1 //
2 // Copyright (C) 2012 The Android Open Source Project
3 //
4 // Licensed under the Apache License, Version 2.0 (the "License");
5 // you may not use this file except in compliance with the License.
6 // You may obtain a copy of the License at
7 //
8 //      http://www.apache.org/licenses/LICENSE-2.0
9 //
10 // Unless required by applicable law or agreed to in writing, software
11 // distributed under the License is distributed on an "AS IS" BASIS,
12 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 // See the License for the specific language governing permissions and
14 // limitations under the License.
15 //
16 
17 #include "update_engine/payload_consumer/delta_performer.h"
18 
19 #include <endian.h>
20 #include <errno.h>
21 #include <linux/fs.h>
22 
23 #include <algorithm>
24 #include <cstring>
25 #include <memory>
26 #include <string>
27 #include <vector>
28 
29 #include <base/files/file_util.h>
30 #include <base/format_macros.h>
31 #include <base/strings/string_util.h>
32 #include <base/strings/stringprintf.h>
33 #include <brillo/data_encoding.h>
34 #include <brillo/make_unique_ptr.h>
35 #include <google/protobuf/repeated_field.h>
36 
37 #include "update_engine/common/constants.h"
38 #include "update_engine/common/hardware_interface.h"
39 #include "update_engine/common/prefs_interface.h"
40 #include "update_engine/common/subprocess.h"
41 #include "update_engine/common/terminator.h"
42 #include "update_engine/payload_consumer/bzip_extent_writer.h"
43 #include "update_engine/payload_consumer/download_action.h"
44 #include "update_engine/payload_consumer/extent_writer.h"
45 #if USE_MTD
46 #include "update_engine/payload_consumer/mtd_file_descriptor.h"
47 #endif
48 #include "update_engine/payload_consumer/payload_constants.h"
49 #include "update_engine/payload_consumer/payload_verifier.h"
50 #include "update_engine/payload_consumer/xz_extent_writer.h"
51 
52 using google::protobuf::RepeatedPtrField;
53 using std::min;
54 using std::string;
55 using std::vector;
56 
57 namespace chromeos_update_engine {
58 
59 const uint64_t DeltaPerformer::kDeltaVersionOffset = sizeof(kDeltaMagic);
60 const uint64_t DeltaPerformer::kDeltaVersionSize = 8;
61 const uint64_t DeltaPerformer::kDeltaManifestSizeOffset =
62     kDeltaVersionOffset + kDeltaVersionSize;
63 const uint64_t DeltaPerformer::kDeltaManifestSizeSize = 8;
64 const uint64_t DeltaPerformer::kDeltaMetadataSignatureSizeSize = 4;
65 const uint64_t DeltaPerformer::kMaxPayloadHeaderSize = 24;
66 const uint64_t DeltaPerformer::kSupportedMajorPayloadVersion = 2;
67 const uint32_t DeltaPerformer::kSupportedMinorPayloadVersion = 3;
68 
69 const unsigned DeltaPerformer::kProgressLogMaxChunks = 10;
70 const unsigned DeltaPerformer::kProgressLogTimeoutSeconds = 30;
71 const unsigned DeltaPerformer::kProgressDownloadWeight = 50;
72 const unsigned DeltaPerformer::kProgressOperationsWeight = 50;
73 
74 namespace {
75 const int kUpdateStateOperationInvalid = -1;
76 const int kMaxResumedUpdateFailures = 10;
77 #if USE_MTD
78 const int kUbiVolumeAttachTimeout = 5 * 60;
79 #endif
80 
CreateFileDescriptor(const char * path)81 FileDescriptorPtr CreateFileDescriptor(const char* path) {
82   FileDescriptorPtr ret;
83 #if USE_MTD
84   if (strstr(path, "/dev/ubi") == path) {
85     if (!UbiFileDescriptor::IsUbi(path)) {
86       // The volume might not have been attached at boot time.
87       int volume_no;
88       if (utils::SplitPartitionName(path, nullptr, &volume_no)) {
89         utils::TryAttachingUbiVolume(volume_no, kUbiVolumeAttachTimeout);
90       }
91     }
92     if (UbiFileDescriptor::IsUbi(path)) {
93       LOG(INFO) << path << " is a UBI device.";
94       ret.reset(new UbiFileDescriptor);
95     }
96   } else if (MtdFileDescriptor::IsMtd(path)) {
97     LOG(INFO) << path << " is an MTD device.";
98     ret.reset(new MtdFileDescriptor);
99   } else {
100     LOG(INFO) << path << " is not an MTD nor a UBI device.";
101 #endif
102     ret.reset(new EintrSafeFileDescriptor);
103 #if USE_MTD
104   }
105 #endif
106   return ret;
107 }
108 
109 // Opens path for read/write. On success returns an open FileDescriptor
110 // and sets *err to 0. On failure, sets *err to errno and returns nullptr.
OpenFile(const char * path,int mode,int * err)111 FileDescriptorPtr OpenFile(const char* path, int mode, int* err) {
112   // Try to mark the block device read-only based on the mode. Ignore any
113   // failure since this won't work when passing regular files.
114   utils::SetBlockDeviceReadOnly(path, (mode & O_ACCMODE) == O_RDONLY);
115 
116   FileDescriptorPtr fd = CreateFileDescriptor(path);
117 #if USE_MTD
118   // On NAND devices, we can either read, or write, but not both. So here we
119   // use O_WRONLY.
120   if (UbiFileDescriptor::IsUbi(path) || MtdFileDescriptor::IsMtd(path)) {
121     mode = O_WRONLY;
122   }
123 #endif
124   if (!fd->Open(path, mode, 000)) {
125     *err = errno;
126     PLOG(ERROR) << "Unable to open file " << path;
127     return nullptr;
128   }
129   *err = 0;
130   return fd;
131 }
132 }  // namespace
133 
134 
135 // Computes the ratio of |part| and |total|, scaled to |norm|, using integer
136 // arithmetic.
IntRatio(uint64_t part,uint64_t total,uint64_t norm)137 static uint64_t IntRatio(uint64_t part, uint64_t total, uint64_t norm) {
138   return part * norm / total;
139 }
140 
LogProgress(const char * message_prefix)141 void DeltaPerformer::LogProgress(const char* message_prefix) {
142   // Format operations total count and percentage.
143   string total_operations_str("?");
144   string completed_percentage_str("");
145   if (num_total_operations_) {
146     total_operations_str = std::to_string(num_total_operations_);
147     // Upcasting to 64-bit to avoid overflow, back to size_t for formatting.
148     completed_percentage_str =
149         base::StringPrintf(" (%" PRIu64 "%%)",
150                            IntRatio(next_operation_num_, num_total_operations_,
151                                     100));
152   }
153 
154   // Format download total count and percentage.
155   size_t payload_size = install_plan_->payload_size;
156   string payload_size_str("?");
157   string downloaded_percentage_str("");
158   if (payload_size) {
159     payload_size_str = std::to_string(payload_size);
160     // Upcasting to 64-bit to avoid overflow, back to size_t for formatting.
161     downloaded_percentage_str =
162         base::StringPrintf(" (%" PRIu64 "%%)",
163                            IntRatio(total_bytes_received_, payload_size, 100));
164   }
165 
166   LOG(INFO) << (message_prefix ? message_prefix : "") << next_operation_num_
167             << "/" << total_operations_str << " operations"
168             << completed_percentage_str << ", " << total_bytes_received_
169             << "/" << payload_size_str << " bytes downloaded"
170             << downloaded_percentage_str << ", overall progress "
171             << overall_progress_ << "%";
172 }
173 
UpdateOverallProgress(bool force_log,const char * message_prefix)174 void DeltaPerformer::UpdateOverallProgress(bool force_log,
175                                            const char* message_prefix) {
176   // Compute our download and overall progress.
177   unsigned new_overall_progress = 0;
178   static_assert(kProgressDownloadWeight + kProgressOperationsWeight == 100,
179                 "Progress weights don't add up");
180   // Only consider download progress if its total size is known; otherwise
181   // adjust the operations weight to compensate for the absence of download
182   // progress. Also, make sure to cap the download portion at
183   // kProgressDownloadWeight, in case we end up downloading more than we
184   // initially expected (this indicates a problem, but could generally happen).
185   // TODO(garnold) the correction of operations weight when we do not have the
186   // total payload size, as well as the conditional guard below, should both be
187   // eliminated once we ensure that the payload_size in the install plan is
188   // always given and is non-zero. This currently isn't the case during unit
189   // tests (see chromium-os:37969).
190   size_t payload_size = install_plan_->payload_size;
191   unsigned actual_operations_weight = kProgressOperationsWeight;
192   if (payload_size)
193     new_overall_progress += min(
194         static_cast<unsigned>(IntRatio(total_bytes_received_, payload_size,
195                                        kProgressDownloadWeight)),
196         kProgressDownloadWeight);
197   else
198     actual_operations_weight += kProgressDownloadWeight;
199 
200   // Only add completed operations if their total number is known; we definitely
201   // expect an update to have at least one operation, so the expectation is that
202   // this will eventually reach |actual_operations_weight|.
203   if (num_total_operations_)
204     new_overall_progress += IntRatio(next_operation_num_, num_total_operations_,
205                                      actual_operations_weight);
206 
207   // Progress ratio cannot recede, unless our assumptions about the total
208   // payload size, total number of operations, or the monotonicity of progress
209   // is breached.
210   if (new_overall_progress < overall_progress_) {
211     LOG(WARNING) << "progress counter receded from " << overall_progress_
212                  << "% down to " << new_overall_progress << "%; this is a bug";
213     force_log = true;
214   }
215   overall_progress_ = new_overall_progress;
216 
217   // Update chunk index, log as needed: if forced by called, or we completed a
218   // progress chunk, or a timeout has expired.
219   base::Time curr_time = base::Time::Now();
220   unsigned curr_progress_chunk =
221       overall_progress_ * kProgressLogMaxChunks / 100;
222   if (force_log || curr_progress_chunk > last_progress_chunk_ ||
223       curr_time > forced_progress_log_time_) {
224     forced_progress_log_time_ = curr_time + forced_progress_log_wait_;
225     LogProgress(message_prefix);
226   }
227   last_progress_chunk_ = curr_progress_chunk;
228 }
229 
230 
CopyDataToBuffer(const char ** bytes_p,size_t * count_p,size_t max)231 size_t DeltaPerformer::CopyDataToBuffer(const char** bytes_p, size_t* count_p,
232                                         size_t max) {
233   const size_t count = *count_p;
234   if (!count)
235     return 0;  // Special case shortcut.
