      ScopedEnum, EnumUnderlyingTy,
12268                                      EnumUnderlyingIsImplicit, PrevEnum))
12269             return TUK == TUK_Declaration ? PrevTagDecl : nullptr;
12270         }
12271 
12272         // C++11 [class.mem]p1:
12273         //   A member shall not be declared twice in the member-specification,
12274         //   except that a nested class or member class template can be declared
12275         //   and then later defined.
12276         if (TUK == TUK_Declaration && PrevDecl->isCXXClassMember() &&
12277             S->isDeclScope(PrevDecl)) {
12278           Diag(NameLoc, diag::ext_member_redeclared);
12279           Diag(PrevTagDecl->getLocation(), diag::note_previous_declaration);
12280         }
12281 
12282         if (!Invalid) {
12283           // If this is a use, just return the declaration we found, unless
12284           // we have attributes.
12285 
12286           // FIXME: In the future, return a variant or some other clue
12287           // for the consumer of this Decl to know it doesn't own it.
12288           // For our current ASTs this shouldn't be a problem, but will
12289           // need to be changed with DeclGroups.
12290           if (!Attr &&
12291               ((TUK == TUK_Reference &&
12292                 (!PrevTagDecl->getFriendObjectKind() || getLangOpts().MicrosoftExt))
12293                || TUK == TUK_Friend))
12294             return PrevTagDecl;
12295 
12296           // Diagnose attempts to redefine a tag.
12297           if (TUK == TUK_Definition) {
12298             if (NamedDecl *Def = PrevTagDecl->getDefinition()) {
12299               // If we're defining a specialization and the previous definition
12300               // is from an implicit instantiation, don't emit an error
12301               // here; we'll catch this in the general case below.
12302               bool IsExplicitSpecializationAfterInstantiation = false;
12303               if (isExplicitSpecialization) {
12304                 if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Def))
12305                   IsExplicitSpecializationAfterInstantiation =
12306                     RD->getTemplateSpecializationKind() !=
12307                     TSK_ExplicitSpecialization;
12308                 else if (EnumDecl *ED = dyn_cast<EnumDecl>(Def))
12309                   IsExplicitSpecializationAfterInstantiation =
12310                     ED->getTemplateSpecializationKind() !=
12311                     TSK_ExplicitSpecialization;
12312               }
12313 
12314               NamedDecl *Hidden = nullptr;
12315               if (SkipBody && getLangOpts().CPlusPlus &&
12316                   !hasVisibleDefinition(Def, &Hidden)) {
12317                 // There is a definition of this tag, but it is not visible. We
12318                 // explicitly make use of C++'s one definition rule here, and
12319                 // assume that this definition is identical to the hidden one
12320                 // we already have. Make the existing definition visible and
12321                 // use it in place of this one.
12322                 SkipBody->ShouldSkip = true;
12323                 makeMergedDefinitionVisible(Hidden, KWLoc);
12324                 return Def;
12325               } else if (!IsExplicitSpecializationAfterInstantiation) {
12326                 // A redeclaration in function prototype scope in C isn't
12327                 // visible elsewhere, so merely issue a warning.
12328                 if (!getLangOpts().CPlusPlus && S->containedInPrototypeScope())
12329                   Diag(NameLoc, diag::warn_redefinition_in_param_list) << Name;
12330                 else
12331                   Diag(NameLoc, diag::err_redefinition) << Name;
12332                 Diag(Def->getLocation(), diag::note_previous_definition);
12333                 // If this is a redefinition, recover by making this
12334                 // struct be anonymous, which will make any later
12335                 // references get the previous definition.
12336                 Name = nullptr;
12337                 Previous.clear();
12338                 Invalid = true;
12339               }
12340             } else {
12341               // If the type is currently being defined, complain
12342               // about a nested redefinition.
12343               auto *TD = Context.getTagDeclType(PrevTagDecl)->getAsTagDecl();
12344               if (TD->isBeingDefined()) {
12345                 Diag(NameLoc, diag::err_nested_redefinition) << Name;
12346                 Diag(PrevTagDecl->getLocation(),
12347                      diag::note_previous_definition);
12348                 Name = nullptr;
12349                 Previous.clear();
12350                 Invalid = true;
12351               }
12352             }
12353 
12354             // Okay, this is definition of a previously declared or referenced
12355             // tag. We're going to create a new Decl for it.
12356           }
12357 
12358           // Okay, we're going to make a redeclaration.  If this is some kind
12359           // of reference, make sure we build the redeclaration in the same DC
12360           // as the original, and ignore the current access specifier.
12361           if (TUK == TUK_Friend || TUK == TUK_Reference) {
12362             SearchDC = PrevTagDecl->getDeclContext();
12363             AS = AS_none;
12364           }
12365         }
12366         // If we get here we have (another) forward declaration or we
12367         // have a definition.  Just create a new decl.
12368 
12369       } else {
12370         // If we get here, this is a definition of a new tag type in a nested
12371         // scope, e.g. "struct foo; void bar() { struct foo; }", just create a
12372         // new decl/type.  We set PrevDecl to NULL so that the entities
12373         // have distinct types.
12374         Previous.clear();
12375       }
12376       // If we get here, we're going to create a new Decl. If PrevDecl
12377       // is non-NULL, it's a definition of the tag declared by
12378       // PrevDecl. If it's NULL, we have a new definition.
12379 
12380 
12381     // Otherwise, PrevDecl is not a tag, but was found with tag
12382     // lookup.  This is only actually possible in C++, where a few
12383     // things like templates still live in the tag namespace.
12384     } else {
12385       // Use a better diagnostic if an elaborated-type-specifier
12386       // found the wrong kind of type on the first
12387       // (non-redeclaration) lookup.
12388       if ((TUK == TUK_Reference || TUK == TUK_Friend) &&
12389           !Previous.isForRedeclaration()) {
12390         unsigned Kind = 0;
12391         if (isa<TypedefDecl>(PrevDecl)) Kind = 1;
12392         else if (isa<TypeAliasDecl>(PrevDecl)) Kind = 2;
12393         else if (isa<ClassTemplateDecl>(PrevDecl)) Kind = 3;
12394         Diag(NameLoc, diag::err_tag_reference_non_tag) << Kind;
12395         Diag(PrevDecl->getLocation(), diag::note_declared_at);
12396         Invalid = true;
12397 
12398       // Otherwise, only diagnose if the declaration is in scope.
12399       } else if (!isDeclInScope(DirectPrevDecl, SearchDC, S,
12400                                 SS.isNotEmpty() || isExplicitSpecialization)) {
12401         // do nothing
12402 
12403       // Diagnose implicit declarations introduced by elaborated types.
12404       } else if (TUK == TUK_Reference || TUK == TUK_Friend) {
12405         unsigned Kind = 0;
12406         if (isa<TypedefDecl>(PrevDecl)) Kind = 1;
12407         else if (isa<TypeAliasDecl>(PrevDecl)) Kind = 2;
12408         else if (isa<ClassTemplateDecl>(PrevDecl)) Kind = 3;
12409         Diag(NameLoc, diag::err_tag_reference_conflict) << Kind;
12410         Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
12411         Invalid = true;
12412 
12413       // Otherwise it's a declaration.  Call out a particularly common
12414       // case here.
12415       } else if (TypedefNameDecl *TND = dyn_cast<TypedefNameDecl>(PrevDecl)) {
12416         unsigned Kind = 0;
12417         if (isa<TypeAliasDecl>(PrevDecl)) Kind = 1;
12418         Diag(NameLoc, diag::err_tag_definition_of_typedef)
12419           << Name << Kind << TND->getUnderlyingType();
12420         Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
12421         Invalid = true;
12422 
12423       // Otherwise, diagnose.
12424       } else {
12425         // The tag name clashes with something else in the target scope,
12426         // issue an error and recover by making this tag be anonymous.
12427         Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
12428         Diag(PrevDecl->getLocation(), diag::note_previous_definition);
12429         Name = nullptr;
12430         Invalid = true;
12431       }
12432 
12433       // The existing declaration isn't relevant to us; we're in a
12434       // new scope, so clear out the previous declaration.
12435       Previous.clear();
12436     }
12437   }
12438 
12439 CreateNewDecl:
12440 
12441   TagDecl *PrevDecl = nullptr;
12442   if (Previous.isSingleResult())
12443     PrevDecl = cast<TagDecl>(Previous.getFoundDecl());
12444 
12445   // If there is an identifier, use the location of the identifier as the
12446   // location of the decl, otherwise use the location of the struct/union
12447   // keyword.
12448   SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
12449 
12450   // Otherwise, create a new declaration. If there is a previous
12451   // declaration of the same entity, the two will be linked via
12452   // PrevDecl.
12453   TagDecl *New;
12454 
12455   bool IsForwardReference = false;
12456   if (Kind == TTK_Enum) {
12457     // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
12458     // enum X { A, B, C } D;    D should chain to X.
12459     New = EnumDecl::Create(Context, SearchDC, KWLoc, Loc, Name,
12460                            cast_or_null<EnumDecl>(PrevDecl), ScopedEnum,
12461                            ScopedEnumUsesClassTag, !EnumUnderlying.isNull());
12462     // If this is an undefined enum, warn.
12463     if (TUK != TUK_Definition && !Invalid) {
12464       TagDecl *Def;
12465       if ((getLangOpts().CPlusPlus11 || getLangOpts().ObjC2) &&
12466           cast<EnumDecl>(New)->isFixed()) {
12467         // C++0x: 7.2p2: opaque-enum-declaration.
12468         // Conflicts are diagnosed above. Do nothing.
12469       }
12470       else if (PrevDecl && (Def = cast<EnumDecl>(PrevDecl)->getDefinition())) {
12471         Diag(Loc, diag::ext_forward_ref_enum_def)
12472           << New;
12473         Diag(Def->getLocation(), diag::note_previous_definition);
12474       } else {
12475         unsigned DiagID = diag::ext_forward_ref_enum;
12476         if (getLangOpts().MSVCCompat)
12477           DiagID = diag::ext_ms_forward_ref_enum;
12478         else if (getLangOpts().CPlusPlus)
12479           DiagID = diag::err_forward_ref_enum;
12480         Diag(Loc, DiagID);
12481 
12482         // If this is a forward-declared reference to an enumeration, make a
12483         // note of it; we won't actually be introducing the declaration into
12484         // the declaration context.
12485         if (TUK == TUK_Reference)
12486           IsForwardReference = true;
12487       }
12488     }
12489 
12490     if (EnumUnderlying) {
12491       EnumDecl *ED = cast<EnumDecl>(New);
12492       if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo*>())
12493         ED->setIntegerTypeSourceInfo(TI);
12494       else
12495         ED->setIntegerType(QualType(EnumUnderlying.get<const Type*>(), 0));
12496       ED->setPromotionType(ED->getIntegerType());
12497     }
12498 
12499   } else {
12500     // struct/union/class
12501 
12502     // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
12503     // struct X { int A; } D;    D should chain to X.
12504     if (getLangOpts().CPlusPlus) {
12505       // FIXME: Look for a way to use RecordDecl for simple structs.
12506       New = CXXRecordDecl::Create(Context, Kind, SearchDC, KWLoc, Loc, Name,
12507                                   cast_or_null<CXXRecordDecl>(PrevDecl));
12508 
12509       if (isStdBadAlloc && (!StdBadAlloc || getStdBadAlloc()->isImplicit()))
12510         StdBadAlloc = cast<CXXRecordDecl>(New);
12511     } else
12512       New = RecordDecl::Create(Context, Kind, SearchDC, KWLoc, Loc, Name,
12513                                cast_or_null<RecordDecl>(PrevDecl));
12514   }
12515 
12516   // C++11 [dcl.type]p3:
12517   //   A type-specifier-seq shall not define a class or enumeration [...].
12518   if (getLangOpts().CPlusPlus && IsTypeSpecifier && TUK == TUK_Definition) {
12519     Diag(New->getLocation(), diag::err_type_defined_in_type_specifier)
12520       << Context.getTagDeclType(New);
12521     Invalid = true;
12522   }
12523 
12524   // Maybe add qualifier info.
12525   if (SS.isNotEmpty()) {
12526     if (SS.isSet()) {
12527       // If this is either a declaration or a definition, check the
12528       // nested-name-specifier against the current context. We don't do this
12529       // for explicit specializations, because they have similar checking
12530       // (with more specific diagnostics) in the call to
12531       // CheckMemberSpecialization, below.
12532       if (!isExplicitSpecialization &&
12533           (TUK == TUK_Definition || TUK == TUK_Declaration) &&
12534           diagnoseQualifiedDeclaration(SS, DC, OrigName, Loc))
12535         Invalid = true;
12536 
12537       New->setQualifierInfo(SS.getWithLocInContext(Context));
12538       if (TemplateParameterLists.size() > 0) {
12539         New->setTemplateParameterListsInfo(Context, TemplateParameterLists);
12540       }
12541     }
12542     else
12543       Invalid = true;
12544   }
12545 
12546   if (RecordDecl *RD = dyn_cast<RecordDecl>(New)) {
12547     // Add alignment attributes if necessary; these attributes are checked when
12548     // the ASTContext lays out the structure.
12549     //
12550     // It is important for implementing the correct semantics that this
12551     // happen here (in act on tag decl). The #pragma pack stack is
12552     // maintained as a result of parser callbacks which can occur at
12553     // many points during the parsing of a struct declaration (because
12554     // the #pragma tokens are effectively skipped over during the
12555     // parsing of the struct).
12556     if (TUK == TUK_Definition) {
12557       AddAlignmentAttributesForRecord(RD);
12558       AddMsStructLayoutForRecord(RD);
12559     }
12560   }
12561 
12562   if (ModulePrivateLoc.isValid()) {
12563     if (isExplicitSpecialization)
12564       Diag(New->getLocation(), diag::err_module_private_specialization)
12565         << 2
12566         << FixItHint::CreateRemoval(ModulePrivateLoc);
12567     // __module_private__ does not apply to local classes. However, we only
12568     // diagnose this as an error when the declaration specifiers are
12569     // freestanding. Here, we just ignore the __module_private__.
12570     else if (!SearchDC->isFunctionOrMethod())
12571       New->setModulePrivate();
12572   }
12573 
12574   // If this is a specialization of a member class (of a class template),
12575   // check the specialization.
12576   if (isExplicitSpecialization && CheckMemberSpecialization(New, Previous))
12577     Invalid = true;
12578 
12579   // If we're declaring or defining a tag in function prototype scope in C,
12580   // note that this type can only be used within the function and add it to
12581   // the list of decls to inject into the function definition scope.
12582   if ((Name || Kind == TTK_Enum) &&
12583       getNonFieldDeclScope(S)->isFunctionPrototypeScope()) {
12584     if (getLangOpts().CPlusPlus) {
12585       // C++ [dcl.fct]p6:
12586       //   Types shall not be defined in return or parameter types.
