1 //===-- LiveIntervalAnalysis.h - Live Interval Analysis ---------*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the LiveInterval analysis pass.  Given some numbering of
11 // each the machine instructions (in this implemention depth-first order) an
12 // interval [i, j) is said to be a live interval for register v if there is no
13 // instruction with number j' > j such that v is live at j' and there is no
14 // instruction with number i' < i such that v is live at i'. In this
15 // implementation intervals can have holes, i.e. an interval might look like
16 // [1,20), [50,65), [1000,1001).
17 //
18 //===----------------------------------------------------------------------===//
19 
20 #ifndef LLVM_CODEGEN_LIVEINTERVALANALYSIS_H
21 #define LLVM_CODEGEN_LIVEINTERVALANALYSIS_H
22 
23 #include "llvm/ADT/IndexedMap.h"
24 #include "llvm/ADT/SmallVector.h"
25 #include "llvm/Analysis/AliasAnalysis.h"
26 #include "llvm/CodeGen/LiveInterval.h"
27 #include "llvm/CodeGen/MachineBasicBlock.h"
28 #include "llvm/CodeGen/MachineFunctionPass.h"
29 #include "llvm/CodeGen/SlotIndexes.h"
30 #include "llvm/Support/Allocator.h"
31 #include "llvm/Support/CommandLine.h"
32 #include "llvm/Target/TargetRegisterInfo.h"
33 #include <cmath>
34 #include <iterator>
35 
36 namespace llvm {
37 
38 extern cl::opt<bool> UseSegmentSetForPhysRegs;
39 
40   class BitVector;
41   class BlockFrequency;
42   class LiveRangeCalc;
43   class LiveVariables;
44   class MachineDominatorTree;
45   class MachineLoopInfo;
46   class TargetRegisterInfo;
47   class MachineRegisterInfo;
48   class TargetInstrInfo;
49   class TargetRegisterClass;
50   class VirtRegMap;
51   class MachineBlockFrequencyInfo;
52 
53   class LiveIntervals : public MachineFunctionPass {
54     MachineFunction* MF;
55     MachineRegisterInfo* MRI;
56     const TargetRegisterInfo* TRI;
57     const TargetInstrInfo* TII;
58     AliasAnalysis *AA;
59     SlotIndexes* Indexes;
60     MachineDominatorTree *DomTree;
61     LiveRangeCalc *LRCalc;
62 
63     /// Special pool allocator for VNInfo's (LiveInterval val#).
64     ///
65     VNInfo::Allocator VNInfoAllocator;
66 
67     /// Live interval pointers for all the virtual registers.
68     IndexedMap<LiveInterval*, VirtReg2IndexFunctor> VirtRegIntervals;
69 
70     /// RegMaskSlots - Sorted list of instructions with register mask operands.
71     /// Always use the 'r' slot, RegMasks are normal clobbers, not early
72     /// clobbers.
73     SmallVector<SlotIndex, 8> RegMaskSlots;
74 
75     /// RegMaskBits - This vector is parallel to RegMaskSlots, it holds a
76     /// pointer to the corresponding register mask.  This pointer can be
77     /// recomputed as:
78     ///
79     ///   MI = Indexes->getInstructionFromIndex(RegMaskSlot[N]);
80     ///   unsigned OpNum = findRegMaskOperand(MI);
81     ///   RegMaskBits[N] = MI->getOperand(OpNum).getRegMask();
82     ///
83     /// This is kept in a separate vector partly because some standard
84     /// libraries don't support lower_bound() with mixed objects, partly to
85     /// improve locality when searching in RegMaskSlots.
86     /// Also see the comment in LiveInterval::find().
87     SmallVector<const uint32_t*, 8> RegMaskBits;
88 
89     /// For each basic block number, keep (begin, size) pairs indexing into the
90     /// RegMaskSlots and RegMaskBits arrays.
91     /// Note that basic block numbers may not be layout contiguous, that's why
92     /// we can't just keep track of the first register mask in each basic
93     /// block.
94     SmallVector<std::pair<unsigned, unsigned>, 8> RegMaskBlocks;
95 
96     /// Keeps a live range set for each register unit to track fixed physreg
97     /// interference.
