1 // Copyright 2011 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4 
5 #ifndef V8_CONVERSIONS_INL_H_
6 #define V8_CONVERSIONS_INL_H_
7 
8 #include <float.h>         // Required for DBL_MAX and on Win32 for finite()
9 #include <limits.h>        // Required for INT_MAX etc.
10 #include <stdarg.h>
11 #include <cmath>
12 #include "src/globals.h"       // Required for V8_INFINITY
13 #include "src/unicode-cache-inl.h"
14 
15 // ----------------------------------------------------------------------------
16 // Extra POSIX/ANSI functions for Win32/MSVC.
17 
18 #include "src/base/bits.h"
19 #include "src/base/platform/platform.h"
20 #include "src/conversions.h"
21 #include "src/double.h"
22 #include "src/objects-inl.h"
23 #include "src/strtod.h"
24 
25 namespace v8 {
26 namespace internal {
27 
JunkStringValue()28 inline double JunkStringValue() {
29   return bit_cast<double, uint64_t>(kQuietNaNMask);
30 }
31 
32 
SignedZero(bool negative)33 inline double SignedZero(bool negative) {
34   return negative ? uint64_to_double(Double::kSignMask) : 0.0;
35 }
36 
37 
38 // The fast double-to-unsigned-int conversion routine does not guarantee
39 // rounding towards zero, or any reasonable value if the argument is larger
40 // than what fits in an unsigned 32-bit integer.
FastD2UI(double x)41 inline unsigned int FastD2UI(double x) {
42   // There is no unsigned version of lrint, so there is no fast path
43   // in this function as there is in FastD2I. Using lrint doesn't work
44   // for values of 2^31 and above.
45 
46   // Convert "small enough" doubles to uint32_t by fixing the 32
47   // least significant non-fractional bits in the low 32 bits of the
48   // double, and reading them from there.
49   const double k2Pow52 = 4503599627370496.0;
50   bool negative = x < 0;
51   if (negative) {
52     x = -x;
53   }
54   if (x < k2Pow52) {
55     x += k2Pow52;
56     uint32_t result;
57 #ifndef V8_TARGET_BIG_ENDIAN
58     Address mantissa_ptr = reinterpret_cast<Address>(&x);
59 #else
60     Address mantissa_ptr = reinterpret_cast<Address>(&x) + kIntSize;
61 #endif
62     // Copy least significant 32 bits of mantissa.
63     memcpy(&result, mantissa_ptr, sizeof(result));
64     return negative ? ~result + 1 : result;
65   }
66   // Large number (outside uint32 range), Infinity or NaN.
67   return 0x80000000u;  // Return integer indefinite.
68 }
69 
70 
DoubleToFloat32(double x)71 inline float DoubleToFloat32(double x) {
72   // TODO(yangguo): This static_cast is implementation-defined behaviour in C++,
73   // so we may need to do the conversion manually instead to match the spec.
74   volatile float f = static_cast<float>(x);
75   return f;
76 }
77 
78 
DoubleToInteger(double x)79 inline double DoubleToInteger(double x) {
80   if (std::isnan(x)) return 0;
81   if (!std::isfinite(x) || x == 0) return x;
82   return (x >= 0) ? std::floor(x) : std::ceil(x);
83 }
84 
85 
DoubleToInt32(double x)86 int32_t DoubleToInt32(double x) {
87   int32_t i = FastD2I(x);
88   if (FastI2D(i) == x) return i;
89   Double d(x);
90   int exponent = d.Exponent();
91   if (exponent < 0) {
92     if (exponent <= -Double::kSignificandSize) return 0;
93     return d.Sign() * static_cast<int32_t>(d.Significand() >> -exponent);
94   } else {
95     if (exponent > 31) return 0;
96     return d.Sign() * static_cast<int32_t>(d.Significand() << exponent);
97   }
98 }
99 
100 
IsSmiDouble(double value)101 bool IsSmiDouble(double value) {
102   return !IsMinusZero(value) && value >= Smi::kMinValue &&
103          value <= Smi::kMaxValue && value == FastI2D(FastD2I(value));
104 }
105 
106 
IsInt32Double(double value)107 bool IsInt32Double(double value) {
108   return !IsMinusZero(value) && value >= kMinInt && value <= kMaxInt &&
109          value == FastI2D(FastD2I(value));
110 }
111 
112 
IsUint32Double(double value)113 bool IsUint32Double(double value) {
114   return !IsMinusZero(value) && value >= 0 && value <= kMaxUInt32 &&
115          value == FastUI2D(FastD2UI(value));
116 }
117 
118 
NumberToInt32(Object * number)119 int32_t NumberToInt32(Object* number) {
120   if (number->IsSmi()) return Smi::cast(number)->value();
121   return DoubleToInt32(number->Number());
122 }
123 
124 
