1 // Copyright 2014 Google Inc. All Rights Reserved.
2 //
3 // Use of this source code is governed by a BSD-style license
4 // that can be found in the COPYING file in the root of the source
5 // tree. An additional intellectual property rights grant can be found
6 // in the file PATENTS. All contributing project authors may
7 // be found in the AUTHORS file in the root of the source tree.
8 // -----------------------------------------------------------------------------
9 //
10 // Utilities for processing transparent channel.
11 //
12 // Author: Skal (pascal.massimino@gmail.com)
13
14 #include "./dsp.h"
15
16 #if defined(WEBP_USE_SSE2)
17 #include <emmintrin.h>
18
19 //------------------------------------------------------------------------------
20
DispatchAlpha(const uint8_t * alpha,int alpha_stride,int width,int height,uint8_t * dst,int dst_stride)21 static int DispatchAlpha(const uint8_t* alpha, int alpha_stride,
22 int width, int height,
23 uint8_t* dst, int dst_stride) {
24 // alpha_and stores an 'and' operation of all the alpha[] values. The final
25 // value is not 0xff if any of the alpha[] is not equal to 0xff.
26 uint32_t alpha_and = 0xff;
27 int i, j;
28 const __m128i zero = _mm_setzero_si128();
29 const __m128i rgb_mask = _mm_set1_epi32(0xffffff00u); // to preserve RGB
30 const __m128i all_0xff = _mm_set_epi32(0, 0, ~0u, ~0u);
31 __m128i all_alphas = all_0xff;
32
33 // We must be able to access 3 extra bytes after the last written byte
34 // 'dst[4 * width - 4]', because we don't know if alpha is the first or the
35 // last byte of the quadruplet.
36 const int limit = (width - 1) & ~7;
37
38 for (j = 0; j < height; ++j) {
39 __m128i* out = (__m128i*)dst;
40 for (i = 0; i < limit; i += 8) {
41 // load 8 alpha bytes
42 const __m128i a0 = _mm_loadl_epi64((const __m128i*)&alpha[i]);
43 const __m128i a1 = _mm_unpacklo_epi8(a0, zero);
44 const __m128i a2_lo = _mm_unpacklo_epi16(a1, zero);
45 const __m128i a2_hi = _mm_unpackhi_epi16(a1, zero);
46 // load 8 dst pixels (32 bytes)
47 const __m128i b0_lo = _mm_loadu_si128(out + 0);
48 const __m128i b0_hi = _mm_loadu_si128(out + 1);
49 // mask dst alpha values
50 const __m128i b1_lo = _mm_and_si128(b0_lo, rgb_mask);
51 const __m128i b1_hi = _mm_and_si128(b0_hi, rgb_mask);
52 // combine
53 const __m128i b2_lo = _mm_or_si128(b1_lo, a2_lo);
54 const __m128i b2_hi = _mm_or_si128(b1_hi, a2_hi);
55 // store
56 _mm_storeu_si128(out + 0, b2_lo);
57 _mm_storeu_si128(out + 1, b2_hi);
58 // accumulate eight alpha 'and' in parallel
59 all_alphas = _mm_and_si128(all_alphas, a0);
60 out += 2;
61 }
62 for (; i < width; ++i) {
63 const uint32_t alpha_value = alpha[i];
64 dst[4 * i] = alpha_value;
65 alpha_and &= alpha_value;
66 }
67 alpha += alpha_stride;
68 dst += dst_stride;
69 }
70 // Combine the eight alpha 'and' into a 8-bit mask.
71 alpha_and &= _mm_movemask_epi8(_mm_cmpeq_epi8(all_alphas, all_0xff));
72 return (alpha_and != 0xff);
73 }
74
DispatchAlphaToGreen(const uint8_t * alpha,int alpha_stride,int width,int height,uint32_t * dst,int dst_stride)75 static void DispatchAlphaToGreen(const uint8_t* alpha, int alpha_stride,
76 int width, int height,
77 uint32_t* dst, int dst_stride) {
78 int i, j;
79 const __m128i zero = _mm_setzero_si128();
80 const int limit = width & ~15;
81 for (j = 0; j < height; ++j) {
82 for (i = 0; i < limit; i += 16) { // process 16 alpha bytes
83 const __m128i a0 = _mm_loadu_si128((const __m128i*)&alpha[i]);
84 const __m128i a1 = _mm_unpacklo_epi8(zero, a0); // note the 'zero' first!
