1 //===-- llvm/CodeGen/ISDOpcodes.h - CodeGen opcodes -------------*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file declares codegen opcodes and related utilities.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #ifndef LLVM_CODEGEN_ISDOPCODES_H
15 #define LLVM_CODEGEN_ISDOPCODES_H
16 
17 namespace llvm {
18 
19 /// ISD namespace - This namespace contains an enum which represents all of the
20 /// SelectionDAG node types and value types.
21 ///
22 namespace ISD {
23 
24   //===--------------------------------------------------------------------===//
25   /// ISD::NodeType enum - This enum defines the target-independent operators
26   /// for a SelectionDAG.
27   ///
28   /// Targets may also define target-dependent operator codes for SDNodes. For
29   /// example, on x86, these are the enum values in the X86ISD namespace.
30   /// Targets should aim to use target-independent operators to model their
31   /// instruction sets as much as possible, and only use target-dependent
32   /// operators when they have special requirements.
33   ///
34   /// Finally, during and after selection proper, SNodes may use special
35   /// operator codes that correspond directly with MachineInstr opcodes. These
36   /// are used to represent selected instructions. See the isMachineOpcode()
37   /// and getMachineOpcode() member functions of SDNode.
38   ///
39   enum NodeType {
40     /// DELETED_NODE - This is an illegal value that is used to catch
41     /// errors.  This opcode is not a legal opcode for any node.
42     DELETED_NODE,
43 
44     /// EntryToken - This is the marker used to indicate the start of a region.
45     EntryToken,
46 
47     /// TokenFactor - This node takes multiple tokens as input and produces a
48     /// single token result. This is used to represent the fact that the operand
49     /// operators are independent of each other.
50     TokenFactor,
51 
52     /// AssertSext, AssertZext - These nodes record if a register contains a
53     /// value that has already been zero or sign extended from a narrower type.
54     /// These nodes take two operands.  The first is the node that has already
55     /// been extended, and the second is a value type node indicating the width
56     /// of the extension
57     AssertSext, AssertZext,
58 
59     /// Various leaf nodes.
60     BasicBlock, VALUETYPE, CONDCODE, Register, RegisterMask,
61     Constant, ConstantFP,
62     GlobalAddress, GlobalTLSAddress, FrameIndex,
63     JumpTable, ConstantPool, ExternalSymbol, BlockAddress,
64 
65     /// The address of the GOT
66     GLOBAL_OFFSET_TABLE,
67 
68     /// FRAMEADDR, RETURNADDR - These nodes represent llvm.frameaddress and
69     /// llvm.returnaddress on the DAG.  These nodes take one operand, the index
70     /// of the frame or return address to return.  An index of zero corresponds
71     /// to the current function's frame or return address, an index of one to
72     /// the parent's frame or return address, and so on.
73     FRAMEADDR, RETURNADDR,
74 
75     /// LOCAL_RECOVER - Represents the llvm.localrecover intrinsic.
76     /// Materializes the offset from the local object pointer of another
77     /// function to a particular local object passed to llvm.localescape. The
78     /// operand is the MCSymbol label used to represent this offset, since
79     /// typically the offset is not known until after code generation of the
80     /// parent.
81     LOCAL_RECOVER,
82 
83     /// READ_REGISTER, WRITE_REGISTER - This node represents llvm.register on
84     /// the DAG, which implements the named register global variables extension.
85     READ_REGISTER,
86     WRITE_REGISTER,
87 
88     /// FRAME_TO_ARGS_OFFSET - This node represents offset from frame pointer to
89     /// first (possible) on-stack argument. This is needed for correct stack
90     /// adjustment during unwind.
91     FRAME_TO_ARGS_OFFSET,
92 
93     /// OUTCHAIN = EH_RETURN(INCHAIN, OFFSET, HANDLER) - This node represents
94     /// 'eh_return' gcc dwarf builtin, which is used to return from
95     /// exception. The general meaning is: adjust stack by OFFSET and pass
96     /// execution to HANDLER. Many platform-related details also :)
97     EH_RETURN,
98 
99     /// RESULT, OUTCHAIN = EH_SJLJ_SETJMP(INCHAIN, buffer)
100     /// This corresponds to the eh.sjlj.setjmp intrinsic.
101     /// It takes an input chain and a pointer to the jump buffer as inputs
102     /// and returns an outchain.
103     EH_SJLJ_SETJMP,
104 
105     /// OUTCHAIN = EH_SJLJ_LONGJMP(INCHAIN, buffer)
106     /// This corresponds to the eh.sjlj.longjmp intrinsic.
107     /// It takes an input chain and a pointer to the jump buffer as inputs
108     /// and returns an outchain.
109     EH_SJLJ_LONGJMP,
110 
111     /// OUTCHAIN = EH_SJLJ_SETUP_DISPATCH(INCHAIN)
112     /// The target initializes the dispatch table here.
113     EH_SJLJ_SETUP_DISPATCH,
114 
115     /// TargetConstant* - Like Constant*, but the DAG does not do any folding,
116     /// simplification, or lowering of the constant. They are used for constants
117     /// which are known to fit in the immediate fields of their users, or for
118     /// carrying magic numbers which are not values which need to be
119     /// materialized in registers.
120     TargetConstant,
121     TargetConstantFP,
122 
123     /// TargetGlobalAddress - Like GlobalAddress, but the DAG does no folding or
124     /// anything else with this node, and this is valid in the target-specific
125     /// dag, turning into a GlobalAddress operand.
126     TargetGlobalAddress,
127     TargetGlobalTLSAddress,
128     TargetFrameIndex,
129     TargetJumpTable,
130     TargetConstantPool,
131     TargetExternalSymbol,
132     TargetBlockAddress,
133 
134     MCSymbol,
135 
136     /// TargetIndex - Like a constant pool entry, but with completely
137     /// target-dependent semantics. Holds target flags, a 32-bit index, and a
138     /// 64-bit index. Targets can use this however they like.
