1 //===- SubtargetEmitter.cpp - Generate subtarget enumerations -------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This tablegen backend emits subtarget enumerations.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "CodeGenTarget.h"
15 #include "CodeGenSchedule.h"
16 #include "llvm/ADT/STLExtras.h"
17 #include "llvm/ADT/StringExtras.h"
18 #include "llvm/MC/MCInstrItineraries.h"
19 #include "llvm/MC/SubtargetFeature.h"
20 #include "llvm/Support/Debug.h"
21 #include "llvm/Support/Format.h"
22 #include "llvm/TableGen/Error.h"
23 #include "llvm/TableGen/Record.h"
24 #include "llvm/TableGen/TableGenBackend.h"
25 #include <algorithm>
26 #include <map>
27 #include <string>
28 #include <vector>
29
30 using namespace llvm;
31
32 #define DEBUG_TYPE "subtarget-emitter"
33
34 namespace {
35 class SubtargetEmitter {
36 // Each processor has a SchedClassDesc table with an entry for each SchedClass.
37 // The SchedClassDesc table indexes into a global write resource table, write
38 // latency table, and read advance table.
39 struct SchedClassTables {
40 std::vector<std::vector<MCSchedClassDesc> > ProcSchedClasses;
41 std::vector<MCWriteProcResEntry> WriteProcResources;
42 std::vector<MCWriteLatencyEntry> WriteLatencies;
43 std::vector<std::string> WriterNames;
44 std::vector<MCReadAdvanceEntry> ReadAdvanceEntries;
45
46 // Reserve an invalid entry at index 0
SchedClassTables__anonec51d5e80111::SubtargetEmitter::SchedClassTables47 SchedClassTables() {
48 ProcSchedClasses.resize(1);
49 WriteProcResources.resize(1);
50 WriteLatencies.resize(1);
51 WriterNames.push_back("InvalidWrite");
52 ReadAdvanceEntries.resize(1);
53 }
54 };
55
56 struct LessWriteProcResources {
operator ()__anonec51d5e80111::SubtargetEmitter::LessWriteProcResources57 bool operator()(const MCWriteProcResEntry &LHS,
58 const MCWriteProcResEntry &RHS) {
59 return LHS.ProcResourceIdx < RHS.ProcResourceIdx;
60 }
61 };
62
63 RecordKeeper &Records;
64 CodeGenSchedModels &SchedModels;
65 std::string Target;
66
67 void Enumeration(raw_ostream &OS, const char *ClassName);
68 unsigned FeatureKeyValues(raw_ostream &OS);
69 unsigned CPUKeyValues(raw_ostream &OS);
70 void FormItineraryStageString(const std::string &Names,
71 Record *ItinData, std::string &ItinString,
72 unsigned &NStages);
73 void FormItineraryOperandCycleString(Record *ItinData, std::string &ItinString,
74 unsigned &NOperandCycles);
75 void FormItineraryBypassString(const std::string &Names,
76 Record *ItinData,
77 std::string &ItinString, unsigned NOperandCycles);
78 void EmitStageAndOperandCycleData(raw_ostream &OS,
79 std::vector<std::vector<InstrItinerary> >
80 &ProcItinLists);
81 void EmitItineraries(raw_ostream &OS,
82 std::vector<std::vector<InstrItinerary> >
83 &ProcItinLists);
84 void EmitProcessorProp(raw_ostream &OS, const Record *R, const char *Name,
85 char Separator);
86 void EmitProcessorResources(const CodeGenProcModel &ProcModel,
87 raw_ostream &OS);
88 Record *FindWriteResources(const CodeGenSchedRW &SchedWrite,
89 const CodeGenProcModel &ProcModel);
90 Record *FindReadAdvance(const CodeGenSchedRW &SchedRead,
91 const CodeGenProcModel &ProcModel);
92 void ExpandProcResources(RecVec &PRVec, std::vector<int64_t> &Cycles,
93 const CodeGenProcModel &ProcModel);
94 void GenSchedClassTables(const CodeGenProcModel &ProcModel,
95 SchedClassTables &SchedTables);
96 void EmitSchedClassTables(SchedClassTables &SchedTables, raw_ostream &OS);
97 void EmitProcessorModels(raw_ostream &OS);
98 void EmitProcessorLookup(raw_ostream &OS);
99 void EmitSchedModelHelpers(std::string ClassName, raw_ostream &OS);
100 void EmitSchedModel(raw_ostream &OS);
101 void ParseFeaturesFunction(raw_ostream &OS, unsigned NumFeatures,
102 unsigned NumProcs);
103
104 public:
SubtargetEmitter(RecordKeeper & R,CodeGenTarget & TGT)105 SubtargetEmitter(RecordKeeper &R, CodeGenTarget &TGT):
106 Records(R), SchedModels(TGT.getSchedModels()), Target(TGT.getName()) {}
107
108 void run(raw_ostream &o);
109 };
110 } // end anonymous namespace
111
112 //
113 // Enumeration - Emit the specified class as an enumeration.
114 //
Enumeration(raw_ostream & OS,const char * ClassName)115 void SubtargetEmitter::Enumeration(raw_ostream &OS,
116 const char *ClassName) {
117 // Get all records of class and sort
118 std::vector<Record*> DefList = Records.getAllDerivedDefinitions(ClassName);
119 std::sort(DefList.begin(), DefList.end(), LessRecord());
120
121 unsigned N = DefList.size();
122 if (N == 0)
123 return;
124 if (N > MAX_SUBTARGET_FEATURES)
125 PrintFatalError("Too many subtarget features! Bump MAX_SUBTARGET_FEATURES.");
126
127 OS << "namespace " << Target << " {\n";
128
129 // Open enumeration. Use a 64-bit underlying type.
130 OS << "enum : uint64_t {\n";
131
132 // For each record
133 for (unsigned i = 0; i < N;) {
134 // Next record
135 Record *Def = DefList[i];
136
137 // Get and emit name
138 OS << " " << Def->getName() << " = " << i;
139 if (++i < N) OS << ",";
140
141 OS << "\n";
142 }
143
144 // Close enumeration and namespace
145 OS << "};\n}\n";
146 }
147
148 //
149 // FeatureKeyValues - Emit data of all the subtarget features. Used by the
150 // command line.
151 //
FeatureKeyValues(raw_ostream & OS)152 unsigned SubtargetEmitter::FeatureKeyValues(raw_ostream &OS) {
153 // Gather and sort all the features
154 std::vector<Record*> FeatureList =
155 Records.getAllDerivedDefinitions("SubtargetFeature");
156
157 if (FeatureList.empty())
158 return 0;
159
160 std::sort(FeatureList.begin(), FeatureList.end(), LessRecordFieldName());
161
162 // Begin feature table
163 OS << "// Sorted (by key) array of values for CPU features.\n"
164 << "extern const llvm::SubtargetFeatureKV " << Target
165 << "FeatureKV[] = {\n";
166
167 // For each feature
168 unsigned NumFeatures = 0;
169 for (unsigned i = 0, N = FeatureList.size(); i < N; ++i) {
170 // Next feature
171 Record *Feature = FeatureList[i];
172
173 const std::string &Name = Feature->getName();
174 const std::string &CommandLineName = Feature->getValueAsString("Name");
175 const std::string &Desc = Feature->getValueAsString("Desc");
176
177 if (CommandLineName.empty()) continue;
178
179 // Emit as { "feature", "description", { featureEnum }, { i1 , i2 , ... , in } }
180 OS << " { "
181 << "\"" << CommandLineName << "\", "
182 << "\"" << Desc << "\", "
183 << "{ " << Target << "::" << Name << " }, ";
184
185 const std::vector<Record*> &ImpliesList =
186 Feature->getValueAsListOfDefs("Implies");
187
188 if (ImpliesList.empty()) {
189 OS << "{ }";
190 } else {
191 OS << "{ ";
192 for (unsigned j = 0, M = ImpliesList.size(); j < M;) {
193 OS << Target << "::" << ImpliesList[j]->getName();
194 if (++j < M) OS << ", ";
195 }
196 OS << " }";
197 }
198
199 OS << " }";
200 ++NumFeatures;
201
202 // Depending on 'if more in the list' emit comma
203 if ((i + 1) < N) OS << ",";
204
205 OS << "\n";
206 }
207
208 // End feature table
209 OS << "};\n";
210
211 return NumFeatures;
212 }
213
214 //
215 // CPUKeyValues - Emit data of all the subtarget processors. Used by command
216 // line.