236   size_t read_len = min(count, max - buffer_.size());
237   const char* bytes_start = *bytes_p;
238   const char* bytes_end = bytes_start + read_len;
239   buffer_.insert(buffer_.end(), bytes_start, bytes_end);
240   *bytes_p = bytes_end;
241   *count_p = count - read_len;
242   return read_len;
243 }
244 
245 
HandleOpResult(bool op_result,const char * op_type_name,ErrorCode * error)246 bool DeltaPerformer::HandleOpResult(bool op_result, const char* op_type_name,
247                                     ErrorCode* error) {
248   if (op_result)
249     return true;
250 
251   LOG(ERROR) << "Failed to perform " << op_type_name << " operation "
252              << next_operation_num_;
253   *error = ErrorCode::kDownloadOperationExecutionError;
254   return false;
255 }
256 
Close()257 int DeltaPerformer::Close() {
258   int err = -CloseCurrentPartition();
259   LOG_IF(ERROR, !payload_hash_calculator_.Finalize() ||
260                 !signed_hash_calculator_.Finalize())
261       << "Unable to finalize the hash.";
262   if (!buffer_.empty()) {
263     LOG(INFO) << "Discarding " << buffer_.size() << " unused downloaded bytes";
264     if (err >= 0)
265       err = 1;
266   }
267   return -err;
268 }
269 
CloseCurrentPartition()270 int DeltaPerformer::CloseCurrentPartition() {
271   int err = 0;
272   if (source_fd_ && !source_fd_->Close()) {
273     err = errno;
274     PLOG(ERROR) << "Error closing source partition";
275     if (!err)
276       err = 1;
277   }
278   source_fd_.reset();
279   source_path_.clear();
280 
281   if (target_fd_ && !target_fd_->Close()) {
282     err = errno;
283     PLOG(ERROR) << "Error closing target partition";
284     if (!err)
285       err = 1;
286   }
287   target_fd_.reset();
288   target_path_.clear();
289   return -err;
290 }
291 
OpenCurrentPartition()292 bool DeltaPerformer::OpenCurrentPartition() {
293   if (current_partition_ >= partitions_.size())
294     return false;
295 
296   const PartitionUpdate& partition = partitions_[current_partition_];
297   // Open source fds if we have a delta payload with minor version >= 2.
298   if (install_plan_->payload_type == InstallPayloadType::kDelta &&
299       GetMinorVersion() != kInPlaceMinorPayloadVersion) {
300     source_path_ = install_plan_->partitions[current_partition_].source_path;
301     int err;
302     source_fd_ = OpenFile(source_path_.c_str(), O_RDONLY, &err);
303     if (!source_fd_) {
304       LOG(ERROR) << "Unable to open source partition "
305                  << partition.partition_name() << " on slot "
306                  << BootControlInterface::SlotName(install_plan_->source_slot)
307                  << ", file " << source_path_;
308       return false;
309     }
310   }
311 
312   target_path_ = install_plan_->partitions[current_partition_].target_path;
313   int err;
314   target_fd_ = OpenFile(target_path_.c_str(), O_RDWR, &err);
315   if (!target_fd_) {
316     LOG(ERROR) << "Unable to open target partition "
317                << partition.partition_name() << " on slot "
318                << BootControlInterface::SlotName(install_plan_->target_slot)
319                << ", file " << target_path_;
320     return false;
321   }
322   return true;
323 }
324 
325 namespace {
326 
LogPartitionInfoHash(const PartitionInfo & info,const string & tag)327 void LogPartitionInfoHash(const PartitionInfo& info, const string& tag) {
328   string sha256 = brillo::data_encoding::Base64Encode(info.hash());
329   LOG(INFO) << "PartitionInfo " << tag << " sha256: " << sha256
330             << " size: " << info.size();
331 }
332 
LogPartitionInfo(const vector<PartitionUpdate> & partitions)333 void LogPartitionInfo(const vector<PartitionUpdate>& partitions) {
334   for (const PartitionUpdate& partition : partitions) {
335     LogPartitionInfoHash(partition.old_partition_info(),
336                          "old " + partition.partition_name());
337     LogPartitionInfoHash(partition.new_partition_info(),
338                          "new " + partition.partition_name());
339   }
340 }
341 
342 }  // namespace
343 
GetMetadataSignatureSizeOffset(uint64_t * out_offset) const344 bool DeltaPerformer::GetMetadataSignatureSizeOffset(
345     uint64_t* out_offset) const {
346   if (GetMajorVersion() == kBrilloMajorPayloadVersion) {
347     *out_offset = kDeltaManifestSizeOffset + kDeltaManifestSizeSize;
348     return true;
349   }
350   return false;
351 }
352 
GetManifestOffset(uint64_t * out_offset) const353 bool DeltaPerformer::GetManifestOffset(uint64_t* out_offset) const {
354   // Actual manifest begins right after the manifest size field or
355   // metadata signature size field if major version >= 2.
356   if (major_payload_version_ == kChromeOSMajorPayloadVersion) {
357     *out_offset = kDeltaManifestSizeOffset + kDeltaManifestSizeSize;
358     return true;
359   }
360   if (major_payload_version_ == kBrilloMajorPayloadVersion) {
361     *out_offset = kDeltaManifestSizeOffset + kDeltaManifestSizeSize +
362                   kDeltaMetadataSignatureSizeSize;
363     return true;
364   }
365   LOG(ERROR) << "Unknown major payload version: " << major_payload_version_;
366   return false;
367 }
368 
GetMetadataSize() const369 uint64_t DeltaPerformer::GetMetadataSize() const {
370   return metadata_size_;
371 }
372 
GetMajorVersion() const373 uint64_t DeltaPerformer::GetMajorVersion() const {
374   return major_payload_version_;
375 }
376 
GetMinorVersion() const377 uint32_t DeltaPerformer::GetMinorVersion() const {
378   if (manifest_.has_minor_version()) {
379     return manifest_.minor_version();
380   } else {
381     return install_plan_->payload_type == InstallPayloadType::kDelta
382                ? kSupportedMinorPayloadVersion
383                : kFullPayloadMinorVersion;
384   }
385 }
386 
GetManifest(DeltaArchiveManifest * out_manifest_p) const387 bool DeltaPerformer::GetManifest(DeltaArchiveManifest* out_manifest_p) const {
388   if (!manifest_parsed_)
389     return false;
390   *out_manifest_p = manifest_;
391   return true;
392 }
393 
IsHeaderParsed() const394 bool DeltaPerformer::IsHeaderParsed() const {
395   return metadata_size_ != 0;
396 }
397 
ParsePayloadMetadata(const brillo::Blob & payload,ErrorCode * error)398 DeltaPerformer::MetadataParseResult DeltaPerformer::ParsePayloadMetadata(
399     const brillo::Blob& payload, ErrorCode* error) {
400   *error = ErrorCode::kSuccess;
401   uint64_t manifest_offset;
402 
403   if (!IsHeaderParsed()) {
404     // Ensure we have data to cover the major payload version.
405     if (payload.size() < kDeltaManifestSizeOffset)
406       return kMetadataParseInsufficientData;
407 
408     // Validate the magic string.
409     if (memcmp(payload.data(), kDeltaMagic, sizeof(kDeltaMagic)) != 0) {
410       LOG(ERROR) << "Bad payload format -- invalid delta magic.";
411       *error = ErrorCode::kDownloadInvalidMetadataMagicString;
412       return kMetadataParseError;
413     }
414 
415     // Extract the payload version from the metadata.
416     static_assert(sizeof(major_payload_version_) == kDeltaVersionSize,
417                   "Major payload version size mismatch");
418     memcpy(&major_payload_version_,
419            &payload[kDeltaVersionOffset],
420            kDeltaVersionSize);
421     // switch big endian to host
422     major_payload_version_ = be64toh(major_payload_version_);
423 
424     if (major_payload_version_ != supported_major_version_ &&
425         major_payload_version_ != kChromeOSMajorPayloadVersion) {
426       LOG(ERROR) << "Bad payload format -- unsupported payload version: "
427           << major_payload_version_;
428       *error = ErrorCode::kUnsupportedMajorPayloadVersion;
429       return kMetadataParseError;
430     }
431 
432     // Get the manifest offset now that we have payload version.
433     if (!GetManifestOffset(&manifest_offset)) {
434       *error = ErrorCode::kUnsupportedMajorPayloadVersion;
435       return kMetadataParseError;
436     }
437     // Check again with the manifest offset.
438     if (payload.size() < manifest_offset)
439       return kMetadataParseInsufficientData;
440 
441     // Next, parse the manifest size.
442     static_assert(sizeof(manifest_size_) == kDeltaManifestSizeSize,
443                   "manifest_size size mismatch");
444     memcpy(&manifest_size_,
445            &payload[kDeltaManifestSizeOffset],
446            kDeltaManifestSizeSize);
447     manifest_size_ = be64toh(manifest_size_);  // switch big endian to host
448 
449     if (GetMajorVersion() == kBrilloMajorPayloadVersion) {
450       // Parse the metadata signature size.
451       static_assert(sizeof(metadata_signature_size_) ==
452                     kDeltaMetadataSignatureSizeSize,
453                     "metadata_signature_size size mismatch");
454       uint64_t metadata_signature_size_offset;
455       if (!GetMetadataSignatureSizeOffset(&metadata_signature_size_offset)) {
456         *error = ErrorCode::kError;
457         return kMetadataParseError;
458       }
459       memcpy(&metadata_signature_size_,
460              &payload[metadata_signature_size_offset],
461              kDeltaMetadataSignatureSizeSize);
462       metadata_signature_size_ = be32toh(metadata_signature_size_);
463     }
464 
465     // If the metadata size is present in install plan, check for it immediately
466     // even before waiting for that many number of bytes to be downloaded in the
467     // payload. This will prevent any attack which relies on us downloading data
468     // beyond the expected metadata size.
469     metadata_size_ = manifest_offset + manifest_size_;
470     if (install_plan_->hash_checks_mandatory) {
471       if (install_plan_->metadata_size != metadata_size_) {
472         LOG(ERROR) << "Mandatory metadata size in Omaha response ("
473                    << install_plan_->metadata_size
474                    << ") is missing/incorrect, actual = " << metadata_size_;
475         *error = ErrorCode::kDownloadInvalidMetadataSize;
476         return kMetadataParseError;
477       }
478     }
479   }
480 
481   // Now that we have validated the metadata size, we should wait for the full
482   // metadata and its signature (if exist) to be read in before we can parse it.
483   if (payload.size() < metadata_size_ + metadata_signature_size_)
484     return kMetadataParseInsufficientData;
485 
486   // Log whether we validated the size or simply trusting what's in the payload
487   // here. This is logged here (after we received the full metadata data) so
488   // that we just log once (instead of logging n times) if it takes n
489   // DeltaPerformer::Write calls to download the full manifest.
