1 /*
2 * Copyright (C) 2008 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #ifndef ART_RUNTIME_ATOMIC_H_
18 #define ART_RUNTIME_ATOMIC_H_
19
20 #include <stdint.h>
21 #include <atomic>
22 #include <limits>
23 #include <vector>
24
25 #include "arch/instruction_set.h"
26 #include "base/logging.h"
27 #include "base/macros.h"
28
29 namespace art {
30
31 class Mutex;
32
33 // QuasiAtomic encapsulates two separate facilities that we are
34 // trying to move away from: "quasiatomic" 64 bit operations
35 // and custom memory fences. For the time being, they remain
36 // exposed. Clients should be converted to use either class Atomic
37 // below whenever possible, and should eventually use C++11 atomics.
38 // The two facilities that do not have a good C++11 analog are
39 // ThreadFenceForConstructor and Atomic::*JavaData.
40 //
41 // NOTE: Two "quasiatomic" operations on the exact same memory address
42 // are guaranteed to operate atomically with respect to each other,
43 // but no guarantees are made about quasiatomic operations mixed with
44 // non-quasiatomic operations on the same address, nor about
45 // quasiatomic operations that are performed on partially-overlapping
46 // memory.
47 class QuasiAtomic {
NeedSwapMutexes(InstructionSet isa)48 static constexpr bool NeedSwapMutexes(InstructionSet isa) {
49 // TODO - mips64 still need this for Cas64 ???
50 return (isa == kMips) || (isa == kMips64);
51 }
52
53 public:
54 static void Startup();
55
56 static void Shutdown();
57
58 // Reads the 64-bit value at "addr" without tearing.
Read64(volatile const int64_t * addr)59 static int64_t Read64(volatile const int64_t* addr) {
60 if (!NeedSwapMutexes(kRuntimeISA)) {
61 int64_t value;
62 #if defined(__LP64__)
63 value = *addr;
64 #else
65 #if defined(__arm__)
66 #if defined(__ARM_FEATURE_LPAE)
67 // With LPAE support (such as Cortex-A15) then ldrd is defined not to tear.
68 __asm__ __volatile__("@ QuasiAtomic::Read64\n"
69 "ldrd %0, %H0, %1"
70 : "=r" (value)
71 : "m" (*addr));
72 #else
73 // Exclusive loads are defined not to tear, clearing the exclusive state isn't necessary.
74 __asm__ __volatile__("@ QuasiAtomic::Read64\n"
75 "ldrexd %0, %H0, %1"
76 : "=r" (value)
77 : "Q" (*addr));
78 #endif
79 #elif defined(__i386__)
80 __asm__ __volatile__(
81 "movq %1, %0\n"
82 : "=x" (value)
83 : "m" (*addr));
84 #else
85 LOG(FATAL) << "Unsupported architecture";
86 #endif
87 #endif // defined(__LP64__)
88 return value;
89 } else {
90 return SwapMutexRead64(addr);
91 }
92 }
93
94 // Writes to the 64-bit value at "addr" without tearing.
Write64(volatile int64_t * addr,int64_t value)95 static void Write64(volatile int64_t* addr, int64_t value) {
96 if (!NeedSwapMutexes(kRuntimeISA)) {
97 #if defined(__LP64__)
98 *addr = value;
99 #else
100 #if defined(__arm__)
101 #if defined(__ARM_FEATURE_LPAE)
102 // If we know that ARM architecture has LPAE (such as Cortex-A15) strd is defined not to tear.
103 __asm__ __volatile__("@ QuasiAtomic::Write64\n"
104 "strd %1, %H1, %0"
105 : "=m"(*addr)
106 : "r" (value));
107 #else
108 // The write is done as a swap so that the cache-line is in the exclusive state for the store.
109 int64_t prev;
110 int status;
111 do {
112 __asm__ __volatile__("@ QuasiAtomic::Write64\n"
113 "ldrexd %0, %H0, %2\n"
114 "strexd %1, %3, %H3, %2"
115 : "=&r" (prev), "=&r" (status), "+Q"(*addr)
116 : "r" (value)
117 : "cc");
118 } while (UNLIKELY(status != 0));
119 #endif
120 #elif defined(__i386__)
121 __asm__ __volatile__(
122 "movq %1, %0"
123 : "=m" (*addr)
124 : "x" (value));
125 #else
126 LOG(FATAL) << "Unsupported architecture";
127 #endif
128 #endif // defined(__LP64__)
129 } else {
130 SwapMutexWrite64(addr, value);
131 }
132 }
133
134 // Atomically compare the value at "addr" to "old_value", if equal replace it with "new_value"
135 // and return true. Otherwise, don't swap, and return false.