85 const __m128i b1 = _mm_unpackhi_epi8(zero, a0);
86 const __m128i a2_lo = _mm_unpacklo_epi16(a1, zero);
87 const __m128i b2_lo = _mm_unpacklo_epi16(b1, zero);
88 const __m128i a2_hi = _mm_unpackhi_epi16(a1, zero);
89 const __m128i b2_hi = _mm_unpackhi_epi16(b1, zero);
90 _mm_storeu_si128((__m128i*)&dst[i + 0], a2_lo);
91 _mm_storeu_si128((__m128i*)&dst[i + 4], a2_hi);
92 _mm_storeu_si128((__m128i*)&dst[i + 8], b2_lo);
93 _mm_storeu_si128((__m128i*)&dst[i + 12], b2_hi);
94 }
95 for (; i < width; ++i) dst[i] = alpha[i] << 8;
96 alpha += alpha_stride;
97 dst += dst_stride;
98 }
99 }
100
ExtractAlpha(const uint8_t * argb,int argb_stride,int width,int height,uint8_t * alpha,int alpha_stride)101 static int ExtractAlpha(const uint8_t* argb, int argb_stride,
102 int width, int height,
103 uint8_t* alpha, int alpha_stride) {
104 // alpha_and stores an 'and' operation of all the alpha[] values. The final
105 // value is not 0xff if any of the alpha[] is not equal to 0xff.
106 uint32_t alpha_and = 0xff;
107 int i, j;
108 const __m128i a_mask = _mm_set1_epi32(0xffu); // to preserve alpha
109 const __m128i all_0xff = _mm_set_epi32(0, 0, ~0u, ~0u);
110 __m128i all_alphas = all_0xff;
111
112 // We must be able to access 3 extra bytes after the last written byte
113 // 'src[4 * width - 4]', because we don't know if alpha is the first or the
114 // last byte of the quadruplet.
115 const int limit = (width - 1) & ~7;
116
117 for (j = 0; j < height; ++j) {
118 const __m128i* src = (const __m128i*)argb;
119 for (i = 0; i < limit; i += 8) {
120 // load 32 argb bytes
121 const __m128i a0 = _mm_loadu_si128(src + 0);
122 const __m128i a1 = _mm_loadu_si128(src + 1);
123 const __m128i b0 = _mm_and_si128(a0, a_mask);
124 const __m128i b1 = _mm_and_si128(a1, a_mask);
125 const __m128i c0 = _mm_packs_epi32(b0, b1);
126 const __m128i d0 = _mm_packus_epi16(c0, c0);
127 // store
128 _mm_storel_epi64((__m128i*)&alpha[i], d0);
129 // accumulate eight alpha 'and' in parallel
130 all_alphas = _mm_and_si128(all_alphas, d0);
131 src += 2;
132 }
133 for (; i < width; ++i) {
134 const uint32_t alpha_value = argb[4 * i];
135 alpha[i] = alpha_value;
136 alpha_and &= alpha_value;
137 }
138 argb += argb_stride;
139 alpha += alpha_stride;
140 }
141 // Combine the eight alpha 'and' into a 8-bit mask.
142 alpha_and &= _mm_movemask_epi8(_mm_cmpeq_epi8(all_alphas, all_0xff));
143 return (alpha_and == 0xff);
144 }
145
146 //------------------------------------------------------------------------------
147 // Non-dither premultiplied modes
148
149 #define MULTIPLIER(a) ((a) * 0x8081)
150 #define PREMULTIPLY(x, m) (((x) * (m)) >> 23)
151
152 // We can't use a 'const int' for the SHUFFLE value, because it has to be an
153 // immediate in the _mm_shufflexx_epi16() instruction. We really a macro here.
