1 //===----- SchedulePostRAList.cpp - list scheduler ------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This implements a top-down list scheduler, using standard algorithms.
11 // The basic approach uses a priority queue of available nodes to schedule.
12 // One at a time, nodes are taken from the priority queue (thus in priority
13 // order), checked for legality to schedule, and emitted if legal.
14 //
15 // Nodes may not be legal to schedule either due to structural hazards (e.g.
16 // pipeline or resource constraints) or because an input to the instruction has
17 // not completed execution.
18 //
19 //===----------------------------------------------------------------------===//
20 
21 #include "llvm/CodeGen/Passes.h"
22 #include "AggressiveAntiDepBreaker.h"
23 #include "AntiDepBreaker.h"
24 #include "CriticalAntiDepBreaker.h"
25 #include "llvm/ADT/BitVector.h"
26 #include "llvm/ADT/Statistic.h"
27 #include "llvm/Analysis/AliasAnalysis.h"
28 #include "llvm/CodeGen/LatencyPriorityQueue.h"
29 #include "llvm/CodeGen/MachineDominators.h"
30 #include "llvm/CodeGen/MachineFrameInfo.h"
31 #include "llvm/CodeGen/MachineFunctionPass.h"
32 #include "llvm/CodeGen/MachineLoopInfo.h"
33 #include "llvm/CodeGen/MachineRegisterInfo.h"
34 #include "llvm/CodeGen/RegisterClassInfo.h"
35 #include "llvm/CodeGen/ScheduleDAGInstrs.h"
36 #include "llvm/CodeGen/ScheduleHazardRecognizer.h"
37 #include "llvm/CodeGen/SchedulerRegistry.h"
38 #include "llvm/Support/CommandLine.h"
39 #include "llvm/Support/Debug.h"
40 #include "llvm/Support/ErrorHandling.h"
41 #include "llvm/Support/raw_ostream.h"
42 #include "llvm/Target/TargetInstrInfo.h"
43 #include "llvm/Target/TargetLowering.h"
44 #include "llvm/Target/TargetRegisterInfo.h"
45 #include "llvm/Target/TargetSubtargetInfo.h"
46 using namespace llvm;
47 
48 #define DEBUG_TYPE "post-RA-sched"
49 
50 STATISTIC(NumNoops, "Number of noops inserted");
51 STATISTIC(NumStalls, "Number of pipeline stalls");
52 STATISTIC(NumFixedAnti, "Number of fixed anti-dependencies");
53 
54 // Post-RA scheduling is enabled with
55 // TargetSubtargetInfo.enablePostRAScheduler(). This flag can be used to
56 // override the target.
57 static cl::opt<bool>
58 EnablePostRAScheduler("post-RA-scheduler",
59                        cl::desc("Enable scheduling after register allocation"),
60                        cl::init(false), cl::Hidden);
61 static cl::opt<std::string>
62 EnableAntiDepBreaking("break-anti-dependencies",
63                       cl::desc("Break post-RA scheduling anti-dependencies: "
64                                "\"critical\", \"all\", or \"none\""),
65                       cl::init("none"), cl::Hidden);
66 
67 // If DebugDiv > 0 then only schedule MBB with (ID % DebugDiv) == DebugMod
68 static cl::opt<int>
69 DebugDiv("postra-sched-debugdiv",
70                       cl::desc("Debug control MBBs that are scheduled"),
71                       cl::init(0), cl::Hidden);
72 static cl::opt<int>
73 DebugMod("postra-sched-debugmod",
74                       cl::desc("Debug control MBBs that are scheduled"),
75                       cl::init(0), cl::Hidden);
76 
~AntiDepBreaker()77 AntiDepBreaker::~AntiDepBreaker() { }
78 
79 namespace {
80   class PostRAScheduler : public MachineFunctionPass {
81     const TargetInstrInfo *TII;
82     RegisterClassInfo RegClassInfo;
83 
84   public:
85     static char ID;
PostRAScheduler()86     PostRAScheduler() : MachineFunctionPass(ID) {}
87 
getAnalysisUsage(AnalysisUsage & AU) const88     void getAnalysisUsage(AnalysisUsage &AU) const override {
