1 // Copyright 2014 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4
5 #include "src/factory.h"
6
7 #include "src/allocation-site-scopes.h"
8 #include "src/base/bits.h"
9 #include "src/bootstrapper.h"
10 #include "src/conversions.h"
11 #include "src/isolate-inl.h"
12 #include "src/macro-assembler.h"
13
14 namespace v8 {
15 namespace internal {
16
17
18 // Calls the FUNCTION_CALL function and retries it up to three times
19 // to guarantee that any allocations performed during the call will
20 // succeed if there's enough memory.
21 //
22 // Warning: Do not use the identifiers __object__, __maybe_object__,
23 // __allocation__ or __scope__ in a call to this macro.
24
25 #define RETURN_OBJECT_UNLESS_RETRY(ISOLATE, TYPE) \
26 if (__allocation__.To(&__object__)) { \
27 DCHECK(__object__ != (ISOLATE)->heap()->exception()); \
28 return Handle<TYPE>(TYPE::cast(__object__), ISOLATE); \
29 }
30
31 #define CALL_HEAP_FUNCTION(ISOLATE, FUNCTION_CALL, TYPE) \
32 do { \
33 AllocationResult __allocation__ = FUNCTION_CALL; \
34 Object* __object__ = NULL; \
35 RETURN_OBJECT_UNLESS_RETRY(ISOLATE, TYPE) \
36 /* Two GCs before panicking. In newspace will almost always succeed. */ \
37 for (int __i__ = 0; __i__ < 2; __i__++) { \
38 (ISOLATE)->heap()->CollectGarbage(__allocation__.RetrySpace(), \
39 "allocation failure"); \
40 __allocation__ = FUNCTION_CALL; \
41 RETURN_OBJECT_UNLESS_RETRY(ISOLATE, TYPE) \
42 } \
43 (ISOLATE)->counters()->gc_last_resort_from_handles()->Increment(); \
44 (ISOLATE)->heap()->CollectAllAvailableGarbage("last resort gc"); \
45 { \
46 AlwaysAllocateScope __scope__(ISOLATE); \
47 __allocation__ = FUNCTION_CALL; \
48 } \
49 RETURN_OBJECT_UNLESS_RETRY(ISOLATE, TYPE) \
50 /* TODO(1181417): Fix this. */ \
51 v8::internal::Heap::FatalProcessOutOfMemory("CALL_AND_RETRY_LAST", true); \
52 return Handle<TYPE>(); \
53 } while (false)
54
55
56 template<typename T>
New(Handle<Map> map,AllocationSpace space)57 Handle<T> Factory::New(Handle<Map> map, AllocationSpace space) {
58 CALL_HEAP_FUNCTION(
59 isolate(),
60 isolate()->heap()->Allocate(*map, space),
61 T);
62 }
63
64
65 template<typename T>
New(Handle<Map> map,AllocationSpace space,Handle<AllocationSite> allocation_site)66 Handle<T> Factory::New(Handle<Map> map,
67 AllocationSpace space,
68 Handle<AllocationSite> allocation_site) {
69 CALL_HEAP_FUNCTION(
70 isolate(),
71 isolate()->heap()->Allocate(*map, space, *allocation_site),
72 T);
73 }
74
75
NewFillerObject(int size,bool double_align,AllocationSpace space)76 Handle<HeapObject> Factory::NewFillerObject(int size,
77 bool double_align,
78 AllocationSpace space) {
79 CALL_HEAP_FUNCTION(
80 isolate(),
81 isolate()->heap()->AllocateFillerObject(size, double_align, space),
82 HeapObject);
83 }
84
85
NewBox(Handle<Object> value)86 Handle<Box> Factory::NewBox(Handle<Object> value) {
87 Handle<Box> result = Handle<Box>::cast(NewStruct(BOX_TYPE));
88 result->set_value(*value);
89 return result;
90 }
91
92
NewPrototypeInfo()93 Handle<PrototypeInfo> Factory::NewPrototypeInfo() {
94 Handle<PrototypeInfo> result =
95 Handle<PrototypeInfo>::cast(NewStruct(PROTOTYPE_INFO_TYPE));
96 result->set_prototype_users(WeakFixedArray::Empty());
97 result->set_registry_slot(PrototypeInfo::UNREGISTERED);
98 result->set_validity_cell(Smi::FromInt(0));
99 return result;
100 }
101
102
103 Handle<SloppyBlockWithEvalContextExtension>
NewSloppyBlockWithEvalContextExtension(Handle<ScopeInfo> scope_info,Handle<JSObject> extension)104 Factory::NewSloppyBlockWithEvalContextExtension(
105 Handle<ScopeInfo> scope_info, Handle<JSObject> extension) {
106 DCHECK(scope_info->is_declaration_scope());
107 Handle<SloppyBlockWithEvalContextExtension> result =
108 Handle<SloppyBlockWithEvalContextExtension>::cast(
109 NewStruct(SLOPPY_BLOCK_WITH_EVAL_CONTEXT_EXTENSION_TYPE));
110 result->set_scope_info(*scope_info);
111 result->set_extension(*extension);
112 return result;
113 }
114
115
NewOddball(Handle<Map> map,const char * to_string,Handle<Object> to_number,const char * type_of,byte kind)116 Handle<Oddball> Factory::NewOddball(Handle<Map> map, const char* to_string,
117 Handle<Object> to_number,
118 const char* type_of, byte kind) {
119 Handle<Oddball> oddball = New<Oddball>(map, OLD_SPACE);
120 Oddball::Initialize(isolate(), oddball, to_string, to_number, type_of, kind);
121 return oddball;
122 }
123
124
NewFixedArray(int size,PretenureFlag pretenure)125 Handle<FixedArray> Factory::NewFixedArray(int size, PretenureFlag pretenure) {
126 DCHECK(0 <= size);
127 CALL_HEAP_FUNCTION(
128 isolate(),
129 isolate()->heap()->AllocateFixedArray(size, pretenure),
130 FixedArray);
131 }
132
133
NewFixedArrayWithHoles(int size,PretenureFlag pretenure)134 Handle<FixedArray> Factory::NewFixedArrayWithHoles(int size,
135 PretenureFlag pretenure) {
136 DCHECK(0 <= size);
137 CALL_HEAP_FUNCTION(
138 isolate(),
139 isolate()->heap()->AllocateFixedArrayWithFiller(size,
140 pretenure,
141 *the_hole_value()),
142 FixedArray);
143 }
144
145
NewUninitializedFixedArray(int size)146 Handle<FixedArray> Factory::NewUninitializedFixedArray(int size) {
147 CALL_HEAP_FUNCTION(
148 isolate(),
149 isolate()->heap()->AllocateUninitializedFixedArray(size),
150 FixedArray);
151 }
152
153
NewFixedDoubleArray(int size,PretenureFlag pretenure)154 Handle<FixedArrayBase> Factory::NewFixedDoubleArray(int size,
155 PretenureFlag pretenure) {
156 DCHECK(0 <= size);
157 CALL_HEAP_FUNCTION(
158 isolate(),
159 isolate()->heap()->AllocateUninitializedFixedDoubleArray(size, pretenure),
160 FixedArrayBase);
161 }
162
163
NewFixedDoubleArrayWithHoles(int size,PretenureFlag pretenure)164 Handle<FixedArrayBase> Factory::NewFixedDoubleArrayWithHoles(
165 int size,
166 PretenureFlag pretenure) {
167 DCHECK(0 <= size);
168 Handle<FixedArrayBase> array = NewFixedDoubleArray(size, pretenure);
169 if (size > 0) {
170 Handle<FixedDoubleArray> double_array =
171 Handle<FixedDoubleArray>::cast(array);
172 for (int i = 0; i < size; ++i) {
173 double_array->set_the_hole(i);
174 }
175 }
176 return array;
177 }
178
179
NewOrderedHashSet()180 Handle<OrderedHashSet> Factory::NewOrderedHashSet() {
181 return OrderedHashSet::Allocate(isolate(), OrderedHashSet::kMinCapacity);
182 }
183
184
NewOrderedHashMap()185 Handle<OrderedHashMap> Factory::NewOrderedHashMap() {
186 return OrderedHashMap::Allocate(isolate(), OrderedHashMap::kMinCapacity);
187 }
188
189
NewAccessorPair()190 Handle<AccessorPair> Factory::NewAccessorPair() {
191 Handle<AccessorPair> accessors =
192 Handle<AccessorPair>::cast(NewStruct(ACCESSOR_PAIR_TYPE));
193 accessors->set_getter(*the_hole_value(), SKIP_WRITE_BARRIER);
194 accessors->set_setter(*the_hole_value(), SKIP_WRITE_BARRIER);
195 return accessors;
196 }
197
198
NewTypeFeedbackInfo()199 Handle<TypeFeedbackInfo> Factory::NewTypeFeedbackInfo() {
200 Handle<TypeFeedbackInfo> info =
201 Handle<TypeFeedbackInfo>::cast(NewStruct(TYPE_FEEDBACK_INFO_TYPE));
202 info->initialize_storage();
203 return info;
204 }
205
206
207 // Internalized strings are created in the old generation (data space).
InternalizeUtf8String(Vector<const char> string)208 Handle<String> Factory::InternalizeUtf8String(Vector<const char> string) {
209 Utf8StringKey key(string, isolate()->heap()->HashSeed());
210 return InternalizeStringWithKey(&key);
211 }
212
213
214 // Internalized strings are created in the old generation (data space).
InternalizeString(Handle<String> string)215 Handle<String> Factory::InternalizeString(Handle<String> string) {
216 if (string->IsInternalizedString()) return string;
217 return StringTable::LookupString(isolate(), string);
218 }
219
220
InternalizeOneByteString(Vector<const uint8_t> string)221 Handle<String> Factory::InternalizeOneByteString(Vector<const uint8_t> string) {
222 OneByteStringKey key(string, isolate()->heap()->HashSeed());
223 return InternalizeStringWithKey(&key);
224 }
225
226
InternalizeOneByteString(Handle<SeqOneByteString> string,int from,int length)227 Handle<String> Factory::InternalizeOneByteString(
228 Handle<SeqOneByteString> string, int from, int length) {
229 SeqOneByteSubStringKey key(string, from, length);
230 return InternalizeStringWithKey(&key);
231 }
232
233
InternalizeTwoByteString(Vector<const uc16> string)234 Handle<String> Factory::InternalizeTwoByteString(Vector<const uc16> string) {
235 TwoByteStringKey key(string, isolate()->heap()->HashSeed());
236 return InternalizeStringWithKey(&key);
237 }
238
239
240 template<class StringTableKey>
InternalizeStringWithKey(StringTableKey * key)241 Handle<String> Factory::InternalizeStringWithKey(StringTableKey* key) {
242 return StringTable::LookupKey(isolate(), key);
243 }
244
245
InternalizeName(Handle<Name> name)246 Handle<Name> Factory::InternalizeName(Handle<Name> name) {
247 if (name->IsUniqueName()) return name;
248 return InternalizeString(Handle<String>::cast(name));
249 }
250
251
NewStringFromOneByte(Vector<const uint8_t> string,PretenureFlag pretenure)252 MaybeHandle<String> Factory::NewStringFromOneByte(Vector<const uint8_t> string,
253 PretenureFlag pretenure) {
254 int length = string.length();
255 if (length == 1) return LookupSingleCharacterStringFromCode(string[0]);
256 Handle<SeqOneByteString> result;
257 ASSIGN_RETURN_ON_EXCEPTION(
258 isolate(),
259 result,
260 NewRawOneByteString(string.length(), pretenure),
261 String);
262
263 DisallowHeapAllocation no_gc;
264 // Copy the characters into the new object.
265 CopyChars(SeqOneByteString::cast(*result)->GetChars(),
266 string.start(),
267 length);
268 return result;
269 }
270
NewStringFromUtf8(Vector<const char> string,PretenureFlag pretenure)271 MaybeHandle<String> Factory::NewStringFromUtf8(Vector<const char> string,
272 PretenureFlag pretenure) {
273 // Check for ASCII first since this is the common case.
274 const char* start = string.start();
275 int length = string.length();
276 int non_ascii_start = String::NonAsciiStart(start, length);
277 if (non_ascii_start >= length) {
278 // If the string is ASCII, we do not need to convert the characters
279 // since UTF8 is backwards compatible with ASCII.
280 return NewStringFromOneByte(Vector<const uint8_t>::cast(string), pretenure);
281 }
282
283 // Non-ASCII and we need to decode.
284 Access<UnicodeCache::Utf8Decoder>
285 decoder(isolate()->unicode_cache()->utf8_decoder());
286 decoder->Reset(string.start() + non_ascii_start,
287 length - non_ascii_start);
288 int utf16_length = static_cast<int>(decoder->Utf16Length());
289 DCHECK(utf16_length > 0);
290 // Allocate string.
291 Handle<SeqTwoByteString> result;
292 ASSIGN_RETURN_ON_EXCEPTION(
293 isolate(), result,
294 NewRawTwoByteString(non_ascii_start + utf16_length, pretenure),
295 String);
296 // Copy ASCII portion.
297 uint16_t* data = result->GetChars();
298 const char* ascii_data = string.start();
299 for (int i = 0; i < non_ascii_start; i++) {
300 *data++ = *ascii_data++;
301 }
302 // Now write the remainder.