136 // This is fully ordered, i.e. it has C++11 memory_order_seq_cst
137 // semantics (assuming all other accesses use a mutex if this one does).
138 // This has "strong" semantics; if it fails then it is guaranteed that
139 // at some point during the execution of Cas64, *addr was not equal to
140 // old_value.
Cas64(int64_t old_value,int64_t new_value,volatile int64_t * addr)141 static bool Cas64(int64_t old_value, int64_t new_value, volatile int64_t* addr) {
142 if (!NeedSwapMutexes(kRuntimeISA)) {
143 return __sync_bool_compare_and_swap(addr, old_value, new_value);
144 } else {
145 return SwapMutexCas64(old_value, new_value, addr);
146 }
147 }
148
149 // Does the architecture provide reasonable atomic long operations or do we fall back on mutexes?
LongAtomicsUseMutexes(InstructionSet isa)150 static bool LongAtomicsUseMutexes(InstructionSet isa) {
151 return NeedSwapMutexes(isa);
152 }
153
ThreadFenceAcquire()154 static void ThreadFenceAcquire() {
155 std::atomic_thread_fence(std::memory_order_acquire);
156 }
157
ThreadFenceRelease()158 static void ThreadFenceRelease() {
159 std::atomic_thread_fence(std::memory_order_release);
160 }
161
ThreadFenceForConstructor()162 static void ThreadFenceForConstructor() {
163 #if defined(__aarch64__)
164 __asm__ __volatile__("dmb ishst" : : : "memory");
165 #else
166 std::atomic_thread_fence(std::memory_order_release);
167 #endif
168 }
169
ThreadFenceSequentiallyConsistent()170 static void ThreadFenceSequentiallyConsistent() {
171 std::atomic_thread_fence(std::memory_order_seq_cst);
172 }
173
174 private:
175 static Mutex* GetSwapMutex(const volatile int64_t* addr);
176 static int64_t SwapMutexRead64(volatile const int64_t* addr);
177 static void SwapMutexWrite64(volatile int64_t* addr, int64_t val);
178 static bool SwapMutexCas64(int64_t old_value, int64_t new_value, volatile int64_t* addr);
179
180 // We stripe across a bunch of different mutexes to reduce contention.
181 static constexpr size_t kSwapMutexCount = 32;
182 static std::vector<Mutex*>* gSwapMutexes;
183
184 DISALLOW_COPY_AND_ASSIGN(QuasiAtomic);
185 };
186
187 template<typename T>
PACKED(sizeof (T))188 class PACKED(sizeof(T)) Atomic : public std::atomic<T> {
189 public:
190 Atomic<T>() : std::atomic<T>(0) { }
191
192 explicit Atomic<T>(T value) : std::atomic<T>(value) { }
193
194 // Load from memory without ordering or synchronization constraints.
195 T LoadRelaxed() const {
196 return this->load(std::memory_order_relaxed);
197 }
198
199 // Load from memory with acquire ordering.
200 T LoadAcquire() const {
201 return this->load(std::memory_order_acquire);
202 }
203
204 // Word tearing allowed, but may race.
205 // TODO: Optimize?
206 // There has been some discussion of eventually disallowing word
207 // tearing for Java data loads.
208 T LoadJavaData() const {
209 return this->load(std::memory_order_relaxed);
210 }
211
212 // Load from memory with a total ordering.
213 // Corresponds exactly to a Java volatile load.
214 T LoadSequentiallyConsistent() const {
215 return this->load(std::memory_order_seq_cst);
216 }
217
218 // Store to memory without ordering or synchronization constraints.
219 void StoreRelaxed(T desired) {
220 this->store(desired, std::memory_order_relaxed);
221 }
222
223 // Word tearing allowed, but may race.