89       AU.setPreservesCFG();
90       AU.addRequired<AAResultsWrapperPass>();
91       AU.addRequired<TargetPassConfig>();
92       AU.addRequired<MachineDominatorTree>();
93       AU.addPreserved<MachineDominatorTree>();
94       AU.addRequired<MachineLoopInfo>();
95       AU.addPreserved<MachineLoopInfo>();
96       MachineFunctionPass::getAnalysisUsage(AU);
97     }
98 
99     bool runOnMachineFunction(MachineFunction &Fn) override;
100 
101     bool enablePostRAScheduler(
102         const TargetSubtargetInfo &ST, CodeGenOpt::Level OptLevel,
103         TargetSubtargetInfo::AntiDepBreakMode &Mode,
104         TargetSubtargetInfo::RegClassVector &CriticalPathRCs) const;
105   };
106   char PostRAScheduler::ID = 0;
107 
108   class SchedulePostRATDList : public ScheduleDAGInstrs {
109     /// AvailableQueue - The priority queue to use for the available SUnits.
110     ///
111     LatencyPriorityQueue AvailableQueue;
112 
113     /// PendingQueue - This contains all of the instructions whose operands have
114     /// been issued, but their results are not ready yet (due to the latency of
115     /// the operation).  Once the operands becomes available, the instruction is
116     /// added to the AvailableQueue.
117     std::vector<SUnit*> PendingQueue;
118 
119     /// HazardRec - The hazard recognizer to use.
120     ScheduleHazardRecognizer *HazardRec;
121 
122     /// AntiDepBreak - Anti-dependence breaking object, or NULL if none
123     AntiDepBreaker *AntiDepBreak;
124 
125     /// AA - AliasAnalysis for making memory reference queries.
126     AliasAnalysis *AA;
127 
128     /// The schedule. Null SUnit*'s represent noop instructions.
129     std::vector<SUnit*> Sequence;
130 
131     /// The index in BB of RegionEnd.
132     ///
133     /// This is the instruction number from the top of the current block, not
134     /// the SlotIndex. It is only used by the AntiDepBreaker.
135     unsigned EndIndex;
136 
137   public:
138     SchedulePostRATDList(
139         MachineFunction &MF, MachineLoopInfo &MLI, AliasAnalysis *AA,
140         const RegisterClassInfo &,
141         TargetSubtargetInfo::AntiDepBreakMode AntiDepMode,
142         SmallVectorImpl<const TargetRegisterClass *> &CriticalPathRCs);
143 
144     ~SchedulePostRATDList() override;
145 
146     /// startBlock - Initialize register live-range state for scheduling in
147     /// this block.
148     ///
149     void startBlock(MachineBasicBlock *BB) override;
150 
151     // Set the index of RegionEnd within the current BB.
setEndIndex(unsigned EndIdx)152     void setEndIndex(unsigned EndIdx) { EndIndex = EndIdx; }
153 
154     /// Initialize the scheduler state for the next scheduling region.
155     void enterRegion(MachineBasicBlock *bb,
156                      MachineBasicBlock::iterator begin,
157                      MachineBasicBlock::iterator end,
158                      unsigned regioninstrs) override;
159 
160     /// Notify that the scheduler has finished scheduling the current region.
161     void exitRegion() override;
162 
163     /// Schedule - Schedule the instruction range using list scheduling.
164     ///
165     void schedule() override;
166 
167     void EmitSchedule();
168 
169     /// Observe - Update liveness information to account for the current
170     /// instruction, which will not be scheduled.
171     ///
172     void Observe(MachineInstr *MI, unsigned Count);
173 
174     /// finishBlock - Clean up register live-range state.