139     TargetIndex,
140 
141     /// RESULT = INTRINSIC_WO_CHAIN(INTRINSICID, arg1, arg2, ...)
142     /// This node represents a target intrinsic function with no side effects.
143     /// The first operand is the ID number of the intrinsic from the
144     /// llvm::Intrinsic namespace.  The operands to the intrinsic follow.  The
145     /// node returns the result of the intrinsic.
146     INTRINSIC_WO_CHAIN,
147 
148     /// RESULT,OUTCHAIN = INTRINSIC_W_CHAIN(INCHAIN, INTRINSICID, arg1, ...)
149     /// This node represents a target intrinsic function with side effects that
150     /// returns a result.  The first operand is a chain pointer.  The second is
151     /// the ID number of the intrinsic from the llvm::Intrinsic namespace.  The
152     /// operands to the intrinsic follow.  The node has two results, the result
153     /// of the intrinsic and an output chain.
154     INTRINSIC_W_CHAIN,
155 
156     /// OUTCHAIN = INTRINSIC_VOID(INCHAIN, INTRINSICID, arg1, arg2, ...)
157     /// This node represents a target intrinsic function with side effects that
158     /// does not return a result.  The first operand is a chain pointer.  The
159     /// second is the ID number of the intrinsic from the llvm::Intrinsic
160     /// namespace.  The operands to the intrinsic follow.
161     INTRINSIC_VOID,
162 
163     /// CopyToReg - This node has three operands: a chain, a register number to
164     /// set to this value, and a value.
165     CopyToReg,
166 
167     /// CopyFromReg - This node indicates that the input value is a virtual or
168     /// physical register that is defined outside of the scope of this
169     /// SelectionDAG.  The register is available from the RegisterSDNode object.
170     CopyFromReg,
171 
172     /// UNDEF - An undefined node.
173     UNDEF,
174 
175     /// EXTRACT_ELEMENT - This is used to get the lower or upper (determined by
176     /// a Constant, which is required to be operand #1) half of the integer or
177     /// float value specified as operand #0.  This is only for use before
178     /// legalization, for values that will be broken into multiple registers.
179     EXTRACT_ELEMENT,
180 
181     /// BUILD_PAIR - This is the opposite of EXTRACT_ELEMENT in some ways.
182     /// Given two values of the same integer value type, this produces a value
183     /// twice as big.  Like EXTRACT_ELEMENT, this can only be used before
184     /// legalization.
185     BUILD_PAIR,
186 
187     /// MERGE_VALUES - This node takes multiple discrete operands and returns
188     /// them all as its individual results.  This nodes has exactly the same
189     /// number of inputs and outputs. This node is useful for some pieces of the
190     /// code generator that want to think about a single node with multiple
191     /// results, not multiple nodes.
192     MERGE_VALUES,
193 
194     /// Simple integer binary arithmetic operators.
195     ADD, SUB, MUL, SDIV, UDIV, SREM, UREM,
196 
197     /// SMUL_LOHI/UMUL_LOHI - Multiply two integers of type iN, producing
198     /// a signed/unsigned value of type i[2*N], and return the full value as
199     /// two results, each of type iN.
200     SMUL_LOHI, UMUL_LOHI,
201 
202     /// SDIVREM/UDIVREM - Divide two integers and produce both a quotient and
203     /// remainder result.
204     SDIVREM, UDIVREM,
205 
206     /// CARRY_FALSE - This node is used when folding other nodes,
207     /// like ADDC/SUBC, which indicate the carry result is always false.
208     CARRY_FALSE,
209 
210     /// Carry-setting nodes for multiple precision addition and subtraction.
211     /// These nodes take two operands of the same value type, and produce two
212     /// results.  The first result is the normal add or sub result, the second
213     /// result is the carry flag result.
214     ADDC, SUBC,
215 
216     /// Carry-using nodes for multiple precision addition and subtraction. These
217     /// nodes take three operands: The first two are the normal lhs and rhs to
218     /// the add or sub, and the third is the input carry flag.  These nodes
219     /// produce two results; the normal result of the add or sub, and the output
220     /// carry flag.  These nodes both read and write a carry flag to allow them
221     /// to them to be chained together for add and sub of arbitrarily large
222     /// values.
223     ADDE, SUBE,
224 
225     /// RESULT, BOOL = [SU]ADDO(LHS, RHS) - Overflow-aware nodes for addition.
226     /// These nodes take two operands: the normal LHS and RHS to the add. They
227     /// produce two results: the normal result of the add, and a boolean that
228     /// indicates if an overflow occurred (*not* a flag, because it may be store
229     /// to memory, etc.).  If the type of the boolean is not i1 then the high
230     /// bits conform to getBooleanContents.
231     /// These nodes are generated from llvm.[su]add.with.overflow intrinsics.
232     SADDO, UADDO,
233 
234     /// Same for subtraction.
235     SSUBO, USUBO,
236 
237     /// Same for multiplication.
238     SMULO, UMULO,
239 
240     /// Simple binary floating point operators.
241     FADD, FSUB, FMUL, FDIV, FREM,
242 
243     /// FMA - Perform a * b + c with no intermediate rounding step.
244     FMA,
245 
246     /// FMAD - Perform a * b + c, while getting the same result as the
247     /// separately rounded operations.
248     FMAD,
249 
250     /// FCOPYSIGN(X, Y) - Return the value of X with the sign of Y.  NOTE: This
251     /// DAG node does not require that X and Y have the same type, just that
252     /// they are both floating point.  X and the result must have the same type.
253     /// FCOPYSIGN(f32, f64) is allowed.
254     FCOPYSIGN,
255 
256     /// INT = FGETSIGN(FP) - Return the sign bit of the specified floating point
257     /// value as an integer 0/1 value.