98     SmallVector<LiveRange*, 0> RegUnitRanges;
99 
100   public:
101     static char ID; // Pass identification, replacement for typeid
102     LiveIntervals();
103     ~LiveIntervals() override;
104 
105     // Calculate the spill weight to assign to a single instruction.
106     static float getSpillWeight(bool isDef, bool isUse,
107                                 const MachineBlockFrequencyInfo *MBFI,
108                                 const MachineInstr *Instr);
109 
getInterval(unsigned Reg)110     LiveInterval &getInterval(unsigned Reg) {
111       if (hasInterval(Reg))
112         return *VirtRegIntervals[Reg];
113       else
114         return createAndComputeVirtRegInterval(Reg);
115     }
116 
getInterval(unsigned Reg)117     const LiveInterval &getInterval(unsigned Reg) const {
118       return const_cast<LiveIntervals*>(this)->getInterval(Reg);
119     }
120 
hasInterval(unsigned Reg)121     bool hasInterval(unsigned Reg) const {
122       return VirtRegIntervals.inBounds(Reg) && VirtRegIntervals[Reg];
123     }
124 
125     // Interval creation.
createEmptyInterval(unsigned Reg)126     LiveInterval &createEmptyInterval(unsigned Reg) {
127       assert(!hasInterval(Reg) && "Interval already exists!");
128       VirtRegIntervals.grow(Reg);
129       VirtRegIntervals[Reg] = createInterval(Reg);
130       return *VirtRegIntervals[Reg];
131     }
132 
createAndComputeVirtRegInterval(unsigned Reg)133     LiveInterval &createAndComputeVirtRegInterval(unsigned Reg) {
134       LiveInterval &LI = createEmptyInterval(Reg);
135       computeVirtRegInterval(LI);
136       return LI;
137     }
138 
139     // Interval removal.
removeInterval(unsigned Reg)140     void removeInterval(unsigned Reg) {
141       delete VirtRegIntervals[Reg];
142       VirtRegIntervals[Reg] = nullptr;
143     }
144 
145     /// Given a register and an instruction, adds a live segment from that
146     /// instruction to the end of its MBB.
147     LiveInterval::Segment addSegmentToEndOfBlock(unsigned reg,
148                                                  MachineInstr* startInst);
149 
150     /// After removing some uses of a register, shrink its live range to just
151     /// the remaining uses. This method does not compute reaching defs for new
152     /// uses, and it doesn't remove dead defs.
153     /// Dead PHIDef values are marked as unused. New dead machine instructions
154     /// are added to the dead vector. Returns true if the interval may have been
155     /// separated into multiple connected components.
156     bool shrinkToUses(LiveInterval *li,
157                       SmallVectorImpl<MachineInstr*> *dead = nullptr);
158 
159     /// Specialized version of
160     /// shrinkToUses(LiveInterval *li, SmallVectorImpl<MachineInstr*> *dead)
161     /// that works on a subregister live range and only looks at uses matching
162     /// the lane mask of the subregister range.
163     /// This may leave the subrange empty which needs to be cleaned up with
164     /// LiveInterval::removeEmptySubranges() afterwards.
165     void shrinkToUses(LiveInterval::SubRange &SR, unsigned Reg);
166 
167     /// extendToIndices - Extend the live range of LI to reach all points in
168     /// Indices. The points in the Indices array must be jointly dominated by
169     /// existing defs in LI. PHI-defs are added as needed to maintain SSA form.
170     ///
171     /// If a SlotIndex in Indices is the end index of a basic block, LI will be
172     /// extended to be live out of the basic block.
173     ///
174     /// See also LiveRangeCalc::extend().
175     void extendToIndices(LiveRange &LR, ArrayRef<SlotIndex> Indices);
176 
177 
178     /// If @p LR has a live value at @p Kill, prune its live range by removing
179     /// any liveness reachable from Kill. Add live range end points to
180     /// EndPoints such that extendToIndices(LI, EndPoints) will reconstruct the
181     /// value's live range.
182     ///
183     /// Calling pruneValue() and extendToIndices() can be used to reconstruct
184     /// SSA form after adding defs to a virtual register.