12587       if (TUK == TUK_Definition && !IsTypeSpecifier) {
12588         Diag(Loc, diag::err_type_defined_in_param_type)
12589             << Name;
12590         Invalid = true;
12591       }
12592     } else {
12593       Diag(Loc, diag::warn_decl_in_param_list) << Context.getTagDeclType(New);
12594     }
12595     DeclsInPrototypeScope.push_back(New);
12596   }
12597 
12598   if (Invalid)
12599     New->setInvalidDecl();
12600 
12601   if (Attr)
12602     ProcessDeclAttributeList(S, New, Attr);
12603 
12604   // Set the lexical context. If the tag has a C++ scope specifier, the
12605   // lexical context will be different from the semantic context.
12606   New->setLexicalDeclContext(CurContext);
12607 
12608   // Mark this as a friend decl if applicable.
12609   // In Microsoft mode, a friend declaration also acts as a forward
12610   // declaration so we always pass true to setObjectOfFriendDecl to make
12611   // the tag name visible.
12612   if (TUK == TUK_Friend)
12613     New->setObjectOfFriendDecl(getLangOpts().MSVCCompat);
12614 
12615   // Set the access specifier.
12616   if (!Invalid && SearchDC->isRecord())
12617     SetMemberAccessSpecifier(New, PrevDecl, AS);
12618 
12619   if (TUK == TUK_Definition)
12620     New->startDefinition();
12621 
12622   // If this has an identifier, add it to the scope stack.
12623   if (TUK == TUK_Friend) {
12624     // We might be replacing an existing declaration in the lookup tables;
12625     // if so, borrow its access specifier.
12626     if (PrevDecl)
12627       New->setAccess(PrevDecl->getAccess());
12628 
12629     DeclContext *DC = New->getDeclContext()->getRedeclContext();
12630     DC->makeDeclVisibleInContext(New);
12631     if (Name) // can be null along some error paths
12632       if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
12633         PushOnScopeChains(New, EnclosingScope, /* AddToContext = */ false);
12634   } else if (Name) {
12635     S = getNonFieldDeclScope(S);
12636     PushOnScopeChains(New, S, !IsForwardReference);
12637     if (IsForwardReference)
12638       SearchDC->makeDeclVisibleInContext(New);
12639 
12640   } else {
12641     CurContext->addDecl(New);
12642   }
12643 
12644   // If this is the C FILE type, notify the AST context.
12645   if (IdentifierInfo *II = New->getIdentifier())
12646     if (!New->isInvalidDecl() &&
12647         New->getDeclContext()->getRedeclContext()->isTranslationUnit() &&
12648         II->isStr("FILE"))
12649       Context.setFILEDecl(New);
12650 
12651   if (PrevDecl)
12652     mergeDeclAttributes(New, PrevDecl);
12653 
12654   // If there's a #pragma GCC visibility in scope, set the visibility of this
12655   // record.
12656   AddPushedVisibilityAttribute(New);
12657 
12658   OwnedDecl = true;
12659   // In C++, don't return an invalid declaration. We can't recover well from
12660   // the cases where we make the type anonymous.
12661   return (Invalid && getLangOpts().CPlusPlus) ? nullptr : New;
12662 }
12663 
ActOnTagStartDefinition(Scope * S,Decl * TagD)12664 void Sema::ActOnTagStartDefinition(Scope *S, Decl *TagD) {
12665   AdjustDeclIfTemplate(TagD);
12666   TagDecl *Tag = cast<TagDecl>(TagD);
12667 
12668   // Enter the tag context.
12669   PushDeclContext(S, Tag);
12670 
12671   ActOnDocumentableDecl(TagD);
12672 
12673   // If there's a #pragma GCC visibility in scope, set the visibility of this
12674   // record.
12675   AddPushedVisibilityAttribute(Tag);
12676 }
12677 
ActOnObjCContainerStartDefinition(Decl * IDecl)12678 Decl *Sema::ActOnObjCContainerStartDefinition(Decl *IDecl) {
12679   assert(isa<ObjCContainerDecl>(IDecl) &&
12680          "ActOnObjCContainerStartDefinition - Not ObjCContainerDecl");
12681   DeclContext *OCD = cast<DeclContext>(IDecl);
12682   assert(getContainingDC(OCD) == CurContext &&
12683       "The next DeclContext should be lexically contained in the current one.");
12684   CurContext = OCD;
12685   return IDecl;
12686 }
12687 
ActOnStartCXXMemberDeclarations(Scope * S,Decl * TagD,SourceLocation FinalLoc,bool IsFinalSpelledSealed,SourceLocation LBraceLoc)12688 void Sema::ActOnStartCXXMemberDeclarations(Scope *S, Decl *TagD,
12689                                            SourceLocation FinalLoc,
12690                                            bool IsFinalSpelledSealed,
12691                                            SourceLocation LBraceLoc) {
12692   AdjustDeclIfTemplate(TagD);
12693   CXXRecordDecl *Record = cast<CXXRecordDecl>(TagD);
12694 
12695   FieldCollector->StartClass();
12696 
12697   if (!Record->getIdentifier())
12698     return;
12699 
12700   if (FinalLoc.isValid())
12701     Record->addAttr(new (Context)
12702                     FinalAttr(FinalLoc, Context, IsFinalSpelledSealed));
12703 
12704   // C++ [class]p2:
12705   //   [...] The class-name is also inserted into the scope of the
12706   //   class itself; this is known as the injected-class-name. For
12707   //   purposes of access checking, the injected-class-name is treated
12708   //   as if it were a public member name.
12709   CXXRecordDecl *InjectedClassName
12710     = CXXRecordDecl::Create(Context, Record->getTagKind(), CurContext,
12711                             Record->getLocStart(), Record->getLocation(),
12712                             Record->getIdentifier(),
12713                             /*PrevDecl=*/nullptr,
12714                             /*DelayTypeCreation=*/true);
12715   Context.getTypeDeclType(InjectedClassName, Record);
12716   InjectedClassName->setImplicit();
12717   InjectedClassName->setAccess(AS_public);
12718   if (ClassTemplateDecl *Template = Record->getDescribedClassTemplate())
12719       InjectedClassName->setDescribedClassTemplate(Template);
12720   PushOnScopeChains(InjectedClassName, S);
12721   assert(InjectedClassName->isInjectedClassName() &&
12722          "Broken injected-class-name");
12723 }
12724 
ActOnTagFinishDefinition(Scope * S,Decl * TagD,SourceLocation RBraceLoc)12725 void Sema::ActOnTagFinishDefinition(Scope *S, Decl *TagD,
12726                                     SourceLocation RBraceLoc) {
12727   AdjustDeclIfTemplate(TagD);
12728   TagDecl *Tag = cast<TagDecl>(TagD);
12729   Tag->setRBraceLoc(RBraceLoc);
12730 
12731   // Make sure we "complete" the definition even it is invalid.
12732   if (Tag->isBeingDefined()) {
12733     assert(Tag->isInvalidDecl() && "We should already have completed it");
12734     if (RecordDecl *RD = dyn_cast<RecordDecl>(Tag))
12735       RD->completeDefinition();
12736   }
12737 
12738   if (isa<CXXRecordDecl>(Tag))
12739     FieldCollector->FinishClass();
12740 
12741   // Exit this scope of this tag's definition.
12742   PopDeclContext();
12743 
12744   if (getCurLexicalContext()->isObjCContainer() &&
12745       Tag->getDeclContext()->isFileContext())
12746     Tag->setTopLevelDeclInObjCContainer();
12747 
12748   // Notify the consumer that we've defined a tag.
12749   if (!Tag->isInvalidDecl())
12750     Consumer.HandleTagDeclDefinition(Tag);
12751 }
12752 
ActOnObjCContainerFinishDefinition()12753 void Sema::ActOnObjCContainerFinishDefinition() {
12754   // Exit this scope of this interface definition.
12755   PopDeclContext();
12756 }
12757 
ActOnObjCTemporaryExitContainerContext(DeclContext * DC)12758 void Sema::ActOnObjCTemporaryExitContainerContext(DeclContext *DC) {
12759   assert(DC == CurContext && "Mismatch of container contexts");
12760   OriginalLexicalContext = DC;
12761   ActOnObjCContainerFinishDefinition();
12762 }
12763 
ActOnObjCReenterContainerContext(DeclContext * DC)12764 void Sema::ActOnObjCReenterContainerContext(DeclContext *DC) {
12765   ActOnObjCContainerStartDefinition(cast<Decl>(DC));
12766   OriginalLexicalContext = nullptr;
12767 }
12768 
ActOnTagDefinitionError(Scope * S,Decl * TagD)12769 void Sema::ActOnTagDefinitionError(Scope *S, Decl *TagD) {
12770   AdjustDeclIfTemplate(TagD);
12771   TagDecl *Tag = cast<TagDecl>(TagD);
12772   Tag->setInvalidDecl();
12773 
12774   // Make sure we "complete" the definition even it is invalid.
12775   if (Tag->isBeingDefined()) {
12776     if (RecordDecl *RD = dyn_cast<RecordDecl>(Tag))
12777       RD->completeDefinition();
12778   }
12779 
12780   // We're undoing ActOnTagStartDefinition here, not
12781   // ActOnStartCXXMemberDeclarations, so we don't have to mess with
12782   // the FieldCollector.
12783 
12784   PopDeclContext();
12785 }
12786 
12787 // Note that FieldName may be null for anonymous bitfields.
VerifyBitField(SourceLocation FieldLoc,IdentifierInfo * FieldName,QualType FieldTy,bool IsMsStruct,Expr * BitWidth,bool * ZeroWidth)12788 ExprResult Sema::VerifyBitField(SourceLocation FieldLoc,
12789                                 IdentifierInfo *FieldName,
12790                                 QualType FieldTy, bool IsMsStruct,
12791                                 Expr *BitWidth, bool *ZeroWidth) {
12792   // Default to true; that shouldn't confuse checks for emptiness
12793   if (ZeroWidth)
12794     *ZeroWidth = true;
12795 
12796   // C99 6.7.2.1p4 - verify the field type.
12797   // C++ 9.6p3: A bit-field shall have integral or enumeration type.
12798   if (!FieldTy->isDependentType() && !FieldTy->isIntegralOrEnumerationType()) {
12799     // Handle incomplete types with specific error.
12800     if (RequireCompleteType(FieldLoc, FieldTy, diag::err_field_incomplete))
12801       return ExprError();
12802     if (FieldName)
12803       return Diag(FieldLoc, diag::err_not_integral_type_bitfield)
12804         << FieldName << FieldTy << BitWidth->getSourceRange();
12805     return Diag(FieldLoc, diag::err_not_integral_type_anon_bitfield)
12806       << FieldTy << BitWidth->getSourceRange();
12807   } else if (DiagnoseUnexpandedParameterPack(const_cast<Expr *>(BitWidth),
12808                                              UPPC_BitFieldWidth))
12809     return ExprError();
12810 
12811   // If the bit-width is type- or value-dependent, don't try to check
12812   // it now.
12813   if (BitWidth->isValueDependent() || BitWidth->isTypeDependent())
12814     return BitWidth;
12815 
12816   llvm::APSInt Value;
12817   ExprResult ICE = VerifyIntegerConstantExpression(BitWidth, &Value);
12818   if (ICE.isInvalid())
12819     return ICE;
12820   BitWidth = ICE.get();
12821 
12822   if (Value != 0 && ZeroWidth)
12823     *ZeroWidth = false;
12824 
12825   // Zero-width bitfield is ok for anonymous field.
12826   if (Value == 0 && FieldName)
12827     return Diag(FieldLoc, diag::err_bitfield_has_zero_width) << FieldName;
12828 
12829   if (Value.isSigned() && Value.isNegative()) {
12830     if (FieldName)
12831       return Diag(FieldLoc, diag::err_bitfield_has_negative_width)
12832                << FieldName << Value.toString(10);
12833     return Diag(FieldLoc, diag::err_anon_bitfield_has_negative_width)
12834       << Value.toString(10);
12835   }
12836 
12837   if (!FieldTy->isDependentType()) {
12838     uint64_t TypeStorageSize = Context.getTypeSize(FieldTy);
12839     uint64_t TypeWidth = Context.getIntWidth(FieldTy);
12840     bool BitfieldIsOverwide = Value.ugt(TypeWidth);
12841 
12842     // Over-wide bitfields are an error in C or when using the MSVC bitfield
12843     // ABI.
12844     bool CStdConstraintViolation =
12845         BitfieldIsOverwide && !getLangOpts().CPlusPlus;
12846     bool MSBitfieldViolation =
12847         Value.ugt(TypeStorageSize) &&
12848         (IsMsStruct || Context.getTargetInfo().getCXXABI().isMicrosoft());
12849     if (CStdConstraintViolation || MSBitfieldViolation) {
12850       unsigned DiagWidth =
12851           CStdConstraintViolation ? TypeWidth : TypeStorageSize;
12852       if (FieldName)
12853         return Diag(FieldLoc, diag::err_bitfield_width_exceeds_type_width)
12854                << FieldName << (unsigned)Value.getZExtValue()
12855                << !CStdConstraintViolation << DiagWidth;
12856 
12857       return Diag(FieldLoc, diag::err_anon_bitfield_width_exceeds_type_width)
12858              << (unsigned)Value.getZExtValue() << !CStdConstraintViolation
12859              << DiagWidth;
12860     }
12861 
12862     // Warn on types where the user might conceivably expect to get all
12863     // specified bits as value bits: that's all integral types other than
12864     // 'bool'.
12865     if (BitfieldIsOverwide && !FieldTy->isBooleanType()) {
12866       if (FieldName)
12867         Diag(FieldLoc, diag::warn_bitfield_width_exceeds_type_width)
12868             << FieldName << (unsigned)Value.getZExtValue()
12869             << (unsigned)TypeWidth;
12870       else
12871         Diag(FieldLoc, diag::warn_anon_bitfield_width_exceeds_type_width)
12872             << (unsigned)Value.getZExtValue() << (unsigned)TypeWidth;
12873     }
12874   }
12875 
12876   return BitWidth;
12877 }
12878 
12879 /// ActOnField - Each field of a C struct/union is passed into this in order
12880 /// to create a FieldDecl object for it.
ActOnField(Scope * S,Decl * TagD,SourceLocation DeclStart,Declarator & D,Expr * BitfieldWidth)12881 Decl *Sema::ActOnField(Scope *S, Decl *TagD, SourceLocation DeclStart,
12882                        Declarator &D, Expr *BitfieldWidth) {
12883   FieldDecl *Res = HandleField(S, cast_or_null<RecordDecl>(TagD),
12884                                DeclStart, D, static_cast<Expr*>(BitfieldWidth),
12885                                /*InitStyle=*/ICIS_NoInit, AS_public);
12886   return Res;
12887 }
12888 
12889 /// HandleField - Analyze a field of a C struct or a C++ data member.