217 //
CPUKeyValues(raw_ostream & OS)218 unsigned SubtargetEmitter::CPUKeyValues(raw_ostream &OS) {
219 // Gather and sort processor information
220 std::vector<Record*> ProcessorList =
221 Records.getAllDerivedDefinitions("Processor");
222 std::sort(ProcessorList.begin(), ProcessorList.end(), LessRecordFieldName());
223
224 // Begin processor table
225 OS << "// Sorted (by key) array of values for CPU subtype.\n"
226 << "extern const llvm::SubtargetFeatureKV " << Target
227 << "SubTypeKV[] = {\n";
228
229 // For each processor
230 for (unsigned i = 0, N = ProcessorList.size(); i < N;) {
231 // Next processor
232 Record *Processor = ProcessorList[i];
233
234 const std::string &Name = Processor->getValueAsString("Name");
235 const std::vector<Record*> &FeatureList =
236 Processor->getValueAsListOfDefs("Features");
237
238 // Emit as { "cpu", "description", { f1 , f2 , ... fn } },
239 OS << " { "
240 << "\"" << Name << "\", "
241 << "\"Select the " << Name << " processor\", ";
242
243 if (FeatureList.empty()) {
244 OS << "{ }";
245 } else {
246 OS << "{ ";
247 for (unsigned j = 0, M = FeatureList.size(); j < M;) {
248 OS << Target << "::" << FeatureList[j]->getName();
249 if (++j < M) OS << ", ";
250 }
251 OS << " }";
252 }
253
254 // The { } is for the "implies" section of this data structure.
255 OS << ", { } }";
256
257 // Depending on 'if more in the list' emit comma
258 if (++i < N) OS << ",";
259
260 OS << "\n";
261 }
262
263 // End processor table
264 OS << "};\n";
265
266 return ProcessorList.size();
267 }
268
269 //
270 // FormItineraryStageString - Compose a string containing the stage
271 // data initialization for the specified itinerary. N is the number
272 // of stages.
273 //
FormItineraryStageString(const std::string & Name,Record * ItinData,std::string & ItinString,unsigned & NStages)274 void SubtargetEmitter::FormItineraryStageString(const std::string &Name,
275 Record *ItinData,
276 std::string &ItinString,
277 unsigned &NStages) {
278 // Get states list
279 const std::vector<Record*> &StageList =
280 ItinData->getValueAsListOfDefs("Stages");
281
282 // For each stage
283 unsigned N = NStages = StageList.size();
284 for (unsigned i = 0; i < N;) {
285 // Next stage
286 const Record *Stage = StageList[i];
287
288 // Form string as ,{ cycles, u1 | u2 | ... | un, timeinc, kind }
289 int Cycles = Stage->getValueAsInt("Cycles");
290 ItinString += " { " + itostr(Cycles) + ", ";
291
292 // Get unit list
293 const std::vector<Record*> &UnitList = Stage->getValueAsListOfDefs("Units");
294
295 // For each unit
296 for (unsigned j = 0, M = UnitList.size(); j < M;) {
297 // Add name and bitwise or
298 ItinString += Name + "FU::" + UnitList[j]->getName();
299 if (++j < M) ItinString += " | ";
300 }
301
302 int TimeInc = Stage->getValueAsInt("TimeInc");
303 ItinString += ", " + itostr(TimeInc);
304
305 int Kind = Stage->getValueAsInt("Kind");
306 ItinString += ", (llvm::InstrStage::ReservationKinds)" + itostr(Kind);
307
308 // Close off stage
309 ItinString += " }";
310 if (++i < N) ItinString += ", ";
311 }
312 }
313
314 //
315 // FormItineraryOperandCycleString - Compose a string containing the
316 // operand cycle initialization for the specified itinerary. N is the
317 // number of operands that has cycles specified.
318 //
FormItineraryOperandCycleString(Record * ItinData,std::string & ItinString,unsigned & NOperandCycles)319 void SubtargetEmitter::FormItineraryOperandCycleString(Record *ItinData,
320 std::string &ItinString, unsigned &NOperandCycles) {
321 // Get operand cycle list
322 const std::vector<int64_t> &OperandCycleList =
323 ItinData->getValueAsListOfInts("OperandCycles");
324
325 // For each operand cycle
326 unsigned N = NOperandCycles = OperandCycleList.size();
327 for (unsigned i = 0; i < N;) {
328 // Next operand cycle
329 const int OCycle = OperandCycleList[i];
330
331 ItinString += " " + itostr(OCycle);
332 if (++i < N) ItinString += ", ";
333 }
334 }
335
FormItineraryBypassString(const std::string & Name,Record * ItinData,std::string & ItinString,unsigned NOperandCycles)336 void SubtargetEmitter::FormItineraryBypassString(const std::string &Name,
337 Record *ItinData,
338 std::string &ItinString,
339 unsigned NOperandCycles) {
340 const std::vector<Record*> &BypassList =
341 ItinData->getValueAsListOfDefs("Bypasses");
342 unsigned N = BypassList.size();
343 unsigned i = 0;
344 for (; i < N;) {
345 ItinString += Name + "Bypass::" + BypassList[i]->getName();
346 if (++i < NOperandCycles) ItinString += ", ";
347 }
348 for (; i < NOperandCycles;) {
349 ItinString += " 0";
350 if (++i < NOperandCycles) ItinString += ", ";
351 }
352 }
353
354 //
355 // EmitStageAndOperandCycleData - Generate unique itinerary stages and operand
356 // cycle tables. Create a list of InstrItinerary objects (ProcItinLists) indexed
357 // by CodeGenSchedClass::Index.
358 //
359 void SubtargetEmitter::
EmitStageAndOperandCycleData(raw_ostream & OS,std::vector<std::vector<InstrItinerary>> & ProcItinLists)360 EmitStageAndOperandCycleData(raw_ostream &OS,
361 std::vector<std::vector<InstrItinerary> >
362 &ProcItinLists) {
363
364 // Multiple processor models may share an itinerary record. Emit it once.
365 SmallPtrSet<Record*, 8> ItinsDefSet;
366
367 // Emit functional units for all the itineraries.
368 for (CodeGenSchedModels::ProcIter PI = SchedModels.procModelBegin(),
369 PE = SchedModels.procModelEnd(); PI != PE; ++PI) {
370
371 if (!ItinsDefSet.insert(PI->ItinsDef).second)
372 continue;
373
374 std::vector<Record*> FUs = PI->ItinsDef->getValueAsListOfDefs("FU");
375 if (FUs.empty())
376 continue;
377
378 const std::string &Name = PI->ItinsDef->getName();
379 OS << "\n// Functional units for \"" << Name << "\"\n"
380 << "namespace " << Name << "FU {\n";
381
382 for (unsigned j = 0, FUN = FUs.size(); j < FUN; ++j)
383 OS << " const unsigned " << FUs[j]->getName()
384 << " = 1 << " << j << ";\n";
385
386 OS << "}\n";
387
388 std::vector<Record*> BPs = PI->ItinsDef->getValueAsListOfDefs("BP");
389 if (!BPs.empty()) {
390 OS << "\n// Pipeline forwarding pathes for itineraries \"" << Name
391 << "\"\n" << "namespace " << Name << "Bypass {\n";
392
393 OS << " const unsigned NoBypass = 0;\n";
394 for (unsigned j = 0, BPN = BPs.size(); j < BPN; ++j)
395 OS << " const unsigned " << BPs[j]->getName()
396 << " = 1 << " << j << ";\n";
397
398 OS << "}\n";
399 }
400 }
401
402 // Begin stages table
403 std::string StageTable = "\nextern const llvm::InstrStage " + Target +
404 "Stages[] = {\n";
405 StageTable += " { 0, 0, 0, llvm::InstrStage::Required }, // No itinerary\n";
406
407 // Begin operand cycle table
408 std::string OperandCycleTable = "extern const unsigned " + Target +
409 "OperandCycles[] = {\n";
410 OperandCycleTable += " 0, // No itinerary\n";
411
412 // Begin pipeline bypass table
413 std::string BypassTable = "extern const unsigned " + Target +
414 "ForwardingPaths[] = {\n";
415 BypassTable += " 0, // No itinerary\n";
416
417 // For each Itinerary across all processors, add a unique entry to the stages,
418 // operand cycles, and pipepine bypess tables. Then add the new Itinerary
419 // object with computed offsets to the ProcItinLists result.
420 unsigned StageCount = 1, OperandCycleCount = 1;
421 std::map<std::string, unsigned> ItinStageMap, ItinOperandMap;
422 for (CodeGenSchedModels::ProcIter PI = SchedModels.procModelBegin(),
423 PE = SchedModels.procModelEnd(); PI != PE; ++PI) {
424 const CodeGenProcModel &ProcModel = *PI;
425
426 // Add process itinerary to the list.
427 ProcItinLists.resize(ProcItinLists.size()+1);
428
429 // If this processor defines no itineraries, then leave the itinerary list
430 // empty.
431 std::vector<InstrItinerary> &ItinList = ProcItinLists.back();
432 if (!ProcModel.hasItineraries())
433 continue;
434
435 const std::string &Name = ProcModel.ItinsDef->getName();
436
437 ItinList.resize(SchedModels.numInstrSchedClasses());
438 assert(ProcModel.ItinDefList.size() == ItinList.size() && "bad Itins");
439
440 for (unsigned SchedClassIdx = 0, SchedClassEnd = ItinList.size();
441 SchedClassIdx < SchedClassEnd; ++SchedClassIdx) {
442
443 // Next itinerary data
444 Record *ItinData = ProcModel.ItinDefList[SchedClassIdx];
445
446 // Get string and stage count
447 std::string ItinStageString;
448 unsigned NStages = 0;
449 if (ItinData)
450 FormItineraryStageString(Name, ItinData, ItinStageString, NStages);
451
452 // Get string and operand cycle count
453 std::string ItinOperandCycleString;
454 unsigned NOperandCycles = 0;
455 std::string ItinBypassString;
456 if (ItinData) {
457 FormItineraryOperandCycleString(ItinData, ItinOperandCycleString,
458 NOperandCycles);
459
460 FormItineraryBypassString(Name, ItinData, ItinBypassString,
461 NOperandCycles);
462 }
463
464 // Check to see if stage already exists and create if it doesn't
465 unsigned FindStage = 0;
466 if (NStages > 0) {
467 FindStage = ItinStageMap[ItinStageString];
468 if (FindStage == 0) {
469 // Emit as { cycles, u1 | u2 | ... | un, timeinc }, // indices
470 StageTable += ItinStageString + ", // " + itostr(StageCount);
471 if (NStages > 1)
472 StageTable += "-" + itostr(StageCount + NStages - 1);
473 StageTable += "\n";
474 // Record Itin class number.