175     ///
176     void finishBlock() override;
177 
178   private:
179     void ReleaseSucc(SUnit *SU, SDep *SuccEdge);
180     void ReleaseSuccessors(SUnit *SU);
181     void ScheduleNodeTopDown(SUnit *SU, unsigned CurCycle);
182     void ListScheduleTopDown();
183 
184     void dumpSchedule() const;
185     void emitNoop(unsigned CurCycle);
186   };
187 }
188 
189 char &llvm::PostRASchedulerID = PostRAScheduler::ID;
190 
191 INITIALIZE_PASS(PostRAScheduler, "post-RA-sched",
192                 "Post RA top-down list latency scheduler", false, false)
193 
SchedulePostRATDList(MachineFunction & MF,MachineLoopInfo & MLI,AliasAnalysis * AA,const RegisterClassInfo & RCI,TargetSubtargetInfo::AntiDepBreakMode AntiDepMode,SmallVectorImpl<const TargetRegisterClass * > & CriticalPathRCs)194 SchedulePostRATDList::SchedulePostRATDList(
195     MachineFunction &MF, MachineLoopInfo &MLI, AliasAnalysis *AA,
196     const RegisterClassInfo &RCI,
197     TargetSubtargetInfo::AntiDepBreakMode AntiDepMode,
198     SmallVectorImpl<const TargetRegisterClass *> &CriticalPathRCs)
199     : ScheduleDAGInstrs(MF, &MLI), AA(AA), EndIndex(0) {
200 
201   const InstrItineraryData *InstrItins =
202       MF.getSubtarget().getInstrItineraryData();
203   HazardRec =
204       MF.getSubtarget().getInstrInfo()->CreateTargetPostRAHazardRecognizer(
205           InstrItins, this);
206 
207   assert((AntiDepMode == TargetSubtargetInfo::ANTIDEP_NONE ||
208           MRI.tracksLiveness()) &&
209          "Live-ins must be accurate for anti-dependency breaking");
210   AntiDepBreak =
211     ((AntiDepMode == TargetSubtargetInfo::ANTIDEP_ALL) ?
212      (AntiDepBreaker *)new AggressiveAntiDepBreaker(MF, RCI, CriticalPathRCs) :
213      ((AntiDepMode == TargetSubtargetInfo::ANTIDEP_CRITICAL) ?
214       (AntiDepBreaker *)new CriticalAntiDepBreaker(MF, RCI) : nullptr));
215 }
216 
~SchedulePostRATDList()217 SchedulePostRATDList::~SchedulePostRATDList() {
218   delete HazardRec;
219   delete AntiDepBreak;
220 }
221 
222 /// Initialize state associated with the next scheduling region.
enterRegion(MachineBasicBlock * bb,MachineBasicBlock::iterator begin,MachineBasicBlock::iterator end,unsigned regioninstrs)223 void SchedulePostRATDList::enterRegion(MachineBasicBlock *bb,
224                  MachineBasicBlock::iterator begin,
225                  MachineBasicBlock::iterator end,
226                  unsigned regioninstrs) {
227   ScheduleDAGInstrs::enterRegion(bb, begin, end, regioninstrs);
228   Sequence.clear();
229 }
230 
231 /// Print the schedule before exiting the region.
exitRegion()232 void SchedulePostRATDList::exitRegion() {
233   DEBUG({
234       dbgs() << "*** Final schedule ***\n";
235       dumpSchedule();
236       dbgs() << '\n';
237     });
238   ScheduleDAGInstrs::exitRegion();
239 }
240 
241 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
242 /// dumpSchedule - dump the scheduled Sequence.