NumberToUint32(Object * number)125 uint32_t NumberToUint32(Object* number) {
126   if (number->IsSmi()) return Smi::cast(number)->value();
127   return DoubleToUint32(number->Number());
128 }
129 
130 
TryNumberToSize(Isolate * isolate,Object * number,size_t * result)131 bool TryNumberToSize(Isolate* isolate, Object* number, size_t* result) {
132   SealHandleScope shs(isolate);
133   if (number->IsSmi()) {
134     int value = Smi::cast(number)->value();
135     DCHECK(static_cast<unsigned>(Smi::kMaxValue) <=
136            std::numeric_limits<size_t>::max());
137     if (value >= 0) {
138       *result = static_cast<size_t>(value);
139       return true;
140     }
141     return false;
142   } else {
143     DCHECK(number->IsHeapNumber());
144     double value = HeapNumber::cast(number)->value();
145     if (value >= 0 && value <= std::numeric_limits<size_t>::max()) {
146       *result = static_cast<size_t>(value);
147       return true;
148     } else {
149       return false;
150     }
151   }
152 }
153 
154 
NumberToSize(Isolate * isolate,Object * number)155 size_t NumberToSize(Isolate* isolate, Object* number) {
156   size_t result = 0;
157   bool is_valid = TryNumberToSize(isolate, number, &result);
158   CHECK(is_valid);
159   return result;
160 }
161 
162 
DoubleToUint32(double x)163 uint32_t DoubleToUint32(double x) {
164   return static_cast<uint32_t>(DoubleToInt32(x));
165 }
166 
167 
168 template <class Iterator, class EndMark>
SubStringEquals(Iterator * current,EndMark end,const char * substring)169 bool SubStringEquals(Iterator* current,
170                      EndMark end,
171                      const char* substring) {
172   DCHECK(**current == *substring);
173   for (substring++; *substring != '\0'; substring++) {
174     ++*current;
175     if (*current == end || **current != *substring) return false;
176   }
177   ++*current;
178   return true;
179 }
180 
181 
182 // Returns true if a nonspace character has been found and false if the
183 // end was been reached before finding a nonspace character.
184 template <class Iterator, class EndMark>
AdvanceToNonspace(UnicodeCache * unicode_cache,Iterator * current,EndMark end)185 inline bool AdvanceToNonspace(UnicodeCache* unicode_cache,
186                               Iterator* current,
187                               EndMark end) {
188   while (*current != end) {
189     if (!unicode_cache->IsWhiteSpaceOrLineTerminator(**current)) return true;
190     ++*current;
191   }
192   return false;
193 }
194 
195 
196 // Parsing integers with radix 2, 4, 8, 16, 32. Assumes current != end.
197 template <int radix_log_2, class Iterator, class EndMark>
InternalStringToIntDouble(UnicodeCache * unicode_cache,Iterator current,EndMark end,bool negative,bool allow_trailing_junk)198 double InternalStringToIntDouble(UnicodeCache* unicode_cache,
199                                  Iterator current,
200                                  EndMark end,
201                                  bool negative,
202                                  bool allow_trailing_junk) {
203   DCHECK(current != end);
204 
205   // Skip leading 0s.
206   while (*current == '0') {
207     ++current;
208     if (current == end) return SignedZero(negative);
209   }
210 
211   int64_t number = 0;
212   int exponent = 0;
213   const int radix = (1 << radix_log_2);
214 
215   do {
216     int digit;
217     if (*current >= '0' && *current <= '9' && *current < '0' + radix) {
218       digit = static_cast<char>(*current) - '0';
219     } else if (radix > 10 && *current >= 'a' && *current < 'a' + radix - 10) {
220       digit = static_cast<char>(*current) - 'a' + 10;
221     } else if (radix > 10 && *current >= 'A' && *current < 'A' + radix - 10) {
222       digit = static_cast<char>(*current) - 'A' + 10;
223     } else {
224       if (allow_trailing_junk ||
225           !AdvanceToNonspace(unicode_cache, &current, end)) {
226         break;
227       } else {
228         return JunkStringValue();
229       }
230     }
231 
232     number = number * radix + digit;
233     int overflow = static_cast<int>(number >> 53);
234     if (overflow != 0) {
235       // Overflow occurred. Need to determine which direction to round the
236       // result.