475 ItinStageMap[ItinStageString] = FindStage = StageCount;
476 StageCount += NStages;
477 }
478 }
479
480 // Check to see if operand cycle already exists and create if it doesn't
481 unsigned FindOperandCycle = 0;
482 if (NOperandCycles > 0) {
483 std::string ItinOperandString = ItinOperandCycleString+ItinBypassString;
484 FindOperandCycle = ItinOperandMap[ItinOperandString];
485 if (FindOperandCycle == 0) {
486 // Emit as cycle, // index
487 OperandCycleTable += ItinOperandCycleString + ", // ";
488 std::string OperandIdxComment = itostr(OperandCycleCount);
489 if (NOperandCycles > 1)
490 OperandIdxComment += "-"
491 + itostr(OperandCycleCount + NOperandCycles - 1);
492 OperandCycleTable += OperandIdxComment + "\n";
493 // Record Itin class number.
494 ItinOperandMap[ItinOperandCycleString] =
495 FindOperandCycle = OperandCycleCount;
496 // Emit as bypass, // index
497 BypassTable += ItinBypassString + ", // " + OperandIdxComment + "\n";
498 OperandCycleCount += NOperandCycles;
499 }
500 }
501
502 // Set up itinerary as location and location + stage count
503 int NumUOps = ItinData ? ItinData->getValueAsInt("NumMicroOps") : 0;
504 InstrItinerary Intinerary = { NumUOps, FindStage, FindStage + NStages,
505 FindOperandCycle,
506 FindOperandCycle + NOperandCycles};
507
508 // Inject - empty slots will be 0, 0
509 ItinList[SchedClassIdx] = Intinerary;
510 }
511 }
512
513 // Closing stage
514 StageTable += " { 0, 0, 0, llvm::InstrStage::Required } // End stages\n";
515 StageTable += "};\n";
516
517 // Closing operand cycles
518 OperandCycleTable += " 0 // End operand cycles\n";
519 OperandCycleTable += "};\n";
520
521 BypassTable += " 0 // End bypass tables\n";
522 BypassTable += "};\n";
523
524 // Emit tables.
525 OS << StageTable;
526 OS << OperandCycleTable;
527 OS << BypassTable;
528 }
529
530 //
531 // EmitProcessorData - Generate data for processor itineraries that were
532 // computed during EmitStageAndOperandCycleData(). ProcItinLists lists all
533 // Itineraries for each processor. The Itinerary lists are indexed on
534 // CodeGenSchedClass::Index.
535 //
536 void SubtargetEmitter::
EmitItineraries(raw_ostream & OS,std::vector<std::vector<InstrItinerary>> & ProcItinLists)537 EmitItineraries(raw_ostream &OS,
538 std::vector<std::vector<InstrItinerary> > &ProcItinLists) {
539
540 // Multiple processor models may share an itinerary record. Emit it once.
541 SmallPtrSet<Record*, 8> ItinsDefSet;
542
543 // For each processor's machine model
544 std::vector<std::vector<InstrItinerary> >::iterator
545 ProcItinListsIter = ProcItinLists.begin();
546 for (CodeGenSchedModels::ProcIter PI = SchedModels.procModelBegin(),
547 PE = SchedModels.procModelEnd(); PI != PE; ++PI, ++ProcItinListsIter) {
548
549 Record *ItinsDef = PI->ItinsDef;
550 if (!ItinsDefSet.insert(ItinsDef).second)
551 continue;
552
553 // Get processor itinerary name
554 const std::string &Name = ItinsDef->getName();
555
556 // Get the itinerary list for the processor.
557 assert(ProcItinListsIter != ProcItinLists.end() && "bad iterator");
558 std::vector<InstrItinerary> &ItinList = *ProcItinListsIter;
559
560 // Empty itineraries aren't referenced anywhere in the tablegen output
561 // so don't emit them.
562 if (ItinList.empty())
563 continue;
564
565 OS << "\n";
566 OS << "static const llvm::InstrItinerary ";
567
568 // Begin processor itinerary table
569 OS << Name << "[] = {\n";
570
571 // For each itinerary class in CodeGenSchedClass::Index order.
572 for (unsigned j = 0, M = ItinList.size(); j < M; ++j) {
573 InstrItinerary &Intinerary = ItinList[j];
574
575 // Emit Itinerary in the form of
576 // { firstStage, lastStage, firstCycle, lastCycle } // index
577 OS << " { " <<
578 Intinerary.NumMicroOps << ", " <<
579 Intinerary.FirstStage << ", " <<
580 Intinerary.LastStage << ", " <<
581 Intinerary.FirstOperandCycle << ", " <<
582 Intinerary.LastOperandCycle << " }" <<
583 ", // " << j << " " << SchedModels.getSchedClass(j).Name << "\n";
584 }
585 // End processor itinerary table
586 OS << " { 0, ~0U, ~0U, ~0U, ~0U } // end marker\n";
587 OS << "};\n";
588 }
589 }
590
591 // Emit either the value defined in the TableGen Record, or the default
592 // value defined in the C++ header. The Record is null if the processor does not
593 // define a model.
EmitProcessorProp(raw_ostream & OS,const Record * R,const char * Name,char Separator)594 void SubtargetEmitter::EmitProcessorProp(raw_ostream &OS, const Record *R,
595 const char *Name, char Separator) {
596 OS << " ";
597 int V = R ? R->getValueAsInt(Name) : -1;
598 if (V >= 0)
599 OS << V << Separator << " // " << Name;
600 else
601 OS << "MCSchedModel::Default" << Name << Separator;
602 OS << '\n';
603 }
604
EmitProcessorResources(const CodeGenProcModel & ProcModel,raw_ostream & OS)605 void SubtargetEmitter::EmitProcessorResources(const CodeGenProcModel &ProcModel,
606 raw_ostream &OS) {
607 char Sep = ProcModel.ProcResourceDefs.empty() ? ' ' : ',';
608
609 OS << "\n// {Name, NumUnits, SuperIdx, IsBuffered}\n";
610 OS << "static const llvm::MCProcResourceDesc "
611 << ProcModel.ModelName << "ProcResources" << "[] = {\n"
612 << " {DBGFIELD(\"InvalidUnit\") 0, 0, 0}" << Sep << "\n";
613
614 for (unsigned i = 0, e = ProcModel.ProcResourceDefs.size(); i < e; ++i) {
615 Record *PRDef = ProcModel.ProcResourceDefs[i];
616
617 Record *SuperDef = nullptr;
618 unsigned SuperIdx = 0;
619 unsigned NumUnits = 0;
620 int BufferSize = PRDef->getValueAsInt("BufferSize");
621 if (PRDef->isSubClassOf("ProcResGroup")) {
622 RecVec ResUnits = PRDef->getValueAsListOfDefs("Resources");
623 for (RecIter RUI = ResUnits.begin(), RUE = ResUnits.end();
624 RUI != RUE; ++RUI) {
625 NumUnits += (*RUI)->getValueAsInt("NumUnits");
626 }
627 }
628 else {
629 // Find the SuperIdx
630 if (PRDef->getValueInit("Super")->isComplete()) {
631 SuperDef = SchedModels.findProcResUnits(
632 PRDef->getValueAsDef("Super"), ProcModel);
633 SuperIdx = ProcModel.getProcResourceIdx(SuperDef);
634 }
635 NumUnits = PRDef->getValueAsInt("NumUnits");
636 }
637 // Emit the ProcResourceDesc
638 if (i+1 == e)
639 Sep = ' ';
640 OS << " {DBGFIELD(\"" << PRDef->getName() << "\") ";
641 if (PRDef->getName().size() < 15)
642 OS.indent(15 - PRDef->getName().size());
643 OS << NumUnits << ", " << SuperIdx << ", "
644 << BufferSize << "}" << Sep << " // #" << i+1;
645 if (SuperDef)
646 OS << ", Super=" << SuperDef->getName();
647 OS << "\n";
648 }
649 OS << "};\n";
650 }
651
652 // Find the WriteRes Record that defines processor resources for this
653 // SchedWrite.
FindWriteResources(const CodeGenSchedRW & SchedWrite,const CodeGenProcModel & ProcModel)654 Record *SubtargetEmitter::FindWriteResources(
655 const CodeGenSchedRW &SchedWrite, const CodeGenProcModel &ProcModel) {
656
657 // Check if the SchedWrite is already subtarget-specific and directly
658 // specifies a set of processor resources.
