1 //===- llvm/Analysis/ValueTracking.h - Walk computations --------*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains routines that help analyze properties that chains of
11 // computations have.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #ifndef LLVM_ANALYSIS_VALUETRACKING_H
16 #define LLVM_ANALYSIS_VALUETRACKING_H
17 
18 #include "llvm/ADT/ArrayRef.h"
19 #include "llvm/IR/ConstantRange.h"
20 #include "llvm/IR/Instruction.h"
21 #include "llvm/Support/DataTypes.h"
22 
23 namespace llvm {
24   class APInt;
25   class AddOperator;
26   class AssumptionCache;
27   class DataLayout;
28   class DominatorTree;
29   class Instruction;
30   class Loop;
31   class LoopInfo;
32   class MDNode;
33   class StringRef;
34   class TargetLibraryInfo;
35   class Value;
36 
37   /// Determine which bits of V are known to be either zero or one and return
38   /// them in the KnownZero/KnownOne bit sets.
39   ///
40   /// This function is defined on values with integer type, values with pointer
41   /// type, and vectors of integers.  In the case
42   /// where V is a vector, the known zero and known one values are the
43   /// same width as the vector element, and the bit is set only if it is true
44   /// for all of the elements in the vector.
45   void computeKnownBits(Value *V, APInt &KnownZero, APInt &KnownOne,
46                         const DataLayout &DL, unsigned Depth = 0,
47                         AssumptionCache *AC = nullptr,
48                         const Instruction *CxtI = nullptr,
49                         const DominatorTree *DT = nullptr);
50   /// Compute known bits from the range metadata.
51   /// \p KnownZero the set of bits that are known to be zero
52   /// \p KnownOne the set of bits that are known to be one
53   void computeKnownBitsFromRangeMetadata(const MDNode &Ranges,
54                                          APInt &KnownZero, APInt &KnownOne);
55   /// Return true if LHS and RHS have no common bits set.
56   bool haveNoCommonBitsSet(Value *LHS, Value *RHS, const DataLayout &DL,
57                            AssumptionCache *AC = nullptr,
58                            const Instruction *CxtI = nullptr,
59                            const DominatorTree *DT = nullptr);
60 
61   /// ComputeSignBit - Determine whether the sign bit is known to be zero or
62   /// one.  Convenience wrapper around computeKnownBits.
63   void ComputeSignBit(Value *V, bool &KnownZero, bool &KnownOne,
64                       const DataLayout &DL, unsigned Depth = 0,
65                       AssumptionCache *AC = nullptr,
66                       const Instruction *CxtI = nullptr,
67                       const DominatorTree *DT = nullptr);
68 
69   /// isKnownToBeAPowerOfTwo - Return true if the given value is known to have
70   /// exactly one bit set when defined. For vectors return true if every
71   /// element is known to be a power of two when defined.  Supports values with
72   /// integer or pointer type and vectors of integers.  If 'OrZero' is set then
73   /// return true if the given value is either a power of two or zero.
74   bool isKnownToBeAPowerOfTwo(Value *V, const DataLayout &DL,
75                               bool OrZero = false, unsigned Depth = 0,
76                               AssumptionCache *AC = nullptr,
77                               const Instruction *CxtI = nullptr,
78                               const DominatorTree *DT = nullptr);
79 
80   /// isKnownNonZero - Return true if the given value is known to be non-zero
81   /// when defined.  For vectors return true if every element is known to be
82   /// non-zero when defined.  Supports values with integer or pointer type and
83   /// vectors of integers.
84   bool isKnownNonZero(Value *V, const DataLayout &DL, unsigned Depth = 0,
85                       AssumptionCache *AC = nullptr,
86                       const Instruction *CxtI = nullptr,
87                       const DominatorTree *DT = nullptr);
88 
89   /// Returns true if the give value is known to be non-negative.
90   bool isKnownNonNegative(Value *V, const DataLayout &DL, unsigned Depth = 0,
91                           AssumptionCache *AC = nullptr,
92                           const Instruction *CxtI = nullptr,
93                           const DominatorTree *DT = nullptr);
94 
95   /// isKnownNonEqual - Return true if the given values are known to be
96   /// non-equal when defined. Supports scalar integer types only.
97   bool isKnownNonEqual(Value *V1, Value *V2, const DataLayout &DL,
98                       AssumptionCache *AC = nullptr,
99                       const Instruction *CxtI = nullptr,
100                       const DominatorTree *DT = nullptr);
101 
102   /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero.  We use
103   /// this predicate to simplify operations downstream.  Mask is known to be
104   /// zero for bits that V cannot have.