237       int overflow_bits_count = 1;
238       while (overflow > 1) {
239         overflow_bits_count++;
240         overflow >>= 1;
241       }
242 
243       int dropped_bits_mask = ((1 << overflow_bits_count) - 1);
244       int dropped_bits = static_cast<int>(number) & dropped_bits_mask;
245       number >>= overflow_bits_count;
246       exponent = overflow_bits_count;
247 
248       bool zero_tail = true;
249       while (true) {
250         ++current;
251         if (current == end || !isDigit(*current, radix)) break;
252         zero_tail = zero_tail && *current == '0';
253         exponent += radix_log_2;
254       }
255 
256       if (!allow_trailing_junk &&
257           AdvanceToNonspace(unicode_cache, &current, end)) {
258         return JunkStringValue();
259       }
260 
261       int middle_value = (1 << (overflow_bits_count - 1));
262       if (dropped_bits > middle_value) {
263         number++;  // Rounding up.
264       } else if (dropped_bits == middle_value) {
265         // Rounding to even to consistency with decimals: half-way case rounds
266         // up if significant part is odd and down otherwise.
267         if ((number & 1) != 0 || !zero_tail) {
268           number++;  // Rounding up.
269         }
270       }
271 
272       // Rounding up may cause overflow.
273       if ((number & (static_cast<int64_t>(1) << 53)) != 0) {
274         exponent++;
275         number >>= 1;
276       }
277       break;
278     }
279     ++current;
280   } while (current != end);
281 
282   DCHECK(number < ((int64_t)1 << 53));
283   DCHECK(static_cast<int64_t>(static_cast<double>(number)) == number);
284 
285   if (exponent == 0) {
286     if (negative) {
287       if (number == 0) return -0.0;
288       number = -number;
289     }
290     return static_cast<double>(number);
291   }
292 
293   DCHECK(number != 0);
294   return std::ldexp(static_cast<double>(negative ? -number : number), exponent);
295 }
296 
297 // ES6 18.2.5 parseInt(string, radix)
298 template <class Iterator, class EndMark>
InternalStringToInt(UnicodeCache * unicode_cache,Iterator current,EndMark end,int radix)299 double InternalStringToInt(UnicodeCache* unicode_cache,
300                            Iterator current,
301                            EndMark end,
302                            int radix) {
303   const bool allow_trailing_junk = true;
304   const double empty_string_val = JunkStringValue();
305 
306   if (!AdvanceToNonspace(unicode_cache, &current, end)) {
307     return empty_string_val;
308   }
309 
310   bool negative = false;
311   bool leading_zero = false;
312 
313   if (*current == '+') {
314     // Ignore leading sign; skip following spaces.
315     ++current;
316     if (current == end) {
317       return JunkStringValue();
318     }
319   } else if (*current == '-') {
320     ++current;
321     if (current == end) {
322       return JunkStringValue();
323     }
324     negative = true;
325   }
326 
327   if (radix == 0) {
328     // Radix detection.
329     radix = 10;
330     if (*current == '0') {
331       ++current;
332       if (current == end) return SignedZero(negative);
333       if (*current == 'x' || *current == 'X') {
334         radix = 16;
335         ++current;
336         if (current == end) return JunkStringValue();
337       } else {
338         leading_zero = true;
339       }
340     }
341   } else if (radix == 16) {
342     if (*current == '0') {
343       // Allow "0x" prefix.
344       ++current;
345       if (current == end) return SignedZero(negative);
346       if (*current == 'x' || *current == 'X') {
347         ++current;
348         if (current == end) return JunkStringValue();
349       } else {
350         leading_zero = true;
351       }
352     }
353   }
354 
355   if (radix < 2 || radix > 36) return JunkStringValue();
356 
357   // Skip leading zeros.
358   while (*current == '0') {
359     leading_zero = true;
360     ++current;
361     if (current == end) return SignedZero(negative);
362   }
363 
364   if (!leading_zero && !isDigit(*current, radix)) {
365     return JunkStringValue();
366   }
367 
368   if (base::bits::IsPowerOfTwo32(radix)) {
369     switch (radix) {
370       case 2:
371         return InternalStringToIntDouble<1>(
372             unicode_cache, current, end, negative, allow_trailing_junk);
373       case 4:
374         return InternalStringToIntDouble<2>(
375             unicode_cache, current, end, negative, allow_trailing_junk);
376       case 8:
377         return InternalStringToIntDouble<3>(
378             unicode_cache, current, end, negative, allow_trailing_junk);
379 
380       case 16:
381         return InternalStringToIntDouble<4>(
382             unicode_cache, current, end, negative, allow_trailing_junk);
383 
384       case 32:
385         return InternalStringToIntDouble<5>(
386             unicode_cache, current, end, negative, allow_trailing_junk);
387       default:
388         UNREACHABLE();
389     }
390   }
391 
392   if (radix == 10) {
393     // Parsing with strtod.