154 #define APPLY_ALPHA(RGBX, SHUFFLE, MASK, MULT) do { \
155 const __m128i argb0 = _mm_loadl_epi64((__m128i*)&(RGBX)); \
156 const __m128i argb1 = _mm_unpacklo_epi8(argb0, zero); \
157 const __m128i alpha0 = _mm_and_si128(argb1, MASK); \
158 const __m128i alpha1 = _mm_shufflelo_epi16(alpha0, SHUFFLE); \
159 const __m128i alpha2 = _mm_shufflehi_epi16(alpha1, SHUFFLE); \
160 /* alpha2 = [0 a0 a0 a0][0 a1 a1 a1] */ \
161 const __m128i scale0 = _mm_mullo_epi16(alpha2, MULT); \
162 const __m128i scale1 = _mm_mulhi_epu16(alpha2, MULT); \
163 const __m128i argb2 = _mm_mulhi_epu16(argb1, scale0); \
164 const __m128i argb3 = _mm_mullo_epi16(argb1, scale1); \
165 const __m128i argb4 = _mm_adds_epu16(argb2, argb3); \
166 const __m128i argb5 = _mm_srli_epi16(argb4, 7); \
167 const __m128i argb6 = _mm_or_si128(argb5, alpha0); \
168 const __m128i argb7 = _mm_packus_epi16(argb6, zero); \
169 _mm_storel_epi64((__m128i*)&(RGBX), argb7); \
170 } while (0)
171
ApplyAlphaMultiply(uint8_t * rgba,int alpha_first,int w,int h,int stride)172 static void ApplyAlphaMultiply(uint8_t* rgba, int alpha_first,
173 int w, int h, int stride) {
174 const __m128i zero = _mm_setzero_si128();
175 const int kSpan = 2;
176 const int w2 = w & ~(kSpan - 1);
177 while (h-- > 0) {
178 uint32_t* const rgbx = (uint32_t*)rgba;
179 int i;
180 if (!alpha_first) {
181 const __m128i kMask = _mm_set_epi16(0xff, 0, 0, 0, 0xff, 0, 0, 0);
182 const __m128i kMult =
183 _mm_set_epi16(0, 0x8081, 0x8081, 0x8081, 0, 0x8081, 0x8081, 0x8081);
184 for (i = 0; i < w2; i += kSpan) {
185 APPLY_ALPHA(rgbx[i], _MM_SHUFFLE(0, 3, 3, 3), kMask, kMult);
186 }
187 } else {
188 const __m128i kMask = _mm_set_epi16(0, 0, 0, 0xff, 0, 0, 0, 0xff);
189 const __m128i kMult =
190 _mm_set_epi16(0x8081, 0x8081, 0x8081, 0, 0x8081, 0x8081, 0x8081, 0);
191 for (i = 0; i < w2; i += kSpan) {
192 APPLY_ALPHA(rgbx[i], _MM_SHUFFLE(0, 0, 0, 3), kMask, kMult);
193 }
194 }
195 // Finish with left-overs.
196 for (; i < w; ++i) {
197 uint8_t* const rgb = rgba + (alpha_first ? 1 : 0);
198 const uint8_t* const alpha = rgba + (alpha_first ? 0 : 3);
199 const uint32_t a = alpha[4 * i];
200 if (a != 0xff) {
201 const uint32_t mult = MULTIPLIER(a);
202 rgb[4 * i + 0] = PREMULTIPLY(rgb[4 * i + 0], mult);
203 rgb[4 * i + 1] = PREMULTIPLY(rgb[4 * i + 1], mult);
204 rgb[4 * i + 2] = PREMULTIPLY(rgb[4 * i + 2], mult);
205 }
206 }
207 rgba += stride;
208 }
209 }
210 #undef MULTIPLIER
211 #undef PREMULTIPLY
212
213 // -----------------------------------------------------------------------------
214 // Apply alpha value to rows
215
216 // We use: kINV255 = (1 << 24) / 255 = 0x010101
217 // So: a * kINV255 = (a << 16) | [(a << 8) | a]
218 // -> _mm_mulhi_epu16() takes care of the (a<<16) part,
219 // and _mm_mullo_epu16(a * 0x0101,...) takes care of the "(a << 8) | a" one.