303 decoder->WriteUtf16(data, utf16_length);
304 return result;
305 }
306
307
NewStringFromTwoByte(Vector<const uc16> string,PretenureFlag pretenure)308 MaybeHandle<String> Factory::NewStringFromTwoByte(Vector<const uc16> string,
309 PretenureFlag pretenure) {
310 int length = string.length();
311 const uc16* start = string.start();
312 if (String::IsOneByte(start, length)) {
313 if (length == 1) return LookupSingleCharacterStringFromCode(string[0]);
314 Handle<SeqOneByteString> result;
315 ASSIGN_RETURN_ON_EXCEPTION(
316 isolate(),
317 result,
318 NewRawOneByteString(length, pretenure),
319 String);
320 CopyChars(result->GetChars(), start, length);
321 return result;
322 } else {
323 Handle<SeqTwoByteString> result;
324 ASSIGN_RETURN_ON_EXCEPTION(
325 isolate(),
326 result,
327 NewRawTwoByteString(length, pretenure),
328 String);
329 CopyChars(result->GetChars(), start, length);
330 return result;
331 }
332 }
333
334
NewInternalizedStringFromUtf8(Vector<const char> str,int chars,uint32_t hash_field)335 Handle<String> Factory::NewInternalizedStringFromUtf8(Vector<const char> str,
336 int chars,
337 uint32_t hash_field) {
338 CALL_HEAP_FUNCTION(
339 isolate(),
340 isolate()->heap()->AllocateInternalizedStringFromUtf8(
341 str, chars, hash_field),
342 String);
343 }
344
345
NewOneByteInternalizedString(Vector<const uint8_t> str,uint32_t hash_field)346 MUST_USE_RESULT Handle<String> Factory::NewOneByteInternalizedString(
347 Vector<const uint8_t> str,
348 uint32_t hash_field) {
349 CALL_HEAP_FUNCTION(
350 isolate(),
351 isolate()->heap()->AllocateOneByteInternalizedString(str, hash_field),
352 String);
353 }
354
355
NewOneByteInternalizedSubString(Handle<SeqOneByteString> string,int offset,int length,uint32_t hash_field)356 MUST_USE_RESULT Handle<String> Factory::NewOneByteInternalizedSubString(
357 Handle<SeqOneByteString> string, int offset, int length,
358 uint32_t hash_field) {
359 CALL_HEAP_FUNCTION(
360 isolate(), isolate()->heap()->AllocateOneByteInternalizedString(
361 Vector<const uint8_t>(string->GetChars() + offset, length),
362 hash_field),
363 String);
364 }
365
366
NewTwoByteInternalizedString(Vector<const uc16> str,uint32_t hash_field)367 MUST_USE_RESULT Handle<String> Factory::NewTwoByteInternalizedString(
368 Vector<const uc16> str,
369 uint32_t hash_field) {
370 CALL_HEAP_FUNCTION(
371 isolate(),
372 isolate()->heap()->AllocateTwoByteInternalizedString(str, hash_field),
373 String);
374 }
375
376
NewInternalizedStringImpl(Handle<String> string,int chars,uint32_t hash_field)377 Handle<String> Factory::NewInternalizedStringImpl(
378 Handle<String> string, int chars, uint32_t hash_field) {
379 CALL_HEAP_FUNCTION(
380 isolate(),
381 isolate()->heap()->AllocateInternalizedStringImpl(
382 *string, chars, hash_field),
383 String);
384 }
385
386
InternalizedStringMapForString(Handle<String> string)387 MaybeHandle<Map> Factory::InternalizedStringMapForString(
388 Handle<String> string) {
389 // If the string is in new space it cannot be used as internalized.
390 if (isolate()->heap()->InNewSpace(*string)) return MaybeHandle<Map>();
391
392 // Find the corresponding internalized string map for strings.
393 switch (string->map()->instance_type()) {
394 case STRING_TYPE: return internalized_string_map();
395 case ONE_BYTE_STRING_TYPE:
396 return one_byte_internalized_string_map();
397 case EXTERNAL_STRING_TYPE: return external_internalized_string_map();
398 case EXTERNAL_ONE_BYTE_STRING_TYPE:
399 return external_one_byte_internalized_string_map();
400 case EXTERNAL_STRING_WITH_ONE_BYTE_DATA_TYPE:
401 return external_internalized_string_with_one_byte_data_map();
402 case SHORT_EXTERNAL_STRING_TYPE:
403 return short_external_internalized_string_map();
404 case SHORT_EXTERNAL_ONE_BYTE_STRING_TYPE:
405 return short_external_one_byte_internalized_string_map();
406 case SHORT_EXTERNAL_STRING_WITH_ONE_BYTE_DATA_TYPE:
407 return short_external_internalized_string_with_one_byte_data_map();
408 default: return MaybeHandle<Map>(); // No match found.
409 }
410 }
411
412
NewRawOneByteString(int length,PretenureFlag pretenure)413 MaybeHandle<SeqOneByteString> Factory::NewRawOneByteString(
414 int length, PretenureFlag pretenure) {
415 if (length > String::kMaxLength || length < 0) {
416 THROW_NEW_ERROR(isolate(), NewInvalidStringLengthError(), SeqOneByteString);
417 }
418 CALL_HEAP_FUNCTION(
419 isolate(),
420 isolate()->heap()->AllocateRawOneByteString(length, pretenure),
421 SeqOneByteString);
422 }
423
424
NewRawTwoByteString(int length,PretenureFlag pretenure)425 MaybeHandle<SeqTwoByteString> Factory::NewRawTwoByteString(
426 int length, PretenureFlag pretenure) {
427 if (length > String::kMaxLength || length < 0) {
428 THROW_NEW_ERROR(isolate(), NewInvalidStringLengthError(), SeqTwoByteString);
429 }
430 CALL_HEAP_FUNCTION(
431 isolate(),
432 isolate()->heap()->AllocateRawTwoByteString(length, pretenure),
433 SeqTwoByteString);
434 }
435
436
LookupSingleCharacterStringFromCode(uint32_t code)437 Handle<String> Factory::LookupSingleCharacterStringFromCode(uint32_t code) {
438 if (code <= String::kMaxOneByteCharCodeU) {
439 {
440 DisallowHeapAllocation no_allocation;
441 Object* value = single_character_string_cache()->get(code);
442 if (value != *undefined_value()) {
443 return handle(String::cast(value), isolate());
444 }
445 }
446 uint8_t buffer[1];
447 buffer[0] = static_cast<uint8_t>(code);
448 Handle<String> result =
449 InternalizeOneByteString(Vector<const uint8_t>(buffer, 1));
450 single_character_string_cache()->set(code, *result);
451 return result;
452 }
453 DCHECK(code <= String::kMaxUtf16CodeUnitU);
454
455 Handle<SeqTwoByteString> result = NewRawTwoByteString(1).ToHandleChecked();
456 result->SeqTwoByteStringSet(0, static_cast<uint16_t>(code));
457 return result;
458 }
459
460
461 // Returns true for a character in a range. Both limits are inclusive.
Between(uint32_t character,uint32_t from,uint32_t to)462 static inline bool Between(uint32_t character, uint32_t from, uint32_t to) {
463 // This makes uses of the the unsigned wraparound.
464 return character - from <= to - from;
465 }
466
467
MakeOrFindTwoCharacterString(Isolate * isolate,uint16_t c1,uint16_t c2)468 static inline Handle<String> MakeOrFindTwoCharacterString(Isolate* isolate,
469 uint16_t c1,
470 uint16_t c2) {
471 // Numeric strings have a different hash algorithm not known by
472 // LookupTwoCharsStringIfExists, so we skip this step for such strings.
473 if (!Between(c1, '0', '9') || !Between(c2, '0', '9')) {
474 Handle<String> result;
475 if (StringTable::LookupTwoCharsStringIfExists(isolate, c1, c2).
476 ToHandle(&result)) {
477 return result;
478 }
479 }
480
481 // Now we know the length is 2, we might as well make use of that fact
482 // when building the new string.
483 if (static_cast<unsigned>(c1 | c2) <= String::kMaxOneByteCharCodeU) {
484 // We can do this.
485 DCHECK(base::bits::IsPowerOfTwo32(String::kMaxOneByteCharCodeU +
486 1)); // because of this.
487 Handle<SeqOneByteString> str =
488 isolate->factory()->NewRawOneByteString(2).ToHandleChecked();
489 uint8_t* dest = str->GetChars();
490 dest[0] = static_cast<uint8_t>(c1);
491 dest[1] = static_cast<uint8_t>(c2);
492 return str;
493 } else {
494 Handle<SeqTwoByteString> str =
495 isolate->factory()->NewRawTwoByteString(2).ToHandleChecked();
496 uc16* dest = str->GetChars();
497 dest[0] = c1;
498 dest[1] = c2;
499 return str;
500 }
501 }
502
503
504 template<typename SinkChar, typename StringType>
ConcatStringContent(Handle<StringType> result,Handle<String> first,Handle<String> second)505 Handle<String> ConcatStringContent(Handle<StringType> result,
506 Handle<String> first,
507 Handle<String> second) {
508 DisallowHeapAllocation pointer_stays_valid;
509 SinkChar* sink = result->GetChars();
510 String::WriteToFlat(*first, sink, 0, first->length());
511 String::WriteToFlat(*second, sink + first->length(), 0, second->length());
512 return result;
513 }
514
515
NewConsString(Handle<String> left,Handle<String> right)516 MaybeHandle<String> Factory::NewConsString(Handle<String> left,
517 Handle<String> right) {
518 int left_length = left->length();
519 if (left_length == 0) return right;
520 int right_length = right->length();
521 if (right_length == 0) return left;
522
523 int length = left_length + right_length;
524
525 if (length == 2) {
526 uint16_t c1 = left->Get(0);
527 uint16_t c2 = right->Get(0);
528 return MakeOrFindTwoCharacterString(isolate(), c1, c2);
529 }
530
531 // Make sure that an out of memory exception is thrown if the length
532 // of the new cons string is too large.
533 if (length > String::kMaxLength || length < 0) {
534 THROW_NEW_ERROR(isolate(), NewInvalidStringLengthError(), String);
535 }
536
537 bool left_is_one_byte = left->IsOneByteRepresentation();
538 bool right_is_one_byte = right->IsOneByteRepresentation();
539 bool is_one_byte = left_is_one_byte && right_is_one_byte;
540 bool is_one_byte_data_in_two_byte_string = false;
541 if (!is_one_byte) {
542 // At least one of the strings uses two-byte representation so we
543 // can't use the fast case code for short one-byte strings below, but
544 // we can try to save memory if all chars actually fit in one-byte.
545 is_one_byte_data_in_two_byte_string =
546 left->HasOnlyOneByteChars() && right->HasOnlyOneByteChars();
547 if (is_one_byte_data_in_two_byte_string) {
548 isolate()->counters()->string_add_runtime_ext_to_one_byte()->Increment();
549 }
550 }
551
552 // If the resulting string is small make a flat string.
553 if (length < ConsString::kMinLength) {
554 // Note that neither of the two inputs can be a slice because:
555 STATIC_ASSERT(ConsString::kMinLength <= SlicedString::kMinLength);
556 DCHECK(left->IsFlat());
557 DCHECK(right->IsFlat());
558
559 STATIC_ASSERT(ConsString::kMinLength <= String::kMaxLength);
560 if (is_one_byte) {
561 Handle<SeqOneByteString> result =
562 NewRawOneByteString(length).ToHandleChecked();
563 DisallowHeapAllocation no_gc;
564 uint8_t* dest = result->GetChars();
565 // Copy left part.
566 const uint8_t* src =
567 left->IsExternalString()
568 ? Handle<ExternalOneByteString>::cast(left)->GetChars()
569 : Handle<SeqOneByteString>::cast(left)->GetChars();
570 for (int i = 0; i < left_length; i++) *dest++ = src[i];
571 // Copy right part.
572 src = right->IsExternalString()
573 ? Handle<ExternalOneByteString>::cast(right)->GetChars()
574 : Handle<SeqOneByteString>::cast(right)->GetChars();
575 for (int i = 0; i < right_length; i++) *dest++ = src[i];
576 return result;
577 }
578
579 return (is_one_byte_data_in_two_byte_string)
580 ? ConcatStringContent<uint8_t>(
581 NewRawOneByteString(length).ToHandleChecked(), left, right)
582 : ConcatStringContent<uc16>(
583 NewRawTwoByteString(length).ToHandleChecked(), left, right);
584 }
585
586 Handle<ConsString> result =
587 (is_one_byte || is_one_byte_data_in_two_byte_string)
588 ? New<ConsString>(cons_one_byte_string_map(), NEW_SPACE)
589 : New<ConsString>(cons_string_map(), NEW_SPACE);
590
591 DisallowHeapAllocation no_gc;
592 WriteBarrierMode mode = result->GetWriteBarrierMode(no_gc);
593
594 result->set_hash_field(String::kEmptyHashField);
595 result->set_length(length);
596 result->set_first(*left, mode);
597 result->set_second(*right, mode);
598 return result;
599 }
600
601
NewProperSubString(Handle<String> str,int begin,int end)602 Handle<String> Factory::NewProperSubString(Handle<String> str,
603 int begin,
604 int end) {
605 #if VERIFY_HEAP
606 if (FLAG_verify_heap) str->StringVerify();
607 #endif
608 DCHECK(begin > 0 || end < str->length());
609
610 str = String::Flatten(str);
611
612 int length = end - begin;
613 if (length <= 0) return empty_string();
614 if (length == 1) {
615 return LookupSingleCharacterStringFromCode(str->Get(begin));
616 }
617 if (length == 2) {
618 // Optimization for 2-byte strings often used as keys in a decompression
619 // dictionary. Check whether we already have the string in the string
620 // table to prevent creation of many unnecessary strings.