490   if (install_plan_->metadata_size == metadata_size_) {
491     LOG(INFO) << "Manifest size in payload matches expected value from Omaha";
492   } else {
493     // For mandatory-cases, we'd have already returned a kMetadataParseError
494     // above. We'll be here only for non-mandatory cases. Just send a UMA stat.
495     LOG(WARNING) << "Ignoring missing/incorrect metadata size ("
496                  << install_plan_->metadata_size
497                  << ") in Omaha response as validation is not mandatory. "
498                  << "Trusting metadata size in payload = " << metadata_size_;
499   }
500 
501   // We have the full metadata in |payload|. Verify its integrity
502   // and authenticity based on the information we have in Omaha response.
503   *error = ValidateMetadataSignature(payload);
504   if (*error != ErrorCode::kSuccess) {
505     if (install_plan_->hash_checks_mandatory) {
506       // The autoupdate_CatchBadSignatures test checks for this string
507       // in log-files. Keep in sync.
508       LOG(ERROR) << "Mandatory metadata signature validation failed";
509       return kMetadataParseError;
510     }
511 
512     // For non-mandatory cases, just send a UMA stat.
513     LOG(WARNING) << "Ignoring metadata signature validation failures";
514     *error = ErrorCode::kSuccess;
515   }
516 
517   if (!GetManifestOffset(&manifest_offset)) {
518     *error = ErrorCode::kUnsupportedMajorPayloadVersion;
519     return kMetadataParseError;
520   }
521   // The payload metadata is deemed valid, it's safe to parse the protobuf.
522   if (!manifest_.ParseFromArray(&payload[manifest_offset], manifest_size_)) {
523     LOG(ERROR) << "Unable to parse manifest in update file.";
524     *error = ErrorCode::kDownloadManifestParseError;
525     return kMetadataParseError;
526   }
527 
528   manifest_parsed_ = true;
529   return kMetadataParseSuccess;
530 }
531 
532 // Wrapper around write. Returns true if all requested bytes
533 // were written, or false on any error, regardless of progress
534 // and stores an action exit code in |error|.
Write(const void * bytes,size_t count,ErrorCode * error)535 bool DeltaPerformer::Write(const void* bytes, size_t count, ErrorCode *error) {
536   *error = ErrorCode::kSuccess;
537 
538   const char* c_bytes = reinterpret_cast<const char*>(bytes);
539 
540   // Update the total byte downloaded count and the progress logs.
541   total_bytes_received_ += count;
542   UpdateOverallProgress(false, "Completed ");
543 
544   while (!manifest_valid_) {
545     // Read data up to the needed limit; this is either maximium payload header
546     // size, or the full metadata size (once it becomes known).
547     const bool do_read_header = !IsHeaderParsed();
548     CopyDataToBuffer(&c_bytes, &count,
549                      (do_read_header ? kMaxPayloadHeaderSize :
550                       metadata_size_ + metadata_signature_size_));
551 
552     MetadataParseResult result = ParsePayloadMetadata(buffer_, error);
553     if (result == kMetadataParseError)
554       return false;
555     if (result == kMetadataParseInsufficientData) {
556       // If we just processed the header, make an attempt on the manifest.
557       if (do_read_header && IsHeaderParsed())
558         continue;
559 
560       return true;
561     }
562 
563     // Checks the integrity of the payload manifest.
564     if ((*error = ValidateManifest()) != ErrorCode::kSuccess)
565       return false;
566     manifest_valid_ = true;
567 
568     // Clear the download buffer.
569     DiscardBuffer(false, metadata_size_);
570 
571     // This populates |partitions_| and the |install_plan.partitions| with the
572     // list of partitions from the manifest.
573     if (!ParseManifestPartitions(error))
574       return false;
575 
576     num_total_operations_ = 0;
577     for (const auto& partition : partitions_) {
578       num_total_operations_ += partition.operations_size();
579       acc_num_operations_.push_back(num_total_operations_);
580     }
581 
582     LOG_IF(WARNING, !prefs_->SetInt64(kPrefsManifestMetadataSize,
583                                       metadata_size_))
584         << "Unable to save the manifest metadata size.";
585     LOG_IF(WARNING, !prefs_->SetInt64(kPrefsManifestSignatureSize,
586                                       metadata_signature_size_))
587         << "Unable to save the manifest signature size.";
588 
589     if (!PrimeUpdateState()) {
590       *error = ErrorCode::kDownloadStateInitializationError;
591       LOG(ERROR) << "Unable to prime the update state.";
592       return false;
593     }
594 
595     if (!OpenCurrentPartition()) {
596       *error = ErrorCode::kInstallDeviceOpenError;
597       return false;
598     }
599 
600     if (next_operation_num_ > 0)
601       UpdateOverallProgress(true, "Resuming after ");
602     LOG(INFO) << "Starting to apply update payload operations";
603   }
604 
605   while (next_operation_num_ < num_total_operations_) {
606     // Check if we should cancel the current attempt for any reason.
607     // In this case, *error will have already been populated with the reason
608     // why we're canceling.
609     if (download_delegate_ && download_delegate_->ShouldCancel(error))
610       return false;
611 
612     // We know there are more operations to perform because we didn't reach the
613     // |num_total_operations_| limit yet.
614     while (next_operation_num_ >= acc_num_operations_[current_partition_]) {
615       CloseCurrentPartition();
616       current_partition_++;
617       if (!OpenCurrentPartition()) {
618         *error = ErrorCode::kInstallDeviceOpenError;
619         return false;
620       }
621     }
622     const size_t partition_operation_num = next_operation_num_ - (
623         current_partition_ ? acc_num_operations_[current_partition_ - 1] : 0);
624 
625     const InstallOperation& op =
626         partitions_[current_partition_].operations(partition_operation_num);
627 
628     CopyDataToBuffer(&c_bytes, &count, op.data_length());
629 
630     // Check whether we received all of the next operation's data payload.
631     if (!CanPerformInstallOperation(op))
632       return true;
633 
634     // Validate the operation only if the metadata signature is present.
635     // Otherwise, keep the old behavior. This serves as a knob to disable
636     // the validation logic in case we find some regression after rollout.
637     // NOTE: If hash checks are mandatory and if metadata_signature is empty,
638     // we would have already failed in ParsePayloadMetadata method and thus not
639     // even be here. So no need to handle that case again here.
640     if (!install_plan_->metadata_signature.empty()) {
641       // Note: Validate must be called only if CanPerformInstallOperation is
642       // called. Otherwise, we might be failing operations before even if there
643       // isn't sufficient data to compute the proper hash.
644       *error = ValidateOperationHash(op);
645       if (*error != ErrorCode::kSuccess) {
646         if (install_plan_->hash_checks_mandatory) {
647           LOG(ERROR) << "Mandatory operation hash check failed";
648           return false;
649         }
650 
651         // For non-mandatory cases, just send a UMA stat.
652         LOG(WARNING) << "Ignoring operation validation errors";
653         *error = ErrorCode::kSuccess;
654       }
655     }
656 
657     // Makes sure we unblock exit when this operation completes.
658     ScopedTerminatorExitUnblocker exit_unblocker =
659         ScopedTerminatorExitUnblocker();  // Avoids a compiler unused var bug.
660 
661     bool op_result;
662     switch (op.type()) {
663       case InstallOperation::REPLACE:
664       case InstallOperation::REPLACE_BZ:
665       case InstallOperation::REPLACE_XZ:
666         op_result = PerformReplaceOperation(op);
667         break;
668       case InstallOperation::ZERO:
669       case InstallOperation::DISCARD:
670         op_result = PerformZeroOrDiscardOperation(op);
671         break;
672       case InstallOperation::MOVE:
673         op_result = PerformMoveOperation(op);
674         break;
675       case InstallOperation::BSDIFF:
676         op_result = PerformBsdiffOperation(op);
677         break;
678       case InstallOperation::SOURCE_COPY:
679         op_result = PerformSourceCopyOperation(op);
680         break;
681       case InstallOperation::SOURCE_BSDIFF:
682         op_result = PerformSourceBsdiffOperation(op);
683         break;
684       default:
685        op_result = false;
686     }
687     if (!HandleOpResult(op_result, InstallOperationTypeName(op.type()), error))
688       return false;
689 
690     next_operation_num_++;
691     UpdateOverallProgress(false, "Completed ");
692     CheckpointUpdateProgress();
693   }
694 
695   // In major version 2, we don't add dummy operation to the payload.
696   // If we already extracted the signature we should skip this step.
697   if (major_payload_version_ == kBrilloMajorPayloadVersion &&
698       manifest_.has_signatures_offset() && manifest_.has_signatures_size() &&
699       signatures_message_data_.empty()) {
700     if (manifest_.signatures_offset() != buffer_offset_) {
701       LOG(ERROR) << "Payload signatures offset points to blob offset "
702                  << manifest_.signatures_offset()
703                  << " but signatures are expected at offset "
704                  << buffer_offset_;
705       *error = ErrorCode::kDownloadPayloadVerificationError;
706       return false;
707     }
708     CopyDataToBuffer(&c_bytes, &count, manifest_.signatures_size());
709     // Needs more data to cover entire signature.
710     if (buffer_.size() < manifest_.signatures_size())
711       return true;
712     if (!ExtractSignatureMessage()) {
713       LOG(ERROR) << "Extract payload signature failed.";
714       *error = ErrorCode::kDownloadPayloadVerificationError;
715       return false;
716     }
717     DiscardBuffer(true, 0);
718     // Since we extracted the SignatureMessage we need to advance the
719     // checkpoint, otherwise we would reload the signature and try to extract
720     // it again.
