1 //===--- ParseExpr.cpp - Expression Parsing -------------------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 ///
10 /// \file
11 /// \brief Provides the Expression parsing implementation.
12 ///
13 /// Expressions in C99 basically consist of a bunch of binary operators with
14 /// unary operators and other random stuff at the leaves.
15 ///
16 /// In the C99 grammar, these unary operators bind tightest and are represented
17 /// as the 'cast-expression' production. Everything else is either a binary
18 /// operator (e.g. '/') or a ternary operator ("?:"). The unary leaves are
19 /// handled by ParseCastExpression, the higher level pieces are handled by
20 /// ParseBinaryExpression.
21 ///
22 //===----------------------------------------------------------------------===//
23
24 #include "clang/Parse/Parser.h"
25 #include "RAIIObjectsForParser.h"
26 #include "clang/AST/ASTContext.h"
27 #include "clang/Basic/PrettyStackTrace.h"
28 #include "clang/Sema/DeclSpec.h"
29 #include "clang/Sema/ParsedTemplate.h"
30 #include "clang/Sema/Scope.h"
31 #include "clang/Sema/TypoCorrection.h"
32 #include "llvm/ADT/SmallString.h"
33 #include "llvm/ADT/SmallVector.h"
34 using namespace clang;
35
36 /// \brief Simple precedence-based parser for binary/ternary operators.
37 ///
38 /// Note: we diverge from the C99 grammar when parsing the assignment-expression
39 /// production. C99 specifies that the LHS of an assignment operator should be
40 /// parsed as a unary-expression, but consistency dictates that it be a
41 /// conditional-expession. In practice, the important thing here is that the
42 /// LHS of an assignment has to be an l-value, which productions between
43 /// unary-expression and conditional-expression don't produce. Because we want
44 /// consistency, we parse the LHS as a conditional-expression, then check for
45 /// l-value-ness in semantic analysis stages.
46 ///
47 /// \verbatim
48 /// pm-expression: [C++ 5.5]
49 /// cast-expression
50 /// pm-expression '.*' cast-expression
51 /// pm-expression '->*' cast-expression
52 ///
53 /// multiplicative-expression: [C99 6.5.5]
54 /// Note: in C++, apply pm-expression instead of cast-expression
55 /// cast-expression
56 /// multiplicative-expression '*' cast-expression
57 /// multiplicative-expression '/' cast-expression
58 /// multiplicative-expression '%' cast-expression
59 ///
60 /// additive-expression: [C99 6.5.6]
61 /// multiplicative-expression
62 /// additive-expression '+' multiplicative-expression
63 /// additive-expression '-' multiplicative-expression
64 ///
65 /// shift-expression: [C99 6.5.7]
66 /// additive-expression
67 /// shift-expression '<<' additive-expression
68 /// shift-expression '>>' additive-expression
69 ///
70 /// relational-expression: [C99 6.5.8]
71 /// shift-expression
72 /// relational-expression '<' shift-expression
73 /// relational-expression '>' shift-expression
74 /// relational-expression '<=' shift-expression
75 /// relational-expression '>=' shift-expression
76 ///
77 /// equality-expression: [C99 6.5.9]
78 /// relational-expression
79 /// equality-expression '==' relational-expression
80 /// equality-expression '!=' relational-expression
81 ///
82 /// AND-expression: [C99 6.5.10]
83 /// equality-expression
84 /// AND-expression '&' equality-expression
85 ///
86 /// exclusive-OR-expression: [C99 6.5.11]
87 /// AND-expression
88 /// exclusive-OR-expression '^' AND-expression
89 ///
90 /// inclusive-OR-expression: [C99 6.5.12]
91 /// exclusive-OR-expression
92 /// inclusive-OR-expression '|' exclusive-OR-expression
93 ///
94 /// logical-AND-expression: [C99 6.5.13]
95 /// inclusive-OR-expression
96 /// logical-AND-expression '&&' inclusive-OR-expression
97 ///
98 /// logical-OR-expression: [C99 6.5.14]
99 /// logical-AND-expression
100 /// logical-OR-expression '||' logical-AND-expression
101 ///
102 /// conditional-expression: [C99 6.5.15]
103 /// logical-OR-expression
104 /// logical-OR-expression '?' expression ':' conditional-expression
105 /// [GNU] logical-OR-expression '?' ':' conditional-expression
106 /// [C++] the third operand is an assignment-expression
107 ///
108 /// assignment-expression: [C99 6.5.16]
109 /// conditional-expression
110 /// unary-expression assignment-operator assignment-expression
111 /// [C++] throw-expression [C++ 15]
112 ///
113 /// assignment-operator: one of
114 /// = *= /= %= += -= <<= >>= &= ^= |=
115 ///
116 /// expression: [C99 6.5.17]
117 /// assignment-expression ...[opt]
118 /// expression ',' assignment-expression ...[opt]
119 /// \endverbatim
ParseExpression(TypeCastState isTypeCast)120 ExprResult Parser::ParseExpression(TypeCastState isTypeCast) {
121 ExprResult LHS(ParseAssignmentExpression(isTypeCast));
122 return ParseRHSOfBinaryExpression(LHS, prec::Comma);
123 }
124
125 /// This routine is called when the '@' is seen and consumed.
126 /// Current token is an Identifier and is not a 'try'. This
127 /// routine is necessary to disambiguate \@try-statement from,
128 /// for example, \@encode-expression.
129 ///
130 ExprResult
ParseExpressionWithLeadingAt(SourceLocation AtLoc)131 Parser::ParseExpressionWithLeadingAt(SourceLocation AtLoc) {
132 ExprResult LHS(ParseObjCAtExpression(AtLoc));
133 return ParseRHSOfBinaryExpression(LHS, prec::Comma);
134 }
135
136 /// This routine is called when a leading '__extension__' is seen and
137 /// consumed. This is necessary because the token gets consumed in the
138 /// process of disambiguating between an expression and a declaration.
139 ExprResult
ParseExpressionWithLeadingExtension(SourceLocation ExtLoc)140 Parser::ParseExpressionWithLeadingExtension(SourceLocation ExtLoc) {
141 ExprResult LHS(true);
142 {
143 // Silence extension warnings in the sub-expression
144 ExtensionRAIIObject O(Diags);
145
146 LHS = ParseCastExpression(false);
147 }
148
149 if (!LHS.isInvalid())
150 LHS = Actions.ActOnUnaryOp(getCurScope(), ExtLoc, tok::kw___extension__,
151 LHS.get());
152
153 return ParseRHSOfBinaryExpression(LHS, prec::Comma);
154 }
155
156 /// \brief Parse an expr that doesn't include (top-level) commas.
ParseAssignmentExpression(TypeCastState isTypeCast)157 ExprResult Parser::ParseAssignmentExpression(TypeCastState isTypeCast) {
158 if (Tok.is(tok::code_completion)) {
159 Actions.CodeCompleteOrdinaryName(getCurScope(), Sema::PCC_Expression);
160 cutOffParsing();
161 return ExprError();
162 }
163
164 if (Tok.is(tok::kw_throw))
165 return ParseThrowExpression();
166 if (Tok.is(tok::kw_co_yield))
167 return ParseCoyieldExpression();
168
169 ExprResult LHS = ParseCastExpression(/*isUnaryExpression=*/false,
170 /*isAddressOfOperand=*/false,
171 isTypeCast);
172 return ParseRHSOfBinaryExpression(LHS, prec::Assignment);
173 }
174
175 /// \brief Parse an assignment expression where part of an Objective-C message
176 /// send has already been parsed.
177 ///
178 /// In this case \p LBracLoc indicates the location of the '[' of the message
179 /// send, and either \p ReceiverName or \p ReceiverExpr is non-null indicating
180 /// the receiver of the message.
181 ///
182 /// Since this handles full assignment-expression's, it handles postfix
183 /// expressions and other binary operators for these expressions as well.
184 ExprResult
ParseAssignmentExprWithObjCMessageExprStart(SourceLocation LBracLoc,SourceLocation SuperLoc,ParsedType ReceiverType,Expr * ReceiverExpr)185 Parser::ParseAssignmentExprWithObjCMessageExprStart(SourceLocation LBracLoc,
186 SourceLocation SuperLoc,
187 ParsedType ReceiverType,
188 Expr *ReceiverExpr) {
189 ExprResult R
190 = ParseObjCMessageExpressionBody(LBracLoc, SuperLoc,
191 ReceiverType, ReceiverExpr);
192 R = ParsePostfixExpressionSuffix(R);
193 return ParseRHSOfBinaryExpression(R, prec::Assignment);
194 }
195
196
ParseConstantExpression(TypeCastState isTypeCast)197 ExprResult Parser::ParseConstantExpression(TypeCastState isTypeCast) {
198 // C++03 [basic.def.odr]p2:
199 // An expression is potentially evaluated unless it appears where an
200 // integral constant expression is required (see 5.19) [...].
201 // C++98 and C++11 have no such rule, but this is only a defect in C++98.
202 EnterExpressionEvaluationContext Unevaluated(Actions,
203 Sema::ConstantEvaluated);
204
205 ExprResult LHS(ParseCastExpression(false, false, isTypeCast));
206 ExprResult Res(ParseRHSOfBinaryExpression(LHS, prec::Conditional));
207 return Actions.ActOnConstantExpression(Res);
208 }
209
210 /// \brief Parse a constraint-expression.
211 ///
212 /// \verbatim
213 /// constraint-expression: [Concepts TS temp.constr.decl p1]
214 /// logical-or-expression
215 /// \endverbatim
ParseConstraintExpression()216 ExprResult Parser::ParseConstraintExpression() {
217 // FIXME: this may erroneously consume a function-body as the braced
218 // initializer list of a compound literal
219 //
220 // FIXME: this may erroneously consume a parenthesized rvalue reference
221 // declarator as a parenthesized address-of-label expression
222 ExprResult LHS(ParseCastExpression(/*isUnaryExpression=*/false));
223 ExprResult Res(ParseRHSOfBinaryExpression(LHS, prec::LogicalOr));
224
225 return Res;
226 }
227
isNotExpressionStart()228 bool Parser::isNotExpressionStart() {
229 tok::TokenKind K = Tok.getKind();
230 if (K == tok::l_brace || K == tok::r_brace ||
231 K == tok::kw_for || K == tok::kw_while ||
232 K == tok::kw_if || K == tok::kw_else ||
233 K == tok::kw_goto || K == tok::kw_try)
234 return true;
235 // If this is a decl-specifier, we can't be at the start of an expression.
236 return isKnownToBeDeclarationSpecifier();
237 }
238
isFoldOperator(prec::Level Level)239 static bool isFoldOperator(prec::Level Level) {
240 return Level > prec::Unknown && Level != prec::Conditional;
241 }
isFoldOperator(tok::TokenKind Kind)242 static bool isFoldOperator(tok::TokenKind Kind) {
243 return isFoldOperator(getBinOpPrecedence(Kind, false, true));
244 }
245
246 /// \brief Parse a binary expression that starts with \p LHS and has a
247 /// precedence of at least \p MinPrec.
248 ExprResult
ParseRHSOfBinaryExpression(ExprResult LHS,prec::Level MinPrec)249 Parser::ParseRHSOfBinaryExpression(ExprResult LHS, prec::Level MinPrec) {
250 prec::Level NextTokPrec = getBinOpPrecedence(Tok.getKind(),
251 GreaterThanIsOperator,
252 getLangOpts().CPlusPlus11);
253 SourceLocation ColonLoc;
254
255 while (1) {
256 // If this token has a lower precedence than we are allowed to parse (e.g.
257 // because we are called recursively, or because the token is not a binop),
258 // then we are done!
259 if (NextTokPrec < MinPrec)
260 return LHS;
261
262 // Consume the operator, saving the operator token for error reporting.
263 Token OpToken = Tok;
264 ConsumeToken();
265
266 // Bail out when encountering a comma followed by a token which can't
267 // possibly be the start of an expression. For instance:
268 // int f() { return 1, }
269 // We can't do this before consuming the comma, because
270 // isNotExpressionStart() looks at the token stream.
271 if (OpToken.is(tok::comma) && isNotExpressionStart()) {
272 PP.EnterToken(Tok);
273 Tok = OpToken;
274 return LHS;
275 }
276
277 // If the next token is an ellipsis, then this is a fold-expression. Leave
278 // it alone so we can handle it in the paren expression.
279 if (isFoldOperator(NextTokPrec) && Tok.is(tok::ellipsis)) {
280 // FIXME: We can't check this via lookahead before we consume the token
281 // because that tickles a lexer bug.
282 PP.EnterToken(Tok);
283 Tok = OpToken;
284 return LHS;
285 }
286
287 // Special case handling for the ternary operator.
288 ExprResult TernaryMiddle(true);
289 if (NextTokPrec == prec::Conditional) {
290 if (Tok.isNot(tok::colon)) {
291 // Don't parse FOO:BAR as if it were a typo for FOO::BAR.
292 ColonProtectionRAIIObject X(*this);
293
294 // Handle this production specially:
295 // logical-OR-expression '?' expression ':' conditional-expression
296 // In particular, the RHS of the '?' is 'expression', not
297 // 'logical-OR-expression' as we might expect.
298 TernaryMiddle = ParseExpression();
299 if (TernaryMiddle.isInvalid()) {
300 Actions.CorrectDelayedTyposInExpr(LHS);
301 LHS = ExprError();
302 TernaryMiddle = nullptr;
303 }
304 } else {
305 // Special case handling of "X ? Y : Z" where Y is empty:
306 // logical-OR-expression '?' ':' conditional-expression [GNU]
307 TernaryMiddle = nullptr;
308 Diag(Tok, diag::ext_gnu_conditional_expr);
309 }
310
311 if (!TryConsumeToken(tok::colon, ColonLoc)) {
312 // Otherwise, we're missing a ':'. Assume that this was a typo that
313 // the user forgot. If we're not in a macro expansion, we can suggest
314 // a fixit hint. If there were two spaces before the current token,
315 // suggest inserting the colon in between them, otherwise insert ": ".
316 SourceLocation FILoc = Tok.getLocation();
317 const char *FIText = ": ";
318 const SourceManager &SM = PP.getSourceManager();
319 if (FILoc.isFileID() || PP.isAtStartOfMacroExpansion(FILoc, &FILoc)) {
320 assert(FILoc.isFileID());
321 bool IsInvalid = false;
322 const char *SourcePtr =
323 SM.getCharacterData(FILoc.getLocWithOffset(-1), &IsInvalid);
324 if (!IsInvalid && *SourcePtr == ' ') {
325 SourcePtr =
326 SM.getCharacterData(FILoc.getLocWithOffset(-2), &IsInvalid);
327 if (!IsInvalid && *SourcePtr == ' ') {
328 FILoc = FILoc.getLocWithOffset(-1);
329 FIText = ":";
330 }
331 }
332 }
333
334 Diag(Tok, diag::err_expected)
335 << tok::colon << FixItHint::CreateInsertion(FILoc, FIText);
336 Diag(OpToken, diag::note_matching) << tok::question;
337 ColonLoc = Tok.getLocation();
338 }
339 }
340
341 // Code completion for the right-hand side of an assignment expression
342 // goes through a special hook that takes the left-hand side into account.
343 if (Tok.is(tok::code_completion) && NextTokPrec == prec::Assignment) {
344 Actions.CodeCompleteAssignmentRHS(getCurScope(), LHS.get());
345 cutOffParsing();
346 return ExprError();
347 }
348
349 // Parse another leaf here for the RHS of the operator.
350 // ParseCastExpression works here because all RHS expressions in C have it
351 // as a prefix, at least. However, in C++, an assignment-expression could
352 // be a throw-expression, which is not a valid cast-expression.
353 // Therefore we need some special-casing here.
354 // Also note that the third operand of the conditional operator is
355 // an assignment-expression in C++, and in C++11, we can have a
356 // braced-init-list on the RHS of an assignment. For better diagnostics,
357 // parse as if we were allowed braced-init-lists everywhere, and check that
358 // they only appear on the RHS of assignments later.
