1 //===-- SelectionDAGISel.cpp - Implement the SelectionDAGISel class -------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This implements the SelectionDAGISel class.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "llvm/CodeGen/GCStrategy.h"
15 #include "ScheduleDAGSDNodes.h"
16 #include "SelectionDAGBuilder.h"
17 #include "llvm/ADT/PostOrderIterator.h"
18 #include "llvm/ADT/Statistic.h"
19 #include "llvm/Analysis/AliasAnalysis.h"
20 #include "llvm/Analysis/BranchProbabilityInfo.h"
21 #include "llvm/Analysis/CFG.h"
22 #include "llvm/Analysis/EHPersonalities.h"
23 #include "llvm/Analysis/TargetLibraryInfo.h"
24 #include "llvm/CodeGen/Analysis.h"
25 #include "llvm/CodeGen/FastISel.h"
26 #include "llvm/CodeGen/FunctionLoweringInfo.h"
27 #include "llvm/CodeGen/GCMetadata.h"
28 #include "llvm/CodeGen/MachineFrameInfo.h"
29 #include "llvm/CodeGen/MachineFunction.h"
30 #include "llvm/CodeGen/MachineInstrBuilder.h"
31 #include "llvm/CodeGen/MachineModuleInfo.h"
32 #include "llvm/CodeGen/MachineRegisterInfo.h"
33 #include "llvm/CodeGen/ScheduleHazardRecognizer.h"
34 #include "llvm/CodeGen/SchedulerRegistry.h"
35 #include "llvm/CodeGen/SelectionDAG.h"
36 #include "llvm/CodeGen/SelectionDAGISel.h"
37 #include "llvm/CodeGen/WinEHFuncInfo.h"
38 #include "llvm/IR/Constants.h"
39 #include "llvm/IR/DebugInfo.h"
40 #include "llvm/IR/Function.h"
41 #include "llvm/IR/InlineAsm.h"
42 #include "llvm/IR/Instructions.h"
43 #include "llvm/IR/IntrinsicInst.h"
44 #include "llvm/IR/Intrinsics.h"
45 #include "llvm/IR/LLVMContext.h"
46 #include "llvm/IR/Module.h"
47 #include "llvm/MC/MCAsmInfo.h"
48 #include "llvm/Support/Compiler.h"
49 #include "llvm/Support/Debug.h"
50 #include "llvm/Support/ErrorHandling.h"
51 #include "llvm/Support/Timer.h"
52 #include "llvm/Support/raw_ostream.h"
53 #include "llvm/Target/TargetInstrInfo.h"
54 #include "llvm/Target/TargetIntrinsicInfo.h"
55 #include "llvm/Target/TargetLowering.h"
56 #include "llvm/Target/TargetMachine.h"
57 #include "llvm/Target/TargetOptions.h"
58 #include "llvm/Target/TargetRegisterInfo.h"
59 #include "llvm/Target/TargetSubtargetInfo.h"
60 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
61 #include <algorithm>
62 using namespace llvm;
63
64 #define DEBUG_TYPE "isel"
65
66 STATISTIC(NumFastIselFailures, "Number of instructions fast isel failed on");
67 STATISTIC(NumFastIselSuccess, "Number of instructions fast isel selected");
68 STATISTIC(NumFastIselBlocks, "Number of blocks selected entirely by fast isel");
69 STATISTIC(NumDAGBlocks, "Number of blocks selected using DAG");
70 STATISTIC(NumDAGIselRetries,"Number of times dag isel has to try another path");
71 STATISTIC(NumEntryBlocks, "Number of entry blocks encountered");
72 STATISTIC(NumFastIselFailLowerArguments,
73 "Number of entry blocks where fast isel failed to lower arguments");
74
75 #ifndef NDEBUG
76 static cl::opt<bool>
77 EnableFastISelVerbose2("fast-isel-verbose2", cl::Hidden,
78 cl::desc("Enable extra verbose messages in the \"fast\" "
79 "instruction selector"));
80
81 // Terminators
82 STATISTIC(NumFastIselFailRet,"Fast isel fails on Ret");
83 STATISTIC(NumFastIselFailBr,"Fast isel fails on Br");
84 STATISTIC(NumFastIselFailSwitch,"Fast isel fails on Switch");
85 STATISTIC(NumFastIselFailIndirectBr,"Fast isel fails on IndirectBr");
86 STATISTIC(NumFastIselFailInvoke,"Fast isel fails on Invoke");
87 STATISTIC(NumFastIselFailResume,"Fast isel fails on Resume");
88 STATISTIC(NumFastIselFailUnreachable,"Fast isel fails on Unreachable");
89
90 // Standard binary operators...