105   ///
106   /// This function is defined on values with integer type, values with pointer
107   /// type, and vectors of integers.  In the case
108   /// where V is a vector, the mask, known zero, and known one values are the
109   /// same width as the vector element, and the bit is set only if it is true
110   /// for all of the elements in the vector.
111   bool MaskedValueIsZero(Value *V, const APInt &Mask, const DataLayout &DL,
112                          unsigned Depth = 0, AssumptionCache *AC = nullptr,
113                          const Instruction *CxtI = nullptr,
114                          const DominatorTree *DT = nullptr);
115 
116   /// ComputeNumSignBits - Return the number of times the sign bit of the
117   /// register is replicated into the other bits.  We know that at least 1 bit
118   /// is always equal to the sign bit (itself), but other cases can give us
119   /// information.  For example, immediately after an "ashr X, 2", we know that
120   /// the top 3 bits are all equal to each other, so we return 3.
121   ///
122   /// 'Op' must have a scalar integer type.
123   ///
124   unsigned ComputeNumSignBits(Value *Op, const DataLayout &DL,
125                               unsigned Depth = 0, AssumptionCache *AC = nullptr,
126                               const Instruction *CxtI = nullptr,
127                               const DominatorTree *DT = nullptr);
128 
129   /// ComputeMultiple - This function computes the integer multiple of Base that
130   /// equals V.  If successful, it returns true and returns the multiple in
131   /// Multiple.  If unsuccessful, it returns false.  Also, if V can be
132   /// simplified to an integer, then the simplified V is returned in Val.  Look
133   /// through sext only if LookThroughSExt=true.
134   bool ComputeMultiple(Value *V, unsigned Base, Value *&Multiple,
135                        bool LookThroughSExt = false,
136                        unsigned Depth = 0);
137 
138   /// CannotBeNegativeZero - Return true if we can prove that the specified FP
139   /// value is never equal to -0.0.
140   ///
141   bool CannotBeNegativeZero(const Value *V, unsigned Depth = 0);
142 
143   /// CannotBeOrderedLessThanZero - Return true if we can prove that the
144   /// specified FP value is either a NaN or never less than 0.0.
145   ///
146   bool CannotBeOrderedLessThanZero(const Value *V, unsigned Depth = 0);
147 
148   /// isBytewiseValue - If the specified value can be set by repeating the same
149   /// byte in memory, return the i8 value that it is represented with.  This is
150   /// true for all i8 values obviously, but is also true for i32 0, i32 -1,
151   /// i16 0xF0F0, double 0.0 etc.  If the value can't be handled with a repeated
152   /// byte store (e.g. i16 0x1234), return null.
153   Value *isBytewiseValue(Value *V);
154 
155   /// FindInsertedValue - Given an aggregrate and an sequence of indices, see if
156   /// the scalar value indexed is already around as a register, for example if
157   /// it were inserted directly into the aggregrate.
158   ///
159   /// If InsertBefore is not null, this function will duplicate (modified)
160   /// insertvalues when a part of a nested struct is extracted.
161   Value *FindInsertedValue(Value *V,
162                            ArrayRef<unsigned> idx_range,
163                            Instruction *InsertBefore = nullptr);
164 
165   /// GetPointerBaseWithConstantOffset - Analyze the specified pointer to see if
166   /// it can be expressed as a base pointer plus a constant offset.  Return the
167   /// base and offset to the caller.
168   Value *GetPointerBaseWithConstantOffset(Value *Ptr, int64_t &Offset,
169                                           const DataLayout &DL);
170   static inline const Value *
GetPointerBaseWithConstantOffset(const Value * Ptr,int64_t & Offset,const DataLayout & DL)171   GetPointerBaseWithConstantOffset(const Value *Ptr, int64_t &Offset,
172                                    const DataLayout &DL) {
173     return GetPointerBaseWithConstantOffset(const_cast<Value *>(Ptr), Offset,
174                                             DL);
175   }
176 
177   /// getConstantStringInfo - This function computes the length of a
178   /// null-terminated C string pointed to by V.  If successful, it returns true
179   /// and returns the string in Str.  If unsuccessful, it returns false.  This
180   /// does not include the trailing nul character by default.  If TrimAtNul is
181   /// set to false, then this returns any trailing nul characters as well as any
182   /// other characters that come after it.
183   bool getConstantStringInfo(const Value *V, StringRef &Str,
184                              uint64_t Offset = 0, bool TrimAtNul = true);
185 
186   /// GetStringLength - If we can compute the length of the string pointed to by
187   /// the specified pointer, return 'len+1'.  If we can't, return 0.
