1 // Ceres Solver - A fast non-linear least squares minimizer
2 // Copyright 2010, 2011, 2012 Google Inc. All rights reserved.
3 // http://code.google.com/p/ceres-solver/
4 //
5 // Redistribution and use in source and binary forms, with or without
6 // modification, are permitted provided that the following conditions are met:
7 //
8 // * Redistributions of source code must retain the above copyright notice,
9 // this list of conditions and the following disclaimer.
10 // * Redistributions in binary form must reproduce the above copyright notice,
11 // this list of conditions and the following disclaimer in the documentation
12 // and/or other materials provided with the distribution.
13 // * Neither the name of Google Inc. nor the names of its contributors may be
14 // used to endorse or promote products derived from this software without
15 // specific prior written permission.
16 //
17 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
18 // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
21 // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
22 // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
23 // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
24 // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
25 // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
26 // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
27 // POSSIBILITY OF SUCH DAMAGE.
28 //
29 // Author: keir@google.com (Keir Mierle)
30 // sameeragarwal@google.com (Sameer Agarwal)
31 //
32 // Templated functions for manipulating rotations. The templated
33 // functions are useful when implementing functors for automatic
34 // differentiation.
35 //
36 // In the following, the Quaternions are laid out as 4-vectors, thus:
37 //
38 // q[0] scalar part.
39 // q[1] coefficient of i.
40 // q[2] coefficient of j.
41 // q[3] coefficient of k.
42 //
43 // where: i*i = j*j = k*k = -1 and i*j = k, j*k = i, k*i = j.
44
45 #ifndef CERES_PUBLIC_ROTATION_H_
46 #define CERES_PUBLIC_ROTATION_H_
47
48 #include <algorithm>
49 #include <cmath>
50 #include "glog/logging.h"
51
52 namespace ceres {
53
54 // Trivial wrapper to index linear arrays as matrices, given a fixed
55 // column and row stride. When an array "T* array" is wrapped by a
56 //
57 // (const) MatrixAdapter<T, row_stride, col_stride> M"
58 //
59 // the expression M(i, j) is equivalent to
60 //
61 // arrary[i * row_stride + j * col_stride]
62 //
63 // Conversion functions to and from rotation matrices accept
64 // MatrixAdapters to permit using row-major and column-major layouts,
65 // and rotation matrices embedded in larger matrices (such as a 3x4
66 // projection matrix).
67 template <typename T, int row_stride, int col_stride>
68 struct MatrixAdapter;
69
70 // Convenience functions to create a MatrixAdapter that treats the
71 // array pointed to by "pointer" as a 3x3 (contiguous) column-major or
72 // row-major matrix.
73 template <typename T>
74 MatrixAdapter<T, 1, 3> ColumnMajorAdapter3x3(T* pointer);
75
76 template <typename T>
77 MatrixAdapter<T, 3, 1> RowMajorAdapter3x3(T* pointer);
78
79 // Convert a value in combined axis-angle representation to a quaternion.
80 // The value angle_axis is a triple whose norm is an angle in radians,
81 // and whose direction is aligned with the axis of rotation,
82 // and quaternion is a 4-tuple that will contain the resulting quaternion.
83 // The implementation may be used with auto-differentiation up to the first
84 // derivative, higher derivatives may have unexpected results near the origin.
85 template<typename T>
86 void AngleAxisToQuaternion(const T* angle_axis, T* quaternion);
87
88 // Convert a quaternion to the equivalent combined axis-angle representation.
89 // The value quaternion must be a unit quaternion - it is not normalized first,
90 // and angle_axis will be filled with a value whose norm is the angle of
91 // rotation in radians, and whose direction is the axis of rotation.
92 // The implemention may be used with auto-differentiation up to the first
93 // derivative, higher derivatives may have unexpected results near the origin.
94 template<typename T>
95 void QuaternionToAngleAxis(const T* quaternion, T* angle_axis);
96
97 // Conversions between 3x3 rotation matrix (in column major order) and
98 // axis-angle rotation representations. Templated for use with
99 // autodifferentiation.