258     FGETSIGN,
259 
260     /// BUILD_VECTOR(ELT0, ELT1, ELT2, ELT3,...) - Return a vector with the
261     /// specified, possibly variable, elements.  The number of elements is
262     /// required to be a power of two.  The types of the operands must all be
263     /// the same and must match the vector element type, except that integer
264     /// types are allowed to be larger than the element type, in which case
265     /// the operands are implicitly truncated.
266     BUILD_VECTOR,
267 
268     /// INSERT_VECTOR_ELT(VECTOR, VAL, IDX) - Returns VECTOR with the element
269     /// at IDX replaced with VAL.  If the type of VAL is larger than the vector
270     /// element type then VAL is truncated before replacement.
271     INSERT_VECTOR_ELT,
272 
273     /// EXTRACT_VECTOR_ELT(VECTOR, IDX) - Returns a single element from VECTOR
274     /// identified by the (potentially variable) element number IDX.  If the
275     /// return type is an integer type larger than the element type of the
276     /// vector, the result is extended to the width of the return type.
277     EXTRACT_VECTOR_ELT,
278 
279     /// CONCAT_VECTORS(VECTOR0, VECTOR1, ...) - Given a number of values of
280     /// vector type with the same length and element type, this produces a
281     /// concatenated vector result value, with length equal to the sum of the
282     /// lengths of the input vectors.
283     CONCAT_VECTORS,
284 
285     /// INSERT_SUBVECTOR(VECTOR1, VECTOR2, IDX) - Returns a vector
286     /// with VECTOR2 inserted into VECTOR1 at the (potentially
287     /// variable) element number IDX, which must be a multiple of the
288     /// VECTOR2 vector length.  The elements of VECTOR1 starting at
289     /// IDX are overwritten with VECTOR2.  Elements IDX through
290     /// vector_length(VECTOR2) must be valid VECTOR1 indices.
291     INSERT_SUBVECTOR,
292 
293     /// EXTRACT_SUBVECTOR(VECTOR, IDX) - Returns a subvector from VECTOR (an
294     /// vector value) starting with the element number IDX, which must be a
295     /// constant multiple of the result vector length.
296     EXTRACT_SUBVECTOR,
297 
298     /// VECTOR_SHUFFLE(VEC1, VEC2) - Returns a vector, of the same type as
299     /// VEC1/VEC2.  A VECTOR_SHUFFLE node also contains an array of constant int
300     /// values that indicate which value (or undef) each result element will
301     /// get.  These constant ints are accessible through the
302     /// ShuffleVectorSDNode class.  This is quite similar to the Altivec
303     /// 'vperm' instruction, except that the indices must be constants and are
304     /// in terms of the element size of VEC1/VEC2, not in terms of bytes.
305     VECTOR_SHUFFLE,
306 
307     /// SCALAR_TO_VECTOR(VAL) - This represents the operation of loading a
308     /// scalar value into element 0 of the resultant vector type.  The top
309     /// elements 1 to N-1 of the N-element vector are undefined.  The type
310     /// of the operand must match the vector element type, except when they
311     /// are integer types.  In this case the operand is allowed to be wider
312     /// than the vector element type, and is implicitly truncated to it.
313     SCALAR_TO_VECTOR,
314 
315     /// MULHU/MULHS - Multiply high - Multiply two integers of type iN,
316     /// producing an unsigned/signed value of type i[2*N], then return the top
317     /// part.
318     MULHU, MULHS,
319 
320     /// [US]{MIN/MAX} - Binary minimum or maximum or signed or unsigned
321     /// integers.
322     SMIN, SMAX, UMIN, UMAX,
323 
324     /// Bitwise operators - logical and, logical or, logical xor.
325     AND, OR, XOR,
326 
327     /// Shift and rotation operations.  After legalization, the type of the
328     /// shift amount is known to be TLI.getShiftAmountTy().  Before legalization
329     /// the shift amount can be any type, but care must be taken to ensure it is
330     /// large enough.  TLI.getShiftAmountTy() is i8 on some targets, but before
331     /// legalization, types like i1024 can occur and i8 doesn't have enough bits
332     /// to represent the shift amount.
333     /// When the 1st operand is a vector, the shift amount must be in the same
334     /// type. (TLI.getShiftAmountTy() will return the same type when the input
335     /// type is a vector.)
336     SHL, SRA, SRL, ROTL, ROTR,
337 
338     /// Byte Swap and Counting operators.
339     BSWAP, CTTZ, CTLZ, CTPOP, BITREVERSE,
340 
341     /// Bit counting operators with an undefined result for zero inputs.
342     CTTZ_ZERO_UNDEF, CTLZ_ZERO_UNDEF,
343 
344     /// Select(COND, TRUEVAL, FALSEVAL).  If the type of the boolean COND is not
345     /// i1 then the high bits must conform to getBooleanContents.
346     SELECT,
347 
348     /// Select with a vector condition (op #0) and two vector operands (ops #1
349     /// and #2), returning a vector result.  All vectors have the same length.
350     /// Much like the scalar select and setcc, each bit in the condition selects
351     /// whether the corresponding result element is taken from op #1 or op #2.
352     /// At first, the VSELECT condition is of vXi1 type. Later, targets may
353     /// change the condition type in order to match the VSELECT node using a
354     /// pattern. The condition follows the BooleanContent format of the target.
355     VSELECT,
356 
357     /// Select with condition operator - This selects between a true value and
358     /// a false value (ops #2 and #3) based on the boolean result of comparing
359     /// the lhs and rhs (ops #0 and #1) of a conditional expression with the
360     /// condition code in op #4, a CondCodeSDNode.
