1 //===- InstCombineSelect.cpp ----------------------------------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the visitSelect function.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "InstCombineInternal.h"
15 #include "llvm/Analysis/ConstantFolding.h"
16 #include "llvm/Analysis/InstructionSimplify.h"
17 #include "llvm/Analysis/ValueTracking.h"
18 #include "llvm/IR/PatternMatch.h"
19 using namespace llvm;
20 using namespace PatternMatch;
21
22 #define DEBUG_TYPE "instcombine"
23
24 static SelectPatternFlavor
getInverseMinMaxSelectPattern(SelectPatternFlavor SPF)25 getInverseMinMaxSelectPattern(SelectPatternFlavor SPF) {
26 switch (SPF) {
27 default:
28 llvm_unreachable("unhandled!");
29
30 case SPF_SMIN:
31 return SPF_SMAX;
32 case SPF_UMIN:
33 return SPF_UMAX;
34 case SPF_SMAX:
35 return SPF_SMIN;
36 case SPF_UMAX:
37 return SPF_UMIN;
38 }
39 }
40
getCmpPredicateForMinMax(SelectPatternFlavor SPF,bool Ordered=false)41 static CmpInst::Predicate getCmpPredicateForMinMax(SelectPatternFlavor SPF,
42 bool Ordered=false) {
43 switch (SPF) {
44 default:
45 llvm_unreachable("unhandled!");
46
47 case SPF_SMIN:
48 return ICmpInst::ICMP_SLT;
49 case SPF_UMIN:
50 return ICmpInst::ICMP_ULT;
51 case SPF_SMAX:
52 return ICmpInst::ICMP_SGT;
53 case SPF_UMAX:
54 return ICmpInst::ICMP_UGT;
55 case SPF_FMINNUM:
56 return Ordered ? FCmpInst::FCMP_OLT : FCmpInst::FCMP_ULT;
57 case SPF_FMAXNUM:
58 return Ordered ? FCmpInst::FCMP_OGT : FCmpInst::FCMP_UGT;
59 }
60 }
61
generateMinMaxSelectPattern(InstCombiner::BuilderTy * Builder,SelectPatternFlavor SPF,Value * A,Value * B)62 static Value *generateMinMaxSelectPattern(InstCombiner::BuilderTy *Builder,
63 SelectPatternFlavor SPF, Value *A,
64 Value *B) {
65 CmpInst::Predicate Pred = getCmpPredicateForMinMax(SPF);
66 assert(CmpInst::isIntPredicate(Pred));
67 return Builder->CreateSelect(Builder->CreateICmp(Pred, A, B), A, B);
68 }
69
70 /// We want to turn code that looks like this:
71 /// %C = or %A, %B
72 /// %D = select %cond, %C, %A
73 /// into:
74 /// %C = select %cond, %B, 0
75 /// %D = or %A, %C
76 ///
77 /// Assuming that the specified instruction is an operand to the select, return
78 /// a bitmask indicating which operands of this instruction are foldable if they
79 /// equal the other incoming value of the select.
80 ///
GetSelectFoldableOperands(Instruction * I)81 static unsigned GetSelectFoldableOperands(Instruction *I) {
82 switch (I->getOpcode()) {
83 case Instruction::Add:
84 case Instruction::Mul:
85 case Instruction::And:
86 case Instruction::Or:
87 case Instruction::Xor:
88 return 3; // Can fold through either operand.
89 case Instruction::Sub: // Can only fold on the amount subtracted.
90 case Instruction::Shl: // Can only fold on the shift amount.
91 case Instruction::LShr:
92 case Instruction::AShr:
93 return 1;
94 default:
95 return 0; // Cannot fold
96 }
97 }
98
99 /// For the same transformation as the previous function, return the identity
100 /// constant that goes into the select.
GetSelectFoldableConstant(Instruction * I)101 static Constant *GetSelectFoldableConstant(Instruction *I) {
102 switch (I->getOpcode()) {
103 default: llvm_unreachable("This cannot happen!");
104 case Instruction::Add:
105 case Instruction::Sub:
106 case Instruction::Or:
107 case Instruction::Xor:
108 case Instruction::Shl:
109 case Instruction::LShr:
110 case Instruction::AShr:
111 return Constant::getNullValue(I->getType());
112 case Instruction::And:
113 return Constant::getAllOnesValue(I->getType());
114 case Instruction::Mul:
115 return ConstantInt::get(I->getType(), 1);
116 }
117 }
118
119 /// Here we have (select c, TI, FI), and we know that TI and FI
120 /// have the same opcode and only one use each. Try to simplify this.
FoldSelectOpOp(SelectInst & SI,Instruction * TI,Instruction * FI)121 Instruction *InstCombiner::FoldSelectOpOp(SelectInst &SI, Instruction *TI,
122 Instruction *FI) {
123 if (TI->getNumOperands() == 1) {
124 // If this is a non-volatile load or a cast from the same type,
125 // merge.
126 if (TI->isCast()) {
127 Type *FIOpndTy = FI->getOperand(0)->getType();
128 if (TI->getOperand(0)->getType() != FIOpndTy)
129 return nullptr;
130 // The select condition may be a vector. We may only change the operand
131 // type if the vector width remains the same (and matches the condition).
132 Type *CondTy = SI.getCondition()->getType();
133 if (CondTy->isVectorTy() && (!FIOpndTy->isVectorTy() ||
134 CondTy->getVectorNumElements() != FIOpndTy->getVectorNumElements()))
135 return nullptr;
136 } else {
137 return nullptr; // unknown unary op.
138 }
139
140 // Fold this by inserting a select from the input values.
141 Value *NewSI = Builder->CreateSelect(SI.getCondition(), TI->getOperand(0),
142 FI->getOperand(0), SI.getName()+".v");
143 return CastInst::Create(Instruction::CastOps(TI->getOpcode()), NewSI,
144 TI->getType());
145 }
146
147 // Only handle binary operators here.
148 if (!isa<BinaryOperator>(TI))
149 return nullptr;
150
151 // Figure out if the operations have any operands in common.
152 Value *MatchOp, *OtherOpT, *OtherOpF;
153 bool MatchIsOpZero;
154 if (TI->getOperand(0) == FI->getOperand(0)) {
155 MatchOp = TI->getOperand(0);
156 OtherOpT = TI->getOperand(1);
157 OtherOpF = FI->getOperand(1);
158 MatchIsOpZero = true;
159 } else if (TI->getOperand(1) == FI->getOperand(1)) {
160 MatchOp = TI->getOperand(1);
161 OtherOpT = TI->getOperand(0);
162 OtherOpF = FI->getOperand(0);
163 MatchIsOpZero = false;
164 } else if (!TI->isCommutative()) {
165 return nullptr;
166 } else if (TI->getOperand(0) == FI->getOperand(1)) {
167 MatchOp = TI->getOperand(0);
168 OtherOpT = TI->getOperand(1);
169 OtherOpF = FI->getOperand(0);
170 MatchIsOpZero = true;
171 } else if (TI->getOperand(1) == FI->getOperand(0)) {
172 MatchOp = TI->getOperand(1);
173 OtherOpT = TI->getOperand(0);
174 OtherOpF = FI->getOperand(1);
175 MatchIsOpZero = true;
176 } else {
177 return nullptr;
178 }
179
180 // If we reach here, they do have operations in common.