100 template <typename T>
101 void RotationMatrixToAngleAxis(const T* R, T* angle_axis);
102
103 template <typename T, int row_stride, int col_stride>
104 void RotationMatrixToAngleAxis(
105 const MatrixAdapter<const T, row_stride, col_stride>& R,
106 T* angle_axis);
107
108 template <typename T>
109 void AngleAxisToRotationMatrix(const T* angle_axis, T* R);
110
111 template <typename T, int row_stride, int col_stride>
112 void AngleAxisToRotationMatrix(
113 const T* angle_axis,
114 const MatrixAdapter<T, row_stride, col_stride>& R);
115
116 // Conversions between 3x3 rotation matrix (in row major order) and
117 // Euler angle (in degrees) rotation representations.
118 //
119 // The {pitch,roll,yaw} Euler angles are rotations around the {x,y,z}
120 // axes, respectively. They are applied in that same order, so the
121 // total rotation R is Rz * Ry * Rx.
122 template <typename T>
123 void EulerAnglesToRotationMatrix(const T* euler, int row_stride, T* R);
124
125 template <typename T, int row_stride, int col_stride>
126 void EulerAnglesToRotationMatrix(
127 const T* euler,
128 const MatrixAdapter<T, row_stride, col_stride>& R);
129
130 // Convert a 4-vector to a 3x3 scaled rotation matrix.
131 //
132 // The choice of rotation is such that the quaternion [1 0 0 0] goes to an
133 // identity matrix and for small a, b, c the quaternion [1 a b c] goes to
134 // the matrix
135 //
136 // [ 0 -c b ]
137 // I + 2 [ c 0 -a ] + higher order terms
138 // [ -b a 0 ]
139 //
140 // which corresponds to a Rodrigues approximation, the last matrix being
141 // the cross-product matrix of [a b c]. Together with the property that
142 // R(q1 * q2) = R(q1) * R(q2) this uniquely defines the mapping from q to R.
143 //
144 // The rotation matrix is row-major.
145 //
146 // No normalization of the quaternion is performed, i.e.
147 // R = ||q||^2 * Q, where Q is an orthonormal matrix
148 // such that det(Q) = 1 and Q*Q' = I
149 template <typename T> inline
150 void QuaternionToScaledRotation(const T q[4], T R[3 * 3]);
151
152 template <typename T, int row_stride, int col_stride> inline
153 void QuaternionToScaledRotation(
154 const T q[4],
155 const MatrixAdapter<T, row_stride, col_stride>& R);
156
157 // Same as above except that the rotation matrix is normalized by the
158 // Frobenius norm, so that R * R' = I (and det(R) = 1).
159 template <typename T> inline
160 void QuaternionToRotation(const T q[4], T R[3 * 3]);
161
162 template <typename T, int row_stride, int col_stride> inline
163 void QuaternionToRotation(
164 const T q[4],
165 const MatrixAdapter<T, row_stride, col_stride>& R);
166
167 // Rotates a point pt by a quaternion q:
168 //
169 // result = R(q) * pt
170 //
171 // Assumes the quaternion is unit norm. This assumption allows us to
172 // write the transform as (something)*pt + pt, as is clear from the
173 // formula below. If you pass in a quaternion with |q|^2 = 2 then you
174 // WILL NOT get back 2 times the result you get for a unit quaternion.
175 template <typename T> inline
176 void UnitQuaternionRotatePoint(const T q[4], const T pt[3], T result[3]);
177
178 // With this function you do not need to assume that q has unit norm.
179 // It does assume that the norm is non-zero.
180 template <typename T> inline
181 void QuaternionRotatePoint(const T q[4], const T pt[3], T result[3]);
182
183 // zw = z * w, where * is the Quaternion product between 4 vectors.