361     SELECT_CC,
362 
363     /// SetCC operator - This evaluates to a true value iff the condition is
364     /// true.  If the result value type is not i1 then the high bits conform
365     /// to getBooleanContents.  The operands to this are the left and right
366     /// operands to compare (ops #0, and #1) and the condition code to compare
367     /// them with (op #2) as a CondCodeSDNode. If the operands are vector types
368     /// then the result type must also be a vector type.
369     SETCC,
370 
371     /// Like SetCC, ops #0 and #1 are the LHS and RHS operands to compare, but
372     /// op #2 is a *carry value*. This operator checks the result of
373     /// "LHS - RHS - Carry", and can be used to compare two wide integers:
374     /// (setcce lhshi rhshi (subc lhslo rhslo) cc). Only valid for integers.
375     SETCCE,
376 
377     /// SHL_PARTS/SRA_PARTS/SRL_PARTS - These operators are used for expanded
378     /// integer shift operations.  The operation ordering is:
379     ///       [Lo,Hi] = op [LoLHS,HiLHS], Amt
380     SHL_PARTS, SRA_PARTS, SRL_PARTS,
381 
382     /// Conversion operators.  These are all single input single output
383     /// operations.  For all of these, the result type must be strictly
384     /// wider or narrower (depending on the operation) than the source
385     /// type.
386 
387     /// SIGN_EXTEND - Used for integer types, replicating the sign bit
388     /// into new bits.
389     SIGN_EXTEND,
390 
391     /// ZERO_EXTEND - Used for integer types, zeroing the new bits.
392     ZERO_EXTEND,
393 
394     /// ANY_EXTEND - Used for integer types.  The high bits are undefined.
395     ANY_EXTEND,
396 
397     /// TRUNCATE - Completely drop the high bits.
398     TRUNCATE,
399 
400     /// [SU]INT_TO_FP - These operators convert integers (whose interpreted sign
401     /// depends on the first letter) to floating point.
402     SINT_TO_FP,
403     UINT_TO_FP,
404 
405     /// SIGN_EXTEND_INREG - This operator atomically performs a SHL/SRA pair to
406     /// sign extend a small value in a large integer register (e.g. sign
407     /// extending the low 8 bits of a 32-bit register to fill the top 24 bits
408     /// with the 7th bit).  The size of the smaller type is indicated by the 1th
409     /// operand, a ValueType node.
410     SIGN_EXTEND_INREG,
411 
412     /// ANY_EXTEND_VECTOR_INREG(Vector) - This operator represents an
413     /// in-register any-extension of the low lanes of an integer vector. The
414     /// result type must have fewer elements than the operand type, and those
415     /// elements must be larger integer types such that the total size of the
416     /// operand type and the result type match. Each of the low operand
417     /// elements is any-extended into the corresponding, wider result
418     /// elements with the high bits becoming undef.
419     ANY_EXTEND_VECTOR_INREG,
420 
421     /// SIGN_EXTEND_VECTOR_INREG(Vector) - This operator represents an
422     /// in-register sign-extension of the low lanes of an integer vector. The
423     /// result type must have fewer elements than the operand type, and those
424     /// elements must be larger integer types such that the total size of the
425     /// operand type and the result type match. Each of the low operand
426     /// elements is sign-extended into the corresponding, wider result
427     /// elements.
428     // FIXME: The SIGN_EXTEND_INREG node isn't specifically limited to
429     // scalars, but it also doesn't handle vectors well. Either it should be
430     // restricted to scalars or this node (and its handling) should be merged
431     // into it.
432     SIGN_EXTEND_VECTOR_INREG,
433 
434     /// ZERO_EXTEND_VECTOR_INREG(Vector) - This operator represents an
435     /// in-register zero-extension of the low lanes of an integer vector. The
436     /// result type must have fewer elements than the operand type, and those
437     /// elements must be larger integer types such that the total size of the
438     /// operand type and the result type match. Each of the low operand
439     /// elements is zero-extended into the corresponding, wider result
440     /// elements.
441     ZERO_EXTEND_VECTOR_INREG,
442 
443     /// FP_TO_[US]INT - Convert a floating point value to a signed or unsigned
444     /// integer.
445     FP_TO_SINT,
446     FP_TO_UINT,
447 
448     /// X = FP_ROUND(Y, TRUNC) - Rounding 'Y' from a larger floating point type
449     /// down to the precision of the destination VT.  TRUNC is a flag, which is
450     /// always an integer that is zero or one.  If TRUNC is 0, this is a
451     /// normal rounding, if it is 1, this FP_ROUND is known to not change the
452     /// value of Y.
453     ///
454     /// The TRUNC = 1 case is used in cases where we know that the value will
455     /// not be modified by the node, because Y is not using any of the extra
456     /// precision of source type.  This allows certain transformations like
457     /// FP_EXTEND(FP_ROUND(X,1)) -> X which are not safe for
458     /// FP_EXTEND(FP_ROUND(X,0)) because the extra bits aren't removed.
459     FP_ROUND,
460 
461     /// FLT_ROUNDS_ - Returns current rounding mode:
462     /// -1 Undefined
463     ///  0 Round to 0
464     ///  1 Round to nearest
465     ///  2 Round to +inf
466     ///  3 Round to -inf
467     FLT_ROUNDS_,
468 
469     /// X = FP_ROUND_INREG(Y, VT) - This operator takes an FP register, and
470     /// rounds it to a floating point value.  It then promotes it and returns it
471     /// in a register of the same size.  This operation effectively just
472     /// discards excess precision.  The type to round down to is specified by
473     /// the VT operand, a VTSDNode.
474     FP_ROUND_INREG,
475 
476     /// X = FP_EXTEND(Y) - Extend a smaller FP type into a larger FP type.
477     FP_EXTEND,
478 
479     /// BITCAST - This operator converts between integer, vector and FP
480     /// values, as if the value was stored to memory with one type and loaded
481     /// from the same address with the other type (or equivalently for vector
482     /// format conversions, etc).  The source and result are required to have
483     /// the same bit size (e.g.  f32 <-> i32).  This can also be used for
484     /// int-to-int or fp-to-fp conversions, but that is a noop, deleted by
485     /// getNode().