188   uint64_t GetStringLength(Value *V);
189 
190   /// GetUnderlyingObject - This method strips off any GEP address adjustments
191   /// and pointer casts from the specified value, returning the original object
192   /// being addressed.  Note that the returned value has pointer type if the
193   /// specified value does.  If the MaxLookup value is non-zero, it limits the
194   /// number of instructions to be stripped off.
195   Value *GetUnderlyingObject(Value *V, const DataLayout &DL,
196                              unsigned MaxLookup = 6);
197   static inline const Value *GetUnderlyingObject(const Value *V,
198                                                  const DataLayout &DL,
199                                                  unsigned MaxLookup = 6) {
200     return GetUnderlyingObject(const_cast<Value *>(V), DL, MaxLookup);
201   }
202 
203   /// \brief This method is similar to GetUnderlyingObject except that it can
204   /// look through phi and select instructions and return multiple objects.
205   ///
206   /// If LoopInfo is passed, loop phis are further analyzed.  If a pointer
207   /// accesses different objects in each iteration, we don't look through the
208   /// phi node. E.g. consider this loop nest:
209   ///
210   ///   int **A;
211   ///   for (i)
212   ///     for (j) {
213   ///        A[i][j] = A[i-1][j] * B[j]
214   ///     }
215   ///
216   /// This is transformed by Load-PRE to stash away A[i] for the next iteration
217   /// of the outer loop:
218   ///
219   ///   Curr = A[0];          // Prev_0
220   ///   for (i: 1..N) {
221   ///     Prev = Curr;        // Prev = PHI (Prev_0, Curr)
222   ///     Curr = A[i];
223   ///     for (j: 0..N) {
224   ///        Curr[j] = Prev[j] * B[j]
225   ///     }
226   ///   }
227   ///
228   /// Since A[i] and A[i-1] are independent pointers, getUnderlyingObjects
229   /// should not assume that Curr and Prev share the same underlying object thus
230   /// it shouldn't look through the phi above.
231   void GetUnderlyingObjects(Value *V, SmallVectorImpl<Value *> &Objects,
232                             const DataLayout &DL, LoopInfo *LI = nullptr,
233                             unsigned MaxLookup = 6);
234 
235   /// onlyUsedByLifetimeMarkers - Return true if the only users of this pointer
236   /// are lifetime markers.
237   bool onlyUsedByLifetimeMarkers(const Value *V);
238 
239   /// isDereferenceablePointer - Return true if this is always a dereferenceable
240   /// pointer. If the context instruction is specified perform context-sensitive
241   /// analysis and return true if the pointer is dereferenceable at the
242   /// specified instruction.
243   bool isDereferenceablePointer(const Value *V, const DataLayout &DL,
244                                 const Instruction *CtxI = nullptr,
245                                 const DominatorTree *DT = nullptr,
246                                 const TargetLibraryInfo *TLI = nullptr);
247 
248   /// Returns true if V is always a dereferenceable pointer with alignment
249   /// greater or equal than requested. If the context instruction is specified
250   /// performs context-sensitive analysis and returns true if the pointer is
251   /// dereferenceable at the specified instruction.
252   bool isDereferenceableAndAlignedPointer(const Value *V, unsigned Align,
253                                           const DataLayout &DL,
254                                           const Instruction *CtxI = nullptr,
255                                           const DominatorTree *DT = nullptr,
256                                           const TargetLibraryInfo *TLI = nullptr);
257 
258   /// isSafeToSpeculativelyExecute - Return true if the instruction does not
259   /// have any effects besides calculating the result and does not have
260   /// undefined behavior.
261   ///
262   /// This method never returns true for an instruction that returns true for
263   /// mayHaveSideEffects; however, this method also does some other checks in
264   /// addition. It checks for undefined behavior, like dividing by zero or
265   /// loading from an invalid pointer (but not for undefined results, like a
266   /// shift with a shift amount larger than the width of the result). It checks
267   /// for malloc and alloca because speculatively executing them might cause a
268   /// memory leak. It also returns false for instructions related to control
269   /// flow, specifically terminators and PHI nodes.
270   ///
271   /// If the CtxI is specified this method performs context-sensitive analysis
272   /// and returns true if it is safe to execute the instruction immediately
273   /// before the CtxI.
274   ///
275   /// If the CtxI is NOT specified this method only looks at the instruction
276   /// itself and its operands, so if this method returns true, it is safe to
277   /// move the instruction as long as the correct dominance relationships for
278   /// the operands and users hold.