184 template<typename T> inline
185 void QuaternionProduct(const T z[4], const T w[4], T zw[4]);
186
187 // xy = x cross y;
188 template<typename T> inline
189 void CrossProduct(const T x[3], const T y[3], T x_cross_y[3]);
190
191 template<typename T> inline
192 T DotProduct(const T x[3], const T y[3]);
193
194 // y = R(angle_axis) * x;
195 template<typename T> inline
196 void AngleAxisRotatePoint(const T angle_axis[3], const T pt[3], T result[3]);
197
198 // --- IMPLEMENTATION
199
200 template<typename T, int row_stride, int col_stride>
201 struct MatrixAdapter {
202 T* pointer_;
MatrixAdapterMatrixAdapter203 explicit MatrixAdapter(T* pointer)
204 : pointer_(pointer)
205 {}
206
operatorMatrixAdapter207 T& operator()(int r, int c) const {
208 return pointer_[r * row_stride + c * col_stride];
209 }
210 };
211
212 template <typename T>
ColumnMajorAdapter3x3(T * pointer)213 MatrixAdapter<T, 1, 3> ColumnMajorAdapter3x3(T* pointer) {
214 return MatrixAdapter<T, 1, 3>(pointer);
215 }
216
217 template <typename T>
RowMajorAdapter3x3(T * pointer)218 MatrixAdapter<T, 3, 1> RowMajorAdapter3x3(T* pointer) {
219 return MatrixAdapter<T, 3, 1>(pointer);
220 }
221
222 template<typename T>
AngleAxisToQuaternion(const T * angle_axis,T * quaternion)223 inline void AngleAxisToQuaternion(const T* angle_axis, T* quaternion) {
224 const T& a0 = angle_axis[0];
225 const T& a1 = angle_axis[1];
226 const T& a2 = angle_axis[2];
227 const T theta_squared = a0 * a0 + a1 * a1 + a2 * a2;
228
229 // For points not at the origin, the full conversion is numerically stable.
230 if (theta_squared > T(0.0)) {
231 const T theta = sqrt(theta_squared);
232 const T half_theta = theta * T(0.5);
233 const T k = sin(half_theta) / theta;
234 quaternion[0] = cos(half_theta);
235 quaternion[1] = a0 * k;
236 quaternion[2] = a1 * k;
237 quaternion[3] = a2 * k;
238 } else {
239 // At the origin, sqrt() will produce NaN in the derivative since
240 // the argument is zero. By approximating with a Taylor series,
241 // and truncating at one term, the value and first derivatives will be
242 // computed correctly when Jets are used.
243 const T k(0.5);
244 quaternion[0] = T(1.0);
245 quaternion[1] = a0 * k;
246 quaternion[2] = a1 * k;
247 quaternion[3] = a2 * k;
248 }
249 }
250
251 template<typename T>
QuaternionToAngleAxis(const T * quaternion,T * angle_axis)252 inline void QuaternionToAngleAxis(const T* quaternion, T* angle_axis) {
253 const T& q1 = quaternion[1];
254 const T& q2 = quaternion[2];
255 const T& q3 = quaternion[3];
256 const T sin_squared_theta = q1 * q1 + q2 * q2 + q3 * q3;
257
258 // For quaternions representing non-zero rotation, the conversion
259 // is numerically stable.
260 if (sin_squared_theta > T(0.0)) {
261 const T sin_theta = sqrt(sin_squared_theta);
262 const T& cos_theta = quaternion[0];
263
264 // If cos_theta is negative, theta is greater than pi/2, which
265 // means that angle for the angle_axis vector which is 2 * theta
266 // would be greater than pi.
267 //
268 // While this will result in the correct rotation, it does not
269 // result in a normalized angle-axis vector.
270 //
271 // In that case we observe that 2 * theta ~ 2 * theta - 2 * pi,
272 // which is equivalent saying
273 //
274 // theta - pi = atan(sin(theta - pi), cos(theta - pi))
275 // = atan(-sin(theta), -cos(theta))
276 //
277 const T two_theta =
278 T(2.0) * ((cos_theta < 0.0)
279 ? atan2(-sin_theta, -cos_theta)
280 : atan2(sin_theta, cos_theta));
281 const T k = two_theta / sin_theta;
282 angle_axis[0] = q1 * k;
283 angle_axis[1] = q2 * k;
284 angle_axis[2] = q3 * k;
285 } else {
286 // For zero rotation, sqrt() will produce NaN in the derivative since
287 // the argument is zero. By approximating with a Taylor series,
288 // and truncating at one term, the value and first derivatives will be
289 // computed correctly when Jets are used.
290 const T k(2.0);
291 angle_axis[0] = q1 * k;
292 angle_axis[1] = q2 * k;
293 angle_axis[2] = q3 * k;
294 }
295 }
296
297 // The conversion of a rotation matrix to the angle-axis form is
298 // numerically problematic when then rotation angle is close to zero
299 // or to Pi. The following implementation detects when these two cases
300 // occurs and deals with them by taking code paths that are guaranteed
301 // to not perform division by a small number.