721     CheckpointUpdateProgress();
722   }
723 
724   return true;
725 }
726 
IsManifestValid()727 bool DeltaPerformer::IsManifestValid() {
728   return manifest_valid_;
729 }
730 
ParseManifestPartitions(ErrorCode * error)731 bool DeltaPerformer::ParseManifestPartitions(ErrorCode* error) {
732   if (major_payload_version_ == kBrilloMajorPayloadVersion) {
733     partitions_.clear();
734     for (const PartitionUpdate& partition : manifest_.partitions()) {
735       partitions_.push_back(partition);
736     }
737     manifest_.clear_partitions();
738   } else if (major_payload_version_ == kChromeOSMajorPayloadVersion) {
739     LOG(INFO) << "Converting update information from old format.";
740     PartitionUpdate root_part;
741     root_part.set_partition_name(kLegacyPartitionNameRoot);
742 #ifdef __ANDROID__
743     LOG(WARNING) << "Legacy payload major version provided to an Android "
744                     "build. Assuming no post-install. Please use major version "
745                     "2 or newer.";
746     root_part.set_run_postinstall(false);
747 #else
748     root_part.set_run_postinstall(true);
749 #endif  // __ANDROID__
750     if (manifest_.has_old_rootfs_info()) {
751       *root_part.mutable_old_partition_info() = manifest_.old_rootfs_info();
752       manifest_.clear_old_rootfs_info();
753     }
754     if (manifest_.has_new_rootfs_info()) {
755       *root_part.mutable_new_partition_info() = manifest_.new_rootfs_info();
756       manifest_.clear_new_rootfs_info();
757     }
758     *root_part.mutable_operations() = manifest_.install_operations();
759     manifest_.clear_install_operations();
760     partitions_.push_back(std::move(root_part));
761 
762     PartitionUpdate kern_part;
763     kern_part.set_partition_name(kLegacyPartitionNameKernel);
764     kern_part.set_run_postinstall(false);
765     if (manifest_.has_old_kernel_info()) {
766       *kern_part.mutable_old_partition_info() = manifest_.old_kernel_info();
767       manifest_.clear_old_kernel_info();
768     }
769     if (manifest_.has_new_kernel_info()) {
770       *kern_part.mutable_new_partition_info() = manifest_.new_kernel_info();
771       manifest_.clear_new_kernel_info();
772     }
773     *kern_part.mutable_operations() = manifest_.kernel_install_operations();
774     manifest_.clear_kernel_install_operations();
775     partitions_.push_back(std::move(kern_part));
776   }
777 
778   // TODO(deymo): Remove this block of code once we switched to optional
779   // source partition verification. This list of partitions in the InstallPlan
780   // is initialized with the expected hashes in the payload major version 1,
781   // so we need to check those now if already set. See b/23182225.
782   if (!install_plan_->partitions.empty()) {
783     if (!VerifySourcePartitions()) {
784       *error = ErrorCode::kDownloadStateInitializationError;
785       return false;
786     }
787   }
788 
789   // Fill in the InstallPlan::partitions based on the partitions from the
790   // payload.
791   install_plan_->partitions.clear();
792   for (const auto& partition : partitions_) {
793     InstallPlan::Partition install_part;
794     install_part.name = partition.partition_name();
795     install_part.run_postinstall =
796         partition.has_run_postinstall() && partition.run_postinstall();
797     if (install_part.run_postinstall) {
798       install_part.postinstall_path =
799           (partition.has_postinstall_path() ? partition.postinstall_path()
800                                             : kPostinstallDefaultScript);
801       install_part.filesystem_type = partition.filesystem_type();
802     }
803 
804     if (partition.has_old_partition_info()) {
805       const PartitionInfo& info = partition.old_partition_info();
806       install_part.source_size = info.size();
807       install_part.source_hash.assign(info.hash().begin(), info.hash().end());
808     }
809 
810     if (!partition.has_new_partition_info()) {
811       LOG(ERROR) << "Unable to get new partition hash info on partition "
812                  << install_part.name << ".";
813       *error = ErrorCode::kDownloadNewPartitionInfoError;
814       return false;
815     }
816     const PartitionInfo& info = partition.new_partition_info();
817     install_part.target_size = info.size();
818     install_part.target_hash.assign(info.hash().begin(), info.hash().end());
819 
820     install_plan_->partitions.push_back(install_part);
821   }
822 
823   if (!install_plan_->LoadPartitionsFromSlots(boot_control_)) {
824     LOG(ERROR) << "Unable to determine all the partition devices.";
825     *error = ErrorCode::kInstallDeviceOpenError;
826     return false;
827   }
828   LogPartitionInfo(partitions_);
829   return true;
830 }
831 
CanPerformInstallOperation(const chromeos_update_engine::InstallOperation & operation)832 bool DeltaPerformer::CanPerformInstallOperation(
833     const chromeos_update_engine::InstallOperation& operation) {
834   // If we don't have a data blob we can apply it right away.
835   if (!operation.has_data_offset() && !operation.has_data_length())
836     return true;
837 
838   // See if we have the entire data blob in the buffer
839   if (operation.data_offset() < buffer_offset_) {
840     LOG(ERROR) << "we threw away data it seems?";
841     return false;
842   }
843 
844   return (operation.data_offset() + operation.data_length() <=
845           buffer_offset_ + buffer_.size());
846 }
847 
PerformReplaceOperation(const InstallOperation & operation)848 bool DeltaPerformer::PerformReplaceOperation(
849     const InstallOperation& operation) {
850   CHECK(operation.type() == InstallOperation::REPLACE ||
851         operation.type() == InstallOperation::REPLACE_BZ ||
852         operation.type() == InstallOperation::REPLACE_XZ);
853 
854   // Since we delete data off the beginning of the buffer as we use it,
855   // the data we need should be exactly at the beginning of the buffer.
856   TEST_AND_RETURN_FALSE(buffer_offset_ == operation.data_offset());
857   TEST_AND_RETURN_FALSE(buffer_.size() >= operation.data_length());
858 
859   // Extract the signature message if it's in this operation.
860   if (ExtractSignatureMessageFromOperation(operation)) {
861     // If this is dummy replace operation, we ignore it after extracting the
862     // signature.
863     DiscardBuffer(true, 0);
864     return true;
865   }
866 
867   // Setup the ExtentWriter stack based on the operation type.
868   std::unique_ptr<ExtentWriter> writer =
869     brillo::make_unique_ptr(new ZeroPadExtentWriter(
870       brillo::make_unique_ptr(new DirectExtentWriter())));
871 
872   if (operation.type() == InstallOperation::REPLACE_BZ) {
873     writer.reset(new BzipExtentWriter(std::move(writer)));
874   } else if (operation.type() == InstallOperation::REPLACE_XZ) {
875     writer.reset(new XzExtentWriter(std::move(writer)));
876   }
877 
878   // Create a vector of extents to pass to the ExtentWriter.
879   vector<Extent> extents;
880   for (int i = 0; i < operation.dst_extents_size(); i++) {
881     extents.push_back(operation.dst_extents(i));
882   }
883 
884   TEST_AND_RETURN_FALSE(writer->Init(target_fd_, extents, block_size_));
885   TEST_AND_RETURN_FALSE(writer->Write(buffer_.data(), operation.data_length()));
886   TEST_AND_RETURN_FALSE(writer->End());
887 
888   // Update buffer
889   DiscardBuffer(true, buffer_.size());
890   return true;
891 }
892 
PerformZeroOrDiscardOperation(const InstallOperation & operation)893 bool DeltaPerformer::PerformZeroOrDiscardOperation(
894     const InstallOperation& operation) {
895   CHECK(operation.type() == InstallOperation::DISCARD ||
896         operation.type() == InstallOperation::ZERO);
897 
898   // These operations have no blob.
899   TEST_AND_RETURN_FALSE(!operation.has_data_offset());
900   TEST_AND_RETURN_FALSE(!operation.has_data_length());
901 
902 #ifdef BLKZEROOUT
903   bool attempt_ioctl = true;
904   int request =
905       (operation.type() == InstallOperation::ZERO ? BLKZEROOUT : BLKDISCARD);
906 #else  // !defined(BLKZEROOUT)
907   bool attempt_ioctl = false;
908   int request = 0;
909 #endif  // !defined(BLKZEROOUT)
910 
911   brillo::Blob zeros;
912   for (int i = 0; i < operation.dst_extents_size(); i++) {
913     Extent extent = operation.dst_extents(i);
914     const uint64_t start = extent.start_block() * block_size_;
915     const uint64_t length = extent.num_blocks() * block_size_;
916     if (attempt_ioctl) {
917       int result = 0;
918       if (target_fd_->BlkIoctl(request, start, length, &result) && result == 0)
919         continue;
920       attempt_ioctl = false;
921       zeros.resize(16 * block_size_);
922     }
923     // In case of failure, we fall back to writing 0 to the selected region.
924     for (uint64_t offset = 0; offset < length; offset += zeros.size()) {
925       uint64_t chunk_length = min(length - offset,
926                                   static_cast<uint64_t>(zeros.size()));
927       TEST_AND_RETURN_FALSE(
928           utils::PWriteAll(target_fd_, zeros.data(), chunk_length, start + offset));
929     }
930   }
931   return true;
932 }
933 
PerformMoveOperation(const InstallOperation & operation)934 bool DeltaPerformer::PerformMoveOperation(const InstallOperation& operation) {
935   // Calculate buffer size. Note, this function doesn't do a sliding
936   // window to copy in case the source and destination blocks overlap.
937   // If we wanted to do a sliding window, we could program the server
938   // to generate deltas that effectively did a sliding window.
939 
940   uint64_t blocks_to_read = 0;
941   for (int i = 0; i < operation.src_extents_size(); i++)
942     blocks_to_read += operation.src_extents(i).num_blocks();
943 
944   uint64_t blocks_to_write = 0;
945   for (int i = 0; i < operation.dst_extents_size(); i++)
946     blocks_to_write += operation.dst_extents(i).num_blocks();
947 
948   DCHECK_EQ(blocks_to_write, blocks_to_read);
949   brillo::Blob buf(blocks_to_write * block_size_);
950 
951   // Read in bytes.
952   ssize_t bytes_read = 0;
953   for (int i = 0; i < operation.src_extents_size(); i++) {
954     ssize_t bytes_read_this_iteration = 0;
955     const Extent& extent = operation.src_extents(i);
956     const size_t bytes = extent.num_blocks() * block_size_;
957     TEST_AND_RETURN_FALSE(extent.start_block() != kSparseHole);
958     TEST_AND_RETURN_FALSE(utils::PReadAll(target_fd_,
959                                           &buf[bytes_read],
960                                           bytes,
961                                           extent.start_block() * block_size_,
962                                           &bytes_read_this_iteration));
963     TEST_AND_RETURN_FALSE(
964         bytes_read_this_iteration == static_cast<ssize_t>(bytes));
965     bytes_read += bytes_read_this_iteration;
966   }
967 
968   // Write bytes out.
969   ssize_t bytes_written = 0;
970   for (int i = 0; i < operation.dst_extents_size(); i++) {
971     const Extent& extent = operation.dst_extents(i);
972     const size_t bytes = extent.num_blocks() * block_size_;
973     TEST_AND_RETURN_FALSE(extent.start_block() != kSparseHole);
974     TEST_AND_RETURN_FALSE(utils::PWriteAll(target_fd_,
975                                            &buf[bytes_written],
976                                            bytes,
977                                            extent.start_block() * block_size_));
978     bytes_written += bytes;
979   }
980   DCHECK_EQ(bytes_written, bytes_read);
981   DCHECK_EQ(bytes_written, static_cast<ssize_t>(buf.size()));
982   return true;
983 }
984 
985 namespace {
986 
987 // Takes |extents| and fills an empty vector |blocks| with a block index for
988 // each block in |extents|. For example, [(3, 2), (8, 1)] would give [3, 4, 8].
