1 //===-- llvm/CallingConvLower.h - Calling Conventions -----------*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file declares the CCState and CCValAssign classes, used for lowering 11 // and implementing calling conventions. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #ifndef LLVM_CODEGEN_CALLINGCONVLOWER_H 16 #define LLVM_CODEGEN_CALLINGCONVLOWER_H 17 18 #include "llvm/ADT/SmallVector.h" 19 #include "llvm/CodeGen/MachineFrameInfo.h" 20 #include "llvm/CodeGen/MachineFunction.h" 21 #include "llvm/IR/CallingConv.h" 22 #include "llvm/MC/MCRegisterInfo.h" 23 #include "llvm/Target/TargetCallingConv.h" 24 25 namespace llvm { 26 class CCState; 27 class MVT; 28 class TargetMachine; 29 class TargetRegisterInfo; 30 31 /// CCValAssign - Represent assignment of one arg/retval to a location. 32 class CCValAssign { 33 public: 34 enum LocInfo { 35 Full, // The value fills the full location. 36 SExt, // The value is sign extended in the location. 37 ZExt, // The value is zero extended in the location. 38 AExt, // The value is extended with undefined upper bits. 39 SExtUpper, // The value is in the upper bits of the location and should be 40 // sign extended when retrieved. 41 ZExtUpper, // The value is in the upper bits of the location and should be 42 // zero extended when retrieved. 43 AExtUpper, // The value is in the upper bits of the location and should be 44 // extended with undefined upper bits when retrieved. 45 BCvt, // The value is bit-converted in the location. 46 VExt, // The value is vector-widened in the location. 47 // FIXME: Not implemented yet. Code that uses AExt to mean 48 // vector-widen should be fixed to use VExt instead. 49 FPExt, // The floating-point value is fp-extended in the location. 50 Indirect // The location contains pointer to the value. 51 // TODO: a subset of the value is in the location. 52 }; 53 54 private: 55 /// ValNo - This is the value number begin assigned (e.g. an argument number). 56 unsigned ValNo; 57 58 /// Loc is either a stack offset or a register number. 59 unsigned Loc; 60 61 /// isMem - True if this is a memory loc, false if it is a register loc. 62 unsigned isMem : 1; 63 64 /// isCustom - True if this arg/retval requires special handling. 65 unsigned isCustom : 1; 66 67 /// Information about how the value is assigned. 68 LocInfo HTP : 6; 69 70 /// ValVT - The type of the value being assigned. 71 MVT ValVT; 72 73 /// LocVT - The type of the location being assigned to. 74 MVT LocVT; 75 public: 76 getReg(unsigned ValNo,MVT ValVT,unsigned RegNo,MVT LocVT,LocInfo HTP)77 static CCValAssign getReg(unsigned ValNo, MVT ValVT, 78 unsigned RegNo, MVT LocVT, 79 LocInfo HTP) { 80 CCValAssign Ret; 81 Ret.ValNo = ValNo; 82 Ret.Loc = RegNo; 83 Ret.isMem = false; 84 Ret.isCustom = false; 85 Ret.HTP = HTP; 86 Ret.ValVT = ValVT; 87 Ret.LocVT = LocVT; 88 return Ret; 89 } 90 getCustomReg(unsigned ValNo,MVT ValVT,unsigned RegNo,MVT LocVT,LocInfo HTP)91 static CCValAssign getCustomReg(unsigned ValNo, MVT ValVT, 92 unsigned RegNo, MVT LocVT, 93 LocInfo HTP) { 94 CCValAssign Ret; 95 Ret = getReg(ValNo, ValVT, RegNo, LocVT, HTP); 96 Ret.isCustom = true; 97 return Ret; 98 } 99 getMem(unsigned ValNo,MVT ValVT,unsigned Offset,MVT LocVT,LocInfo HTP)100 static CCValAssign getMem(unsigned ValNo, MVT ValVT, 101 unsigned Offset, MVT LocVT, 102 LocInfo