359 ExprResult RHS;
360 bool RHSIsInitList = false;
361 if (getLangOpts().CPlusPlus11 && Tok.is(tok::l_brace)) {
362 RHS = ParseBraceInitializer();
363 RHSIsInitList = true;
364 } else if (getLangOpts().CPlusPlus && NextTokPrec <= prec::Conditional)
365 RHS = ParseAssignmentExpression();
366 else
367 RHS = ParseCastExpression(false);
368
369 if (RHS.isInvalid()) {
370 // FIXME: Errors generated by the delayed typo correction should be
371 // printed before errors from parsing the RHS, not after.
372 Actions.CorrectDelayedTyposInExpr(LHS);
373 if (TernaryMiddle.isUsable())
374 TernaryMiddle = Actions.CorrectDelayedTyposInExpr(TernaryMiddle);
375 LHS = ExprError();
376 }
377
378 // Remember the precedence of this operator and get the precedence of the
379 // operator immediately to the right of the RHS.
380 prec::Level ThisPrec = NextTokPrec;
381 NextTokPrec = getBinOpPrecedence(Tok.getKind(), GreaterThanIsOperator,
382 getLangOpts().CPlusPlus11);
383
384 // Assignment and conditional expressions are right-associative.
385 bool isRightAssoc = ThisPrec == prec::Conditional ||
386 ThisPrec == prec::Assignment;
387
388 // Get the precedence of the operator to the right of the RHS. If it binds
389 // more tightly with RHS than we do, evaluate it completely first.
390 if (ThisPrec < NextTokPrec ||
391 (ThisPrec == NextTokPrec && isRightAssoc)) {
392 if (!RHS.isInvalid() && RHSIsInitList) {
393 Diag(Tok, diag::err_init_list_bin_op)
394 << /*LHS*/0 << PP.getSpelling(Tok) << Actions.getExprRange(RHS.get());
395 RHS = ExprError();
396 }
397 // If this is left-associative, only parse things on the RHS that bind
398 // more tightly than the current operator. If it is left-associative, it
399 // is okay, to bind exactly as tightly. For example, compile A=B=C=D as
400 // A=(B=(C=D)), where each paren is a level of recursion here.
401 // The function takes ownership of the RHS.
402 RHS = ParseRHSOfBinaryExpression(RHS,
403 static_cast<prec::Level>(ThisPrec + !isRightAssoc));
404 RHSIsInitList = false;
405
406 if (RHS.isInvalid()) {
407 // FIXME: Errors generated by the delayed typo correction should be
408 // printed before errors from ParseRHSOfBinaryExpression, not after.
409 Actions.CorrectDelayedTyposInExpr(LHS);
410 if (TernaryMiddle.isUsable())
411 TernaryMiddle = Actions.CorrectDelayedTyposInExpr(TernaryMiddle);
412 LHS = ExprError();
413 }
414
415 NextTokPrec = getBinOpPrecedence(Tok.getKind(), GreaterThanIsOperator,
416 getLangOpts().CPlusPlus11);
417 }
418
419 if (!RHS.isInvalid() && RHSIsInitList) {
420 if (ThisPrec == prec::Assignment) {
421 Diag(OpToken, diag::warn_cxx98_compat_generalized_initializer_lists)
422 << Actions.getExprRange(RHS.get());
423 } else {
424 Diag(OpToken, diag::err_init_list_bin_op)
425 << /*RHS*/1 << PP.getSpelling(OpToken)
426 << Actions.getExprRange(RHS.get());
427 LHS = ExprError();
428 }
429 }
430
431 if (!LHS.isInvalid()) {
432 // Combine the LHS and RHS into the LHS (e.g. build AST).
433 if (TernaryMiddle.isInvalid()) {
434 // If we're using '>>' as an operator within a template
435 // argument list (in C++98), suggest the addition of
436 // parentheses so that the code remains well-formed in C++0x.
437 if (!GreaterThanIsOperator && OpToken.is(tok::greatergreater))
438 SuggestParentheses(OpToken.getLocation(),
439 diag::warn_cxx11_right_shift_in_template_arg,
440 SourceRange(Actions.getExprRange(LHS.get()).getBegin(),
441 Actions.getExprRange(RHS.get()).getEnd()));
442
443 LHS = Actions.ActOnBinOp(getCurScope(), OpToken.getLocation(),
444 OpToken.getKind(), LHS.get(), RHS.get());
445 } else
446 LHS = Actions.ActOnConditionalOp(OpToken.getLocation(), ColonLoc,
447 LHS.get(), TernaryMiddle.get(),
448 RHS.get());
449 } else
450 // Ensure potential typos in the RHS aren't left undiagnosed.
451 Actions.CorrectDelayedTyposInExpr(RHS);
452 }
453 }
454
455 /// \brief Parse a cast-expression, or, if \p isUnaryExpression is true,
456 /// parse a unary-expression.
457 ///
458 /// \p isAddressOfOperand exists because an id-expression that is the
459 /// operand of address-of gets special treatment due to member pointers.
460 ///
ParseCastExpression(bool isUnaryExpression,bool isAddressOfOperand,TypeCastState isTypeCast)461 ExprResult Parser::ParseCastExpression(bool isUnaryExpression,
462 bool isAddressOfOperand,
463 TypeCastState isTypeCast) {
464 bool NotCastExpr;
465 ExprResult Res = ParseCastExpression(isUnaryExpression,
466 isAddressOfOperand,
467 NotCastExpr,
468 isTypeCast);
469 if (NotCastExpr)
470 Diag(Tok, diag::err_expected_expression);
471 return Res;
472 }
473
474 namespace {
475 class CastExpressionIdValidator : public CorrectionCandidateCallback {
476 public:
CastExpressionIdValidator(Token Next,bool AllowTypes,bool AllowNonTypes)477 CastExpressionIdValidator(Token Next, bool AllowTypes, bool AllowNonTypes)
478 : NextToken(Next), AllowNonTypes(AllowNonTypes) {
479 WantTypeSpecifiers = WantFunctionLikeCasts = AllowTypes;
480 }
481
ValidateCandidate(const TypoCorrection & candidate)482 bool ValidateCandidate(const TypoCorrection &candidate) override {
483 NamedDecl *ND = candidate.getCorrectionDecl();
484 if (!ND)
485 return candidate.isKeyword();
486
487 if (isa<TypeDecl>(ND))
488 return WantTypeSpecifiers;
489
490 if (!AllowNonTypes || !CorrectionCandidateCallback::ValidateCandidate(candidate))
491 return false;
492
493 if (!NextToken.isOneOf(tok::equal, tok::arrow, tok::period))
494 return true;
495
496 for (auto *C : candidate) {
497 NamedDecl *ND = C->getUnderlyingDecl();
498 if (isa<ValueDecl>(ND) && !isa<FunctionDecl>(ND))
499 return true;
500 }
501 return false;
502 }
503
504 private:
505 Token NextToken;
506 bool AllowNonTypes;
507 };
508 }
509
510 /// \brief Parse a cast-expression, or, if \pisUnaryExpression is true, parse
511 /// a unary-expression.
512 ///
513 /// \p isAddressOfOperand exists because an id-expression that is the operand
514 /// of address-of gets special treatment due to member pointers. NotCastExpr
515 /// is set to true if the token is not the start of a cast-expression, and no
516 /// diagnostic is emitted in this case.
517 ///
518 /// \verbatim
519 /// cast-expression: [C99 6.5.4]
520 /// unary-expression
521 /// '(' type-name ')' cast-expression
522 ///
523 /// unary-expression: [C99 6.5.3]
524 /// postfix-expression
525 /// '++' unary-expression
526 /// '--' unary-expression
527 /// [Coro] 'co_await' cast-expression
528 /// unary-operator cast-expression
529 /// 'sizeof' unary-expression
530 /// 'sizeof' '(' type-name ')'
531 /// [C++11] 'sizeof' '...' '(' identifier ')'
532 /// [GNU] '__alignof' unary-expression
533 /// [GNU] '__alignof' '(' type-name ')'
534 /// [C11] '_Alignof' '(' type-name ')'
535 /// [C++11] 'alignof' '(' type-id ')'
536 /// [GNU] '&&' identifier
537 /// [C++11] 'noexcept' '(' expression ')' [C++11 5.3.7]
538 /// [C++] new-expression
539 /// [C++] delete-expression
540 ///
541 /// unary-operator: one of
542 /// '&' '*' '+' '-' '~' '!'
543 /// [GNU] '__extension__' '__real' '__imag'
544 ///
545 /// primary-expression: [C99 6.5.1]
546 /// [C99] identifier
547 /// [C++] id-expression
548 /// constant
549 /// string-literal
550 /// [C++] boolean-literal [C++ 2.13.5]
551 /// [C++11] 'nullptr' [C++11 2.14.7]
552 /// [C++11] user-defined-literal
553 /// '(' expression ')'
554 /// [C11] generic-selection
555 /// '__func__' [C99 6.4.2.2]
556 /// [GNU] '__FUNCTION__'
557 /// [MS] '__FUNCDNAME__'
558 /// [MS] 'L__FUNCTION__'
559 /// [GNU] '__PRETTY_FUNCTION__'
560 /// [GNU] '(' compound-statement ')'
561 /// [GNU] '__builtin_va_arg' '(' assignment-expression ',' type-name ')'
562 /// [GNU] '__builtin_offsetof' '(' type-name ',' offsetof-member-designator')'
563 /// [GNU] '__builtin_choose_expr' '(' assign-expr ',' assign-expr ','
564 /// assign-expr ')'
565 /// [GNU] '__builtin_types_compatible_p' '(' type-name ',' type-name ')'
566 /// [GNU] '__null'
567 /// [OBJC] '[' objc-message-expr ']'
568 /// [OBJC] '\@selector' '(' objc-selector-arg ')'
569 /// [OBJC] '\@protocol' '(' identifier ')'
570 /// [OBJC] '\@encode' '(' type-name ')'
571 /// [OBJC] objc-string-literal
572 /// [C++] simple-type-specifier '(' expression-list[opt] ')' [C++ 5.2.3]
573 /// [C++11] simple-type-specifier braced-init-list [C++11 5.2.3]
574 /// [C++] typename-specifier '(' expression-list[opt] ')' [C++ 5.2.3]
575 /// [C++11] typename-specifier braced-init-list [C++11 5.2.3]
576 /// [C++] 'const_cast' '<' type-name '>' '(' expression ')' [C++ 5.2p1]
577 /// [C++] 'dynamic_cast' '<' type-name '>' '(' expression ')' [C++ 5.2p1]
578 /// [C++] 'reinterpret_cast' '<' type-name '>' '(' expression ')' [C++ 5.2p1]
579 /// [C++] 'static_cast' '<' type-name '>' '(' expression ')' [C++ 5.2p1]
580 /// [C++] 'typeid' '(' expression ')' [C++ 5.2p1]
581 /// [C++] 'typeid' '(' type-id ')' [C++ 5.2p1]
582 /// [C++] 'this' [C++ 9.3.2]
583 /// [G++] unary-type-trait '(' type-id ')'
584 /// [G++] binary-type-trait '(' type-id ',' type-id ')' [TODO]
585 /// [EMBT] array-type-trait '(' type-id ',' integer ')'
586 /// [clang] '^' block-literal
587 ///
588 /// constant: [C99 6.4.4]
589 /// integer-constant
590 /// floating-constant
591 /// enumeration-constant -> identifier
592 /// character-constant
593 ///
594 /// id-expression: [C++ 5.1]
595 /// unqualified-id
596 /// qualified-id
597 ///
598 /// unqualified-id: [C++ 5.1]
599 /// identifier
600 /// operator-function-id
601 /// conversion-function-id
602 /// '~' class-name
603 /// template-id
604 ///
605 /// new-expression: [C++ 5.3.4]
606 /// '::'[opt] 'new' new-placement[opt] new-type-id
607 /// new-initializer[opt]
608 /// '::'[opt] 'new' new-placement[opt] '(' type-id ')'
609 /// new-initializer[opt]
610 ///
611 /// delete-expression: [C++ 5.3.5]
612 /// '::'[opt] 'delete' cast-expression
613 /// '::'[opt] 'delete' '[' ']' cast-expression
614 ///
615 /// [GNU/Embarcadero] unary-type-trait:
616 /// '__is_arithmetic'
617 /// '__is_floating_point'
618 /// '__is_integral'
619 /// '__is_lvalue_expr'
620 /// '__is_rvalue_expr'
621 /// '__is_complete_type'
622 /// '__is_void'
623 /// '__is_array'
624 /// '__is_function'
625 /// '__is_reference'
626 /// '__is_lvalue_reference'
627 /// '__is_rvalue_reference'
628 /// '__is_fundamental'
629 /// '__is_object'
630 /// '__is_scalar'
631 /// '__is_compound'
632 /// '__is_pointer'
633 /// '__is_member_object_pointer'
634 /// '__is_member_function_pointer'
635 /// '__is_member_pointer'
636 /// '__is_const'
637 /// '__is_volatile'
638 /// '__is_trivial'
639 /// '__is_standard_layout'
640 /// '__is_signed'
641 /// '__is_unsigned'
642 ///
643 /// [GNU] unary-type-trait:
644 /// '__has_nothrow_assign'
645 /// '__has_nothrow_copy'
646 /// '__has_nothrow_constructor'
647 /// '__has_trivial_assign' [TODO]
648 /// '__has_trivial_copy' [TODO]
649 /// '__has_trivial_constructor'
650 /// '__has_trivial_destructor'
651 /// '__has_virtual_destructor'
652 /// '__is_abstract' [TODO]
653 /// '__is_class'
654 /// '__is_empty' [TODO]
655 /// '__is_enum'
656 /// '__is_final'
657 /// '__is_pod'
658 /// '__is_polymorphic'
659 /// '__is_sealed' [MS]
660 /// '__is_trivial'
661 /// '__is_union'
662 ///
663 /// [Clang] unary-type-trait:
664 /// '__trivially_copyable'
665 ///
666 /// binary-type-trait:
667 /// [GNU] '__is_base_of'
668 /// [MS] '__is_convertible_to'
669 /// '__is_convertible'
670 /// '__is_same'
671 ///
672 /// [Embarcadero] array-type-trait:
673 /// '__array_rank'
674 /// '__array_extent'
675 ///
676 /// [Embarcadero] expression-trait:
677 /// '__is_lvalue_expr'
678 /// '__is_rvalue_expr'
679 /// \endverbatim
680 ///
ParseCastExpression(bool isUnaryExpression,bool isAddressOfOperand,bool & NotCastExpr,TypeCastState isTypeCast)681 ExprResult Parser::ParseCastExpression(bool isUnaryExpression,
682 bool isAddressOfOperand,
683 bool &NotCastExpr,
684 TypeCastState isTypeCast) {
685 ExprResult Res;
686 tok::TokenKind SavedKind = Tok.getKind();
687 NotCastExpr = false;
688
689 // This handles all of cast-expression, unary-expression, postfix-expression,
690 // and primary-expression. We handle them together like this for efficiency
691 // and to simplify handling of an expression starting with a '(' token: which
692 // may be one of a parenthesized expression, cast-expression, compound literal
693 // expression, or statement expression.
694 //
695 // If the parsed tokens consist of a primary-expression, the cases below
696 // break out of the switch; at the end we call ParsePostfixExpressionSuffix
697 // to handle the postfix expression suffixes. Cases that cannot be followed
698 // by postfix exprs should return without invoking
699 // ParsePostfixExpressionSuffix.
700 switch (SavedKind) {
701 case tok::l_paren: {
702 // If this expression is limited to being a unary-expression, the parent can
703 // not start a cast expression.
704 ParenParseOption ParenExprType =
705 (isUnaryExpression && !getLangOpts().CPlusPlus) ? CompoundLiteral
706 : CastExpr;
707 ParsedType CastTy;
708 SourceLocation RParenLoc;
709 Res = ParseParenExpression(ParenExprType, false/*stopIfCastExr*/,
710 isTypeCast == IsTypeCast, CastTy, RParenLoc);
711
712 switch (ParenExprType) {
713 case SimpleExpr: break; // Nothing else to do.
714 case CompoundStmt: break; // Nothing else to do.