12890 ///
HandleField(Scope * S,RecordDecl * Record,SourceLocation DeclStart,Declarator & D,Expr * BitWidth,InClassInitStyle InitStyle,AccessSpecifier AS)12891 FieldDecl *Sema::HandleField(Scope *S, RecordDecl *Record,
12892                              SourceLocation DeclStart,
12893                              Declarator &D, Expr *BitWidth,
12894                              InClassInitStyle InitStyle,
12895                              AccessSpecifier AS) {
12896   IdentifierInfo *II = D.getIdentifier();
12897   SourceLocation Loc = DeclStart;
12898   if (II) Loc = D.getIdentifierLoc();
12899 
12900   TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
12901   QualType T = TInfo->getType();
12902   if (getLangOpts().CPlusPlus) {
12903     CheckExtraCXXDefaultArguments(D);
12904 
12905     if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
12906                                         UPPC_DataMemberType)) {
12907       D.setInvalidType();
12908       T = Context.IntTy;
12909       TInfo = Context.getTrivialTypeSourceInfo(T, Loc);
12910     }
12911   }
12912 
12913   // TR 18037 does not allow fields to be declared with address spaces.
12914   if (T.getQualifiers().hasAddressSpace()) {
12915     Diag(Loc, diag::err_field_with_address_space);
12916     D.setInvalidType();
12917   }
12918 
12919   // OpenCL 1.2 spec, s6.9 r:
12920   // The event type cannot be used to declare a structure or union field.
12921   if (LangOpts.OpenCL && T->isEventT()) {
12922     Diag(Loc, diag::err_event_t_struct_field);
12923     D.setInvalidType();
12924   }
12925 
12926   DiagnoseFunctionSpecifiers(D.getDeclSpec());
12927 
12928   if (DeclSpec::TSCS TSCS = D.getDeclSpec().getThreadStorageClassSpec())
12929     Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(),
12930          diag::err_invalid_thread)
12931       << DeclSpec::getSpecifierName(TSCS);
12932 
12933   // Check to see if this name was declared as a member previously
12934   NamedDecl *PrevDecl = nullptr;
12935   LookupResult Previous(*this, II, Loc, LookupMemberName, ForRedeclaration);
12936   LookupName(Previous, S);
12937   switch (Previous.getResultKind()) {
12938     case LookupResult::Found:
12939     case LookupResult::FoundUnresolvedValue:
12940       PrevDecl = Previous.getAsSingle<NamedDecl>();
12941       break;
12942 
12943     case LookupResult::FoundOverloaded:
12944       PrevDecl = Previous.getRepresentativeDecl();
12945       break;
12946 
12947     case LookupResult::NotFound:
12948     case LookupResult::NotFoundInCurrentInstantiation:
12949     case LookupResult::Ambiguous:
12950       break;
12951   }
12952   Previous.suppressDiagnostics();
12953 
12954   if (PrevDecl && PrevDecl->isTemplateParameter()) {
12955     // Maybe we will complain about the shadowed template parameter.
12956     DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
12957     // Just pretend that we didn't see the previous declaration.
12958     PrevDecl = nullptr;
12959   }
12960 
12961   if (PrevDecl && !isDeclInScope(PrevDecl, Record, S))
12962     PrevDecl = nullptr;
12963 
12964   bool Mutable
12965     = (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_mutable);
12966   SourceLocation TSSL = D.getLocStart();
12967   FieldDecl *NewFD
12968     = CheckFieldDecl(II, T, TInfo, Record, Loc, Mutable, BitWidth, InitStyle,
12969                      TSSL, AS, PrevDecl, &D);
12970 
12971   if (NewFD->isInvalidDecl())
12972     Record->setInvalidDecl();
12973 
12974   if (D.getDeclSpec().isModulePrivateSpecified())
12975     NewFD->setModulePrivate();
12976 
12977   if (NewFD->isInvalidDecl() && PrevDecl) {
12978     // Don't introduce NewFD into scope; there's already something
12979     // with the same name in the same scope.
12980   } else if (II) {
12981     PushOnScopeChains(NewFD, S);
12982   } else
12983     Record->addDecl(NewFD);
12984 
12985   return NewFD;
12986 }
12987 
12988 /// \brief Build a new FieldDecl and check its well-formedness.
12989 ///
12990 /// This routine builds a new FieldDecl given the fields name, type,
12991 /// record, etc. \p PrevDecl should refer to any previous declaration
12992 /// with the same name and in the same scope as the field to be
12993 /// created.
12994 ///
12995 /// \returns a new FieldDecl.
12996 ///
12997 /// \todo The Declarator argument is a hack. It will be removed once
CheckFieldDecl(DeclarationName Name,QualType T,TypeSourceInfo * TInfo,RecordDecl * Record,SourceLocation Loc,bool Mutable,Expr * BitWidth,InClassInitStyle InitStyle,SourceLocation TSSL,AccessSpecifier AS,NamedDecl * PrevDecl,Declarator * D)12998 FieldDecl *Sema::CheckFieldDecl(DeclarationName Name, QualType T,
12999                                 TypeSourceInfo *TInfo,
13000                                 RecordDecl *Record, SourceLocation Loc,
13001                                 bool Mutable, Expr *BitWidth,
13002                                 InClassInitStyle InitStyle,
13003                                 SourceLocation TSSL,
13004                                 AccessSpecifier AS, NamedDecl *PrevDecl,
13005                                 Declarator *D) {
13006   IdentifierInfo *II = Name.getAsIdentifierInfo();
13007   bool InvalidDecl = false;
13008   if (D) InvalidDecl = D->isInvalidType();
13009 
13010   // If we receive a broken type, recover by assuming 'int' and
13011   // marking this declaration as invalid.
13012   if (T.isNull()) {
13013     InvalidDecl = true;
13014     T = Context.IntTy;
13015   }
13016 
13017   QualType EltTy = Context.getBaseElementType(T);
13018   if (!EltTy->isDependentType()) {
13019     if (RequireCompleteType(Loc, EltTy, diag::err_field_incomplete)) {
13020       // Fields of incomplete type force their record to be invalid.
13021       Record->setInvalidDecl();
13022       InvalidDecl = true;
13023     } else {
13024       NamedDecl *Def;
13025       EltTy->isIncompleteType(&Def);
13026       if (Def && Def->isInvalidDecl()) {
13027         Record->setInvalidDecl();
13028         InvalidDecl = true;
13029       }
13030     }
13031   }
13032 
13033   // OpenCL v1.2 s6.9.c: bitfields are not supported.
13034   if (BitWidth && getLangOpts().OpenCL) {
13035     Diag(Loc, diag::err_opencl_bitfields);
13036     InvalidDecl = true;
13037   }
13038 
13039   // C99 6.7.2.1p8: A member of a structure or union may have any type other
13040   // than a variably modified type.
13041   if (!InvalidDecl && T->isVariablyModifiedType()) {
13042     bool SizeIsNegative;
13043     llvm::APSInt Oversized;
13044 
13045     TypeSourceInfo *FixedTInfo =
13046       TryToFixInvalidVariablyModifiedTypeSourceInfo(TInfo, Context,
13047                                                     SizeIsNegative,
13048                                                     Oversized);
13049     if (FixedTInfo) {
13050       Diag(Loc, diag::warn_illegal_constant_array_size);
13051       TInfo = FixedTInfo;
13052       T = FixedTInfo->getType();
13053     } else {
13054       if (SizeIsNegative)
13055         Diag(Loc, diag::err_typecheck_negative_array_size);
13056       else if (Oversized.getBoolValue())
13057         Diag(Loc, diag::err_array_too_large)
13058           << Oversized.toString(10);
13059       else
13060         Diag(Loc, diag::err_typecheck_field_variable_size);
13061       InvalidDecl = true;
13062     }
13063   }
13064 
13065   // Fields can not have abstract class types
13066   if (!InvalidDecl && RequireNonAbstractType(Loc, T,
13067                                              diag::err_abstract_type_in_decl,
13068                                              AbstractFieldType))
13069     InvalidDecl = true;
13070 
13071   bool ZeroWidth = false;
13072   if (InvalidDecl)
13073     BitWidth = nullptr;
13074   // If this is declared as a bit-field, check the bit-field.
13075   if (BitWidth) {
13076     BitWidth = VerifyBitField(Loc, II, T, Record->isMsStruct(Context), BitWidth,
13077                               &ZeroWidth).get();
13078     if (!BitWidth) {
13079       InvalidDecl = true;
13080       BitWidth = nullptr;
13081       ZeroWidth = false;
13082     }
13083   }
13084 
13085   // Check that 'mutable' is consistent with the type of the declaration.
13086   if (!InvalidDecl && Mutable) {
13087     unsigned DiagID = 0;
13088     if (T->isReferenceType())
13089       DiagID = getLangOpts().MSVCCompat ? diag::ext_mutable_reference
13090                                         : diag::err_mutable_reference;
13091     else if (T.isConstQualified())
13092       DiagID = diag::err_mutable_const;
13093 
13094     if (DiagID) {
13095       SourceLocation ErrLoc = Loc;
13096       if (D && D->getDeclSpec().getStorageClassSpecLoc().isValid())
13097         ErrLoc = D->getDeclSpec().getStorageClassSpecLoc();
13098       Diag(ErrLoc, DiagID);
13099       if (DiagID != diag::ext_mutable_reference) {
13100         Mutable = false;
13101         InvalidDecl = true;
13102       }
13103     }
13104   }
13105 
13106   // C++11 [class.union]p8 (DR1460):
13107   //   At most one variant member of a union may have a
13108   //   brace-or-equal-initializer.
13109   if (InitStyle != ICIS_NoInit)
13110     checkDuplicateDefaultInit(*this, cast<CXXRecordDecl>(Record), Loc);
13111 
13112   FieldDecl *NewFD = FieldDecl::Create(Context, Record, TSSL, Loc, II, T, TInfo,
13113                                        BitWidth, Mutable, InitStyle);
13114   if (InvalidDecl)
13115     NewFD->setInvalidDecl();
13116 
13117   if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
13118     Diag(Loc, diag::err_duplicate_member) << II;
13119     Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
13120     NewFD->setInvalidDecl();
13121   }
13122 
13123   if (!InvalidDecl && getLangOpts().CPlusPlus) {
13124     if (Record->isUnion()) {
13125       if (const RecordType *RT = EltTy->getAs<RecordType>()) {
13126         CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl());
13127         if (RDecl->getDefinition()) {
13128           // C++ [class.union]p1: An object of a class with a non-trivial
13129           // constructor, a non-trivial copy constructor, a non-trivial
13130           // destructor, or a non-trivial copy assignment operator
13131           // cannot be a member of a union, nor can an array of such
13132           // objects.
13133           if (CheckNontrivialField(NewFD))
13134             NewFD->setInvalidDecl();
13135         }
13136       }
13137 
13138       // C++ [class.union]p1: If a union contains a member of reference type,
13139       // the program is ill-formed, except when compiling with MSVC extensions
13140       // enabled.
13141       if (EltTy->isReferenceType()) {
13142         Diag(NewFD->getLocation(), getLangOpts().MicrosoftExt ?
13143                                     diag::ext_union_member_of_reference_type :
13144                                     diag::err_union_member_of_reference_type)
13145           << NewFD->getDeclName() << EltTy;
13146         if (!getLangOpts().MicrosoftExt)
13147           NewFD->setInvalidDecl();
13148       }
13149     }
13150   }
13151 
13152   // FIXME: We need to pass in the attributes given an AST
13153   // representation, not a parser representation.
13154   if (D) {
13155     // FIXME: The current scope is almost... but not entirely... correct here.
13156     ProcessDeclAttributes(getCurScope(), NewFD, *D);
13157 
13158     if (NewFD->hasAttrs())
13159       CheckAlignasUnderalignment(NewFD);
13160   }
13161 
13162   // In auto-retain/release, infer strong retension for fields of
13163   // retainable type.
13164   if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(NewFD))
13165     NewFD->setInvalidDecl();
13166 
13167   if (T.isObjCGCWeak())
13168     Diag(Loc, diag::warn_attribute_weak_on_field);
13169 
13170   NewFD->setAccess(AS);
13171   return NewFD;
13172 }
13173 
CheckNontrivialField(FieldDecl * FD)13174 bool Sema::CheckNontrivialField(FieldDecl *FD) {
13175   assert(FD);
13176   assert(getLangOpts().CPlusPlus && "valid check only for C++");
13177 
13178   if (FD->isInvalidDecl() || FD->getType()->isDependentType())
13179     return false;
13180 
13181   QualType EltTy = Context.getBaseElementType(FD->getType());
13182   if (const RecordType *RT = EltTy->getAs<RecordType>()) {
13183     CXXRecordDecl *RDecl = cast<CXXRecordDecl>(RT->getDecl());
13184     if (RDecl->getDefinition()) {
13185       // We check for copy constructors before constructors
13186       // because otherwise we'll never get complaints about
13187       // copy constructors.
13188 
13189       CXXSpecialMember member = CXXInvalid;
13190       // We're required to check for any non-trivial constructors. Since the
13191       // implicit default constructor is suppressed if there are any
13192       // user-declared constructors, we just need to check that there is a
13193       // trivial default constructor and a trivial copy constructor. (We don't
13194       // worry about move constructors here, since this is a C++98 check.)
13195       if (RDecl->hasNonTrivialCopyConstructor())
13196         member = CXXCopyConstructor;
13197       else if (!RDecl->hasTrivialDefaultConstructor())
13198         member = CXXDefaultConstructor;
13199       else if (RDecl->hasNonTrivialCopyAssignment())
13200         member = CXXCopyAssignment;
13201       else if (RDecl->hasNonTrivialDestructor())
13202         member = CXXDestructor;
13203 
13204       if (member != CXXInvalid) {
13205         if (!getLangOpts().CPlusPlus11 &&
13206             getLangOpts().ObjCAutoRefCount && RDecl->hasObjectMember()) {
13207           // Objective-C++ ARC: it is an error to have a non-trivial field of
13208           // a union. However, system headers in Objective-C programs
13209           // occasionally have Objective-C lifetime objects within unions,
13210           // and rather than cause the program to fail, we make those
13211           // members unavailable.
13212           SourceLocation Loc = FD->getLocation();
13213           if (getSourceManager().isInSystemHeader(Loc)) {
13214             if (!FD->hasAttr<UnavailableAttr>())
13215               FD->addAttr(UnavailableAttr::CreateImplicit(Context, "",
13216                             UnavailableAttr::IR_ARCFieldWithOwnership, Loc));
13217             return false;
13218           }
13219         }
13220 
13221         Diag(FD->getLocation(), getLangOpts().CPlusPlus11 ?
13222                diag::warn_cxx98_compat_nontrivial_union_or_anon_struct_member :
13223                diag::err_illegal_union_or_anon_struct_member)
13224           << FD->getParent()->isUnion() << FD->getDeclName() << member;
13225         DiagnoseNontrivial(RDecl, member);
13226         return !getLangOpts().CPlusPlus11;
13227       }
13228     }
13229   }
13230 
13231   return false;
13232 }
13233 
13234 /// TranslateIvarVisibility - Translate visibility from a token ID to an
13235 ///  AST enum value.
13236 static ObjCIvarDecl::AccessControl
TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility)13237 TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) {
13238   switch (ivarVisibility) {
13239   default: llvm_unreachable("Unknown visitibility kind");
13240   case tok::objc_private: return ObjCIvarDecl::Private;
13241   case tok::objc_public: return ObjCIvarDecl::Public;
13242   case tok::objc_protected: return ObjCIvarDecl::Protected;
13243   case tok::objc_package: return ObjCIvarDecl::Package;
13244   }
13245 }
13246 
13247 /// ActOnIvar - Each ivar field of an objective-c class is passed into this
13248 /// in order to create an IvarDecl object for it.