dumpSchedule() const243 void SchedulePostRATDList::dumpSchedule() const {
244   for (unsigned i = 0, e = Sequence.size(); i != e; i++) {
245     if (SUnit *SU = Sequence[i])
246       SU->dump(this);
247     else
248       dbgs() << "**** NOOP ****\n";
249   }
250 }
251 #endif
252 
enablePostRAScheduler(const TargetSubtargetInfo & ST,CodeGenOpt::Level OptLevel,TargetSubtargetInfo::AntiDepBreakMode & Mode,TargetSubtargetInfo::RegClassVector & CriticalPathRCs) const253 bool PostRAScheduler::enablePostRAScheduler(
254     const TargetSubtargetInfo &ST,
255     CodeGenOpt::Level OptLevel,
256     TargetSubtargetInfo::AntiDepBreakMode &Mode,
257     TargetSubtargetInfo::RegClassVector &CriticalPathRCs) const {
258   Mode = ST.getAntiDepBreakMode();
259   ST.getCriticalPathRCs(CriticalPathRCs);
260   return ST.enablePostRAScheduler() &&
261          OptLevel >= ST.getOptLevelToEnablePostRAScheduler();
262 }
263 
runOnMachineFunction(MachineFunction & Fn)264 bool PostRAScheduler::runOnMachineFunction(MachineFunction &Fn) {
265   if (skipOptnoneFunction(*Fn.getFunction()))
266     return false;
267 
268   TII = Fn.getSubtarget().getInstrInfo();
269   MachineLoopInfo &MLI = getAnalysis<MachineLoopInfo>();
270   AliasAnalysis *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
271   TargetPassConfig *PassConfig = &getAnalysis<TargetPassConfig>();
272 
273   RegClassInfo.runOnMachineFunction(Fn);
274 
275   // Check for explicit enable/disable of post-ra scheduling.
276   TargetSubtargetInfo::AntiDepBreakMode AntiDepMode =
277     TargetSubtargetInfo::ANTIDEP_NONE;
278   SmallVector<const TargetRegisterClass*, 4> CriticalPathRCs;
279   if (EnablePostRAScheduler.getPosition() > 0) {
280     if (!EnablePostRAScheduler)
281       return false;
282   } else {
283     // Check that post-RA scheduling is enabled for this target.
284     // This may upgrade the AntiDepMode.
285     if (!enablePostRAScheduler(Fn.getSubtarget(), PassConfig->getOptLevel(),
286                                AntiDepMode, CriticalPathRCs))
287       return false;
288   }
289 
290   // Check for antidep breaking override...
291   if (EnableAntiDepBreaking.getPosition() > 0) {
292     AntiDepMode = (EnableAntiDepBreaking == "all")
293       ? TargetSubtargetInfo::ANTIDEP_ALL
294       : ((EnableAntiDepBreaking == "critical")
295          ? TargetSubtargetInfo::ANTIDEP_CRITICAL
296          : TargetSubtargetInfo::ANTIDEP_NONE);
297   }
298 
299   DEBUG(dbgs() << "PostRAScheduler\n");
300 
301   SchedulePostRATDList Scheduler(Fn, MLI, AA, RegClassInfo, AntiDepMode,
302                                  CriticalPathRCs);
303 
304   // Loop over all of the basic blocks
305   for (auto &MBB : Fn) {
306 #ifndef NDEBUG
307     // If DebugDiv > 0 then only schedule MBB with (ID % DebugDiv) == DebugMod
308     if (DebugDiv > 0) {
309       static int bbcnt = 0;
310       if (bbcnt++ % DebugDiv != DebugMod)
311         continue;
312       dbgs() << "*** DEBUG scheduling " << Fn.getName()
313              << ":BB#" << MBB.getNumber() << " ***\n";
314     }
315 #endif
316 
317     // Initialize register live-range state for scheduling in this block.
318     Scheduler.startBlock(&MBB);
319 
320     // Schedule each sequence of instructions not interrupted by a label
321     // or anything else that effectively needs to shut down scheduling.