220
MultARGBRow(uint32_t * const ptr,int width,int inverse)221 static void MultARGBRow(uint32_t* const ptr, int width, int inverse) {
222 int x = 0;
223 if (!inverse) {
224 const int kSpan = 2;
225 const __m128i zero = _mm_setzero_si128();
226 const __m128i kRound =
227 _mm_set_epi16(0, 1 << 7, 1 << 7, 1 << 7, 0, 1 << 7, 1 << 7, 1 << 7);
228 const __m128i kMult =
229 _mm_set_epi16(0, 0x0101, 0x0101, 0x0101, 0, 0x0101, 0x0101, 0x0101);
230 const __m128i kOne64 = _mm_set_epi16(1u << 8, 0, 0, 0, 1u << 8, 0, 0, 0);
231 const int w2 = width & ~(kSpan - 1);
232 for (x = 0; x < w2; x += kSpan) {
233 const __m128i argb0 = _mm_loadl_epi64((__m128i*)&ptr[x]);
234 const __m128i argb1 = _mm_unpacklo_epi8(argb0, zero);
235 const __m128i tmp0 = _mm_shufflelo_epi16(argb1, _MM_SHUFFLE(3, 3, 3, 3));
236 const __m128i tmp1 = _mm_shufflehi_epi16(tmp0, _MM_SHUFFLE(3, 3, 3, 3));
237 const __m128i tmp2 = _mm_srli_epi64(tmp1, 16);
238 const __m128i scale0 = _mm_mullo_epi16(tmp1, kMult);
239 const __m128i scale1 = _mm_or_si128(tmp2, kOne64);
240 const __m128i argb2 = _mm_mulhi_epu16(argb1, scale0);
241 const __m128i argb3 = _mm_mullo_epi16(argb1, scale1);
242 const __m128i argb4 = _mm_adds_epu16(argb2, argb3);
243 const __m128i argb5 = _mm_adds_epu16(argb4, kRound);
244 const __m128i argb6 = _mm_srli_epi16(argb5, 8);
245 const __m128i argb7 = _mm_packus_epi16(argb6, zero);
246 _mm_storel_epi64((__m128i*)&ptr[x], argb7);
247 }
248 }
249 width -= x;
250 if (width > 0) WebPMultARGBRowC(ptr + x, width, inverse);
251 }
252
MultRow(uint8_t * const ptr,const uint8_t * const alpha,int width,int inverse)253 static void MultRow(uint8_t* const ptr, const uint8_t* const alpha,
254 int width, int inverse) {
255 int x = 0;
256 if (!inverse) {
257 const int kSpan = 8;
258 const __m128i zero = _mm_setzero_si128();
259 const __m128i kRound = _mm_set1_epi16(1 << 7);
260 const int w2 = width & ~(kSpan - 1);
261 for (x = 0; x < w2; x += kSpan) {
262 const __m128i v0 = _mm_loadl_epi64((__m128i*)&ptr[x]);
263 const __m128i v1 = _mm_unpacklo_epi8(v0, zero);
264 const __m128i alpha0 = _mm_loadl_epi64((const __m128i*)&alpha[x]);
265 const __m128i alpha1 = _mm_unpacklo_epi8(alpha0, zero);
266 const __m128i alpha2 = _mm_unpacklo_epi8(alpha0, alpha0);
267 const __m128i v2 = _mm_mulhi_epu16(v1, alpha2);
268 const __m128i v3 = _mm_mullo_epi16(v1, alpha1);
269 const __m128i v4 = _mm_adds_epu16(v2, v3);
270 const __m128i v5 = _mm_adds_epu16(v4, kRound);
271 const __m128i v6 = _mm_srli_epi16(v5, 8);
272 const __m128i v7 = _mm_packus_epi16(v6, zero);
273 _mm_storel_epi64((__m128i*)&ptr[x], v7);
274 }
275 }
276 width -= x;
277 if (width > 0) WebPMultRowC(ptr + x, alpha + x, width, inverse);
278 }
279
280 //------------------------------------------------------------------------------
281 // Entry point
282
283 extern void WebPInitAlphaProcessingSSE2(void);
284
WebPInitAlphaProcessingSSE2(void)285 WEBP_TSAN_IGNORE_FUNCTION void WebPInitAlphaProcessingSSE2(void) {
286 WebPMultARGBRow = MultARGBRow;
287 WebPMultRow = MultRow;
288 WebPApplyAlphaMultiply = ApplyAlphaMultiply;
289 WebPDispatchAlpha = DispatchAlpha;
290 WebPDispatchAlphaToGreen = DispatchAlphaToGreen;
291 WebPExtractAlpha = ExtractAlpha;
292 }
293
294 #else // !WEBP_USE_SSE2
295
296 WEBP_DSP_INIT_STUB(WebPInitAlphaProcessingSSE2)
297
298 #endif // WEBP_USE_SSE2
299