715 case CompoundLiteral:
716 // We parsed '(' type-name ')' '{' ... '}'. If any suffixes of
717 // postfix-expression exist, parse them now.
718 break;
719 case CastExpr:
720 // We have parsed the cast-expression and no postfix-expr pieces are
721 // following.
722 return Res;
723 }
724
725 break;
726 }
727
728 // primary-expression
729 case tok::numeric_constant:
730 // constant: integer-constant
731 // constant: floating-constant
732
733 Res = Actions.ActOnNumericConstant(Tok, /*UDLScope*/getCurScope());
734 ConsumeToken();
735 break;
736
737 case tok::kw_true:
738 case tok::kw_false:
739 return ParseCXXBoolLiteral();
740
741 case tok::kw___objc_yes:
742 case tok::kw___objc_no:
743 return ParseObjCBoolLiteral();
744
745 case tok::kw_nullptr:
746 Diag(Tok, diag::warn_cxx98_compat_nullptr);
747 return Actions.ActOnCXXNullPtrLiteral(ConsumeToken());
748
749 case tok::annot_primary_expr:
750 assert(Res.get() == nullptr && "Stray primary-expression annotation?");
751 Res = getExprAnnotation(Tok);
752 ConsumeToken();
753 break;
754
755 case tok::kw___super:
756 case tok::kw_decltype:
757 // Annotate the token and tail recurse.
758 if (TryAnnotateTypeOrScopeToken())
759 return ExprError();
760 assert(Tok.isNot(tok::kw_decltype) && Tok.isNot(tok::kw___super));
761 return ParseCastExpression(isUnaryExpression, isAddressOfOperand);
762
763 case tok::identifier: { // primary-expression: identifier
764 // unqualified-id: identifier
765 // constant: enumeration-constant
766 // Turn a potentially qualified name into a annot_typename or
767 // annot_cxxscope if it would be valid. This handles things like x::y, etc.
768 if (getLangOpts().CPlusPlus) {
769 // Avoid the unnecessary parse-time lookup in the common case
770 // where the syntax forbids a type.
771 const Token &Next = NextToken();
772
773 // If this identifier was reverted from a token ID, and the next token
774 // is a parenthesis, this is likely to be a use of a type trait. Check
775 // those tokens.
776 if (Next.is(tok::l_paren) &&
777 Tok.is(tok::identifier) &&
778 Tok.getIdentifierInfo()->hasRevertedTokenIDToIdentifier()) {
779 IdentifierInfo *II = Tok.getIdentifierInfo();
780 // Build up the mapping of revertible type traits, for future use.
781 if (RevertibleTypeTraits.empty()) {
782 #define RTT_JOIN(X,Y) X##Y
783 #define REVERTIBLE_TYPE_TRAIT(Name) \
784 RevertibleTypeTraits[PP.getIdentifierInfo(#Name)] \
785 = RTT_JOIN(tok::kw_,Name)
786
787 REVERTIBLE_TYPE_TRAIT(__is_abstract);
788 REVERTIBLE_TYPE_TRAIT(__is_arithmetic);
789 REVERTIBLE_TYPE_TRAIT(__is_array);
790 REVERTIBLE_TYPE_TRAIT(__is_base_of);
791 REVERTIBLE_TYPE_TRAIT(__is_class);
792 REVERTIBLE_TYPE_TRAIT(__is_complete_type);
793 REVERTIBLE_TYPE_TRAIT(__is_compound);
794 REVERTIBLE_TYPE_TRAIT(__is_const);
795 REVERTIBLE_TYPE_TRAIT(__is_constructible);
796 REVERTIBLE_TYPE_TRAIT(__is_convertible);
797 REVERTIBLE_TYPE_TRAIT(__is_convertible_to);
798 REVERTIBLE_TYPE_TRAIT(__is_destructible);
799 REVERTIBLE_TYPE_TRAIT(__is_empty);
800 REVERTIBLE_TYPE_TRAIT(__is_enum);
801 REVERTIBLE_TYPE_TRAIT(__is_floating_point);
802 REVERTIBLE_TYPE_TRAIT(__is_final);
803 REVERTIBLE_TYPE_TRAIT(__is_function);
804 REVERTIBLE_TYPE_TRAIT(__is_fundamental);
805 REVERTIBLE_TYPE_TRAIT(__is_integral);
806 REVERTIBLE_TYPE_TRAIT(__is_interface_class);
807 REVERTIBLE_TYPE_TRAIT(__is_literal);
808 REVERTIBLE_TYPE_TRAIT(__is_lvalue_expr);
809 REVERTIBLE_TYPE_TRAIT(__is_lvalue_reference);
810 REVERTIBLE_TYPE_TRAIT(__is_member_function_pointer);
811 REVERTIBLE_TYPE_TRAIT(__is_member_object_pointer);
812 REVERTIBLE_TYPE_TRAIT(__is_member_pointer);
813 REVERTIBLE_TYPE_TRAIT(__is_nothrow_assignable);
814 REVERTIBLE_TYPE_TRAIT(__is_nothrow_constructible);
815 REVERTIBLE_TYPE_TRAIT(__is_nothrow_destructible);
816 REVERTIBLE_TYPE_TRAIT(__is_object);
817 REVERTIBLE_TYPE_TRAIT(__is_pod);
818 REVERTIBLE_TYPE_TRAIT(__is_pointer);
819 REVERTIBLE_TYPE_TRAIT(__is_polymorphic);
820 REVERTIBLE_TYPE_TRAIT(__is_reference);
821 REVERTIBLE_TYPE_TRAIT(__is_rvalue_expr);
822 REVERTIBLE_TYPE_TRAIT(__is_rvalue_reference);
823 REVERTIBLE_TYPE_TRAIT(__is_same);
824 REVERTIBLE_TYPE_TRAIT(__is_scalar);
825 REVERTIBLE_TYPE_TRAIT(__is_sealed);
826 REVERTIBLE_TYPE_TRAIT(__is_signed);
827 REVERTIBLE_TYPE_TRAIT(__is_standard_layout);
828 REVERTIBLE_TYPE_TRAIT(__is_trivial);
829 REVERTIBLE_TYPE_TRAIT(__is_trivially_assignable);
830 REVERTIBLE_TYPE_TRAIT(__is_trivially_constructible);
831 REVERTIBLE_TYPE_TRAIT(__is_trivially_copyable);
832 REVERTIBLE_TYPE_TRAIT(__is_union);
833 REVERTIBLE_TYPE_TRAIT(__is_unsigned);
834 REVERTIBLE_TYPE_TRAIT(__is_void);
835 REVERTIBLE_TYPE_TRAIT(__is_volatile);
836 #undef REVERTIBLE_TYPE_TRAIT
837 #undef RTT_JOIN
838 }
839
840 // If we find that this is in fact the name of a type trait,
841 // update the token kind in place and parse again to treat it as
842 // the appropriate kind of type trait.
843 llvm::SmallDenseMap<IdentifierInfo *, tok::TokenKind>::iterator Known
844 = RevertibleTypeTraits.find(II);
845 if (Known != RevertibleTypeTraits.end()) {
846 Tok.setKind(Known->second);
847 return ParseCastExpression(isUnaryExpression, isAddressOfOperand,
848 NotCastExpr, isTypeCast);
849 }
850 }
851
852 if ((!ColonIsSacred && Next.is(tok::colon)) ||
853 Next.isOneOf(tok::coloncolon, tok::less, tok::l_paren,
854 tok::l_brace)) {
855 // If TryAnnotateTypeOrScopeToken annotates the token, tail recurse.
856 if (TryAnnotateTypeOrScopeToken())
857 return ExprError();
858 if (!Tok.is(tok::identifier))
859 return ParseCastExpression(isUnaryExpression, isAddressOfOperand);
860 }
861 }
862
863 // Consume the identifier so that we can see if it is followed by a '(' or
864 // '.'.
865 IdentifierInfo &II = *Tok.getIdentifierInfo();
866 SourceLocation ILoc = ConsumeToken();
867
868 // Support 'Class.property' and 'super.property' notation.
869 if (getLangOpts().ObjC1 && Tok.is(tok::period) &&
870 (Actions.getTypeName(II, ILoc, getCurScope()) ||
871 // Allow the base to be 'super' if in an objc-method.
872 (&II == Ident_super && getCurScope()->isInObjcMethodScope()))) {
873 ConsumeToken();
874
875 // Allow either an identifier or the keyword 'class' (in C++).
876 if (Tok.isNot(tok::identifier) &&
877 !(getLangOpts().CPlusPlus && Tok.is(tok::kw_class))) {
878 Diag(Tok, diag::err_expected_property_name);
879 return ExprError();
880 }
881 IdentifierInfo &PropertyName = *Tok.getIdentifierInfo();
882 SourceLocation PropertyLoc = ConsumeToken();
883
884 Res = Actions.ActOnClassPropertyRefExpr(II, PropertyName,
885 ILoc, PropertyLoc);
886 break;
887 }
888
889 // In an Objective-C method, if we have "super" followed by an identifier,
890 // the token sequence is ill-formed. However, if there's a ':' or ']' after
891 // that identifier, this is probably a message send with a missing open
892 // bracket. Treat it as such.
893 if (getLangOpts().ObjC1 && &II == Ident_super && !InMessageExpression &&
894 getCurScope()->isInObjcMethodScope() &&
895 ((Tok.is(tok::identifier) &&
896 (NextToken().is(tok::colon) || NextToken().is(tok::r_square))) ||
897 Tok.is(tok::code_completion))) {
898 Res = ParseObjCMessageExpressionBody(SourceLocation(), ILoc, ParsedType(),
899 nullptr);
900 break;
901 }
902
903 // If we have an Objective-C class name followed by an identifier
904 // and either ':' or ']', this is an Objective-C class message
905 // send that's missing the opening '['. Recovery
906 // appropriately. Also take this path if we're performing code
907 // completion after an Objective-C class name.
908 if (getLangOpts().ObjC1 &&
909 ((Tok.is(tok::identifier) && !InMessageExpression) ||
910 Tok.is(tok::code_completion))) {
911 const Token& Next = NextToken();
912 if (Tok.is(tok::code_completion) ||
913 Next.is(tok::colon) || Next.is(tok::r_square))
914 if (ParsedType Typ = Actions.getTypeName(II, ILoc, getCurScope()))
915 if (Typ.get()->isObjCObjectOrInterfaceType()) {
916 // Fake up a Declarator to use with ActOnTypeName.
917 DeclSpec DS(AttrFactory);
918 DS.SetRangeStart(ILoc);
919 DS.SetRangeEnd(ILoc);
920 const char *PrevSpec = nullptr;
921 unsigned DiagID;
922 DS.SetTypeSpecType(TST_typename, ILoc, PrevSpec, DiagID, Typ,
923 Actions.getASTContext().getPrintingPolicy());
924
925 Declarator DeclaratorInfo(DS, Declarator::TypeNameContext);
926 TypeResult Ty = Actions.ActOnTypeName(getCurScope(),
927 DeclaratorInfo);
928 if (Ty.isInvalid())
929 break;
930
931 Res = ParseObjCMessageExpressionBody(SourceLocation(),
932 SourceLocation(),
933 Ty.get(), nullptr);
934 break;
935 }
936 }
937
938 // Make sure to pass down the right value for isAddressOfOperand.
939 if (isAddressOfOperand && isPostfixExpressionSuffixStart())
940 isAddressOfOperand = false;
941
942 // Function designators are allowed to be undeclared (C99 6.5.1p2), so we
943 // need to know whether or not this identifier is a function designator or
944 // not.
945 UnqualifiedId Name;
946 CXXScopeSpec ScopeSpec;
947 SourceLocation TemplateKWLoc;
948 Token Replacement;
949 auto Validator = llvm::make_unique<CastExpressionIdValidator>(
950 Tok, isTypeCast != NotTypeCast, isTypeCast != IsTypeCast);
951 Validator->IsAddressOfOperand = isAddressOfOperand;
952 if (Tok.isOneOf(tok::periodstar, tok::arrowstar)) {
953 Validator->WantExpressionKeywords = false;
954 Validator->WantRemainingKeywords = false;
955 } else {
956 Validator->WantRemainingKeywords = Tok.isNot(tok::r_paren);
957 }
958 Name.setIdentifier(&II, ILoc);
959 Res = Actions.ActOnIdExpression(
960 getCurScope(), ScopeSpec, TemplateKWLoc, Name, Tok.is(tok::l_paren),
961 isAddressOfOperand, std::move(Validator),
962 /*IsInlineAsmIdentifier=*/false,
963 Tok.is(tok::r_paren) ? nullptr : &Replacement);
964 if (!Res.isInvalid() && !Res.get()) {
965 UnconsumeToken(Replacement);
966 return ParseCastExpression(isUnaryExpression, isAddressOfOperand,
967 NotCastExpr, isTypeCast);
968 }
969 break;
970 }
971 case tok::char_constant: // constant: character-constant
972 case tok::wide_char_constant:
973 case tok::utf8_char_constant:
974 case tok::utf16_char_constant:
975 case tok::utf32_char_constant:
976 Res = Actions.ActOnCharacterConstant(Tok, /*UDLScope*/getCurScope());
977 ConsumeToken();
978 break;
979 case tok::kw___func__: // primary-expression: __func__ [C99 6.4.2.2]
980 case tok::kw___FUNCTION__: // primary-expression: __FUNCTION__ [GNU]
981 case tok::kw___FUNCDNAME__: // primary-expression: __FUNCDNAME__ [MS]
982 case tok::kw___FUNCSIG__: // primary-expression: __FUNCSIG__ [MS]
983 case tok::kw_L__FUNCTION__: // primary-expression: L__FUNCTION__ [MS]
984 case tok::kw___PRETTY_FUNCTION__: // primary-expression: __P..Y_F..N__ [GNU]
985 Res = Actions.ActOnPredefinedExpr(Tok.getLocation(), SavedKind);
986 ConsumeToken();
987 break;
988 case tok::string_literal: // primary-expression: string-literal
989 case tok::wide_string_literal:
990 case tok::utf8_string_literal:
991 case tok::utf16_string_literal:
992 case tok::utf32_string_literal:
993 Res = ParseStringLiteralExpression(true);
994 break;
995 case tok::kw__Generic: // primary-expression: generic-selection [C11 6.5.1]
996 Res = ParseGenericSelectionExpression();
997 break;
998 case tok::kw___builtin_va_arg:
999 case tok::kw___builtin_offsetof:
1000 case tok::kw___builtin_choose_expr:
1001 case tok::kw___builtin_astype: // primary-expression: [OCL] as_type()
1002 case tok::kw___builtin_convertvector:
1003 return ParseBuiltinPrimaryExpression();
1004 case tok::kw___null:
1005 return Actions.ActOnGNUNullExpr(ConsumeToken());
1006
1007 case tok::plusplus: // unary-expression: '++' unary-expression [C99]
1008 case tok::minusminus: { // unary-expression: '--' unary-expression [C99]
1009 // C++ [expr.unary] has:
1010 // unary-expression:
1011 // ++ cast-expression
1012 // -- cast-expression
1013 SourceLocation SavedLoc = ConsumeToken();
1014 // One special case is implicitly handled here: if the preceding tokens are
1015 // an ambiguous cast expression, such as "(T())++", then we recurse to
1016 // determine whether the '++' is prefix or postfix.