322     MachineBasicBlock::iterator Current = MBB.end();
323     unsigned Count = MBB.size(), CurrentCount = Count;
324     for (MachineBasicBlock::iterator I = Current; I != MBB.begin();) {
325       MachineInstr *MI = std::prev(I);
326       --Count;
327       // Calls are not scheduling boundaries before register allocation, but
328       // post-ra we don't gain anything by scheduling across calls since we
329       // don't need to worry about register pressure.
330       if (MI->isCall() || TII->isSchedulingBoundary(MI, &MBB, Fn)) {
331         Scheduler.enterRegion(&MBB, I, Current, CurrentCount - Count);
332         Scheduler.setEndIndex(CurrentCount);
333         Scheduler.schedule();
334         Scheduler.exitRegion();
335         Scheduler.EmitSchedule();
336         Current = MI;
337         CurrentCount = Count;
338         Scheduler.Observe(MI, CurrentCount);
339       }
340       I = MI;
341       if (MI->isBundle())
342         Count -= MI->getBundleSize();
343     }
344     assert(Count == 0 && "Instruction count mismatch!");
345     assert((MBB.begin() == Current || CurrentCount != 0) &&
346            "Instruction count mismatch!");
347     Scheduler.enterRegion(&MBB, MBB.begin(), Current, CurrentCount);
348     Scheduler.setEndIndex(CurrentCount);
349     Scheduler.schedule();
350     Scheduler.exitRegion();
351     Scheduler.EmitSchedule();
352 
353     // Clean up register live-range state.
354     Scheduler.finishBlock();
355 
356     // Update register kills
357     Scheduler.fixupKills(&MBB);
358   }
359 
360   return true;
361 }
362 
363 /// StartBlock - Initialize register live-range state for scheduling in
364 /// this block.
365 ///
startBlock(MachineBasicBlock * BB)366 void SchedulePostRATDList::startBlock(MachineBasicBlock *BB) {
367   // Call the superclass.
368   ScheduleDAGInstrs::startBlock(BB);
369 
370   // Reset the hazard recognizer and anti-dep breaker.
371   HazardRec->Reset();
372   if (AntiDepBreak)
373     AntiDepBreak->StartBlock(BB);
374 }
375 
376 /// Schedule - Schedule the instruction range using list scheduling.
377 ///
schedule()378 void SchedulePostRATDList::schedule() {
379   // Build the scheduling graph.
380   buildSchedGraph(AA);
381 
382   if (AntiDepBreak) {
383     unsigned Broken =
384       AntiDepBreak->BreakAntiDependencies(SUnits, RegionBegin, RegionEnd,
385                                           EndIndex, DbgValues);
386 
387     if (Broken != 0) {
388       // We made changes. Update the dependency graph.
389       // Theoretically we could update the graph in place:
390       // When a live range is changed to use a different register, remove
391       // the def's anti-dependence *and* output-dependence edges due to
392       // that register, and add new anti-dependence and output-dependence
393       // edges based on the next live range of the register.
394       ScheduleDAG::clearDAG();
395       buildSchedGraph(AA);
396 
397       NumFixedAnti += Broken;
398     }
399   }
400 
401   DEBUG(dbgs() << "********** List Scheduling **********\n");
402   DEBUG(
403     for (const SUnit &SU : SUnits) {
404       SU.dumpAll(this);
405       dbgs() << '\n';
406     }
407   );
408 
409   AvailableQueue.initNodes(SUnits);
410   ListScheduleTopDown();
411   AvailableQueue.releaseState();
412 }
413 
414 /// Observe - Update liveness information to account for the current
415 /// instruction, which will not be scheduled.
416 ///
Observe(MachineInstr * MI,unsigned Count)417 void SchedulePostRATDList::Observe(MachineInstr *MI, unsigned Count) {
418   if (AntiDepBreak)
419     AntiDepBreak->Observe(MI, Count, EndIndex);
420 }
421 
422 /// FinishBlock - Clean up register live-range state.