394     const int kMaxSignificantDigits = 309;  // Doubles are less than 1.8e308.
395     // The buffer may contain up to kMaxSignificantDigits + 1 digits and a zero
396     // end.
397     const int kBufferSize = kMaxSignificantDigits + 2;
398     char buffer[kBufferSize];
399     int buffer_pos = 0;
400     while (*current >= '0' && *current <= '9') {
401       if (buffer_pos <= kMaxSignificantDigits) {
402         // If the number has more than kMaxSignificantDigits it will be parsed
403         // as infinity.
404         DCHECK(buffer_pos < kBufferSize);
405         buffer[buffer_pos++] = static_cast<char>(*current);
406       }
407       ++current;
408       if (current == end) break;
409     }
410 
411     if (!allow_trailing_junk &&
412         AdvanceToNonspace(unicode_cache, &current, end)) {
413       return JunkStringValue();
414     }
415 
416     SLOW_DCHECK(buffer_pos < kBufferSize);
417     buffer[buffer_pos] = '\0';
418     Vector<const char> buffer_vector(buffer, buffer_pos);
419     return negative ? -Strtod(buffer_vector, 0) : Strtod(buffer_vector, 0);
420   }
421 
422   // The following code causes accumulating rounding error for numbers greater
423   // than ~2^56. It's explicitly allowed in the spec: "if R is not 2, 4, 8, 10,
424   // 16, or 32, then mathInt may be an implementation-dependent approximation to
425   // the mathematical integer value" (15.1.2.2).
426 
427   int lim_0 = '0' + (radix < 10 ? radix : 10);
428   int lim_a = 'a' + (radix - 10);
429   int lim_A = 'A' + (radix - 10);
430 
431   // NOTE: The code for computing the value may seem a bit complex at
432   // first glance. It is structured to use 32-bit multiply-and-add
433   // loops as long as possible to avoid loosing precision.
434 
435   double v = 0.0;
436   bool done = false;
437   do {
438     // Parse the longest part of the string starting at index j
439     // possible while keeping the multiplier, and thus the part
440     // itself, within 32 bits.
441     unsigned int part = 0, multiplier = 1;
442     while (true) {
443       int d;
444       if (*current >= '0' && *current < lim_0) {
445         d = *current - '0';
446       } else if (*current >= 'a' && *current < lim_a) {
447         d = *current - 'a' + 10;
448       } else if (*current >= 'A' && *current < lim_A) {
449         d = *current - 'A' + 10;
450       } else {
451         done = true;
452         break;
453       }
454 
455       // Update the value of the part as long as the multiplier fits
456       // in 32 bits. When we can't guarantee that the next iteration
457       // will not overflow the multiplier, we stop parsing the part
458       // by leaving the loop.
459       const unsigned int kMaximumMultiplier = 0xffffffffU / 36;
460       uint32_t m = multiplier * radix;
461       if (m > kMaximumMultiplier) break;
462       part = part * radix + d;
463       multiplier = m;
464       DCHECK(multiplier > part);
465 
466       ++current;
467       if (current == end) {
468         done = true;
469         break;
470       }
471     }
472 
473     // Update the value and skip the part in the string.
474     v = v * multiplier + part;
475   } while (!done);
476 
477   if (!allow_trailing_junk &&
478       AdvanceToNonspace(unicode_cache, &current, end)) {
479     return JunkStringValue();
480   }
481 
482   return negative ? -v : v;
483 }
484 
485 
486 // Converts a string to a double value. Assumes the Iterator supports
487 // the following operations:
488 // 1. current == end (other ops are not allowed), current != end.
489 // 2. *current - gets the current character in the sequence.
490 // 3. ++current (advances the position).
491 template <class Iterator, class EndMark>
InternalStringToDouble(UnicodeCache * unicode_cache,Iterator current,EndMark end,int flags,double empty_string_val)492 double InternalStringToDouble(UnicodeCache* unicode_cache,
493                               Iterator current,
494                               EndMark end,
495                               int flags,
496                               double empty_string_val) {
497   // To make sure that iterator dereferencing is valid the following
498   // convention is used:
499   // 1. Each '++current' statement is followed by check for equality to 'end'.