1017 Res = ParseCastExpression(!getLangOpts().CPlusPlus,
1018 /*isAddressOfOperand*/false, NotCastExpr,
1019 NotTypeCast);
1020 if (!Res.isInvalid())
1021 Res = Actions.ActOnUnaryOp(getCurScope(), SavedLoc, SavedKind, Res.get());
1022 return Res;
1023 }
1024 case tok::amp: { // unary-expression: '&' cast-expression
1025 // Special treatment because of member pointers
1026 SourceLocation SavedLoc = ConsumeToken();
1027 Res = ParseCastExpression(false, true);
1028 if (!Res.isInvalid())
1029 Res = Actions.ActOnUnaryOp(getCurScope(), SavedLoc, SavedKind, Res.get());
1030 return Res;
1031 }
1032
1033 case tok::star: // unary-expression: '*' cast-expression
1034 case tok::plus: // unary-expression: '+' cast-expression
1035 case tok::minus: // unary-expression: '-' cast-expression
1036 case tok::tilde: // unary-expression: '~' cast-expression
1037 case tok::exclaim: // unary-expression: '!' cast-expression
1038 case tok::kw___real: // unary-expression: '__real' cast-expression [GNU]
1039 case tok::kw___imag: { // unary-expression: '__imag' cast-expression [GNU]
1040 SourceLocation SavedLoc = ConsumeToken();
1041 Res = ParseCastExpression(false);
1042 if (!Res.isInvalid())
1043 Res = Actions.ActOnUnaryOp(getCurScope(), SavedLoc, SavedKind, Res.get());
1044 return Res;
1045 }
1046
1047 case tok::kw_co_await: { // unary-expression: 'co_await' cast-expression
1048 SourceLocation CoawaitLoc = ConsumeToken();
1049 Res = ParseCastExpression(false);
1050 if (!Res.isInvalid())
1051 Res = Actions.ActOnCoawaitExpr(getCurScope(), CoawaitLoc, Res.get());
1052 return Res;
1053 }
1054
1055 case tok::kw___extension__:{//unary-expression:'__extension__' cast-expr [GNU]
1056 // __extension__ silences extension warnings in the subexpression.
1057 ExtensionRAIIObject O(Diags); // Use RAII to do this.
1058 SourceLocation SavedLoc = ConsumeToken();
1059 Res = ParseCastExpression(false);
1060 if (!Res.isInvalid())
1061 Res = Actions.ActOnUnaryOp(getCurScope(), SavedLoc, SavedKind, Res.get());
1062 return Res;
1063 }
1064 case tok::kw__Alignof: // unary-expression: '_Alignof' '(' type-name ')'
1065 if (!getLangOpts().C11)
1066 Diag(Tok, diag::ext_c11_alignment) << Tok.getName();
1067 // fallthrough
1068 case tok::kw_alignof: // unary-expression: 'alignof' '(' type-id ')'
1069 case tok::kw___alignof: // unary-expression: '__alignof' unary-expression
1070 // unary-expression: '__alignof' '(' type-name ')'
1071 case tok::kw_sizeof: // unary-expression: 'sizeof' unary-expression
1072 // unary-expression: 'sizeof' '(' type-name ')'
1073 case tok::kw_vec_step: // unary-expression: OpenCL 'vec_step' expression
1074 // unary-expression: '__builtin_omp_required_simd_align' '(' type-name ')'
1075 case tok::kw___builtin_omp_required_simd_align:
1076 return ParseUnaryExprOrTypeTraitExpression();
1077 case tok::ampamp: { // unary-expression: '&&' identifier
1078 SourceLocation AmpAmpLoc = ConsumeToken();
1079 if (Tok.isNot(tok::identifier))
1080 return ExprError(Diag(Tok, diag::err_expected) << tok::identifier);
1081
1082 if (getCurScope()->getFnParent() == nullptr)
1083 return ExprError(Diag(Tok, diag::err_address_of_label_outside_fn));
1084
1085 Diag(AmpAmpLoc, diag::ext_gnu_address_of_label);
1086 LabelDecl *LD = Actions.LookupOrCreateLabel(Tok.getIdentifierInfo(),
1087 Tok.getLocation());
1088 Res = Actions.ActOnAddrLabel(AmpAmpLoc, Tok.getLocation(), LD);
1089 ConsumeToken();
1090 return Res;
1091 }
1092 case tok::kw_const_cast:
1093 case tok::kw_dynamic_cast:
1094 case tok::kw_reinterpret_cast:
1095 case tok::kw_static_cast:
1096 Res = ParseCXXCasts();
1097 break;
1098 case tok::kw_typeid:
1099 Res = ParseCXXTypeid();
1100 break;
1101 case tok::kw___uuidof:
1102 Res = ParseCXXUuidof();
1103 break;
1104 case tok::kw_this:
1105 Res = ParseCXXThis();
1106 break;
1107
1108 case tok::annot_typename:
1109 if (isStartOfObjCClassMessageMissingOpenBracket()) {
1110 ParsedType Type = getTypeAnnotation(Tok);
1111
1112 // Fake up a Declarator to use with ActOnTypeName.
1113 DeclSpec DS(AttrFactory);
1114 DS.SetRangeStart(Tok.getLocation());
1115 DS.SetRangeEnd(Tok.getLastLoc());
1116
1117 const char *PrevSpec = nullptr;
1118 unsigned DiagID;
1119 DS.SetTypeSpecType(TST_typename, Tok.getAnnotationEndLoc(),
1120 PrevSpec, DiagID, Type,
1121 Actions.getASTContext().getPrintingPolicy());
1122
1123 Declarator DeclaratorInfo(DS, Declarator::TypeNameContext);
1124 TypeResult Ty = Actions.ActOnTypeName(getCurScope(), DeclaratorInfo);
1125 if (Ty.isInvalid())
1126 break;
1127
1128 ConsumeToken();
1129 Res = ParseObjCMessageExpressionBody(SourceLocation(), SourceLocation(),
1130 Ty.get(), nullptr);
1131 break;
1132 }
1133 // Fall through
1134
1135 case tok::annot_decltype:
1136 case tok::kw_char:
1137 case tok::kw_wchar_t:
1138 case tok::kw_char16_t:
1139 case tok::kw_char32_t:
1140 case tok::kw_bool:
1141 case tok::kw_short:
1142 case tok::kw_int:
1143 case tok::kw_long:
1144 case tok::kw___int64:
1145 case tok::kw___int128:
1146 case tok::kw_signed:
1147 case tok::kw_unsigned:
1148 case tok::kw_half:
1149 case tok::kw_float:
1150 case tok::kw_double:
1151 case tok::kw_void:
1152 case tok::kw_typename:
1153 case tok::kw_typeof:
1154 case tok::kw___vector: {
1155 if (!getLangOpts().CPlusPlus) {
1156 Diag(Tok, diag::err_expected_expression);
1157 return ExprError();
1158 }
1159
1160 if (SavedKind == tok::kw_typename) {
1161 // postfix-expression: typename-specifier '(' expression-list[opt] ')'
1162 // typename-specifier braced-init-list
1163 if (TryAnnotateTypeOrScopeToken())
1164 return ExprError();
1165
1166 if (!Actions.isSimpleTypeSpecifier(Tok.getKind()))
1167 // We are trying to parse a simple-type-specifier but might not get such
1168 // a token after error recovery.
1169 return ExprError();
1170 }
1171
1172 // postfix-expression: simple-type-specifier '(' expression-list[opt] ')'
1173 // simple-type-specifier braced-init-list
1174 //
1175 DeclSpec DS(AttrFactory);
1176
1177 ParseCXXSimpleTypeSpecifier(DS);
1178 if (Tok.isNot(tok::l_paren) &&
1179 (!getLangOpts().CPlusPlus11 || Tok.isNot(tok::l_brace)))
1180 return ExprError(Diag(Tok, diag::err_expected_lparen_after_type)
1181 << DS.getSourceRange());
1182
1183 if (Tok.is(tok::l_brace))
1184 Diag(Tok, diag::warn_cxx98_compat_generalized_initializer_lists);
1185
1186 Res = ParseCXXTypeConstructExpression(DS);
1187 break;
1188 }
1189
1190 case tok::annot_cxxscope: { // [C++] id-expression: qualified-id
1191 // If TryAnnotateTypeOrScopeToken annotates the token, tail recurse.
1192 // (We can end up in this situation after tentative parsing.)
1193 if (TryAnnotateTypeOrScopeToken())
1194 return ExprError();
1195 if (!Tok.is(tok::annot_cxxscope))
1196 return ParseCastExpression(isUnaryExpression, isAddressOfOperand,
1197 NotCastExpr, isTypeCast);
1198
1199 Token Next = NextToken();
1200 if (Next.is(tok::annot_template_id)) {
1201 TemplateIdAnnotation *TemplateId = takeTemplateIdAnnotation(Next);
1202 if (TemplateId->Kind == TNK_Type_template) {
1203 // We have a qualified template-id that we know refers to a
1204 // type, translate it into a type and continue parsing as a
1205 // cast expression.
1206 CXXScopeSpec SS;
1207 ParseOptionalCXXScopeSpecifier(SS, ParsedType(),
1208 /*EnteringContext=*/false);
1209 AnnotateTemplateIdTokenAsType();
1210 return ParseCastExpression(isUnaryExpression, isAddressOfOperand,
1211 NotCastExpr, isTypeCast);
1212 }
1213 }
1214
1215 // Parse as an id-expression.
1216 Res = ParseCXXIdExpression(isAddressOfOperand);
1217 break;
1218 }
1219
1220 case tok::annot_template_id: { // [C++] template-id
1221 TemplateIdAnnotation *TemplateId = takeTemplateIdAnnotation(Tok);
1222 if (TemplateId->Kind == TNK_Type_template) {
1223 // We have a template-id that we know refers to a type,
1224 // translate it into a type and continue parsing as a cast
1225 // expression.
1226 AnnotateTemplateIdTokenAsType();
1227 return ParseCastExpression(isUnaryExpression, isAddressOfOperand,
1228 NotCastExpr, isTypeCast);
1229 }
1230
1231 // Fall through to treat the template-id as an id-expression.
1232 }
1233
1234 case tok::kw_operator: // [C++] id-expression: operator/conversion-function-id
1235 Res = ParseCXXIdExpression(isAddressOfOperand);
1236 break;
1237
1238 case tok::coloncolon: {
1239 // ::foo::bar -> global qualified name etc. If TryAnnotateTypeOrScopeToken
1240 // annotates the token, tail recurse.
1241 if (TryAnnotateTypeOrScopeToken())
1242 return ExprError();
1243 if (!Tok.is(tok::coloncolon))
1244 return ParseCastExpression(isUnaryExpression, isAddressOfOperand);
1245
1246 // ::new -> [C++] new-expression
1247 // ::delete -> [C++] delete-expression
1248 SourceLocation CCLoc = ConsumeToken();
1249 if (Tok.is(tok::kw_new))
1250 return ParseCXXNewExpression(true, CCLoc);
1251 if (Tok.is(tok::kw_delete))
1252 return ParseCXXDeleteExpression(true, CCLoc);
1253
1254 // This is not a type name or scope specifier, it is an invalid expression.
1255 Diag(CCLoc, diag::err_expected_expression);
1256 return ExprError();
1257 }
1258
1259 case tok::kw_new: // [C++] new-expression
1260 return ParseCXXNewExpression(false, Tok.getLocation());
1261
1262 case tok::kw_delete: // [C++] delete-expression
1263 return ParseCXXDeleteExpression(false, Tok.getLocation());
1264
1265 case tok::kw_noexcept: { // [C++0x] 'noexcept' '(' expression ')'
1266 Diag(Tok, diag::warn_cxx98_compat_noexcept_expr);
1267 SourceLocation KeyLoc = ConsumeToken();
1268 BalancedDelimiterTracker T(*this, tok::l_paren);
1269
1270 if (T.expectAndConsume(diag::err_expected_lparen_after, "noexcept"))
1271 return ExprError();
1272 // C++11 [expr.unary.noexcept]p1:
1273 // The noexcept operator determines whether the evaluation of its operand,
1274 // which is an unevaluated operand, can throw an exception.
1275 EnterExpressionEvaluationContext Unevaluated(Actions, Sema::Unevaluated);
1276 ExprResult Result = ParseExpression();
1277
1278 T.consumeClose();
1279
1280 if (!Result.isInvalid())
1281 Result = Actions.ActOnNoexceptExpr(KeyLoc, T.getOpenLocation(),
1282 Result.get(), T.getCloseLocation());
1283 return Result;
1284 }
1285
1286 #define TYPE_TRAIT(N,Spelling,K) \
1287 case tok::kw_##Spelling:
1288 #include "clang/Basic/TokenKinds.def"
1289 return ParseTypeTrait();
1290
1291 case tok::kw___array_rank:
1292 case tok::kw___array_extent:
1293 return ParseArrayTypeTrait();
1294
1295 case tok::kw___is_lvalue_expr:
1296 case tok::kw___is_rvalue_expr:
1297 return ParseExpressionTrait();
1298
1299 case tok::at: {
1300 SourceLocation AtLoc = ConsumeToken();
1301 return ParseObjCAtExpression(AtLoc);
1302 }
1303 case tok::caret:
1304 Res = ParseBlockLiteralExpression();
1305 break;
1306 case tok::code_completion: {
1307 Actions.CodeCompleteOrdinaryName(getCurScope(), Sema::PCC_Expression);
1308 cutOffParsing();
1309 return ExprError();
1310 }
1311 case tok::l_square:
1312 if (getLangOpts().CPlusPlus11) {
1313 if (getLangOpts().ObjC1) {
1314 // C++11 lambda expressions and Objective-C message sends both start with a
1315 // square bracket. There are three possibilities here:
1316 // we have a valid lambda expression, we have an invalid lambda
1317 // expression, or we have something that doesn't appear to be a lambda.
1318 // If we're in the last case, we fall back to ParseObjCMessageExpression.
1319 Res = TryParseLambdaExpression();
1320 if (!Res.isInvalid() && !Res.get())
1321 Res = ParseObjCMessageExpression();
1322 break;
1323 }
1324 Res = ParseLambdaExpression();
1325 break;
1326 }
1327 if (getLangOpts().ObjC1) {
1328 Res = ParseObjCMessageExpression();
1329 break;
1330 }
1331 // FALL THROUGH.
1332 default:
1333 NotCastExpr = true;
1334 return ExprError();
1335 }
1336
1337 // These can be followed by postfix-expr pieces.
1338 return ParsePostfixExpressionSuffix(Res);
1339 }
1340
1341 /// \brief Once the leading part of a postfix-expression is parsed, this
1342 /// method parses any suffixes that apply.
1343 ///
1344 /// \verbatim
1345 /// postfix-expression: [C99 6.5.2]
1346 /// primary-expression
1347 /// postfix-expression '[' expression ']'
1348 /// postfix-expression '[' braced-init-list ']'
1349 /// postfix-expression '(' argument-expression-list[opt] ')'
1350 /// postfix-expression '.' identifier
1351 /// postfix-expression '->' identifier
1352 /// postfix-expression '++'
1353 /// postfix-expression '--'
1354 /// '(' type-name ')' '{' initializer-list '}'
1355 /// '(' type-name ')' '{' initializer-list ',' '}'
1356 ///
1357 /// argument-expression-list: [C99 6.5.2]
1358 /// argument-expression ...[opt]
1359 /// argument-expression-list ',' assignment-expression ...[opt]
1360 /// \endverbatim
1361 ExprResult
ParsePostfixExpressionSuffix(ExprResult LHS)1362 Parser::ParsePostfixExpressionSuffix(ExprResult LHS) {
1363 // Now that the primary-expression piece of the postfix-expression has been
1364 // parsed, see if there are any postfix-expression pieces here.
1365 SourceLocation Loc;
1366 while (1) {
1367 switch (Tok.getKind()) {
1368 case tok::code_completion:
1369 if (InMessageExpression)
1370 return LHS;
1371
1372 Actions.CodeCompletePostfixExpression(getCurScope(), LHS);
1373 cutOffParsing();
1374 return ExprError();
1375
1376 case tok::identifier:
1377 // If we see identifier: after an expression, and we're not already in a
1378 // message send, then this is probably a message send with a missing
1379 // opening bracket '['.
1380 if (getLangOpts().ObjC1 && !InMessageExpression &&
1381 (NextToken().is(tok::colon) || NextToken().is(tok::r_square))) {
1382 LHS = ParseObjCMessageExpressionBody(SourceLocation(), SourceLocation(),
1383 ParsedType(), LHS.get());
1384 break;
1385 }
1386
1387 // Fall through; this isn't a message send.
1388
1389 default: // Not a postfix-expression suffix.