659 if (SchedWrite.TheDef->isSubClassOf("SchedWriteRes"))
660 return SchedWrite.TheDef;
661
662 Record *AliasDef = nullptr;
663 for (RecIter AI = SchedWrite.Aliases.begin(), AE = SchedWrite.Aliases.end();
664 AI != AE; ++AI) {
665 const CodeGenSchedRW &AliasRW =
666 SchedModels.getSchedRW((*AI)->getValueAsDef("AliasRW"));
667 if (AliasRW.TheDef->getValueInit("SchedModel")->isComplete()) {
668 Record *ModelDef = AliasRW.TheDef->getValueAsDef("SchedModel");
669 if (&SchedModels.getProcModel(ModelDef) != &ProcModel)
670 continue;
671 }
672 if (AliasDef)
673 PrintFatalError(AliasRW.TheDef->getLoc(), "Multiple aliases "
674 "defined for processor " + ProcModel.ModelName +
675 " Ensure only one SchedAlias exists per RW.");
676 AliasDef = AliasRW.TheDef;
677 }
678 if (AliasDef && AliasDef->isSubClassOf("SchedWriteRes"))
679 return AliasDef;
680
681 // Check this processor's list of write resources.
682 Record *ResDef = nullptr;
683 for (RecIter WRI = ProcModel.WriteResDefs.begin(),
684 WRE = ProcModel.WriteResDefs.end(); WRI != WRE; ++WRI) {
685 if (!(*WRI)->isSubClassOf("WriteRes"))
686 continue;
687 if (AliasDef == (*WRI)->getValueAsDef("WriteType")
688 || SchedWrite.TheDef == (*WRI)->getValueAsDef("WriteType")) {
689 if (ResDef) {
690 PrintFatalError((*WRI)->getLoc(), "Resources are defined for both "
691 "SchedWrite and its alias on processor " +
692 ProcModel.ModelName);
693 }
694 ResDef = *WRI;
695 }
696 }
697 // TODO: If ProcModel has a base model (previous generation processor),
698 // then call FindWriteResources recursively with that model here.
699 if (!ResDef) {
700 PrintFatalError(ProcModel.ModelDef->getLoc(),
701 std::string("Processor does not define resources for ")
702 + SchedWrite.TheDef->getName());
703 }
704 return ResDef;
705 }
706
707 /// Find the ReadAdvance record for the given SchedRead on this processor or
708 /// return NULL.
FindReadAdvance(const CodeGenSchedRW & SchedRead,const CodeGenProcModel & ProcModel)709 Record *SubtargetEmitter::FindReadAdvance(const CodeGenSchedRW &SchedRead,
710 const CodeGenProcModel &ProcModel) {
711 // Check for SchedReads that directly specify a ReadAdvance.
712 if (SchedRead.TheDef->isSubClassOf("SchedReadAdvance"))
713 return SchedRead.TheDef;
714
715 // Check this processor's list of aliases for SchedRead.
716 Record *AliasDef = nullptr;
717 for (RecIter AI = SchedRead.Aliases.begin(), AE = SchedRead.Aliases.end();
718 AI != AE; ++AI) {
719 const CodeGenSchedRW &AliasRW =
720 SchedModels.getSchedRW((*AI)->getValueAsDef("AliasRW"));
721 if (AliasRW.TheDef->getValueInit("SchedModel")->isComplete()) {
722 Record *ModelDef = AliasRW.TheDef->getValueAsDef("SchedModel");
723 if (&SchedModels.getProcModel(ModelDef) != &ProcModel)
724 continue;
725 }
726 if (AliasDef)
727 PrintFatalError(AliasRW.TheDef->getLoc(), "Multiple aliases "
728 "defined for processor " + ProcModel.ModelName +
729 " Ensure only one SchedAlias exists per RW.");
730 AliasDef = AliasRW.TheDef;
731 }
732 if (AliasDef && AliasDef->isSubClassOf("SchedReadAdvance"))
733 return AliasDef;
734
735 // Check this processor's ReadAdvanceList.
736 Record *ResDef = nullptr;
737 for (RecIter RAI = ProcModel.ReadAdvanceDefs.begin(),
738 RAE = ProcModel.ReadAdvanceDefs.end(); RAI != RAE; ++RAI) {
739 if (!(*RAI)->isSubClassOf("ReadAdvance"))
740 continue;
741 if (AliasDef == (*RAI)->getValueAsDef("ReadType")
742 || SchedRead.TheDef == (*RAI)->getValueAsDef("ReadType")) {
743 if (ResDef) {
744 PrintFatalError((*RAI)->getLoc(), "Resources are defined for both "
745 "SchedRead and its alias on processor " +
746 ProcModel.ModelName);
747 }
748 ResDef = *RAI;
749 }
750 }
751 // TODO: If ProcModel has a base model (previous generation processor),
752 // then call FindReadAdvance recursively with that model here.
753 if (!ResDef && SchedRead.TheDef->getName() != "ReadDefault") {
754 PrintFatalError(ProcModel.ModelDef->getLoc(),
755 std::string("Processor does not define resources for ")
756 + SchedRead.TheDef->getName());
757 }
758 return ResDef;
759 }
760
761 // Expand an explicit list of processor resources into a full list of implied
762 // resource groups and super resources that cover them.
ExpandProcResources(RecVec & PRVec,std::vector<int64_t> & Cycles,const CodeGenProcModel & PM)763 void SubtargetEmitter::ExpandProcResources(RecVec &PRVec,
764 std::vector<int64_t> &Cycles,
765 const CodeGenProcModel &PM) {
766 // Default to 1 resource cycle.
767 Cycles.resize(PRVec.size(), 1);
768 for (unsigned i = 0, e = PRVec.size(); i != e; ++i) {
769 Record *PRDef = PRVec[i];
770 RecVec SubResources;
771 if (PRDef->isSubClassOf("ProcResGroup"))
772 SubResources = PRDef->getValueAsListOfDefs("Resources");
773 else {
774 SubResources.push_back(PRDef);
775 PRDef = SchedModels.findProcResUnits(PRVec[i], PM);
776 for (Record *SubDef = PRDef;
777 SubDef->getValueInit("Super")->isComplete();) {
778 if (SubDef->isSubClassOf("ProcResGroup")) {
779 // Disallow this for simplicitly.
780 PrintFatalError(SubDef->getLoc(), "Processor resource group "
781 " cannot be a super resources.");
782 }
783 Record *SuperDef =
784 SchedModels.findProcResUnits(SubDef->getValueAsDef("Super"), PM);
785 PRVec.push_back(SuperDef);
786 Cycles.push_back(Cycles[i]);
787 SubDef = SuperDef;
788 }
789 }
790 for (RecIter PRI = PM.ProcResourceDefs.begin(),
791 PRE = PM.ProcResourceDefs.end();
792 PRI != PRE; ++PRI) {
793 if (*PRI == PRDef || !(*PRI)->isSubClassOf("ProcResGroup"))
794 continue;
795 RecVec SuperResources = (*PRI)->getValueAsListOfDefs("Resources");
796 RecIter SubI = SubResources.begin(), SubE = SubResources.end();
797 for( ; SubI != SubE; ++SubI) {
798 if (std::find(SuperResources.begin(), SuperResources.end(), *SubI)
799 == SuperResources.end()) {
800 break;
801 }
802 }
803 if (SubI == SubE) {
804 PRVec.push_back(*PRI);
805 Cycles.push_back(Cycles[i]);
806 }
807 }
808 }
809 }
810
811 // Generate the SchedClass table for this processor and update global
812 // tables. Must be called for each processor in order.
GenSchedClassTables(const CodeGenProcModel & ProcModel,SchedClassTables & SchedTables)813 void SubtargetEmitter::GenSchedClassTables(const CodeGenProcModel &ProcModel,
814 SchedClassTables &SchedTables) {
815 SchedTables.ProcSchedClasses.resize(SchedTables.ProcSchedClasses.size() + 1);
816 if (!ProcModel.hasInstrSchedModel())
817 return;
818
819 std::vector<MCSchedClassDesc> &SCTab = SchedTables.ProcSchedClasses.back();
820 for (CodeGenSchedModels::SchedClassIter SCI = SchedModels.schedClassBegin(),
821 SCE = SchedModels.schedClassEnd(); SCI != SCE; ++SCI) {
822 DEBUG(SCI->dump(&SchedModels));
823
824 SCTab.resize(SCTab.size() + 1);
825 MCSchedClassDesc &SCDesc = SCTab.back();
826 // SCDesc.Name is guarded by NDEBUG
827 SCDesc.NumMicroOps = 0;
828 SCDesc.BeginGroup = false;
829 SCDesc.EndGroup = false;
830 SCDesc.WriteProcResIdx = 0;
831 SCDesc.WriteLatencyIdx = 0;
832 SCDesc.ReadAdvanceIdx = 0;
833
834 // A Variant SchedClass has no resources of its own.