486     BITCAST,
487 
488     /// ADDRSPACECAST - This operator converts between pointers of different
489     /// address spaces.
490     ADDRSPACECAST,
491 
492     /// CONVERT_RNDSAT - This operator is used to support various conversions
493     /// between various types (float, signed, unsigned and vectors of those
494     /// types) with rounding and saturation. NOTE: Avoid using this operator as
495     /// most target don't support it and the operator might be removed in the
496     /// future. It takes the following arguments:
497     ///   0) value
498     ///   1) dest type (type to convert to)
499     ///   2) src type (type to convert from)
500     ///   3) rounding imm
501     ///   4) saturation imm
502     ///   5) ISD::CvtCode indicating the type of conversion to do
503     CONVERT_RNDSAT,
504 
505     /// FP16_TO_FP, FP_TO_FP16 - These operators are used to perform promotions
506     /// and truncation for half-precision (16 bit) floating numbers. These nodes
507     /// form a semi-softened interface for dealing with f16 (as an i16), which
508     /// is often a storage-only type but has native conversions.
509     FP16_TO_FP, FP_TO_FP16,
510 
511     /// FNEG, FABS, FSQRT, FSIN, FCOS, FPOWI, FPOW,
512     /// FLOG, FLOG2, FLOG10, FEXP, FEXP2,
513     /// FCEIL, FTRUNC, FRINT, FNEARBYINT, FROUND, FFLOOR - Perform various unary
514     /// floating point operations. These are inspired by libm.
515     FNEG, FABS, FSQRT, FSIN, FCOS, FPOWI, FPOW,
516     FLOG, FLOG2, FLOG10, FEXP, FEXP2,
517     FCEIL, FTRUNC, FRINT, FNEARBYINT, FROUND, FFLOOR,
518     /// FMINNUM/FMAXNUM - Perform floating-point minimum or maximum on two
519     /// values.
520     /// In the case where a single input is NaN, the non-NaN input is returned.
521     ///
522     /// The return value of (FMINNUM 0.0, -0.0) could be either 0.0 or -0.0.
523     FMINNUM, FMAXNUM,
524     /// FMINNAN/FMAXNAN - Behave identically to FMINNUM/FMAXNUM, except that
525     /// when a single input is NaN, NaN is returned.
526     FMINNAN, FMAXNAN,
527 
528     /// FSINCOS - Compute both fsin and fcos as a single operation.
529     FSINCOS,
530 
531     /// LOAD and STORE have token chains as their first operand, then the same
532     /// operands as an LLVM load/store instruction, then an offset node that
533     /// is added / subtracted from the base pointer to form the address (for
534     /// indexed memory ops).
535     LOAD, STORE,
536 
537     /// DYNAMIC_STACKALLOC - Allocate some number of bytes on the stack aligned
538     /// to a specified boundary.  This node always has two return values: a new
539     /// stack pointer value and a chain. The first operand is the token chain,
540     /// the second is the number of bytes to allocate, and the third is the
541     /// alignment boundary.  The size is guaranteed to be a multiple of the
542     /// stack alignment, and the alignment is guaranteed to be bigger than the
543     /// stack alignment (if required) or 0 to get standard stack alignment.
544     DYNAMIC_STACKALLOC,
545 
546     /// Control flow instructions.  These all have token chains.
547 
548     /// BR - Unconditional branch.  The first operand is the chain
549     /// operand, the second is the MBB to branch to.
550     BR,
551 
552     /// BRIND - Indirect branch.  The first operand is the chain, the second
553     /// is the value to branch to, which must be of the same type as the
554     /// target's pointer type.
555     BRIND,
556 
557     /// BR_JT - Jumptable branch. The first operand is the chain, the second
558     /// is the jumptable index, the last one is the jumptable entry index.
559     BR_JT,
560 
561     /// BRCOND - Conditional branch.  The first operand is the chain, the
562     /// second is the condition, the third is the block to branch to if the
563     /// condition is true.  If the type of the condition is not i1, then the
564     /// high bits must conform to getBooleanContents.
565     BRCOND,
566 
567     /// BR_CC - Conditional branch.  The behavior is like that of SELECT_CC, in
568     /// that the condition is represented as condition code, and two nodes to
569     /// compare, rather than as a combined SetCC node.  The operands in order
570     /// are chain, cc, lhs, rhs, block to branch to if condition is true.
571     BR_CC,
572 
573     /// INLINEASM - Represents an inline asm block.  This node always has two
574     /// return values: a chain and a flag result.  The inputs are as follows:
575     ///   Operand #0  : Input chain.
576     ///   Operand #1  : a ExternalSymbolSDNode with a pointer to the asm string.
577     ///   Operand #2  : a MDNodeSDNode with the !srcloc metadata.
578     ///   Operand #3  : HasSideEffect, IsAlignStack bits.
579     ///   After this, it is followed by a list of operands with this format:
580     ///     ConstantSDNode: Flags that encode whether it is a mem or not, the
581     ///                     of operands that follow, etc.  See InlineAsm.h.
582     ///     ... however many operands ...
583     ///   Operand #last: Optional, an incoming flag.
584     ///
585     /// The variable width operands are required to represent target addressing
586     /// modes as a single "operand", even though they may have multiple
587     /// SDOperands.
588     INLINEASM,
589 
590     /// EH_LABEL - Represents a label in mid basic block used to track
591     /// locations needed for debug and exception handling tables.  These nodes
592     /// take a chain as input and return a chain.
593     EH_LABEL,
594 
595     /// CATCHPAD - Represents a catchpad instruction.