621 uint16_t c1 = str->Get(begin);
622 uint16_t c2 = str->Get(begin + 1);
623 return MakeOrFindTwoCharacterString(isolate(), c1, c2);
624 }
625
626 if (!FLAG_string_slices || length < SlicedString::kMinLength) {
627 if (str->IsOneByteRepresentation()) {
628 Handle<SeqOneByteString> result =
629 NewRawOneByteString(length).ToHandleChecked();
630 uint8_t* dest = result->GetChars();
631 DisallowHeapAllocation no_gc;
632 String::WriteToFlat(*str, dest, begin, end);
633 return result;
634 } else {
635 Handle<SeqTwoByteString> result =
636 NewRawTwoByteString(length).ToHandleChecked();
637 uc16* dest = result->GetChars();
638 DisallowHeapAllocation no_gc;
639 String::WriteToFlat(*str, dest, begin, end);
640 return result;
641 }
642 }
643
644 int offset = begin;
645
646 if (str->IsSlicedString()) {
647 Handle<SlicedString> slice = Handle<SlicedString>::cast(str);
648 str = Handle<String>(slice->parent(), isolate());
649 offset += slice->offset();
650 }
651
652 DCHECK(str->IsSeqString() || str->IsExternalString());
653 Handle<Map> map = str->IsOneByteRepresentation()
654 ? sliced_one_byte_string_map()
655 : sliced_string_map();
656 Handle<SlicedString> slice = New<SlicedString>(map, NEW_SPACE);
657
658 slice->set_hash_field(String::kEmptyHashField);
659 slice->set_length(length);
660 slice->set_parent(*str);
661 slice->set_offset(offset);
662 return slice;
663 }
664
665
NewExternalStringFromOneByte(const ExternalOneByteString::Resource * resource)666 MaybeHandle<String> Factory::NewExternalStringFromOneByte(
667 const ExternalOneByteString::Resource* resource) {
668 size_t length = resource->length();
669 if (length > static_cast<size_t>(String::kMaxLength)) {
670 THROW_NEW_ERROR(isolate(), NewInvalidStringLengthError(), String);
671 }
672
673 Handle<Map> map;
674 if (resource->IsCompressible()) {
675 // TODO(hajimehoshi): Rename this to 'uncached_external_one_byte_string_map'
676 map = short_external_one_byte_string_map();
677 } else {
678 map = external_one_byte_string_map();
679 }
680 Handle<ExternalOneByteString> external_string =
681 New<ExternalOneByteString>(map, NEW_SPACE);
682 external_string->set_length(static_cast<int>(length));
683 external_string->set_hash_field(String::kEmptyHashField);
684 external_string->set_resource(resource);
685
686 return external_string;
687 }
688
689
NewExternalStringFromTwoByte(const ExternalTwoByteString::Resource * resource)690 MaybeHandle<String> Factory::NewExternalStringFromTwoByte(
691 const ExternalTwoByteString::Resource* resource) {
692 size_t length = resource->length();
693 if (length > static_cast<size_t>(String::kMaxLength)) {
694 THROW_NEW_ERROR(isolate(), NewInvalidStringLengthError(), String);
695 }
696
697 // For small strings we check whether the resource contains only
698 // one byte characters. If yes, we use a different string map.
699 static const size_t kOneByteCheckLengthLimit = 32;
700 bool is_one_byte = length <= kOneByteCheckLengthLimit &&
701 String::IsOneByte(resource->data(), static_cast<int>(length));
702 Handle<Map> map;
703 if (resource->IsCompressible()) {
704 // TODO(hajimehoshi): Rename these to 'uncached_external_string_...'.
705 map = is_one_byte ? short_external_string_with_one_byte_data_map()
706 : short_external_string_map();
707 } else {
708 map = is_one_byte ? external_string_with_one_byte_data_map()
709 : external_string_map();
710 }
711 Handle<ExternalTwoByteString> external_string =
712 New<ExternalTwoByteString>(map, NEW_SPACE);
713 external_string->set_length(static_cast<int>(length));
714 external_string->set_hash_field(String::kEmptyHashField);
715 external_string->set_resource(resource);
716
717 return external_string;
718 }
719
720
NewSymbol()721 Handle<Symbol> Factory::NewSymbol() {
722 CALL_HEAP_FUNCTION(
723 isolate(),
724 isolate()->heap()->AllocateSymbol(),
725 Symbol);
726 }
727
728
NewPrivateSymbol()729 Handle<Symbol> Factory::NewPrivateSymbol() {
730 Handle<Symbol> symbol = NewSymbol();
731 symbol->set_is_private(true);
732 return symbol;
733 }
734
735
NewNativeContext()736 Handle<Context> Factory::NewNativeContext() {
737 Handle<FixedArray> array =
738 NewFixedArray(Context::NATIVE_CONTEXT_SLOTS, TENURED);
739 array->set_map_no_write_barrier(*native_context_map());
740 Handle<Context> context = Handle<Context>::cast(array);
741 context->set_native_context(*context);
742 context->set_errors_thrown(Smi::FromInt(0));
743 Handle<WeakCell> weak_cell = NewWeakCell(context);
744 context->set_self_weak_cell(*weak_cell);
745 DCHECK(context->IsNativeContext());
746 return context;
747 }
748
749
NewScriptContext(Handle<JSFunction> function,Handle<ScopeInfo> scope_info)750 Handle<Context> Factory::NewScriptContext(Handle<JSFunction> function,
751 Handle<ScopeInfo> scope_info) {
752 Handle<FixedArray> array =
753 NewFixedArray(scope_info->ContextLength(), TENURED);
754 array->set_map_no_write_barrier(*script_context_map());
755 Handle<Context> context = Handle<Context>::cast(array);
756 context->set_closure(*function);
757 context->set_previous(function->context());
758 context->set_extension(*scope_info);
759 context->set_native_context(function->native_context());
760 DCHECK(context->IsScriptContext());
761 return context;
762 }
763
764
NewScriptContextTable()765 Handle<ScriptContextTable> Factory::NewScriptContextTable() {
766 Handle<FixedArray> array = NewFixedArray(1);
767 array->set_map_no_write_barrier(*script_context_table_map());
768 Handle<ScriptContextTable> context_table =
769 Handle<ScriptContextTable>::cast(array);
770 context_table->set_used(0);
771 return context_table;
772 }
773
774
NewModuleContext(Handle<ScopeInfo> scope_info)775 Handle<Context> Factory::NewModuleContext(Handle<ScopeInfo> scope_info) {
776 Handle<FixedArray> array =
777 NewFixedArray(scope_info->ContextLength(), TENURED);
778 array->set_map_no_write_barrier(*module_context_map());
779 // Instance link will be set later.
780 Handle<Context> context = Handle<Context>::cast(array);
781 context->set_extension(*the_hole_value());
782 return context;
783 }
784
785
NewFunctionContext(int length,Handle<JSFunction> function)786 Handle<Context> Factory::NewFunctionContext(int length,
787 Handle<JSFunction> function) {
788 DCHECK(length >= Context::MIN_CONTEXT_SLOTS);
789 Handle<FixedArray> array = NewFixedArray(length);
790 array->set_map_no_write_barrier(*function_context_map());
791 Handle<Context> context = Handle<Context>::cast(array);
792 context->set_closure(*function);
793 context->set_previous(function->context());
794 context->set_extension(*the_hole_value());
795 context->set_native_context(function->native_context());
796 return context;
797 }
798
799
NewCatchContext(Handle<JSFunction> function,Handle<Context> previous,Handle<String> name,Handle<Object> thrown_object)800 Handle<Context> Factory::NewCatchContext(Handle<JSFunction> function,
801 Handle<Context> previous,
802 Handle<String> name,
803 Handle<Object> thrown_object) {
804 STATIC_ASSERT(Context::MIN_CONTEXT_SLOTS == Context::THROWN_OBJECT_INDEX);
805 Handle<FixedArray> array = NewFixedArray(Context::MIN_CONTEXT_SLOTS + 1);
806 array->set_map_no_write_barrier(*catch_context_map());
807 Handle<Context> context = Handle<Context>::cast(array);
808 context->set_closure(*function);
809 context->set_previous(*previous);
810 context->set_extension(*name);
811 context->set_native_context(previous->native_context());
812 context->set(Context::THROWN_OBJECT_INDEX, *thrown_object);
813 return context;
814 }
815
816
NewWithContext(Handle<JSFunction> function,Handle<Context> previous,Handle<JSReceiver> extension)817 Handle<Context> Factory::NewWithContext(Handle<JSFunction> function,
818 Handle<Context> previous,
819 Handle<JSReceiver> extension) {
820 Handle<FixedArray> array = NewFixedArray(Context::MIN_CONTEXT_SLOTS);
821 array->set_map_no_write_barrier(*with_context_map());
822 Handle<Context> context = Handle<Context>::cast(array);
823 context->set_closure(*function);
824 context->set_previous(*previous);
825 context->set_extension(*extension);
826 context->set_native_context(previous->native_context());
827 return context;
828 }
829
830
NewBlockContext(Handle<JSFunction> function,Handle<Context> previous,Handle<ScopeInfo> scope_info)831 Handle<Context> Factory::NewBlockContext(Handle<JSFunction> function,
832 Handle<Context> previous,
833 Handle<ScopeInfo> scope_info) {
834 Handle<FixedArray> array = NewFixedArray(scope_info->ContextLength());
835 array->set_map_no_write_barrier(*block_context_map());
836 Handle<Context> context = Handle<Context>::cast(array);
837 context->set_closure(*function);
838 context->set_previous(*previous);
839 context->set_extension(*scope_info);
840 context->set_native_context(previous->native_context());
841 return context;
842 }
843
844
NewStruct(InstanceType type)845 Handle<Struct> Factory::NewStruct(InstanceType type) {
846 CALL_HEAP_FUNCTION(
847 isolate(),
848 isolate()->heap()->AllocateStruct(type),
849 Struct);
850 }
851
852
NewCodeCache()853 Handle<CodeCache> Factory::NewCodeCache() {
854 Handle<CodeCache> code_cache =
855 Handle<CodeCache>::cast(NewStruct(CODE_CACHE_TYPE));
856 code_cache->set_default_cache(*empty_fixed_array(), SKIP_WRITE_BARRIER);
857 code_cache->set_normal_type_cache(*undefined_value(), SKIP_WRITE_BARRIER);
858 return code_cache;
859 }
860
861
NewAliasedArgumentsEntry(int aliased_context_slot)862 Handle<AliasedArgumentsEntry> Factory::NewAliasedArgumentsEntry(
863 int aliased_context_slot) {
864 Handle<AliasedArgumentsEntry> entry = Handle<AliasedArgumentsEntry>::cast(
865 NewStruct(ALIASED_ARGUMENTS_ENTRY_TYPE));
866 entry->set_aliased_context_slot(aliased_context_slot);
867 return entry;
868 }
869
870
NewExecutableAccessorInfo()871 Handle<ExecutableAccessorInfo> Factory::NewExecutableAccessorInfo() {
872 Handle<ExecutableAccessorInfo> info =
873 Handle<ExecutableAccessorInfo>::cast(
874 NewStruct(EXECUTABLE_ACCESSOR_INFO_TYPE));
875 info->set_flag(0); // Must clear the flag, it was initialized as undefined.
876 return info;
877 }
878
879
NewScript(Handle<String> source)880 Handle<Script> Factory::NewScript(Handle<String> source) {
881 // Create and initialize script object.
882 Heap* heap = isolate()->heap();
883 Handle<Script> script = Handle<Script>::cast(NewStruct(SCRIPT_TYPE));
884 script->set_source(*source);
885 script->set_name(heap->undefined_value());
886 script->set_id(isolate()->heap()->NextScriptId());
887 script->set_line_offset(0);
888 script->set_column_offset(0);
889 script->set_context_data(heap->undefined_value());
890 script->set_type(Script::TYPE_NORMAL);
891 script->set_wrapper(heap->undefined_value());
892 script->set_line_ends(heap->undefined_value());
893 script->set_eval_from_shared(heap->undefined_value());
894 script->set_eval_from_instructions_offset(0);
895 script->set_shared_function_infos(Smi::FromInt(0));
896 script->set_flags(0);
897
898 heap->set_script_list(*WeakFixedArray::Add(script_list(), script));
899 return script;
900 }
901
902
NewForeign(Address addr,PretenureFlag pretenure)903 Handle<Foreign> Factory::NewForeign(Address addr, PretenureFlag pretenure) {
904 CALL_HEAP_FUNCTION(isolate(),
905 isolate()->heap()->AllocateForeign(addr, pretenure),
906 Foreign);
907 }
908
909
NewForeign(const AccessorDescriptor * desc)910 Handle<Foreign> Factory::NewForeign(const AccessorDescriptor* desc) {
911 return NewForeign((Address) desc, TENURED);
912 }
913
914
NewByteArray(int length,PretenureFlag pretenure)915 Handle<ByteArray> Factory::NewByteArray(int length, PretenureFlag pretenure) {
916 DCHECK(0 <= length);
917 CALL_HEAP_FUNCTION(
918 isolate(),
919 isolate()->heap()->AllocateByteArray(length, pretenure),
920 ByteArray);
921 }
922
923
NewBytecodeArray(int length,const byte * raw_bytecodes,int frame_size,int parameter_count,Handle<FixedArray> constant_pool)924 Handle<BytecodeArray> Factory::NewBytecodeArray(
925 int length, const byte* raw_bytecodes, int frame_size, int parameter_count,
926 Handle<FixedArray> constant_pool) {
927 DCHECK(0 <= length);
928 CALL_HEAP_FUNCTION(isolate(), isolate()->heap()->AllocateBytecodeArray(
929 length, raw_bytecodes, frame_size,
930 parameter_count, *constant_pool),
931 BytecodeArray);
932 }
933
934
NewFixedTypedArrayWithExternalPointer(int length,ExternalArrayType array_type,void * external_pointer,PretenureFlag pretenure)935 Handle<FixedTypedArrayBase> Factory::NewFixedTypedArrayWithExternalPointer(
936 int length, ExternalArrayType array_type, void* external_pointer,
937 PretenureFlag pretenure) {
938 DCHECK(0 <= length && length <= Smi::kMaxValue);
939 CALL_HEAP_FUNCTION(
940 isolate(), isolate()->heap()->AllocateFixedTypedArrayWithExternalPointer(
941 length, array_type, external_pointer, pretenure),
942 FixedTypedArrayBase);
943 }
944
945
NewFixedTypedArray(int length,ExternalArrayType array_type,bool initialize,PretenureFlag pretenure)946 Handle<FixedTypedArrayBase> Factory::NewFixedTypedArray(
947 int length, ExternalArrayType array_type, bool initialize,
948 PretenureFlag pretenure) {
949 DCHECK(0 <= length && length <= Smi::kMaxValue);
950 CALL_HEAP_FUNCTION(isolate(), isolate()->heap()->AllocateFixedTypedArray(
951 length, array_type, initialize, pretenure),
952 FixedTypedArrayBase);
953 }
954
955
NewCell(Handle<Object> value)956 Handle<Cell> Factory::NewCell(Handle<Object> value) {
957 AllowDeferredHandleDereference convert_to_cell;
958 CALL_HEAP_FUNCTION(
959 isolate(),
960 isolate()->heap()->AllocateCell(*value),
961 Cell);
962 }
963
964
NewPropertyCell()965 Handle<PropertyCell> Factory::NewPropertyCell() {
966 CALL_HEAP_FUNCTION(
967 isolate(),
968 isolate()->heap()->AllocatePropertyCell(),
969 PropertyCell);
970 }
971
972
NewWeakCell(Handle<HeapObject> value)973 Handle<WeakCell> Factory::NewWeakCell(Handle<HeapObject> value) {
974 // It is safe to dereference the value because we are embedding it
975 // in cell and not inspecting its fields.