835 bool HasVariants = false;
836 for (std::vector<CodeGenSchedTransition>::const_iterator
837 TI = SCI->Transitions.begin(), TE = SCI->Transitions.end();
838 TI != TE; ++TI) {
839 if (TI->ProcIndices[0] == 0) {
840 HasVariants = true;
841 break;
842 }
843 IdxIter PIPos = std::find(TI->ProcIndices.begin(),
844 TI->ProcIndices.end(), ProcModel.Index);
845 if (PIPos != TI->ProcIndices.end()) {
846 HasVariants = true;
847 break;
848 }
849 }
850 if (HasVariants) {
851 SCDesc.NumMicroOps = MCSchedClassDesc::VariantNumMicroOps;
852 continue;
853 }
854
855 // Determine if the SchedClass is actually reachable on this processor. If
856 // not don't try to locate the processor resources, it will fail.
857 // If ProcIndices contains 0, this class applies to all processors.
858 assert(!SCI->ProcIndices.empty() && "expect at least one procidx");
859 if (SCI->ProcIndices[0] != 0) {
860 IdxIter PIPos = std::find(SCI->ProcIndices.begin(),
861 SCI->ProcIndices.end(), ProcModel.Index);
862 if (PIPos == SCI->ProcIndices.end())
863 continue;
864 }
865 IdxVec Writes = SCI->Writes;
866 IdxVec Reads = SCI->Reads;
867 if (!SCI->InstRWs.empty()) {
868 // This class has a default ReadWrite list which can be overriden by
869 // InstRW definitions.
870 Record *RWDef = nullptr;
871 for (RecIter RWI = SCI->InstRWs.begin(), RWE = SCI->InstRWs.end();
872 RWI != RWE; ++RWI) {
873 Record *RWModelDef = (*RWI)->getValueAsDef("SchedModel");
874 if (&ProcModel == &SchedModels.getProcModel(RWModelDef)) {
875 RWDef = *RWI;
876 break;
877 }
878 }
879 if (RWDef) {
880 Writes.clear();
881 Reads.clear();
882 SchedModels.findRWs(RWDef->getValueAsListOfDefs("OperandReadWrites"),
883 Writes, Reads);
884 }
885 }
886 if (Writes.empty()) {
887 // Check this processor's itinerary class resources.
888 for (RecIter II = ProcModel.ItinRWDefs.begin(),
889 IE = ProcModel.ItinRWDefs.end(); II != IE; ++II) {
890 RecVec Matched = (*II)->getValueAsListOfDefs("MatchedItinClasses");
891 if (std::find(Matched.begin(), Matched.end(), SCI->ItinClassDef)
892 != Matched.end()) {
893 SchedModels.findRWs((*II)->getValueAsListOfDefs("OperandReadWrites"),
894 Writes, Reads);
895 break;
896 }
897 }
898 if (Writes.empty()) {
899 DEBUG(dbgs() << ProcModel.ModelName
900 << " does not have resources for class " << SCI->Name << '\n');
901 }
902 }
903 // Sum resources across all operand writes.
904 std::vector<MCWriteProcResEntry> WriteProcResources;
905 std::vector<MCWriteLatencyEntry> WriteLatencies;
906 std::vector<std::string> WriterNames;
907 std::vector<MCReadAdvanceEntry> ReadAdvanceEntries;
908 for (IdxIter WI = Writes.begin(), WE = Writes.end(); WI != WE; ++WI) {
909 IdxVec WriteSeq;
910 SchedModels.expandRWSeqForProc(*WI, WriteSeq, /*IsRead=*/false,
911 ProcModel);
912
913 // For each operand, create a latency entry.
914 MCWriteLatencyEntry WLEntry;
915 WLEntry.Cycles = 0;
916 unsigned WriteID = WriteSeq.back();
917 WriterNames.push_back(SchedModels.getSchedWrite(WriteID).Name);
918 // If this Write is not referenced by a ReadAdvance, don't distinguish it
919 // from other WriteLatency entries.
920 if (!SchedModels.hasReadOfWrite(
921 SchedModels.getSchedWrite(WriteID).TheDef)) {
922 WriteID = 0;
923 }
924 WLEntry.WriteResourceID = WriteID;
925
926 for (IdxIter WSI = WriteSeq.begin(), WSE = WriteSeq.end();
927 WSI != WSE; ++WSI) {
928
929 Record *WriteRes =
930 FindWriteResources(SchedModels.getSchedWrite(*WSI), ProcModel);
931
932 // Mark the parent class as invalid for unsupported write types.
933 if (WriteRes->getValueAsBit("Unsupported")) {
934 SCDesc.NumMicroOps = MCSchedClassDesc::InvalidNumMicroOps;
935 break;
936 }
937 WLEntry.Cycles += WriteRes->getValueAsInt("Latency");
938 SCDesc.NumMicroOps += WriteRes->getValueAsInt("NumMicroOps");
939 SCDesc.BeginGroup |= WriteRes->getValueAsBit("BeginGroup");
940 SCDesc.EndGroup |= WriteRes->getValueAsBit("EndGroup");
941
942 // Create an entry for each ProcResource listed in WriteRes.
943 RecVec PRVec = WriteRes->getValueAsListOfDefs("ProcResources");
944 std::vector<int64_t> Cycles =
945 WriteRes->getValueAsListOfInts("ResourceCycles");
946
947 ExpandProcResources(PRVec, Cycles, ProcModel);
948
949 for (unsigned PRIdx = 0, PREnd = PRVec.size();
950 PRIdx != PREnd; ++PRIdx) {
951 MCWriteProcResEntry WPREntry;
952 WPREntry.ProcResourceIdx = ProcModel.getProcResourceIdx(PRVec[PRIdx]);
953 assert(WPREntry.ProcResourceIdx && "Bad ProcResourceIdx");
954 WPREntry.Cycles = Cycles[PRIdx];
955 // If this resource is already used in this sequence, add the current
956 // entry's cycles so that the same resource appears to be used
957 // serially, rather than multiple parallel uses. This is important for
958 // in-order machine where the resource consumption is a hazard.
959 unsigned WPRIdx = 0, WPREnd = WriteProcResources.size();
960 for( ; WPRIdx != WPREnd; ++WPRIdx) {
961 if (WriteProcResources[WPRIdx].ProcResourceIdx
962 == WPREntry.ProcResourceIdx) {
963 WriteProcResources[WPRIdx].Cycles += WPREntry.Cycles;
964 break;
965 }
966 }
967 if (WPRIdx == WPREnd)
968 WriteProcResources.push_back(WPREntry);
969 }
970 }
971 WriteLatencies.push_back(WLEntry);
972 }
973 // Create an entry for each operand Read in this SchedClass.
974 // Entries must be sorted first by UseIdx then by WriteResourceID.
975 for (unsigned UseIdx = 0, EndIdx = Reads.size();
976 UseIdx != EndIdx; ++UseIdx) {
977 Record *ReadAdvance =
978 FindReadAdvance(SchedModels.getSchedRead(Reads[UseIdx]), ProcModel);
979 if (!ReadAdvance)
980 continue;
981
982 // Mark the parent class as invalid for unsupported write types.
983 if (ReadAdvance->getValueAsBit("Unsupported")) {
984 SCDesc.NumMicroOps = MCSchedClassDesc::InvalidNumMicroOps;
985 break;
986 }
987 RecVec ValidWrites = ReadAdvance->getValueAsListOfDefs("ValidWrites");
988 IdxVec WriteIDs;
989 if (ValidWrites.empty())
990 WriteIDs.push_back(0);
991 else {
992 for (RecIter VWI = ValidWrites.begin(), VWE = ValidWrites.end();
993 VWI != VWE; ++VWI) {
994 WriteIDs.push_back(SchedModels.getSchedRWIdx(*VWI, /*IsRead=*/false));
995 }
996 }
997 std::sort(WriteIDs.begin(), WriteIDs.end());
998 for(IdxIter WI = WriteIDs.begin(), WE = WriteIDs.end(); WI != WE; ++WI) {
999 MCReadAdvanceEntry RAEntry;
1000 RAEntry.UseIdx = UseIdx;
1001 RAEntry.WriteResourceID = *WI;
1002 RAEntry.Cycles = ReadAdvance->getValueAsInt("Cycles");
1003 ReadAdvanceEntries.push_back(RAEntry);
1004 }
1005 }
1006 if (SCDesc.NumMicroOps == MCSchedClassDesc::InvalidNumMicroOps) {
1007 WriteProcResources.clear();
1008 WriteLatencies.clear();
1009 ReadAdvanceEntries.clear();
1010 }
1011 // Add the information for this SchedClass to the global tables using basic
1012 // compression.
1013 //
1014 // WritePrecRes entries are sorted by ProcResIdx.
1015 std::sort(WriteProcResources.begin(), WriteProcResources.end(),
1016 LessWriteProcResources());
1017
1018 SCDesc.NumWriteProcResEntries = WriteProcResources.size();
1019 std::vector<MCWriteProcResEntry>::iterator WPRPos =
1020 std::search(SchedTables.WriteProcResources.begin(),
1021 SchedTables.WriteProcResources.end(),
1022 WriteProcResources.begin(), WriteProcResources.end());
1023 if (WPRPos != SchedTables.WriteProcResources.end())
1024 SCDesc.WriteProcResIdx = WPRPos - SchedTables.WriteProcResources.begin();
1025 else {
1026 SCDesc.WriteProcResIdx = SchedTables.WriteProcResources.size();
1027 SchedTables.WriteProcResources.insert(WPRPos, WriteProcResources.begin(),
1028 WriteProcResources.end());
1029 }
1030 // Latency entries must remain in operand order.