ExtentsToBlocks(const RepeatedPtrField<Extent> & extents,vector<uint64_t> * blocks)989 void ExtentsToBlocks(const RepeatedPtrField<Extent>& extents,
990                      vector<uint64_t>* blocks) {
991   for (Extent ext : extents) {
992     for (uint64_t j = 0; j < ext.num_blocks(); j++)
993       blocks->push_back(ext.start_block() + j);
994   }
995 }
996 
997 // Takes |extents| and returns the number of blocks in those extents.
GetBlockCount(const RepeatedPtrField<Extent> & extents)998 uint64_t GetBlockCount(const RepeatedPtrField<Extent>& extents) {
999   uint64_t sum = 0;
1000   for (Extent ext : extents) {
1001     sum += ext.num_blocks();
1002   }
1003   return sum;
1004 }
1005 
1006 // Compare |calculated_hash| with source hash in |operation|, return false and
1007 // dump hash if don't match.
ValidateSourceHash(const brillo::Blob & calculated_hash,const InstallOperation & operation)1008 bool ValidateSourceHash(const brillo::Blob& calculated_hash,
1009                         const InstallOperation& operation) {
1010   brillo::Blob expected_source_hash(operation.src_sha256_hash().begin(),
1011                                     operation.src_sha256_hash().end());
1012   if (calculated_hash != expected_source_hash) {
1013     LOG(ERROR) << "Hash verification failed. Expected hash = ";
1014     utils::HexDumpVector(expected_source_hash);
1015     LOG(ERROR) << "Calculated hash = ";
1016     utils::HexDumpVector(calculated_hash);
1017     return false;
1018   }
1019   return true;
1020 }
1021 
1022 }  // namespace
1023 
PerformSourceCopyOperation(const InstallOperation & operation)1024 bool DeltaPerformer::PerformSourceCopyOperation(
1025     const InstallOperation& operation) {
1026   if (operation.has_src_length())
1027     TEST_AND_RETURN_FALSE(operation.src_length() % block_size_ == 0);
1028   if (operation.has_dst_length())
1029     TEST_AND_RETURN_FALSE(operation.dst_length() % block_size_ == 0);
1030 
1031   uint64_t blocks_to_read = GetBlockCount(operation.src_extents());
1032   uint64_t blocks_to_write = GetBlockCount(operation.dst_extents());
1033   TEST_AND_RETURN_FALSE(blocks_to_write ==  blocks_to_read);
1034 
1035   // Create vectors of all the individual src/dst blocks.
1036   vector<uint64_t> src_blocks;
1037   vector<uint64_t> dst_blocks;
1038   ExtentsToBlocks(operation.src_extents(), &src_blocks);
1039   ExtentsToBlocks(operation.dst_extents(), &dst_blocks);
1040   DCHECK_EQ(src_blocks.size(), blocks_to_read);
1041   DCHECK_EQ(src_blocks.size(), dst_blocks.size());
1042 
1043   brillo::Blob buf(block_size_);
1044   ssize_t bytes_read = 0;
1045   HashCalculator source_hasher;
1046   // Read/write one block at a time.
1047   for (uint64_t i = 0; i < blocks_to_read; i++) {
1048     ssize_t bytes_read_this_iteration = 0;
1049     uint64_t src_block = src_blocks[i];
1050     uint64_t dst_block = dst_blocks[i];
1051 
1052     // Read in bytes.
1053     TEST_AND_RETURN_FALSE(
1054         utils::PReadAll(source_fd_,
1055                         buf.data(),
1056                         block_size_,
1057                         src_block * block_size_,
1058                         &bytes_read_this_iteration));
1059 
1060     // Write bytes out.
1061     TEST_AND_RETURN_FALSE(
1062         utils::PWriteAll(target_fd_,
1063                          buf.data(),
1064                          block_size_,
1065                          dst_block * block_size_));
1066 
1067     bytes_read += bytes_read_this_iteration;
1068     TEST_AND_RETURN_FALSE(bytes_read_this_iteration ==
1069                           static_cast<ssize_t>(block_size_));
1070 
1071     if (operation.has_src_sha256_hash())
1072       TEST_AND_RETURN_FALSE(source_hasher.Update(buf.data(), buf.size()));
1073   }
1074 
1075   if (operation.has_src_sha256_hash()) {
1076     TEST_AND_RETURN_FALSE(source_hasher.Finalize());
1077     TEST_AND_RETURN_FALSE(
1078         ValidateSourceHash(source_hasher.raw_hash(), operation));
1079   }
1080 
1081   DCHECK_EQ(bytes_read, static_cast<ssize_t>(blocks_to_read * block_size_));
1082   return true;
1083 }
1084 
ExtentsToBsdiffPositionsString(const RepeatedPtrField<Extent> & extents,uint64_t block_size,uint64_t full_length,string * positions_string)1085 bool DeltaPerformer::ExtentsToBsdiffPositionsString(
1086     const RepeatedPtrField<Extent>& extents,
1087     uint64_t block_size,
1088     uint64_t full_length,
1089     string* positions_string) {
1090   string ret;
1091   uint64_t length = 0;
1092   for (int i = 0; i < extents.size(); i++) {
1093     Extent extent = extents.Get(i);
1094     int64_t start = extent.start_block() * block_size;
1095     uint64_t this_length = min(full_length - length,
1096                                extent.num_blocks() * block_size);
1097     ret += base::StringPrintf("%" PRIi64 ":%" PRIu64 ",", start, this_length);
1098     length += this_length;
1099   }
1100   TEST_AND_RETURN_FALSE(length == full_length);
1101   if (!ret.empty())
1102     ret.resize(ret.size() - 1);  // Strip trailing comma off
1103   *positions_string = ret;
1104   return true;
1105 }
1106 
PerformBsdiffOperation(const InstallOperation & operation)1107 bool DeltaPerformer::PerformBsdiffOperation(const InstallOperation& operation) {
1108   // Since we delete data off the beginning of the buffer as we use it,
1109   // the data we need should be exactly at the beginning of the buffer.
1110   TEST_AND_RETURN_FALSE(buffer_offset_ == operation.data_offset());
1111   TEST_AND_RETURN_FALSE(buffer_.size() >= operation.data_length());
1112 
1113   string input_positions;
1114   TEST_AND_RETURN_FALSE(ExtentsToBsdiffPositionsString(operation.src_extents(),
1115                                                        block_size_,
1116                                                        operation.src_length(),
1117                                                        &input_positions));
1118   string output_positions;
1119   TEST_AND_RETURN_FALSE(ExtentsToBsdiffPositionsString(operation.dst_extents(),
1120                                                        block_size_,
1121                                                        operation.dst_length(),
1122                                                        &output_positions));
1123 
1124   string temp_filename;
1125   TEST_AND_RETURN_FALSE(utils::MakeTempFile("au_patch.XXXXXX",
1126                                             &temp_filename,
1127                                             nullptr));
1128   ScopedPathUnlinker path_unlinker(temp_filename);
1129   {
1130     int fd = open(temp_filename.c_str(), O_WRONLY | O_CREAT | O_TRUNC, 0644);
1131     ScopedFdCloser fd_closer(&fd);
1132     TEST_AND_RETURN_FALSE(
1133         utils::WriteAll(fd, buffer_.data(), operation.data_length()));
1134   }
1135 
1136   // Update the buffer to release the patch data memory as soon as the patch
1137   // file is written out.
1138   DiscardBuffer(true, buffer_.size());
1139 
1140   vector<string> cmd{kBspatchPath, target_path_, target_path_, temp_filename,
1141                      input_positions, output_positions};
1142 
1143   int return_code = 0;
1144   TEST_AND_RETURN_FALSE(
1145       Subprocess::SynchronousExecFlags(cmd, Subprocess::kSearchPath,
1146                                        &return_code, nullptr));
1147   TEST_AND_RETURN_FALSE(return_code == 0);
1148 
1149   if (operation.dst_length() % block_size_) {
1150     // Zero out rest of final block.
1151     // TODO(adlr): build this into bspatch; it's more efficient that way.
1152     const Extent& last_extent =
1153         operation.dst_extents(operation.dst_extents_size() - 1);
1154     const uint64_t end_byte =
1155         (last_extent.start_block() + last_extent.num_blocks()) * block_size_;
1156     const uint64_t begin_byte =
1157         end_byte - (block_size_ - operation.dst_length() % block_size_);
1158     brillo::Blob zeros(end_byte - begin_byte);
1159     TEST_AND_RETURN_FALSE(
1160         utils::PWriteAll(target_fd_, zeros.data(), end_byte - begin_byte, begin_byte));
1161   }
1162   return true;
1163 }
1164 
PerformSourceBsdiffOperation(const InstallOperation & operation)1165 bool DeltaPerformer::PerformSourceBsdiffOperation(
1166     const InstallOperation& operation) {
1167   // Since we delete data off the beginning of the buffer as we use it,
1168   // the data we need should be exactly at the beginning of the buffer.