279   ///
280   /// This method can return true for instructions that read memory;
281   /// for such instructions, moving them may change the resulting value.
282   bool isSafeToSpeculativelyExecute(const Value *V,
283                                     const Instruction *CtxI = nullptr,
284                                     const DominatorTree *DT = nullptr,
285                                     const TargetLibraryInfo *TLI = nullptr);
286 
287   /// Returns true if the result or effects of the given instructions \p I
288   /// depend on or influence global memory.
289   /// Memory dependence arises for example if the instruction reads from
290   /// memory or may produce effects or undefined behaviour. Memory dependent
291   /// instructions generally cannot be reorderd with respect to other memory
292   /// dependent instructions or moved into non-dominated basic blocks.
293   /// Instructions which just compute a value based on the values of their
294   /// operands are not memory dependent.
295   bool mayBeMemoryDependent(const Instruction &I);
296 
297   /// isKnownNonNull - Return true if this pointer couldn't possibly be null by
298   /// its definition.  This returns true for allocas, non-extern-weak globals
299   /// and byval arguments.
300   bool isKnownNonNull(const Value *V, const TargetLibraryInfo *TLI = nullptr);
301 
302   /// isKnownNonNullAt - Return true if this pointer couldn't possibly be null.
303   /// If the context instruction is specified perform context-sensitive analysis
304   /// and return true if the pointer couldn't possibly be null at the specified
305   /// instruction.
306   bool isKnownNonNullAt(const Value *V,
307                         const Instruction *CtxI = nullptr,
308                         const DominatorTree *DT  = nullptr,
309                         const TargetLibraryInfo *TLI = nullptr);
310 
311   /// Return true if it is valid to use the assumptions provided by an
312   /// assume intrinsic, I, at the point in the control-flow identified by the
313   /// context instruction, CxtI.
314   bool isValidAssumeForContext(const Instruction *I, const Instruction *CxtI,
315                                const DominatorTree *DT = nullptr);
316 
317   enum class OverflowResult { AlwaysOverflows, MayOverflow, NeverOverflows };
318   OverflowResult computeOverflowForUnsignedMul(Value *LHS, Value *RHS,
319                                                const DataLayout &DL,
320                                                AssumptionCache *AC,
321                                                const Instruction *CxtI,
322                                                const DominatorTree *DT);
323   OverflowResult computeOverflowForUnsignedAdd(Value *LHS, Value *RHS,
324                                                const DataLayout &DL,
325                                                AssumptionCache *AC,
326                                                const Instruction *CxtI,
327                                                const DominatorTree *DT);
328   OverflowResult computeOverflowForSignedAdd(Value *LHS, Value *RHS,
329                                              const DataLayout &DL,
330                                              AssumptionCache *AC = nullptr,
331                                              const Instruction *CxtI = nullptr,
332                                              const DominatorTree *DT = nullptr);
333   /// This version also leverages the sign bit of Add if known.
334   OverflowResult computeOverflowForSignedAdd(AddOperator *Add,
335                                              const DataLayout &DL,
336                                              AssumptionCache *AC = nullptr,
337                                              const Instruction *CxtI = nullptr,
338                                              const DominatorTree *DT = nullptr);
339 
340   /// Return true if this function can prove that the instruction I will
341   /// always transfer execution to one of its successors (including the next
342   /// instruction that follows within a basic block). E.g. this is not
343   /// guaranteed for function calls that could loop infinitely.
344   ///
345   /// In other words, this function returns false for instructions that may
346   /// transfer execution or fail to transfer execution in a way that is not
347   /// captured in the CFG nor in the sequence of instructions within a basic
348   /// block.
349   ///
350   /// Undefined behavior is assumed not to happen, so e.g. division is
351   /// guaranteed to transfer execution to the following instruction even
352   /// though division by zero might cause undefined behavior.
353   bool isGuaranteedToTransferExecutionToSuccessor(const Instruction *I);
354 
355   /// Return true if this function can prove that the instruction I
356   /// is executed for every iteration of the loop L.
357   ///
358   /// Note that this currently only considers the loop header.
359   bool isGuaranteedToExecuteForEveryIteration(const Instruction *I,
360                                               const Loop *L);
361 
362   /// Return true if this function can prove that I is guaranteed to yield
363   /// full-poison (all bits poison) if at least one of its operands are
364   /// full-poison (all bits poison).
365   ///
366   /// The exact rules for how poison propagates through instructions have
367   /// not been settled as of 2015-07-10, so this function is conservative
368   /// and only considers poison to be propagated in uncontroversial
369   /// cases. There is no attempt to track values that may be only partially
370   /// poison.