1031 SCDesc.NumWriteLatencyEntries = WriteLatencies.size();
1032 std::vector<MCWriteLatencyEntry>::iterator WLPos =
1033 std::search(SchedTables.WriteLatencies.begin(),
1034 SchedTables.WriteLatencies.end(),
1035 WriteLatencies.begin(), WriteLatencies.end());
1036 if (WLPos != SchedTables.WriteLatencies.end()) {
1037 unsigned idx = WLPos - SchedTables.WriteLatencies.begin();
1038 SCDesc.WriteLatencyIdx = idx;
1039 for (unsigned i = 0, e = WriteLatencies.size(); i < e; ++i)
1040 if (SchedTables.WriterNames[idx + i].find(WriterNames[i]) ==
1041 std::string::npos) {
1042 SchedTables.WriterNames[idx + i] += std::string("_") + WriterNames[i];
1043 }
1044 }
1045 else {
1046 SCDesc.WriteLatencyIdx = SchedTables.WriteLatencies.size();
1047 SchedTables.WriteLatencies.insert(SchedTables.WriteLatencies.end(),
1048 WriteLatencies.begin(),
1049 WriteLatencies.end());
1050 SchedTables.WriterNames.insert(SchedTables.WriterNames.end(),
1051 WriterNames.begin(), WriterNames.end());
1052 }
1053 // ReadAdvanceEntries must remain in operand order.
1054 SCDesc.NumReadAdvanceEntries = ReadAdvanceEntries.size();
1055 std::vector<MCReadAdvanceEntry>::iterator RAPos =
1056 std::search(SchedTables.ReadAdvanceEntries.begin(),
1057 SchedTables.ReadAdvanceEntries.end(),
1058 ReadAdvanceEntries.begin(), ReadAdvanceEntries.end());
1059 if (RAPos != SchedTables.ReadAdvanceEntries.end())
1060 SCDesc.ReadAdvanceIdx = RAPos - SchedTables.ReadAdvanceEntries.begin();
1061 else {
1062 SCDesc.ReadAdvanceIdx = SchedTables.ReadAdvanceEntries.size();
1063 SchedTables.ReadAdvanceEntries.insert(RAPos, ReadAdvanceEntries.begin(),
1064 ReadAdvanceEntries.end());
1065 }
1066 }
1067 }
1068
1069 // Emit SchedClass tables for all processors and associated global tables.
EmitSchedClassTables(SchedClassTables & SchedTables,raw_ostream & OS)1070 void SubtargetEmitter::EmitSchedClassTables(SchedClassTables &SchedTables,
1071 raw_ostream &OS) {
1072 // Emit global WriteProcResTable.
1073 OS << "\n// {ProcResourceIdx, Cycles}\n"
1074 << "extern const llvm::MCWriteProcResEntry "
1075 << Target << "WriteProcResTable[] = {\n"
1076 << " { 0, 0}, // Invalid\n";
1077 for (unsigned WPRIdx = 1, WPREnd = SchedTables.WriteProcResources.size();
1078 WPRIdx != WPREnd; ++WPRIdx) {
1079 MCWriteProcResEntry &WPREntry = SchedTables.WriteProcResources[WPRIdx];
1080 OS << " {" << format("%2d", WPREntry.ProcResourceIdx) << ", "
1081 << format("%2d", WPREntry.Cycles) << "}";
1082 if (WPRIdx + 1 < WPREnd)
1083 OS << ',';
1084 OS << " // #" << WPRIdx << '\n';
1085 }
1086 OS << "}; // " << Target << "WriteProcResTable\n";
1087
1088 // Emit global WriteLatencyTable.
1089 OS << "\n// {Cycles, WriteResourceID}\n"
1090 << "extern const llvm::MCWriteLatencyEntry "
1091 << Target << "WriteLatencyTable[] = {\n"
1092 << " { 0, 0}, // Invalid\n";
1093 for (unsigned WLIdx = 1, WLEnd = SchedTables.WriteLatencies.size();
1094 WLIdx != WLEnd; ++WLIdx) {
1095 MCWriteLatencyEntry &WLEntry = SchedTables.WriteLatencies[WLIdx];
1096 OS << " {" << format("%2d", WLEntry.Cycles) << ", "
1097 << format("%2d", WLEntry.WriteResourceID) << "}";
1098 if (WLIdx + 1 < WLEnd)
1099 OS << ',';
1100 OS << " // #" << WLIdx << " " << SchedTables.WriterNames[WLIdx] << '\n';
1101 }
1102 OS << "}; // " << Target << "WriteLatencyTable\n";
1103
1104 // Emit global ReadAdvanceTable.
1105 OS << "\n// {UseIdx, WriteResourceID, Cycles}\n"
1106 << "extern const llvm::MCReadAdvanceEntry "
1107 << Target << "ReadAdvanceTable[] = {\n"
1108 << " {0, 0, 0}, // Invalid\n";
1109 for (unsigned RAIdx = 1, RAEnd = SchedTables.ReadAdvanceEntries.size();
1110 RAIdx != RAEnd; ++RAIdx) {
1111 MCReadAdvanceEntry &RAEntry = SchedTables.ReadAdvanceEntries[RAIdx];
1112 OS << " {" << RAEntry.UseIdx << ", "
1113 << format("%2d", RAEntry.WriteResourceID) << ", "
1114 << format("%2d", RAEntry.Cycles) << "}";
1115 if (RAIdx + 1 < RAEnd)
1116 OS << ',';
1117 OS << " // #" << RAIdx << '\n';
1118 }
1119 OS << "}; // " << Target << "ReadAdvanceTable\n";
1120
1121 // Emit a SchedClass table for each processor.
1122 for (CodeGenSchedModels::ProcIter PI = SchedModels.procModelBegin(),
1123 PE = SchedModels.procModelEnd(); PI != PE; ++PI) {
1124 if (!PI->hasInstrSchedModel())
1125 continue;
1126
1127 std::vector<MCSchedClassDesc> &SCTab =
1128 SchedTables.ProcSchedClasses[1 + (PI - SchedModels.procModelBegin())];
1129
1130 OS << "\n// {Name, NumMicroOps, BeginGroup, EndGroup,"
1131 << " WriteProcResIdx,#, WriteLatencyIdx,#, ReadAdvanceIdx,#}\n";
1132 OS << "static const llvm::MCSchedClassDesc "
1133 << PI->ModelName << "SchedClasses[] = {\n";
1134
1135 // The first class is always invalid. We no way to distinguish it except by
1136 // name and position.
1137 assert(SchedModels.getSchedClass(0).Name == "NoInstrModel"
1138 && "invalid class not first");
1139 OS << " {DBGFIELD(\"InvalidSchedClass\") "
1140 << MCSchedClassDesc::InvalidNumMicroOps
1141 << ", 0, 0, 0, 0, 0, 0, 0, 0},\n";
1142
1143 for (unsigned SCIdx = 1, SCEnd = SCTab.size(); SCIdx != SCEnd; ++SCIdx) {
1144 MCSchedClassDesc &MCDesc = SCTab[SCIdx];
1145 const CodeGenSchedClass &SchedClass = SchedModels.getSchedClass(SCIdx);
1146 OS << " {DBGFIELD(\"" << SchedClass.Name << "\") ";
1147 if (SchedClass.Name.size() < 18)
1148 OS.indent(18 - SchedClass.Name.size());
1149 OS << MCDesc.NumMicroOps
1150 << ", " << MCDesc.BeginGroup << ", " << MCDesc.EndGroup
1151 << ", " << format("%2d", MCDesc.WriteProcResIdx)
1152 << ", " << MCDesc.NumWriteProcResEntries
1153 << ", " << format("%2d", MCDesc.WriteLatencyIdx)
1154 << ", " << MCDesc.NumWriteLatencyEntries
1155 << ", " << format("%2d", MCDesc.ReadAdvanceIdx)
1156 << ", " << MCDesc.NumReadAdvanceEntries << "}";
1157 if (SCIdx + 1 < SCEnd)
1158 OS << ',';
1159 OS << " // #" << SCIdx << '\n';
1160 }
1161 OS << "}; // " << PI->ModelName << "SchedClasses\n";
1162 }
1163 }
1164
EmitProcessorModels(raw_ostream & OS)1165 void SubtargetEmitter::EmitProcessorModels(raw_ostream &OS) {
1166 // For each processor model.
1167 for (CodeGenSchedModels::ProcIter PI = SchedModels.procModelBegin(),
1168 PE = SchedModels.procModelEnd(); PI != PE; ++PI) {
1169 // Emit processor resource table.