976 AllowDeferredHandleDereference convert_to_cell;
977 CALL_HEAP_FUNCTION(isolate(), isolate()->heap()->AllocateWeakCell(*value),
978 WeakCell);
979 }
980
981
NewTransitionArray(int capacity)982 Handle<TransitionArray> Factory::NewTransitionArray(int capacity) {
983 CALL_HEAP_FUNCTION(isolate(),
984 isolate()->heap()->AllocateTransitionArray(capacity),
985 TransitionArray);
986 }
987
988
NewAllocationSite()989 Handle<AllocationSite> Factory::NewAllocationSite() {
990 Handle<Map> map = allocation_site_map();
991 Handle<AllocationSite> site = New<AllocationSite>(map, OLD_SPACE);
992 site->Initialize();
993
994 // Link the site
995 site->set_weak_next(isolate()->heap()->allocation_sites_list());
996 isolate()->heap()->set_allocation_sites_list(*site);
997 return site;
998 }
999
1000
NewMap(InstanceType type,int instance_size,ElementsKind elements_kind)1001 Handle<Map> Factory::NewMap(InstanceType type,
1002 int instance_size,
1003 ElementsKind elements_kind) {
1004 CALL_HEAP_FUNCTION(
1005 isolate(),
1006 isolate()->heap()->AllocateMap(type, instance_size, elements_kind),
1007 Map);
1008 }
1009
1010
CopyJSObject(Handle<JSObject> object)1011 Handle<JSObject> Factory::CopyJSObject(Handle<JSObject> object) {
1012 CALL_HEAP_FUNCTION(isolate(),
1013 isolate()->heap()->CopyJSObject(*object, NULL),
1014 JSObject);
1015 }
1016
1017
CopyJSObjectWithAllocationSite(Handle<JSObject> object,Handle<AllocationSite> site)1018 Handle<JSObject> Factory::CopyJSObjectWithAllocationSite(
1019 Handle<JSObject> object,
1020 Handle<AllocationSite> site) {
1021 CALL_HEAP_FUNCTION(isolate(),
1022 isolate()->heap()->CopyJSObject(
1023 *object,
1024 site.is_null() ? NULL : *site),
1025 JSObject);
1026 }
1027
1028
CopyFixedArrayWithMap(Handle<FixedArray> array,Handle<Map> map)1029 Handle<FixedArray> Factory::CopyFixedArrayWithMap(Handle<FixedArray> array,
1030 Handle<Map> map) {
1031 CALL_HEAP_FUNCTION(isolate(),
1032 isolate()->heap()->CopyFixedArrayWithMap(*array, *map),
1033 FixedArray);
1034 }
1035
1036
CopyFixedArrayAndGrow(Handle<FixedArray> array,int grow_by,PretenureFlag pretenure)1037 Handle<FixedArray> Factory::CopyFixedArrayAndGrow(Handle<FixedArray> array,
1038 int grow_by,
1039 PretenureFlag pretenure) {
1040 CALL_HEAP_FUNCTION(isolate(), isolate()->heap()->CopyFixedArrayAndGrow(
1041 *array, grow_by, pretenure),
1042 FixedArray);
1043 }
1044
1045
CopyFixedArray(Handle<FixedArray> array)1046 Handle<FixedArray> Factory::CopyFixedArray(Handle<FixedArray> array) {
1047 CALL_HEAP_FUNCTION(isolate(),
1048 isolate()->heap()->CopyFixedArray(*array),
1049 FixedArray);
1050 }
1051
1052
CopyAndTenureFixedCOWArray(Handle<FixedArray> array)1053 Handle<FixedArray> Factory::CopyAndTenureFixedCOWArray(
1054 Handle<FixedArray> array) {
1055 DCHECK(isolate()->heap()->InNewSpace(*array));
1056 CALL_HEAP_FUNCTION(isolate(),
1057 isolate()->heap()->CopyAndTenureFixedCOWArray(*array),
1058 FixedArray);
1059 }
1060
1061
CopyFixedDoubleArray(Handle<FixedDoubleArray> array)1062 Handle<FixedDoubleArray> Factory::CopyFixedDoubleArray(
1063 Handle<FixedDoubleArray> array) {
1064 CALL_HEAP_FUNCTION(isolate(),
1065 isolate()->heap()->CopyFixedDoubleArray(*array),
1066 FixedDoubleArray);
1067 }
1068
1069
NewNumber(double value,PretenureFlag pretenure)1070 Handle<Object> Factory::NewNumber(double value,
1071 PretenureFlag pretenure) {
1072 // We need to distinguish the minus zero value and this cannot be
1073 // done after conversion to int. Doing this by comparing bit
1074 // patterns is faster than using fpclassify() et al.
1075 if (IsMinusZero(value)) return NewHeapNumber(-0.0, IMMUTABLE, pretenure);
1076
1077 int int_value = FastD2IChecked(value);
1078 if (value == int_value && Smi::IsValid(int_value)) {
1079 return handle(Smi::FromInt(int_value), isolate());
1080 }
1081
1082 // Materialize the value in the heap.
1083 return NewHeapNumber(value, IMMUTABLE, pretenure);
1084 }
1085
1086
NewNumberFromInt(int32_t value,PretenureFlag pretenure)1087 Handle<Object> Factory::NewNumberFromInt(int32_t value,
1088 PretenureFlag pretenure) {
1089 if (Smi::IsValid(value)) return handle(Smi::FromInt(value), isolate());
1090 // Bypass NewNumber to avoid various redundant checks.
1091 return NewHeapNumber(FastI2D(value), IMMUTABLE, pretenure);
1092 }
1093
1094
NewNumberFromUint(uint32_t value,PretenureFlag pretenure)1095 Handle<Object> Factory::NewNumberFromUint(uint32_t value,
1096 PretenureFlag pretenure) {
1097 int32_t int32v = static_cast<int32_t>(value);
1098 if (int32v >= 0 && Smi::IsValid(int32v)) {
1099 return handle(Smi::FromInt(int32v), isolate());
1100 }
1101 return NewHeapNumber(FastUI2D(value), IMMUTABLE, pretenure);
1102 }
1103
1104
NewHeapNumber(double value,MutableMode mode,PretenureFlag pretenure)1105 Handle<HeapNumber> Factory::NewHeapNumber(double value,
1106 MutableMode mode,
1107 PretenureFlag pretenure) {
1108 CALL_HEAP_FUNCTION(
1109 isolate(),
1110 isolate()->heap()->AllocateHeapNumber(value, mode, pretenure),
1111 HeapNumber);
1112 }
1113
1114
1115 #define SIMD128_NEW_DEF(TYPE, Type, type, lane_count, lane_type) \
1116 Handle<Type> Factory::New##Type(lane_type lanes[lane_count], \
1117 PretenureFlag pretenure) { \
1118 CALL_HEAP_FUNCTION( \
1119 isolate(), isolate()->heap()->Allocate##Type(lanes, pretenure), Type); \
1120 }
SIMD128_TYPES(SIMD128_NEW_DEF)1121 SIMD128_TYPES(SIMD128_NEW_DEF)
1122 #undef SIMD128_NEW_DEF
1123
1124
1125 Handle<Object> Factory::NewError(Handle<JSFunction> constructor,
1126 MessageTemplate::Template template_index,
1127 Handle<Object> arg0, Handle<Object> arg1,
1128 Handle<Object> arg2) {
1129 HandleScope scope(isolate());
1130 if (isolate()->bootstrapper()->IsActive()) {
1131 // During bootstrapping we cannot construct error objects.
1132 return scope.CloseAndEscape(NewStringFromAsciiChecked(
1133 MessageTemplate::TemplateString(template_index)));
1134 }
1135
1136 Handle<JSFunction> fun = isolate()->make_error_function();
1137 Handle<Object> message_type(Smi::FromInt(template_index), isolate());
1138 if (arg0.is_null()) arg0 = undefined_value();
1139 if (arg1.is_null()) arg1 = undefined_value();
1140 if (arg2.is_null()) arg2 = undefined_value();
1141 Handle<Object> argv[] = {constructor, message_type, arg0, arg1, arg2};
1142
1143 // Invoke the JavaScript factory method. If an exception is thrown while
1144 // running the factory method, use the exception as the result.
1145 Handle<Object> result;
1146 MaybeHandle<Object> exception;
1147 if (!Execution::TryCall(isolate(), fun, undefined_value(), arraysize(argv),
1148 argv, &exception)
1149 .ToHandle(&result)) {
1150 Handle<Object> exception_obj;
1151 if (exception.ToHandle(&exception_obj)) {
1152 result = exception_obj;
1153 } else {
1154 result = undefined_value();
1155 }
1156 }
1157 return scope.CloseAndEscape(result);
1158 }
1159
1160
NewError(Handle<JSFunction> constructor,Handle<String> message)1161 Handle<Object> Factory::NewError(Handle<JSFunction> constructor,
1162 Handle<String> message) {
1163 Handle<Object> argv[] = { message };
1164
1165 // Invoke the JavaScript factory method. If an exception is thrown while
1166 // running the factory method, use the exception as the result.
1167 Handle<Object> result;
1168 MaybeHandle<Object> exception;
1169 if (!Execution::TryCall(isolate(), constructor, undefined_value(),
1170 arraysize(argv), argv, &exception)
1171 .ToHandle(&result)) {
1172 Handle<Object> exception_obj;
1173 if (exception.ToHandle(&exception_obj)) return exception_obj;
1174 return undefined_value();
1175 }
1176 return result;
1177 }
1178
1179
1180 #define DEFINE_ERROR(NAME, name) \
1181 Handle<Object> Factory::New##NAME(MessageTemplate::Template template_index, \
1182 Handle<Object> arg0, Handle<Object> arg1, \
1183 Handle<Object> arg2) { \
1184 return NewError(isolate()->name##_function(), template_index, arg0, arg1, \
1185 arg2); \
1186 }
DEFINE_ERROR(Error,error)1187 DEFINE_ERROR(Error, error)
1188 DEFINE_ERROR(EvalError, eval_error)
1189 DEFINE_ERROR(RangeError, range_error)
1190 DEFINE_ERROR(ReferenceError, reference_error)
1191 DEFINE_ERROR(SyntaxError, syntax_error)
1192 DEFINE_ERROR(TypeError, type_error)
1193 #undef DEFINE_ERROR
1194
1195
1196 Handle<JSFunction> Factory::NewFunction(Handle<Map> map,
1197 Handle<SharedFunctionInfo> info,
1198 Handle<Context> context,
1199 PretenureFlag pretenure) {
1200 AllocationSpace space = pretenure == TENURED ? OLD_SPACE : NEW_SPACE;
1201 Handle<JSFunction> function = New<JSFunction>(map, space);
1202
1203 function->initialize_properties();
1204 function->initialize_elements();
1205 function->set_shared(*info);
1206 function->set_code(info->code());
1207 function->set_context(*context);
1208 function->set_prototype_or_initial_map(*the_hole_value());
1209 function->set_literals(LiteralsArray::cast(*empty_fixed_array()));
1210 function->set_next_function_link(*undefined_value(), SKIP_WRITE_BARRIER);
1211 isolate()->heap()->InitializeJSObjectBody(*function, *map, JSFunction::kSize);
1212 return function;
1213 }
1214
1215
NewFunction(Handle<Map> map,Handle<String> name,MaybeHandle<Code> code)1216 Handle<JSFunction> Factory::NewFunction(Handle<Map> map,
1217 Handle<String> name,
1218 MaybeHandle<Code> code) {
1219 Handle<Context> context(isolate()->native_context());
1220 Handle<SharedFunctionInfo> info =
1221 NewSharedFunctionInfo(name, code, map->is_constructor());
1222 DCHECK(is_sloppy(info->language_mode()));
1223 DCHECK(!map->IsUndefined());
1224 DCHECK(
1225 map.is_identical_to(isolate()->sloppy_function_map()) ||
1226 map.is_identical_to(isolate()->sloppy_function_without_prototype_map()) ||
1227 map.is_identical_to(
1228 isolate()->sloppy_function_with_readonly_prototype_map()) ||
1229 map.is_identical_to(isolate()->strict_function_map()) ||
1230 // TODO(titzer): wasm_function_map() could be undefined here. ugly.