1390 return LHS;
1391 case tok::l_square: { // postfix-expression: p-e '[' expression ']'
1392 // If we have a array postfix expression that starts on a new line and
1393 // Objective-C is enabled, it is highly likely that the user forgot a
1394 // semicolon after the base expression and that the array postfix-expr is
1395 // actually another message send. In this case, do some look-ahead to see
1396 // if the contents of the square brackets are obviously not a valid
1397 // expression and recover by pretending there is no suffix.
1398 if (getLangOpts().ObjC1 && Tok.isAtStartOfLine() &&
1399 isSimpleObjCMessageExpression())
1400 return LHS;
1401
1402 // Reject array indices starting with a lambda-expression. '[[' is
1403 // reserved for attributes.
1404 if (CheckProhibitedCXX11Attribute())
1405 return ExprError();
1406
1407 BalancedDelimiterTracker T(*this, tok::l_square);
1408 T.consumeOpen();
1409 Loc = T.getOpenLocation();
1410 ExprResult Idx, Length;
1411 SourceLocation ColonLoc;
1412 if (getLangOpts().CPlusPlus11 && Tok.is(tok::l_brace)) {
1413 Diag(Tok, diag::warn_cxx98_compat_generalized_initializer_lists);
1414 Idx = ParseBraceInitializer();
1415 } else if (getLangOpts().OpenMP) {
1416 ColonProtectionRAIIObject RAII(*this);
1417 // Parse [: or [ expr or [ expr :
1418 if (!Tok.is(tok::colon)) {
1419 // [ expr
1420 Idx = ParseExpression();
1421 }
1422 if (Tok.is(tok::colon)) {
1423 // Consume ':'
1424 ColonLoc = ConsumeToken();
1425 if (Tok.isNot(tok::r_square))
1426 Length = ParseExpression();
1427 }
1428 } else
1429 Idx = ParseExpression();
1430
1431 SourceLocation RLoc = Tok.getLocation();
1432
1433 if (!LHS.isInvalid() && !Idx.isInvalid() && !Length.isInvalid() &&
1434 Tok.is(tok::r_square)) {
1435 if (ColonLoc.isValid()) {
1436 LHS = Actions.ActOnOMPArraySectionExpr(LHS.get(), Loc, Idx.get(),
1437 ColonLoc, Length.get(), RLoc);
1438 } else {
1439 LHS = Actions.ActOnArraySubscriptExpr(getCurScope(), LHS.get(), Loc,
1440 Idx.get(), RLoc);
1441 }
1442 } else {
1443 (void)Actions.CorrectDelayedTyposInExpr(LHS);
1444 (void)Actions.CorrectDelayedTyposInExpr(Idx);
1445 (void)Actions.CorrectDelayedTyposInExpr(Length);
1446 LHS = ExprError();
1447 Idx = ExprError();
1448 }
1449
1450 // Match the ']'.
1451 T.consumeClose();
1452 break;
1453 }
1454
1455 case tok::l_paren: // p-e: p-e '(' argument-expression-list[opt] ')'
1456 case tok::lesslessless: { // p-e: p-e '<<<' argument-expression-list '>>>'
1457 // '(' argument-expression-list[opt] ')'
1458 tok::TokenKind OpKind = Tok.getKind();
1459 InMessageExpressionRAIIObject InMessage(*this, false);
1460
1461 Expr *ExecConfig = nullptr;
1462
1463 BalancedDelimiterTracker PT(*this, tok::l_paren);
1464
1465 if (OpKind == tok::lesslessless) {
1466 ExprVector ExecConfigExprs;
1467 CommaLocsTy ExecConfigCommaLocs;
1468 SourceLocation OpenLoc = ConsumeToken();
1469
1470 if (ParseSimpleExpressionList(ExecConfigExprs, ExecConfigCommaLocs)) {
1471 (void)Actions.CorrectDelayedTyposInExpr(LHS);
1472 LHS = ExprError();
1473 }
1474
1475 SourceLocation CloseLoc;
1476 if (TryConsumeToken(tok::greatergreatergreater, CloseLoc)) {
1477 } else if (LHS.isInvalid()) {
1478 SkipUntil(tok::greatergreatergreater, StopAtSemi);
1479 } else {
1480 // There was an error closing the brackets
1481 Diag(Tok, diag::err_expected) << tok::greatergreatergreater;
1482 Diag(OpenLoc, diag::note_matching) << tok::lesslessless;
1483 SkipUntil(tok::greatergreatergreater, StopAtSemi);
1484 LHS = ExprError();
1485 }
1486
1487 if (!LHS.isInvalid()) {
1488 if (ExpectAndConsume(tok::l_paren))
1489 LHS = ExprError();
1490 else
1491 Loc = PrevTokLocation;
1492 }
1493
1494 if (!LHS.isInvalid()) {
1495 ExprResult ECResult = Actions.ActOnCUDAExecConfigExpr(getCurScope(),
1496 OpenLoc,
1497 ExecConfigExprs,
1498 CloseLoc);
1499 if (ECResult.isInvalid())
1500 LHS = ExprError();
1501 else
1502 ExecConfig = ECResult.get();
1503 }
1504 } else {
1505 PT.consumeOpen();
1506 Loc = PT.getOpenLocation();
1507 }
1508
1509 ExprVector ArgExprs;
1510 CommaLocsTy CommaLocs;
1511
1512 if (Tok.is(tok::code_completion)) {
1513 Actions.CodeCompleteCall(getCurScope(), LHS.get(), None);
1514 cutOffParsing();
1515 return ExprError();
1516 }
1517
1518 if (OpKind == tok::l_paren || !LHS.isInvalid()) {
1519 if (Tok.isNot(tok::r_paren)) {
1520 if (ParseExpressionList(ArgExprs, CommaLocs, [&] {
1521 Actions.CodeCompleteCall(getCurScope(), LHS.get(), ArgExprs);
1522 })) {
1523 (void)Actions.CorrectDelayedTyposInExpr(LHS);
1524 LHS = ExprError();
1525 } else if (LHS.isInvalid()) {
1526 for (auto &E : ArgExprs)
1527 Actions.CorrectDelayedTyposInExpr(E);
1528 }
1529 }
1530 }
1531
1532 // Match the ')'.
1533 if (LHS.isInvalid()) {
1534 SkipUntil(tok::r_paren, StopAtSemi);
1535 } else if (Tok.isNot(tok::r_paren)) {
1536 bool HadDelayedTypo = false;
1537 if (Actions.CorrectDelayedTyposInExpr(LHS).get() != LHS.get())
1538 HadDelayedTypo = true;
1539 for (auto &E : ArgExprs)
1540 if (Actions.CorrectDelayedTyposInExpr(E).get() != E)
1541 HadDelayedTypo = true;
1542 // If there were delayed typos in the LHS or ArgExprs, call SkipUntil
1543 // instead of PT.consumeClose() to avoid emitting extra diagnostics for
1544 // the unmatched l_paren.
1545 if (HadDelayedTypo)
1546 SkipUntil(tok::r_paren, StopAtSemi);
1547 else
1548 PT.consumeClose();
1549 LHS = ExprError();
1550 } else {
1551 assert((ArgExprs.size() == 0 ||
1552 ArgExprs.size()-1 == CommaLocs.size())&&
1553 "Unexpected number of commas!");
1554 LHS = Actions.ActOnCallExpr(getCurScope(), LHS.get(), Loc,
1555 ArgExprs, Tok.getLocation(),
1556 ExecConfig);
1557 PT.consumeClose();
1558 }
1559
1560 break;
1561 }
1562 case tok::arrow:
1563 case tok::period: {
1564 // postfix-expression: p-e '->' template[opt] id-expression
1565 // postfix-expression: p-e '.' template[opt] id-expression
1566 tok::TokenKind OpKind = Tok.getKind();
1567 SourceLocation OpLoc = ConsumeToken(); // Eat the "." or "->" token.
1568
1569 CXXScopeSpec SS;
1570 ParsedType ObjectType;
1571 bool MayBePseudoDestructor = false;
1572 if (getLangOpts().CPlusPlus && !LHS.isInvalid()) {
1573 Expr *Base = LHS.get();
1574 const Type* BaseType = Base->getType().getTypePtrOrNull();
1575 if (BaseType && Tok.is(tok::l_paren) &&
1576 (BaseType->isFunctionType() ||
1577 BaseType->isSpecificPlaceholderType(BuiltinType::BoundMember))) {
1578 Diag(OpLoc, diag::err_function_is_not_record)
1579 << OpKind << Base->getSourceRange()
1580 << FixItHint::CreateRemoval(OpLoc);
1581 return ParsePostfixExpressionSuffix(Base);
1582 }
1583
1584 LHS = Actions.ActOnStartCXXMemberReference(getCurScope(), Base,
1585 OpLoc, OpKind, ObjectType,
1586 MayBePseudoDestructor);
1587 if (LHS.isInvalid())
1588 break;
1589
1590 ParseOptionalCXXScopeSpecifier(SS, ObjectType,
1591 /*EnteringContext=*/false,
1592 &MayBePseudoDestructor);
1593 if (SS.isNotEmpty())
1594 ObjectType = ParsedType();
1595 }
1596
1597 if (Tok.is(tok::code_completion)) {
1598 // Code completion for a member access expression.
1599 Actions.CodeCompleteMemberReferenceExpr(getCurScope(), LHS.get(),
1600 OpLoc, OpKind == tok::arrow);
1601
1602 cutOffParsing();
1603 return ExprError();
1604 }
1605
1606 if (MayBePseudoDestructor && !LHS.isInvalid()) {
1607 LHS = ParseCXXPseudoDestructor(LHS.get(), OpLoc, OpKind, SS,
1608 ObjectType);
1609 break;
1610 }
1611
1612 // Either the action has told us that this cannot be a
1613 // pseudo-destructor expression (based on the type of base
1614 // expression), or we didn't see a '~' in the right place. We
1615 // can still parse a destructor name here, but in that case it
1616 // names a real destructor.
1617 // Allow explicit constructor calls in Microsoft mode.
1618 // FIXME: Add support for explicit call of template constructor.
1619 SourceLocation TemplateKWLoc;
1620 UnqualifiedId Name;
1621 if (getLangOpts().ObjC2 && OpKind == tok::period &&
1622 Tok.is(tok::kw_class)) {
1623 // Objective-C++:
1624 // After a '.' in a member access expression, treat the keyword
1625 // 'class' as if it were an identifier.
1626 //
1627 // This hack allows property access to the 'class' method because it is
1628 // such a common method name. For other C++ keywords that are
1629 // Objective-C method names, one must use the message send syntax.
1630 IdentifierInfo *Id = Tok.getIdentifierInfo();
1631 SourceLocation Loc = ConsumeToken();
1632 Name.setIdentifier(Id, Loc);
1633 } else if (ParseUnqualifiedId(SS,
1634 /*EnteringContext=*/false,
1635 /*AllowDestructorName=*/true,
1636 /*AllowConstructorName=*/
1637 getLangOpts().MicrosoftExt,
1638 ObjectType, TemplateKWLoc, Name)) {
1639 (void)Actions.CorrectDelayedTyposInExpr(LHS);
1640 LHS = ExprError();
1641 }
1642
1643 if (!LHS.isInvalid())
1644 LHS = Actions.ActOnMemberAccessExpr(getCurScope(), LHS.get(), OpLoc,
1645 OpKind, SS, TemplateKWLoc, Name,
1646 CurParsedObjCImpl ? CurParsedObjCImpl->Dcl
1647 : nullptr);
1648 break;
1649 }
1650 case tok::plusplus: // postfix-expression: postfix-expression '++'
1651 case tok::minusminus: // postfix-expression: postfix-expression '--'
1652 if (!LHS.isInvalid()) {
1653 LHS = Actions.ActOnPostfixUnaryOp(getCurScope(), Tok.getLocation(),
1654 Tok.getKind(), LHS.get());
1655 }
1656 ConsumeToken();
1657 break;
1658 }
1659 }
1660 }
1661
1662 /// ParseExprAfterUnaryExprOrTypeTrait - We parsed a typeof/sizeof/alignof/
1663 /// vec_step and we are at the start of an expression or a parenthesized
1664 /// type-id. OpTok is the operand token (typeof/sizeof/alignof). Returns the
1665 /// expression (isCastExpr == false) or the type (isCastExpr == true).
1666 ///
1667 /// \verbatim
1668 /// unary-expression: [C99 6.5.3]
1669 /// 'sizeof' unary-expression
1670 /// 'sizeof' '(' type-name ')'
1671 /// [GNU] '__alignof' unary-expression
1672 /// [GNU] '__alignof' '(' type-name ')'
1673 /// [C11] '_Alignof' '(' type-name ')'
1674 /// [C++0x] 'alignof' '(' type-id ')'
1675 ///
1676 /// [GNU] typeof-specifier:
1677 /// typeof ( expressions )
1678 /// typeof ( type-name )
1679 /// [GNU/C++] typeof unary-expression
1680 ///
1681 /// [OpenCL 1.1 6.11.12] vec_step built-in function:
1682 /// vec_step ( expressions )
1683 /// vec_step ( type-name )
1684 /// \endverbatim
1685 ExprResult
ParseExprAfterUnaryExprOrTypeTrait(const Token & OpTok,bool & isCastExpr,ParsedType & CastTy,SourceRange & CastRange)1686 Parser::ParseExprAfterUnaryExprOrTypeTrait(const Token &OpTok,
1687 bool &isCastExpr,
1688 ParsedType &CastTy,
1689 SourceRange &CastRange) {
1690
1691 assert(OpTok.isOneOf(tok::kw_typeof, tok::kw_sizeof, tok::kw___alignof,
1692 tok::kw_alignof, tok::kw__Alignof, tok::kw_vec_step,
1693 tok::kw___builtin_omp_required_simd_align) &&
1694 "Not a typeof/sizeof/alignof/vec_step expression!");
1695
1696 ExprResult Operand;
1697
1698 // If the operand doesn't start with an '(', it must be an expression.
1699 if (Tok.isNot(tok::l_paren)) {
1700 // If construct allows a form without parenthesis, user may forget to put
1701 // pathenthesis around type name.
1702 if (OpTok.isOneOf(tok::kw_sizeof, tok::kw___alignof, tok::kw_alignof,
1703 tok::kw__Alignof)) {
1704 if (isTypeIdUnambiguously()) {
1705 DeclSpec DS(AttrFactory);
1706 ParseSpecifierQualifierList(DS);
1707 Declarator DeclaratorInfo(DS, Declarator::TypeNameContext);
1708 ParseDeclarator(DeclaratorInfo);
1709
1710 SourceLocation LParenLoc = PP.getLocForEndOfToken(OpTok.getLocation());
1711 SourceLocation RParenLoc = PP.getLocForEndOfToken(PrevTokLocation);
1712 Diag(LParenLoc, diag::err_expected_parentheses_around_typename)
1713 << OpTok.getName()
1714 << FixItHint::CreateInsertion(LParenLoc, "(")
1715 << FixItHint::CreateInsertion(RParenLoc, ")");
1716 isCastExpr = true;
1717 return ExprEmpty();
1718 }
1719 }
1720
1721 isCastExpr = false;
1722 if (OpTok.is(tok::kw_typeof) && !getLangOpts().CPlusPlus) {
1723 Diag(Tok, diag::err_expected_after) << OpTok.getIdentifierInfo()
1724 << tok::l_paren;
1725 return ExprError();
1726 }
1727
1728 Operand = ParseCastExpression(true/*isUnaryExpression*/);
1729 } else {
1730 // If it starts with a '(', we know that it is either a parenthesized
1731 // type-name, or it is a unary-expression that starts with a compound
1732 // literal, or starts with a primary-expression that is a parenthesized
1733 // expression.
1734 ParenParseOption ExprType = CastExpr;
1735 SourceLocation LParenLoc = Tok.getLocation(), RParenLoc;
1736
1737 Operand = ParseParenExpression(ExprType, true/*stopIfCastExpr*/,
1738 false, CastTy, RParenLoc);
1739 CastRange = SourceRange(LParenLoc, RParenLoc);
1740
1741 // If ParseParenExpression parsed a '(typename)' sequence only, then this is
1742 // a type.