1170 if (PI->hasInstrSchedModel())
1171 EmitProcessorResources(*PI, OS);
1172 else if(!PI->ProcResourceDefs.empty())
1173 PrintFatalError(PI->ModelDef->getLoc(), "SchedMachineModel defines "
1174 "ProcResources without defining WriteRes SchedWriteRes");
1175
1176 // Begin processor itinerary properties
1177 OS << "\n";
1178 OS << "static const llvm::MCSchedModel " << PI->ModelName << " = {\n";
1179 EmitProcessorProp(OS, PI->ModelDef, "IssueWidth", ',');
1180 EmitProcessorProp(OS, PI->ModelDef, "MicroOpBufferSize", ',');
1181 EmitProcessorProp(OS, PI->ModelDef, "LoopMicroOpBufferSize", ',');
1182 EmitProcessorProp(OS, PI->ModelDef, "LoadLatency", ',');
1183 EmitProcessorProp(OS, PI->ModelDef, "HighLatency", ',');
1184 EmitProcessorProp(OS, PI->ModelDef, "MispredictPenalty", ',');
1185
1186 OS << " " << (bool)(PI->ModelDef ?
1187 PI->ModelDef->getValueAsBit("PostRAScheduler") : 0)
1188 << ", // " << "PostRAScheduler\n";
1189
1190 OS << " " << (bool)(PI->ModelDef ?
1191 PI->ModelDef->getValueAsBit("CompleteModel") : 0)
1192 << ", // " << "CompleteModel\n";
1193
1194 OS << " " << PI->Index << ", // Processor ID\n";
1195 if (PI->hasInstrSchedModel())
1196 OS << " " << PI->ModelName << "ProcResources" << ",\n"
1197 << " " << PI->ModelName << "SchedClasses" << ",\n"
1198 << " " << PI->ProcResourceDefs.size()+1 << ",\n"
1199 << " " << (SchedModels.schedClassEnd()
1200 - SchedModels.schedClassBegin()) << ",\n";
1201 else
1202 OS << " nullptr, nullptr, 0, 0,"
1203 << " // No instruction-level machine model.\n";
1204 if (PI->hasItineraries())
1205 OS << " " << PI->ItinsDef->getName() << "};\n";
1206 else
1207 OS << " nullptr}; // No Itinerary\n";
1208 }
1209 }
1210
1211 //
1212 // EmitProcessorLookup - generate cpu name to itinerary lookup table.
1213 //
EmitProcessorLookup(raw_ostream & OS)1214 void SubtargetEmitter::EmitProcessorLookup(raw_ostream &OS) {
1215 // Gather and sort processor information
1216 std::vector<Record*> ProcessorList =
1217 Records.getAllDerivedDefinitions("Processor");
1218 std::sort(ProcessorList.begin(), ProcessorList.end(), LessRecordFieldName());
1219
1220 // Begin processor table
1221 OS << "\n";
1222 OS << "// Sorted (by key) array of itineraries for CPU subtype.\n"
1223 << "extern const llvm::SubtargetInfoKV "
1224 << Target << "ProcSchedKV[] = {\n";
1225
1226 // For each processor
1227 for (unsigned i = 0, N = ProcessorList.size(); i < N;) {
1228 // Next processor
1229 Record *Processor = ProcessorList[i];
1230
1231 const std::string &Name = Processor->getValueAsString("Name");
1232 const std::string &ProcModelName =
1233 SchedModels.getModelForProc(Processor).ModelName;
1234
1235 // Emit as { "cpu", procinit },
1236 OS << " { \"" << Name << "\", (const void *)&" << ProcModelName << " }";
1237
1238 // Depending on ''if more in the list'' emit comma
1239 if (++i < N) OS << ",";
1240
1241 OS << "\n";
1242 }
1243
1244 // End processor table
1245 OS << "};\n";
1246 }
1247
1248 //
1249 // EmitSchedModel - Emits all scheduling model tables, folding common patterns.
1250 //
EmitSchedModel(raw_ostream & OS)1251 void SubtargetEmitter::EmitSchedModel(raw_ostream &OS) {
1252 OS << "#ifdef DBGFIELD\n"
1253 << "#error \"<target>GenSubtargetInfo.inc requires a DBGFIELD macro\"\n"
1254 << "#endif\n"
1255 << "#ifndef NDEBUG\n"
1256 << "#define DBGFIELD(x) x,\n"
1257 << "#else\n"
1258 << "#define DBGFIELD(x)\n"
1259 << "#endif\n";
1260
1261 if (SchedModels.hasItineraries()) {
1262 std::vector<std::vector<InstrItinerary> > ProcItinLists;
1263 // Emit the stage data
1264 EmitStageAndOperandCycleData(OS, ProcItinLists);
1265 EmitItineraries(OS, ProcItinLists);
1266 }
1267 OS << "\n// ===============================================================\n"
1268 << "// Data tables for the new per-operand machine model.\n";
1269
1270 SchedClassTables SchedTables;
1271 for (CodeGenSchedModels::ProcIter PI = SchedModels.procModelBegin(),
1272 PE = SchedModels.procModelEnd(); PI != PE; ++PI) {
1273 GenSchedClassTables(*PI, SchedTables);
1274 }
1275 EmitSchedClassTables(SchedTables, OS);
1276
1277 // Emit the processor machine model
1278 EmitProcessorModels(OS);
1279 // Emit the processor lookup data
1280 EmitProcessorLookup(OS);
1281
1282 OS << "#undef DBGFIELD";
1283 }
1284
EmitSchedModelHelpers(std::string ClassName,raw_ostream & OS)1285 void SubtargetEmitter::EmitSchedModelHelpers(std::string ClassName,
1286 raw_ostream &OS) {
1287 OS << "unsigned " << ClassName
1288 << "\n::resolveSchedClass(unsigned SchedClass, const MachineInstr *MI,"
1289 << " const TargetSchedModel *SchedModel) const {\n";
1290
1291 std::vector<Record*> Prologs = Records.getAllDerivedDefinitions("PredicateProlog");
1292 std::sort(Prologs.begin(), Prologs.end(), LessRecord());
1293 for (std::vector<Record*>::const_iterator
1294 PI = Prologs.begin(), PE = Prologs.end(); PI != PE; ++PI) {
1295 OS << (*PI)->getValueAsString("Code") << '\n';
1296 }
1297 IdxVec VariantClasses;
1298 for (CodeGenSchedModels::SchedClassIter SCI = SchedModels.schedClassBegin(),
1299 SCE = SchedModels.schedClassEnd(); SCI != SCE; ++SCI) {
1300 if (SCI->Transitions.empty())
1301 continue;
1302 VariantClasses.push_back(SCI->Index);
1303 }
1304 if (!VariantClasses.empty()) {
1305 OS << " switch (SchedClass) {\n";
1306 for (IdxIter VCI = VariantClasses.begin(), VCE = VariantClasses.end();
1307 VCI != VCE; ++VCI) {
1308 const CodeGenSchedClass &SC = SchedModels.getSchedClass(*VCI);
1309 OS << " case " << *VCI << ": // " << SC.Name << '\n';
1310 IdxVec ProcIndices;
1311 for (std::vector<CodeGenSchedTransition>::const_iterator
1312 TI = SC.Transitions.begin(), TE = SC.Transitions.end();
1313 TI != TE; ++TI) {
1314 IdxVec PI;
1315 std::set_union(TI->ProcIndices.begin(), TI->ProcIndices.end(),
1316 ProcIndices.begin(), ProcIndices.end(),
1317 std::back_inserter(PI));
1318 ProcIndices.swap(PI);
1319 }
1320 for (IdxIter PI = ProcIndices.begin(), PE = ProcIndices.end();
1321 PI != PE; ++PI) {
1322 OS << " ";
1323 if (*PI != 0)
1324 OS << "if (SchedModel->getProcessorID() == " << *PI << ") ";
1325 OS << "{ // " << (SchedModels.procModelBegin() + *PI)->ModelName
1326 << '\n';
1327 for (std::vector<CodeGenSchedTransition>::const_iterator
1328 TI = SC.Transitions.begin(), TE = SC.Transitions.end();
1329 TI != TE; ++TI) {
1330 if (*PI != 0 && !std::count(TI->ProcIndices.begin(),
1331 TI->ProcIndices.end(), *PI)) {
1332 continue;
1333 }
1334 OS << " if (";
1335 for (RecIter RI = TI->PredTerm.begin(), RE = TI->PredTerm.end();
1336 RI != RE; ++RI) {
1337 if (RI != TI->PredTerm.begin())
1338 OS << "\n && ";
1339 OS << "(" << (*RI)->getValueAsString("Predicate") << ")";
1340 }
1341 OS << ")\n"
1342 << " return " << TI->ToClassIdx << "; // "
1343 << SchedModels.getSchedClass(TI->ToClassIdx).Name << '\n';
1344 }
1345 OS << " }\n";
1346 if (*PI == 0)
1347 break;
1348 }
1349 if (SC.isInferred())
1350 OS << " return " << SC.Index << ";\n";
1351 OS << " break;\n";
1352 }
1353 OS << " };\n";
1354 }
1355 OS << " report_fatal_error(\"Expected a variant SchedClass\");\n"
1356 << "} // " << ClassName << "::resolveSchedClass\n";
1357 }
1358
1359 //
1360 // ParseFeaturesFunction - Produces a subtarget specific function for parsing
1361 // the subtarget features string.