1231 (*map == context->get(Context::WASM_FUNCTION_MAP_INDEX)) ||
1232 map.is_identical_to(isolate()->proxy_function_map()));
1233 return NewFunction(map, info, context);
1234 }
1235
1236
NewFunction(Handle<String> name)1237 Handle<JSFunction> Factory::NewFunction(Handle<String> name) {
1238 return NewFunction(
1239 isolate()->sloppy_function_map(), name, MaybeHandle<Code>());
1240 }
1241
1242
NewFunctionWithoutPrototype(Handle<String> name,Handle<Code> code,bool is_strict)1243 Handle<JSFunction> Factory::NewFunctionWithoutPrototype(Handle<String> name,
1244 Handle<Code> code,
1245 bool is_strict) {
1246 Handle<Map> map = is_strict
1247 ? isolate()->strict_function_without_prototype_map()
1248 : isolate()->sloppy_function_without_prototype_map();
1249 return NewFunction(map, name, code);
1250 }
1251
1252
NewFunction(Handle<String> name,Handle<Code> code,Handle<Object> prototype,bool read_only_prototype,bool is_strict)1253 Handle<JSFunction> Factory::NewFunction(Handle<String> name, Handle<Code> code,
1254 Handle<Object> prototype,
1255 bool read_only_prototype,
1256 bool is_strict) {
1257 // In strict mode, readonly strict map is only available during bootstrap
1258 DCHECK(!is_strict || !read_only_prototype ||
1259 isolate()->bootstrapper()->IsActive());
1260 Handle<Map> map =
1261 is_strict ? isolate()->strict_function_map()
1262 : read_only_prototype
1263 ? isolate()->sloppy_function_with_readonly_prototype_map()
1264 : isolate()->sloppy_function_map();
1265 Handle<JSFunction> result = NewFunction(map, name, code);
1266 result->set_prototype_or_initial_map(*prototype);
1267 return result;
1268 }
1269
1270
NewFunction(Handle<String> name,Handle<Code> code,Handle<Object> prototype,InstanceType type,int instance_size,bool read_only_prototype,bool install_constructor,bool is_strict)1271 Handle<JSFunction> Factory::NewFunction(Handle<String> name, Handle<Code> code,
1272 Handle<Object> prototype,
1273 InstanceType type, int instance_size,
1274 bool read_only_prototype,
1275 bool install_constructor,
1276 bool is_strict) {
1277 // Allocate the function
1278 Handle<JSFunction> function =
1279 NewFunction(name, code, prototype, read_only_prototype, is_strict);
1280
1281 ElementsKind elements_kind =
1282 type == JS_ARRAY_TYPE ? FAST_SMI_ELEMENTS : FAST_HOLEY_SMI_ELEMENTS;
1283 Handle<Map> initial_map = NewMap(type, instance_size, elements_kind);
1284 if (!function->shared()->is_generator()) {
1285 if (prototype->IsTheHole()) {
1286 prototype = NewFunctionPrototype(function);
1287 } else if (install_constructor) {
1288 JSObject::AddProperty(Handle<JSObject>::cast(prototype),
1289 constructor_string(), function, DONT_ENUM);
1290 }
1291 }
1292
1293 JSFunction::SetInitialMap(function, initial_map,
1294 Handle<JSReceiver>::cast(prototype));
1295
1296 return function;
1297 }
1298
1299
NewFunction(Handle<String> name,Handle<Code> code,InstanceType type,int instance_size)1300 Handle<JSFunction> Factory::NewFunction(Handle<String> name,
1301 Handle<Code> code,
1302 InstanceType type,
1303 int instance_size) {
1304 return NewFunction(name, code, the_hole_value(), type, instance_size);
1305 }
1306
1307
NewFunctionPrototype(Handle<JSFunction> function)1308 Handle<JSObject> Factory::NewFunctionPrototype(Handle<JSFunction> function) {
1309 // Make sure to use globals from the function's context, since the function
1310 // can be from a different context.
1311 Handle<Context> native_context(function->context()->native_context());
1312 Handle<Map> new_map;
1313 if (function->shared()->is_generator()) {
1314 // Generator prototypes can share maps since they don't have "constructor"
1315 // properties.
1316 new_map = handle(native_context->generator_object_prototype_map());
1317 } else {
1318 // Each function prototype gets a fresh map to avoid unwanted sharing of
1319 // maps between prototypes of different constructors.
1320 Handle<JSFunction> object_function(native_context->object_function());
1321 DCHECK(object_function->has_initial_map());
1322 new_map = handle(object_function->initial_map());
1323 }
1324
1325 DCHECK(!new_map->is_prototype_map());
1326 Handle<JSObject> prototype = NewJSObjectFromMap(new_map);
1327
1328 if (!function->shared()->is_generator()) {
1329 JSObject::AddProperty(prototype, constructor_string(), function, DONT_ENUM);
1330 }
1331
1332 return prototype;
1333 }
1334
1335
NewFunctionFromSharedFunctionInfo(Handle<SharedFunctionInfo> info,Handle<Context> context,PretenureFlag pretenure)1336 Handle<JSFunction> Factory::NewFunctionFromSharedFunctionInfo(
1337 Handle<SharedFunctionInfo> info,
1338 Handle<Context> context,
1339 PretenureFlag pretenure) {
1340 int map_index =
1341 Context::FunctionMapIndex(info->language_mode(), info->kind());
1342 Handle<Map> initial_map(Map::cast(context->native_context()->get(map_index)));
1343
1344 return NewFunctionFromSharedFunctionInfo(initial_map, info, context,
1345 pretenure);
1346 }
1347
1348
NewFunctionFromSharedFunctionInfo(Handle<Map> initial_map,Handle<SharedFunctionInfo> info,Handle<Context> context,PretenureFlag pretenure)1349 Handle<JSFunction> Factory::NewFunctionFromSharedFunctionInfo(
1350 Handle<Map> initial_map, Handle<SharedFunctionInfo> info,
1351 Handle<Context> context, PretenureFlag pretenure) {
1352 DCHECK_EQ(JS_FUNCTION_TYPE, initial_map->instance_type());
1353 Handle<JSFunction> result =
1354 NewFunction(initial_map, info, context, pretenure);
1355
1356 if (info->ic_age() != isolate()->heap()->global_ic_age()) {
1357 info->ResetForNewContext(isolate()->heap()->global_ic_age());
1358 }
1359
1360 if (FLAG_always_opt && info->allows_lazy_compilation()) {
1361 result->MarkForOptimization();
1362 }
1363
1364 CodeAndLiterals cached = info->SearchOptimizedCodeMap(
1365 context->native_context(), BailoutId::None());
1366 if (cached.code != nullptr) {
1367 // Caching of optimized code enabled and optimized code found.
1368 DCHECK(!cached.code->marked_for_deoptimization());
1369 DCHECK(result->shared()->is_compiled());
1370 result->ReplaceCode(cached.code);
1371 }
1372
1373 if (cached.literals != nullptr) {
1374 result->set_literals(cached.literals);
1375 } else {
1376 int number_of_literals = info->num_literals();
1377 Handle<LiteralsArray> literals =
1378 LiteralsArray::New(isolate(), handle(info->feedback_vector()),
1379 number_of_literals, pretenure);
1380 result->set_literals(*literals);
1381
1382 // Cache context-specific literals.
1383 Handle<Context> native_context(context->native_context());
1384 SharedFunctionInfo::AddLiteralsToOptimizedCodeMap(info, native_context,
1385 literals);
1386 }
1387
1388 return result;
1389 }
1390
1391
NewScopeInfo(int length)1392 Handle<ScopeInfo> Factory::NewScopeInfo(int length) {
1393 Handle<FixedArray> array = NewFixedArray(length, TENURED);
1394 array->set_map_no_write_barrier(*scope_info_map());
1395 Handle<ScopeInfo> scope_info = Handle<ScopeInfo>::cast(array);
1396 return scope_info;
1397 }
1398
1399
NewExternal(void * value)1400 Handle<JSObject> Factory::NewExternal(void* value) {
1401 Handle<Foreign> foreign = NewForeign(static_cast<Address>(value));
1402 Handle<JSObject> external = NewJSObjectFromMap(external_map());
1403 external->SetInternalField(0, *foreign);
1404 return external;
1405 }
1406
1407
NewCodeRaw(int object_size,bool immovable)1408 Handle<Code> Factory::NewCodeRaw(int object_size, bool immovable) {
1409 CALL_HEAP_FUNCTION(isolate(),
1410 isolate()->heap()->AllocateCode(object_size, immovable),
1411 Code);
1412 }
1413
1414
NewCode(const CodeDesc & desc,Code::Flags flags,Handle<Object> self_ref,bool immovable,bool crankshafted,int prologue_offset,bool is_debug)1415 Handle<Code> Factory::NewCode(const CodeDesc& desc,
1416 Code::Flags flags,
1417 Handle<Object> self_ref,
1418 bool immovable,
1419 bool crankshafted,
1420 int prologue_offset,
1421 bool is_debug) {
1422 Handle<ByteArray> reloc_info = NewByteArray(desc.reloc_size, TENURED);
1423
1424 // Compute size.
1425 int body_size = RoundUp(desc.instr_size, kObjectAlignment);
1426 int obj_size = Code::SizeFor(body_size);
1427
1428 Handle<Code> code = NewCodeRaw(obj_size, immovable);
1429 DCHECK(isolate()->code_range() == NULL || !isolate()->code_range()->valid() ||
1430 isolate()->code_range()->contains(code->address()) ||
1431 obj_size <= isolate()->heap()->code_space()->AreaSize());
1432
1433 // The code object has not been fully initialized yet. We rely on the
1434 // fact that no allocation will happen from this point on.
1435 DisallowHeapAllocation no_gc;
1436 code->set_gc_metadata(Smi::FromInt(0));
1437 code->set_ic_age(isolate()->heap()->global_ic_age());
1438 code->set_instruction_size(desc.instr_size);
1439 code->set_relocation_info(*reloc_info);
1440 code->set_flags(flags);
1441 code->set_raw_kind_specific_flags1(0);
1442 code->set_raw_kind_specific_flags2(0);
1443 code->set_is_crankshafted(crankshafted);
1444 code->set_deoptimization_data(*empty_fixed_array(), SKIP_WRITE_BARRIER);
1445 code->set_raw_type_feedback_info(Smi::FromInt(0));
1446 code->set_next_code_link(*undefined_value());
1447 code->set_handler_table(*empty_fixed_array(), SKIP_WRITE_BARRIER);
1448 code->set_prologue_offset(prologue_offset);
1449 code->set_constant_pool_offset(desc.instr_size - desc.constant_pool_size);
1450
1451 if (code->kind() == Code::OPTIMIZED_FUNCTION) {
1452 code->set_marked_for_deoptimization(false);
1453 }
1454
1455 if (is_debug) {
1456 DCHECK(code->kind() == Code::FUNCTION);
1457 code->set_has_debug_break_slots(true);
1458 }
1459
1460 // Allow self references to created code object by patching the handle to
1461 // point to the newly allocated Code object.
1462 if (!self_ref.is_null()) *(self_ref.location()) = *code;
1463
1464 // Migrate generated code.
1465 // The generated code can contain Object** values (typically from handles)
1466 // that are dereferenced during the copy to point directly to the actual heap
1467 // objects. These pointers can include references to the code object itself,
1468 // through the self_reference parameter.
1469 code->CopyFrom(desc);
1470
1471 #ifdef VERIFY_HEAP
1472 if (FLAG_verify_heap) code->ObjectVerify();
1473 #endif
1474 return code;
1475 }
1476
1477
CopyCode(Handle<Code> code)1478 Handle<Code> Factory::CopyCode(Handle<Code> code) {
1479 CALL_HEAP_FUNCTION(isolate(),
1480 isolate()->heap()->CopyCode(*code),
1481 Code);
1482 }
1483
1484
CopyCode(Handle<Code> code,Vector<byte> reloc_info)1485 Handle<Code> Factory::CopyCode(Handle<Code> code, Vector<byte> reloc_info) {
1486 CALL_HEAP_FUNCTION(isolate(),
1487 isolate()->heap()->CopyCode(*code, reloc_info),
1488 Code);
1489 }
1490
1491
NewJSObject(Handle<JSFunction> constructor,PretenureFlag pretenure)1492 Handle<JSObject> Factory::NewJSObject(Handle<JSFunction> constructor,
1493 PretenureFlag pretenure) {
1494 JSFunction::EnsureHasInitialMap(constructor);
1495 CALL_HEAP_FUNCTION(
1496 isolate(),
1497 isolate()->heap()->AllocateJSObject(*constructor, pretenure), JSObject);
1498 }
1499
1500
NewJSObjectWithMemento(Handle<JSFunction> constructor,Handle<AllocationSite> site)1501 Handle<JSObject> Factory::NewJSObjectWithMemento(
1502 Handle<JSFunction> constructor,
1503 Handle<AllocationSite> site) {
1504 JSFunction::EnsureHasInitialMap(constructor);
1505 CALL_HEAP_FUNCTION(
1506 isolate(),
1507 isolate()->heap()->AllocateJSObject(*constructor, NOT_TENURED, *site),
1508 JSObject);
1509 }
1510
1511
NewJSModule(Handle<Context> context,Handle<ScopeInfo> scope_info)1512 Handle<JSModule> Factory::NewJSModule(Handle<Context> context,
1513 Handle<ScopeInfo> scope_info) {
1514 // Allocate a fresh map. Modules do not have a prototype.
1515 Handle<Map> map = NewMap(JS_MODULE_TYPE, JSModule::kSize);
1516 // Allocate the object based on the map.
1517 Handle<JSModule> module =
1518 Handle<JSModule>::cast(NewJSObjectFromMap(map, TENURED));
1519 module->set_context(*context);
1520 module->set_scope_info(*scope_info);
1521 return module;
1522 }
1523
1524
NewJSGlobalObject(Handle<JSFunction> constructor)1525 Handle<JSGlobalObject> Factory::NewJSGlobalObject(
1526 Handle<JSFunction> constructor) {
1527 DCHECK(constructor->has_initial_map());
1528 Handle<Map> map(constructor->initial_map());
1529 DCHECK(map->is_dictionary_map());
1530
1531 // Make sure no field properties are described in the initial map.
1532 // This guarantees us that normalizing the properties does not
1533 // require us to change property values to PropertyCells.
1534 DCHECK(map->NextFreePropertyIndex() == 0);
1535
1536 // Make sure we don't have a ton of pre-allocated slots in the
1537 // global objects. They will be unused once we normalize the object.
1538 DCHECK(map->unused_property_fields() == 0);
1539 DCHECK(map->GetInObjectProperties() == 0);
1540
1541 // Initial size of the backing store to avoid resize of the storage during
1542 // bootstrapping. The size differs between the JS global object ad the
1543 // builtins object.
1544 int initial_size = 64;
1545
1546 // Allocate a dictionary object for backing storage.
1547 int at_least_space_for = map->NumberOfOwnDescriptors() * 2 + initial_size;
1548 Handle<GlobalDictionary> dictionary =
1549 GlobalDictionary::New(isolate(), at_least_space_for);
1550
1551 // The global object might be created from an object template with accessors.