1169   TEST_AND_RETURN_FALSE(buffer_offset_ == operation.data_offset());
1170   TEST_AND_RETURN_FALSE(buffer_.size() >= operation.data_length());
1171   if (operation.has_src_length())
1172     TEST_AND_RETURN_FALSE(operation.src_length() % block_size_ == 0);
1173   if (operation.has_dst_length())
1174     TEST_AND_RETURN_FALSE(operation.dst_length() % block_size_ == 0);
1175 
1176   if (operation.has_src_sha256_hash()) {
1177     HashCalculator source_hasher;
1178     const uint64_t kMaxBlocksToRead = 512;  // 2MB if block size is 4KB
1179     brillo::Blob buf(kMaxBlocksToRead * block_size_);
1180     for (const Extent& extent : operation.src_extents()) {
1181       for (uint64_t i = 0; i < extent.num_blocks(); i += kMaxBlocksToRead) {
1182         uint64_t blocks_to_read =
1183             min(kMaxBlocksToRead, extent.num_blocks() - i);
1184         ssize_t bytes_to_read = blocks_to_read * block_size_;
1185         ssize_t bytes_read_this_iteration = 0;
1186         TEST_AND_RETURN_FALSE(
1187             utils::PReadAll(source_fd_, buf.data(), bytes_to_read,
1188                             (extent.start_block() + i) * block_size_,
1189                             &bytes_read_this_iteration));
1190         TEST_AND_RETURN_FALSE(bytes_read_this_iteration == bytes_to_read);
1191         TEST_AND_RETURN_FALSE(source_hasher.Update(buf.data(), bytes_to_read));
1192       }
1193     }
1194     TEST_AND_RETURN_FALSE(source_hasher.Finalize());
1195     TEST_AND_RETURN_FALSE(
1196         ValidateSourceHash(source_hasher.raw_hash(), operation));
1197   }
1198 
1199   string input_positions;
1200   TEST_AND_RETURN_FALSE(ExtentsToBsdiffPositionsString(operation.src_extents(),
1201                                                        block_size_,
1202                                                        operation.src_length(),
1203                                                        &input_positions));
1204   string output_positions;
1205   TEST_AND_RETURN_FALSE(ExtentsToBsdiffPositionsString(operation.dst_extents(),
1206                                                        block_size_,
1207                                                        operation.dst_length(),
1208                                                        &output_positions));
1209 
1210   string temp_filename;
1211   TEST_AND_RETURN_FALSE(utils::MakeTempFile("au_patch.XXXXXX",
1212                                             &temp_filename,
1213                                             nullptr));
1214   ScopedPathUnlinker path_unlinker(temp_filename);
1215   {
1216     int fd = open(temp_filename.c_str(), O_WRONLY | O_CREAT | O_TRUNC, 0644);
1217     ScopedFdCloser fd_closer(&fd);
1218     TEST_AND_RETURN_FALSE(
1219         utils::WriteAll(fd, buffer_.data(), operation.data_length()));
1220   }
1221 
1222   // Update the buffer to release the patch data memory as soon as the patch
1223   // file is written out.
1224   DiscardBuffer(true, buffer_.size());
1225 
1226   vector<string> cmd{kBspatchPath, source_path_, target_path_, temp_filename,
1227                      input_positions, output_positions};
1228 
1229   int return_code = 0;
1230   TEST_AND_RETURN_FALSE(
1231       Subprocess::SynchronousExecFlags(cmd, Subprocess::kSearchPath,
1232                                        &return_code, nullptr));
1233   TEST_AND_RETURN_FALSE(return_code == 0);
1234   return true;
1235 }
1236 
ExtractSignatureMessageFromOperation(const InstallOperation & operation)1237 bool DeltaPerformer::ExtractSignatureMessageFromOperation(
1238     const InstallOperation& operation) {
1239   if (operation.type() != InstallOperation::REPLACE ||
1240       !manifest_.has_signatures_offset() ||
1241       manifest_.signatures_offset() != operation.data_offset()) {
1242     return false;
1243   }
1244   TEST_AND_RETURN_FALSE(manifest_.has_signatures_size() &&
1245                         manifest_.signatures_size() == operation.data_length());
1246   TEST_AND_RETURN_FALSE(ExtractSignatureMessage());
1247   return true;
1248 }
1249 
ExtractSignatureMessage()1250 bool DeltaPerformer::ExtractSignatureMessage() {
1251   TEST_AND_RETURN_FALSE(signatures_message_data_.empty());
1252   TEST_AND_RETURN_FALSE(buffer_offset_ == manifest_.signatures_offset());
1253   TEST_AND_RETURN_FALSE(buffer_.size() >= manifest_.signatures_size());
1254   signatures_message_data_.assign(
1255       buffer_.begin(),
1256       buffer_.begin() + manifest_.signatures_size());
1257 
1258   // Save the signature blob because if the update is interrupted after the
1259   // download phase we don't go through this path anymore. Some alternatives to
1260   // consider:
1261   //
1262   // 1. On resume, re-download the signature blob from the server and re-verify
1263   // it.
1264   //
1265   // 2. Verify the signature as soon as it's received and don't checkpoint the
1266   // blob and the signed sha-256 context.
1267   LOG_IF(WARNING, !prefs_->SetString(kPrefsUpdateStateSignatureBlob,
1268                                      string(signatures_message_data_.begin(),
1269                                             signatures_message_data_.end())))
1270       << "Unable to store the signature blob.";
1271 
1272   LOG(INFO) << "Extracted signature data of size "
1273             << manifest_.signatures_size() << " at "
1274             << manifest_.signatures_offset();
1275   return true;
1276 }
1277 
GetPublicKeyFromResponse(base::FilePath * out_tmp_key)1278 bool DeltaPerformer::GetPublicKeyFromResponse(base::FilePath *out_tmp_key) {
1279   if (hardware_->IsOfficialBuild() ||
1280       utils::FileExists(public_key_path_.c_str()) ||
1281       install_plan_->public_key_rsa.empty())
1282     return false;
1283 
1284   if (!utils::DecodeAndStoreBase64String(install_plan_->public_key_rsa,
1285                                          out_tmp_key))
1286     return false;
1287 
1288   return true;
1289 }
1290 
ValidateMetadataSignature(const brillo::Blob & payload)1291 ErrorCode DeltaPerformer::ValidateMetadataSignature(
1292     const brillo::Blob& payload) {
1293   if (payload.size() < metadata_size_ + metadata_signature_size_)
1294     return ErrorCode::kDownloadMetadataSignatureError;
1295 
1296   brillo::Blob metadata_signature_blob, metadata_signature_protobuf_blob;
1297   if (!install_plan_->metadata_signature.empty()) {
1298     // Convert base64-encoded signature to raw bytes.
1299     if (!brillo::data_encoding::Base64Decode(
1300         install_plan_->metadata_signature, &metadata_signature_blob)) {
1301       LOG(ERROR) << "Unable to decode base64 metadata signature: "
1302                  << install_plan_->metadata_signature;
1303       return ErrorCode::kDownloadMetadataSignatureError;
1304     }
1305   } else if (major_payload_version_ == kBrilloMajorPayloadVersion) {
1306     metadata_signature_protobuf_blob.assign(payload.begin() + metadata_size_,
1307                                             payload.begin() + metadata_size_ +
1308                                             metadata_signature_size_);
1309   }
1310 
1311   if (metadata_signature_blob.empty() &&
1312       metadata_signature_protobuf_blob.empty()) {
1313     if (install_plan_->hash_checks_mandatory) {
1314       LOG(ERROR) << "Missing mandatory metadata signature in both Omaha "
1315                  << "response and payload.";
1316       return ErrorCode::kDownloadMetadataSignatureMissingError;
1317     }
1318 
1319     LOG(WARNING) << "Cannot validate metadata as the signature is empty";
1320     return ErrorCode::kSuccess;
1321   }
1322 
1323   // See if we should use the public RSA key in the Omaha response.
1324   base::FilePath path_to_public_key(public_key_path_);
1325   base::FilePath tmp_key;
1326   if (GetPublicKeyFromResponse(&tmp_key))
1327     path_to_public_key = tmp_key;
1328   ScopedPathUnlinker tmp_key_remover(tmp_key.value());
1329   if (tmp_key.empty())
1330     tmp_key_remover.set_should_remove(false);
1331 
1332   LOG(INFO) << "Verifying metadata hash signature using public key: "
1333             << path_to_public_key.value();
1334 
1335   HashCalculator metadata_hasher;
1336   metadata_hasher.Update(payload.data(), metadata_size_);
1337   if (!metadata_hasher.Finalize()) {
1338     LOG(ERROR) << "Unable to compute actual hash of manifest";
1339     return ErrorCode::kDownloadMetadataSignatureVerificationError;
1340   }
1341 
1342   brillo::Blob calculated_metadata_hash = metadata_hasher.raw_hash();
1343   PayloadVerifier::PadRSA2048SHA256Hash(&calculated_metadata_hash);
1344   if (calculated_metadata_hash.empty()) {
1345     LOG(ERROR) << "Computed actual hash of metadata is empty.";
1346     return ErrorCode::kDownloadMetadataSignatureVerificationError;
1347   }
1348 
1349   if (!metadata_signature_blob.empty()) {
1350     brillo::Blob expected_metadata_hash;
1351     if (!PayloadVerifier::GetRawHashFromSignature(metadata_signature_blob,
1352                                                   path_to_public_key.value(),
1353                                                   &expected_metadata_hash)) {
1354       LOG(ERROR) << "Unable to compute expected hash from metadata signature";
1355       return ErrorCode::kDownloadMetadataSignatureError;
1356     }
1357     if (calculated_metadata_hash != expected_metadata_hash) {
1358       LOG(ERROR) << "Manifest hash verification failed. Expected hash = ";
1359       utils::HexDumpVector(expected_metadata_hash);
1360       LOG(ERROR) << "Calculated hash = ";
1361       utils::HexDumpVector(calculated_metadata_hash);
1362       return ErrorCode::kDownloadMetadataSignatureMismatch;
1363     }
1364   } else {
1365     if (!PayloadVerifier::VerifySignature(metadata_signature_protobuf_blob,
1366                                           path_to_public_key.value(),
1367                                           calculated_metadata_hash)) {
1368       LOG(ERROR) << "Manifest hash verification failed.";
1369       return ErrorCode::kDownloadMetadataSignatureMismatch;
1370     }
1371   }
1372 
1373   // The autoupdate_CatchBadSignatures test checks for this string in
1374   // log-files. Keep in sync.
1375   LOG(INFO) << "Metadata hash signature matches value in Omaha response.";
1376   return ErrorCode::kSuccess;
1377 }
1378 
ValidateManifest()1379 ErrorCode DeltaPerformer::ValidateManifest() {
1380   // Perform assorted checks to sanity check the manifest, make sure it
1381   // matches data from other sources, and that it is a supported version.
1382 
1383   bool has_old_fields =
1384       (manifest_.has_old_kernel_info() || manifest_.has_old_rootfs_info());
1385   for (const PartitionUpdate& partition : manifest_.partitions()) {
1386     has_old_fields = has_old_fields || partition.has_old_partition_info();
1387   }
1388 
1389   // The presence of an old partition hash is the sole indicator for a delta
1390   // update.
1391   InstallPayloadType actual_payload_type =
1392       has_old_fields ? InstallPayloadType::kDelta : InstallPayloadType::kFull;
1393 
1394   if (install_plan_->payload_type == InstallPayloadType::kUnknown) {
1395     LOG(INFO) << "Detected a '"
1396               << InstallPayloadTypeToString(actual_payload_type)
1397               << "' payload.";
1398     install_plan_->payload_type = actual_payload_type;
1399   } else if (install_plan_->payload_type != actual_payload_type) {
1400     LOG(ERROR) << "InstallPlan expected a '"
1401                << InstallPayloadTypeToString(install_plan_->payload_type)
1402                << "' payload but the downloaded manifest contains a '"
1403                << InstallPayloadTypeToString(actual_payload_type)
1404                << "' payload.";
1405     return ErrorCode::kPayloadMismatchedType;
1406   }
1407 
1408   // Check that the minor version is compatible.