1743 if (ExprType == CastExpr) {
1744 isCastExpr = true;
1745 return ExprEmpty();
1746 }
1747
1748 if (getLangOpts().CPlusPlus || OpTok.isNot(tok::kw_typeof)) {
1749 // GNU typeof in C requires the expression to be parenthesized. Not so for
1750 // sizeof/alignof or in C++. Therefore, the parenthesized expression is
1751 // the start of a unary-expression, but doesn't include any postfix
1752 // pieces. Parse these now if present.
1753 if (!Operand.isInvalid())
1754 Operand = ParsePostfixExpressionSuffix(Operand.get());
1755 }
1756 }
1757
1758 // If we get here, the operand to the typeof/sizeof/alignof was an expresion.
1759 isCastExpr = false;
1760 return Operand;
1761 }
1762
1763
1764 /// \brief Parse a sizeof or alignof expression.
1765 ///
1766 /// \verbatim
1767 /// unary-expression: [C99 6.5.3]
1768 /// 'sizeof' unary-expression
1769 /// 'sizeof' '(' type-name ')'
1770 /// [C++11] 'sizeof' '...' '(' identifier ')'
1771 /// [GNU] '__alignof' unary-expression
1772 /// [GNU] '__alignof' '(' type-name ')'
1773 /// [C11] '_Alignof' '(' type-name ')'
1774 /// [C++11] 'alignof' '(' type-id ')'
1775 /// \endverbatim
ParseUnaryExprOrTypeTraitExpression()1776 ExprResult Parser::ParseUnaryExprOrTypeTraitExpression() {
1777 assert(Tok.isOneOf(tok::kw_sizeof, tok::kw___alignof, tok::kw_alignof,
1778 tok::kw__Alignof, tok::kw_vec_step,
1779 tok::kw___builtin_omp_required_simd_align) &&
1780 "Not a sizeof/alignof/vec_step expression!");
1781 Token OpTok = Tok;
1782 ConsumeToken();
1783
1784 // [C++11] 'sizeof' '...' '(' identifier ')'
1785 if (Tok.is(tok::ellipsis) && OpTok.is(tok::kw_sizeof)) {
1786 SourceLocation EllipsisLoc = ConsumeToken();
1787 SourceLocation LParenLoc, RParenLoc;
1788 IdentifierInfo *Name = nullptr;
1789 SourceLocation NameLoc;
1790 if (Tok.is(tok::l_paren)) {
1791 BalancedDelimiterTracker T(*this, tok::l_paren);
1792 T.consumeOpen();
1793 LParenLoc = T.getOpenLocation();
1794 if (Tok.is(tok::identifier)) {
1795 Name = Tok.getIdentifierInfo();
1796 NameLoc = ConsumeToken();
1797 T.consumeClose();
1798 RParenLoc = T.getCloseLocation();
1799 if (RParenLoc.isInvalid())
1800 RParenLoc = PP.getLocForEndOfToken(NameLoc);
1801 } else {
1802 Diag(Tok, diag::err_expected_parameter_pack);
1803 SkipUntil(tok::r_paren, StopAtSemi);
1804 }
1805 } else if (Tok.is(tok::identifier)) {
1806 Name = Tok.getIdentifierInfo();
1807 NameLoc = ConsumeToken();
1808 LParenLoc = PP.getLocForEndOfToken(EllipsisLoc);
1809 RParenLoc = PP.getLocForEndOfToken(NameLoc);
1810 Diag(LParenLoc, diag::err_paren_sizeof_parameter_pack)
1811 << Name
1812 << FixItHint::CreateInsertion(LParenLoc, "(")
1813 << FixItHint::CreateInsertion(RParenLoc, ")");
1814 } else {
1815 Diag(Tok, diag::err_sizeof_parameter_pack);
1816 }
1817
1818 if (!Name)
1819 return ExprError();
1820
1821 EnterExpressionEvaluationContext Unevaluated(Actions, Sema::Unevaluated,
1822 Sema::ReuseLambdaContextDecl);
1823
1824 return Actions.ActOnSizeofParameterPackExpr(getCurScope(),
1825 OpTok.getLocation(),
1826 *Name, NameLoc,
1827 RParenLoc);
1828 }
1829
1830 if (OpTok.isOneOf(tok::kw_alignof, tok::kw__Alignof))
1831 Diag(OpTok, diag::warn_cxx98_compat_alignof);
1832
1833 EnterExpressionEvaluationContext Unevaluated(Actions, Sema::Unevaluated,
1834 Sema::ReuseLambdaContextDecl);
1835
1836 bool isCastExpr;
1837 ParsedType CastTy;
1838 SourceRange CastRange;
1839 ExprResult Operand = ParseExprAfterUnaryExprOrTypeTrait(OpTok,
1840 isCastExpr,
1841 CastTy,
1842 CastRange);
1843
1844 UnaryExprOrTypeTrait ExprKind = UETT_SizeOf;
1845 if (OpTok.isOneOf(tok::kw_alignof, tok::kw___alignof, tok::kw__Alignof))
1846 ExprKind = UETT_AlignOf;
1847 else if (OpTok.is(tok::kw_vec_step))
1848 ExprKind = UETT_VecStep;
1849 else if (OpTok.is(tok::kw___builtin_omp_required_simd_align))
1850 ExprKind = UETT_OpenMPRequiredSimdAlign;
1851
1852 if (isCastExpr)
1853 return Actions.ActOnUnaryExprOrTypeTraitExpr(OpTok.getLocation(),
1854 ExprKind,
1855 /*isType=*/true,
1856 CastTy.getAsOpaquePtr(),
1857 CastRange);
1858
1859 if (OpTok.isOneOf(tok::kw_alignof, tok::kw__Alignof))
1860 Diag(OpTok, diag::ext_alignof_expr) << OpTok.getIdentifierInfo();
1861
1862 // If we get here, the operand to the sizeof/alignof was an expresion.
1863 if (!Operand.isInvalid())
1864 Operand = Actions.ActOnUnaryExprOrTypeTraitExpr(OpTok.getLocation(),
1865 ExprKind,
1866 /*isType=*/false,
1867 Operand.get(),
1868 CastRange);
1869 return Operand;
1870 }
1871
1872 /// ParseBuiltinPrimaryExpression
1873 ///
1874 /// \verbatim
1875 /// primary-expression: [C99 6.5.1]
1876 /// [GNU] '__builtin_va_arg' '(' assignment-expression ',' type-name ')'
1877 /// [GNU] '__builtin_offsetof' '(' type-name ',' offsetof-member-designator')'
1878 /// [GNU] '__builtin_choose_expr' '(' assign-expr ',' assign-expr ','
1879 /// assign-expr ')'
1880 /// [GNU] '__builtin_types_compatible_p' '(' type-name ',' type-name ')'
1881 /// [OCL] '__builtin_astype' '(' assignment-expression ',' type-name ')'
1882 ///
1883 /// [GNU] offsetof-member-designator:
1884 /// [GNU] identifier
1885 /// [GNU] offsetof-member-designator '.' identifier
1886 /// [GNU] offsetof-member-designator '[' expression ']'
1887 /// \endverbatim
ParseBuiltinPrimaryExpression()1888 ExprResult Parser::ParseBuiltinPrimaryExpression() {
1889 ExprResult Res;
1890 const IdentifierInfo *BuiltinII = Tok.getIdentifierInfo();
1891
1892 tok::TokenKind T = Tok.getKind();
1893 SourceLocation StartLoc = ConsumeToken(); // Eat the builtin identifier.
1894
1895 // All of these start with an open paren.
1896 if (Tok.isNot(tok::l_paren))
1897 return ExprError(Diag(Tok, diag::err_expected_after) << BuiltinII
1898 << tok::l_paren);
1899
1900 BalancedDelimiterTracker PT(*this, tok::l_paren);
1901 PT.consumeOpen();
1902
1903 // TODO: Build AST.
1904
1905 switch (T) {
1906 default: llvm_unreachable("Not a builtin primary expression!");
1907 case tok::kw___builtin_va_arg: {
1908 ExprResult Expr(ParseAssignmentExpression());
1909
1910 if (ExpectAndConsume(tok::comma)) {
1911 SkipUntil(tok::r_paren, StopAtSemi);
1912 Expr = ExprError();
1913 }
1914
1915 TypeResult Ty = ParseTypeName();
1916
1917 if (Tok.isNot(tok::r_paren)) {
1918 Diag(Tok, diag::err_expected) << tok::r_paren;
1919 Expr = ExprError();
1920 }
1921
1922 if (Expr.isInvalid() || Ty.isInvalid())
1923 Res = ExprError();
1924 else
1925 Res = Actions.ActOnVAArg(StartLoc, Expr.get(), Ty.get(), ConsumeParen());
1926 break;
1927 }
1928 case tok::kw___builtin_offsetof: {
1929 SourceLocation TypeLoc = Tok.getLocation();
1930 TypeResult Ty = ParseTypeName();
1931 if (Ty.isInvalid()) {
1932 SkipUntil(tok::r_paren, StopAtSemi);
1933 return ExprError();
1934 }
1935
1936 if (ExpectAndConsume(tok::comma)) {
1937 SkipUntil(tok::r_paren, StopAtSemi);
1938 return ExprError();
1939 }
1940
1941 // We must have at least one identifier here.
1942 if (Tok.isNot(tok::identifier)) {
1943 Diag(Tok, diag::err_expected) << tok::identifier;
1944 SkipUntil(tok::r_paren, StopAtSemi);
1945 return ExprError();
1946 }
1947
1948 // Keep track of the various subcomponents we see.
1949 SmallVector<Sema::OffsetOfComponent, 4> Comps;
1950
1951 Comps.push_back(Sema::OffsetOfComponent());
1952 Comps.back().isBrackets = false;
1953 Comps.back().U.IdentInfo = Tok.getIdentifierInfo();
1954 Comps.back().LocStart = Comps.back().LocEnd = ConsumeToken();
1955
1956 // FIXME: This loop leaks the index expressions on error.
1957 while (1) {
1958 if (Tok.is(tok::period)) {
1959 // offsetof-member-designator: offsetof-member-designator '.' identifier
1960 Comps.push_back(Sema::OffsetOfComponent());
1961 Comps.back().isBrackets = false;
1962 Comps.back().LocStart = ConsumeToken();
1963
1964 if (Tok.isNot(tok::identifier)) {
1965 Diag(Tok, diag::err_expected) << tok::identifier;
1966 SkipUntil(tok::r_paren, StopAtSemi);
1967 return ExprError();
1968 }
1969 Comps.back().U.IdentInfo = Tok.getIdentifierInfo();
1970 Comps.back().LocEnd = ConsumeToken();
1971
1972 } else if (Tok.is(tok::l_square)) {
1973 if (CheckProhibitedCXX11Attribute())
1974 return ExprError();
1975
1976 // offsetof-member-designator: offsetof-member-design '[' expression ']'
1977 Comps.push_back(Sema::OffsetOfComponent());
1978 Comps.back().isBrackets = true;
1979 BalancedDelimiterTracker ST(*this, tok::l_square);
1980 ST.consumeOpen();
1981 Comps.back().LocStart = ST.getOpenLocation();
1982 Res = ParseExpression();
1983 if (Res.isInvalid()) {
1984 SkipUntil(tok::r_paren, StopAtSemi);
1985 return Res;
1986 }
1987 Comps.back().U.E = Res.get();
1988
1989 ST.consumeClose();
1990 Comps.back().LocEnd = ST.getCloseLocation();
1991 } else {
1992 if (Tok.isNot(tok::r_paren)) {
1993 PT.consumeClose();
1994 Res = ExprError();
1995 } else if (Ty.isInvalid()) {
1996 Res = ExprError();
1997 } else {
1998 PT.consumeClose();
1999 Res = Actions.ActOnBuiltinOffsetOf(getCurScope(), StartLoc, TypeLoc,
2000 Ty.get(), Comps,
2001 PT.getCloseLocation());
2002 }
2003 break;
2004 }
2005 }
2006 break;
2007 }
2008 case tok::kw___builtin_choose_expr: {
2009 ExprResult Cond(ParseAssignmentExpression());
2010 if (Cond.isInvalid()) {
2011 SkipUntil(tok::r_paren, StopAtSemi);
2012 return Cond;
2013 }
2014 if (ExpectAndConsume(tok::comma)) {
2015 SkipUntil(tok::r_paren, StopAtSemi);
2016 return ExprError();
2017 }
2018
2019 ExprResult Expr1(ParseAssignmentExpression());
2020 if (Expr1.isInvalid()) {
2021 SkipUntil(tok::r_paren, StopAtSemi);
2022 return Expr1;
2023 }
2024 if (ExpectAndConsume(tok::comma)) {
2025 SkipUntil(tok::r_paren, StopAtSemi);
2026 return ExprError();
2027 }
2028
2029 ExprResult Expr2(ParseAssignmentExpression());
2030 if (Expr2.isInvalid()) {
2031 SkipUntil(tok::r_paren, StopAtSemi);
2032 return Expr2;
2033 }
2034 if (Tok.isNot(tok::r_paren)) {
2035 Diag(Tok, diag::err_expected) << tok::r_paren;
2036 return ExprError();
2037 }
2038 Res = Actions.ActOnChooseExpr(StartLoc, Cond.get(), Expr1.get(),
2039 Expr2.get(), ConsumeParen());
2040 break;
2041 }
2042 case tok::kw___builtin_astype: {
2043 // The first argument is an expression to be converted, followed by a comma.
2044 ExprResult Expr(ParseAssignmentExpression());
2045 if (Expr.isInvalid()) {
2046 SkipUntil(tok::r_paren, StopAtSemi);
2047 return ExprError();
2048 }
2049
2050 if (ExpectAndConsume(tok::comma)) {
2051 SkipUntil(tok::r_paren, StopAtSemi);
2052 return ExprError();
2053 }
2054
2055 // Second argument is the type to bitcast to.
2056 TypeResult DestTy = ParseTypeName();
2057 if (DestTy.isInvalid())
2058 return ExprError();
2059
2060 // Attempt to consume the r-paren.
2061 if (Tok.isNot(tok::r_paren)) {
2062 Diag(Tok, diag::err_expected) << tok::r_paren;
2063 SkipUntil(tok::r_paren, StopAtSemi);
2064 return ExprError();
2065 }
2066
2067 Res = Actions.ActOnAsTypeExpr(Expr.get(), DestTy.get(), StartLoc,
2068 ConsumeParen());
2069 break;
2070 }
2071 case tok::kw___builtin_convertvector: {
2072 // The first argument is an expression to be converted, followed by a comma.
2073 ExprResult Expr(ParseAssignmentExpression());
2074 if (Expr.isInvalid()) {
2075 SkipUntil(tok::r_paren, StopAtSemi);
2076 return ExprError();
2077 }
2078
2079 if (ExpectAndConsume(tok::comma)) {
2080 SkipUntil(tok::r_paren, StopAtSemi);
2081 return ExprError();
2082 }
2083
2084 // Second argument is the type to bitcast to.
2085 TypeResult DestTy = ParseTypeName();
2086 if (DestTy.isInvalid())
2087 return ExprError();
2088
2089 // Attempt to consume the r-paren.
2090 if (Tok.isNot(tok::r_paren)) {
2091 Diag(Tok, diag::err_expected) << tok::r_paren;
2092 SkipUntil(tok::r_paren, StopAtSemi);
2093 return ExprError();
2094 }
2095
2096 Res = Actions.ActOnConvertVectorExpr(Expr.get(), DestTy.get(), StartLoc,
2097 ConsumeParen());
2098 break;
2099 }
2100 }
2101
2102 if (Res.isInvalid())
2103 return ExprError();
2104
2105 // These can be followed by postfix-expr pieces because they are
2106 // primary-expressions.
2107 return ParsePostfixExpressionSuffix(Res.get());
2108 }
2109
2110 /// ParseParenExpression - This parses the unit that starts with a '(' token,
2111 /// based on what is allowed by ExprType. The actual thing parsed is returned
2112 /// in ExprType. If stopIfCastExpr is true, it will only return the parsed type,
2113 /// not the parsed cast-expression.