181 Value *NewSI = Builder->CreateSelect(SI.getCondition(), OtherOpT,
182 OtherOpF, SI.getName()+".v");
183
184 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(TI)) {
185 if (MatchIsOpZero)
186 return BinaryOperator::Create(BO->getOpcode(), MatchOp, NewSI);
187 else
188 return BinaryOperator::Create(BO->getOpcode(), NewSI, MatchOp);
189 }
190 llvm_unreachable("Shouldn't get here");
191 }
192
isSelect01(Constant * C1,Constant * C2)193 static bool isSelect01(Constant *C1, Constant *C2) {
194 ConstantInt *C1I = dyn_cast<ConstantInt>(C1);
195 if (!C1I)
196 return false;
197 ConstantInt *C2I = dyn_cast<ConstantInt>(C2);
198 if (!C2I)
199 return false;
200 if (!C1I->isZero() && !C2I->isZero()) // One side must be zero.
201 return false;
202 return C1I->isOne() || C1I->isAllOnesValue() ||
203 C2I->isOne() || C2I->isAllOnesValue();
204 }
205
206 /// Try to fold the select into one of the operands to allow further
207 /// optimization.
FoldSelectIntoOp(SelectInst & SI,Value * TrueVal,Value * FalseVal)208 Instruction *InstCombiner::FoldSelectIntoOp(SelectInst &SI, Value *TrueVal,
209 Value *FalseVal) {
210 // See the comment above GetSelectFoldableOperands for a description of the
211 // transformation we are doing here.
212 if (Instruction *TVI = dyn_cast<Instruction>(TrueVal)) {
213 if (TVI->hasOneUse() && TVI->getNumOperands() == 2 &&
214 !isa<Constant>(FalseVal)) {
215 if (unsigned SFO = GetSelectFoldableOperands(TVI)) {
216 unsigned OpToFold = 0;
217 if ((SFO & 1) && FalseVal == TVI->getOperand(0)) {
218 OpToFold = 1;
219 } else if ((SFO & 2) && FalseVal == TVI->getOperand(1)) {
220 OpToFold = 2;
221 }
222
223 if (OpToFold) {
224 Constant *C = GetSelectFoldableConstant(TVI);
225 Value *OOp = TVI->getOperand(2-OpToFold);
226 // Avoid creating select between 2 constants unless it's selecting
227 // between 0, 1 and -1.
228 if (!isa<Constant>(OOp) || isSelect01(C, cast<Constant>(OOp))) {
229 Value *NewSel = Builder->CreateSelect(SI.getCondition(), OOp, C);
230 NewSel->takeName(TVI);
231 BinaryOperator *TVI_BO = cast<BinaryOperator>(TVI);
232 BinaryOperator *BO = BinaryOperator::Create(TVI_BO->getOpcode(),
233 FalseVal, NewSel);
234 if (isa<PossiblyExactOperator>(BO))
235 BO->setIsExact(TVI_BO->isExact());
236 if (isa<OverflowingBinaryOperator>(BO)) {
237 BO->setHasNoUnsignedWrap(TVI_BO->hasNoUnsignedWrap());
238 BO->setHasNoSignedWrap(TVI_BO->hasNoSignedWrap());
239 }
240 return BO;
241 }
242 }
243 }
244 }
245 }
246
247 if (Instruction *FVI = dyn_cast<Instruction>(FalseVal)) {
248 if (FVI->hasOneUse() && FVI->getNumOperands() == 2 &&
249 !isa<Constant>(TrueVal)) {
250 if (unsigned SFO = GetSelectFoldableOperands(FVI)) {
251 unsigned OpToFold = 0;
252 if ((SFO & 1) && TrueVal == FVI->getOperand(0)) {
253 OpToFold = 1;
254 } else if ((SFO & 2) && TrueVal == FVI->getOperand(1)) {
255 OpToFold = 2;
256 }
257
258 if (OpToFold) {
259 Constant *C = GetSelectFoldableConstant(FVI);
260 Value *OOp = FVI->getOperand(2-OpToFold);
261 // Avoid creating select between 2 constants unless it's selecting
262 // between 0, 1 and -1.
263 if (!isa<Constant>(OOp) || isSelect01(C, cast<Constant>(OOp))) {
264 Value *NewSel = Builder->CreateSelect(SI.getCondition(), C, OOp);
265 NewSel->takeName(FVI);
266 BinaryOperator *FVI_BO = cast<BinaryOperator>(FVI);
267 BinaryOperator *BO = BinaryOperator::Create(FVI_BO->getOpcode(),
268 TrueVal, NewSel);
269 if (isa<PossiblyExactOperator>(BO))
270 BO->setIsExact(FVI_BO->isExact());
271 if (isa<OverflowingBinaryOperator>(BO)) {
272 BO->setHasNoUnsignedWrap(FVI_BO->hasNoUnsignedWrap());
273 BO->setHasNoSignedWrap(FVI_BO->hasNoSignedWrap());
274 }
275 return BO;
276 }
277 }
278 }
279 }
280 }
281
282 return nullptr;
283 }
284
285 /// We want to turn:
286 /// (select (icmp eq (and X, C1), 0), Y, (or Y, C2))
287 /// into:
288 /// (or (shl (and X, C1), C3), y)
289 /// iff:
290 /// C1 and C2 are both powers of 2
291 /// where:
292 /// C3 = Log(C2) - Log(C1)
293 ///
294 /// This transform handles cases where:
295 /// 1. The icmp predicate is inverted
296 /// 2. The select operands are reversed
297 /// 3. The magnitude of C2 and C1 are flipped
foldSelectICmpAndOr(const SelectInst & SI,Value * TrueVal,Value * FalseVal,InstCombiner::BuilderTy * Builder)298 static Value *foldSelectICmpAndOr(const SelectInst &SI, Value *TrueVal,
299 Value *FalseVal,
300 InstCombiner::BuilderTy *Builder) {
301 const ICmpInst *IC = dyn_cast<ICmpInst>(SI.getCondition());
302 if (!IC || !IC->isEquality() || !SI.getType()->isIntegerTy())
303 return nullptr;
304
305 Value *CmpLHS = IC->getOperand(0);
306 Value *CmpRHS = IC->getOperand(1);
307
308 if (!match(CmpRHS, m_Zero()))
309 return nullptr;
310
311 Value *X;
312 const APInt *C1;
313 if (!match(CmpLHS, m_And(m_Value(X), m_Power2(C1))))
314 return nullptr;
315
316 const APInt *C2;
317 bool OrOnTrueVal = false;
318 bool OrOnFalseVal = match(FalseVal, m_Or(m_Specific(TrueVal), m_Power2(C2)));
319 if (!OrOnFalseVal)
320 OrOnTrueVal = match(TrueVal, m_Or(m_Specific(FalseVal), m_Power2(C2)));
321
322 if (!OrOnFalseVal && !OrOnTrueVal)
323 return nullptr;
324
325 Value *V = CmpLHS;
326 Value *Y = OrOnFalseVal ? TrueVal : FalseVal;
327
328 unsigned C1Log = C1->logBase2();
329 unsigned C2Log = C2->logBase2();
330 if (C2Log > C1Log) {
331 V = Builder->CreateZExtOrTrunc(V, Y->getType());
332 V = Builder->CreateShl(V, C2Log - C1Log);
333 } else if (C1Log > C2Log) {
334 V = Builder->CreateLShr(V, C1Log - C2Log);
335 V = Builder->CreateZExtOrTrunc(V, Y->getType());
336 } else
337 V = Builder->CreateZExtOrTrunc(V, Y->getType());
338
339 ICmpInst::Predicate Pred = IC->getPredicate();
340 if ((Pred == ICmpInst::ICMP_NE && OrOnFalseVal) ||
341 (Pred == ICmpInst::ICMP_EQ && OrOnTrueVal))
342 V = Builder->CreateXor(V, *C2);
343
344 return Builder->CreateOr(V, Y);
345 }
346
347 /// Attempt to fold a cttz/ctlz followed by a icmp plus select into a single
348 /// call to cttz/ctlz with flag 'is_zero_undef' cleared.