423 ///
finishBlock()424 void SchedulePostRATDList::finishBlock() {
425   if (AntiDepBreak)
426     AntiDepBreak->FinishBlock();
427 
428   // Call the superclass.
429   ScheduleDAGInstrs::finishBlock();
430 }
431 
432 //===----------------------------------------------------------------------===//
433 //  Top-Down Scheduling
434 //===----------------------------------------------------------------------===//
435 
436 /// ReleaseSucc - Decrement the NumPredsLeft count of a successor. Add it to
437 /// the PendingQueue if the count reaches zero.
ReleaseSucc(SUnit * SU,SDep * SuccEdge)438 void SchedulePostRATDList::ReleaseSucc(SUnit *SU, SDep *SuccEdge) {
439   SUnit *SuccSU = SuccEdge->getSUnit();
440 
441   if (SuccEdge->isWeak()) {
442     --SuccSU->WeakPredsLeft;
443     return;
444   }
445 #ifndef NDEBUG
446   if (SuccSU->NumPredsLeft == 0) {
447     dbgs() << "*** Scheduling failed! ***\n";
448     SuccSU->dump(this);
449     dbgs() << " has been released too many times!\n";
450     llvm_unreachable(nullptr);
451   }
452 #endif
453   --SuccSU->NumPredsLeft;
454 
455   // Standard scheduler algorithms will recompute the depth of the successor
456   // here as such:
457   //   SuccSU->setDepthToAtLeast(SU->getDepth() + SuccEdge->getLatency());
458   //
459   // However, we lazily compute node depth instead. Note that
460   // ScheduleNodeTopDown has already updated the depth of this node which causes
461   // all descendents to be marked dirty. Setting the successor depth explicitly
462   // here would cause depth to be recomputed for all its ancestors. If the
463   // successor is not yet ready (because of a transitively redundant edge) then
464   // this causes depth computation to be quadratic in the size of the DAG.
465 
466   // If all the node's predecessors are scheduled, this node is ready
467   // to be scheduled. Ignore the special ExitSU node.
468   if (SuccSU->NumPredsLeft == 0 && SuccSU != &ExitSU)
469     PendingQueue.push_back(SuccSU);
470 }
471 
472 /// ReleaseSuccessors - Call ReleaseSucc on each of SU's successors.
ReleaseSuccessors(SUnit * SU)473 void SchedulePostRATDList::ReleaseSuccessors(SUnit *SU) {
474   for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
475        I != E; ++I) {
476     ReleaseSucc(SU, &*I);
477   }
478 }
479 
480 /// ScheduleNodeTopDown - Add the node to the schedule. Decrement the pending
481 /// count of its successors. If a successor pending count is zero, add it to
482 /// the Available queue.
ScheduleNodeTopDown(SUnit * SU,unsigned CurCycle)483 void SchedulePostRATDList::ScheduleNodeTopDown(SUnit *SU, unsigned CurCycle) {
484   DEBUG(dbgs() << "*** Scheduling [" << CurCycle << "]: ");
485   DEBUG(SU->dump(this));
486 
487   Sequence.push_back(SU);
488   assert(CurCycle >= SU->getDepth() &&
489          "Node scheduled above its depth!");
490   SU->setDepthToAtLeast(CurCycle);
491 
492   ReleaseSuccessors(SU);
493   SU->isScheduled = true;
494   AvailableQueue.scheduledNode(SU);
495 }
496 
497 /// emitNoop - Add a noop to the current instruction sequence.
emitNoop(unsigned CurCycle)498 void SchedulePostRATDList::emitNoop(unsigned CurCycle) {
499   DEBUG(dbgs() << "*** Emitting noop in cycle " << CurCycle << '\n');
500   HazardRec->EmitNoop();
501   Sequence.push_back(nullptr);   // NULL here means noop
502   ++NumNoops;
503 }
504 
505 /// ListScheduleTopDown - The main loop of list scheduling for top-down
506 /// schedulers.