596     CATCHPAD,
597 
598     /// CATCHRET - Represents a return from a catch block funclet. Used for
599     /// MSVC compatible exception handling. Takes a chain operand and a
600     /// destination basic block operand.
601     CATCHRET,
602 
603     /// CLEANUPRET - Represents a return from a cleanup block funclet.  Used for
604     /// MSVC compatible exception handling. Takes only a chain operand.
605     CLEANUPRET,
606 
607     /// STACKSAVE - STACKSAVE has one operand, an input chain.  It produces a
608     /// value, the same type as the pointer type for the system, and an output
609     /// chain.
610     STACKSAVE,
611 
612     /// STACKRESTORE has two operands, an input chain and a pointer to restore
613     /// to it returns an output chain.
614     STACKRESTORE,
615 
616     /// CALLSEQ_START/CALLSEQ_END - These operators mark the beginning and end
617     /// of a call sequence, and carry arbitrary information that target might
618     /// want to know.  The first operand is a chain, the rest are specified by
619     /// the target and not touched by the DAG optimizers.
620     /// CALLSEQ_START..CALLSEQ_END pairs may not be nested.
621     CALLSEQ_START,  // Beginning of a call sequence
622     CALLSEQ_END,    // End of a call sequence
623 
624     /// VAARG - VAARG has four operands: an input chain, a pointer, a SRCVALUE,
625     /// and the alignment. It returns a pair of values: the vaarg value and a
626     /// new chain.
627     VAARG,
628 
629     /// VACOPY - VACOPY has 5 operands: an input chain, a destination pointer,
630     /// a source pointer, a SRCVALUE for the destination, and a SRCVALUE for the
631     /// source.
632     VACOPY,
633 
634     /// VAEND, VASTART - VAEND and VASTART have three operands: an input chain,
635     /// pointer, and a SRCVALUE.
636     VAEND, VASTART,
637 
638     /// SRCVALUE - This is a node type that holds a Value* that is used to
639     /// make reference to a value in the LLVM IR.
640     SRCVALUE,
641 
642     /// MDNODE_SDNODE - This is a node that holdes an MDNode*, which is used to
643     /// reference metadata in the IR.
644     MDNODE_SDNODE,
645 
646     /// PCMARKER - This corresponds to the pcmarker intrinsic.
647     PCMARKER,
648 
649     /// READCYCLECOUNTER - This corresponds to the readcyclecounter intrinsic.
650     /// It produces a chain and one i64 value. The only operand is a chain.
651     /// If i64 is not legal, the result will be expanded into smaller values.
652     /// Still, it returns an i64, so targets should set legality for i64.
653     /// The result is the content of the architecture-specific cycle
654     /// counter-like register (or other high accuracy low latency clock source).
655     READCYCLECOUNTER,
656 
657     /// HANDLENODE node - Used as a handle for various purposes.
658     HANDLENODE,
659 
660     /// INIT_TRAMPOLINE - This corresponds to the init_trampoline intrinsic.  It
661     /// takes as input a token chain, the pointer to the trampoline, the pointer
662     /// to the nested function, the pointer to pass for the 'nest' parameter, a
663     /// SRCVALUE for the trampoline and another for the nested function
664     /// (allowing targets to access the original Function*).
665     /// It produces a token chain as output.
666     INIT_TRAMPOLINE,
667 
668     /// ADJUST_TRAMPOLINE - This corresponds to the adjust_trampoline intrinsic.
669     /// It takes a pointer to the trampoline and produces a (possibly) new
670     /// pointer to the same trampoline with platform-specific adjustments
671     /// applied.  The pointer it returns points to an executable block of code.
672     ADJUST_TRAMPOLINE,
673 
674     /// TRAP - Trapping instruction
675     TRAP,
676 
677     /// DEBUGTRAP - Trap intended to get the attention of a debugger.
678     DEBUGTRAP,
679 
680     /// PREFETCH - This corresponds to a prefetch intrinsic. The first operand
681     /// is the chain.  The other operands are the address to prefetch,
682     /// read / write specifier, locality specifier and instruction / data cache
683     /// specifier.
684     PREFETCH,
685 
686     /// OUTCHAIN = ATOMIC_FENCE(INCHAIN, ordering, scope)
687     /// This corresponds to the fence instruction. It takes an input chain, and
688     /// two integer constants: an AtomicOrdering and a SynchronizationScope.
689     ATOMIC_FENCE,
690 
691     /// Val, OUTCHAIN = ATOMIC_LOAD(INCHAIN, ptr)
692     /// This corresponds to "load atomic" instruction.
693     ATOMIC_LOAD,
694 
695     /// OUTCHAIN = ATOMIC_STORE(INCHAIN, ptr, val)
696     /// This corresponds to "store atomic" instruction.
697     ATOMIC_STORE,
698 
699     /// Val, OUTCHAIN = ATOMIC_CMP_SWAP(INCHAIN, ptr, cmp, swap)
700     /// For double-word atomic operations:
701     /// ValLo, ValHi, OUTCHAIN = ATOMIC_CMP_SWAP(INCHAIN, ptr, cmpLo, cmpHi,
702     ///                                          swapLo, swapHi)
703     /// This corresponds to the cmpxchg instruction.
704     ATOMIC_CMP_SWAP,
705 
706     /// Val, Success, OUTCHAIN
707     ///     = ATOMIC_CMP_SWAP_WITH_SUCCESS(INCHAIN, ptr, cmp, swap)
708     /// N.b. this is still a strong cmpxchg operation, so
709     /// Success == "Val == cmp".