91 STATISTIC(NumFastIselFailAdd,"Fast isel fails on Add");
92 STATISTIC(NumFastIselFailFAdd,"Fast isel fails on FAdd");
93 STATISTIC(NumFastIselFailSub,"Fast isel fails on Sub");
94 STATISTIC(NumFastIselFailFSub,"Fast isel fails on FSub");
95 STATISTIC(NumFastIselFailMul,"Fast isel fails on Mul");
96 STATISTIC(NumFastIselFailFMul,"Fast isel fails on FMul");
97 STATISTIC(NumFastIselFailUDiv,"Fast isel fails on UDiv");
98 STATISTIC(NumFastIselFailSDiv,"Fast isel fails on SDiv");
99 STATISTIC(NumFastIselFailFDiv,"Fast isel fails on FDiv");
100 STATISTIC(NumFastIselFailURem,"Fast isel fails on URem");
101 STATISTIC(NumFastIselFailSRem,"Fast isel fails on SRem");
102 STATISTIC(NumFastIselFailFRem,"Fast isel fails on FRem");
103
104 // Logical operators...
105 STATISTIC(NumFastIselFailAnd,"Fast isel fails on And");
106 STATISTIC(NumFastIselFailOr,"Fast isel fails on Or");
107 STATISTIC(NumFastIselFailXor,"Fast isel fails on Xor");
108
109 // Memory instructions...
110 STATISTIC(NumFastIselFailAlloca,"Fast isel fails on Alloca");
111 STATISTIC(NumFastIselFailLoad,"Fast isel fails on Load");
112 STATISTIC(NumFastIselFailStore,"Fast isel fails on Store");
113 STATISTIC(NumFastIselFailAtomicCmpXchg,"Fast isel fails on AtomicCmpXchg");
114 STATISTIC(NumFastIselFailAtomicRMW,"Fast isel fails on AtomicRWM");
115 STATISTIC(NumFastIselFailFence,"Fast isel fails on Frence");
116 STATISTIC(NumFastIselFailGetElementPtr,"Fast isel fails on GetElementPtr");
117
118 // Convert instructions...
119 STATISTIC(NumFastIselFailTrunc,"Fast isel fails on Trunc");
120 STATISTIC(NumFastIselFailZExt,"Fast isel fails on ZExt");
121 STATISTIC(NumFastIselFailSExt,"Fast isel fails on SExt");
122 STATISTIC(NumFastIselFailFPTrunc,"Fast isel fails on FPTrunc");
123 STATISTIC(NumFastIselFailFPExt,"Fast isel fails on FPExt");
124 STATISTIC(NumFastIselFailFPToUI,"Fast isel fails on FPToUI");
125 STATISTIC(NumFastIselFailFPToSI,"Fast isel fails on FPToSI");
126 STATISTIC(NumFastIselFailUIToFP,"Fast isel fails on UIToFP");
127 STATISTIC(NumFastIselFailSIToFP,"Fast isel fails on SIToFP");
128 STATISTIC(NumFastIselFailIntToPtr,"Fast isel fails on IntToPtr");
129 STATISTIC(NumFastIselFailPtrToInt,"Fast isel fails on PtrToInt");
130 STATISTIC(NumFastIselFailBitCast,"Fast isel fails on BitCast");
131
132 // Other instructions...