HTP) { 103 CCValAssign Ret; 104 Ret.ValNo = ValNo; 105 Ret.Loc = Offset; 106 Ret.isMem = true; 107 Ret.isCustom = false; 108 Ret.HTP = HTP; 109 Ret.ValVT = ValVT; 110 Ret.LocVT = LocVT; 111 return Ret; 112 } 113 getCustomMem(unsigned ValNo,MVT ValVT,unsigned Offset,MVT LocVT,LocInfo HTP)114 static CCValAssign getCustomMem(unsigned ValNo, MVT ValVT, 115 unsigned Offset, MVT LocVT, 116 LocInfo HTP) { 117 CCValAssign Ret; 118 Ret = getMem(ValNo, ValVT, Offset, LocVT, HTP); 119 Ret.isCustom = true; 120 return Ret; 121 } 122 123 // There is no need to differentiate between a pending CCValAssign and other 124 // kinds, as they are stored in a different list. 125 static CCValAssign getPending(unsigned ValNo, MVT ValVT, MVT LocVT, 126 LocInfo HTP, unsigned ExtraInfo = 0) { 127 return getReg(ValNo, ValVT, ExtraInfo, LocVT, HTP); 128 } 129 convertToReg(unsigned RegNo)130 void convertToReg(unsigned RegNo) { 131 Loc = RegNo; 132 isMem = false; 133 } 134 convertToMem(unsigned Offset)135 void convertToMem(unsigned Offset) { 136 Loc = Offset; 137 isMem = true; 138 } 139 getValNo()140 unsigned getValNo() const { return ValNo; } getValVT()141 MVT getValVT() const { return ValVT; } 142 isRegLoc()143 bool isRegLoc() const { return !isMem; } isMemLoc()144 bool isMemLoc() const { return isMem; } 145 needsCustom()146 bool needsCustom() const { return isCustom; } 147 getLocReg()148 unsigned getLocReg() const { assert(isRegLoc()); return Loc; } getLocMemOffset()149 unsigned getLocMemOffset() const { assert(isMemLoc()); return Loc; } getExtraInfo()150 unsigned getExtraInfo() const { return Loc; } getLocVT()151 MVT getLocVT() const { return LocVT; } 152 getLocInfo()153 LocInfo getLocInfo() const { return HTP; } isExtInLoc()154 bool isExtInLoc() const { 155 return (HTP == AExt || HTP == SExt || HTP == ZExt); 156 } 157 isUpperBitsInLoc()158 bool isUpperBitsInLoc() const { 159 return HTP == AExtUpper || HTP == SExtUpper || HTP == ZExtUpper; 160 } 161 }; 162 163 /// Describes a register that needs to be forwarded from the prologue to a 164 /// musttail call. 165 struct ForwardedRegister { ForwardedRegisterForwardedRegister166 ForwardedRegister(unsigned VReg, MCPhysReg PReg, MVT VT) 167 : VReg(VReg), PReg(PReg), VT(VT) {} 168 unsigned VReg; 169 MCPhysReg PReg; 170 MVT VT; 171 }; 172 173 /// CCAssignFn - This function assigns a location for Val, updating State to 174 /// reflect the change. It returns 'true' if it failed to handle Val. 175 typedef bool CCAssignFn(unsigned ValNo, MVT ValVT, 176 MVT LocVT, CCValAssign::LocInfo LocInfo, 177 ISD::ArgFlagsTy ArgFlags, CCState &State); 178 179 /// CCCustomFn - This function assigns a location for Val, possibly updating 180 /// all args to reflect changes and indicates if it handled it. It must set 181 /// isCustom if it handles the arg and returns true. 182 typedef bool CCCustomFn(unsigned &ValNo, MVT &ValVT, 183 MVT &LocVT, CCValAssign::LocInfo &LocInfo, 184 ISD::ArgFlagsTy &ArgFlags, CCState &State); 185 186 /// ParmContext - This enum tracks whether calling convention lowering is in 187 /// the context of prologue or call generation. Not all backends make use of 188 /// this information. 189 typedef enum { Unknown, Prologue, Call } ParmContext; 190 191 /// CCState - This class holds information needed while lowering arguments and 192 /// return values. It captures which registers are already assigned and which 193 /// stack slots are used. It provides accessors to allocate these values. 