224 void StoreJavaData(T desired) {
225 this->store(desired, std::memory_order_relaxed);
226 }
227
228 // Store to memory with release ordering.
229 void StoreRelease(T desired) {
230 this->store(desired, std::memory_order_release);
231 }
232
233 // Store to memory with a total ordering.
234 void StoreSequentiallyConsistent(T desired) {
235 this->store(desired, std::memory_order_seq_cst);
236 }
237
238 // Atomically replace the value with desired value if it matches the expected value.
239 // Participates in total ordering of atomic operations.
240 bool CompareExchangeStrongSequentiallyConsistent(T expected_value, T desired_value) {
241 return this->compare_exchange_strong(expected_value, desired_value, std::memory_order_seq_cst);
242 }
243
244 // The same, except it may fail spuriously.
245 bool CompareExchangeWeakSequentiallyConsistent(T expected_value, T desired_value) {
246 return this->compare_exchange_weak(expected_value, desired_value, std::memory_order_seq_cst);
247 }
248
249 // Atomically replace the value with desired value if it matches the expected value. Doesn't
250 // imply ordering or synchronization constraints.
251 bool CompareExchangeStrongRelaxed(T expected_value, T desired_value) {
252 return this->compare_exchange_strong(expected_value, desired_value, std::memory_order_relaxed);
253 }
254
255 // The same, except it may fail spuriously.
256 bool CompareExchangeWeakRelaxed(T expected_value, T desired_value) {
257 return this->compare_exchange_weak(expected_value, desired_value, std::memory_order_relaxed);
258 }
259
260 // Atomically replace the value with desired value if it matches the expected value. Prior writes
261 // made to other memory locations by the thread that did the release become visible in this
262 // thread.
263 bool CompareExchangeWeakAcquire(T expected_value, T desired_value) {
264 return this->compare_exchange_weak(expected_value, desired_value, std::memory_order_acquire);
265 }
266
267 // Atomically replace the value with desired value if it matches the expected value. prior writes
268 // to other memory locations become visible to the threads that do a consume or an acquire on the
269 // same location.
270 bool CompareExchangeWeakRelease(T expected_value, T desired_value) {
271 return this->compare_exchange_weak(expected_value, desired_value, std::memory_order_release);
272 }
273
274 T FetchAndAddSequentiallyConsistent(const T value) {
275 return this->fetch_add(value, std::memory_order_seq_cst); // Return old_value.
276 }
277
278 T FetchAndAddRelaxed(const T value) {
279 return this->fetch_add(value, std::memory_order_relaxed); // Return old_value.
280 }
281
282 T FetchAndSubSequentiallyConsistent(const T value) {
283 return this->fetch_sub(value, std::memory_order_seq_cst); // Return old value.
284 }
285
286 T FetchAndOrSequentiallyConsistent(const T value) {
287 return this->fetch_or(value, std::memory_order_seq_cst); // Return old_value.
288 }
289
290 T FetchAndAndSequentiallyConsistent(const T value) {
291 return this->fetch_and(value, std::memory_order_seq_cst); // Return old_value.
292 }
293
294 volatile T* Address() {
295 return reinterpret_cast<T*>(this);
296 }
297
298 static T MaxValue() {
299 return std::numeric_limits<T>::max();
300 }
301 };
302
303 typedef Atomic<int32_t> AtomicInteger;
304
305 static_assert(sizeof(AtomicInteger) == sizeof(int32_t), "Weird AtomicInteger size");
306 static_assert(alignof(AtomicInteger) == alignof(int32_t),
307 "AtomicInteger alignment differs from that of underlyingtype");
308 static_assert(sizeof(Atomic<int64_t>) == sizeof(int64_t), "Weird Atomic<int64> size");
309
310 // Assert the alignment of 64-bit integers is 64-bit. This isn't true on certain 32-bit
311 // architectures (e.g. x86-32) but we know that 64-bit integers here are arranged to be 8-byte
312 // aligned.
313 #if defined(__LP64__)
314 static_assert(alignof(Atomic<int64_t>) == alignof(int64_t),
315 "Atomic<int64> alignment differs from that of underlying type");
316 #endif
317
318 } // namespace art
319
320 #endif // ART_RUNTIME_ATOMIC_H_
321