349 ///
350 /// For example, we can fold the following code sequence:
351 /// \code
352 /// %0 = tail call i32 @llvm.cttz.i32(i32 %x, i1 true)
353 /// %1 = icmp ne i32 %x, 0
354 /// %2 = select i1 %1, i32 %0, i32 32
355 /// \code
356 ///
357 /// into:
358 /// %0 = tail call i32 @llvm.cttz.i32(i32 %x, i1 false)
foldSelectCttzCtlz(ICmpInst * ICI,Value * TrueVal,Value * FalseVal,InstCombiner::BuilderTy * Builder)359 static Value *foldSelectCttzCtlz(ICmpInst *ICI, Value *TrueVal, Value *FalseVal,
360 InstCombiner::BuilderTy *Builder) {
361 ICmpInst::Predicate Pred = ICI->getPredicate();
362 Value *CmpLHS = ICI->getOperand(0);
363 Value *CmpRHS = ICI->getOperand(1);
364
365 // Check if the condition value compares a value for equality against zero.
366 if (!ICI->isEquality() || !match(CmpRHS, m_Zero()))
367 return nullptr;
368
369 Value *Count = FalseVal;
370 Value *ValueOnZero = TrueVal;
371 if (Pred == ICmpInst::ICMP_NE)
372 std::swap(Count, ValueOnZero);
373
374 // Skip zero extend/truncate.
375 Value *V = nullptr;
376 if (match(Count, m_ZExt(m_Value(V))) ||
377 match(Count, m_Trunc(m_Value(V))))
378 Count = V;
379
380 // Check if the value propagated on zero is a constant number equal to the
381 // sizeof in bits of 'Count'.
382 unsigned SizeOfInBits = Count->getType()->getScalarSizeInBits();
383 if (!match(ValueOnZero, m_SpecificInt(SizeOfInBits)))
384 return nullptr;
385
386 // Check that 'Count' is a call to intrinsic cttz/ctlz. Also check that the
387 // input to the cttz/ctlz is used as LHS for the compare instruction.
388 if (match(Count, m_Intrinsic<Intrinsic::cttz>(m_Specific(CmpLHS))) ||
389 match(Count, m_Intrinsic<Intrinsic::ctlz>(m_Specific(CmpLHS)))) {
390 IntrinsicInst *II = cast<IntrinsicInst>(Count);
391 IRBuilder<> Builder(II);
392 // Explicitly clear the 'undef_on_zero' flag.
393 IntrinsicInst *NewI = cast<IntrinsicInst>(II->clone());
394 Type *Ty = NewI->getArgOperand(1)->getType();
395 NewI->setArgOperand(1, Constant::getNullValue(Ty));
396 Builder.Insert(NewI);
397 return Builder.CreateZExtOrTrunc(NewI, ValueOnZero->getType());
398 }
399
400 return nullptr;
401 }
402
403 /// Visit a SelectInst that has an ICmpInst as its first operand.
visitSelectInstWithICmp(SelectInst & SI,ICmpInst * ICI)404 Instruction *InstCombiner::visitSelectInstWithICmp(SelectInst &SI,
405 ICmpInst *ICI) {
406 bool Changed = false;
407 ICmpInst::Predicate Pred = ICI->getPredicate();
408 Value *CmpLHS = ICI->getOperand(0);
409 Value *CmpRHS = ICI->getOperand(1);
410 Value *TrueVal = SI.getTrueValue();
411 Value *FalseVal = SI.getFalseValue();
412
413 // Check cases where the comparison is with a constant that
414 // can be adjusted to fit the min/max idiom. We may move or edit ICI
415 // here, so make sure the select is the only user.
416 if (ICI->hasOneUse())
417 if (ConstantInt *CI = dyn_cast<ConstantInt>(CmpRHS)) {
418 switch (Pred) {
419 default: break;
420 case ICmpInst::ICMP_ULT:
421 case ICmpInst::ICMP_SLT:
422 case ICmpInst::ICMP_UGT:
423 case ICmpInst::ICMP_SGT: {
424 // These transformations only work for selects over integers.
425 IntegerType *SelectTy = dyn_cast<IntegerType>(SI.getType());
426 if (!SelectTy)
427 break;
428
429 Constant *AdjustedRHS;
430 if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_SGT)
431 AdjustedRHS = ConstantInt::get(CI->getContext(), CI->getValue() + 1);
432 else // (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_SLT)
433 AdjustedRHS = ConstantInt::get(CI->getContext(), CI->getValue() - 1);
434
435 // X > C ? X : C+1 --> X < C+1 ? C+1 : X
436 // X < C ? X : C-1 --> X > C-1 ? C-1 : X
437 if ((CmpLHS == TrueVal && AdjustedRHS == FalseVal) ||
438 (CmpLHS == FalseVal && AdjustedRHS == TrueVal))
439 ; // Nothing to do here. Values match without any sign/zero extension.
440
441 // Types do not match. Instead of calculating this with mixed types
442 // promote all to the larger type. This enables scalar evolution to
443 // analyze this expression.
444 else if (CmpRHS->getType()->getScalarSizeInBits()
445 < SelectTy->getBitWidth()) {
446 Constant *sextRHS = ConstantExpr::getSExt(AdjustedRHS, SelectTy);
447
448 // X = sext x; x >s c ? X : C+1 --> X = sext x; X <s C+1 ? C+1 : X
449 // X = sext x; x <s c ? X : C-1 --> X = sext x; X >s C-1 ? C-1 : X
450 // X = sext x; x >u c ? X : C+1 --> X = sext x; X <u C+1 ? C+1 : X
451 // X = sext x; x <u c ? X : C-1 --> X = sext x; X >u C-1 ? C-1 : X
452 if (match(TrueVal, m_SExt(m_Specific(CmpLHS))) &&
453 sextRHS == FalseVal) {
454 CmpLHS = TrueVal;
455 AdjustedRHS = sextRHS;
456 } else if (match(FalseVal, m_SExt(m_Specific(CmpLHS))) &&
457 sextRHS == TrueVal) {
458 CmpLHS = FalseVal;
459 AdjustedRHS = sextRHS;
460 } else if (ICI->isUnsigned()) {
461 Constant *zextRHS = ConstantExpr::getZExt(AdjustedRHS, SelectTy);
462 // X = zext x; x >u c ? X : C+1 --> X = zext x; X <u C+1 ? C+1 : X
463 // X = zext x; x <u c ? X : C-1 --> X = zext x; X >u C-1 ? C-1 : X
464 // zext + signed compare cannot be changed:
465 // 0xff <s 0x00, but 0x00ff >s 0x0000
466 if (match(TrueVal, m_ZExt(m_Specific(CmpLHS))) &&
467 zextRHS == FalseVal) {
468 CmpLHS = TrueVal;
469 AdjustedRHS = zextRHS;
470 } else if (match(FalseVal, m_ZExt(m_Specific(CmpLHS))) &&
471 zextRHS == TrueVal) {
472 CmpLHS = FalseVal;
473 AdjustedRHS = zextRHS;
474 } else
475 break;
476 } else
477 break;
478 } else
479 break;
480
481 Pred = ICmpInst::getSwappedPredicate(Pred);
482 CmpRHS = AdjustedRHS;
483 std::swap(FalseVal, TrueVal);
484 ICI->setPredicate(Pred);
485 ICI->setOperand(0, CmpLHS);
486 ICI->setOperand(1, CmpRHS);
487 SI.setOperand(1, TrueVal);
488 SI.setOperand(2, FalseVal);
489
490 // Move ICI instruction right before the select instruction. Otherwise
491 // the sext/zext value may be defined after the ICI instruction uses it.