302 template <typename T>
RotationMatrixToAngleAxis(const T * R,T * angle_axis)303 inline void RotationMatrixToAngleAxis(const T* R, T* angle_axis) {
304 RotationMatrixToAngleAxis(ColumnMajorAdapter3x3(R), angle_axis);
305 }
306
307 template <typename T, int row_stride, int col_stride>
RotationMatrixToAngleAxis(const MatrixAdapter<const T,row_stride,col_stride> & R,T * angle_axis)308 void RotationMatrixToAngleAxis(
309 const MatrixAdapter<const T, row_stride, col_stride>& R,
310 T* angle_axis) {
311 // x = k * 2 * sin(theta), where k is the axis of rotation.
312 angle_axis[0] = R(2, 1) - R(1, 2);
313 angle_axis[1] = R(0, 2) - R(2, 0);
314 angle_axis[2] = R(1, 0) - R(0, 1);
315
316 static const T kOne = T(1.0);
317 static const T kTwo = T(2.0);
318
319 // Since the right hand side may give numbers just above 1.0 or
320 // below -1.0 leading to atan misbehaving, we threshold.
321 T costheta = std::min(std::max((R(0, 0) + R(1, 1) + R(2, 2) - kOne) / kTwo,
322 T(-1.0)),
323 kOne);
324
325 // sqrt is guaranteed to give non-negative results, so we only
326 // threshold above.
327 T sintheta = std::min(sqrt(angle_axis[0] * angle_axis[0] +
328 angle_axis[1] * angle_axis[1] +
329 angle_axis[2] * angle_axis[2]) / kTwo,
330 kOne);
331
332 // Use the arctan2 to get the right sign on theta
333 const T theta = atan2(sintheta, costheta);
334
335 // Case 1: sin(theta) is large enough, so dividing by it is not a
336 // problem. We do not use abs here, because while jets.h imports
337 // std::abs into the namespace, here in this file, abs resolves to
338 // the int version of the function, which returns zero always.
339 //
340 // We use a threshold much larger then the machine epsilon, because
341 // if sin(theta) is small, not only do we risk overflow but even if
342 // that does not occur, just dividing by a small number will result
343 // in numerical garbage. So we play it safe.
344 static const double kThreshold = 1e-12;
345 if ((sintheta > kThreshold) || (sintheta < -kThreshold)) {
346 const T r = theta / (kTwo * sintheta);
347 for (int i = 0; i < 3; ++i) {
348 angle_axis[i] *= r;
349 }
350 return;
351 }
352
353 // Case 2: theta ~ 0, means sin(theta) ~ theta to a good
354 // approximation.
355 if (costheta > 0.0) {
356 const T kHalf = T(0.5);
357 for (int i = 0; i < 3; ++i) {
358 angle_axis[i] *= kHalf;
359 }
360 return;
361 }
362
363 // Case 3: theta ~ pi, this is the hard case. Since theta is large,
364 // and sin(theta) is small. Dividing by theta by sin(theta) will
365 // either give an overflow or worse still numerically meaningless
366 // results. Thus we use an alternate more complicated formula
367 // here.
368
369 // Since cos(theta) is negative, division by (1-cos(theta)) cannot
370 // overflow.
371 const T inv_one_minus_costheta = kOne / (kOne - costheta);
372
373 // We now compute the absolute value of coordinates of the axis
374 // vector using the diagonal entries of R. To resolve the sign of
375 // these entries, we compare the sign of angle_axis[i]*sin(theta)
376 // with the sign of sin(theta). If they are the same, then
377 // angle_axis[i] should be positive, otherwise negative.
378 for (int i = 0; i < 3; ++i) {
379 angle_axis[i] = theta * sqrt((R(i, i) - costheta) * inv_one_minus_costheta);
380 if (((sintheta < 0.0) && (angle_axis[i] > 0.0)) ||
381 ((sintheta > 0.0) && (angle_axis[i] < 0.0))) {
382 angle_axis[i] = -angle_axis[i];
383 }
384 }
385 }
386
387 template <typename T>
AngleAxisToRotationMatrix(const T * angle_axis,T * R)388 inline void AngleAxisToRotationMatrix(const T* angle_axis, T* R) {
389 AngleAxisToRotationMatrix(angle_axis, ColumnMajorAdapter3x3(R));
390 }
391
392 template <typename T, int row_stride, int col_stride>
AngleAxisToRotationMatrix(const T * angle_axis,const MatrixAdapter<T,row_stride,col_stride> & R)393 void AngleAxisToRotationMatrix(
394 const T* angle_axis,
395 const MatrixAdapter<T, row_stride, col_stride>& R) {
396 static const T kOne = T(1.0);
397 const T theta2 = DotProduct(angle_axis, angle_axis);
398 if (theta2 > T(std::numeric_limits<double>::epsilon())) {
399 // We want to be careful to only evaluate the square root if the
400 // norm of the angle_axis vector is greater than zero. Otherwise
401 // we get a division by zero.