185     void pruneValue(LiveRange &LR, SlotIndex Kill,
186                     SmallVectorImpl<SlotIndex> *EndPoints);
187 
getSlotIndexes()188     SlotIndexes *getSlotIndexes() const {
189       return Indexes;
190     }
191 
getAliasAnalysis()192     AliasAnalysis *getAliasAnalysis() const {
193       return AA;
194     }
195 
196     /// isNotInMIMap - returns true if the specified machine instr has been
197     /// removed or was never entered in the map.
isNotInMIMap(const MachineInstr * Instr)198     bool isNotInMIMap(const MachineInstr* Instr) const {
199       return !Indexes->hasIndex(Instr);
200     }
201 
202     /// Returns the base index of the given instruction.
getInstructionIndex(const MachineInstr * instr)203     SlotIndex getInstructionIndex(const MachineInstr *instr) const {
204       return Indexes->getInstructionIndex(instr);
205     }
206 
207     /// Returns the instruction associated with the given index.
getInstructionFromIndex(SlotIndex index)208     MachineInstr* getInstructionFromIndex(SlotIndex index) const {
209       return Indexes->getInstructionFromIndex(index);
210     }
211 
212     /// Return the first index in the given basic block.
getMBBStartIdx(const MachineBasicBlock * mbb)213     SlotIndex getMBBStartIdx(const MachineBasicBlock *mbb) const {
214       return Indexes->getMBBStartIdx(mbb);
215     }
216 
217     /// Return the last index in the given basic block.
getMBBEndIdx(const MachineBasicBlock * mbb)218     SlotIndex getMBBEndIdx(const MachineBasicBlock *mbb) const {
219       return Indexes->getMBBEndIdx(mbb);
220     }
221 
isLiveInToMBB(const LiveRange & LR,const MachineBasicBlock * mbb)222     bool isLiveInToMBB(const LiveRange &LR,
223                        const MachineBasicBlock *mbb) const {
224       return LR.liveAt(getMBBStartIdx(mbb));
225     }
226 
isLiveOutOfMBB(const LiveRange & LR,const MachineBasicBlock * mbb)227     bool isLiveOutOfMBB(const LiveRange &LR,
228                         const MachineBasicBlock *mbb) const {
229       return LR.liveAt(getMBBEndIdx(mbb).getPrevSlot());
230     }
231 
getMBBFromIndex(SlotIndex index)232     MachineBasicBlock* getMBBFromIndex(SlotIndex index) const {
233       return Indexes->getMBBFromIndex(index);
234     }
235 
insertMBBInMaps(MachineBasicBlock * MBB)236     void insertMBBInMaps(MachineBasicBlock *MBB) {
237       Indexes->insertMBBInMaps(MBB);
238       assert(unsigned(MBB->getNumber()) == RegMaskBlocks.size() &&
239              "Blocks must be added in order.");
240       RegMaskBlocks.push_back(std::make_pair(RegMaskSlots.size(), 0));
241     }
242 
InsertMachineInstrInMaps(MachineInstr * MI)243     SlotIndex InsertMachineInstrInMaps(MachineInstr *MI) {
244       return Indexes->insertMachineInstrInMaps(MI);
245     }
246 
InsertMachineInstrRangeInMaps(MachineBasicBlock::iterator B,MachineBasicBlock::iterator E)247     void InsertMachineInstrRangeInMaps(MachineBasicBlock::iterator B,
248                                        MachineBasicBlock::iterator E) {
249       for (MachineBasicBlock::iterator I = B; I != E; ++I)
250         Indexes->insertMachineInstrInMaps(I);
251     }
252 
RemoveMachineInstrFromMaps(MachineInstr * MI)253     void RemoveMachineInstrFromMaps(MachineInstr *MI) {
254       Indexes->removeMachineInstrFromMaps(MI);
255     }
256 
ReplaceMachineInstrInMaps(MachineInstr * MI,MachineInstr * NewMI)257     void ReplaceMachineInstrInMaps(MachineInstr *MI, MachineInstr *NewMI) {
258       Indexes->replaceMachineInstrInMaps(MI, NewMI);
259     }
260 
getVNInfoAllocator()261     VNInfo::Allocator& getVNInfoAllocator() { return VNInfoAllocator; }
262 
263     void getAnalysisUsage(AnalysisUsage &AU) const override;
264     void releaseMemory() override;
265 
266     /// runOnMachineFunction - pass entry point
267     bool runOnMachineFunction(MachineFunction&) override;
268 
269     /// print - Implement the dump method.