2114 ///
2115 /// \verbatim
2116 /// primary-expression: [C99 6.5.1]
2117 /// '(' expression ')'
2118 /// [GNU] '(' compound-statement ')' (if !ParenExprOnly)
2119 /// postfix-expression: [C99 6.5.2]
2120 /// '(' type-name ')' '{' initializer-list '}'
2121 /// '(' type-name ')' '{' initializer-list ',' '}'
2122 /// cast-expression: [C99 6.5.4]
2123 /// '(' type-name ')' cast-expression
2124 /// [ARC] bridged-cast-expression
2125 /// [ARC] bridged-cast-expression:
2126 /// (__bridge type-name) cast-expression
2127 /// (__bridge_transfer type-name) cast-expression
2128 /// (__bridge_retained type-name) cast-expression
2129 /// fold-expression: [C++1z]
2130 /// '(' cast-expression fold-operator '...' ')'
2131 /// '(' '...' fold-operator cast-expression ')'
2132 /// '(' cast-expression fold-operator '...'
2133 /// fold-operator cast-expression ')'
2134 /// \endverbatim
2135 ExprResult
ParseParenExpression(ParenParseOption & ExprType,bool stopIfCastExpr,bool isTypeCast,ParsedType & CastTy,SourceLocation & RParenLoc)2136 Parser::ParseParenExpression(ParenParseOption &ExprType, bool stopIfCastExpr,
2137 bool isTypeCast, ParsedType &CastTy,
2138 SourceLocation &RParenLoc) {
2139 assert(Tok.is(tok::l_paren) && "Not a paren expr!");
2140 ColonProtectionRAIIObject ColonProtection(*this, false);
2141 BalancedDelimiterTracker T(*this, tok::l_paren);
2142 if (T.consumeOpen())
2143 return ExprError();
2144 SourceLocation OpenLoc = T.getOpenLocation();
2145
2146 ExprResult Result(true);
2147 bool isAmbiguousTypeId;
2148 CastTy = ParsedType();
2149
2150 if (Tok.is(tok::code_completion)) {
2151 Actions.CodeCompleteOrdinaryName(getCurScope(),
2152 ExprType >= CompoundLiteral? Sema::PCC_ParenthesizedExpression
2153 : Sema::PCC_Expression);
2154 cutOffParsing();
2155 return ExprError();
2156 }
2157
2158 // Diagnose use of bridge casts in non-arc mode.
2159 bool BridgeCast = (getLangOpts().ObjC2 &&
2160 Tok.isOneOf(tok::kw___bridge,
2161 tok::kw___bridge_transfer,
2162 tok::kw___bridge_retained,
2163 tok::kw___bridge_retain));
2164 if (BridgeCast && !getLangOpts().ObjCAutoRefCount) {
2165 if (!TryConsumeToken(tok::kw___bridge)) {
2166 StringRef BridgeCastName = Tok.getName();
2167 SourceLocation BridgeKeywordLoc = ConsumeToken();
2168 if (!PP.getSourceManager().isInSystemHeader(BridgeKeywordLoc))
2169 Diag(BridgeKeywordLoc, diag::warn_arc_bridge_cast_nonarc)
2170 << BridgeCastName
2171 << FixItHint::CreateReplacement(BridgeKeywordLoc, "");
2172 }
2173 BridgeCast = false;
2174 }
2175
2176 // None of these cases should fall through with an invalid Result
2177 // unless they've already reported an error.
2178 if (ExprType >= CompoundStmt && Tok.is(tok::l_brace)) {
2179 Diag(Tok, diag::ext_gnu_statement_expr);
2180
2181 if (!getCurScope()->getFnParent() && !getCurScope()->getBlockParent()) {
2182 Result = ExprError(Diag(OpenLoc, diag::err_stmtexpr_file_scope));
2183 } else {
2184 // Find the nearest non-record decl context. Variables declared in a
2185 // statement expression behave as if they were declared in the enclosing
2186 // function, block, or other code construct.
2187 DeclContext *CodeDC = Actions.CurContext;
2188 while (CodeDC->isRecord() || isa<EnumDecl>(CodeDC)) {
2189 CodeDC = CodeDC->getParent();
2190 assert(CodeDC && !CodeDC->isFileContext() &&
2191 "statement expr not in code context");
2192 }
2193 Sema::ContextRAII SavedContext(Actions, CodeDC, /*NewThisContext=*/false);
2194
2195 Actions.ActOnStartStmtExpr();
2196
2197 StmtResult Stmt(ParseCompoundStatement(true));
2198 ExprType = CompoundStmt;
2199
2200 // If the substmt parsed correctly, build the AST node.
2201 if (!Stmt.isInvalid()) {
2202 Result = Actions.ActOnStmtExpr(OpenLoc, Stmt.get(), Tok.getLocation());
2203 } else {
2204 Actions.ActOnStmtExprError();
2205 }
2206 }
2207 } else if (ExprType >= CompoundLiteral && BridgeCast) {
2208 tok::TokenKind tokenKind = Tok.getKind();
2209 SourceLocation BridgeKeywordLoc = ConsumeToken();
2210
2211 // Parse an Objective-C ARC ownership cast expression.
2212 ObjCBridgeCastKind Kind;
2213 if (tokenKind == tok::kw___bridge)
2214 Kind = OBC_Bridge;
2215 else if (tokenKind == tok::kw___bridge_transfer)
2216 Kind = OBC_BridgeTransfer;
2217 else if (tokenKind == tok::kw___bridge_retained)
2218 Kind = OBC_BridgeRetained;
2219 else {
2220 // As a hopefully temporary workaround, allow __bridge_retain as
2221 // a synonym for __bridge_retained, but only in system headers.
2222 assert(tokenKind == tok::kw___bridge_retain);
2223 Kind = OBC_BridgeRetained;
2224 if (!PP.getSourceManager().isInSystemHeader(BridgeKeywordLoc))
2225 Diag(BridgeKeywordLoc, diag::err_arc_bridge_retain)
2226 << FixItHint::CreateReplacement(BridgeKeywordLoc,
2227 "__bridge_retained");
2228 }
2229
2230 TypeResult Ty = ParseTypeName();
2231 T.consumeClose();
2232 ColonProtection.restore();
2233 RParenLoc = T.getCloseLocation();
2234 ExprResult SubExpr = ParseCastExpression(/*isUnaryExpression=*/false);
2235
2236 if (Ty.isInvalid() || SubExpr.isInvalid())
2237 return ExprError();
2238
2239 return Actions.ActOnObjCBridgedCast(getCurScope(), OpenLoc, Kind,
2240 BridgeKeywordLoc, Ty.get(),
2241 RParenLoc, SubExpr.get());
2242 } else if (ExprType >= CompoundLiteral &&
2243 isTypeIdInParens(isAmbiguousTypeId)) {
2244
2245 // Otherwise, this is a compound literal expression or cast expression.
2246
2247 // In C++, if the type-id is ambiguous we disambiguate based on context.
2248 // If stopIfCastExpr is true the context is a typeof/sizeof/alignof
2249 // in which case we should treat it as type-id.
2250 // if stopIfCastExpr is false, we need to determine the context past the
2251 // parens, so we defer to ParseCXXAmbiguousParenExpression for that.
2252 if (isAmbiguousTypeId && !stopIfCastExpr) {
2253 ExprResult res = ParseCXXAmbiguousParenExpression(ExprType, CastTy, T,
2254 ColonProtection);
2255 RParenLoc = T.getCloseLocation();
2256 return res;
2257 }
2258
2259 // Parse the type declarator.
2260 DeclSpec DS(AttrFactory);
2261 ParseSpecifierQualifierList(DS);
2262 Declarator DeclaratorInfo(DS, Declarator::TypeNameContext);
2263 ParseDeclarator(DeclaratorInfo);
2264
2265 // If our type is followed by an identifier and either ':' or ']', then
2266 // this is probably an Objective-C message send where the leading '[' is
2267 // missing. Recover as if that were the case.
2268 if (!DeclaratorInfo.isInvalidType() && Tok.is(tok::identifier) &&
2269 !InMessageExpression && getLangOpts().ObjC1 &&
2270 (NextToken().is(tok::colon) || NextToken().is(tok::r_square))) {
2271 TypeResult Ty;
2272 {
2273 InMessageExpressionRAIIObject InMessage(*this, false);
2274 Ty = Actions.ActOnTypeName(getCurScope(), DeclaratorInfo);
2275 }
2276 Result = ParseObjCMessageExpressionBody(SourceLocation(),
2277 SourceLocation(),
2278 Ty.get(), nullptr);
2279 } else {
2280 // Match the ')'.
2281 T.consumeClose();
2282 ColonProtection.restore();
2283 RParenLoc = T.getCloseLocation();
2284 if (Tok.is(tok::l_brace)) {
2285 ExprType = CompoundLiteral;
2286 TypeResult Ty;
2287 {
2288 InMessageExpressionRAIIObject InMessage(*this, false);
2289 Ty = Actions.ActOnTypeName(getCurScope(), DeclaratorInfo);
2290 }
2291 return ParseCompoundLiteralExpression(Ty.get(), OpenLoc, RParenLoc);
2292 }
2293
2294 if (ExprType == CastExpr) {
2295 // We parsed '(' type-name ')' and the thing after it wasn't a '{'.
2296
2297 if (DeclaratorInfo.isInvalidType())
2298 return ExprError();
2299
2300 // Note that this doesn't parse the subsequent cast-expression, it just
2301 // returns the parsed type to the callee.
2302 if (stopIfCastExpr) {
2303 TypeResult Ty;
2304 {
2305 InMessageExpressionRAIIObject InMessage(*this, false);
2306 Ty = Actions.ActOnTypeName(getCurScope(), DeclaratorInfo);
2307 }
2308 CastTy = Ty.get();
2309 return ExprResult();
2310 }
2311
2312 // Reject the cast of super idiom in ObjC.
2313 if (Tok.is(tok::identifier) && getLangOpts().ObjC1 &&
2314 Tok.getIdentifierInfo() == Ident_super &&
2315 getCurScope()->isInObjcMethodScope() &&
2316 GetLookAheadToken(1).isNot(tok::period)) {
2317 Diag(Tok.getLocation(), diag::err_illegal_super_cast)
2318 << SourceRange(OpenLoc, RParenLoc);
2319 return ExprError();
2320 }
2321
2322 // Parse the cast-expression that follows it next.
2323 // TODO: For cast expression with CastTy.
2324 Result = ParseCastExpression(/*isUnaryExpression=*/false,
2325 /*isAddressOfOperand=*/false,
2326 /*isTypeCast=*/IsTypeCast);
2327 if (!Result.isInvalid()) {
2328 Result = Actions.ActOnCastExpr(getCurScope(), OpenLoc,
2329 DeclaratorInfo, CastTy,
2330 RParenLoc, Result.get());
2331 }
2332 return Result;
2333 }
2334
2335 Diag(Tok, diag::err_expected_lbrace_in_compound_literal);
2336 return ExprError();
2337 }
2338 } else if (Tok.is(tok::ellipsis) &&
2339 isFoldOperator(NextToken().getKind())) {
2340 return ParseFoldExpression(ExprResult(), T);
2341 } else if (isTypeCast) {
2342 // Parse the expression-list.
2343 InMessageExpressionRAIIObject InMessage(*this, false);
2344
2345 ExprVector ArgExprs;
2346 CommaLocsTy CommaLocs;
2347
2348 if (!ParseSimpleExpressionList(ArgExprs, CommaLocs)) {
2349 // FIXME: If we ever support comma expressions as operands to
2350 // fold-expressions, we'll need to allow multiple ArgExprs here.
2351 if (ArgExprs.size() == 1 && isFoldOperator(Tok.getKind()) &&
2352 NextToken().is(tok::ellipsis))
2353 return ParseFoldExpression(Result, T);
2354
2355 ExprType = SimpleExpr;
2356 Result = Actions.ActOnParenListExpr(OpenLoc, Tok.getLocation(),
2357 ArgExprs);
2358 }
2359 } else {
2360 InMessageExpressionRAIIObject InMessage(*this, false);
2361
2362 Result = ParseExpression(MaybeTypeCast);
2363 if (!getLangOpts().CPlusPlus && MaybeTypeCast && Result.isUsable()) {
2364 // Correct typos in non-C++ code earlier so that implicit-cast-like
2365 // expressions are parsed correctly.
2366 Result = Actions.CorrectDelayedTyposInExpr(Result);
2367 }
2368 ExprType = SimpleExpr;
2369
2370 if (isFoldOperator(Tok.getKind()) && NextToken().is(tok::ellipsis))
2371 return ParseFoldExpression(Result, T);
2372
2373 // Don't build a paren expression unless we actually match a ')'.
2374 if (!Result.isInvalid() && Tok.is(tok::r_paren))
2375 Result =
2376 Actions.ActOnParenExpr(OpenLoc, Tok.getLocation(), Result.get());
2377 }
2378
2379 // Match the ')'.
2380 if (Result.isInvalid()) {
2381 SkipUntil(tok::r_paren, StopAtSemi);
2382 return ExprError();
2383 }
2384
2385 T.consumeClose();
2386 RParenLoc = T.getCloseLocation();
2387 return Result;
2388 }
2389
2390 /// ParseCompoundLiteralExpression - We have parsed the parenthesized type-name
2391 /// and we are at the left brace.
2392 ///
2393 /// \verbatim
2394 /// postfix-expression: [C99 6.5.2]
2395 /// '(' type-name ')' '{' initializer-list '}'
2396 /// '(' type-name ')' '{' initializer-list ',' '}'
2397 /// \endverbatim
2398 ExprResult
ParseCompoundLiteralExpression(ParsedType Ty,SourceLocation LParenLoc,SourceLocation RParenLoc)2399 Parser::ParseCompoundLiteralExpression(ParsedType Ty,
2400 SourceLocation LParenLoc,
2401 SourceLocation RParenLoc) {
2402 assert(Tok.is(tok::l_brace) && "Not a compound literal!");
2403 if (!getLangOpts().C99) // Compound literals don't exist in C90.
2404 Diag(LParenLoc, diag::ext_c99_compound_literal);
2405 ExprResult Result = ParseInitializer();
2406 if (!Result.isInvalid() && Ty)
2407 return Actions.ActOnCompoundLiteral(LParenLoc, Ty, RParenLoc, Result.get());
2408 return Result;
2409 }
2410
2411 /// ParseStringLiteralExpression - This handles the various token types that
2412 /// form string literals, and also handles string concatenation [C99 5.1.1.2,
2413 /// translation phase #6].
2414 ///
2415 /// \verbatim
2416 /// primary-expression: [C99 6.5.1]
2417 /// string-literal
2418 /// \verbatim
ParseStringLiteralExpression(bool AllowUserDefinedLiteral)2419 ExprResult Parser::ParseStringLiteralExpression(bool AllowUserDefinedLiteral) {
2420 assert(isTokenStringLiteral() && "Not a string literal!");
2421
2422 // String concat. Note that keywords like __func__ and __FUNCTION__ are not
2423 // considered to be strings for concatenation purposes.
2424 SmallVector<Token, 4> StringToks;
2425
2426 do {
2427 StringToks.push_back(Tok);
2428 ConsumeStringToken();
2429 } while (isTokenStringLiteral());
2430
2431 // Pass the set of string tokens, ready for concatenation, to the actions.
2432 return Actions.ActOnStringLiteral(StringToks,
2433 AllowUserDefinedLiteral ? getCurScope()
2434 : nullptr);
2435 }
2436
2437 /// ParseGenericSelectionExpression - Parse a C11 generic-selection
2438 /// [C11 6.5.1.1].
2439 ///
2440 /// \verbatim
2441 /// generic-selection:
2442 /// _Generic ( assignment-expression , generic-assoc-list )
2443 /// generic-assoc-list:
2444 /// generic-association
2445 /// generic-assoc-list , generic-association
2446 /// generic-association:
2447 /// type-name : assignment-expression
2448 /// default : assignment-expression
2449 /// \endverbatim
ParseGenericSelectionExpression()2450 ExprResult Parser::ParseGenericSelectionExpression() {
2451 assert(Tok.is(tok::kw__Generic) && "_Generic keyword expected");
2452 SourceLocation KeyLoc = ConsumeToken();
2453
2454 if (!getLangOpts().C11)
2455 Diag(KeyLoc, diag::ext_c11_generic_selection);
2456
2457 BalancedDelimiterTracker T(*this, tok::l_paren);
2458 if (T.expectAndConsume())
2459 return ExprError();
2460
2461 ExprResult ControllingExpr;
2462 {
2463 // C11 6.5.1.1p3 "The controlling expression of a generic selection is
2464 // not evaluated."