1552 // Fill these accessors into the dictionary.
1553 Handle<DescriptorArray> descs(map->instance_descriptors());
1554 for (int i = 0; i < map->NumberOfOwnDescriptors(); i++) {
1555 PropertyDetails details = descs->GetDetails(i);
1556 // Only accessors are expected.
1557 DCHECK_EQ(ACCESSOR_CONSTANT, details.type());
1558 PropertyDetails d(details.attributes(), ACCESSOR_CONSTANT, i + 1,
1559 PropertyCellType::kMutable);
1560 Handle<Name> name(descs->GetKey(i));
1561 Handle<PropertyCell> cell = NewPropertyCell();
1562 cell->set_value(descs->GetCallbacksObject(i));
1563 // |dictionary| already contains enough space for all properties.
1564 USE(GlobalDictionary::Add(dictionary, name, cell, d));
1565 }
1566
1567 // Allocate the global object and initialize it with the backing store.
1568 Handle<JSGlobalObject> global = New<JSGlobalObject>(map, OLD_SPACE);
1569 isolate()->heap()->InitializeJSObjectFromMap(*global, *dictionary, *map);
1570
1571 // Create a new map for the global object.
1572 Handle<Map> new_map = Map::CopyDropDescriptors(map);
1573 new_map->set_dictionary_map(true);
1574
1575 // Set up the global object as a normalized object.
1576 global->set_map(*new_map);
1577 global->set_properties(*dictionary);
1578
1579 // Make sure result is a global object with properties in dictionary.
1580 DCHECK(global->IsJSGlobalObject() && !global->HasFastProperties());
1581 return global;
1582 }
1583
1584
NewJSObjectFromMap(Handle<Map> map,PretenureFlag pretenure,Handle<AllocationSite> allocation_site)1585 Handle<JSObject> Factory::NewJSObjectFromMap(
1586 Handle<Map> map,
1587 PretenureFlag pretenure,
1588 Handle<AllocationSite> allocation_site) {
1589 CALL_HEAP_FUNCTION(
1590 isolate(),
1591 isolate()->heap()->AllocateJSObjectFromMap(
1592 *map,
1593 pretenure,
1594 allocation_site.is_null() ? NULL : *allocation_site),
1595 JSObject);
1596 }
1597
1598
NewJSArray(ElementsKind elements_kind,Strength strength,PretenureFlag pretenure)1599 Handle<JSArray> Factory::NewJSArray(ElementsKind elements_kind,
1600 Strength strength,
1601 PretenureFlag pretenure) {
1602 Map* map = isolate()->get_initial_js_array_map(elements_kind, strength);
1603 if (map == nullptr) {
1604 DCHECK(strength == Strength::WEAK);
1605 Context* native_context = isolate()->context()->native_context();
1606 JSFunction* array_function = native_context->array_function();
1607 map = array_function->initial_map();
1608 }
1609 return Handle<JSArray>::cast(NewJSObjectFromMap(handle(map), pretenure));
1610 }
1611
1612
NewJSArray(ElementsKind elements_kind,int length,int capacity,Strength strength,ArrayStorageAllocationMode mode,PretenureFlag pretenure)1613 Handle<JSArray> Factory::NewJSArray(ElementsKind elements_kind, int length,
1614 int capacity, Strength strength,
1615 ArrayStorageAllocationMode mode,
1616 PretenureFlag pretenure) {
1617 Handle<JSArray> array = NewJSArray(elements_kind, strength, pretenure);
1618 NewJSArrayStorage(array, length, capacity, mode);
1619 return array;
1620 }
1621
1622
NewJSArrayWithElements(Handle<FixedArrayBase> elements,ElementsKind elements_kind,int length,Strength strength,PretenureFlag pretenure)1623 Handle<JSArray> Factory::NewJSArrayWithElements(Handle<FixedArrayBase> elements,
1624 ElementsKind elements_kind,
1625 int length, Strength strength,
1626 PretenureFlag pretenure) {
1627 DCHECK(length <= elements->length());
1628 Handle<JSArray> array = NewJSArray(elements_kind, strength, pretenure);
1629
1630 array->set_elements(*elements);
1631 array->set_length(Smi::FromInt(length));
1632 JSObject::ValidateElements(array);
1633 return array;
1634 }
1635
1636
NewJSArrayStorage(Handle<JSArray> array,int length,int capacity,ArrayStorageAllocationMode mode)1637 void Factory::NewJSArrayStorage(Handle<JSArray> array,
1638 int length,
1639 int capacity,
1640 ArrayStorageAllocationMode mode) {
1641 DCHECK(capacity >= length);
1642
1643 if (capacity == 0) {
1644 array->set_length(Smi::FromInt(0));
1645 array->set_elements(*empty_fixed_array());
1646 return;
1647 }
1648
1649 HandleScope inner_scope(isolate());
1650 Handle<FixedArrayBase> elms;
1651 ElementsKind elements_kind = array->GetElementsKind();
1652 if (IsFastDoubleElementsKind(elements_kind)) {
1653 if (mode == DONT_INITIALIZE_ARRAY_ELEMENTS) {
1654 elms = NewFixedDoubleArray(capacity);
1655 } else {
1656 DCHECK(mode == INITIALIZE_ARRAY_ELEMENTS_WITH_HOLE);
1657 elms = NewFixedDoubleArrayWithHoles(capacity);
1658 }
1659 } else {
1660 DCHECK(IsFastSmiOrObjectElementsKind(elements_kind));
1661 if (mode == DONT_INITIALIZE_ARRAY_ELEMENTS) {
1662 elms = NewUninitializedFixedArray(capacity);
1663 } else {
1664 DCHECK(mode == INITIALIZE_ARRAY_ELEMENTS_WITH_HOLE);
1665 elms = NewFixedArrayWithHoles(capacity);
1666 }
1667 }
1668
1669 array->set_elements(*elms);
1670 array->set_length(Smi::FromInt(length));
1671 }
1672
1673
NewJSGeneratorObject(Handle<JSFunction> function)1674 Handle<JSGeneratorObject> Factory::NewJSGeneratorObject(
1675 Handle<JSFunction> function) {
1676 DCHECK(function->shared()->is_generator());
1677 JSFunction::EnsureHasInitialMap(function);
1678 Handle<Map> map(function->initial_map());
1679 DCHECK_EQ(JS_GENERATOR_OBJECT_TYPE, map->instance_type());
1680 CALL_HEAP_FUNCTION(
1681 isolate(),
1682 isolate()->heap()->AllocateJSObjectFromMap(*map),
1683 JSGeneratorObject);
1684 }
1685
1686
NewJSArrayBuffer(SharedFlag shared,PretenureFlag pretenure)1687 Handle<JSArrayBuffer> Factory::NewJSArrayBuffer(SharedFlag shared,
1688 PretenureFlag pretenure) {
1689 Handle<JSFunction> array_buffer_fun(
1690 shared == SharedFlag::kShared
1691 ? isolate()->native_context()->shared_array_buffer_fun()
1692 : isolate()->native_context()->array_buffer_fun());
1693 CALL_HEAP_FUNCTION(isolate(), isolate()->heap()->AllocateJSObject(
1694 *array_buffer_fun, pretenure),
1695 JSArrayBuffer);
1696 }
1697
1698
NewJSDataView()1699 Handle<JSDataView> Factory::NewJSDataView() {
1700 Handle<JSFunction> data_view_fun(
1701 isolate()->native_context()->data_view_fun());
1702 CALL_HEAP_FUNCTION(
1703 isolate(),
1704 isolate()->heap()->AllocateJSObject(*data_view_fun),
1705 JSDataView);
1706 }
1707
1708
NewJSMap()1709 Handle<JSMap> Factory::NewJSMap() {
1710 Handle<Map> map(isolate()->native_context()->js_map_map());
1711 Handle<JSMap> js_map = Handle<JSMap>::cast(NewJSObjectFromMap(map));
1712 JSMap::Initialize(js_map, isolate());
1713 return js_map;
1714 }
1715
1716
NewJSSet()1717 Handle<JSSet> Factory::NewJSSet() {
1718 Handle<Map> map(isolate()->native_context()->js_set_map());
1719 Handle<JSSet> js_set = Handle<JSSet>::cast(NewJSObjectFromMap(map));
1720 JSSet::Initialize(js_set, isolate());
1721 return js_set;
1722 }
1723
1724
NewJSMapIterator()1725 Handle<JSMapIterator> Factory::NewJSMapIterator() {
1726 Handle<Map> map(isolate()->native_context()->map_iterator_map());
1727 CALL_HEAP_FUNCTION(isolate(),
1728 isolate()->heap()->AllocateJSObjectFromMap(*map),
1729 JSMapIterator);
1730 }
1731
1732
NewJSSetIterator()1733 Handle<JSSetIterator> Factory::NewJSSetIterator() {
1734 Handle<Map> map(isolate()->native_context()->set_iterator_map());
1735 CALL_HEAP_FUNCTION(isolate(),
1736 isolate()->heap()->AllocateJSObjectFromMap(*map),
1737 JSSetIterator);
1738 }
1739
1740
NewJSIteratorResult(Handle<Object> value,Handle<Object> done)1741 Handle<JSIteratorResult> Factory::NewJSIteratorResult(Handle<Object> value,
1742 Handle<Object> done) {
1743 Handle<JSIteratorResult> result = Handle<JSIteratorResult>::cast(
1744 NewJSObjectFromMap(isolate()->iterator_result_map()));
1745 result->set_value(*value);
1746 result->set_done(*done);
1747 return result;
1748 }
1749
1750
1751 namespace {
1752
GetExternalArrayElementsKind(ExternalArrayType type)1753 ElementsKind GetExternalArrayElementsKind(ExternalArrayType type) {
1754 switch (type) {
1755 #define TYPED_ARRAY_CASE(Type, type, TYPE, ctype, size) \
1756 case kExternal##Type##Array: \
1757 return TYPE##_ELEMENTS;
1758 TYPED_ARRAYS(TYPED_ARRAY_CASE)
1759 }
1760 UNREACHABLE();
1761 return FIRST_FIXED_TYPED_ARRAY_ELEMENTS_KIND;
1762 #undef TYPED_ARRAY_CASE
1763 }
1764
1765
GetExternalArrayElementSize(ExternalArrayType type)1766 size_t GetExternalArrayElementSize(ExternalArrayType type) {
1767 switch (type) {
1768 #define TYPED_ARRAY_CASE(Type, type, TYPE, ctype, size) \
1769 case kExternal##Type##Array: \
1770 return size;
1771 TYPED_ARRAYS(TYPED_ARRAY_CASE)
1772 default:
1773 UNREACHABLE();
1774 return 0;
1775 }
1776 #undef TYPED_ARRAY_CASE
1777 }
1778
1779
GetFixedTypedArraysElementSize(ElementsKind kind)1780 size_t GetFixedTypedArraysElementSize(ElementsKind kind) {
1781 switch (kind) {
1782 #define TYPED_ARRAY_CASE(Type, type, TYPE, ctype, size) \
1783 case TYPE##_ELEMENTS: \
1784 return size;
1785 TYPED_ARRAYS(TYPED_ARRAY_CASE)
1786 default:
1787 UNREACHABLE();
1788 return 0;
1789 }
1790 #undef TYPED_ARRAY_CASE
1791 }
1792
1793
GetArrayTypeFromElementsKind(ElementsKind kind)1794 ExternalArrayType GetArrayTypeFromElementsKind(ElementsKind kind) {
1795 switch (kind) {
1796 #define TYPED_ARRAY_CASE(Type, type, TYPE, ctype, size) \
1797 case TYPE##_ELEMENTS: \
1798 return kExternal##Type##Array;
1799 TYPED_ARRAYS(TYPED_ARRAY_CASE)
1800 default:
1801 UNREACHABLE();
1802 return kExternalInt8Array;
1803 }
1804 #undef TYPED_ARRAY_CASE
1805 }
1806
1807
GetTypedArrayFun(ExternalArrayType type,Isolate * isolate)1808 JSFunction* GetTypedArrayFun(ExternalArrayType type, Isolate* isolate) {
1809 Context* native_context = isolate->context()->native_context();
1810 switch (type) {
1811 #define TYPED_ARRAY_FUN(Type, type, TYPE, ctype, size) \
1812 case kExternal##Type##Array: \
1813 return native_context->type##_array_fun();
1814
1815 TYPED_ARRAYS(TYPED_ARRAY_FUN)
1816 #undef TYPED_ARRAY_FUN
1817
1818 default:
1819 UNREACHABLE();
1820 return NULL;
1821 }
1822 }
1823
1824
GetTypedArrayFun(ElementsKind elements_kind,Isolate * isolate)1825 JSFunction* GetTypedArrayFun(ElementsKind elements_kind, Isolate* isolate) {
1826 Context* native_context = isolate->context()->native_context();
1827 switch (elements_kind) {
1828 #define TYPED_ARRAY_FUN(Type, type, TYPE, ctype, size) \
1829 case TYPE##_ELEMENTS: \
1830 return native_context->type##_array_fun();
1831
1832 TYPED_ARRAYS(TYPED_ARRAY_FUN)
1833 #undef TYPED_ARRAY_FUN
1834
1835 default:
1836 UNREACHABLE();
1837 return NULL;
1838 }
1839 }
1840
1841
SetupArrayBufferView(i::Isolate * isolate,i::Handle<i::JSArrayBufferView> obj,i::Handle<i::JSArrayBuffer> buffer,size_t byte_offset,size_t byte_length,PretenureFlag pretenure=NOT_TENURED)1842 void SetupArrayBufferView(i::Isolate* isolate,
1843 i::Handle<i::JSArrayBufferView> obj,
1844 i::Handle<i::JSArrayBuffer> buffer,
1845 size_t byte_offset, size_t byte_length,
1846 PretenureFlag pretenure = NOT_TENURED) {
1847 DCHECK(byte_offset + byte_length <=
1848 static_cast<size_t>(buffer->byte_length()->Number()));
1849
1850 obj->set_buffer(*buffer);
1851
1852 i::Handle<i::Object> byte_offset_object =
1853 isolate->factory()->NewNumberFromSize(byte_offset, pretenure);
1854 obj->set_byte_offset(*byte_offset_object);
1855
1856 i::Handle<i::Object> byte_length_object =
1857 isolate->factory()->NewNumberFromSize(byte_length, pretenure);
1858 obj->set_byte_length(*byte_length_object);
1859 }
1860
1861
1862 } // namespace
1863
1864
NewJSTypedArray(ExternalArrayType type,PretenureFlag pretenure)1865 Handle<JSTypedArray> Factory::NewJSTypedArray(ExternalArrayType type,
1866 PretenureFlag pretenure) {