492 ICI->moveBefore(&SI);
493
494 Changed = true;
495 break;
496 }
497 }
498 }
499
500 // Transform (X >s -1) ? C1 : C2 --> ((X >>s 31) & (C2 - C1)) + C1
501 // and (X <s 0) ? C2 : C1 --> ((X >>s 31) & (C2 - C1)) + C1
502 // FIXME: Type and constness constraints could be lifted, but we have to
503 // watch code size carefully. We should consider xor instead of
504 // sub/add when we decide to do that.
505 if (IntegerType *Ty = dyn_cast<IntegerType>(CmpLHS->getType())) {
506 if (TrueVal->getType() == Ty) {
507 if (ConstantInt *Cmp = dyn_cast<ConstantInt>(CmpRHS)) {
508 ConstantInt *C1 = nullptr, *C2 = nullptr;
509 if (Pred == ICmpInst::ICMP_SGT && Cmp->isAllOnesValue()) {
510 C1 = dyn_cast<ConstantInt>(TrueVal);
511 C2 = dyn_cast<ConstantInt>(FalseVal);
512 } else if (Pred == ICmpInst::ICMP_SLT && Cmp->isNullValue()) {
513 C1 = dyn_cast<ConstantInt>(FalseVal);
514 C2 = dyn_cast<ConstantInt>(TrueVal);
515 }
516 if (C1 && C2) {
517 // This shift results in either -1 or 0.
518 Value *AShr = Builder->CreateAShr(CmpLHS, Ty->getBitWidth()-1);
519
520 // Check if we can express the operation with a single or.
521 if (C2->isAllOnesValue())
522 return ReplaceInstUsesWith(SI, Builder->CreateOr(AShr, C1));
523
524 Value *And = Builder->CreateAnd(AShr, C2->getValue()-C1->getValue());
525 return ReplaceInstUsesWith(SI, Builder->CreateAdd(And, C1));
526 }
527 }
528 }
529 }
530
531 // NOTE: if we wanted to, this is where to detect integer MIN/MAX
532
533 if (CmpRHS != CmpLHS && isa<Constant>(CmpRHS)) {
534 if (CmpLHS == TrueVal && Pred == ICmpInst::ICMP_EQ) {
535 // Transform (X == C) ? X : Y -> (X == C) ? C : Y
536 SI.setOperand(1, CmpRHS);
537 Changed = true;
538 } else if (CmpLHS == FalseVal && Pred == ICmpInst::ICMP_NE) {
539 // Transform (X != C) ? Y : X -> (X != C) ? Y : C
540 SI.setOperand(2, CmpRHS);
541 Changed = true;
542 }
543 }
544
545 {
546 unsigned BitWidth = DL.getTypeSizeInBits(TrueVal->getType());
547 APInt MinSignedValue = APInt::getSignBit(BitWidth);
548 Value *X;
549 const APInt *Y, *C;
550 bool TrueWhenUnset;
551 bool IsBitTest = false;
552 if (ICmpInst::isEquality(Pred) &&
553 match(CmpLHS, m_And(m_Value(X), m_Power2(Y))) &&
554 match(CmpRHS, m_Zero())) {
555 IsBitTest = true;
556 TrueWhenUnset = Pred == ICmpInst::ICMP_EQ;
557 } else if (Pred == ICmpInst::ICMP_SLT && match(CmpRHS, m_Zero())) {
558 X = CmpLHS;
559 Y = &MinSignedValue;
560 IsBitTest = true;
561 TrueWhenUnset = false;
562 } else if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, m_AllOnes())) {
563 X = CmpLHS;
564 Y = &MinSignedValue;
565 IsBitTest = true;
566 TrueWhenUnset = true;
567 }
568 if (IsBitTest) {
569 Value *V = nullptr;
570 // (X & Y) == 0 ? X : X ^ Y --> X & ~Y
571 if (TrueWhenUnset && TrueVal == X &&
572 match(FalseVal, m_Xor(m_Specific(X), m_APInt(C))) && *Y == *C)
573 V = Builder->CreateAnd(X, ~(*Y));
574 // (X & Y) != 0 ? X ^ Y : X --> X & ~Y
575 else if (!TrueWhenUnset && FalseVal == X &&
576 match(TrueVal, m_Xor(m_Specific(X), m_APInt(C))) && *Y == *C)
577 V = Builder->CreateAnd(X, ~(*Y));
578 // (X & Y) == 0 ? X ^ Y : X --> X | Y
579 else if (TrueWhenUnset && FalseVal == X &&
580 match(TrueVal, m_Xor(m_Specific(X), m_APInt(C))) && *Y == *C)
581 V = Builder->CreateOr(X, *Y);
582 // (X & Y) != 0 ? X : X ^ Y --> X | Y
583 else if (!TrueWhenUnset && TrueVal == X &&
584 match(FalseVal, m_Xor(m_Specific(X), m_APInt(C))) && *Y == *C)
585 V = Builder->CreateOr(X, *Y);
586
587 if (V)
588 return ReplaceInstUsesWith(SI, V);
589 }
590 }
591
592 if (Value *V = foldSelectICmpAndOr(SI, TrueVal, FalseVal, Builder))
593 return ReplaceInstUsesWith(SI, V);
594
595 if (Value *V = foldSelectCttzCtlz(ICI, TrueVal, FalseVal, Builder))
596 return ReplaceInstUsesWith(SI, V);
597
598 return Changed ? &SI : nullptr;
599 }
600
601
602 /// SI is a select whose condition is a PHI node (but the two may be in
603 /// different blocks). See if the true/false values (V) are live in all of the
604 /// predecessor blocks of the PHI. For example, cases like this can't be mapped:
605 ///
606 /// X = phi [ C1, BB1], [C2, BB2]
607 /// Y = add
608 /// Z = select X, Y, 0
609 ///
610 /// because Y is not live in BB1/BB2.
611 ///
CanSelectOperandBeMappingIntoPredBlock(const Value * V,const SelectInst & SI)612 static bool CanSelectOperandBeMappingIntoPredBlock(const Value *V,
613 const SelectInst &SI) {
614 // If the value is a non-instruction value like a constant or argument, it
615 // can always be mapped.
616 const Instruction *I = dyn_cast<Instruction>(V);
617 if (!I) return true;
618
619 // If V is a PHI node defined in the same block as the condition PHI, we can
620 // map the arguments.
621 const PHINode *CondPHI = cast<PHINode>(SI.getCondition());
622
623 if (const PHINode *VP = dyn_cast<PHINode>(I))
624 if (VP->getParent() == CondPHI->getParent())
625 return true;
626
627 // Otherwise, if the PHI and select are defined in the same block and if V is
628 // defined in a different block, then we can transform it.
629 if (SI.getParent() == CondPHI->getParent() &&
630 I->getParent() != CondPHI->getParent())
631 return true;
632
633 // Otherwise we have a 'hard' case and we can't tell without doing more
634 // detailed dominator based analysis, punt.