ActOnIvar(Scope * S,SourceLocation DeclStart,Declarator & D,Expr * BitfieldWidth,tok::ObjCKeywordKind Visibility)13249 Decl *Sema::ActOnIvar(Scope *S,
13250                                 SourceLocation DeclStart,
13251                                 Declarator &D, Expr *BitfieldWidth,
13252                                 tok::ObjCKeywordKind Visibility) {
13253 
13254   IdentifierInfo *II = D.getIdentifier();
13255   Expr *BitWidth = (Expr*)BitfieldWidth;
13256   SourceLocation Loc = DeclStart;
13257   if (II) Loc = D.getIdentifierLoc();
13258 
13259   // FIXME: Unnamed fields can be handled in various different ways, for
13260   // example, unnamed unions inject all members into the struct namespace!
13261 
13262   TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
13263   QualType T = TInfo->getType();
13264 
13265   if (BitWidth) {
13266     // 6.7.2.1p3, 6.7.2.1p4
13267     BitWidth = VerifyBitField(Loc, II, T, /*IsMsStruct*/false, BitWidth).get();
13268     if (!BitWidth)
13269       D.setInvalidType();
13270   } else {
13271     // Not a bitfield.
13272 
13273     // validate II.
13274 
13275   }
13276   if (T->isReferenceType()) {
13277     Diag(Loc, diag::err_ivar_reference_type);
13278     D.setInvalidType();
13279   }
13280   // C99 6.7.2.1p8: A member of a structure or union may have any type other
13281   // than a variably modified type.
13282   else if (T->isVariablyModifiedType()) {
13283     Diag(Loc, diag::err_typecheck_ivar_variable_size);
13284     D.setInvalidType();
13285   }
13286 
13287   // Get the visibility (access control) for this ivar.
13288   ObjCIvarDecl::AccessControl ac =
13289     Visibility != tok::objc_not_keyword ? TranslateIvarVisibility(Visibility)
13290                                         : ObjCIvarDecl::None;
13291   // Must set ivar's DeclContext to its enclosing interface.
13292   ObjCContainerDecl *EnclosingDecl = cast<ObjCContainerDecl>(CurContext);
13293   if (!EnclosingDecl || EnclosingDecl->isInvalidDecl())
13294     return nullptr;
13295   ObjCContainerDecl *EnclosingContext;
13296   if (ObjCImplementationDecl *IMPDecl =
13297       dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
13298     if (LangOpts.ObjCRuntime.isFragile()) {
13299     // Case of ivar declared in an implementation. Context is that of its class.
13300       EnclosingContext = IMPDecl->getClassInterface();
13301       assert(EnclosingContext && "Implementation has no class interface!");
13302     }
13303     else
13304       EnclosingContext = EnclosingDecl;
13305   } else {
13306     if (ObjCCategoryDecl *CDecl =
13307         dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
13308       if (LangOpts.ObjCRuntime.isFragile() || !CDecl->IsClassExtension()) {
13309         Diag(Loc, diag::err_misplaced_ivar) << CDecl->IsClassExtension();
13310         return nullptr;
13311       }
13312     }
13313     EnclosingContext = EnclosingDecl;
13314   }
13315 
13316   // Construct the decl.
13317   ObjCIvarDecl *NewID = ObjCIvarDecl::Create(Context, EnclosingContext,
13318                                              DeclStart, Loc, II, T,
13319                                              TInfo, ac, (Expr *)BitfieldWidth);
13320 
13321   if (II) {
13322     NamedDecl *PrevDecl = LookupSingleName(S, II, Loc, LookupMemberName,
13323                                            ForRedeclaration);
13324     if (PrevDecl && isDeclInScope(PrevDecl, EnclosingContext, S)
13325         && !isa<TagDecl>(PrevDecl)) {
13326       Diag(Loc, diag::err_duplicate_member) << II;
13327       Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
13328       NewID->setInvalidDecl();
13329     }
13330   }
13331 
13332   // Process attributes attached to the ivar.
13333   ProcessDeclAttributes(S, NewID, D);
13334 
13335   if (D.isInvalidType())
13336     NewID->setInvalidDecl();
13337 
13338   // In ARC, infer 'retaining' for ivars of retainable type.
13339   if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(NewID))
13340     NewID->setInvalidDecl();
13341 
13342   if (D.getDeclSpec().isModulePrivateSpecified())
13343     NewID->setModulePrivate();
13344 
13345   if (II) {
13346     // FIXME: When interfaces are DeclContexts, we'll need to add
13347     // these to the interface.
13348     S->AddDecl(NewID);
13349     IdResolver.AddDecl(NewID);
13350   }
13351 
13352   if (LangOpts.ObjCRuntime.isNonFragile() &&
13353       !NewID->isInvalidDecl() && isa<ObjCInterfaceDecl>(EnclosingDecl))
13354     Diag(Loc, diag::warn_ivars_in_interface);
13355 
13356   return NewID;
13357 }
13358 
13359 /// ActOnLastBitfield - This routine handles synthesized bitfields rules for
13360 /// class and class extensions. For every class \@interface and class
13361 /// extension \@interface, if the last ivar is a bitfield of any type,
13362 /// then add an implicit `char :0` ivar to the end of that interface.
ActOnLastBitfield(SourceLocation DeclLoc,SmallVectorImpl<Decl * > & AllIvarDecls)13363 void Sema::ActOnLastBitfield(SourceLocation DeclLoc,
13364                              SmallVectorImpl<Decl *> &AllIvarDecls) {
13365   if (LangOpts.ObjCRuntime.isFragile() || AllIvarDecls.empty())
13366     return;
13367 
13368   Decl *ivarDecl = AllIvarDecls[AllIvarDecls.size()-1];
13369   ObjCIvarDecl *Ivar = cast<ObjCIvarDecl>(ivarDecl);
13370 
13371   if (!Ivar->isBitField() || Ivar->getBitWidthValue(Context) == 0)
13372     return;
13373   ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(CurContext);
13374   if (!ID) {
13375     if (ObjCCategoryDecl *CD = dyn_cast<ObjCCategoryDecl>(CurContext)) {
13376       if (!CD->IsClassExtension())
13377         return;
13378     }
13379     // No need to add this to end of @implementation.
13380     else
13381       return;
13382   }
13383   // All conditions are met. Add a new bitfield to the tail end of ivars.
13384   llvm::APInt Zero(Context.getTypeSize(Context.IntTy), 0);
13385   Expr * BW = IntegerLiteral::Create(Context, Zero, Context.IntTy, DeclLoc);
13386 
13387   Ivar = ObjCIvarDecl::Create(Context, cast<ObjCContainerDecl>(CurContext),
13388                               DeclLoc, DeclLoc, nullptr,
13389                               Context.CharTy,
13390                               Context.getTrivialTypeSourceInfo(Context.CharTy,
13391                                                                DeclLoc),
13392                               ObjCIvarDecl::Private, BW,
13393                               true);
13394   AllIvarDecls.push_back(Ivar);
13395 }
13396 
ActOnFields(Scope * S,SourceLocation RecLoc,Decl * EnclosingDecl,ArrayRef<Decl * > Fields,SourceLocation LBrac,SourceLocation RBrac,AttributeList * Attr)13397 void Sema::ActOnFields(Scope *S, SourceLocation RecLoc, Decl *EnclosingDecl,
13398                        ArrayRef<Decl *> Fields, SourceLocation LBrac,
13399                        SourceLocation RBrac, AttributeList *Attr) {
13400   assert(EnclosingDecl && "missing record or interface decl");
13401 
13402   // If this is an Objective-C @implementation or category and we have
13403   // new fields here we should reset the layout of the interface since
13404   // it will now change.
13405   if (!Fields.empty() && isa<ObjCContainerDecl>(EnclosingDecl)) {
13406     ObjCContainerDecl *DC = cast<ObjCContainerDecl>(EnclosingDecl);
13407     switch (DC->getKind()) {
13408     default: break;
13409     case Decl::ObjCCategory:
13410       Context.ResetObjCLayout(cast<ObjCCategoryDecl>(DC)->getClassInterface());
13411       break;
13412     case Decl::ObjCImplementation:
13413       Context.
13414         ResetObjCLayout(cast<ObjCImplementationDecl>(DC)->getClassInterface());
13415       break;
13416     }
13417   }
13418 
13419   RecordDecl *Record = dyn_cast<RecordDecl>(EnclosingDecl);
13420 
13421   // Start counting up the number of named members; make sure to include
13422   // members of anonymous structs and unions in the total.
13423   unsigned NumNamedMembers = 0;
13424   if (Record) {
13425     for (const auto *I : Record->decls()) {
13426       if (const auto *IFD = dyn_cast<IndirectFieldDecl>(I))
13427         if (IFD->getDeclName())
13428           ++NumNamedMembers;
13429     }
13430   }
13431 
13432   // Verify that all the fields are okay.
13433   SmallVector<FieldDecl*, 32> RecFields;
13434 
13435   bool ARCErrReported = false;
13436   for (ArrayRef<Decl *>::iterator i = Fields.begin(), end = Fields.end();
13437        i != end; ++i) {
13438     FieldDecl *FD = cast<FieldDecl>(*i);
13439 
13440     // Get the type for the field.
13441     const Type *FDTy = FD->getType().getTypePtr();
13442 
13443     if (!FD->isAnonymousStructOrUnion()) {
13444       // Remember all fields written by the user.
13445       RecFields.push_back(FD);
13446     }
13447 
13448     // If the field is already invalid for some reason, don't emit more
13449     // diagnostics about it.
13450     if (FD->isInvalidDecl()) {
13451       EnclosingDecl->setInvalidDecl();
13452       continue;
13453     }
13454 
13455     // C99 6.7.2.1p2:
13456     //   A structure or union shall not contain a member with
13457     //   incomplete or function type (hence, a structure shall not
13458     //   contain an instance of itself, but may contain a pointer to
13459     //   an instance of itself), except that the last member of a
13460     //   structure with more than one named member may have incomplete
13461     //   array type; such a structure (and any union containing,
13462     //   possibly recursively, a member that is such a structure)
13463     //   shall not be a member of a structure or an element of an
13464     //   array.
13465     if (FDTy->isFunctionType()) {
13466       // Field declared as a function.
13467       Diag(FD->getLocation(), diag::err_field_declared_as_function)
13468         << FD->getDeclName();
13469       FD->setInvalidDecl();
13470       EnclosingDecl->setInvalidDecl();
13471       continue;
13472     } else if (FDTy->isIncompleteArrayType() && Record &&
13473                ((i + 1 == Fields.end() && !Record->isUnion()) ||
13474                 ((getLangOpts().MicrosoftExt ||
13475                   getLangOpts().CPlusPlus) &&
13476                  (i + 1 == Fields.end() || Record->isUnion())))) {
13477       // Flexible array member.
13478       // Microsoft and g++ is more permissive regarding flexible array.
13479       // It will accept flexible array in union and also
13480       // as the sole element of a struct/class.
13481       unsigned DiagID = 0;
13482       if (Record->isUnion())
13483         DiagID = getLangOpts().MicrosoftExt
13484                      ? diag::ext_flexible_array_union_ms
13485                      : getLangOpts().CPlusPlus
13486                            ? diag::ext_flexible_array_union_gnu
13487                            : diag::err_flexible_array_union;
13488       else if (Fields.size() == 1)
13489         DiagID = getLangOpts().MicrosoftExt
13490                      ? diag::ext_flexible_array_empty_aggregate_ms
13491                      : getLangOpts().CPlusPlus
13492                            ? diag::ext_flexible_array_empty_aggregate_gnu
13493                            : NumNamedMembers < 1
13494                                  ? diag::err_flexible_array_empty_aggregate
13495                                  : 0;
13496 
13497       if (DiagID)
13498         Diag(FD->getLocation(), DiagID) << FD->getDeclName()
13499                                         << Record->getTagKind();
13500       // While the layout of types that contain virtual bases is not specified
13501       // by the C++ standard, both the Itanium and Microsoft C++ ABIs place
13502       // virtual bases after the derived members.  This would make a flexible
13503       // array member declared at the end of an object not adjacent to the end
13504       // of the type.
13505       if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Record))
13506         if (RD->getNumVBases() != 0)
13507           Diag(FD->getLocation(), diag::err_flexible_array_virtual_base)
13508             << FD->getDeclName() << Record->getTagKind();
13509       if (!getLangOpts().C99)
13510         Diag(FD->getLocation(), diag::ext_c99_flexible_array_member)
13511           << FD->getDeclName() << Record->getTagKind();
13512 
13513       // If the element type has a non-trivial destructor, we would not
13514       // implicitly destroy the elements, so disallow it for now.
13515       //
13516       // FIXME: GCC allows this. We should probably either implicitly delete
13517       // the destructor of the containing class, or just allow this.
13518       QualType BaseElem = Context.getBaseElementType(FD->getType());
13519       if (!BaseElem->isDependentType() && BaseElem.isDestructedType()) {
13520         Diag(FD->getLocation(), diag::err_flexible_array_has_nontrivial_dtor)
13521           << FD->getDeclName() << FD->getType();
13522         FD->setInvalidDecl();
13523         EnclosingDecl->setInvalidDecl();
13524         continue;
13525       }
13526       // Okay, we have a legal flexible array member at the end of the struct.
13527       Record->setHasFlexibleArrayMember(true);
13528     } else if (!FDTy->isDependentType() &&
13529                RequireCompleteType(FD->getLocation(), FD->getType(),
13530                                    diag::err_field_incomplete)) {
13531       // Incomplete type
13532       FD->setInvalidDecl();
13533       EnclosingDecl->setInvalidDecl();
13534       continue;
13535     } else if (const RecordType *FDTTy = FDTy->getAs<RecordType>()) {
13536       if (Record && FDTTy->getDecl()->hasFlexibleArrayMember()) {
13537         // A type which contains a flexible array member is considered to be a
13538         // flexible array member.
13539         Record->setHasFlexibleArrayMember(true);
13540         if (!Record->isUnion()) {
13541           // If this is a struct/class and this is not the last element, reject
13542           // it.  Note that GCC supports variable sized arrays in the middle of
13543           // structures.
13544           if (i + 1 != Fields.end())
13545             Diag(FD->getLocation(), diag::ext_variable_sized_type_in_struct)
13546               << FD->getDeclName() << FD->getType();
13547           else {
13548             // We support flexible arrays at the end of structs in
13549             // other structs as an extension.