194 class CCState { 195 private: 196 CallingConv::ID CallingConv; 197 bool IsVarArg; 198 MachineFunction &MF; 199 const TargetRegisterInfo &TRI; 200 SmallVectorImpl<CCValAssign> &Locs; 201 LLVMContext &Context; 202 203 unsigned StackOffset; 204 unsigned MaxStackArgAlign; 205 SmallVector<uint32_t, 16> UsedRegs; 206 SmallVector<CCValAssign, 4> PendingLocs; 207 208 // ByValInfo and SmallVector<ByValInfo, 4> ByValRegs: 209 // 210 // Vector of ByValInfo instances (ByValRegs) is introduced for byval registers 211 // tracking. 212 // Or, in another words it tracks byval parameters that are stored in 213 // general purpose registers. 214 // 215 // For 4 byte stack alignment, 216 // instance index means byval parameter number in formal 217 // arguments set. Assume, we have some "struct_type" with size = 4 bytes, 218 // then, for function "foo": 219 // 220 // i32 foo(i32 %p, %struct_type* %r, i32 %s, %struct_type* %t) 221 // 222 // ByValRegs[0] describes how "%r" is stored (Begin == r1, End == r2) 223 // ByValRegs[1] describes how "%t" is stored (Begin == r3, End == r4). 224 // 225 // In case of 8 bytes stack alignment, 226 // ByValRegs may also contain information about wasted registers. 227 // In function shown above, r3 would be wasted according to AAPCS rules. 228 // And in that case ByValRegs[1].Waste would be "true". 229 // ByValRegs vector size still would be 2, 230 // while "%t" goes to the stack: it wouldn't be described in ByValRegs. 231 // 232 // Supposed use-case for this collection: 233 // 1. Initially ByValRegs is empty, InRegsParamsProcessed is 0. 234 // 2. HandleByVal fillups ByValRegs. 235 // 3. Argument analysis (LowerFormatArguments, for example). After 236 // some byval argument was analyzed, InRegsParamsProcessed is increased. 237 struct ByValInfo { 238 ByValInfo(unsigned B, unsigned E, bool IsWaste = false) : BeginByValInfo239 Begin(B), End(E), Waste(IsWaste) {} 240 // First register allocated for current parameter. 241 unsigned Begin; 242 243 // First after last register allocated for current parameter. 244 unsigned End; 245 246 // Means that current range of registers doesn't belong to any 247 // parameters. It was wasted due to stack alignment rules. 248 // For more information see: 249 // AAPCS, 5.5 Parameter Passing, Stage C, C.3. 250 bool Waste; 251 }; 252 SmallVector<ByValInfo, 4 > ByValRegs; 253 254 // InRegsParamsProcessed - shows how many instances of ByValRegs was proceed 255 // during argument analysis. 256 unsigned InRegsParamsProcessed; 257 258 protected: 259 ParmContext CallOrPrologue; 260 261 public: 262 CCState(CallingConv::ID CC, bool isVarArg, MachineFunction &MF, 263 SmallVectorImpl<CCValAssign> &locs, LLVMContext &C); 264 addLoc(const CCValAssign & V)265 void addLoc(const CCValAssign &V) { 266 Locs.push_back(V); 267 } 268 getContext()269 LLVMContext &getContext() const { return Context; } getMachineFunction()270 MachineFunction &getMachineFunction() const { return MF; } getCallingConv()271 CallingConv::ID getCallingConv() const { return CallingConv; } isVarArg()272 bool isVarArg() const { return IsVarArg; } 273 274 /// getNextStackOffset - Return the next stack offset such that all stack 275 /// slots satisfy