500   // 2. If AdvanceToNonspace returned false then current == end.
501   // 3. If 'current' becomes be equal to 'end' the function returns or goes to
502   // 'parsing_done'.
503   // 4. 'current' is not dereferenced after the 'parsing_done' label.
504   // 5. Code before 'parsing_done' may rely on 'current != end'.
505   if (!AdvanceToNonspace(unicode_cache, &current, end)) {
506     return empty_string_val;
507   }
508 
509   const bool allow_trailing_junk = (flags & ALLOW_TRAILING_JUNK) != 0;
510 
511   // The longest form of simplified number is: "-<significant digits>'.1eXXX\0".
512   const int kBufferSize = kMaxSignificantDigits + 10;
513   char buffer[kBufferSize];  // NOLINT: size is known at compile time.
514   int buffer_pos = 0;
515 
516   // Exponent will be adjusted if insignificant digits of the integer part
517   // or insignificant leading zeros of the fractional part are dropped.
518   int exponent = 0;
519   int significant_digits = 0;
520   int insignificant_digits = 0;
521   bool nonzero_digit_dropped = false;
522 
523   enum Sign {
524     NONE,
525     NEGATIVE,
526     POSITIVE
527   };
528 
529   Sign sign = NONE;
530 
531   if (*current == '+') {
532     // Ignore leading sign.
533     ++current;
534     if (current == end) return JunkStringValue();
535     sign = POSITIVE;
536   } else if (*current == '-') {
537     ++current;
538     if (current == end) return JunkStringValue();
539     sign = NEGATIVE;
540   }
541 
542   static const char kInfinityString[] = "Infinity";
543   if (*current == kInfinityString[0]) {
544     if (!SubStringEquals(&current, end, kInfinityString)) {
545       return JunkStringValue();
546     }
547 
548     if (!allow_trailing_junk &&
549         AdvanceToNonspace(unicode_cache, &current, end)) {
550       return JunkStringValue();
551     }
552 
553     DCHECK(buffer_pos == 0);
554     return (sign == NEGATIVE) ? -V8_INFINITY : V8_INFINITY;
555   }
556 
557   bool leading_zero = false;
558   if (*current == '0') {
559     ++current;
560     if (current == end) return SignedZero(sign == NEGATIVE);
561 
562     leading_zero = true;
563 
564     // It could be hexadecimal value.
565     if ((flags & ALLOW_HEX) && (*current == 'x' || *current == 'X')) {
566       ++current;
567       if (current == end || !isDigit(*current, 16) || sign != NONE) {
568         return JunkStringValue();  // "0x".
569       }
570 
571       return InternalStringToIntDouble<4>(unicode_cache,
572                                           current,
573                                           end,
574                                           false,
575                                           allow_trailing_junk);
576 
577     // It could be an explicit octal value.
578     } else if ((flags & ALLOW_OCTAL) && (*current == 'o' || *current == 'O')) {
579       ++current;
580       if (current == end || !isDigit(*current, 8) || sign != NONE) {
581         return JunkStringValue();  // "0o".
582       }
583 
584       return InternalStringToIntDouble<3>(unicode_cache,
585                                           current,
586                                           end,
587                                           false,
588                                           allow_trailing_junk);
589 
590     // It could be a binary value.
591     } else if ((flags & ALLOW_BINARY) && (*current == 'b' || *current == 'B')) {
592       ++current;
593       if (current == end || !isBinaryDigit(*current) || sign != NONE) {
594         return JunkStringValue();  // "0b".
595       }
596 
597       return InternalStringToIntDouble<1>(unicode_cache,
598                                           current,
599                                           end,
600                                           false,
601                                           allow_trailing_junk);
602     }
603 
604     // Ignore leading zeros in the integer part.
605     while (*current == '0') {
606       ++current;
607       if (current == end) return SignedZero(sign == NEGATIVE);
608     }
609   }
610 
611   bool octal = leading_zero && (flags & ALLOW_IMPLICIT_OCTAL) != 0;
612 
613   // Copy significant digits of the integer part (if any) to the buffer.
614   while (*current >= '0' && *current <= '9') {
615     if (significant_digits < kMaxSignificantDigits) {
616       DCHECK(buffer_pos < kBufferSize);
617       buffer[buffer_pos++] = static_cast<char>(*current);
618       significant_digits++;
619       // Will later check if it's an octal in the buffer.