13550             Diag(FD->getLocation(), diag::ext_flexible_array_in_struct)
13551               << FD->getDeclName();
13552           }
13553         }
13554       }
13555       if (isa<ObjCContainerDecl>(EnclosingDecl) &&
13556           RequireNonAbstractType(FD->getLocation(), FD->getType(),
13557                                  diag::err_abstract_type_in_decl,
13558                                  AbstractIvarType)) {
13559         // Ivars can not have abstract class types
13560         FD->setInvalidDecl();
13561       }
13562       if (Record && FDTTy->getDecl()->hasObjectMember())
13563         Record->setHasObjectMember(true);
13564       if (Record && FDTTy->getDecl()->hasVolatileMember())
13565         Record->setHasVolatileMember(true);
13566     } else if (FDTy->isObjCObjectType()) {
13567       /// A field cannot be an Objective-c object
13568       Diag(FD->getLocation(), diag::err_statically_allocated_object)
13569         << FixItHint::CreateInsertion(FD->getLocation(), "*");
13570       QualType T = Context.getObjCObjectPointerType(FD->getType());
13571       FD->setType(T);
13572     } else if (getLangOpts().ObjCAutoRefCount && Record && !ARCErrReported &&
13573                (!getLangOpts().CPlusPlus || Record->isUnion())) {
13574       // It's an error in ARC if a field has lifetime.
13575       // We don't want to report this in a system header, though,
13576       // so we just make the field unavailable.
13577       // FIXME: that's really not sufficient; we need to make the type
13578       // itself invalid to, say, initialize or copy.
13579       QualType T = FD->getType();
13580       Qualifiers::ObjCLifetime lifetime = T.getObjCLifetime();
13581       if (lifetime && lifetime != Qualifiers::OCL_ExplicitNone) {
13582         SourceLocation loc = FD->getLocation();
13583         if (getSourceManager().isInSystemHeader(loc)) {
13584           if (!FD->hasAttr<UnavailableAttr>()) {
13585             FD->addAttr(UnavailableAttr::CreateImplicit(Context, "",
13586                           UnavailableAttr::IR_ARCFieldWithOwnership, loc));
13587           }
13588         } else {
13589           Diag(FD->getLocation(), diag::err_arc_objc_object_in_tag)
13590             << T->isBlockPointerType() << Record->getTagKind();
13591         }
13592         ARCErrReported = true;
13593       }
13594     } else if (getLangOpts().ObjC1 &&
13595                getLangOpts().getGC() != LangOptions::NonGC &&
13596                Record && !Record->hasObjectMember()) {
13597       if (FD->getType()->isObjCObjectPointerType() ||
13598           FD->getType().isObjCGCStrong())
13599         Record->setHasObjectMember(true);
13600       else if (Context.getAsArrayType(FD->getType())) {
13601         QualType BaseType = Context.getBaseElementType(FD->getType());
13602         if (BaseType->isRecordType() &&
13603             BaseType->getAs<RecordType>()->getDecl()->hasObjectMember())
13604           Record->setHasObjectMember(true);
13605         else if (BaseType->isObjCObjectPointerType() ||
13606                  BaseType.isObjCGCStrong())
13607                Record->setHasObjectMember(true);
13608       }
13609     }
13610     if (Record && FD->getType().isVolatileQualified())
13611       Record->setHasVolatileMember(true);
13612     // Keep track of the number of named members.
13613     if (FD->getIdentifier())
13614       ++NumNamedMembers;
13615   }
13616 
13617   // Okay, we successfully defined 'Record'.
13618   if (Record) {
13619     bool Completed = false;
13620     if (CXXRecordDecl *CXXRecord = dyn_cast<CXXRecordDecl>(Record)) {
13621       if (!CXXRecord->isInvalidDecl()) {
13622         // Set access bits correctly on the directly-declared conversions.
13623         for (CXXRecordDecl::conversion_iterator
13624                I = CXXRecord->conversion_begin(),
13625                E = CXXRecord->conversion_end(); I != E; ++I)
13626           I.setAccess((*I)->getAccess());
13627 
13628         if (!CXXRecord->isDependentType()) {
13629           if (CXXRecord->hasUserDeclaredDestructor()) {
13630             // Adjust user-defined destructor exception spec.
13631             if (getLangOpts().CPlusPlus11)
13632               AdjustDestructorExceptionSpec(CXXRecord,
13633                                             CXXRecord->getDestructor());
13634           }
13635 
13636           // Add any implicitly-declared members to this class.
13637           AddImplicitlyDeclaredMembersToClass(CXXRecord);
13638 
13639           // If we have virtual base classes, we may end up finding multiple
13640           // final overriders for a given virtual function. Check for this
13641           // problem now.
13642           if (CXXRecord->getNumVBases()) {
13643             CXXFinalOverriderMap FinalOverriders;
13644             CXXRecord->getFinalOverriders(FinalOverriders);
13645 
13646             for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(),
13647                                              MEnd = FinalOverriders.end();
13648                  M != MEnd; ++M) {
13649               for (OverridingMethods::iterator SO = M->second.begin(),
13650                                             SOEnd = M->second.end();
13651                    SO != SOEnd; ++SO) {
13652                 assert(SO->second.size() > 0 &&
13653                        "Virtual function without overridding functions?");
13654                 if (SO->second.size() == 1)
13655                   continue;
13656 
13657                 // C++ [class.virtual]p2:
13658                 //   In a derived class, if a virtual member function of a base
13659                 //   class subobject has more than one final overrider the
13660                 //   program is ill-formed.
13661                 Diag(Record->getLocation(), diag::err_multiple_final_overriders)
13662                   << (const NamedDecl *)M->first << Record;
13663                 Diag(M->first->getLocation(),
13664                      diag::note_overridden_virtual_function);
13665                 for (OverridingMethods::overriding_iterator
13666                           OM = SO->second.begin(),
13667                        OMEnd = SO->second.end();
13668                      OM != OMEnd; ++OM)
13669                   Diag(OM->Method->getLocation(), diag::note_final_overrider)
13670                     << (const NamedDecl *)M->first << OM->Method->getParent();
13671 
13672                 Record->setInvalidDecl();
13673               }
13674             }
13675             CXXRecord->completeDefinition(&FinalOverriders);
13676             Completed = true;
13677           }
13678         }
13679       }
13680     }
13681 
13682     if (!Completed)
13683       Record->completeDefinition();
13684 
13685     if (Record->hasAttrs()) {
13686       CheckAlignasUnderalignment(Record);
13687 
13688       if (const MSInheritanceAttr *IA = Record->getAttr<MSInheritanceAttr>())
13689         checkMSInheritanceAttrOnDefinition(cast<CXXRecordDecl>(Record),
13690                                            IA->getRange(), IA->getBestCase(),
13691                                            IA->getSemanticSpelling());
13692     }
13693 
13694     // Check if the structure/union declaration is a type that can have zero
13695     // size in C. For C this is a language extension, for C++ it may cause
13696     // compatibility problems.
13697     bool CheckForZeroSize;
13698     if (!getLangOpts().CPlusPlus) {
13699       CheckForZeroSize = true;
13700     } else {
13701       // For C++ filter out types that cannot be referenced in C code.
13702       CXXRecordDecl *CXXRecord = cast<CXXRecordDecl>(Record);
13703       CheckForZeroSize =
13704           CXXRecord->getLexicalDeclContext()->isExternCContext() &&
13705           !CXXRecord->isDependentType() &&
13706           CXXRecord->isCLike();
13707     }
13708     if (CheckForZeroSize) {
13709       bool ZeroSize = true;
13710       bool IsEmpty = true;
13711       unsigned NonBitFields = 0;
13712       for (RecordDecl::field_iterator I = Record->field_begin(),
13713                                       E = Record->field_end();
13714            (NonBitFields == 0 || ZeroSize) && I != E; ++I) {
13715         IsEmpty = false;
13716         if (I->isUnnamedBitfield()) {
13717           if (I->getBitWidthValue(Context) > 0)
13718             ZeroSize = false;
13719         } else {
13720           ++NonBitFields;
13721           QualType FieldType = I->getType();
13722           if (FieldType->isIncompleteType() ||
13723               !Context.getTypeSizeInChars(FieldType).isZero())
13724             ZeroSize = false;
13725         }
13726       }
13727 
13728       // Empty structs are an extension in C (C99 6.7.2.1p7). They are
13729       // allowed in C++, but warn if its declaration is inside
13730       // extern "C" block.
13731       if (ZeroSize) {
13732         Diag(RecLoc, getLangOpts().CPlusPlus ?
13733                          diag::warn_zero_size_struct_union_in_extern_c :
13734                          diag::warn_zero_size_struct_union_compat)
13735           << IsEmpty << Record->isUnion() << (NonBitFields > 1);
13736       }
13737 
13738       // Structs without named members are extension in C (C99 6.7.2.1p7),
13739       // but are accepted by GCC.
13740       if (NonBitFields == 0 && !getLangOpts().CPlusPlus) {
13741         Diag(RecLoc, IsEmpty ? diag::ext_empty_struct_union :
13742                                diag::ext_no_named_members_in_struct_union)
13743           << Record->isUnion();
13744       }
13745     }
13746   } else {
13747     ObjCIvarDecl **ClsFields =
13748       reinterpret_cast<ObjCIvarDecl**>(RecFields.data());
13749     if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl)) {
13750       ID->setEndOfDefinitionLoc(RBrac);
13751       // Add ivar's to class's DeclContext.
13752       for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
13753         ClsFields[i]->setLexicalDeclContext(ID);
13754         ID->addDecl(ClsFields[i]);
13755       }
13756       // Must enforce the rule that ivars in the base classes may not be
13757       // duplicates.
13758       if (ID->getSuperClass())
13759         DiagnoseDuplicateIvars(ID, ID->getSuperClass());
13760     } else if (ObjCImplementationDecl *IMPDecl =
13761                   dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
13762       assert(IMPDecl && "ActOnFields - missing ObjCImplementationDecl");
13763       for (unsigned I = 0, N = RecFields.size(); I != N; ++I)
13764         // Ivar declared in @implementation never belongs to the implementation.
13765         // Only it is in implementation's lexical context.
13766         ClsFields[I]->setLexicalDeclContext(IMPDecl);
13767       CheckImplementationIvars(IMPDecl, ClsFields, RecFields.size(), RBrac);
13768       IMPDecl->setIvarLBraceLoc(LBrac);
13769       IMPDecl->setIvarRBraceLoc(RBrac);
13770     } else if (ObjCCategoryDecl *CDecl =
13771                 dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
13772       // case of ivars in class extension; all other cases have been
13773       // reported as errors elsewhere.
13774       // FIXME. Class extension does not have a LocEnd field.
13775       // CDecl->setLocEnd(RBrac);
13776       // Add ivar's to class extension's DeclContext.
13777       // Diagnose redeclaration of private ivars.
13778       ObjCInterfaceDecl *IDecl = CDecl->getClassInterface();
13779       for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
13780         if (IDecl) {
13781           if (const ObjCIvarDecl *ClsIvar =
13782               IDecl->getIvarDecl(ClsFields[i]->getIdentifier())) {
13783             Diag(ClsFields[i]->getLocation(),
13784                  diag::err_duplicate_ivar_declaration);
13785             Diag(ClsIvar->getLocation(), diag::note_previous_definition);
13786             continue;
13787           }
13788           for (const auto *Ext : IDecl->known_extensions()) {
13789             if (const ObjCIvarDecl *ClsExtIvar
13790                   = Ext->getIvarDecl(ClsFields[i]->getIdentifier())) {
13791               Diag(ClsFields[i]->getLocation(),
13792                    diag::err_duplicate_ivar_declaration);
13793               Diag(ClsExtIvar->getLocation(), diag::note_previous_definition);
13794               continue;
13795             }
13796           }
13797         }
13798         ClsFields[i]->setLexicalDeclContext(CDecl);
13799         CDecl->addDecl(ClsFields[i]);
13800       }
13801       CDecl->setIvarLBraceLoc(LBrac);
13802       CDecl->setIvarRBraceLoc(RBrac);
13803     }
13804   }
13805 
13806   if (Attr)
13807     ProcessDeclAttributeList(S, Record, Attr);
13808 }
13809 
13810 /// \brief Determine whether the given integral value is representable within
13811 /// the given type T.
isRepresentableIntegerValue(ASTContext & Context,llvm::APSInt & Value,QualType T)13812 static bool isRepresentableIntegerValue(ASTContext &Context,
13813                                         llvm::APSInt &Value,
13814                                         QualType T) {
13815   assert(T->isIntegralType(Context) && "Integral type required!");
13816   unsigned BitWidth = Context.getIntWidth(T);
13817 
13818   if (Value.isUnsigned() || Value.isNonNegative()) {
13819     if (T->isSignedIntegerOrEnumerationType())
13820       --BitWidth;
13821     return Value.getActiveBits() <= BitWidth;
13822   }
13823   return Value.getMinSignedBits() <= BitWidth;
13824 }
13825 
13826 // \brief Given an integral type, return the next larger integral type
13827 // (or a NULL type of no such type exists).
getNextLargerIntegralType(ASTContext & Context,QualType T)13828 static QualType getNextLargerIntegralType(ASTContext &Context, QualType T) {
13829   // FIXME: Int128/UInt128 support, which also needs to be introduced into
13830   // enum checking below.
13831   assert(T->isIntegralType(Context) && "Integral type required!");
13832   const unsigned NumTypes = 4;
13833   QualType SignedIntegralTypes[NumTypes] = {
13834     Context.ShortTy, Context.IntTy, Context.LongTy, Context.LongLongTy
13835   };
13836   QualType UnsignedIntegralTypes[NumTypes] = {
13837     Context.UnsignedShortTy, Context.UnsignedIntTy, Context.UnsignedLongTy,
13838     Context.UnsignedLongLongTy
13839   };
13840 
13841   unsigned BitWidth = Context.getTypeSize(T);
13842   QualType *Types = T->isSignedIntegerOrEnumerationType()? SignedIntegralTypes
13843                                                         : UnsignedIntegralTypes;
13844   for (unsigned I = 0; I != NumTypes; ++I)
13845     if (Context.getTypeSize(Types[I]) > BitWidth)
13846       return Types[I];
13847 
13848   return QualType();
13849 }
13850 
CheckEnumConstant(EnumDecl * Enum,EnumConstantDecl * LastEnumConst,SourceLocation IdLoc,IdentifierInfo * Id,Expr * Val)13851 EnumConstantDecl *Sema::CheckEnumConstant(EnumDecl *Enum,
13852                                           EnumConstantDecl *LastEnumConst,
13853                                           SourceLocation IdLoc,
13854                                           IdentifierInfo *Id,
13855                                           Expr *Val) {
13856   unsigned IntWidth = Context.getTargetInfo().getIntWidth();
13857   llvm::APSInt EnumVal(IntWidth);
13858   QualType EltTy;
13859 
13860   if (Val && DiagnoseUnexpandedParameterPack(Val, UPPC_EnumeratorValue))
13861     Val = nullptr;
13862 
13863   if (Val)
13864     Val = DefaultLvalueConversion(Val).get();
13865 
13866   if (Val) {
13867     if (Enum->isDependentType() || Val->isTypeDependent())
13868       EltTy = Context.DependentTy;
13869     else {
13870       SourceLocation ExpLoc;
13871       if (getLangOpts().CPlusPlus11 && Enum->isFixed() &&
13872           !getLangOpts().MSVCCompat) {
13873         // C++11 [dcl.enum]p5: If the underlying type is fixed, [...] the
13874         // constant-expression in the enumerator-definition shall be a converted
13875         // constant expression of the underlying type.