their alignment requirements. getNextStackOffset()276 unsigned getNextStackOffset() const { 277 return StackOffset; 278 } 279 280 /// getAlignedCallFrameSize - Return the size of the call frame needed to 281 /// be able to store all arguments and such that the alignment requirement 282 /// of each of the arguments is satisfied. getAlignedCallFrameSize()283 unsigned getAlignedCallFrameSize() const { 284 return RoundUpToAlignment(StackOffset, MaxStackArgAlign); 285 } 286 287 /// isAllocated - Return true if the specified register (or an alias) is 288 /// allocated. isAllocated(unsigned Reg)289 bool isAllocated(unsigned Reg) const { 290 return UsedRegs[Reg/32] & (1 << (Reg&31)); 291 } 292 293 /// AnalyzeFormalArguments - Analyze an array of argument values, 294 /// incorporating info about the formals into this state. 295 void AnalyzeFormalArguments(const SmallVectorImpl<ISD::InputArg> &Ins, 296 CCAssignFn Fn); 297 298 /// AnalyzeReturn - Analyze the returned values of a return, 299 /// incorporating info about the result values into this state. 300 void AnalyzeReturn(const SmallVectorImpl<ISD::OutputArg> &Outs, 301 CCAssignFn Fn); 302 303 /// CheckReturn - Analyze the return values of a function, returning 304 /// true if the return can be performed without sret-demotion, and 305 /// false otherwise. 306 bool CheckReturn(const SmallVectorImpl<ISD::OutputArg> &ArgsFlags, 307 CCAssignFn Fn); 308 309 /// AnalyzeCallOperands - Analyze the outgoing arguments to a call, 310 /// incorporating info about the passed values into this state. 311 void AnalyzeCallOperands(const SmallVectorImpl<ISD::OutputArg> &Outs, 312 CCAssignFn Fn); 313 314 /// AnalyzeCallOperands - Same as above except it takes vectors of types 315 /// and argument flags. 316 void AnalyzeCallOperands(SmallVectorImpl<MVT> &ArgVTs, 317 SmallVectorImpl<ISD::ArgFlagsTy> &Flags, 318 CCAssignFn Fn); 319 320 /// AnalyzeCallResult - Analyze the return values of a call, 321 /// incorporating info about the passed values into this state. 322 void AnalyzeCallResult(const SmallVectorImpl<ISD::InputArg> &Ins, 323 CCAssignFn Fn); 324 325 /// AnalyzeCallResult - Same as above except it's specialized for calls which 326 /// produce a single value. 327 void AnalyzeCallResult(MVT VT, CCAssignFn Fn); 328 329 /// getFirstUnallocated - Return the index of the first unallocated register 330 /// in the set, or Regs.size() if they are all allocated. getFirstUnallocated(ArrayRef<MCPhysReg> Regs)331 unsigned getFirstUnallocated(ArrayRef<MCPhysReg> Regs) const { 332 for (unsigned i = 0; i < Regs.size(); ++i) 333 if (!isAllocated(Regs[i])) 334 return i; 335 return Regs.size(); 336 } 337 338 /// AllocateReg - Attempt to allocate one register. If it is not available, 339 /// return zero. Otherwise, return the register, marking it and any aliases 340 /// as allocated. AllocateReg(unsigned Reg)341 unsigned AllocateReg(unsigned Reg) { 342 if (isAllocated(Reg)) return 0; 343 MarkAllocated(Reg); 344 return Reg; 345 } 346 347 /// Version of AllocateReg with extra register to be shadowed. AllocateReg(unsigned Reg,unsigned ShadowReg)348 unsigned AllocateReg(unsigned Reg, unsigned ShadowReg) { 349 if (isAllocated(Reg)) return 0; 350 MarkAllocated(Reg); 351 MarkAllocated(ShadowReg); 352 return Reg; 353 } 354 355 /// AllocateReg - Attempt to allocate one of the specified registers. If none 356 /// are available, return zero. Otherwise, return the first one available, 357 /// marking it and any aliases as allocated. AllocateReg(ArrayRef<MCPhysReg> Regs)358 unsigned AllocateReg(ArrayRef<MCPhysReg> Regs) { 359 unsigned FirstUnalloc = getFirstUnallocated(Regs); 360 if (FirstUnalloc == Regs.size()) 361 return 0; // Didn't find the reg. 362 363 // Mark the register and any aliases as allocated. 