710     ATOMIC_CMP_SWAP_WITH_SUCCESS,
711 
712     /// Val, OUTCHAIN = ATOMIC_SWAP(INCHAIN, ptr, amt)
713     /// Val, OUTCHAIN = ATOMIC_LOAD_[OpName](INCHAIN, ptr, amt)
714     /// For double-word atomic operations:
715     /// ValLo, ValHi, OUTCHAIN = ATOMIC_SWAP(INCHAIN, ptr, amtLo, amtHi)
716     /// ValLo, ValHi, OUTCHAIN = ATOMIC_LOAD_[OpName](INCHAIN, ptr, amtLo, amtHi)
717     /// These correspond to the atomicrmw instruction.
718     ATOMIC_SWAP,
719     ATOMIC_LOAD_ADD,
720     ATOMIC_LOAD_SUB,
721     ATOMIC_LOAD_AND,
722     ATOMIC_LOAD_OR,
723     ATOMIC_LOAD_XOR,
724     ATOMIC_LOAD_NAND,
725     ATOMIC_LOAD_MIN,
726     ATOMIC_LOAD_MAX,
727     ATOMIC_LOAD_UMIN,
728     ATOMIC_LOAD_UMAX,
729 
730     // Masked load and store - consecutive vector load and store operations
731     // with additional mask operand that prevents memory accesses to the
732     // masked-off lanes.
733     MLOAD, MSTORE,
734 
735     // Masked gather and scatter - load and store operations for a vector of
736     // random addresses with additional mask operand that prevents memory
737     // accesses to the masked-off lanes.
738     MGATHER, MSCATTER,
739 
740     /// This corresponds to the llvm.lifetime.* intrinsics. The first operand
741     /// is the chain and the second operand is the alloca pointer.
742     LIFETIME_START, LIFETIME_END,
743 
744     /// GC_TRANSITION_START/GC_TRANSITION_END - These operators mark the
745     /// beginning and end of GC transition  sequence, and carry arbitrary
746     /// information that target might need for lowering.  The first operand is
747     /// a chain, the rest are specified by the target and not touched by the DAG
748     /// optimizers. GC_TRANSITION_START..GC_TRANSITION_END pairs may not be
749     /// nested.
750     GC_TRANSITION_START,
751     GC_TRANSITION_END,
752 
753     /// GET_DYNAMIC_AREA_OFFSET - get offset from native SP to the address of
754     /// the most recent dynamic alloca. For most targets that would be 0, but
755     /// for some others (e.g. PowerPC, PowerPC64) that would be compile-time
756     /// known nonzero constant. The only operand here is the chain.
757     GET_DYNAMIC_AREA_OFFSET,
758 
759     /// BUILTIN_OP_END - This must be the last enum value in this list.
760     /// The target-specific pre-isel opcode values start here.
761     BUILTIN_OP_END
762   };
763 
764   /// FIRST_TARGET_MEMORY_OPCODE - Target-specific pre-isel operations
765   /// which do not reference a specific memory location should be less than
766   /// this value. Those that do must not be less than this value, and can
767   /// be used with SelectionDAG::getMemIntrinsicNode.
768   static const int FIRST_TARGET_MEMORY_OPCODE = BUILTIN_OP_END+300;
769 
770   //===--------------------------------------------------------------------===//
771   /// MemIndexedMode enum - This enum defines the load / store indexed
772   /// addressing modes.
773   ///
774   /// UNINDEXED    "Normal" load / store. The effective address is already
775   ///              computed and is available in the base pointer. The offset
776   ///              operand is always undefined. In addition to producing a
777   ///              chain, an unindexed load produces one value (result of the
778   ///              load); an unindexed store does not produce a value.
779   ///
780   /// PRE_INC      Similar to the unindexed mode where the effective address is
781   /// PRE_DEC      the value of the base pointer add / subtract the offset.
782   ///              It considers the computation as being folded into the load /
783   ///              store operation (i.e. the load / store does the address
784   ///              computation as well as performing the memory transaction).
785   ///              The base operand is always undefined. In addition to
786   ///              producing a chain, pre-indexed load produces two values
787   ///              (result of the load and the result of the address
788   ///              computation); a pre-indexed store produces one value (result
789   ///              of the address computation).
790   ///
791   /// POST_INC     The effective address is the value of the base pointer. The
792   /// POST_DEC     value of the offset operand is then added to / subtracted
793   ///              from the base after memory transaction. In addition to
794   ///              producing a chain, post-indexed load produces two values
795   ///              (the result of the load and the result of the base +/- offset
796   ///              computation); a post-indexed store produces one value (the
797   ///              the result of the base +/- offset computation).
798   enum MemIndexedMode {
799     UNINDEXED = 0,
800     PRE_INC,
801     PRE_DEC,
802     POST_INC,
803     POST_DEC,
804     LAST_INDEXED_MODE
805   };
806 
807   //===--------------------------------------------------------------------===//
808   /// LoadExtType enum - This enum defines the three variants of LOADEXT
809   /// (load with extension).
810   ///
811   /// SEXTLOAD loads the integer operand and sign extends it to a larger
812   ///          integer result type.
813   /// ZEXTLOAD loads the integer operand and zero extends it to a larger
814   ///          integer result type.
815   /// EXTLOAD  is used for two things: floating point extending loads and
816   ///          integer extending loads [the top bits are undefined].
817   enum LoadExtType {
818     NON_EXTLOAD = 0,
819     EXTLOAD,
820     SEXTLOAD,
821     ZEXTLOAD,
822     LAST_LOADEXT_TYPE
823   };
824 
825   NodeType getExtForLoadExtType(bool IsFP, LoadExtType);
826 
827   //===--------------------------------------------------------------------===//
828   /// ISD::CondCode enum - These are ordered carefully to make the bitfields
829   /// below work out, when considering SETFALSE (something that never exists
830   /// dynamically) as 0.  "U" -> Unsigned (for integer operands) or Unordered
831   /// (for floating point), "L" -> Less than, "G" -> Greater than, "E" -> Equal
832   /// to.  If the "N" column is 1, the result of the comparison is undefined if
833   /// the input is a NAN.