402 const T theta = sqrt(theta2);
403 const T wx = angle_axis[0] / theta;
404 const T wy = angle_axis[1] / theta;
405 const T wz = angle_axis[2] / theta;
406
407 const T costheta = cos(theta);
408 const T sintheta = sin(theta);
409
410 R(0, 0) = costheta + wx*wx*(kOne - costheta);
411 R(1, 0) = wz*sintheta + wx*wy*(kOne - costheta);
412 R(2, 0) = -wy*sintheta + wx*wz*(kOne - costheta);
413 R(0, 1) = wx*wy*(kOne - costheta) - wz*sintheta;
414 R(1, 1) = costheta + wy*wy*(kOne - costheta);
415 R(2, 1) = wx*sintheta + wy*wz*(kOne - costheta);
416 R(0, 2) = wy*sintheta + wx*wz*(kOne - costheta);
417 R(1, 2) = -wx*sintheta + wy*wz*(kOne - costheta);
418 R(2, 2) = costheta + wz*wz*(kOne - costheta);
419 } else {
420 // Near zero, we switch to using the first order Taylor expansion.
421 R(0, 0) = kOne;
422 R(1, 0) = angle_axis[2];
423 R(2, 0) = -angle_axis[1];
424 R(0, 1) = -angle_axis[2];
425 R(1, 1) = kOne;
426 R(2, 1) = angle_axis[0];
427 R(0, 2) = angle_axis[1];
428 R(1, 2) = -angle_axis[0];
429 R(2, 2) = kOne;
430 }
431 }
432
433 template <typename T>
EulerAnglesToRotationMatrix(const T * euler,const int row_stride_parameter,T * R)434 inline void EulerAnglesToRotationMatrix(const T* euler,
435 const int row_stride_parameter,
436 T* R) {
437 CHECK_EQ(row_stride_parameter, 3);
438 EulerAnglesToRotationMatrix(euler, RowMajorAdapter3x3(R));
439 }
440
441 template <typename T, int row_stride, int col_stride>
EulerAnglesToRotationMatrix(const T * euler,const MatrixAdapter<T,row_stride,col_stride> & R)442 void EulerAnglesToRotationMatrix(
443 const T* euler,
444 const MatrixAdapter<T, row_stride, col_stride>& R) {
445 const double kPi = 3.14159265358979323846;
446 const T degrees_to_radians(kPi / 180.0);
447
448 const T pitch(euler[0] * degrees_to_radians);
449 const T roll(euler[1] * degrees_to_radians);
450 const T yaw(euler[2] * degrees_to_radians);
451
452 const T c1 = cos(yaw);
453 const T s1 = sin(yaw);
454 const T c2 = cos(roll);
455 const T s2 = sin(roll);
456 const T c3 = cos(pitch);
457 const T s3 = sin(pitch);
458
459 R(0, 0) = c1*c2;
460 R(0, 1) = -s1*c3 + c1*s2*s3;
461 R(0, 2) = s1*s3 + c1*s2*c3;
462
463 R(1, 0) = s1*c2;
464 R(1, 1) = c1*c3 + s1*s2*s3;
465 R(1, 2) = -c1*s3 + s1*s2*c3;
466
467 R(2, 0) = -s2;
468 R(2, 1) = c2*s3;
469 R(2, 2) = c2*c3;
470 }
471
472 template <typename T> inline
QuaternionToScaledRotation(const T q[4],T R[3* 3])473 void QuaternionToScaledRotation(const T q[4], T R[3 * 3]) {
474 QuaternionToScaledRotation(q, RowMajorAdapter3x3(R));
475 }
476
477 template <typename T, int row_stride, int col_stride> inline
QuaternionToScaledRotation(const T q[4],const MatrixAdapter<T,row_stride,col_stride> & R)478 void QuaternionToScaledRotation(
479 const T q[4],
480 const MatrixAdapter<T, row_stride, col_stride>& R) {
481 // Make convenient names for elements of q.