13876         EltTy = Enum->getIntegerType();
13877         ExprResult Converted =
13878           CheckConvertedConstantExpression(Val, EltTy, EnumVal,
13879                                            CCEK_Enumerator);
13880         if (Converted.isInvalid())
13881           Val = nullptr;
13882         else
13883           Val = Converted.get();
13884       } else if (!Val->isValueDependent() &&
13885                  !(Val = VerifyIntegerConstantExpression(Val,
13886                                                          &EnumVal).get())) {
13887         // C99 6.7.2.2p2: Make sure we have an integer constant expression.
13888       } else {
13889         if (Enum->isFixed()) {
13890           EltTy = Enum->getIntegerType();
13891 
13892           // In Obj-C and Microsoft mode, require the enumeration value to be
13893           // representable in the underlying type of the enumeration. In C++11,
13894           // we perform a non-narrowing conversion as part of converted constant
13895           // expression checking.
13896           if (!isRepresentableIntegerValue(Context, EnumVal, EltTy)) {
13897             if (getLangOpts().MSVCCompat) {
13898               Diag(IdLoc, diag::ext_enumerator_too_large) << EltTy;
13899               Val = ImpCastExprToType(Val, EltTy, CK_IntegralCast).get();
13900             } else
13901               Diag(IdLoc, diag::err_enumerator_too_large) << EltTy;
13902           } else
13903             Val = ImpCastExprToType(Val, EltTy, CK_IntegralCast).get();
13904         } else if (getLangOpts().CPlusPlus) {
13905           // C++11 [dcl.enum]p5:
13906           //   If the underlying type is not fixed, the type of each enumerator
13907           //   is the type of its initializing value:
13908           //     - If an initializer is specified for an enumerator, the
13909           //       initializing value has the same type as the expression.
13910           EltTy = Val->getType();
13911         } else {
13912           // C99 6.7.2.2p2:
13913           //   The expression that defines the value of an enumeration constant
13914           //   shall be an integer constant expression that has a value
13915           //   representable as an int.
13916 
13917           // Complain if the value is not representable in an int.
13918           if (!isRepresentableIntegerValue(Context, EnumVal, Context.IntTy))
13919             Diag(IdLoc, diag::ext_enum_value_not_int)
13920               << EnumVal.toString(10) << Val->getSourceRange()
13921               << (EnumVal.isUnsigned() || EnumVal.isNonNegative());
13922           else if (!Context.hasSameType(Val->getType(), Context.IntTy)) {
13923             // Force the type of the expression to 'int'.
13924             Val = ImpCastExprToType(Val, Context.IntTy, CK_IntegralCast).get();
13925           }
13926           EltTy = Val->getType();
13927         }
13928       }
13929     }
13930   }
13931 
13932   if (!Val) {
13933     if (Enum->isDependentType())
13934       EltTy = Context.DependentTy;
13935     else if (!LastEnumConst) {
13936       // C++0x [dcl.enum]p5:
13937       //   If the underlying type is not fixed, the type of each enumerator
13938       //   is the type of its initializing value:
13939       //     - If no initializer is specified for the first enumerator, the
13940       //       initializing value has an unspecified integral type.
13941       //
13942       // GCC uses 'int' for its unspecified integral type, as does
13943       // C99 6.7.2.2p3.
13944       if (Enum->isFixed()) {
13945         EltTy = Enum->getIntegerType();
13946       }
13947       else {
13948         EltTy = Context.IntTy;
13949       }
13950     } else {
13951       // Assign the last value + 1.
13952       EnumVal = LastEnumConst->getInitVal();
13953       ++EnumVal;
13954       EltTy = LastEnumConst->getType();
13955 
13956       // Check for overflow on increment.
13957       if (EnumVal < LastEnumConst->getInitVal()) {
13958         // C++0x [dcl.enum]p5:
13959         //   If the underlying type is not fixed, the type of each enumerator
13960         //   is the type of its initializing value:
13961         //
13962         //     - Otherwise the type of the initializing value is the same as
13963         //       the type of the initializing value of the preceding enumerator
13964         //       unless the incremented value is not representable in that type,
13965         //       in which case the type is an unspecified integral type
13966         //       sufficient to contain the incremented value. If no such type
13967         //       exists, the program is ill-formed.
13968         QualType T = getNextLargerIntegralType(Context, EltTy);
13969         if (T.isNull() || Enum->isFixed()) {
13970           // There is no integral type larger enough to represent this
13971           // value. Complain, then allow the value to wrap around.
13972           EnumVal = LastEnumConst->getInitVal();
13973           EnumVal = EnumVal.zext(EnumVal.getBitWidth() * 2);
13974           ++EnumVal;
13975           if (Enum->isFixed())
13976             // When the underlying type is fixed, this is ill-formed.
13977             Diag(IdLoc, diag::err_enumerator_wrapped)
13978               << EnumVal.toString(10)
13979               << EltTy;
13980           else
13981             Diag(IdLoc, diag::ext_enumerator_increment_too_large)
13982               << EnumVal.toString(10);
13983         } else {
13984           EltTy = T;
13985         }
13986 
13987         // Retrieve the last enumerator's value, extent that type to the
13988         // type that is supposed to be large enough to represent the incremented
13989         // value, then increment.
13990         EnumVal = LastEnumConst->getInitVal();
13991         EnumVal.setIsSigned(EltTy->isSignedIntegerOrEnumerationType());
13992         EnumVal = EnumVal.zextOrTrunc(Context.getIntWidth(EltTy));
13993         ++EnumVal;
13994 
13995         // If we're not in C++, diagnose the overflow of enumerator values,
13996         // which in C99 means that the enumerator value is not representable in
13997         // an int (C99 6.7.2.2p2). However, we support GCC's extension that
13998         // permits enumerator values that are representable in some larger
13999         // integral type.
14000         if (!getLangOpts().CPlusPlus && !T.isNull())
14001           Diag(IdLoc, diag::warn_enum_value_overflow);
14002       } else if (!getLangOpts().CPlusPlus &&
14003                  !isRepresentableIntegerValue(Context, EnumVal, EltTy)) {
14004         // Enforce C99 6.7.2.2p2 even when we compute the next value.
14005         Diag(IdLoc, diag::ext_enum_value_not_int)
14006           << EnumVal.toString(10) << 1;
14007       }
14008     }
14009   }
14010 
14011   if (!EltTy->isDependentType()) {
14012     // Make the enumerator value match the signedness and size of the
14013     // enumerator's type.
14014     EnumVal = EnumVal.extOrTrunc(Context.getIntWidth(EltTy));
14015     EnumVal.setIsSigned(EltTy->isSignedIntegerOrEnumerationType());
14016   }
14017 
14018   return EnumConstantDecl::Create(Context, Enum, IdLoc, Id, EltTy,
14019                                   Val, EnumVal);
14020 }
14021 
shouldSkipAnonEnumBody(Scope * S,IdentifierInfo * II,SourceLocation IILoc)14022 Sema::SkipBodyInfo Sema::shouldSkipAnonEnumBody(Scope *S, IdentifierInfo *II,
14023                                                 SourceLocation IILoc) {
14024   if (!(getLangOpts().Modules || getLangOpts().ModulesLocalVisibility) ||
14025       !getLangOpts().CPlusPlus)
14026     return SkipBodyInfo();
14027 
14028   // We have an anonymous enum definition. Look up the first enumerator to
14029   // determine if we should merge the definition with an existing one and
14030   // skip the body.
14031   NamedDecl *PrevDecl = LookupSingleName(S, II, IILoc, LookupOrdinaryName,
14032                                          ForRedeclaration);
14033   auto *PrevECD = dyn_cast_or_null<EnumConstantDecl>(PrevDecl);
14034   if (!PrevECD)
14035     return SkipBodyInfo();
14036 
14037   EnumDecl *PrevED = cast<EnumDecl>(PrevECD->getDeclContext());
14038   NamedDecl *Hidden;
14039   if (!PrevED->getDeclName() && !hasVisibleDefinition(PrevED, &Hidden)) {
14040     SkipBodyInfo Skip;
14041     Skip.Previous = Hidden;
14042     return Skip;
14043   }
14044 
14045   return SkipBodyInfo();
14046 }
14047 
ActOnEnumConstant(Scope * S,Decl * theEnumDecl,Decl * lastEnumConst,SourceLocation IdLoc,IdentifierInfo * Id,AttributeList * Attr,SourceLocation EqualLoc,Expr * Val)14048 Decl *Sema::ActOnEnumConstant(Scope *S, Decl *theEnumDecl, Decl *lastEnumConst,
14049                               SourceLocation IdLoc, IdentifierInfo *Id,
14050                               AttributeList *Attr,
14051                               SourceLocation EqualLoc, Expr *Val) {
14052   EnumDecl *TheEnumDecl = cast<EnumDecl>(theEnumDecl);
14053   EnumConstantDecl *LastEnumConst =
14054     cast_or_null<EnumConstantDecl>(lastEnumConst);
14055 
14056   // The scope passed in may not be a decl scope.  Zip up the scope tree until
14057   // we find one that is.
14058   S = getNonFieldDeclScope(S);
14059 
14060   // Verify that there isn't already something declared with this name in this
14061   // scope.
14062   NamedDecl *PrevDecl = LookupSingleName(S, Id, IdLoc, LookupOrdinaryName,
14063                                          ForRedeclaration);
14064   if (PrevDecl && PrevDecl->isTemplateParameter()) {
14065     // Maybe we will complain about the shadowed template parameter.
14066     DiagnoseTemplateParameterShadow(IdLoc, PrevDecl);
14067     // Just pretend that we didn't see the previous declaration.
14068     PrevDecl = nullptr;
14069   }
14070 
14071   // C++ [class.mem]p15:
14072   // If T is the name of a class, then each of the following shall have a name
14073   // different from T:
14074   // - every enumerator of every member of class T that is an unscoped
14075   // enumerated type
14076   if (!TheEnumDecl->isScoped())
14077     DiagnoseClassNameShadow(TheEnumDecl->getDeclContext(),
14078                             DeclarationNameInfo(Id, IdLoc));
14079 
14080   EnumConstantDecl *New =
14081     CheckEnumConstant(TheEnumDecl, LastEnumConst, IdLoc, Id, Val);
14082   if (!New)
14083     return nullptr;
14084 
14085   if (PrevDecl) {
14086     // When in C++, we may get a TagDecl with the same name; in this case the
14087     // enum constant will 'hide' the tag.
14088     assert((getLangOpts().CPlusPlus || !isa<TagDecl>(PrevDecl)) &&
14089            "Received TagDecl when not in C++!");
14090     if (!isa<TagDecl>(PrevDecl) && isDeclInScope(PrevDecl, CurContext, S) &&
14091         shouldLinkPossiblyHiddenDecl(PrevDecl, New)) {
14092       if (isa<EnumConstantDecl>(PrevDecl))
14093         Diag(IdLoc, diag::err_redefinition_of_enumerator) << Id;
14094       else
14095         Diag(IdLoc, diag::err_redefinition) << Id;
14096       Diag(PrevDecl->getLocation(), diag::note_previous_definition);
14097       return nullptr;
14098     }
14099   }
14100 
14101   // Process attributes.
14102   if (Attr) ProcessDeclAttributeList(S, New, Attr);
14103 
14104   // Register this decl in the current scope stack.
14105   New->setAccess(TheEnumDecl->getAccess());
14106   PushOnScopeChains(New, S);
14107 
14108   ActOnDocumentableDecl(New);
14109 
14110   return New;
14111 }
14112 
14113 // Returns true when the enum initial expression does not trigger the
14114 // duplicate enum warning.  A few common cases are exempted as follows:
14115 // Element2 = Element1
14116 // Element2 = Element1 + 1
14117 // Element2 = Element1 - 1
14118 // Where Element2 and Element1 are from the same enum.
ValidDuplicateEnum(EnumConstantDecl * ECD,EnumDecl * Enum)14119 static bool ValidDuplicateEnum(EnumConstantDecl *ECD, EnumDecl *Enum) {
14120   Expr *InitExpr = ECD->getInitExpr();
14121   if (!InitExpr)
14122     return true;
14123   InitExpr = InitExpr->IgnoreImpCasts();
14124 
14125   if (BinaryOperator *BO = dyn_cast<BinaryOperator>(InitExpr)) {
14126     if (!BO->isAdditiveOp())
14127       return true;
14128     IntegerLiteral *IL = dyn_cast<IntegerLiteral>(BO->getRHS());
14129     if (!IL)
14130       return true;
14131     if (IL->getValue() != 1)
14132       return true;
14133 
14134     InitExpr = BO->getLHS();
14135   }
14136 
14137   // This checks if the elements are from the same enum.
14138   DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(InitExpr);
14139   if (!DRE)
14140     return true;
14141 
14142   EnumConstantDecl *EnumConstant = dyn_cast<EnumConstantDecl>(DRE->getDecl());
14143   if (!EnumConstant)
14144     return true;
14145 
14146   if (cast<EnumDecl>(TagDecl::castFromDeclContext(ECD->getDeclContext())) !=
14147       Enum)
14148     return true;
14149 
14150   return false;
14151 }
14152 
14153 namespace {
14154 struct DupKey {
14155   int64_t val;
14156   bool isTombstoneOrEmptyKey;
DupKey__anonb54c7a2f0b11::DupKey14157   DupKey(int64_t val, bool isTombstoneOrEmptyKey)
14158     : val(val), isTombstoneOrEmptyKey(isTombstoneOrEmptyKey) {}
14159 };
14160 
GetDupKey(const llvm::APSInt & Val)14161 static DupKey GetDupKey(const llvm::APSInt& Val) {
14162   return DupKey(Val.isSigned() ? Val.getSExtValue() : Val.getZExtValue(),
14163                 false);
14164 }
14165 
14166 struct DenseMapInfoDupKey {
getEmptyKey__anonb54c7a2f0b11::DenseMapInfoDupKey14167   static DupKey getEmptyKey() { return DupKey(0, true); }
getTombstoneKey__anonb54c7a2f0b11::DenseMapInfoDupKey14168   static DupKey getTombstoneKey() { return DupKey(1, true); }
getHashValue__anonb54c7a2f0b11::DenseMapInfoDupKey14169   static unsigned getHashValue(const DupKey Key) {
14170     return (unsigned)(Key.val * 37);
14171   }
isEqual__anonb54c7a2f0b11::DenseMapInfoDupKey14172   static bool isEqual(const DupKey& LHS, const DupKey& RHS) {
14173     return LHS.isTombstoneOrEmptyKey == RHS.isTombstoneOrEmptyKey &&
14174            LHS.val == RHS.val;
14175   }
14176 };
14177 } // end anonymous namespace
14178 
14179 // Emits a warning when an element is implicitly set a value that
14180 // a previous element has already been set to.