371   bool propagatesFullPoison(const Instruction *I);
372 
373   /// Return either nullptr or an operand of I such that I will trigger
374   /// undefined behavior if I is executed and that operand has a full-poison
375   /// value (all bits poison).
376   const Value *getGuaranteedNonFullPoisonOp(const Instruction *I);
377 
378   /// Return true if this function can prove that if PoisonI is executed
379   /// and yields a full-poison value (all bits poison), then that will
380   /// trigger undefined behavior.
381   ///
382   /// Note that this currently only considers the basic block that is
383   /// the parent of I.
384   bool isKnownNotFullPoison(const Instruction *PoisonI);
385 
386   /// \brief Specific patterns of select instructions we can match.
387   enum SelectPatternFlavor {
388     SPF_UNKNOWN = 0,
389     SPF_SMIN,                   /// Signed minimum
390     SPF_UMIN,                   /// Unsigned minimum
391     SPF_SMAX,                   /// Signed maximum
392     SPF_UMAX,                   /// Unsigned maximum
393     SPF_FMINNUM,                /// Floating point minnum
394     SPF_FMAXNUM,                /// Floating point maxnum
395     SPF_ABS,                    /// Absolute value
396     SPF_NABS                    /// Negated absolute value
397   };
398   /// \brief Behavior when a floating point min/max is given one NaN and one
399   /// non-NaN as input.
400   enum SelectPatternNaNBehavior {
401     SPNB_NA = 0,                /// NaN behavior not applicable.
402     SPNB_RETURNS_NAN,           /// Given one NaN input, returns the NaN.
403     SPNB_RETURNS_OTHER,         /// Given one NaN input, returns the non-NaN.
404     SPNB_RETURNS_ANY            /// Given one NaN input, can return either (or
405                                 /// it has been determined that no operands can
406                                 /// be NaN).
407   };
408   struct SelectPatternResult {
409     SelectPatternFlavor Flavor;
410     SelectPatternNaNBehavior NaNBehavior; /// Only applicable if Flavor is
411                                           /// SPF_FMINNUM or SPF_FMAXNUM.
412     bool Ordered;               /// When implementing this min/max pattern as
413                                 /// fcmp; select, does the fcmp have to be
414                                 /// ordered?
415 
416     /// \brief Return true if \p SPF is a min or a max pattern.
isMinOrMaxSelectPatternResult417     static bool isMinOrMax(SelectPatternFlavor SPF) {
418       return !(SPF == SPF_UNKNOWN || SPF == SPF_ABS || SPF == SPF_NABS);
419     }
420   };
421   /// Pattern match integer [SU]MIN, [SU]MAX and ABS idioms, returning the kind
422   /// and providing the out parameter results if we successfully match.
423   ///
424   /// If CastOp is not nullptr, also match MIN/MAX idioms where the type does
425   /// not match that of the original select. If this is the case, the cast
426   /// operation (one of Trunc,SExt,Zext) that must be done to transform the
427   /// type of LHS and RHS into the type of V is returned in CastOp.
428   ///
429   /// For example:
430   ///   %1 = icmp slt i32 %a, i32 4
431   ///   %2 = sext i32 %a to i64
432   ///   %3 = select i1 %1, i64 %2, i64 4
433   ///
434   /// -> LHS = %a, RHS = i32 4, *CastOp = Instruction::SExt
435   ///
436   SelectPatternResult matchSelectPattern(Value *V, Value *&LHS, Value *&RHS,
437                                          Instruction::CastOps *CastOp = nullptr);
438 
439   /// Parse out a conservative ConstantRange from !range metadata.
440   ///
441   /// E.g. if RangeMD is !{i32 0, i32 10, i32 15, i32 20} then return [0, 20).
442   ConstantRange getConstantRangeFromMetadata(MDNode &RangeMD);
443 
444   /// Return true if RHS is known to be implied by LHS.  A & B must be i1
445   /// (boolean) values or a vector of such values. Note that the truth table for
446   /// implication is the same as <=u on i1 values (but not <=s!).  The truth
447   /// table for both is:
448   ///    | T | F (B)
449   ///  T | T | F
450   ///  F | T | T
451   /// (A)
452   bool isImpliedCondition(Value *LHS, Value *RHS, const DataLayout &DL,
453                           unsigned Depth = 0, AssumptionCache *AC = nullptr,
454                           const Instruction *CxtI = nullptr,
455                           const DominatorTree *DT = nullptr);
456 } // end namespace llvm
457 
458 #endif
459