ListScheduleTopDown()507 void SchedulePostRATDList::ListScheduleTopDown() {
508   unsigned CurCycle = 0;
509 
510   // We're scheduling top-down but we're visiting the regions in
511   // bottom-up order, so we don't know the hazards at the start of a
512   // region. So assume no hazards (this should usually be ok as most
513   // blocks are a single region).
514   HazardRec->Reset();
515 
516   // Release any successors of the special Entry node.
517   ReleaseSuccessors(&EntrySU);
518 
519   // Add all leaves to Available queue.
520   for (unsigned i = 0, e = SUnits.size(); i != e; ++i) {
521     // It is available if it has no predecessors.
522     if (!SUnits[i].NumPredsLeft && !SUnits[i].isAvailable) {
523       AvailableQueue.push(&SUnits[i]);
524       SUnits[i].isAvailable = true;
525     }
526   }
527 
528   // In any cycle where we can't schedule any instructions, we must
529   // stall or emit a noop, depending on the target.
530   bool CycleHasInsts = false;
531 
532   // While Available queue is not empty, grab the node with the highest
533   // priority. If it is not ready put it back.  Schedule the node.
534   std::vector<SUnit*> NotReady;
535   Sequence.reserve(SUnits.size());
536   while (!AvailableQueue.empty() || !PendingQueue.empty()) {
537     // Check to see if any of the pending instructions are ready to issue.  If
538     // so, add them to the available queue.
539     unsigned MinDepth = ~0u;
540     for (unsigned i = 0, e = PendingQueue.size(); i != e; ++i) {
541       if (PendingQueue[i]->getDepth() <= CurCycle) {
542         AvailableQueue.push(PendingQueue[i]);
543         PendingQueue[i]->isAvailable = true;
544         PendingQueue[i] = PendingQueue.back();
545         PendingQueue.pop_back();
546         --i; --e;
547       } else if (PendingQueue[i]->getDepth() < MinDepth)
548         MinDepth = PendingQueue[i]->getDepth();
549     }
550 
551     DEBUG(dbgs() << "\n*** Examining Available\n"; AvailableQueue.dump(this));
552 
553     SUnit *FoundSUnit = nullptr, *NotPreferredSUnit = nullptr;
554     bool HasNoopHazards = false;
555     while (!AvailableQueue.empty()) {
556       SUnit *CurSUnit = AvailableQueue.pop();
557 
558       ScheduleHazardRecognizer::HazardType HT =
559         HazardRec->getHazardType(CurSUnit, 0/*no stalls*/);
560       if (HT == ScheduleHazardRecognizer::NoHazard) {
561         if (HazardRec->ShouldPreferAnother(CurSUnit)) {
562           if (!NotPreferredSUnit) {
563             // If this is the first non-preferred node for this cycle, then
564             // record it and continue searching for a preferred node. If this
565             // is not the first non-preferred node, then treat it as though
566             // there had been a hazard.
567             NotPreferredSUnit = CurSUnit;
568             continue;
569           }
570         } else {
571           FoundSUnit = CurSUnit;
572           break;
573         }
574       }
575 
576       // Remember if this is a noop hazard.
577       HasNoopHazards |= HT == ScheduleHazardRecognizer::NoopHazard;
578 
579       NotReady.push_back(CurSUnit);
580     }
581 
582     // If we have a non-preferred node, push it back onto the available list.
583     // If we did not find a preferred node, then schedule this first
584     // non-preferred node.
585     if (NotPreferredSUnit) {
586       if (!FoundSUnit) {
587         DEBUG(dbgs() << "*** Will schedule a non-preferred instruction...\n");
588         FoundSUnit = NotPreferredSUnit;
589       } else {
590         AvailableQueue.push(NotPreferredSUnit);
591       }
592 
593       NotPreferredSUnit = nullptr;
594     }
595 
596     // Add the nodes that aren't ready back onto the available list.