CheckForDuplicateEnumValues(Sema & S,ArrayRef<Decl * > Elements,EnumDecl * Enum,QualType EnumType)14181 static void CheckForDuplicateEnumValues(Sema &S, ArrayRef<Decl *> Elements,
14182                                         EnumDecl *Enum,
14183                                         QualType EnumType) {
14184   if (S.Diags.isIgnored(diag::warn_duplicate_enum_values, Enum->getLocation()))
14185     return;
14186   // Avoid anonymous enums
14187   if (!Enum->getIdentifier())
14188     return;
14189 
14190   // Only check for small enums.
14191   if (Enum->getNumPositiveBits() > 63 || Enum->getNumNegativeBits() > 64)
14192     return;
14193 
14194   typedef SmallVector<EnumConstantDecl *, 3> ECDVector;
14195   typedef SmallVector<ECDVector *, 3> DuplicatesVector;
14196 
14197   typedef llvm::PointerUnion<EnumConstantDecl*, ECDVector*> DeclOrVector;
14198   typedef llvm::DenseMap<DupKey, DeclOrVector, DenseMapInfoDupKey>
14199           ValueToVectorMap;
14200 
14201   DuplicatesVector DupVector;
14202   ValueToVectorMap EnumMap;
14203 
14204   // Populate the EnumMap with all values represented by enum constants without
14205   // an initialier.
14206   for (unsigned i = 0, e = Elements.size(); i != e; ++i) {
14207     EnumConstantDecl *ECD = cast_or_null<EnumConstantDecl>(Elements[i]);
14208 
14209     // Null EnumConstantDecl means a previous diagnostic has been emitted for
14210     // this constant.  Skip this enum since it may be ill-formed.
14211     if (!ECD) {
14212       return;
14213     }
14214 
14215     if (ECD->getInitExpr())
14216       continue;
14217 
14218     DupKey Key = GetDupKey(ECD->getInitVal());
14219     DeclOrVector &Entry = EnumMap[Key];
14220 
14221     // First time encountering this value.
14222     if (Entry.isNull())
14223       Entry = ECD;
14224   }
14225 
14226   // Create vectors for any values that has duplicates.
14227   for (unsigned i = 0, e = Elements.size(); i != e; ++i) {
14228     EnumConstantDecl *ECD = cast<EnumConstantDecl>(Elements[i]);
14229     if (!ValidDuplicateEnum(ECD, Enum))
14230       continue;
14231 
14232     DupKey Key = GetDupKey(ECD->getInitVal());
14233 
14234     DeclOrVector& Entry = EnumMap[Key];
14235     if (Entry.isNull())
14236       continue;
14237 
14238     if (EnumConstantDecl *D = Entry.dyn_cast<EnumConstantDecl*>()) {
14239       // Ensure constants are different.
14240       if (D == ECD)
14241         continue;
14242 
14243       // Create new vector and push values onto it.
14244       ECDVector *Vec = new ECDVector();
14245       Vec->push_back(D);
14246       Vec->push_back(ECD);
14247 
14248       // Update entry to point to the duplicates vector.
14249       Entry = Vec;
14250 
14251       // Store the vector somewhere we can consult later for quick emission of
14252       // diagnostics.
14253       DupVector.push_back(Vec);
14254       continue;
14255     }
14256 
14257     ECDVector *Vec = Entry.get<ECDVector*>();
14258     // Make sure constants are not added more than once.
14259     if (*Vec->begin() == ECD)
14260       continue;
14261 
14262     Vec->push_back(ECD);
14263   }
14264 
14265   // Emit diagnostics.
14266   for (DuplicatesVector::iterator DupVectorIter = DupVector.begin(),
14267                                   DupVectorEnd = DupVector.end();
14268        DupVectorIter != DupVectorEnd; ++DupVectorIter) {
14269     ECDVector *Vec = *DupVectorIter;
14270     assert(Vec->size() > 1 && "ECDVector should have at least 2 elements.");
14271 
14272     // Emit warning for one enum constant.
14273     ECDVector::iterator I = Vec->begin();
14274     S.Diag((*I)->getLocation(), diag::warn_duplicate_enum_values)
14275       << (*I)->getName() << (*I)->getInitVal().toString(10)
14276       << (*I)->getSourceRange();
14277     ++I;
14278 
14279     // Emit one note for each of the remaining enum constants with
14280     // the same value.
14281     for (ECDVector::iterator E = Vec->end(); I != E; ++I)
14282       S.Diag((*I)->getLocation(), diag::note_duplicate_element)
14283         << (*I)->getName() << (*I)->getInitVal().toString(10)
14284         << (*I)->getSourceRange();
14285     delete Vec;
14286   }
14287 }
14288 
IsValueInFlagEnum(const EnumDecl * ED,const llvm::APInt & Val,bool AllowMask) const14289 bool Sema::IsValueInFlagEnum(const EnumDecl *ED, const llvm::APInt &Val,
14290                              bool AllowMask) const {
14291   assert(ED->hasAttr<FlagEnumAttr>() && "looking for value in non-flag enum");
14292   assert(ED->isCompleteDefinition() && "expected enum definition");
14293 
14294   auto R = FlagBitsCache.insert(std::make_pair(ED, llvm::APInt()));
14295   llvm::APInt &FlagBits = R.first->second;
14296 
14297   if (R.second) {
14298     for (auto *E : ED->enumerators()) {
14299       const auto &EVal = E->getInitVal();
14300       // Only single-bit enumerators introduce new flag values.
14301       if (EVal.isPowerOf2())
14302         FlagBits = FlagBits.zextOrSelf(EVal.getBitWidth()) | EVal;
14303     }
14304   }
14305 
14306   // A value is in a flag enum if either its bits are a subset of the enum's
14307   // flag bits (the first condition) or we are allowing masks and the same is
14308   // true of its complement (the second condition). When masks are allowed, we
14309   // allow the common idiom of ~(enum1 | enum2) to be a valid enum value.
14310   //
14311   // While it's true that any value could be used as a mask, the assumption is
14312   // that a mask will have all of the insignificant bits set. Anything else is
14313   // likely a logic error.
14314   llvm::APInt FlagMask = ~FlagBits.zextOrTrunc(Val.getBitWidth());
14315   return !(FlagMask & Val) || (AllowMask && !(FlagMask & ~Val));
14316 }
14317 
ActOnEnumBody(SourceLocation EnumLoc,SourceLocation LBraceLoc,SourceLocation RBraceLoc,Decl * EnumDeclX,ArrayRef<Decl * > Elements,Scope * S,AttributeList * Attr)14318 void Sema::ActOnEnumBody(SourceLocation EnumLoc, SourceLocation LBraceLoc,
14319                          SourceLocation RBraceLoc, Decl *EnumDeclX,
14320                          ArrayRef<Decl *> Elements,
14321                          Scope *S, AttributeList *Attr) {
14322   EnumDecl *Enum = cast<EnumDecl>(EnumDeclX);
14323   QualType EnumType = Context.getTypeDeclType(Enum);
14324 
14325   if (Attr)
14326     ProcessDeclAttributeList(S, Enum, Attr);
14327 
14328   if (Enum->isDependentType()) {
14329     for (unsigned i = 0, e = Elements.size(); i != e; ++i) {
14330       EnumConstantDecl *ECD =
14331         cast_or_null<EnumConstantDecl>(Elements[i]);
14332       if (!ECD) continue;
14333 
14334       ECD->setType(EnumType);
14335     }
14336 
14337     Enum->completeDefinition(Context.DependentTy, Context.DependentTy, 0, 0);
14338     return;
14339   }
14340 
14341   // TODO: If the result value doesn't fit in an int, it must be a long or long
14342   // long value.  ISO C does not support this, but GCC does as an extension,
14343   // emit a warning.
14344   unsigned IntWidth = Context.getTargetInfo().getIntWidth();
14345   unsigned CharWidth = Context.getTargetInfo().getCharWidth();
14346   unsigned ShortWidth = Context.getTargetInfo().getShortWidth();
14347 
14348   // Verify that all the values are okay, compute the size of the values, and
14349   // reverse the list.
14350   unsigned NumNegativeBits = 0;
14351   unsigned NumPositiveBits = 0;
14352 
14353   // Keep track of whether all elements have type int.
14354   bool AllElementsInt = true;
14355 
14356   for (unsigned i = 0, e = Elements.size(); i != e; ++i) {
14357     EnumConstantDecl *ECD =
14358       cast_or_null<EnumConstantDecl>(Elements[i]);
14359     if (!ECD) continue;  // Already issued a diagnostic.
14360 
14361     const llvm::APSInt &InitVal = ECD->getInitVal();
14362 
14363     // Keep track of the size of positive and negative values.
14364     if (InitVal.isUnsigned() || InitVal.isNonNegative())
14365       NumPositiveBits = std::max(NumPositiveBits,
14366                                  (unsigned)InitVal.getActiveBits());
14367     else
14368       NumNegativeBits = std::max(NumNegativeBits,
14369                                  (unsigned)InitVal.getMinSignedBits());
14370 
14371     // Keep track of whether every enum element has type int (very commmon).
14372     if (AllElementsInt)
14373       AllElementsInt = ECD->getType() == Context.IntTy;
14374   }
14375 
14376   // Figure out the type that should be used for this enum.
14377   QualType BestType;
14378   unsigned BestWidth;
14379 
14380   // C++0x N3000 [conv.prom]p3:
14381   //   An rvalue of an unscoped enumeration type whose underlying
14382   //   type is not fixed can be converted to an rvalue of the first
14383   //   of the following types that can represent all the values of
14384   //   the enumeration: int, unsigned int, long int, unsigned long
14385   //   int, long long int, or unsigned long long int.
14386   // C99 6.4.4.3p2:
14387   //   An identifier declared as an enumeration constant has type int.
14388   // The C99 rule is modified by a gcc extension
14389   QualType BestPromotionType;
14390 
14391   bool Packed = Enum->hasAttr<PackedAttr>();
14392   // -fshort-enums is the equivalent to specifying the packed attribute on all
14393   // enum definitions.
14394   if (LangOpts.ShortEnums)
14395     Packed = true;
14396 
14397   if (Enum->isFixed()) {
14398     BestType = Enum->getIntegerType();
14399     if (BestType->isPromotableIntegerType())
14400       BestPromotionType = Context.getPromotedIntegerType(BestType);
14401     else
14402       BestPromotionType = BestType;
14403 
14404     BestWidth = Context.getIntWidth(BestType);
14405   }
14406   else if (NumNegativeBits) {
14407     // If there is a negative value, figure out the smallest integer type (of
14408     // int/long/longlong) that fits.
14409     // If it's packed, check also if it fits a char or a short.
14410     if (Packed && NumNegativeBits <= CharWidth && NumPositiveBits < CharWidth) {
14411       BestType = Context.SignedCharTy;
14412       BestWidth = CharWidth;
14413     } else if (Packed && NumNegativeBits <= ShortWidth &&
14414                NumPositiveBits < ShortWidth) {
14415       BestType = Context.ShortTy;
14416       BestWidth = ShortWidth;
14417     } else if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) {
14418       BestType = Context.IntTy;
14419       BestWidth = IntWidth;
14420     } else {
14421       BestWidth = Context.getTargetInfo().getLongWidth();
14422 
14423       if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth) {
14424         BestType = Context.LongTy;
14425       } else {
14426         BestWidth = Context.getTargetInfo().getLongLongWidth();
14427 
14428         if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth)
14429           Diag(Enum->getLocation(), diag::ext_enum_too_large);
14430         BestType = Context.LongLongTy;
14431       }
14432     }
14433     BestPromotionType = (BestWidth <= IntWidth ? Context.IntTy : BestType);
14434   } else {
14435     // If there is no negative value, figure out the smallest type that fits
14436     // all of the enumerator values.
14437     // If it's packed, check also if it fits a char or a short.
14438     if (Packed && NumPositiveBits <= CharWidth) {
14439       BestType = Context.UnsignedCharTy;
14440       BestPromotionType = Context.IntTy;
14441       BestWidth = CharWidth;
14442     } else if (Packed && NumPositiveBits <= ShortWidth) {
14443       BestType = Context.UnsignedShortTy;
14444       BestPromotionType = Context.IntTy;
14445       BestWidth = ShortWidth;
14446     } else if (NumPositiveBits <= IntWidth) {
14447       BestType = Context.UnsignedIntTy;
14448       BestWidth = IntWidth;
14449       BestPromotionType
14450         = (NumPositiveBits == BestWidth || !getLangOpts().CPlusPlus)
14451                            ? Context.UnsignedIntTy : Context.IntTy;
14452     } else if (NumPositiveBits <=
14453                (BestWidth = Context.getTargetInfo().getLongWidth())) {
14454       BestType = Context.UnsignedLongTy;
14455       BestPromotionType
14456         = (NumPositiveBits == BestWidth || !getLangOpts().CPlusPlus)
14457                            ? Context.UnsignedLongTy : Context.LongTy;
14458     } else {
14459       BestWidth = Context.getTargetInfo().getLongLongWidth();
14460       assert(NumPositiveBits <= BestWidth &&
14461              "How could an initializer get larger than ULL?");
14462       BestType = Context.UnsignedLongLongTy;
14463       BestPromotionType
14464         = (NumPositiveBits == BestWidth || !getLangOpts().CPlusPlus)
14465                            ? Context.UnsignedLongLongTy : Context.LongLongTy;
14466     }
14467   }
14468 
14469   // Loop over all of the enumerator constants, changing their types to match
14470   // the type of the enum if needed.
14471   for (auto *D : Elements) {
14472     auto *ECD = cast_or_null<EnumConstantDecl>(D);
14473     if (!ECD) continue;  // Already issued a diagnostic.
14474 
14475     // Standard C says the enumerators have int type, but we allow, as an
14476     // extension, the enumerators to be larger than int size.  If each
14477     // enumerator value fits in an int, type it as an int, otherwise type it the
14478     // same as the enumerator decl itself.  This means that in "enum { X = 1U }"
14479     // that X has type 'int', not 'unsigned'.
14480 
14481     // Determine whether the value fits into an int.
14482     llvm::APSInt InitVal = ECD->getInitVal();
14483 
14484     // If it fits into an integer type, force it.  Otherwise force it to match
14485     // the enum decl type.
14486     QualType NewTy;
14487     unsigned NewWidth;
14488     bool NewSign;
14489     if (!getLangOpts().CPlusPlus &&
14490         !Enum->isFixed() &&
14491         isRepresentableIntegerValue(Context, InitVal, Context.IntTy)) {
14492       NewTy = Context.IntTy;
14493       NewWidth = IntWidth;
14494       NewSign = true;
14495     } else if (ECD->getType() == BestType) {
14496       // Already the right type!
14497       if (getLangOpts().CPlusPlus)
14498         // C++ [dcl.enum]p4: Following the closing brace of an
14499         // enum-specifier, each enumerator has the type of its
14500         // enumeration.
14501         ECD->setType(EnumType);
14502       continue;
14503     } else {
14504       NewTy = BestType;
14505       NewWidth = BestWidth;
14506       NewSign = BestType->isSignedIntegerOrEnumerationType();
14507     }
14508 
14509     // Adjust the APSInt value.
14510     InitVal = InitVal.extOrTrunc(NewWidth);
14511     InitVal.setIsSigned(NewSign);
14512     ECD->setInitVal(InitVal);
14513 
14514     // Adjust the Expr initializer and type.