635 return false;
636 }
637
638 /// We have an SPF (e.g. a min or max) of an SPF of the form:
639 /// SPF2(SPF1(A, B), C)
FoldSPFofSPF(Instruction * Inner,SelectPatternFlavor SPF1,Value * A,Value * B,Instruction & Outer,SelectPatternFlavor SPF2,Value * C)640 Instruction *InstCombiner::FoldSPFofSPF(Instruction *Inner,
641 SelectPatternFlavor SPF1,
642 Value *A, Value *B,
643 Instruction &Outer,
644 SelectPatternFlavor SPF2, Value *C) {
645 if (C == A || C == B) {
646 // MAX(MAX(A, B), B) -> MAX(A, B)
647 // MIN(MIN(a, b), a) -> MIN(a, b)
648 if (SPF1 == SPF2)
649 return ReplaceInstUsesWith(Outer, Inner);
650
651 // MAX(MIN(a, b), a) -> a
652 // MIN(MAX(a, b), a) -> a
653 if ((SPF1 == SPF_SMIN && SPF2 == SPF_SMAX) ||
654 (SPF1 == SPF_SMAX && SPF2 == SPF_SMIN) ||
655 (SPF1 == SPF_UMIN && SPF2 == SPF_UMAX) ||
656 (SPF1 == SPF_UMAX && SPF2 == SPF_UMIN))
657 return ReplaceInstUsesWith(Outer, C);
658 }
659
660 if (SPF1 == SPF2) {
661 if (ConstantInt *CB = dyn_cast<ConstantInt>(B)) {
662 if (ConstantInt *CC = dyn_cast<ConstantInt>(C)) {
663 APInt ACB = CB->getValue();
664 APInt ACC = CC->getValue();
665
666 // MIN(MIN(A, 23), 97) -> MIN(A, 23)
667 // MAX(MAX(A, 97), 23) -> MAX(A, 97)
668 if ((SPF1 == SPF_UMIN && ACB.ule(ACC)) ||
669 (SPF1 == SPF_SMIN && ACB.sle(ACC)) ||
670 (SPF1 == SPF_UMAX && ACB.uge(ACC)) ||
671 (SPF1 == SPF_SMAX && ACB.sge(ACC)))
672 return ReplaceInstUsesWith(Outer, Inner);
673
674 // MIN(MIN(A, 97), 23) -> MIN(A, 23)
675 // MAX(MAX(A, 23), 97) -> MAX(A, 97)
676 if ((SPF1 == SPF_UMIN && ACB.ugt(ACC)) ||
677 (SPF1 == SPF_SMIN && ACB.sgt(ACC)) ||
678 (SPF1 == SPF_UMAX && ACB.ult(ACC)) ||
679 (SPF1 == SPF_SMAX && ACB.slt(ACC))) {
680 Outer.replaceUsesOfWith(Inner, A);
681 return &Outer;
682 }
683 }
684 }
685 }
686
687 // ABS(ABS(X)) -> ABS(X)
688 // NABS(NABS(X)) -> NABS(X)
689 if (SPF1 == SPF2 && (SPF1 == SPF_ABS || SPF1 == SPF_NABS)) {
690 return ReplaceInstUsesWith(Outer, Inner);
691 }
692
693 // ABS(NABS(X)) -> ABS(X)
694 // NABS(ABS(X)) -> NABS(X)
695 if ((SPF1 == SPF_ABS && SPF2 == SPF_NABS) ||
696 (SPF1 == SPF_NABS && SPF2 == SPF_ABS)) {
697 SelectInst *SI = cast<SelectInst>(Inner);
698 Value *NewSI = Builder->CreateSelect(
699 SI->getCondition(), SI->getFalseValue(), SI->getTrueValue());
700 return ReplaceInstUsesWith(Outer, NewSI);
701 }
702
703 auto IsFreeOrProfitableToInvert =
704 [&](Value *V, Value *&NotV, bool &ElidesXor) {
705 if (match(V, m_Not(m_Value(NotV)))) {
706 // If V has at most 2 uses then we can get rid of the xor operation
707 // entirely.
708 ElidesXor |= !V->hasNUsesOrMore(3);
709 return true;
710 }
711
712 if (IsFreeToInvert(V, !V->hasNUsesOrMore(3))) {
713 NotV = nullptr;
714 return true;
715 }
716
717 return false;
718 };
719
720 Value *NotA, *NotB, *NotC;
721 bool ElidesXor = false;
722
723 // MIN(MIN(~A, ~B), ~C) == ~MAX(MAX(A, B), C)
724 // MIN(MAX(~A, ~B), ~C) == ~MAX(MIN(A, B), C)
725 // MAX(MIN(~A, ~B), ~C) == ~MIN(MAX(A, B), C)
726 // MAX(MAX(~A, ~B), ~C) == ~MIN(MIN(A, B), C)
727 //
728 // This transform is performance neutral if we can elide at least one xor from
729 // the set of three operands, since we'll be tacking on an xor at the very
730 // end.
731 if (IsFreeOrProfitableToInvert(A, NotA, ElidesXor) &&
732 IsFreeOrProfitableToInvert(B, NotB, ElidesXor) &&
733 IsFreeOrProfitableToInvert(C, NotC, ElidesXor) && ElidesXor) {
734 if (!NotA)
735 NotA = Builder->CreateNot(A);
736 if (!NotB)
737 NotB = Builder->CreateNot(B);
738 if (!NotC)
739 NotC = Builder->CreateNot(C);
740
741 Value *NewInner = generateMinMaxSelectPattern(
742 Builder, getInverseMinMaxSelectPattern(SPF1), NotA, NotB);
743 Value *NewOuter = Builder->CreateNot(generateMinMaxSelectPattern(
744 Builder, getInverseMinMaxSelectPattern(SPF2), NewInner, NotC));
745 return ReplaceInstUsesWith(Outer, NewOuter);
746 }
747
748 return nullptr;
749 }
750
751 /// If one of the constants is zero (we know they can't both be) and we have an
752 /// icmp instruction with zero, and we have an 'and' with the non-constant value
753 /// and a power of two we can turn the select into a shift on the result of the
754 /// 'and'.
foldSelectICmpAnd(const SelectInst & SI,ConstantInt * TrueVal,ConstantInt * FalseVal,InstCombiner::BuilderTy * Builder)755 static Value *foldSelectICmpAnd(const SelectInst &SI, ConstantInt *TrueVal,
756 ConstantInt *FalseVal,
757 InstCombiner::BuilderTy *Builder) {
758 const ICmpInst *IC = dyn_cast<ICmpInst>(SI.getCondition());
759 if (!IC || !IC->isEquality() || !SI.getType()->isIntegerTy())
760 return nullptr;
761
762 if (!match(IC->getOperand(1), m_Zero()))
763 return nullptr;
764
765 ConstantInt *AndRHS;
766 Value *LHS = IC->getOperand(0);
767 if (!match(LHS, m_And(m_Value(), m_ConstantInt(AndRHS))))
768 return nullptr;
769
770 // If both select arms are non-zero see if we have a select of the form
771 // 'x ? 2^n + C : C'. Then we can offset both arms by C, use the logic
772 // for 'x ? 2^n : 0' and fix the thing up at the end.