364 unsigned Reg = Regs[FirstUnalloc]; 365 MarkAllocated(Reg); 366 return Reg; 367 } 368 369 /// AllocateRegBlock - Attempt to allocate a block of RegsRequired consecutive 370 /// registers. If this is not possible, return zero. Otherwise, return the first 371 /// register of the block that were allocated, marking the entire block as allocated. AllocateRegBlock(ArrayRef<MCPhysReg> Regs,unsigned RegsRequired)372 unsigned AllocateRegBlock(ArrayRef<MCPhysReg> Regs, unsigned RegsRequired) { 373 if (RegsRequired > Regs.size()) 374 return 0; 375 376 for (unsigned StartIdx = 0; StartIdx <= Regs.size() - RegsRequired; 377 ++StartIdx) { 378 bool BlockAvailable = true; 379 // Check for already-allocated regs in this block 380 for (unsigned BlockIdx = 0; BlockIdx < RegsRequired; ++BlockIdx) { 381 if (isAllocated(Regs[StartIdx + BlockIdx])) { 382 BlockAvailable = false; 383 break; 384 } 385 } 386 if (BlockAvailable) { 387 // Mark the entire block as allocated 388 for (unsigned BlockIdx = 0; BlockIdx < RegsRequired; ++BlockIdx) { 389 MarkAllocated(Regs[StartIdx + BlockIdx]); 390 } 391 return Regs[StartIdx]; 392 } 393 } 394 // No block was available 395 return 0; 396 } 397 398 /// Version of AllocateReg with list of registers to be shadowed. AllocateReg(ArrayRef<MCPhysReg> Regs,const MCPhysReg * ShadowRegs)399 unsigned AllocateReg(ArrayRef<MCPhysReg> Regs, const MCPhysReg *ShadowRegs) { 400 unsigned FirstUnalloc = getFirstUnallocated(Regs); 401 if (FirstUnalloc == Regs.size()) 402 return 0; // Didn't find the reg. 403 404 // Mark the register and any aliases as allocated. 405 unsigned Reg = Regs[FirstUnalloc], ShadowReg = ShadowRegs[FirstUnalloc]; 406 MarkAllocated(Reg); 407 MarkAllocated(ShadowReg); 408 return Reg; 409 } 410 411 /// AllocateStack - Allocate a chunk of stack space with the specified size 412 /// and alignment. AllocateStack(unsigned Size,unsigned Align)413 unsigned AllocateStack(unsigned Size, unsigned Align) { 414 assert(Align && ((Align - 1) & Align) == 0); // Align is power of 2. 415 StackOffset = RoundUpToAlignment(StackOffset, Align); 416 unsigned Result = StackOffset; 417 StackOffset += Size; 418 MaxStackArgAlign = std::max(Align, MaxStackArgAlign); 419 MF.getFrameInfo()->ensureMaxAlignment(Align); 420 return Result; 421 } 422 423 /// Version of AllocateStack with extra register to be shadowed. AllocateStack(unsigned Size,unsigned Align,unsigned ShadowReg)424 unsigned AllocateStack(unsigned Size, unsigned Align, unsigned ShadowReg) { 425 MarkAllocated(ShadowReg); 426 return AllocateStack(Size, Align); 427 } 428 429 /// Version of AllocateStack with list of extra registers to be shadowed. 