270     void print(raw_ostream &O, const Module* = nullptr) const override;
271 
272     /// intervalIsInOneMBB - If LI is confined to a single basic block, return
273     /// a pointer to that block.  If LI is live in to or out of any block,
274     /// return NULL.
275     MachineBasicBlock *intervalIsInOneMBB(const LiveInterval &LI) const;
276 
277     /// Returns true if VNI is killed by any PHI-def values in LI.
278     /// This may conservatively return true to avoid expensive computations.
279     bool hasPHIKill(const LiveInterval &LI, const VNInfo *VNI) const;
280 
281     /// addKillFlags - Add kill flags to any instruction that kills a virtual
282     /// register.
283     void addKillFlags(const VirtRegMap*);
284 
285     /// handleMove - call this method to notify LiveIntervals that
286     /// instruction 'mi' has been moved within a basic block. This will update
287     /// the live intervals for all operands of mi. Moves between basic blocks
288     /// are not supported.
289     ///
290     /// \param UpdateFlags Update live intervals for nonallocatable physregs.
291     void handleMove(MachineInstr* MI, bool UpdateFlags = false);
292 
293     /// moveIntoBundle - Update intervals for operands of MI so that they
294     /// begin/end on the SlotIndex for BundleStart.
295     ///
296     /// \param UpdateFlags Update live intervals for nonallocatable physregs.
297     ///
298     /// Requires MI and BundleStart to have SlotIndexes, and assumes
299     /// existing liveness is accurate. BundleStart should be the first
300     /// instruction in the Bundle.
301     void handleMoveIntoBundle(MachineInstr* MI, MachineInstr* BundleStart,
302                               bool UpdateFlags = false);
303 
304     /// repairIntervalsInRange - Update live intervals for instructions in a
305     /// range of iterators. It is intended for use after target hooks that may
306     /// insert or remove instructions, and is only efficient for a small number
307     /// of instructions.
308     ///
309     /// OrigRegs is a vector of registers that were originally used by the
310     /// instructions in the range between the two iterators.
311     ///
312     /// Currently, the only only changes that are supported are simple removal
313     /// and addition of uses.
314     void repairIntervalsInRange(MachineBasicBlock *MBB,
315                                 MachineBasicBlock::iterator Begin,
316                                 MachineBasicBlock::iterator End,
317                                 ArrayRef<unsigned> OrigRegs);
318 
319     // Register mask functions.
320     //
321     // Machine instructions may use a register mask operand to indicate that a
322     // large number of registers are clobbered by the instruction.  This is
323     // typically used for calls.
324     //
325     // For compile time performance reasons, these clobbers are not recorded in
326     // the live intervals for individual physical registers.  Instead,
327     // LiveIntervalAnalysis maintains a sorted list of instructions with
328     // register mask operands.
329 
330     /// getRegMaskSlots - Returns a sorted array of slot indices of all
331     /// instructions with register mask operands.
getRegMaskSlots()332     ArrayRef<SlotIndex> getRegMaskSlots() const { return RegMaskSlots; }
333 
334     /// getRegMaskSlotsInBlock - Returns a sorted array of slot indices of all
335     /// instructions with register mask operands in the basic block numbered
336     /// MBBNum.
getRegMaskSlotsInBlock(unsigned MBBNum)337     ArrayRef<SlotIndex> getRegMaskSlotsInBlock(unsigned MBBNum) const {
338       std::pair<unsigned, unsigned> P = RegMaskBlocks[MBBNum];
339       return getRegMaskSlots().slice(P.first, P.second);
340     }
341 
342     /// getRegMaskBits() - Returns an array of register mask pointers
343     /// corresponding to getRegMaskSlots().
getRegMaskBits()344     ArrayRef<const uint32_t*> getRegMaskBits() const { return RegMaskBits; }
345 
346     /// getRegMaskBitsInBlock - Returns an array of mask pointers corresponding
347     /// to getRegMaskSlotsInBlock(MBBNum).
getRegMaskBitsInBlock(unsigned MBBNum)348     ArrayRef<const uint32_t*> getRegMaskBitsInBlock(unsigned MBBNum) const {
349       std::pair<unsigned, unsigned> P = RegMaskBlocks[MBBNum];
350       return getRegMaskBits().slice(P.first, P.second);
351     }
352 
353     /// checkRegMaskInterference - Test if LI is live across any register mask
354     /// instructions, and compute a bit mask of physical registers that are not
355     /// clobbered by any of them.