1362 //
ParseFeaturesFunction(raw_ostream & OS,unsigned NumFeatures,unsigned NumProcs)1363 void SubtargetEmitter::ParseFeaturesFunction(raw_ostream &OS,
1364 unsigned NumFeatures,
1365 unsigned NumProcs) {
1366 std::vector<Record*> Features =
1367 Records.getAllDerivedDefinitions("SubtargetFeature");
1368 std::sort(Features.begin(), Features.end(), LessRecord());
1369
1370 OS << "// ParseSubtargetFeatures - Parses features string setting specified\n"
1371 << "// subtarget options.\n"
1372 << "void llvm::";
1373 OS << Target;
1374 OS << "Subtarget::ParseSubtargetFeatures(StringRef CPU, StringRef FS) {\n"
1375 << " DEBUG(dbgs() << \"\\nFeatures:\" << FS);\n"
1376 << " DEBUG(dbgs() << \"\\nCPU:\" << CPU << \"\\n\\n\");\n";
1377
1378 if (Features.empty()) {
1379 OS << "}\n";
1380 return;
1381 }
1382
1383 OS << " InitMCProcessorInfo(CPU, FS);\n"
1384 << " const FeatureBitset& Bits = getFeatureBits();\n";
1385
1386 for (unsigned i = 0; i < Features.size(); i++) {
1387 // Next record
1388 Record *R = Features[i];
1389 const std::string &Instance = R->getName();
1390 const std::string &Value = R->getValueAsString("Value");
1391 const std::string &Attribute = R->getValueAsString("Attribute");
1392
1393 if (Value=="true" || Value=="false")
1394 OS << " if (Bits[" << Target << "::"
1395 << Instance << "]) "
1396 << Attribute << " = " << Value << ";\n";
1397 else
1398 OS << " if (Bits[" << Target << "::"
1399 << Instance << "] && "
1400 << Attribute << " < " << Value << ") "
1401 << Attribute << " = " << Value << ";\n";
1402 }
1403
1404 OS << "}\n";
1405 }
1406
1407 //
1408 // SubtargetEmitter::run - Main subtarget enumeration emitter.
1409 //
run(raw_ostream & OS)1410 void SubtargetEmitter::run(raw_ostream &OS) {
1411 emitSourceFileHeader("Subtarget Enumeration Source Fragment", OS);
1412
1413 OS << "\n#ifdef GET_SUBTARGETINFO_ENUM\n";
1414 OS << "#undef GET_SUBTARGETINFO_ENUM\n";
1415
1416 OS << "namespace llvm {\n";
1417 Enumeration(OS, "SubtargetFeature");
1418 OS << "} // end llvm namespace\n";
1419 OS << "#endif // GET_SUBTARGETINFO_ENUM\n\n";
1420
1421 OS << "\n#ifdef GET_SUBTARGETINFO_MC_DESC\n";
1422 OS << "#undef GET_SUBTARGETINFO_MC_DESC\n";
1423
1424 OS << "namespace llvm {\n";
1425 #if 0
1426 OS << "namespace {\n";
1427 #endif
1428 unsigned NumFeatures = FeatureKeyValues(OS);
1429 OS << "\n";
1430 unsigned NumProcs = CPUKeyValues(OS);
1431 OS << "\n";
1432 EmitSchedModel(OS);
1433 OS << "\n";
1434 #if 0
1435 OS << "}\n";
1436 #endif
1437
1438 // MCInstrInfo initialization routine.
1439 OS << "static inline MCSubtargetInfo *create" << Target
1440 << "MCSubtargetInfoImpl("
1441 << "const Triple &TT, StringRef CPU, StringRef FS) {\n";
1442 OS << " return new MCSubtargetInfo(TT, CPU, FS, ";
1443 if (NumFeatures)
1444 OS << Target << "FeatureKV, ";
1445 else
1446 OS << "None, ";
1447 if (NumProcs)
1448 OS << Target << "SubTypeKV, ";
1449 else
1450 OS << "None, ";
1451 OS << '\n'; OS.indent(22);
1452 OS << Target << "ProcSchedKV, "
1453 << Target << "WriteProcResTable, "
1454 << Target << "WriteLatencyTable, "
1455 << Target << "ReadAdvanceTable, ";
1456 if (SchedModels.hasItineraries()) {
1457 OS << '\n'; OS.indent(22);
1458 OS << Target << "Stages, "
1459 << Target << "OperandCycles, "
1460 << Target << "ForwardingPaths";
1461 } else
1462 OS << "0, 0, 0";
1463 OS << ");\n}\n\n";
1464
1465 OS << "} // end llvm namespace\n";
1466
1467 OS << "#endif // GET_SUBTARGETINFO_MC_DESC\n\n";
1468
1469 OS << "\n#ifdef GET_SUBTARGETINFO_TARGET_DESC\n";
1470 OS << "#undef GET_SUBTARGETINFO_TARGET_DESC\n";
1471
1472 OS << "#include \"llvm/Support/Debug.h\"\n";
1473 OS << "#include \"llvm/Support/raw_ostream.h\"\n";
1474 ParseFeaturesFunction(OS, NumFeatures, NumProcs);
1475
1476 OS << "#endif // GET_SUBTARGETINFO_TARGET_DESC\n\n";
1477
1478 // Create a TargetSubtargetInfo subclass to hide the MC layer initialization.
1479 OS << "\n#ifdef GET_SUBTARGETINFO_HEADER\n";
1480 OS << "#undef GET_SUBTARGETINFO_HEADER\n";
1481
1482 std::string ClassName = Target + "GenSubtargetInfo";
1483 OS << "namespace llvm {\n";
1484 OS << "class DFAPacketizer;\n";
1485 OS << "struct " << ClassName << " : public TargetSubtargetInfo {\n"
1486 << " explicit " << ClassName << "(const Triple &TT, StringRef CPU, "
1487 << "StringRef FS);\n"
1488 << "public:\n"
1489 << " unsigned resolveSchedClass(unsigned SchedClass, "
1490 << " const MachineInstr *DefMI,"
1491 << " const TargetSchedModel *SchedModel) const override;\n"
1492 << " DFAPacketizer *createDFAPacketizer(const InstrItineraryData *IID)"
1493 << " const;\n"
1494 << "};\n";
1495 OS << "} // end llvm namespace\n";
1496
1497 OS << "#endif // GET_SUBTARGETINFO_HEADER\n\n";
1498
1499 OS << "\n#ifdef GET_SUBTARGETINFO_CTOR\n";
1500 OS << "#undef GET_SUBTARGETINFO_CTOR\n";
1501
1502 OS << "#include \"llvm/CodeGen/TargetSchedule.h\"\n";
1503 OS << "namespace llvm {\n";
1504 OS << "extern const llvm::SubtargetFeatureKV " << Target << "FeatureKV[];\n";
1505 OS << "extern const llvm::SubtargetFeatureKV " << Target << "SubTypeKV[];\n";
1506 OS << "extern const llvm::SubtargetInfoKV " << Target << "ProcSchedKV[];\n";
1507 OS << "extern const llvm::MCWriteProcResEntry "
1508 << Target << "WriteProcResTable[];\n";
1509 OS << "extern const llvm::MCWriteLatencyEntry "
1510 << Target << "WriteLatencyTable[];\n";
1511 OS << "extern const llvm::MCReadAdvanceEntry "
1512 << Target << "ReadAdvanceTable[];\n";
1513
1514 if (SchedModels.hasItineraries()) {
1515 OS << "extern const llvm::InstrStage " << Target << "Stages[];\n";
1516 OS << "extern const unsigned " << Target << "OperandCycles[];\n";
1517 OS << "extern const unsigned " << Target << "ForwardingPaths[];\n";
1518 }
1519
1520 OS << ClassName << "::" << ClassName << "(const Triple &TT, StringRef CPU, "
1521 << "StringRef FS)\n"
1522 << " : TargetSubtargetInfo(TT, CPU, FS, ";
1523 if (NumFeatures)
1524 OS << "makeArrayRef(" << Target << "FeatureKV, " << NumFeatures << "), ";
1525 else
1526 OS << "None, ";
1527 if (NumProcs)
1528 OS << "makeArrayRef(" << Target << "SubTypeKV, " << NumProcs << "), ";
1529 else
1530 OS << "None, ";
1531 OS << '\n'; OS.indent(24);
1532 OS << Target << "ProcSchedKV, "
1533 << Target << "WriteProcResTable, "
1534 << Target << "WriteLatencyTable, "
1535 << Target << "ReadAdvanceTable, ";
1536 OS << '\n'; OS.indent(24);
1537 if (SchedModels.hasItineraries()) {
1538 OS << Target << "Stages, "
1539 << Target << "OperandCycles, "
1540 << Target << "ForwardingPaths";
1541 } else
1542 OS << "0, 0, 0";
1543 OS << ") {}\n\n";
1544
1545 EmitSchedModelHelpers(ClassName, OS);
1546
1547 OS << "} // end llvm namespace\n";
1548
1549 OS << "#endif // GET_SUBTARGETINFO_CTOR\n\n";
1550 }
1551
1552 namespace llvm {
1553
EmitSubtarget(RecordKeeper & RK,raw_ostream & OS)1554 void EmitSubtarget(RecordKeeper &RK, raw_ostream &OS) {
1555 CodeGenTarget CGTarget(RK);
1556 SubtargetEmitter(RK, CGTarget).run(OS);
1557 }
1558
1559 } // end llvm namespace
1560