773 ConstantInt *Offset = nullptr;
774 if (!TrueVal->isZero() && !FalseVal->isZero()) {
775 if ((TrueVal->getValue() - FalseVal->getValue()).isPowerOf2())
776 Offset = FalseVal;
777 else if ((FalseVal->getValue() - TrueVal->getValue()).isPowerOf2())
778 Offset = TrueVal;
779 else
780 return nullptr;
781
782 // Adjust TrueVal and FalseVal to the offset.
783 TrueVal = ConstantInt::get(Builder->getContext(),
784 TrueVal->getValue() - Offset->getValue());
785 FalseVal = ConstantInt::get(Builder->getContext(),
786 FalseVal->getValue() - Offset->getValue());
787 }
788
789 // Make sure the mask in the 'and' and one of the select arms is a power of 2.
790 if (!AndRHS->getValue().isPowerOf2() ||
791 (!TrueVal->getValue().isPowerOf2() &&
792 !FalseVal->getValue().isPowerOf2()))
793 return nullptr;
794
795 // Determine which shift is needed to transform result of the 'and' into the
796 // desired result.
797 ConstantInt *ValC = !TrueVal->isZero() ? TrueVal : FalseVal;
798 unsigned ValZeros = ValC->getValue().logBase2();
799 unsigned AndZeros = AndRHS->getValue().logBase2();
800
801 // If types don't match we can still convert the select by introducing a zext
802 // or a trunc of the 'and'. The trunc case requires that all of the truncated
803 // bits are zero, we can figure that out by looking at the 'and' mask.
804 if (AndZeros >= ValC->getBitWidth())
805 return nullptr;
806
807 Value *V = Builder->CreateZExtOrTrunc(LHS, SI.getType());
808 if (ValZeros > AndZeros)
809 V = Builder->CreateShl(V, ValZeros - AndZeros);
810 else if (ValZeros < AndZeros)
811 V = Builder->CreateLShr(V, AndZeros - ValZeros);
812
813 // Okay, now we know that everything is set up, we just don't know whether we
814 // have a icmp_ne or icmp_eq and whether the true or false val is the zero.
815 bool ShouldNotVal = !TrueVal->isZero();
816 ShouldNotVal ^= IC->getPredicate() == ICmpInst::ICMP_NE;
817 if (ShouldNotVal)
818 V = Builder->CreateXor(V, ValC);
819
820 // Apply an offset if needed.
821 if (Offset)
822 V = Builder->CreateAdd(V, Offset);
823 return V;
824 }
825
visitSelectInst(SelectInst & SI)826 Instruction *InstCombiner::visitSelectInst(SelectInst &SI) {
827 Value *CondVal = SI.getCondition();
828 Value *TrueVal = SI.getTrueValue();
829 Value *FalseVal = SI.getFalseValue();
830
831 if (Value *V =
832 SimplifySelectInst(CondVal, TrueVal, FalseVal, DL, TLI, DT, AC))
833 return ReplaceInstUsesWith(SI, V);
834
835 if (SI.getType()->isIntegerTy(1)) {
836 if (ConstantInt *C = dyn_cast<ConstantInt>(TrueVal)) {
837 if (C->getZExtValue()) {
838 // Change: A = select B, true, C --> A = or B, C
839 return BinaryOperator::CreateOr(CondVal, FalseVal);
840 }
841 // Change: A = select B, false, C --> A = and !B, C
842 Value *NotCond = Builder->CreateNot(CondVal, "not."+CondVal->getName());
843 return BinaryOperator::CreateAnd(NotCond, FalseVal);
844 }
845 if (ConstantInt *C = dyn_cast<ConstantInt>(FalseVal)) {
846 if (!C->getZExtValue()) {
847 // Change: A = select B, C, false --> A = and B, C
848 return BinaryOperator::CreateAnd(CondVal, TrueVal);
849 }
850 // Change: A = select B, C, true --> A = or !B, C
851 Value *NotCond = Builder->CreateNot(CondVal, "not."+CondVal->getName());
852 return BinaryOperator::CreateOr(NotCond, TrueVal);
853 }
854
855 // select a, b, a -> a&b
856 // select a, a, b -> a|b
857 if (CondVal == TrueVal)
858 return BinaryOperator::CreateOr(CondVal, FalseVal);
859 if (CondVal == FalseVal)
860 return BinaryOperator::CreateAnd(CondVal, TrueVal);
861
862 // select a, ~a, b -> (~a)&b
863 // select a, b, ~a -> (~a)|b
864 if (match(TrueVal, m_Not(m_Specific(CondVal))))
865 return BinaryOperator::CreateAnd(TrueVal, FalseVal);
866 if (match(FalseVal, m_Not(m_Specific(CondVal))))
867 return BinaryOperator::CreateOr(TrueVal, FalseVal);
868 }
869
870 // Selecting between two integer constants?
871 if (ConstantInt *TrueValC = dyn_cast<ConstantInt>(TrueVal))
872 if (ConstantInt *FalseValC = dyn_cast<ConstantInt>(FalseVal)) {
873 // select C, 1, 0 -> zext C to int
874 if (FalseValC->isZero() && TrueValC->getValue() == 1)
875 return new ZExtInst(CondVal, SI.getType());
876
877 // select C, -1, 0 -> sext C to int
878 if (FalseValC->isZero() && TrueValC->isAllOnesValue())
879 return new SExtInst(CondVal, SI.getType());
880
881 // select C, 0, 1 -> zext !C to int
882 if (TrueValC->isZero() && FalseValC->getValue() == 1) {
883 Value *NotCond = Builder->CreateNot(CondVal, "not."+CondVal->getName());
884 return new ZExtInst(NotCond, SI.getType());
885 }
886
887 // select C, 0, -1 -> sext !C to int
888 if (TrueValC->isZero() && FalseValC->isAllOnesValue()) {
889 Value *NotCond = Builder->CreateNot(CondVal, "not."+CondVal->getName());
890 return new SExtInst(NotCond, SI.getType());
891 }
892
893 if (Value *V = foldSelectICmpAnd(SI, TrueValC, FalseValC, Builder))
894 return ReplaceInstUsesWith(SI, V);
895 }
896
897 // See if we are selecting two values based on a comparison of the two values.
898 if (FCmpInst *FCI = dyn_cast<FCmpInst>(CondVal)) {
899 if (FCI->getOperand(0) == TrueVal && FCI->getOperand(1) == FalseVal) {
900 // Transform (X == Y) ? X : Y -> Y
901 if (FCI->getPredicate() == FCmpInst::FCMP_OEQ) {
902 // This is not safe in general for floating point:
903 // consider X== -0, Y== +0.
904 // It becomes safe if either operand is a nonzero constant.
905 ConstantFP *CFPt, *CFPf;
906 if (((CFPt = dyn_cast<ConstantFP>(TrueVal)) &&
907 !CFPt->getValueAPF().isZero()) ||
908 ((CFPf = dyn_cast<ConstantFP>(FalseVal)) &&
909 !CFPf->getValueAPF().isZero()))
910 return ReplaceInstUsesWith(SI, FalseVal);
911 }
912 // Transform (X une Y) ? X : Y -> X
913 if (FCI->getPredicate() == FCmpInst::FCMP_UNE) {
914 // This is not safe in general for floating point:
915 // consider X== -0, Y== +0.
916 // It becomes safe if either operand is a nonzero constant.
917 ConstantFP *CFPt, *CFPf;
918 if (((CFPt = dyn_cast<ConstantFP>(TrueVal)) &&
919 !CFPt->getValueAPF().isZero()) ||
920 ((CFPf = dyn_cast<ConstantFP>(FalseVal)) &&
921 !CFPf->getValueAPF().isZero()))
922 return ReplaceInstUsesWith(SI, TrueVal);
923 }
924
925 // Canonicalize to use ordered comparisons by swapping the select
926 // operands.