356     ///
357     /// Returns false if LI doesn't cross any register mask instructions. In
358     /// that case, the bit vector is not filled in.
359     bool checkRegMaskInterference(LiveInterval &LI,
360                                   BitVector &UsableRegs);
361 
362     // Register unit functions.
363     //
364     // Fixed interference occurs when MachineInstrs use physregs directly
365     // instead of virtual registers. This typically happens when passing
366     // arguments to a function call, or when instructions require operands in
367     // fixed registers.
368     //
369     // Each physreg has one or more register units, see MCRegisterInfo. We
370     // track liveness per register unit to handle aliasing registers more
371     // efficiently.
372 
373     /// getRegUnit - Return the live range for Unit.
374     /// It will be computed if it doesn't exist.
getRegUnit(unsigned Unit)375     LiveRange &getRegUnit(unsigned Unit) {
376       LiveRange *LR = RegUnitRanges[Unit];
377       if (!LR) {
378         // Compute missing ranges on demand.
379         // Use segment set to speed-up initial computation of the live range.
380         RegUnitRanges[Unit] = LR = new LiveRange(UseSegmentSetForPhysRegs);
381         computeRegUnitRange(*LR, Unit);
382       }
383       return *LR;
384     }
385 
386     /// getCachedRegUnit - Return the live range for Unit if it has already
387     /// been computed, or NULL if it hasn't been computed yet.
getCachedRegUnit(unsigned Unit)388     LiveRange *getCachedRegUnit(unsigned Unit) {
389       return RegUnitRanges[Unit];
390     }
391 
getCachedRegUnit(unsigned Unit)392     const LiveRange *getCachedRegUnit(unsigned Unit) const {
393       return RegUnitRanges[Unit];
394     }
395 
396     /// Remove value numbers and related live segments starting at position
397     /// @p Pos that are part of any liverange of physical register @p Reg or one
398     /// of its subregisters.
399     void removePhysRegDefAt(unsigned Reg, SlotIndex Pos);
400 
401     /// Remove value number and related live segments of @p LI and its subranges
402     /// that start at position @p Pos.
403     void removeVRegDefAt(LiveInterval &LI, SlotIndex Pos);
404 
405     /// Split separate components in LiveInterval \p LI into separate intervals.
406     void splitSeparateComponents(LiveInterval &LI,
407                                  SmallVectorImpl<LiveInterval*> &SplitLIs);
408 
409   private:
410     /// Compute live intervals for all virtual registers.
411     void computeVirtRegs();
412 
413     /// Compute RegMaskSlots and RegMaskBits.
414     void computeRegMasks();
415 
416     /// Walk the values in @p LI and check for dead values:
417     /// - Dead PHIDef values are marked as unused.
418     /// - Dead operands are marked as such.
419     /// - Completely dead machine instructions are added to the @p dead vector
420     ///   if it is not nullptr.
421     /// Returns true if any PHI value numbers have been removed which may
422     /// have separated the interval into multiple connected components.
423     bool computeDeadValues(LiveInterval &LI,
424                            SmallVectorImpl<MachineInstr*> *dead);
425 
426     static LiveInterval* createInterval(unsigned Reg);
427 
428     void printInstrs(raw_ostream &O) const;
429     void dumpInstrs() const;
430 
431     void computeLiveInRegUnits();
432     void computeRegUnitRange(LiveRange&, unsigned Unit);
433     void computeVirtRegInterval(LiveInterval&);
434 
435 
436     /// Helper function for repairIntervalsInRange(), walks backwards and
437     /// creates/modifies live segments in @p LR to match the operands found.
438     /// Only full operands or operands with subregisters matching @p LaneMask
439     /// are considered.
440     void repairOldRegInRange(MachineBasicBlock::iterator Begin,
441                              MachineBasicBlock::iterator End,
442                              const SlotIndex endIdx, LiveRange &LR,
443                              unsigned Reg, LaneBitmask LaneMask = ~0u);
444 
445     class HMEditor;
446   };
447 } // End llvm namespace
448 
449 #endif
450