620     } else {
621       insignificant_digits++;  // Move the digit into the exponential part.
622       nonzero_digit_dropped = nonzero_digit_dropped || *current != '0';
623     }
624     octal = octal && *current < '8';
625     ++current;
626     if (current == end) goto parsing_done;
627   }
628 
629   if (significant_digits == 0) {
630     octal = false;
631   }
632 
633   if (*current == '.') {
634     if (octal && !allow_trailing_junk) return JunkStringValue();
635     if (octal) goto parsing_done;
636 
637     ++current;
638     if (current == end) {
639       if (significant_digits == 0 && !leading_zero) {
640         return JunkStringValue();
641       } else {
642         goto parsing_done;
643       }
644     }
645 
646     if (significant_digits == 0) {
647       // octal = false;
648       // Integer part consists of 0 or is absent. Significant digits start after
649       // leading zeros (if any).
650       while (*current == '0') {
651         ++current;
652         if (current == end) return SignedZero(sign == NEGATIVE);
653         exponent--;  // Move this 0 into the exponent.
654       }
655     }
656 
657     // There is a fractional part.  We don't emit a '.', but adjust the exponent
658     // instead.
659     while (*current >= '0' && *current <= '9') {
660       if (significant_digits < kMaxSignificantDigits) {
661         DCHECK(buffer_pos < kBufferSize);
662         buffer[buffer_pos++] = static_cast<char>(*current);
663         significant_digits++;
664         exponent--;
665       } else {
666         // Ignore insignificant digits in the fractional part.
667         nonzero_digit_dropped = nonzero_digit_dropped || *current != '0';
668       }
669       ++current;
670       if (current == end) goto parsing_done;
671     }
672   }
673 
674   if (!leading_zero && exponent == 0 && significant_digits == 0) {
675     // If leading_zeros is true then the string contains zeros.
676     // If exponent < 0 then string was [+-]\.0*...
677     // If significant_digits != 0 the string is not equal to 0.
678     // Otherwise there are no digits in the string.
679     return JunkStringValue();
680   }
681 
682   // Parse exponential part.
683   if (*current == 'e' || *current == 'E') {
684     if (octal) return JunkStringValue();
685     ++current;
686     if (current == end) {
687       if (allow_trailing_junk) {
688         goto parsing_done;
689       } else {
690         return JunkStringValue();
691       }
692     }
693     char sign = '+';
694     if (*current == '+' || *current == '-') {
695       sign = static_cast<char>(*current);
696       ++current;
697       if (current == end) {
698         if (allow_trailing_junk) {
699           goto parsing_done;
700         } else {
701           return JunkStringValue();
702         }
703       }
704     }
705 
706     if (current == end || *current < '0' || *current > '9') {
707       if (allow_trailing_junk) {
708         goto parsing_done;
709       } else {
710         return JunkStringValue();
711       }
712     }
713 
714     const int max_exponent = INT_MAX / 2;
715     DCHECK(-max_exponent / 2 <= exponent && exponent <= max_exponent / 2);
716     int num = 0;
717     do {
718       // Check overflow.
719       int digit = *current - '0';
720       if (num >= max_exponent / 10
721           && !(num == max_exponent / 10 && digit <= max_exponent % 10)) {
722         num = max_exponent;
723       } else {
724         num = num * 10 + digit;
725       }
726       ++current;
727     } while (current != end && *current >= '0' && *current <= '9');
728 
729     exponent += (sign == '-' ? -num : num);
730   }
731 
732   if (!allow_trailing_junk &&
733       AdvanceToNonspace(unicode_cache, &current, end)) {
734     return JunkStringValue();
735   }
736 
737   parsing_done:
738   exponent += insignificant_digits;
739 
740   if (octal) {
741     return InternalStringToIntDouble<3>(unicode_cache,
742                                         buffer,
743                                         buffer + buffer_pos,
744                                         sign == NEGATIVE,
745                                         allow_trailing_junk);
746   }
747 
748   if (nonzero_digit_dropped) {
749     buffer[buffer_pos++] = '1';
750     exponent--;
751   }
752 
753   SLOW_DCHECK(buffer_pos < kBufferSize);
754   buffer[buffer_pos] = '\0';
755 
756   double converted = Strtod(Vector<const char>(buffer, buffer_pos), exponent);
757   return (sign == NEGATIVE) ? -converted : converted;
758 }
759 
760 }  // namespace internal
761 }  // namespace v8
762 
763 #endif  // V8_CONVERSIONS_INL_H_
764