482 T a = q[0];
483 T b = q[1];
484 T c = q[2];
485 T d = q[3];
486 // This is not to eliminate common sub-expression, but to
487 // make the lines shorter so that they fit in 80 columns!
488 T aa = a * a;
489 T ab = a * b;
490 T ac = a * c;
491 T ad = a * d;
492 T bb = b * b;
493 T bc = b * c;
494 T bd = b * d;
495 T cc = c * c;
496 T cd = c * d;
497 T dd = d * d;
498
499 R(0, 0) = aa + bb - cc - dd; R(0, 1) = T(2) * (bc - ad); R(0, 2) = T(2) * (ac + bd); // NOLINT
500 R(1, 0) = T(2) * (ad + bc); R(1, 1) = aa - bb + cc - dd; R(1, 2) = T(2) * (cd - ab); // NOLINT
501 R(2, 0) = T(2) * (bd - ac); R(2, 1) = T(2) * (ab + cd); R(2, 2) = aa - bb - cc + dd; // NOLINT
502 }
503
504 template <typename T> inline
QuaternionToRotation(const T q[4],T R[3* 3])505 void QuaternionToRotation(const T q[4], T R[3 * 3]) {
506 QuaternionToRotation(q, RowMajorAdapter3x3(R));
507 }
508
509 template <typename T, int row_stride, int col_stride> inline
QuaternionToRotation(const T q[4],const MatrixAdapter<T,row_stride,col_stride> & R)510 void QuaternionToRotation(const T q[4],
511 const MatrixAdapter<T, row_stride, col_stride>& R) {
512 QuaternionToScaledRotation(q, R);
513
514 T normalizer = q[0]*q[0] + q[1]*q[1] + q[2]*q[2] + q[3]*q[3];
515 CHECK_NE(normalizer, T(0));
516 normalizer = T(1) / normalizer;
517
518 for (int i = 0; i < 3; ++i) {
519 for (int j = 0; j < 3; ++j) {
520 R(i, j) *= normalizer;
521 }
522 }
523 }
524
525 template <typename T> inline
UnitQuaternionRotatePoint(const T q[4],const T pt[3],T result[3])526 void UnitQuaternionRotatePoint(const T q[4], const T pt[3], T result[3]) {
527 const T t2 = q[0] * q[1];
528 const T t3 = q[0] * q[2];
529 const T t4 = q[0] * q[3];
530 const T t5 = -q[1] * q[1];
531 const T t6 = q[1] * q[2];
532 const T t7 = q[1] * q[3];
533 const T t8 = -q[2] * q[2];
534 const T t9 = q[2] * q[3];
535 const T t1 = -q[3] * q[3];
536 result[0] = T(2) * ((t8 + t1) * pt[0] + (t6 - t4) * pt[1] + (t3 + t7) * pt[2]) + pt[0]; // NOLINT
537 result[1] = T(2) * ((t4 + t6) * pt[0] + (t5 + t1) * pt[1] + (t9 - t2) * pt[2]) + pt[1]; // NOLINT
538 result[2] = T(2) * ((t7 - t3) * pt[0] + (t2 + t9) * pt[1] + (t5 + t8) * pt[2]) + pt[2]; // NOLINT
539 }
540
541 template <typename T> inline
QuaternionRotatePoint(const T q[4],const T pt[3],T result[3])542 void QuaternionRotatePoint(const T q[4], const T pt[3], T result[3]) {
543 // 'scale' is 1 / norm(q).
544 const T scale = T(1) / sqrt(q[0] * q[0] +
545 q[1] * q[1] +
546 q[2] * q[2] +
547 q[3] * q[3]);
548
549 // Make unit-norm version of q.