2465 EnterExpressionEvaluationContext Unevaluated(Actions, Sema::Unevaluated);
2466 ControllingExpr =
2467 Actions.CorrectDelayedTyposInExpr(ParseAssignmentExpression());
2468 if (ControllingExpr.isInvalid()) {
2469 SkipUntil(tok::r_paren, StopAtSemi);
2470 return ExprError();
2471 }
2472 }
2473
2474 if (ExpectAndConsume(tok::comma)) {
2475 SkipUntil(tok::r_paren, StopAtSemi);
2476 return ExprError();
2477 }
2478
2479 SourceLocation DefaultLoc;
2480 TypeVector Types;
2481 ExprVector Exprs;
2482 do {
2483 ParsedType Ty;
2484 if (Tok.is(tok::kw_default)) {
2485 // C11 6.5.1.1p2 "A generic selection shall have no more than one default
2486 // generic association."
2487 if (!DefaultLoc.isInvalid()) {
2488 Diag(Tok, diag::err_duplicate_default_assoc);
2489 Diag(DefaultLoc, diag::note_previous_default_assoc);
2490 SkipUntil(tok::r_paren, StopAtSemi);
2491 return ExprError();
2492 }
2493 DefaultLoc = ConsumeToken();
2494 Ty = ParsedType();
2495 } else {
2496 ColonProtectionRAIIObject X(*this);
2497 TypeResult TR = ParseTypeName();
2498 if (TR.isInvalid()) {
2499 SkipUntil(tok::r_paren, StopAtSemi);
2500 return ExprError();
2501 }
2502 Ty = TR.get();
2503 }
2504 Types.push_back(Ty);
2505
2506 if (ExpectAndConsume(tok::colon)) {
2507 SkipUntil(tok::r_paren, StopAtSemi);
2508 return ExprError();
2509 }
2510
2511 // FIXME: These expressions should be parsed in a potentially potentially
2512 // evaluated context.
2513 ExprResult ER(
2514 Actions.CorrectDelayedTyposInExpr(ParseAssignmentExpression()));
2515 if (ER.isInvalid()) {
2516 SkipUntil(tok::r_paren, StopAtSemi);
2517 return ExprError();
2518 }
2519 Exprs.push_back(ER.get());
2520 } while (TryConsumeToken(tok::comma));
2521
2522 T.consumeClose();
2523 if (T.getCloseLocation().isInvalid())
2524 return ExprError();
2525
2526 return Actions.ActOnGenericSelectionExpr(KeyLoc, DefaultLoc,
2527 T.getCloseLocation(),
2528 ControllingExpr.get(),
2529 Types, Exprs);
2530 }
2531
2532 /// \brief Parse A C++1z fold-expression after the opening paren and optional
2533 /// left-hand-side expression.
2534 ///
2535 /// \verbatim
2536 /// fold-expression:
2537 /// ( cast-expression fold-operator ... )
2538 /// ( ... fold-operator cast-expression )
2539 /// ( cast-expression fold-operator ... fold-operator cast-expression )
ParseFoldExpression(ExprResult LHS,BalancedDelimiterTracker & T)2540 ExprResult Parser::ParseFoldExpression(ExprResult LHS,
2541 BalancedDelimiterTracker &T) {
2542 if (LHS.isInvalid()) {
2543 T.skipToEnd();
2544 return true;
2545 }
2546
2547 tok::TokenKind Kind = tok::unknown;
2548 SourceLocation FirstOpLoc;
2549 if (LHS.isUsable()) {
2550 Kind = Tok.getKind();
2551 assert(isFoldOperator(Kind) && "missing fold-operator");
2552 FirstOpLoc = ConsumeToken();
2553 }
2554
2555 assert(Tok.is(tok::ellipsis) && "not a fold-expression");
2556 SourceLocation EllipsisLoc = ConsumeToken();
2557
2558 ExprResult RHS;
2559 if (Tok.isNot(tok::r_paren)) {
2560 if (!isFoldOperator(Tok.getKind()))
2561 return Diag(Tok.getLocation(), diag::err_expected_fold_operator);
2562
2563 if (Kind != tok::unknown && Tok.getKind() != Kind)
2564 Diag(Tok.getLocation(), diag::err_fold_operator_mismatch)
2565 << SourceRange(FirstOpLoc);
2566 Kind = Tok.getKind();
2567 ConsumeToken();
2568
2569 RHS = ParseExpression();
2570 if (RHS.isInvalid()) {
2571 T.skipToEnd();
2572 return true;
2573 }
2574 }
2575
2576 Diag(EllipsisLoc, getLangOpts().CPlusPlus1z
2577 ? diag::warn_cxx14_compat_fold_expression
2578 : diag::ext_fold_expression);
2579
2580 T.consumeClose();
2581 return Actions.ActOnCXXFoldExpr(T.getOpenLocation(), LHS.get(), Kind,
2582 EllipsisLoc, RHS.get(), T.getCloseLocation());
2583 }
2584
2585 /// ParseExpressionList - Used for C/C++ (argument-)expression-list.
2586 ///
2587 /// \verbatim
2588 /// argument-expression-list:
2589 /// assignment-expression
2590 /// argument-expression-list , assignment-expression
2591 ///
2592 /// [C++] expression-list:
2593 /// [C++] assignment-expression
2594 /// [C++] expression-list , assignment-expression
2595 ///
2596 /// [C++0x] expression-list:
2597 /// [C++0x] initializer-list
2598 ///
2599 /// [C++0x] initializer-list
2600 /// [C++0x] initializer-clause ...[opt]
2601 /// [C++0x] initializer-list , initializer-clause ...[opt]
2602 ///
2603 /// [C++0x] initializer-clause:
2604 /// [C++0x] assignment-expression
2605 /// [C++0x] braced-init-list
2606 /// \endverbatim
ParseExpressionList(SmallVectorImpl<Expr * > & Exprs,SmallVectorImpl<SourceLocation> & CommaLocs,std::function<void ()> Completer)2607 bool Parser::ParseExpressionList(SmallVectorImpl<Expr *> &Exprs,
2608 SmallVectorImpl<SourceLocation> &CommaLocs,
2609 std::function<void()> Completer) {
2610 bool SawError = false;
2611 while (1) {
2612 if (Tok.is(tok::code_completion)) {
2613 if (Completer)
2614 Completer();
2615 else
2616 Actions.CodeCompleteOrdinaryName(getCurScope(), Sema::PCC_Expression);
2617 cutOffParsing();
2618 return true;
2619 }
2620
2621 ExprResult Expr;
2622 if (getLangOpts().CPlusPlus11 && Tok.is(tok::l_brace)) {
2623 Diag(Tok, diag::warn_cxx98_compat_generalized_initializer_lists);
2624 Expr = ParseBraceInitializer();
2625 } else
2626 Expr = ParseAssignmentExpression();
2627
2628 if (Tok.is(tok::ellipsis))
2629 Expr = Actions.ActOnPackExpansion(Expr.get(), ConsumeToken());
2630 if (Expr.isInvalid()) {
2631 SkipUntil(tok::comma, tok::r_paren, StopBeforeMatch);
2632 SawError = true;
2633 } else {
2634 Exprs.push_back(Expr.get());
2635 }
2636
2637 if (Tok.isNot(tok::comma))
2638 break;
2639 // Move to the next argument, remember where the comma was.
2640 CommaLocs.push_back(ConsumeToken());
2641 }
2642 if (SawError) {
2643 // Ensure typos get diagnosed when errors were encountered while parsing the
2644 // expression list.
2645 for (auto &E : Exprs) {
2646 ExprResult Expr = Actions.CorrectDelayedTyposInExpr(E);
2647 if (Expr.isUsable()) E = Expr.get();
2648 }
2649 }
2650 return SawError;
2651 }
2652
2653 /// ParseSimpleExpressionList - A simple comma-separated list of expressions,
2654 /// used for misc language extensions.
2655 ///
2656 /// \verbatim
2657 /// simple-expression-list:
2658 /// assignment-expression
2659 /// simple-expression-list , assignment-expression
2660 /// \endverbatim
2661 bool
ParseSimpleExpressionList(SmallVectorImpl<Expr * > & Exprs,SmallVectorImpl<SourceLocation> & CommaLocs)2662 Parser::ParseSimpleExpressionList(SmallVectorImpl<Expr*> &Exprs,
2663 SmallVectorImpl<SourceLocation> &CommaLocs) {
2664 while (1) {
2665 ExprResult Expr = ParseAssignmentExpression();
2666 if (Expr.isInvalid())
2667 return true;
2668
2669 Exprs.push_back(Expr.get());
2670
2671 if (Tok.isNot(tok::comma))
2672 return false;
2673
2674 // Move to the next argument, remember where the comma was.
2675 CommaLocs.push_back(ConsumeToken());
2676 }
2677 }
2678
2679 /// ParseBlockId - Parse a block-id, which roughly looks like int (int x).
2680 ///
2681 /// \verbatim
2682 /// [clang] block-id:
2683 /// [clang] specifier-qualifier-list block-declarator
2684 /// \endverbatim
ParseBlockId(SourceLocation CaretLoc)2685 void Parser::ParseBlockId(SourceLocation CaretLoc) {
2686 if (Tok.is(tok::code_completion)) {
2687 Actions.CodeCompleteOrdinaryName(getCurScope(), Sema::PCC_Type);
2688 return cutOffParsing();
2689 }
2690
2691 // Parse the specifier-qualifier-list piece.
2692 DeclSpec DS(AttrFactory);
2693 ParseSpecifierQualifierList(DS);
2694
2695 // Parse the block-declarator.
2696 Declarator DeclaratorInfo(DS, Declarator::BlockLiteralContext);
2697 ParseDeclarator(DeclaratorInfo);
2698
2699 MaybeParseGNUAttributes(DeclaratorInfo);
2700
2701 // Inform sema that we are starting a block.
2702 Actions.ActOnBlockArguments(CaretLoc, DeclaratorInfo, getCurScope());
2703 }
2704
2705 /// ParseBlockLiteralExpression - Parse a block literal, which roughly looks
2706 /// like ^(int x){ return x+1; }
2707 ///
2708 /// \verbatim
2709 /// block-literal:
2710 /// [clang] '^' block-args[opt] compound-statement
2711 /// [clang] '^' block-id compound-statement
2712 /// [clang] block-args:
2713 /// [clang] '(' parameter-list ')'
2714 /// \endverbatim
ParseBlockLiteralExpression()2715 ExprResult Parser::ParseBlockLiteralExpression() {
2716 assert(Tok.is(tok::caret) && "block literal starts with ^");
2717 SourceLocation CaretLoc = ConsumeToken();
2718
2719 PrettyStackTraceLoc CrashInfo(PP.getSourceManager(), CaretLoc,
2720 "block literal parsing");
2721
2722 // Enter a scope to hold everything within the block. This includes the
2723 // argument decls, decls within the compound expression, etc. This also
2724 // allows determining whether a variable reference inside the block is
2725 // within or outside of the block.
2726 ParseScope BlockScope(this, Scope::BlockScope | Scope::FnScope |
2727 Scope::DeclScope);
2728
2729 // Inform sema that we are starting a block.
2730 Actions.ActOnBlockStart(CaretLoc, getCurScope());
2731
2732 // Parse the return type if present.
2733 DeclSpec DS(AttrFactory);
2734 Declarator ParamInfo(DS, Declarator::BlockLiteralContext);
2735 // FIXME: Since the return type isn't actually parsed, it can't be used to
2736 // fill ParamInfo with an initial valid range, so do it manually.
2737 ParamInfo.SetSourceRange(SourceRange(Tok.getLocation(), Tok.getLocation()));
2738
2739 // If this block has arguments, parse them. There is no ambiguity here with
2740 // the expression case, because the expression case requires a parameter list.
2741 if (Tok.is(tok::l_paren)) {
2742 ParseParenDeclarator(ParamInfo);
2743 // Parse the pieces after the identifier as if we had "int(...)".
2744 // SetIdentifier sets the source range end, but in this case we're past
2745 // that location.
2746 SourceLocation Tmp = ParamInfo.getSourceRange().getEnd();
2747 ParamInfo.SetIdentifier(nullptr, CaretLoc);
2748 ParamInfo.SetRangeEnd(Tmp);
2749 if (ParamInfo.isInvalidType()) {
2750 // If there was an error parsing the arguments, they may have
2751 // tried to use ^(x+y) which requires an argument list. Just
2752 // skip the whole block literal.
2753 Actions.ActOnBlockError(CaretLoc, getCurScope());
2754 return ExprError();
2755 }
2756
2757 MaybeParseGNUAttributes(ParamInfo);
2758
2759 // Inform sema that we are starting a block.
2760 Actions.ActOnBlockArguments(CaretLoc, ParamInfo, getCurScope());
2761 } else if (!Tok.is(tok::l_brace)) {
2762 ParseBlockId(CaretLoc);
2763 } else {
2764 // Otherwise, pretend we saw (void).
2765 ParsedAttributes attrs(AttrFactory);
2766 SourceLocation NoLoc;
2767 ParamInfo.AddTypeInfo(DeclaratorChunk::getFunction(/*HasProto=*/true,
2768 /*IsAmbiguous=*/false,
2769 /*RParenLoc=*/NoLoc,
2770 /*ArgInfo=*/nullptr,
2771 /*NumArgs=*/0,
2772 /*EllipsisLoc=*/NoLoc,
2773 /*RParenLoc=*/NoLoc,
2774 /*TypeQuals=*/0,
2775 /*RefQualifierIsLvalueRef=*/true,
2776 /*RefQualifierLoc=*/NoLoc,
2777 /*ConstQualifierLoc=*/NoLoc,
2778 /*VolatileQualifierLoc=*/NoLoc,
2779 /*RestrictQualifierLoc=*/NoLoc,
2780 /*MutableLoc=*/NoLoc,
2781 EST_None,
2782 /*ESpecRange=*/SourceRange(),
2783 /*Exceptions=*/nullptr,
2784 /*ExceptionRanges=*/nullptr,
2785 /*NumExceptions=*/0,
2786 /*NoexceptExpr=*/nullptr,
2787 /*ExceptionSpecTokens=*/nullptr,
2788 CaretLoc, CaretLoc,
2789 ParamInfo),
2790 attrs, CaretLoc);
2791
2792 MaybeParseGNUAttributes(ParamInfo);
2793
2794 // Inform sema that we are starting a block.
2795 Actions.ActOnBlockArguments(CaretLoc, ParamInfo, getCurScope());
2796 }
2797
2798
2799 ExprResult Result(true);
2800 if (!Tok.is(tok::l_brace)) {
2801 // Saw something like: ^expr
2802 Diag(Tok, diag::err_expected_expression);
2803 Actions.ActOnBlockError(CaretLoc, getCurScope());
2804 return ExprError();
2805 }
2806
2807 StmtResult Stmt(ParseCompoundStatementBody());
2808 BlockScope.Exit();
2809 if (!Stmt.isInvalid())
2810 Result = Actions.ActOnBlockStmtExpr(CaretLoc, Stmt.get(), getCurScope());
2811 else
2812 Actions.ActOnBlockError(CaretLoc, getCurScope());
2813 return Result;
2814 }
2815
2816 /// ParseObjCBoolLiteral - This handles the objective-c Boolean literals.
2817 ///
2818 /// '__objc_yes'
2819 /// '__objc_no'
ParseObjCBoolLiteral()2820 ExprResult Parser::ParseObjCBoolLiteral() {
2821 tok::TokenKind Kind = Tok.getKind();
2822 return Actions.ActOnObjCBoolLiteral(ConsumeToken(), Kind);
2823 }
2824