927 //
928 // e.g.
929 // (X ugt Y) ? X : Y -> (X ole Y) ? Y : X
930 if (FCI->hasOneUse() && FCmpInst::isUnordered(FCI->getPredicate())) {
931 FCmpInst::Predicate InvPred = FCI->getInversePredicate();
932 IRBuilder<>::FastMathFlagGuard FMFG(*Builder);
933 Builder->SetFastMathFlags(FCI->getFastMathFlags());
934 Value *NewCond = Builder->CreateFCmp(InvPred, TrueVal, FalseVal,
935 FCI->getName() + ".inv");
936
937 return SelectInst::Create(NewCond, FalseVal, TrueVal,
938 SI.getName() + ".p");
939 }
940
941 // NOTE: if we wanted to, this is where to detect MIN/MAX
942 } else if (FCI->getOperand(0) == FalseVal && FCI->getOperand(1) == TrueVal){
943 // Transform (X == Y) ? Y : X -> X
944 if (FCI->getPredicate() == FCmpInst::FCMP_OEQ) {
945 // This is not safe in general for floating point:
946 // consider X== -0, Y== +0.
947 // It becomes safe if either operand is a nonzero constant.
948 ConstantFP *CFPt, *CFPf;
949 if (((CFPt = dyn_cast<ConstantFP>(TrueVal)) &&
950 !CFPt->getValueAPF().isZero()) ||
951 ((CFPf = dyn_cast<ConstantFP>(FalseVal)) &&
952 !CFPf->getValueAPF().isZero()))
953 return ReplaceInstUsesWith(SI, FalseVal);
954 }
955 // Transform (X une Y) ? Y : X -> Y
956 if (FCI->getPredicate() == FCmpInst::FCMP_UNE) {
957 // This is not safe in general for floating point:
958 // consider X== -0, Y== +0.
959 // It becomes safe if either operand is a nonzero constant.
960 ConstantFP *CFPt, *CFPf;
961 if (((CFPt = dyn_cast<ConstantFP>(TrueVal)) &&
962 !CFPt->getValueAPF().isZero()) ||
963 ((CFPf = dyn_cast<ConstantFP>(FalseVal)) &&
964 !CFPf->getValueAPF().isZero()))
965 return ReplaceInstUsesWith(SI, TrueVal);
966 }
967
968 // Canonicalize to use ordered comparisons by swapping the select
969 // operands.
970 //
971 // e.g.
972 // (X ugt Y) ? X : Y -> (X ole Y) ? X : Y
973 if (FCI->hasOneUse() && FCmpInst::isUnordered(FCI->getPredicate())) {
974 FCmpInst::Predicate InvPred = FCI->getInversePredicate();
975 IRBuilder<>::FastMathFlagGuard FMFG(*Builder);
976 Builder->SetFastMathFlags(FCI->getFastMathFlags());
977 Value *NewCond = Builder->CreateFCmp(InvPred, FalseVal, TrueVal,
978 FCI->getName() + ".inv");
979
980 return SelectInst::Create(NewCond, FalseVal, TrueVal,
981 SI.getName() + ".p");
982 }
983
984 // NOTE: if we wanted to, this is where to detect MIN/MAX
985 }
986 // NOTE: if we wanted to, this is where to detect ABS
987 }
988
989 // See if we are selecting two values based on a comparison of the two values.
990 if (ICmpInst *ICI = dyn_cast<ICmpInst>(CondVal))
991 if (Instruction *Result = visitSelectInstWithICmp(SI, ICI))
992 return Result;
993
994 if (Instruction *TI = dyn_cast<Instruction>(TrueVal))
995 if (Instruction *FI = dyn_cast<Instruction>(FalseVal))
996 if (TI->hasOneUse() && FI->hasOneUse()) {
997 Instruction *AddOp = nullptr, *SubOp = nullptr;
998
999 // Turn (select C, (op X, Y), (op X, Z)) -> (op X, (select C, Y, Z))
1000 if (TI->getOpcode() == FI->getOpcode())
1001 if (Instruction *IV = FoldSelectOpOp(SI, TI, FI))
1002 return IV;
1003
1004 // Turn select C, (X+Y), (X-Y) --> (X+(select C, Y, (-Y))). This is
1005 // even legal for FP.
1006 if ((TI->getOpcode() == Instruction::Sub &&
1007 FI->getOpcode() == Instruction::Add) ||
1008 (TI->getOpcode() == Instruction::FSub &&
1009 FI->getOpcode() == Instruction::FAdd)) {
1010 AddOp = FI; SubOp = TI;
1011 } else if ((FI->getOpcode() == Instruction::Sub &&
1012 TI->getOpcode() == Instruction::Add) ||
1013 (FI->getOpcode() == Instruction::FSub &&
1014 TI->getOpcode() == Instruction::FAdd)) {
1015 AddOp = TI; SubOp = FI;
1016 }
1017
1018 if (AddOp) {
1019 Value *OtherAddOp = nullptr;
1020 if (SubOp->getOperand(0) == AddOp->getOperand(0)) {
1021 OtherAddOp = AddOp->getOperand(1);
1022 } else if (SubOp->getOperand(0) == AddOp->getOperand(1)) {
1023 OtherAddOp = AddOp->getOperand(0);
1024 }
1025
1026 if (OtherAddOp) {
1027 // So at this point we know we have (Y -> OtherAddOp):
1028 // select C, (add X, Y), (sub X, Z)
1029 Value *NegVal; // Compute -Z
1030 if (SI.getType()->isFPOrFPVectorTy()) {
1031 NegVal = Builder->CreateFNeg(SubOp->getOperand(1));
1032 if (Instruction *NegInst = dyn_cast<Instruction>(NegVal)) {
1033 FastMathFlags Flags = AddOp->getFastMathFlags();
1034 Flags &= SubOp->getFastMathFlags();
1035 NegInst->setFastMathFlags(Flags);
1036 }
1037 } else {
1038 NegVal = Builder->CreateNeg(SubOp->getOperand(1));
1039 }
1040
1041 Value *NewTrueOp = OtherAddOp;
1042 Value *NewFalseOp = NegVal;
1043 if (AddOp != TI)
1044 std::swap(NewTrueOp, NewFalseOp);
1045 Value *NewSel =
1046 Builder->CreateSelect(CondVal, NewTrueOp,
1047 NewFalseOp, SI.getName() + ".p");
1048
1049 if (SI.getType()->isFPOrFPVectorTy()) {
1050 Instruction *RI =
1051 BinaryOperator::CreateFAdd(SubOp->getOperand(0), NewSel);
1052
1053 FastMathFlags Flags = AddOp->getFastMathFlags();
1054 Flags &= SubOp->getFastMathFlags();
1055 RI->setFastMathFlags(Flags);
1056 return RI;
1057 } else
1058 return BinaryOperator::CreateAdd(SubOp->getOperand(0), NewSel);
1059 }
1060 }
1061 }
1062
1063 // See if we can fold the select into one of our operands.
1064 if (SI.getType()->isIntOrIntVectorTy() || SI.getType()->isFPOrFPVectorTy()) {
1065 if (Instruction *FoldI = FoldSelectIntoOp(SI, TrueVal, FalseVal))
1066 return FoldI;
1067
1068 Value *LHS, *RHS, *LHS2, *RHS2;
1069 Instruction::CastOps CastOp;
1070 SelectPatternResult SPR = matchSelectPattern(&SI, LHS, RHS, &CastOp);
1071 auto SPF = SPR.Flavor;
1072
1073 if (SelectPatternResult::isMinOrMax(SPF)) {
1074 // Canonicalize so that type casts are outside select patterns.