550 const T unit[4] = {
551 scale * q[0],
552 scale * q[1],
553 scale * q[2],
554 scale * q[3],
555 };
556
557 UnitQuaternionRotatePoint(unit, pt, result);
558 }
559
560 template<typename T> inline
QuaternionProduct(const T z[4],const T w[4],T zw[4])561 void QuaternionProduct(const T z[4], const T w[4], T zw[4]) {
562 zw[0] = z[0] * w[0] - z[1] * w[1] - z[2] * w[2] - z[3] * w[3];
563 zw[1] = z[0] * w[1] + z[1] * w[0] + z[2] * w[3] - z[3] * w[2];
564 zw[2] = z[0] * w[2] - z[1] * w[3] + z[2] * w[0] + z[3] * w[1];
565 zw[3] = z[0] * w[3] + z[1] * w[2] - z[2] * w[1] + z[3] * w[0];
566 }
567
568 // xy = x cross y;
569 template<typename T> inline
CrossProduct(const T x[3],const T y[3],T x_cross_y[3])570 void CrossProduct(const T x[3], const T y[3], T x_cross_y[3]) {
571 x_cross_y[0] = x[1] * y[2] - x[2] * y[1];
572 x_cross_y[1] = x[2] * y[0] - x[0] * y[2];
573 x_cross_y[2] = x[0] * y[1] - x[1] * y[0];
574 }
575
576 template<typename T> inline
DotProduct(const T x[3],const T y[3])577 T DotProduct(const T x[3], const T y[3]) {
578 return (x[0] * y[0] + x[1] * y[1] + x[2] * y[2]);
579 }
580
581 template<typename T> inline
AngleAxisRotatePoint(const T angle_axis[3],const T pt[3],T result[3])582 void AngleAxisRotatePoint(const T angle_axis[3], const T pt[3], T result[3]) {
583 const T theta2 = DotProduct(angle_axis, angle_axis);
584 if (theta2 > T(std::numeric_limits<double>::epsilon())) {
585 // Away from zero, use the rodriguez formula
586 //
587 // result = pt costheta +
588 // (w x pt) * sintheta +
589 // w (w . pt) (1 - costheta)
590 //
591 // We want to be careful to only evaluate the square root if the
592 // norm of the angle_axis vector is greater than zero. Otherwise
593 // we get a division by zero.
594 //
595 const T theta = sqrt(theta2);
596 const T costheta = cos(theta);
597 const T sintheta = sin(theta);
598 const T theta_inverse = 1.0 / theta;
599
600 const T w[3] = { angle_axis[0] * theta_inverse,
601 angle_axis[1] * theta_inverse,
602 angle_axis[2] * theta_inverse };
603
604 // Explicitly inlined evaluation of the cross product for
605 // performance reasons.
606 const T w_cross_pt[3] = { w[1] * pt[2] - w[2] * pt[1],
607 w[2] * pt[0] - w[0] * pt[2],
608 w[0] * pt[1] - w[1] * pt[0] };
609 const T tmp =
610 (w[0] * pt[0] + w[1] * pt[1] + w[2] * pt[2]) * (T(1.0) - costheta);
611
612 result[0] = pt[0] * costheta + w_cross_pt[0] * sintheta + w[0] * tmp;
613 result[1] = pt[1] * costheta + w_cross_pt[1] * sintheta + w[1] * tmp;
614 result[2] = pt[2] * costheta + w_cross_pt[2] * sintheta + w[2] * tmp;
615 } else {
616 // Near zero, the first order Taylor approximation of the rotation
617 // matrix R corresponding to a vector w and angle w is
618 //
619 // R = I + hat(w) * sin(theta)
620 //
621 // But sintheta ~ theta and theta * w = angle_axis, which gives us
622 //
623 // R = I + hat(w)
624 //
625 // and actually performing multiplication with the point pt, gives us
626 // R * pt = pt + w x pt.
627 //
628 // Switching to the Taylor expansion near zero provides meaningful
629 // derivatives when evaluated using Jets.
630 //
631 // Explicitly inlined evaluation of the cross product for
632 // performance reasons.
633 const T w_cross_pt[3] = { angle_axis[1] * pt[2] - angle_axis[2] * pt[1],
634 angle_axis[2] * pt[0] - angle_axis[0] * pt[2],
635 angle_axis[0] * pt[1] - angle_axis[1] * pt[0] };
636
637 result[0] = pt[0] + w_cross_pt[0];
638 result[1] = pt[1] + w_cross_pt[1];
639 result[2] = pt[2] + w_cross_pt[2];
640 }
641 }
642
643 } // namespace ceres
644
645 #endif // CERES_PUBLIC_ROTATION_H_
646