14515     if (ECD->getInitExpr() &&
14516         !Context.hasSameType(NewTy, ECD->getInitExpr()->getType()))
14517       ECD->setInitExpr(ImplicitCastExpr::Create(Context, NewTy,
14518                                                 CK_IntegralCast,
14519                                                 ECD->getInitExpr(),
14520                                                 /*base paths*/ nullptr,
14521                                                 VK_RValue));
14522     if (getLangOpts().CPlusPlus)
14523       // C++ [dcl.enum]p4: Following the closing brace of an
14524       // enum-specifier, each enumerator has the type of its
14525       // enumeration.
14526       ECD->setType(EnumType);
14527     else
14528       ECD->setType(NewTy);
14529   }
14530 
14531   Enum->completeDefinition(BestType, BestPromotionType,
14532                            NumPositiveBits, NumNegativeBits);
14533 
14534   CheckForDuplicateEnumValues(*this, Elements, Enum, EnumType);
14535 
14536   if (Enum->hasAttr<FlagEnumAttr>()) {
14537     for (Decl *D : Elements) {
14538       EnumConstantDecl *ECD = cast_or_null<EnumConstantDecl>(D);
14539       if (!ECD) continue;  // Already issued a diagnostic.
14540 
14541       llvm::APSInt InitVal = ECD->getInitVal();
14542       if (InitVal != 0 && !InitVal.isPowerOf2() &&
14543           !IsValueInFlagEnum(Enum, InitVal, true))
14544         Diag(ECD->getLocation(), diag::warn_flag_enum_constant_out_of_range)
14545           << ECD << Enum;
14546     }
14547   }
14548 
14549   // Now that the enum type is defined, ensure it's not been underaligned.
14550   if (Enum->hasAttrs())
14551     CheckAlignasUnderalignment(Enum);
14552 }
14553 
ActOnFileScopeAsmDecl(Expr * expr,SourceLocation StartLoc,SourceLocation EndLoc)14554 Decl *Sema::ActOnFileScopeAsmDecl(Expr *expr,
14555                                   SourceLocation StartLoc,
14556                                   SourceLocation EndLoc) {
14557   StringLiteral *AsmString = cast<StringLiteral>(expr);
14558 
14559   FileScopeAsmDecl *New = FileScopeAsmDecl::Create(Context, CurContext,
14560                                                    AsmString, StartLoc,
14561                                                    EndLoc);
14562   CurContext->addDecl(New);
14563   return New;
14564 }
14565 
checkModuleImportContext(Sema & S,Module * M,SourceLocation ImportLoc,DeclContext * DC,bool FromInclude=false)14566 static void checkModuleImportContext(Sema &S, Module *M,
14567                                      SourceLocation ImportLoc, DeclContext *DC,
14568                                      bool FromInclude = false) {
14569   SourceLocation ExternCLoc;
14570 
14571   if (auto *LSD = dyn_cast<LinkageSpecDecl>(DC)) {
14572     switch (LSD->getLanguage()) {
14573     case LinkageSpecDecl::lang_c:
14574       if (ExternCLoc.isInvalid())
14575         ExternCLoc = LSD->getLocStart();
14576       break;
14577     case LinkageSpecDecl::lang_cxx:
14578       break;
14579     }
14580     DC = LSD->getParent();
14581   }
14582 
14583   while (isa<LinkageSpecDecl>(DC))
14584     DC = DC->getParent();
14585 
14586   if (!isa<TranslationUnitDecl>(DC)) {
14587     S.Diag(ImportLoc, (FromInclude && S.isModuleVisible(M))
14588                           ? diag::ext_module_import_not_at_top_level_noop
14589                           : diag::err_module_import_not_at_top_level_fatal)
14590         << M->getFullModuleName() << DC;
14591     S.Diag(cast<Decl>(DC)->getLocStart(),
14592            diag::note_module_import_not_at_top_level) << DC;
14593   } else if (!M->IsExternC && ExternCLoc.isValid()) {
14594     S.Diag(ImportLoc, diag::ext_module_import_in_extern_c)
14595       << M->getFullModuleName();
14596     S.Diag(ExternCLoc, diag::note_module_import_in_extern_c);
14597   }
14598 }
14599 
diagnoseMisplacedModuleImport(Module * M,SourceLocation ImportLoc)14600 void Sema::diagnoseMisplacedModuleImport(Module *M, SourceLocation ImportLoc) {
14601   return checkModuleImportContext(*this, M, ImportLoc, CurContext);
14602 }
14603 
ActOnModuleImport(SourceLocation AtLoc,SourceLocation ImportLoc,ModuleIdPath Path)14604 DeclResult Sema::ActOnModuleImport(SourceLocation AtLoc,
14605                                    SourceLocation ImportLoc,
14606                                    ModuleIdPath Path) {
14607   Module *Mod =
14608       getModuleLoader().loadModule(ImportLoc, Path, Module::AllVisible,
14609                                    /*IsIncludeDirective=*/false);
14610   if (!Mod)
14611     return true;
14612 
14613   VisibleModules.setVisible(Mod, ImportLoc);
14614 
14615   checkModuleImportContext(*this, Mod, ImportLoc, CurContext);
14616 
14617   // FIXME: we should support importing a submodule within a different submodule
14618   // of the same top-level module. Until we do, make it an error rather than
14619   // silently ignoring the import.
14620   if (Mod->getTopLevelModuleName() == getLangOpts().CurrentModule)
14621     Diag(ImportLoc, diag::err_module_self_import)
14622         << Mod->getFullModuleName() << getLangOpts().CurrentModule;
14623   else if (Mod->getTopLevelModuleName() == getLangOpts().ImplementationOfModule)
14624     Diag(ImportLoc, diag::err_module_import_in_implementation)
14625         << Mod->getFullModuleName() << getLangOpts().ImplementationOfModule;
14626 
14627   SmallVector<SourceLocation, 2> IdentifierLocs;
14628   Module *ModCheck = Mod;
14629   for (unsigned I = 0, N = Path.size(); I != N; ++I) {
14630     // If we've run out of module parents, just drop the remaining identifiers.
14631     // We need the length to be consistent.
14632     if (!ModCheck)
14633       break;
14634     ModCheck = ModCheck->Parent;
14635 
14636     IdentifierLocs.push_back(Path[I].second);
14637   }
14638 
14639   ImportDecl *Import = ImportDecl::Create(Context,
14640                                           Context.getTranslationUnitDecl(),
14641                                           AtLoc.isValid()? AtLoc : ImportLoc,
14642                                           Mod, IdentifierLocs);
14643   Context.getTranslationUnitDecl()->addDecl(Import);
14644   return Import;
14645 }
14646 
ActOnModuleInclude(SourceLocation DirectiveLoc,Module * Mod)14647 void Sema::ActOnModuleInclude(SourceLocation DirectiveLoc, Module *Mod) {
14648   checkModuleImportContext(*this, Mod, DirectiveLoc, CurContext, true);
14649 
14650   // Determine whether we're in the #include buffer for a module. The #includes
14651   // in that buffer do not qualify as module imports; they're just an
14652   // implementation detail of us building the module.
14653   //
14654   // FIXME: Should we even get ActOnModuleInclude calls for those?
14655   bool IsInModuleIncludes =
14656       TUKind == TU_Module &&
14657       getSourceManager().isWrittenInMainFile(DirectiveLoc);
14658 
14659   // If this module import was due to an inclusion directive, create an
14660   // implicit import declaration to capture it in the AST.
14661   if (!IsInModuleIncludes) {
14662     TranslationUnitDecl *TU = getASTContext().getTranslationUnitDecl();
14663     ImportDecl *ImportD = ImportDecl::CreateImplicit(getASTContext(), TU,
14664                                                      DirectiveLoc, Mod,
14665                                                      DirectiveLoc);
14666     TU->addDecl(ImportD);
14667     Consumer.HandleImplicitImportDecl(ImportD);
14668   }
14669 
14670   getModuleLoader().makeModuleVisible(Mod, Module::AllVisible, DirectiveLoc);
14671   VisibleModules.setVisible(Mod, DirectiveLoc);
14672 }
14673 
ActOnModuleBegin(SourceLocation DirectiveLoc,Module * Mod)14674 void Sema::ActOnModuleBegin(SourceLocation DirectiveLoc, Module *Mod) {
14675   checkModuleImportContext(*this, Mod, DirectiveLoc, CurContext);
14676 
14677   if (getLangOpts().ModulesLocalVisibility)
14678     VisibleModulesStack.push_back(std::move(VisibleModules));
14679   VisibleModules.setVisible(Mod, DirectiveLoc);
14680 }
14681 
ActOnModuleEnd(SourceLocation DirectiveLoc,Module * Mod)14682 void Sema::ActOnModuleEnd(SourceLocation DirectiveLoc, Module *Mod) {
14683   checkModuleImportContext(*this, Mod, DirectiveLoc, CurContext);
14684 
14685   if (getLangOpts().ModulesLocalVisibility) {
14686     VisibleModules = std::move(VisibleModulesStack.back());
14687     VisibleModulesStack.pop_back();
14688     VisibleModules.setVisible(Mod, DirectiveLoc);
14689   }
14690 }
14691 
createImplicitModuleImportForErrorRecovery(SourceLocation Loc,Module * Mod)14692 void Sema::createImplicitModuleImportForErrorRecovery(SourceLocation Loc,
14693                                                       Module *Mod) {
14694   // Bail if we're not allowed to implicitly import a module here.
14695   if (isSFINAEContext() || !getLangOpts().ModulesErrorRecovery)
14696     return;
14697 
14698   // Create the implicit import declaration.
14699   TranslationUnitDecl *TU = getASTContext().getTranslationUnitDecl();
14700   ImportDecl *ImportD = ImportDecl::CreateImplicit(getASTContext(), TU,
14701                                                    Loc, Mod, Loc);
14702   TU->addDecl(ImportD);
14703   Consumer.HandleImplicitImportDecl(ImportD);
14704 
14705   // Make the module visible.
14706   getModuleLoader().makeModuleVisible(Mod, Module::AllVisible, Loc);
14707   VisibleModules.setVisible(Mod, Loc);
14708 }
14709 
ActOnPragmaRedefineExtname(IdentifierInfo * Name,IdentifierInfo * AliasName,SourceLocation PragmaLoc,SourceLocation NameLoc,SourceLocation AliasNameLoc)14710 void Sema::ActOnPragmaRedefineExtname(IdentifierInfo* Name,
14711                                       IdentifierInfo* AliasName,
14712                                       SourceLocation PragmaLoc,
14713                                       SourceLocation NameLoc,
14714                                       SourceLocation AliasNameLoc) {
14715   NamedDecl *PrevDecl = LookupSingleName(TUScope, Name, NameLoc,
14716                                          LookupOrdinaryName);
14717   AsmLabelAttr *Attr =
14718       AsmLabelAttr::CreateImplicit(Context, AliasName->getName(), AliasNameLoc);
14719 
14720   // If a declaration that:
14721   // 1) declares a function or a variable
14722   // 2) has external linkage
14723   // already exists, add a label attribute to it.
14724   if (PrevDecl && (isa<FunctionDecl>(PrevDecl) || isa<VarDecl>(PrevDecl))) {
14725     if (isDeclExternC(PrevDecl))
14726       PrevDecl->addAttr(Attr);
14727     else
14728       Diag(PrevDecl->getLocation(), diag::warn_redefine_extname_not_applied)
14729           << /*Variable*/(isa<FunctionDecl>(PrevDecl) ? 0 : 1) << PrevDecl;
14730   // Otherwise, add a label atttibute to ExtnameUndeclaredIdentifiers.
14731   } else
14732     (void)ExtnameUndeclaredIdentifiers.insert(std::make_pair(Name, Attr));
14733 }
14734 
ActOnPragmaWeakID(IdentifierInfo * Name,SourceLocation PragmaLoc,SourceLocation NameLoc)14735 void Sema::ActOnPragmaWeakID(IdentifierInfo* Name,
14736                              SourceLocation PragmaLoc,
14737                              SourceLocation NameLoc) {
14738   Decl *PrevDecl = LookupSingleName(TUScope, Name, NameLoc, LookupOrdinaryName);
14739 
14740   if (PrevDecl) {
14741     PrevDecl->addAttr(WeakAttr::CreateImplicit(Context, PragmaLoc));
14742   } else {
14743     (void)WeakUndeclaredIdentifiers.insert(
14744       std::pair<IdentifierInfo*,WeakInfo>
14745         (Name, WeakInfo((IdentifierInfo*)nullptr, NameLoc)));
14746   }
14747 }
14748 
ActOnPragmaWeakAlias(IdentifierInfo * Name,IdentifierInfo * AliasName,SourceLocation PragmaLoc,SourceLocation NameLoc,SourceLocation AliasNameLoc)14749 void Sema::ActOnPragmaWeakAlias(IdentifierInfo* Name,
14750                                 IdentifierInfo* AliasName,
14751                                 SourceLocation PragmaLoc,
14752                                 SourceLocation NameLoc,
14753                                 SourceLocation AliasNameLoc) {
14754   Decl *PrevDecl = LookupSingleName(TUScope, AliasName, AliasNameLoc,
14755                                     LookupOrdinaryName);
14756   WeakInfo W = WeakInfo(Name, NameLoc);
14757 
14758   if (PrevDecl && (isa<FunctionDecl>(PrevDecl) || isa<VarDecl>(PrevDecl))) {
14759     if (!PrevDecl->hasAttr<AliasAttr>())
14760       if (NamedDecl *ND = dyn_cast<NamedDecl>(PrevDecl))
14761         DeclApplyPragmaWeak(TUScope, ND, W);
14762   } else {
14763     (void)WeakUndeclaredIdentifiers.insert(
14764       std::pair<IdentifierInfo*,WeakInfo>(AliasName, W));
14765   }
14766 }
14767 
getObjCDeclContext() const14768 Decl *Sema::getObjCDeclContext() const {
14769   return (dyn_cast_or_null<ObjCContainerDecl>(CurContext));
14770 }
14771 
getCurContextAvailability() const14772 AvailabilityResult Sema::getCurContextAvailability() const {
14773   const Decl *D = cast_or_null<Decl>(getCurObjCLexicalContext());
14774   if (!D)
14775     return AR_Available;
14776 
14777   // If we are within an Objective-C method, we should consult
14778   // both the availability of the method as well as the
14779   // enclosing class.  If the class is (say) deprecated,
14780   // the entire method is considered deprecated from the
14781   // purpose of checking if the current context is deprecated.
14782   if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(D)) {
14783     AvailabilityResult R = MD->getAvailability();
14784     if (R != AR_Available)
14785       return R;
14786     D = MD->getClassInterface();
14787   }
14788   // If we are within an Objective-c @implementation, it
14789   // gets the same availability context as the @interface.
14790   else if (const ObjCImplementationDecl *ID =
14791             dyn_cast<ObjCImplementationDecl>(D)) {
14792     D = ID->getClassInterface();
14793   }
14794   // Recover from user error.
14795   return D ? D->getAvailability() : AR_Available;
14796 }
14797