430 /// Note that, unlike AllocateReg, this shadows ALL of the shadow registers. AllocateStack(unsigned Size,unsigned Align,ArrayRef<MCPhysReg> ShadowRegs)431 unsigned AllocateStack(unsigned Size, unsigned Align, 432 ArrayRef<MCPhysReg> ShadowRegs) { 433 for (unsigned i = 0; i < ShadowRegs.size(); ++i) 434 MarkAllocated(ShadowRegs[i]); 435 return AllocateStack(Size, Align); 436 } 437 438 // HandleByVal - Allocate a stack slot large enough to pass an argument by 439 // value. The size and alignment information of the argument is encoded in its 440 // parameter attribute. 441 void HandleByVal(unsigned ValNo, MVT ValVT, 442 MVT LocVT, CCValAssign::LocInfo LocInfo, 443 int MinSize, int MinAlign, ISD::ArgFlagsTy ArgFlags); 444 445 // Returns count of byval arguments that are to be stored (even partly) 446 // in registers. getInRegsParamsCount()447 unsigned getInRegsParamsCount() const { return ByValRegs.size(); } 448 449 // Returns count of byval in-regs arguments proceed. getInRegsParamsProcessed()450 unsigned getInRegsParamsProcessed() const { return InRegsParamsProcessed; } 451 452 // Get information about N-th byval parameter that is stored in registers. 453 // Here "ByValParamIndex" is N. getInRegsParamInfo(unsigned InRegsParamRecordIndex,unsigned & BeginReg,unsigned & EndReg)454 void getInRegsParamInfo(unsigned InRegsParamRecordIndex, 455 unsigned& BeginReg, unsigned& EndReg) const { 456 assert(InRegsParamRecordIndex < ByValRegs.size() && 457 "Wrong ByVal parameter index"); 458 459 const ByValInfo& info = ByValRegs[InRegsParamRecordIndex]; 460 BeginReg = info.Begin; 461 EndReg = info.End; 462 } 463 464 // Add information about parameter that is kept in registers. addInRegsParamInfo(unsigned RegBegin,unsigned RegEnd)465 void addInRegsParamInfo(unsigned RegBegin, unsigned RegEnd) { 466 ByValRegs.push_back(ByValInfo(RegBegin, RegEnd)); 467 } 468 469 // Goes either to next byval parameter (excluding "waste" record), or 470 // to the end of collection. 471 // Returns false, if end is reached. nextInRegsParam()472 bool nextInRegsParam() { 473 unsigned e = ByValRegs.size(); 474 if (InRegsParamsProcessed < e) 475 ++InRegsParamsProcessed; 476 return InRegsParamsProcessed < e; 477 } 478 479 // Clear byval registers tracking info. clearByValRegsInfo()480 void clearByValRegsInfo() { 481 InRegsParamsProcessed = 0; 482 ByValRegs.clear(); 483 } 484 485 // Rewind byval registers tracking info. rewindByValRegsInfo()486 void rewindByValRegsInfo() { 487 InRegsParamsProcessed = 0; 488 } 489 getCallOrPrologue()490 ParmContext getCallOrPrologue() const { return CallOrPrologue; } 491 492 // Get list of pending assignments getPendingLocs()493 SmallVectorImpl<llvm::CCValAssign> &getPendingLocs() { 494 return PendingLocs; 495 } 496 497 /// Compute the remaining unused register parameters that would be used for 498 /// the given value type. This is useful when varargs are passed in the 499 /// registers that normal prototyped parameters would be passed in, or for 500 /// implementing perfect forwarding. 501 void getRemainingRegParmsForType(SmallVectorImpl<MCPhysReg> &Regs, MVT VT, 502 CCAssignFn Fn); 503 504 /// Compute the set of registers that need to be preserved and forwarded to 505 /// any musttail calls. 506 void analyzeMustTailForwardedRegisters( 507 SmallVectorImpl<ForwardedRegister> &Forwards, ArrayRef<MVT> RegParmTypes, 508 CCAssignFn Fn); 509 510 private: 511 /// MarkAllocated - Mark a register and all of its aliases as allocated. 512 void MarkAllocated(unsigned Reg); 513 }; 514 515 516 517 } // end namespace llvm 518 519 #endif 520