1075 if (LHS->getType()->getPrimitiveSizeInBits() !=
1076 SI.getType()->getPrimitiveSizeInBits()) {
1077 CmpInst::Predicate Pred = getCmpPredicateForMinMax(SPF, SPR.Ordered);
1078
1079 Value *Cmp;
1080 if (CmpInst::isIntPredicate(Pred)) {
1081 Cmp = Builder->CreateICmp(Pred, LHS, RHS);
1082 } else {
1083 IRBuilder<>::FastMathFlagGuard FMFG(*Builder);
1084 auto FMF = cast<FPMathOperator>(SI.getCondition())->getFastMathFlags();
1085 Builder->SetFastMathFlags(FMF);
1086 Cmp = Builder->CreateFCmp(Pred, LHS, RHS);
1087 }
1088
1089 Value *NewSI = Builder->CreateCast(CastOp,
1090 Builder->CreateSelect(Cmp, LHS, RHS),
1091 SI.getType());
1092 return ReplaceInstUsesWith(SI, NewSI);
1093 }
1094 }
1095
1096 if (SPF) {
1097 // MAX(MAX(a, b), a) -> MAX(a, b)
1098 // MIN(MIN(a, b), a) -> MIN(a, b)
1099 // MAX(MIN(a, b), a) -> a
1100 // MIN(MAX(a, b), a) -> a
1101 // ABS(ABS(a)) -> ABS(a)
1102 // NABS(NABS(a)) -> NABS(a)
1103 if (SelectPatternFlavor SPF2 = matchSelectPattern(LHS, LHS2, RHS2).Flavor)
1104 if (Instruction *R = FoldSPFofSPF(cast<Instruction>(LHS),SPF2,LHS2,RHS2,
1105 SI, SPF, RHS))
1106 return R;
1107 if (SelectPatternFlavor SPF2 = matchSelectPattern(RHS, LHS2, RHS2).Flavor)
1108 if (Instruction *R = FoldSPFofSPF(cast<Instruction>(RHS),SPF2,LHS2,RHS2,
1109 SI, SPF, LHS))
1110 return R;
1111 }
1112
1113 // MAX(~a, ~b) -> ~MIN(a, b)
1114 if (SPF == SPF_SMAX || SPF == SPF_UMAX) {
1115 if (IsFreeToInvert(LHS, LHS->hasNUses(2)) &&
1116 IsFreeToInvert(RHS, RHS->hasNUses(2))) {
1117
1118 // This transform adds a xor operation and that extra cost needs to be
1119 // justified. We look for simplifications that will result from
1120 // applying this rule:
1121
1122 bool Profitable =
1123 (LHS->hasNUses(2) && match(LHS, m_Not(m_Value()))) ||
1124 (RHS->hasNUses(2) && match(RHS, m_Not(m_Value()))) ||
1125 (SI.hasOneUse() && match(*SI.user_begin(), m_Not(m_Value())));
1126
1127 if (Profitable) {
1128 Value *NewLHS = Builder->CreateNot(LHS);
1129 Value *NewRHS = Builder->CreateNot(RHS);
1130 Value *NewCmp = SPF == SPF_SMAX
1131 ? Builder->CreateICmpSLT(NewLHS, NewRHS)
1132 : Builder->CreateICmpULT(NewLHS, NewRHS);
1133 Value *NewSI =
1134 Builder->CreateNot(Builder->CreateSelect(NewCmp, NewLHS, NewRHS));
1135 return ReplaceInstUsesWith(SI, NewSI);
1136 }
1137 }
1138 }
1139
1140 // TODO.
1141 // ABS(-X) -> ABS(X)
1142 }
1143
1144 // See if we can fold the select into a phi node if the condition is a select.
1145 if (isa<PHINode>(SI.getCondition()))
1146 // The true/false values have to be live in the PHI predecessor's blocks.
1147 if (CanSelectOperandBeMappingIntoPredBlock(TrueVal, SI) &&
1148 CanSelectOperandBeMappingIntoPredBlock(FalseVal, SI))
1149 if (Instruction *NV = FoldOpIntoPhi(SI))
1150 return NV;
1151
1152 if (SelectInst *TrueSI = dyn_cast<SelectInst>(TrueVal)) {
1153 if (TrueSI->getCondition()->getType() == CondVal->getType()) {
1154 // select(C, select(C, a, b), c) -> select(C, a, c)
1155 if (TrueSI->getCondition() == CondVal) {
1156 if (SI.getTrueValue() == TrueSI->getTrueValue())
1157 return nullptr;
1158 SI.setOperand(1, TrueSI->getTrueValue());
1159 return &SI;
1160 }
1161 // select(C0, select(C1, a, b), b) -> select(C0&C1, a, b)
1162 // We choose this as normal form to enable folding on the And and shortening
1163 // paths for the values (this helps GetUnderlyingObjects() for example).
1164 if (TrueSI->getFalseValue() == FalseVal && TrueSI->hasOneUse()) {
1165 Value *And = Builder->CreateAnd(CondVal, TrueSI->getCondition());
1166 SI.setOperand(0, And);
1167 SI.setOperand(1, TrueSI->getTrueValue());
1168 return &SI;
1169 }
1170 }
1171 }
1172 if (SelectInst *FalseSI = dyn_cast<SelectInst>(FalseVal)) {
1173 if (FalseSI->getCondition()->getType() == CondVal->getType()) {
1174 // select(C, a, select(C, b, c)) -> select(C, a, c)
1175 if (FalseSI->getCondition() == CondVal) {
1176 if (SI.getFalseValue() == FalseSI->getFalseValue())
1177 return nullptr;
1178 SI.setOperand(2, FalseSI->getFalseValue());
1179 return &SI;
1180 }
1181 // select(C0, a, select(C1, a, b)) -> select(C0|C1, a, b)
1182 if (FalseSI->getTrueValue() == TrueVal && FalseSI->hasOneUse()) {
1183 Value *Or = Builder->CreateOr(CondVal, FalseSI->getCondition());
1184 SI.setOperand(0, Or);
1185 SI.setOperand(2, FalseSI->getFalseValue());
1186 return &SI;
1187 }
1188 }
1189 }
1190
1191 if (BinaryOperator::isNot(CondVal)) {
1192 SI.setOperand(0, BinaryOperator::getNotArgument(CondVal));
1193 SI.setOperand(1, FalseVal);
1194 SI.setOperand(2, TrueVal);
1195 return &SI;
1196 }
1197
1198 if (VectorType* VecTy = dyn_cast<VectorType>(SI.getType())) {
1199 unsigned VWidth = VecTy->getNumElements();
1200 APInt UndefElts(VWidth, 0);
1201 APInt AllOnesEltMask(APInt::getAllOnesValue(VWidth));
1202 if (Value *V = SimplifyDemandedVectorElts(&SI, AllOnesEltMask, UndefElts)) {
1203 if (V != &SI)
1204 return ReplaceInstUsesWith(SI, V);
1205 return &SI;
1206 }
1207
1208 if (isa<ConstantAggregateZero>(CondVal)) {
1209 return ReplaceInstUsesWith(SI, FalseVal);
1210 }
1211 }
1212
1213 return nullptr;
1214 }
1215