1409   if (actual_payload_type == InstallPayloadType::kFull) {
1410     if (manifest_.minor_version() != kFullPayloadMinorVersion) {
1411       LOG(ERROR) << "Manifest contains minor version "
1412                  << manifest_.minor_version()
1413                  << ", but all full payloads should have version "
1414                  << kFullPayloadMinorVersion << ".";
1415       return ErrorCode::kUnsupportedMinorPayloadVersion;
1416     }
1417   } else {
1418     if (manifest_.minor_version() != supported_minor_version_) {
1419       LOG(ERROR) << "Manifest contains minor version "
1420                  << manifest_.minor_version()
1421                  << " not the supported "
1422                  << supported_minor_version_;
1423       return ErrorCode::kUnsupportedMinorPayloadVersion;
1424     }
1425   }
1426 
1427   if (major_payload_version_ != kChromeOSMajorPayloadVersion) {
1428     if (manifest_.has_old_rootfs_info() ||
1429         manifest_.has_new_rootfs_info() ||
1430         manifest_.has_old_kernel_info() ||
1431         manifest_.has_new_kernel_info() ||
1432         manifest_.install_operations_size() != 0 ||
1433         manifest_.kernel_install_operations_size() != 0) {
1434       LOG(ERROR) << "Manifest contains deprecated field only supported in "
1435                  << "major payload version 1, but the payload major version is "
1436                  << major_payload_version_;
1437       return ErrorCode::kPayloadMismatchedType;
1438     }
1439   }
1440 
1441   // TODO(garnold) we should be adding more and more manifest checks, such as
1442   // partition boundaries etc (see chromium-os:37661).
1443 
1444   return ErrorCode::kSuccess;
1445 }
1446 
ValidateOperationHash(const InstallOperation & operation)1447 ErrorCode DeltaPerformer::ValidateOperationHash(
1448     const InstallOperation& operation) {
1449   if (!operation.data_sha256_hash().size()) {
1450     if (!operation.data_length()) {
1451       // Operations that do not have any data blob won't have any operation hash
1452       // either. So, these operations are always considered validated since the
1453       // metadata that contains all the non-data-blob portions of the operation
1454       // has already been validated. This is true for both HTTP and HTTPS cases.
1455       return ErrorCode::kSuccess;
1456     }
1457 
1458     // No hash is present for an operation that has data blobs. This shouldn't
1459     // happen normally for any client that has this code, because the
1460     // corresponding update should have been produced with the operation
1461     // hashes. So if it happens it means either we've turned operation hash
1462     // generation off in DeltaDiffGenerator or it's a regression of some sort.
1463     // One caveat though: The last operation is a dummy signature operation
1464     // that doesn't have a hash at the time the manifest is created. So we
1465     // should not complaint about that operation. This operation can be
1466     // recognized by the fact that it's offset is mentioned in the manifest.
1467     if (manifest_.signatures_offset() &&
1468         manifest_.signatures_offset() == operation.data_offset()) {
1469       LOG(INFO) << "Skipping hash verification for signature operation "
1470                 << next_operation_num_ + 1;
1471     } else {
1472       if (install_plan_->hash_checks_mandatory) {
1473         LOG(ERROR) << "Missing mandatory operation hash for operation "
1474                    << next_operation_num_ + 1;
1475         return ErrorCode::kDownloadOperationHashMissingError;
1476       }
1477 
1478       LOG(WARNING) << "Cannot validate operation " << next_operation_num_ + 1
1479                    << " as there's no operation hash in manifest";
1480     }
1481     return ErrorCode::kSuccess;
1482   }
1483 
1484   brillo::Blob expected_op_hash;
1485   expected_op_hash.assign(operation.data_sha256_hash().data(),
1486                           (operation.data_sha256_hash().data() +
1487                            operation.data_sha256_hash().size()));
1488 
1489   HashCalculator operation_hasher;
1490   operation_hasher.Update(buffer_.data(), operation.data_length());
1491   if (!operation_hasher.Finalize()) {
1492     LOG(ERROR) << "Unable to compute actual hash of operation "
1493                << next_operation_num_;
1494     return ErrorCode::kDownloadOperationHashVerificationError;
1495   }
1496 
1497   brillo::Blob calculated_op_hash = operation_hasher.raw_hash();
1498   if (calculated_op_hash != expected_op_hash) {
1499     LOG(ERROR) << "Hash verification failed for operation "
1500                << next_operation_num_ << ". Expected hash = ";
1501     utils::HexDumpVector(expected_op_hash);
1502     LOG(ERROR) << "Calculated hash over " << operation.data_length()
1503                << " bytes at offset: " << operation.data_offset() << " = ";
1504     utils::HexDumpVector(calculated_op_hash);
1505     return ErrorCode::kDownloadOperationHashMismatch;
1506   }
1507 
1508   return ErrorCode::kSuccess;
1509 }
1510 
1511 #define TEST_AND_RETURN_VAL(_retval, _condition)                \
1512   do {                                                          \
1513     if (!(_condition)) {                                        \
1514       LOG(ERROR) << "VerifyPayload failure: " << #_condition;   \
1515       return _retval;                                           \
1516     }                                                           \
1517   } while (0);
1518 
VerifyPayload(const string & update_check_response_hash,const uint64_t update_check_response_size)1519 ErrorCode DeltaPerformer::VerifyPayload(
1520     const string& update_check_response_hash,
1521     const uint64_t update_check_response_size) {
1522 
1523   // See if we should use the public RSA key in the Omaha response.
1524   base::FilePath path_to_public_key(public_key_path_);
1525   base::FilePath tmp_key;
1526   if (GetPublicKeyFromResponse(&tmp_key))
1527     path_to_public_key = tmp_key;
1528   ScopedPathUnlinker tmp_key_remover(tmp_key.value());
1529   if (tmp_key.empty())
1530     tmp_key_remover.set_should_remove(false);
1531 
1532   LOG(INFO) << "Verifying payload using public key: "
1533             << path_to_public_key.value();
1534 
1535   // Verifies the download size.
1536   TEST_AND_RETURN_VAL(ErrorCode::kPayloadSizeMismatchError,
1537                       update_check_response_size ==
1538                       metadata_size_ + metadata_signature_size_ +
1539                       buffer_offset_);
1540 
1541   // Verifies the payload hash.
1542   const string& payload_hash_data = payload_hash_calculator_.hash();
1543   TEST_AND_RETURN_VAL(ErrorCode::kDownloadPayloadVerificationError,
1544                       !payload_hash_data.empty());
1545   TEST_AND_RETURN_VAL(ErrorCode::kPayloadHashMismatchError,
1546                       payload_hash_data == update_check_response_hash);
1547 
1548   // Verifies the signed payload hash.
1549   if (!utils::FileExists(path_to_public_key.value().c_str())) {
1550     LOG(WARNING) << "Not verifying signed delta payload -- missing public key.";
1551     return ErrorCode::kSuccess;
1552   }
1553   TEST_AND_RETURN_VAL(ErrorCode::kSignedDeltaPayloadExpectedError,
1554                       !signatures_message_data_.empty());
1555   brillo::Blob hash_data = signed_hash_calculator_.raw_hash();
1556   TEST_AND_RETURN_VAL(ErrorCode::kDownloadPayloadPubKeyVerificationError,
1557                       PayloadVerifier::PadRSA2048SHA256Hash(&hash_data));
1558   TEST_AND_RETURN_VAL(ErrorCode::kDownloadPayloadPubKeyVerificationError,
1559                       !hash_data.empty());
1560 
1561   if (!PayloadVerifier::VerifySignature(
1562       signatures_message_data_, path_to_public_key.value(), hash_data)) {
1563     // The autoupdate_CatchBadSignatures test checks for this string
1564     // in log-files. Keep in sync.
1565     LOG(ERROR) << "Public key verification failed, thus update failed.";
1566     return ErrorCode::kDownloadPayloadPubKeyVerificationError;
1567   }
1568 
1569   LOG(INFO) << "Payload hash matches value in payload.";
1570 
1571   // At this point, we are guaranteed to have downloaded a full payload, i.e
1572   // the one whose size matches the size mentioned in Omaha response. If any
1573   // errors happen after this, it's likely a problem with the payload itself or
1574   // the state of the system and not a problem with the URL or network.  So,
1575   // indicate that to the download delegate so that AU can backoff
1576   // appropriately.
1577   if (download_delegate_)
1578     download_delegate_->DownloadComplete();
1579 
1580   return ErrorCode::kSuccess;
1581 }
1582 
1583 namespace {
LogVerifyError(const string & type,const string & device,uint64_t size,const string & local_hash,const string & expected_hash)1584 void LogVerifyError(const string& type,
1585                     const string& device,
1586                     uint64_t size,
1587                     const string& local_hash,
1588                     const string& expected_hash) {
1589   LOG(ERROR) << "This is a server-side error due to "
1590              << "mismatched delta update image!";
1591   LOG(ERROR) << "The delta I've been given contains a " << type << " delta "
1592              << "update that must be applied over a " << type << " with "
1593              << "a specific checksum, but the " << type << " we're starting "
1594              << "with doesn't have that checksum! This means that "
1595              << "the delta I've been given doesn't match my existing "
1596              << "system. The " << type << " partition I have has hash: "
1597              << local_hash << " but the update expected me to have "
1598              << expected_hash << " .";
1599   LOG(INFO) << "To get the checksum of the " << type << " partition run this"
1600                "command: dd if=" << device << " bs=1M count=" << size
1601             << " iflag=count_bytes 2>/dev/null | openssl dgst -sha256 -binary "
1602                "| openssl base64";
1603   LOG(INFO) << "To get the checksum of partitions in a bin file, "
1604             << "run: .../src/scripts/sha256_partitions.sh .../file.bin";
1605 }
1606 
StringForHashBytes(const void * bytes,size_t size)1607 string StringForHashBytes(const void* bytes, size_t size) {
1608   return brillo::data_encoding::Base64Encode(bytes, size);
1609 }
1610 }  // namespace
1611 
VerifySourcePartitions()1612 bool DeltaPerformer::VerifySourcePartitions() {
1613   LOG(INFO) << "Verifying source partitions.";
1614   CHECK(manifest_valid_);
1615   CHECK(install_plan_);
1616   if (install_plan_->partitions.size() != partitions_.size()) {
1617     DLOG(ERROR) << "The list of partitions in the InstallPlan doesn't match the "
1618                    "list received in the payload. The InstallPlan has "
1619                 << install_plan_->partitions.size()
1620                 << " partitions while the payload has " << partitions_.size()
1621                 << " partitions.";
1622     return false;
1623   }
1624   for (size_t i = 0; i < partitions_.size(); ++i) {
1625     if (partitions_[i].partition_name() != install_plan_->partitions[i].name) {
1626       DLOG(ERROR) << "The InstallPlan's partition " << i << " is \""
1627                   << install_plan_->partitions[i].name
1628                   << "\" but the payload expects it to be \""
1629                   << partitions_[i].partition_name()
1630                   << "\". This is an error in the DeltaPerformer setup.";
1631       return false;
1632     }
1633     if (!partitions_[i].has_old_partition_info())
1634       continue;
1635     const PartitionInfo& info = partitions_[i].old_partition_info();
1636     const InstallPlan::Partition& plan_part = install_plan_->partitions[i];
1637     bool valid =
1638         !plan_part.source_hash.empty() &&
1639         plan_part.source_hash.size() == info.hash().size() &&
1640         memcmp(plan_part.source_hash.data(),
1641                info.hash().data(),
1642                plan_part.source_hash.size()) == 0;
1643     if (!valid) {
1644       LogVerifyError(partitions_[i].partition_name(),
1645                      plan_part.source_path,
1646                      info.hash().size(),
1647                      StringForHashBytes(plan_part.source_hash.data(),
1648                                         plan_part.source_hash.size()),
1649                      StringForHashBytes(info.hash().data(),
1650                                         info.hash().size()));
1651       return false;
1652     }
1653   }
1654   return true;
1655 }
1656 
DiscardBuffer(bool do_advance_offset,size_t signed_hash_buffer_size)1657 void DeltaPerformer::DiscardBuffer(bool do_advance_offset,
1658                                    size_t signed_hash_buffer_size) {
1659   // Update the buffer offset.