1867 Handle<JSFunction> typed_array_fun_handle(GetTypedArrayFun(type, isolate()));
1868
1869 CALL_HEAP_FUNCTION(isolate(), isolate()->heap()->AllocateJSObject(
1870 *typed_array_fun_handle, pretenure),
1871 JSTypedArray);
1872 }
1873
1874
NewJSTypedArray(ElementsKind elements_kind,PretenureFlag pretenure)1875 Handle<JSTypedArray> Factory::NewJSTypedArray(ElementsKind elements_kind,
1876 PretenureFlag pretenure) {
1877 Handle<JSFunction> typed_array_fun_handle(
1878 GetTypedArrayFun(elements_kind, isolate()));
1879
1880 CALL_HEAP_FUNCTION(isolate(), isolate()->heap()->AllocateJSObject(
1881 *typed_array_fun_handle, pretenure),
1882 JSTypedArray);
1883 }
1884
1885
NewJSTypedArray(ExternalArrayType type,Handle<JSArrayBuffer> buffer,size_t byte_offset,size_t length,PretenureFlag pretenure)1886 Handle<JSTypedArray> Factory::NewJSTypedArray(ExternalArrayType type,
1887 Handle<JSArrayBuffer> buffer,
1888 size_t byte_offset, size_t length,
1889 PretenureFlag pretenure) {
1890 Handle<JSTypedArray> obj = NewJSTypedArray(type, pretenure);
1891
1892 size_t element_size = GetExternalArrayElementSize(type);
1893 ElementsKind elements_kind = GetExternalArrayElementsKind(type);
1894
1895 CHECK(byte_offset % element_size == 0);
1896
1897 CHECK(length <= (std::numeric_limits<size_t>::max() / element_size));
1898 CHECK(length <= static_cast<size_t>(Smi::kMaxValue));
1899 size_t byte_length = length * element_size;
1900 SetupArrayBufferView(isolate(), obj, buffer, byte_offset, byte_length,
1901 pretenure);
1902
1903 Handle<Object> length_object = NewNumberFromSize(length, pretenure);
1904 obj->set_length(*length_object);
1905
1906 Handle<FixedTypedArrayBase> elements = NewFixedTypedArrayWithExternalPointer(
1907 static_cast<int>(length), type,
1908 static_cast<uint8_t*>(buffer->backing_store()) + byte_offset, pretenure);
1909 Handle<Map> map = JSObject::GetElementsTransitionMap(obj, elements_kind);
1910 JSObject::SetMapAndElements(obj, map, elements);
1911 return obj;
1912 }
1913
1914
NewJSTypedArray(ElementsKind elements_kind,size_t number_of_elements,PretenureFlag pretenure)1915 Handle<JSTypedArray> Factory::NewJSTypedArray(ElementsKind elements_kind,
1916 size_t number_of_elements,
1917 PretenureFlag pretenure) {
1918 Handle<JSTypedArray> obj = NewJSTypedArray(elements_kind, pretenure);
1919
1920 size_t element_size = GetFixedTypedArraysElementSize(elements_kind);
1921 ExternalArrayType array_type = GetArrayTypeFromElementsKind(elements_kind);
1922
1923 CHECK(number_of_elements <=
1924 (std::numeric_limits<size_t>::max() / element_size));
1925 CHECK(number_of_elements <= static_cast<size_t>(Smi::kMaxValue));
1926 size_t byte_length = number_of_elements * element_size;
1927
1928 obj->set_byte_offset(Smi::FromInt(0));
1929 i::Handle<i::Object> byte_length_object =
1930 NewNumberFromSize(byte_length, pretenure);
1931 obj->set_byte_length(*byte_length_object);
1932 Handle<Object> length_object =
1933 NewNumberFromSize(number_of_elements, pretenure);
1934 obj->set_length(*length_object);
1935
1936 Handle<JSArrayBuffer> buffer =
1937 NewJSArrayBuffer(SharedFlag::kNotShared, pretenure);
1938 JSArrayBuffer::Setup(buffer, isolate(), true, NULL, byte_length,
1939 SharedFlag::kNotShared);
1940 obj->set_buffer(*buffer);
1941 Handle<FixedTypedArrayBase> elements = NewFixedTypedArray(
1942 static_cast<int>(number_of_elements), array_type, true, pretenure);
1943 obj->set_elements(*elements);
1944 return obj;
1945 }
1946
1947
NewJSDataView(Handle<JSArrayBuffer> buffer,size_t byte_offset,size_t byte_length)1948 Handle<JSDataView> Factory::NewJSDataView(Handle<JSArrayBuffer> buffer,
1949 size_t byte_offset,
1950 size_t byte_length) {
1951 Handle<JSDataView> obj = NewJSDataView();
1952 SetupArrayBufferView(isolate(), obj, buffer, byte_offset, byte_length);
1953 return obj;
1954 }
1955
1956
NewJSBoundFunction(Handle<JSReceiver> target_function,Handle<Object> bound_this,Vector<Handle<Object>> bound_args)1957 MaybeHandle<JSBoundFunction> Factory::NewJSBoundFunction(
1958 Handle<JSReceiver> target_function, Handle<Object> bound_this,
1959 Vector<Handle<Object>> bound_args) {
1960 DCHECK(target_function->IsCallable());
1961 STATIC_ASSERT(Code::kMaxArguments <= FixedArray::kMaxLength);
1962 if (bound_args.length() >= Code::kMaxArguments) {
1963 THROW_NEW_ERROR(isolate(),
1964 NewRangeError(MessageTemplate::kTooManyArguments),
1965 JSBoundFunction);
1966 }
1967
1968 // Determine the prototype of the {target_function}.
1969 Handle<Object> prototype;
1970 ASSIGN_RETURN_ON_EXCEPTION(isolate(), prototype,
1971 Object::GetPrototype(isolate(), target_function),
1972 JSBoundFunction);
1973
1974 // Create the [[BoundArguments]] for the result.
1975 Handle<FixedArray> bound_arguments;
1976 if (bound_args.length() == 0) {
1977 bound_arguments = empty_fixed_array();
1978 } else {
1979 bound_arguments = NewFixedArray(bound_args.length());
1980 for (int i = 0; i < bound_args.length(); ++i) {
1981 bound_arguments->set(i, *bound_args[i]);
1982 }
1983 }
1984
1985 // Setup the map for the JSBoundFunction instance.
1986 Handle<Map> map = handle(
1987 target_function->IsConstructor()
1988 ? isolate()->native_context()->bound_function_with_constructor_map()
1989 : isolate()
1990 ->native_context()
1991 ->bound_function_without_constructor_map(),
1992 isolate());
1993 if (map->prototype() != *prototype) {
1994 map = Map::TransitionToPrototype(map, prototype, REGULAR_PROTOTYPE);
1995 }
1996 DCHECK_EQ(target_function->IsConstructor(), map->is_constructor());
1997
1998 // Setup the JSBoundFunction instance.
1999 Handle<JSBoundFunction> result =
2000 Handle<JSBoundFunction>::cast(NewJSObjectFromMap(map));
2001 result->set_bound_target_function(*target_function);
2002 result->set_bound_this(*bound_this);
2003 result->set_bound_arguments(*bound_arguments);
2004 result->set_creation_context(*isolate()->native_context());
2005 result->set_length(Smi::FromInt(0));
2006 result->set_name(*undefined_value(), SKIP_WRITE_BARRIER);
2007 return result;
2008 }
2009
2010
2011 // ES6 section 9.5.15 ProxyCreate (target, handler)
NewJSProxy(Handle<JSReceiver> target,Handle<JSReceiver> handler)2012 Handle<JSProxy> Factory::NewJSProxy(Handle<JSReceiver> target,
2013 Handle<JSReceiver> handler) {
2014 // Allocate the proxy object.
2015 Handle<Map> map;
2016 if (target->IsCallable()) {
2017 if (target->IsConstructor()) {
2018 map = Handle<Map>(isolate()->proxy_constructor_map());
2019 } else {
2020 map = Handle<Map>(isolate()->proxy_callable_map());
2021 }
2022 } else {
2023 map = Handle<Map>(isolate()->proxy_map());
2024 }
2025 DCHECK(map->prototype()->IsNull());
2026 Handle<JSProxy> result = New<JSProxy>(map, NEW_SPACE);
2027 result->initialize_properties();
2028 result->set_target(*target);
2029 result->set_handler(*handler);
2030 result->set_hash(*undefined_value(), SKIP_WRITE_BARRIER);
2031 return result;
2032 }
2033
2034
NewUninitializedJSGlobalProxy()2035 Handle<JSGlobalProxy> Factory::NewUninitializedJSGlobalProxy() {
2036 // Create an empty shell of a JSGlobalProxy that needs to be reinitialized
2037 // via ReinitializeJSGlobalProxy later.
2038 Handle<Map> map = NewMap(JS_GLOBAL_PROXY_TYPE, JSGlobalProxy::kSize);
2039 // Maintain invariant expected from any JSGlobalProxy.
2040 map->set_is_access_check_needed(true);
2041 CALL_HEAP_FUNCTION(
2042 isolate(), isolate()->heap()->AllocateJSObjectFromMap(*map, NOT_TENURED),
2043 JSGlobalProxy);
2044 }
2045
2046
ReinitializeJSGlobalProxy(Handle<JSGlobalProxy> object,Handle<JSFunction> constructor)2047 void Factory::ReinitializeJSGlobalProxy(Handle<JSGlobalProxy> object,
2048 Handle<JSFunction> constructor) {
2049 DCHECK(constructor->has_initial_map());
2050 Handle<Map> map(constructor->initial_map(), isolate());
2051 Handle<Map> old_map(object->map(), isolate());
2052
2053 // The proxy's hash should be retained across reinitialization.
2054 Handle<Object> hash(object->hash(), isolate());
2055
2056 JSObject::InvalidatePrototypeChains(*old_map);
2057 if (old_map->is_prototype_map()) {
2058 map = Map::Copy(map, "CopyAsPrototypeForJSGlobalProxy");
2059 map->set_is_prototype_map(true);
2060 }
2061 JSObject::UpdatePrototypeUserRegistration(old_map, map, isolate());
2062
2063 // Check that the already allocated object has the same size and type as
2064 // objects allocated using the constructor.
2065 DCHECK(map->instance_size() == old_map->instance_size());
2066 DCHECK(map->instance_type() == old_map->instance_type());
2067
2068 // Allocate the backing storage for the properties.
2069 Handle<FixedArray> properties = empty_fixed_array();
2070
2071 // In order to keep heap in consistent state there must be no allocations
2072 // before object re-initialization is finished.
2073 DisallowHeapAllocation no_allocation;
2074
2075 // Reset the map for the object.
2076 object->synchronized_set_map(*map);
2077
2078 Heap* heap = isolate()->heap();
2079 // Reinitialize the object from the constructor map.
2080 heap->InitializeJSObjectFromMap(*object, *properties, *map);
2081
2082 // Restore the saved hash.
2083 object->set_hash(*hash);
2084 }
2085
2086
NewSharedFunctionInfo(Handle<String> name,int number_of_literals,FunctionKind kind,Handle<Code> code,Handle<ScopeInfo> scope_info,Handle<TypeFeedbackVector> feedback_vector)2087 Handle<SharedFunctionInfo> Factory::NewSharedFunctionInfo(
2088 Handle<String> name, int number_of_literals, FunctionKind kind,
2089 Handle<Code> code, Handle<ScopeInfo> scope_info,
2090 Handle<TypeFeedbackVector> feedback_vector) {
2091 DCHECK(IsValidFunctionKind(kind));
2092 Handle<SharedFunctionInfo> shared = NewSharedFunctionInfo(
2093 name, code, IsConstructable(kind, scope_info->language_mode()));
2094 shared->set_scope_info(*scope_info);
2095 shared->set_feedback_vector(*feedback_vector);
2096 shared->set_kind(kind);
2097 shared->set_num_literals(number_of_literals);
2098 if (IsGeneratorFunction(kind)) {
2099 shared->set_instance_class_name(isolate()->heap()->Generator_string());
2100 shared->DisableOptimization(kGenerator);
2101 }
2102 return shared;
2103 }
2104
2105
NewJSMessageObject(MessageTemplate::Template message,Handle<Object> argument,int start_position,int end_position,Handle<Object> script,Handle<Object> stack_frames)2106 Handle<JSMessageObject> Factory::NewJSMessageObject(
2107 MessageTemplate::Template message, Handle<Object> argument,
2108 int start_position, int end_position, Handle<Object> script,
2109 Handle<Object> stack_frames) {
2110 Handle<Map> map = message_object_map();
2111 Handle<JSMessageObject> message_obj = New<JSMessageObject>(map, NEW_SPACE);
2112 message_obj->set_properties(*empty_fixed_array(), SKIP_WRITE_BARRIER);
2113 message_obj->initialize_elements();
2114 message_obj->set_elements(*empty_fixed_array(), SKIP_WRITE_BARRIER);
2115 message_obj->set_type(message);
2116 message_obj->set_argument(*argument);
2117 message_obj->set_start_position(start_position);
2118 message_obj->set_end_position(end_position);
2119 message_obj->set_script(*script);
2120 message_obj->set_stack_frames(*stack_frames);
2121 return message_obj;
2122 }
2123
2124
NewSharedFunctionInfo(Handle<String> name,MaybeHandle<Code> maybe_code,bool is_constructor)2125 Handle<SharedFunctionInfo> Factory::NewSharedFunctionInfo(
2126 Handle<String> name, MaybeHandle<Code> maybe_code, bool is_constructor) {
2127 Handle<Map> map = shared_function_info_map();
2128 Handle<SharedFunctionInfo> share = New<SharedFunctionInfo>(map, OLD_SPACE);
2129
2130 // Set pointer fields.