834   ///
835   /// All of these (except for the 'always folded ops') should be handled for
836   /// floating point.  For integer, only the SETEQ,SETNE,SETLT,SETLE,SETGT,
837   /// SETGE,SETULT,SETULE,SETUGT, and SETUGE opcodes are used.
838   ///
839   /// Note that these are laid out in a specific order to allow bit-twiddling
840   /// to transform conditions.
841   enum CondCode {
842     // Opcode          N U L G E       Intuitive operation
843     SETFALSE,      //    0 0 0 0       Always false (always folded)
844     SETOEQ,        //    0 0 0 1       True if ordered and equal
845     SETOGT,        //    0 0 1 0       True if ordered and greater than
846     SETOGE,        //    0 0 1 1       True if ordered and greater than or equal
847     SETOLT,        //    0 1 0 0       True if ordered and less than
848     SETOLE,        //    0 1 0 1       True if ordered and less than or equal
849     SETONE,        //    0 1 1 0       True if ordered and operands are unequal
850     SETO,          //    0 1 1 1       True if ordered (no nans)
851     SETUO,         //    1 0 0 0       True if unordered: isnan(X) | isnan(Y)
852     SETUEQ,        //    1 0 0 1       True if unordered or equal
853     SETUGT,        //    1 0 1 0       True if unordered or greater than
854     SETUGE,        //    1 0 1 1       True if unordered, greater than, or equal
855     SETULT,        //    1 1 0 0       True if unordered or less than
856     SETULE,        //    1 1 0 1       True if unordered, less than, or equal
857     SETUNE,        //    1 1 1 0       True if unordered or not equal
858     SETTRUE,       //    1 1 1 1       Always true (always folded)
859     // Don't care operations: undefined if the input is a nan.
860     SETFALSE2,     //  1 X 0 0 0       Always false (always folded)
861     SETEQ,         //  1 X 0 0 1       True if equal
862     SETGT,         //  1 X 0 1 0       True if greater than
863     SETGE,         //  1 X 0 1 1       True if greater than or equal
864     SETLT,         //  1 X 1 0 0       True if less than
865     SETLE,         //  1 X 1 0 1       True if less than or equal
866     SETNE,         //  1 X 1 1 0       True if not equal
867     SETTRUE2,      //  1 X 1 1 1       Always true (always folded)
868 
869     SETCC_INVALID       // Marker value.
870   };
871 
872   /// isSignedIntSetCC - Return true if this is a setcc instruction that
873   /// performs a signed comparison when used with integer operands.
isSignedIntSetCC(CondCode Code)874   inline bool isSignedIntSetCC(CondCode Code) {
875     return Code == SETGT || Code == SETGE || Code == SETLT || Code == SETLE;
876   }
877 
878   /// isUnsignedIntSetCC - Return true if this is a setcc instruction that
879   /// performs an unsigned comparison when used with integer operands.
isUnsignedIntSetCC(CondCode Code)880   inline bool isUnsignedIntSetCC(CondCode Code) {
881     return Code == SETUGT || Code == SETUGE || Code == SETULT || Code == SETULE;
882   }
883 
884   /// isTrueWhenEqual - Return true if the specified condition returns true if
885   /// the two operands to the condition are equal.  Note that if one of the two
886   /// operands is a NaN, this value is meaningless.
isTrueWhenEqual(CondCode Cond)887   inline bool isTrueWhenEqual(CondCode Cond) {
888     return ((int)Cond & 1) != 0;
889   }
890 
891   /// getUnorderedFlavor - This function returns 0 if the condition is always
892   /// false if an operand is a NaN, 1 if the condition is always true if the
893   /// operand is a NaN, and 2 if the condition is undefined if the operand is a
894   /// NaN.
getUnorderedFlavor(CondCode Cond)895   inline unsigned getUnorderedFlavor(CondCode Cond) {
896     return ((int)Cond >> 3) & 3;
897   }
898 
899   /// getSetCCInverse - Return the operation corresponding to !(X op Y), where
900   /// 'op' is a valid SetCC operation.
901   CondCode getSetCCInverse(CondCode Operation, bool isInteger);
902 
903   /// getSetCCSwappedOperands - Return the operation corresponding to (Y op X)
904   /// when given the operation for (X op Y).
905   CondCode getSetCCSwappedOperands(CondCode Operation);
906 
907   /// getSetCCOrOperation - Return the result of a logical OR between different
908   /// comparisons of identical values: ((X op1 Y) | (X op2 Y)).  This
909   /// function returns SETCC_INVALID if it is not possible to represent the
910   /// resultant comparison.
911   CondCode getSetCCOrOperation(CondCode Op1, CondCode Op2, bool isInteger);
912 
913   /// getSetCCAndOperation - Return the result of a logical AND between
914   /// different comparisons of identical values: ((X op1 Y) & (X op2 Y)).  This
915   /// function returns SETCC_INVALID if it is not possible to represent the
916   /// resultant comparison.
917   CondCode getSetCCAndOperation(CondCode Op1, CondCode Op2, bool isInteger);
918 
919   //===--------------------------------------------------------------------===//
920   /// CvtCode enum - This enum defines the various converts CONVERT_RNDSAT
921   /// supports.
922   enum CvtCode {
923     CVT_FF,     /// Float from Float
924     CVT_FS,     /// Float from Signed
925     CVT_FU,     /// Float from Unsigned
926     CVT_SF,     /// Signed from Float
927     CVT_UF,     /// Unsigned from Float
928     CVT_SS,     /// Signed from Signed
929     CVT_SU,     /// Signed from Unsigned
930     CVT_US,     /// Unsigned from Signed
931     CVT_UU,     /// Unsigned from Unsigned
932     CVT_INVALID /// Marker - Invalid opcode
933   };
934 
935 } // end llvm::ISD namespace
936 
937 } // end llvm namespace
938 
939 #endif
940