1660   if (do_advance_offset)
1661     buffer_offset_ += buffer_.size();
1662 
1663   // Hash the content.
1664   payload_hash_calculator_.Update(buffer_.data(), buffer_.size());
1665   signed_hash_calculator_.Update(buffer_.data(), signed_hash_buffer_size);
1666 
1667   // Swap content with an empty vector to ensure that all memory is released.
1668   brillo::Blob().swap(buffer_);
1669 }
1670 
CanResumeUpdate(PrefsInterface * prefs,string update_check_response_hash)1671 bool DeltaPerformer::CanResumeUpdate(PrefsInterface* prefs,
1672                                      string update_check_response_hash) {
1673   int64_t next_operation = kUpdateStateOperationInvalid;
1674   if (!(prefs->GetInt64(kPrefsUpdateStateNextOperation, &next_operation) &&
1675         next_operation != kUpdateStateOperationInvalid &&
1676         next_operation > 0))
1677     return false;
1678 
1679   string interrupted_hash;
1680   if (!(prefs->GetString(kPrefsUpdateCheckResponseHash, &interrupted_hash) &&
1681         !interrupted_hash.empty() &&
1682         interrupted_hash == update_check_response_hash))
1683     return false;
1684 
1685   int64_t resumed_update_failures;
1686   // Note that storing this value is optional, but if it is there it should not
1687   // be more than the limit.
1688   if (prefs->GetInt64(kPrefsResumedUpdateFailures, &resumed_update_failures) &&
1689       resumed_update_failures > kMaxResumedUpdateFailures)
1690     return false;
1691 
1692   // Sanity check the rest.
1693   int64_t next_data_offset = -1;
1694   if (!(prefs->GetInt64(kPrefsUpdateStateNextDataOffset, &next_data_offset) &&
1695         next_data_offset >= 0))
1696     return false;
1697 
1698   string sha256_context;
1699   if (!(prefs->GetString(kPrefsUpdateStateSHA256Context, &sha256_context) &&
1700         !sha256_context.empty()))
1701     return false;
1702 
1703   int64_t manifest_metadata_size = 0;
1704   if (!(prefs->GetInt64(kPrefsManifestMetadataSize, &manifest_metadata_size) &&
1705         manifest_metadata_size > 0))
1706     return false;
1707 
1708   int64_t manifest_signature_size = 0;
1709   if (!(prefs->GetInt64(kPrefsManifestSignatureSize,
1710                         &manifest_signature_size) &&
1711         manifest_signature_size >= 0))
1712     return false;
1713 
1714   return true;
1715 }
1716 
ResetUpdateProgress(PrefsInterface * prefs,bool quick)1717 bool DeltaPerformer::ResetUpdateProgress(PrefsInterface* prefs, bool quick) {
1718   TEST_AND_RETURN_FALSE(prefs->SetInt64(kPrefsUpdateStateNextOperation,
1719                                         kUpdateStateOperationInvalid));
1720   if (!quick) {
1721     prefs->SetString(kPrefsUpdateCheckResponseHash, "");
1722     prefs->SetInt64(kPrefsUpdateStateNextDataOffset, -1);
1723     prefs->SetInt64(kPrefsUpdateStateNextDataLength, 0);
1724     prefs->SetString(kPrefsUpdateStateSHA256Context, "");
1725     prefs->SetString(kPrefsUpdateStateSignedSHA256Context, "");
1726     prefs->SetString(kPrefsUpdateStateSignatureBlob, "");
1727     prefs->SetInt64(kPrefsManifestMetadataSize, -1);
1728     prefs->SetInt64(kPrefsManifestSignatureSize, -1);
1729     prefs->SetInt64(kPrefsResumedUpdateFailures, 0);
1730   }
1731   return true;
1732 }
1733 
CheckpointUpdateProgress()1734 bool DeltaPerformer::CheckpointUpdateProgress() {
1735   Terminator::set_exit_blocked(true);
1736   if (last_updated_buffer_offset_ != buffer_offset_) {
1737     // Resets the progress in case we die in the middle of the state update.
1738     ResetUpdateProgress(prefs_, true);
1739     TEST_AND_RETURN_FALSE(
1740         prefs_->SetString(kPrefsUpdateStateSHA256Context,
1741                           payload_hash_calculator_.GetContext()));
1742     TEST_AND_RETURN_FALSE(
1743         prefs_->SetString(kPrefsUpdateStateSignedSHA256Context,
1744                           signed_hash_calculator_.GetContext()));
1745     TEST_AND_RETURN_FALSE(prefs_->SetInt64(kPrefsUpdateStateNextDataOffset,
1746                                            buffer_offset_));
1747     last_updated_buffer_offset_ = buffer_offset_;
1748 
1749     if (next_operation_num_ < num_total_operations_) {
1750       size_t partition_index = current_partition_;
1751       while (next_operation_num_ >= acc_num_operations_[partition_index])
1752         partition_index++;
1753       const size_t partition_operation_num = next_operation_num_ - (
1754           partition_index ? acc_num_operations_[partition_index - 1] : 0);
1755       const InstallOperation& op =
1756           partitions_[partition_index].operations(partition_operation_num);
1757       TEST_AND_RETURN_FALSE(prefs_->SetInt64(kPrefsUpdateStateNextDataLength,
1758                                              op.data_length()));
1759     } else {
1760       TEST_AND_RETURN_FALSE(prefs_->SetInt64(kPrefsUpdateStateNextDataLength,
1761                                              0));
1762     }
1763   }
1764   TEST_AND_RETURN_FALSE(prefs_->SetInt64(kPrefsUpdateStateNextOperation,
1765                                          next_operation_num_));
1766   return true;
1767 }
1768 
PrimeUpdateState()1769 bool DeltaPerformer::PrimeUpdateState() {
1770   CHECK(manifest_valid_);
1771   block_size_ = manifest_.block_size();
1772 
1773   int64_t next_operation = kUpdateStateOperationInvalid;
1774   if (!prefs_->GetInt64(kPrefsUpdateStateNextOperation, &next_operation) ||
1775       next_operation == kUpdateStateOperationInvalid ||
1776       next_operation <= 0) {
1777     // Initiating a new update, no more state needs to be initialized.
1778     return true;
1779   }
1780   next_operation_num_ = next_operation;
1781 
1782   // Resuming an update -- load the rest of the update state.
1783   int64_t next_data_offset = -1;
1784   TEST_AND_RETURN_FALSE(prefs_->GetInt64(kPrefsUpdateStateNextDataOffset,
1785                                          &next_data_offset) &&
1786                         next_data_offset >= 0);
1787   buffer_offset_ = next_data_offset;
1788 
1789   // The signed hash context and the signature blob may be empty if the
1790   // interrupted update didn't reach the signature.
1791   string signed_hash_context;
1792   if (prefs_->GetString(kPrefsUpdateStateSignedSHA256Context,
1793                         &signed_hash_context)) {
1794     TEST_AND_RETURN_FALSE(
1795         signed_hash_calculator_.SetContext(signed_hash_context));
1796   }
1797 
1798   string signature_blob;
1799   if (prefs_->GetString(kPrefsUpdateStateSignatureBlob, &signature_blob)) {
1800     signatures_message_data_.assign(signature_blob.begin(),
1801                                     signature_blob.end());
1802   }
1803 
1804   string hash_context;
1805   TEST_AND_RETURN_FALSE(prefs_->GetString(kPrefsUpdateStateSHA256Context,
1806                                           &hash_context) &&
1807                         payload_hash_calculator_.SetContext(hash_context));
1808 
1809   int64_t manifest_metadata_size = 0;
1810   TEST_AND_RETURN_FALSE(prefs_->GetInt64(kPrefsManifestMetadataSize,
1811                                          &manifest_metadata_size) &&
1812                         manifest_metadata_size > 0);
1813   metadata_size_ = manifest_metadata_size;
1814 
1815   int64_t manifest_signature_size = 0;
1816   TEST_AND_RETURN_FALSE(
1817       prefs_->GetInt64(kPrefsManifestSignatureSize, &manifest_signature_size) &&
1818       manifest_signature_size >= 0);
1819   metadata_signature_size_ = manifest_signature_size;
1820 
1821   // Advance the download progress to reflect what doesn't need to be
1822   // re-downloaded.
1823   total_bytes_received_ += buffer_offset_;
1824 
1825   // Speculatively count the resume as a failure.
1826   int64_t resumed_update_failures;
1827   if (prefs_->GetInt64(kPrefsResumedUpdateFailures, &resumed_update_failures)) {
1828     resumed_update_failures++;
1829   } else {
1830     resumed_update_failures = 1;
1831   }
1832   prefs_->SetInt64(kPrefsResumedUpdateFailures, resumed_update_failures);
1833   return true;
1834 }
1835 
1836 }  // namespace chromeos_update_engine
1837