2131 share->set_name(*name);
2132 Handle<Code> code;
2133 if (!maybe_code.ToHandle(&code)) {
2134 code = isolate()->builtins()->Illegal();
2135 }
2136 share->set_code(*code);
2137 share->set_optimized_code_map(*cleared_optimized_code_map());
2138 share->set_scope_info(ScopeInfo::Empty(isolate()));
2139 Handle<Code> construct_stub =
2140 is_constructor ? isolate()->builtins()->JSConstructStubGeneric()
2141 : isolate()->builtins()->ConstructedNonConstructable();
2142 share->set_construct_stub(*construct_stub);
2143 share->set_instance_class_name(*Object_string());
2144 share->set_function_data(*undefined_value(), SKIP_WRITE_BARRIER);
2145 share->set_script(*undefined_value(), SKIP_WRITE_BARRIER);
2146 share->set_debug_info(*undefined_value(), SKIP_WRITE_BARRIER);
2147 share->set_inferred_name(*empty_string(), SKIP_WRITE_BARRIER);
2148 StaticFeedbackVectorSpec empty_spec;
2149 Handle<TypeFeedbackMetadata> feedback_metadata =
2150 TypeFeedbackMetadata::New(isolate(), &empty_spec);
2151 Handle<TypeFeedbackVector> feedback_vector =
2152 TypeFeedbackVector::New(isolate(), feedback_metadata);
2153 share->set_feedback_vector(*feedback_vector, SKIP_WRITE_BARRIER);
2154 #if TRACE_MAPS
2155 share->set_unique_id(isolate()->GetNextUniqueSharedFunctionInfoId());
2156 #endif
2157 share->set_profiler_ticks(0);
2158 share->set_ast_node_count(0);
2159 share->set_counters(0);
2160
2161 // Set integer fields (smi or int, depending on the architecture).
2162 share->set_length(0);
2163 share->set_internal_formal_parameter_count(0);
2164 share->set_expected_nof_properties(0);
2165 share->set_num_literals(0);
2166 share->set_start_position_and_type(0);
2167 share->set_end_position(0);
2168 share->set_function_token_position(0);
2169 // All compiler hints default to false or 0.
2170 share->set_compiler_hints(0);
2171 share->set_opt_count_and_bailout_reason(0);
2172
2173 // Link into the list.
2174 Handle<Object> new_noscript_list =
2175 WeakFixedArray::Add(noscript_shared_function_infos(), share);
2176 isolate()->heap()->set_noscript_shared_function_infos(*new_noscript_list);
2177
2178 return share;
2179 }
2180
2181
NumberCacheHash(Handle<FixedArray> cache,Handle<Object> number)2182 static inline int NumberCacheHash(Handle<FixedArray> cache,
2183 Handle<Object> number) {
2184 int mask = (cache->length() >> 1) - 1;
2185 if (number->IsSmi()) {
2186 return Handle<Smi>::cast(number)->value() & mask;
2187 } else {
2188 DoubleRepresentation rep(number->Number());
2189 return
2190 (static_cast<int>(rep.bits) ^ static_cast<int>(rep.bits >> 32)) & mask;
2191 }
2192 }
2193
2194
GetNumberStringCache(Handle<Object> number)2195 Handle<Object> Factory::GetNumberStringCache(Handle<Object> number) {
2196 DisallowHeapAllocation no_gc;
2197 int hash = NumberCacheHash(number_string_cache(), number);
2198 Object* key = number_string_cache()->get(hash * 2);
2199 if (key == *number || (key->IsHeapNumber() && number->IsHeapNumber() &&
2200 key->Number() == number->Number())) {
2201 return Handle<String>(
2202 String::cast(number_string_cache()->get(hash * 2 + 1)), isolate());
2203 }
2204 return undefined_value();
2205 }
2206
2207
SetNumberStringCache(Handle<Object> number,Handle<String> string)2208 void Factory::SetNumberStringCache(Handle<Object> number,
2209 Handle<String> string) {
2210 int hash = NumberCacheHash(number_string_cache(), number);
2211 if (number_string_cache()->get(hash * 2) != *undefined_value()) {
2212 int full_size = isolate()->heap()->FullSizeNumberStringCacheLength();
2213 if (number_string_cache()->length() != full_size) {
2214 Handle<FixedArray> new_cache = NewFixedArray(full_size, TENURED);
2215 isolate()->heap()->set_number_string_cache(*new_cache);
2216 return;
2217 }
2218 }
2219 number_string_cache()->set(hash * 2, *number);
2220 number_string_cache()->set(hash * 2 + 1, *string);
2221 }
2222
2223
NumberToString(Handle<Object> number,bool check_number_string_cache)2224 Handle<String> Factory::NumberToString(Handle<Object> number,
2225 bool check_number_string_cache) {
2226 isolate()->counters()->number_to_string_runtime()->Increment();
2227 if (check_number_string_cache) {
2228 Handle<Object> cached = GetNumberStringCache(number);
2229 if (!cached->IsUndefined()) return Handle<String>::cast(cached);
2230 }
2231
2232 char arr[100];
2233 Vector<char> buffer(arr, arraysize(arr));
2234 const char* str;
2235 if (number->IsSmi()) {
2236 int num = Handle<Smi>::cast(number)->value();
2237 str = IntToCString(num, buffer);
2238 } else {
2239 double num = Handle<HeapNumber>::cast(number)->value();
2240 str = DoubleToCString(num, buffer);
2241 }
2242
2243 // We tenure the allocated string since it is referenced from the
2244 // number-string cache which lives in the old space.
2245 Handle<String> js_string = NewStringFromAsciiChecked(str, TENURED);
2246 SetNumberStringCache(number, js_string);
2247 return js_string;
2248 }
2249
2250
NewDebugInfo(Handle<SharedFunctionInfo> shared)2251 Handle<DebugInfo> Factory::NewDebugInfo(Handle<SharedFunctionInfo> shared) {
2252 // Allocate initial fixed array for active break points before allocating the
2253 // debug info object to avoid allocation while setting up the debug info
2254 // object.
2255 Handle<FixedArray> break_points(
2256 NewFixedArray(DebugInfo::kEstimatedNofBreakPointsInFunction));
2257
2258 // Create and set up the debug info object. Debug info contains function, a
2259 // copy of the original code, the executing code and initial fixed array for
2260 // active break points.
2261 Handle<DebugInfo> debug_info =
2262 Handle<DebugInfo>::cast(NewStruct(DEBUG_INFO_TYPE));
2263 debug_info->set_shared(*shared);
2264 debug_info->set_code(shared->code());
2265 debug_info->set_break_points(*break_points);
2266
2267 // Link debug info to function.
2268 shared->set_debug_info(*debug_info);
2269
2270 return debug_info;
2271 }
2272
2273
NewArgumentsObject(Handle<JSFunction> callee,int length)2274 Handle<JSObject> Factory::NewArgumentsObject(Handle<JSFunction> callee,
2275 int length) {
2276 bool strict_mode_callee = is_strict(callee->shared()->language_mode()) ||
2277 !callee->shared()->has_simple_parameters();
2278 Handle<Map> map = strict_mode_callee ? isolate()->strict_arguments_map()
2279 : isolate()->sloppy_arguments_map();
2280 AllocationSiteUsageContext context(isolate(), Handle<AllocationSite>(),
2281 false);
2282 DCHECK(!isolate()->has_pending_exception());
2283 Handle<JSObject> result = NewJSObjectFromMap(map);
2284 Handle<Smi> value(Smi::FromInt(length), isolate());
2285 Object::SetProperty(result, length_string(), value, STRICT).Assert();
2286 if (!strict_mode_callee) {
2287 Object::SetProperty(result, callee_string(), callee, STRICT).Assert();
2288 }
2289 return result;
2290 }
2291
2292
NewJSWeakMap()2293 Handle<JSWeakMap> Factory::NewJSWeakMap() {
2294 // TODO(adamk): Currently the map is only created three times per
2295 // isolate. If it's created more often, the map should be moved into the
2296 // strong root list.
2297 Handle<Map> map = NewMap(JS_WEAK_MAP_TYPE, JSWeakMap::kSize);
2298 return Handle<JSWeakMap>::cast(NewJSObjectFromMap(map));
2299 }
2300
2301
ObjectLiteralMapFromCache(Handle<Context> context,int number_of_properties,bool is_strong,bool * is_result_from_cache)2302 Handle<Map> Factory::ObjectLiteralMapFromCache(Handle<Context> context,
2303 int number_of_properties,
2304 bool is_strong,
2305 bool* is_result_from_cache) {
2306 const int kMapCacheSize = 128;
2307
2308 // We do not cache maps for too many properties or when running builtin code.
2309 if (number_of_properties > kMapCacheSize ||
2310 isolate()->bootstrapper()->IsActive()) {
2311 *is_result_from_cache = false;
2312 Handle<Map> map = Map::Create(isolate(), number_of_properties);
2313 if (is_strong) map->set_is_strong();
2314 return map;
2315 }
2316 *is_result_from_cache = true;
2317 if (number_of_properties == 0) {
2318 // Reuse the initial map of the Object function if the literal has no
2319 // predeclared properties, or the strong map if strong.
2320 return handle(is_strong
2321 ? context->js_object_strong_map()
2322 : context->object_function()->initial_map(), isolate());
2323 }
2324
2325 int cache_index = number_of_properties - 1;
2326 Handle<Object> maybe_cache(is_strong ? context->strong_map_cache()
2327 : context->map_cache(), isolate());
2328 if (maybe_cache->IsUndefined()) {
2329 // Allocate the new map cache for the native context.
2330 maybe_cache = NewFixedArray(kMapCacheSize, TENURED);
2331 if (is_strong) {
2332 context->set_strong_map_cache(*maybe_cache);
2333 } else {
2334 context->set_map_cache(*maybe_cache);
2335 }
2336 } else {
2337 // Check to see whether there is a matching element in the cache.
2338 Handle<FixedArray> cache = Handle<FixedArray>::cast(maybe_cache);
2339 Object* result = cache->get(cache_index);
2340 if (result->IsWeakCell()) {
2341 WeakCell* cell = WeakCell::cast(result);
2342 if (!cell->cleared()) {
2343 return handle(Map::cast(cell->value()), isolate());
2344 }
2345 }
2346 }
2347 // Create a new map and add it to the cache.
2348 Handle<FixedArray> cache = Handle<FixedArray>::cast(maybe_cache);
2349 Handle<Map> map = Map::Create(isolate(), number_of_properties);
2350 if (is_strong) map->set_is_strong();
2351 Handle<WeakCell> cell = NewWeakCell(map);
2352 cache->set(cache_index, *cell);
2353 return map;
2354 }
2355
2356
SetRegExpAtomData(Handle<JSRegExp> regexp,JSRegExp::Type type,Handle<String> source,JSRegExp::Flags flags,Handle<Object> data)2357 void Factory::SetRegExpAtomData(Handle<JSRegExp> regexp,
2358 JSRegExp::Type type,
2359 Handle<String> source,
2360 JSRegExp::Flags flags,
2361 Handle<Object> data) {
2362 Handle<FixedArray> store = NewFixedArray(JSRegExp::kAtomDataSize);
2363
2364 store->set(JSRegExp::kTagIndex, Smi::FromInt(type));
2365 store->set(JSRegExp::kSourceIndex, *source);
2366 store->set(JSRegExp::kFlagsIndex, Smi::FromInt(flags));
2367 store->set(JSRegExp::kAtomPatternIndex, *data);
2368 regexp->set_data(*store);
2369 }
2370
2371
SetRegExpIrregexpData(Handle<JSRegExp> regexp,JSRegExp::Type type,Handle<String> source,JSRegExp::Flags flags,int capture_count)2372 void Factory::SetRegExpIrregexpData(Handle<JSRegExp> regexp,
2373 JSRegExp::Type type,
2374 Handle<String> source,
2375 JSRegExp::Flags flags,
2376 int capture_count) {
2377 Handle<FixedArray> store = NewFixedArray(JSRegExp::kIrregexpDataSize);
2378 Smi* uninitialized = Smi::FromInt(JSRegExp::kUninitializedValue);
2379 store->set(JSRegExp::kTagIndex, Smi::FromInt(type));
2380 store->set(JSRegExp::kSourceIndex, *source);
2381 store->set(JSRegExp::kFlagsIndex, Smi::FromInt(flags));
2382 store->set(JSRegExp::kIrregexpLatin1CodeIndex, uninitialized);
2383 store->set(JSRegExp::kIrregexpUC16CodeIndex, uninitialized);
2384 store->set(JSRegExp::kIrregexpLatin1CodeSavedIndex, uninitialized);
2385 store->set(JSRegExp::kIrregexpUC16CodeSavedIndex, uninitialized);
2386 store->set(JSRegExp::kIrregexpMaxRegisterCountIndex, Smi::FromInt(0));
2387 store->set(JSRegExp::kIrregexpCaptureCountIndex,
2388 Smi::FromInt(capture_count));
2389 regexp->set_data(*store);
2390 }
2391
2392
GlobalConstantFor(Handle<Name> name)2393 Handle<Object> Factory::GlobalConstantFor(Handle<Name> name) {
2394 if (Name::Equals(name, undefined_string())) return undefined_value();
2395 if (Name::Equals(name, nan_string())) return nan_value();
2396 if (Name::Equals(name, infinity_string())) return infinity_value();
2397 return Handle<Object>::null();
2398 }
2399
2400
ToBoolean(bool value)2401 Handle<Object> Factory::ToBoolean(bool value) {
2402 return value ? true_value() : false_value();
2403 }
2404
2405
2406 } // namespace internal
2407 } // namespace v8
2408