597     if (!NotReady.empty()) {
598       AvailableQueue.push_all(NotReady);
599       NotReady.clear();
600     }
601 
602     // If we found a node to schedule...
603     if (FoundSUnit) {
604       // If we need to emit noops prior to this instruction, then do so.
605       unsigned NumPreNoops = HazardRec->PreEmitNoops(FoundSUnit);
606       for (unsigned i = 0; i != NumPreNoops; ++i)
607         emitNoop(CurCycle);
608 
609       // ... schedule the node...
610       ScheduleNodeTopDown(FoundSUnit, CurCycle);
611       HazardRec->EmitInstruction(FoundSUnit);
612       CycleHasInsts = true;
613       if (HazardRec->atIssueLimit()) {
614         DEBUG(dbgs() << "*** Max instructions per cycle " << CurCycle << '\n');
615         HazardRec->AdvanceCycle();
616         ++CurCycle;
617         CycleHasInsts = false;
618       }
619     } else {
620       if (CycleHasInsts) {
621         DEBUG(dbgs() << "*** Finished cycle " << CurCycle << '\n');
622         HazardRec->AdvanceCycle();
623       } else if (!HasNoopHazards) {
624         // Otherwise, we have a pipeline stall, but no other problem,
625         // just advance the current cycle and try again.
626         DEBUG(dbgs() << "*** Stall in cycle " << CurCycle << '\n');
627         HazardRec->AdvanceCycle();
628         ++NumStalls;
629       } else {
630         // Otherwise, we have no instructions to issue and we have instructions
631         // that will fault if we don't do this right.  This is the case for
632         // processors without pipeline interlocks and other cases.
633         emitNoop(CurCycle);
634       }
635 
636       ++CurCycle;
637       CycleHasInsts = false;
638     }
639   }
640 
641 #ifndef NDEBUG
642   unsigned ScheduledNodes = VerifyScheduledDAG(/*isBottomUp=*/false);
643   unsigned Noops = 0;
644   for (unsigned i = 0, e = Sequence.size(); i != e; ++i)
645     if (!Sequence[i])
646       ++Noops;
647   assert(Sequence.size() - Noops == ScheduledNodes &&
648          "The number of nodes scheduled doesn't match the expected number!");
649 #endif // NDEBUG
650 }
651 
652 // EmitSchedule - Emit the machine code in scheduled order.
EmitSchedule()653 void SchedulePostRATDList::EmitSchedule() {
654   RegionBegin = RegionEnd;
655 
656   // If first instruction was a DBG_VALUE then put it back.
657   if (FirstDbgValue)
658     BB->splice(RegionEnd, BB, FirstDbgValue);
659 
660   // Then re-insert them according to the given schedule.
661   for (unsigned i = 0, e = Sequence.size(); i != e; i++) {
662     if (SUnit *SU = Sequence[i])
663       BB->splice(RegionEnd, BB, SU->getInstr());
664     else
665       // Null SUnit* is a noop.
666       TII->insertNoop(*BB, RegionEnd);
667 
668     // Update the Begin iterator, as the first instruction in the block
669     // may have been scheduled later.
670     if (i == 0)
671       RegionBegin = std::prev(RegionEnd);
672   }
673 
674   // Reinsert any remaining debug_values.
675   for (std::vector<std::pair<MachineInstr *, MachineInstr *> >::iterator
676          DI = DbgValues.end(), DE = DbgValues.begin(); DI != DE; --DI) {
677     std::pair<MachineInstr *, MachineInstr *> P = *std::prev(DI);
678     MachineInstr *DbgValue = P.first;
679     MachineBasicBlock::iterator OrigPrivMI = P.second;
680     BB->splice(++OrigPrivMI, BB, DbgValue);
681   }
682   DbgValues.clear();
683   FirstDbgValue = nullptr;
684 }
685