133 STATISTIC(NumFastIselFailICmp,"Fast isel fails on ICmp");
134 STATISTIC(NumFastIselFailFCmp,"Fast isel fails on FCmp");
135 STATISTIC(NumFastIselFailPHI,"Fast isel fails on PHI");
136 STATISTIC(NumFastIselFailSelect,"Fast isel fails on Select");
137 STATISTIC(NumFastIselFailCall,"Fast isel fails on Call");
138 STATISTIC(NumFastIselFailShl,"Fast isel fails on Shl");
139 STATISTIC(NumFastIselFailLShr,"Fast isel fails on LShr");
140 STATISTIC(NumFastIselFailAShr,"Fast isel fails on AShr");
141 STATISTIC(NumFastIselFailVAArg,"Fast isel fails on VAArg");
142 STATISTIC(NumFastIselFailExtractElement,"Fast isel fails on ExtractElement");
143 STATISTIC(NumFastIselFailInsertElement,"Fast isel fails on InsertElement");
144 STATISTIC(NumFastIselFailShuffleVector,"Fast isel fails on ShuffleVector");
145 STATISTIC(NumFastIselFailExtractValue,"Fast isel fails on ExtractValue");
146 STATISTIC(NumFastIselFailInsertValue,"Fast isel fails on InsertValue");
147 STATISTIC(NumFastIselFailLandingPad,"Fast isel fails on LandingPad");
148
149 // Intrinsic instructions...
150 STATISTIC(NumFastIselFailIntrinsicCall, "Fast isel fails on Intrinsic call");
151 STATISTIC(NumFastIselFailSAddWithOverflow,
152 "Fast isel fails on sadd.with.overflow");
153 STATISTIC(NumFastIselFailUAddWithOverflow,
154 "Fast isel fails on uadd.with.overflow");
155 STATISTIC(NumFastIselFailSSubWithOverflow,
156 "Fast isel fails on ssub.with.overflow");
157 STATISTIC(NumFastIselFailUSubWithOverflow,
158 "Fast isel fails on usub.with.overflow");
159 STATISTIC(NumFastIselFailSMulWithOverflow,
160 "Fast isel fails on smul.with.overflow");
161 STATISTIC(NumFastIselFailUMulWithOverflow,
162 "Fast isel fails on umul.with.overflow");
163 STATISTIC(NumFastIselFailFrameaddress, "Fast isel fails on Frameaddress");
164 STATISTIC(NumFastIselFailSqrt, "Fast isel fails on sqrt call");
165 STATISTIC(NumFastIselFailStackMap, "Fast isel fails on StackMap call");
166 STATISTIC(NumFastIselFailPatchPoint, "Fast isel fails on PatchPoint call");
167 #endif
168
169 static cl::opt<bool>
170 EnableFastISelVerbose("fast-isel-verbose", cl::Hidden,
171 cl::desc("Enable verbose messages in the \"fast\" "
172 "instruction selector"));
173 static cl::opt<int> EnableFastISelAbort(
174 "fast-isel-abort", cl::Hidden,
175 cl::desc("Enable abort calls when \"fast\" instruction selection "
176 "fails to lower an instruction: 0 disable the abort, 1 will "
177 "abort but for args, calls and terminators, 2 will also "
178 "abort for argument lowering, and 3 will never fallback "
179 "to SelectionDAG."));
180
181 static cl::opt<bool>
182 UseMBPI("use-mbpi",
183 cl::desc("use Machine Branch Probability Info"),
184 cl::init(true), cl::Hidden);
185
186 #ifndef NDEBUG
187 static cl::opt<std::string>
188 FilterDAGBasicBlockName("filter-view-dags", cl::Hidden,
189 cl::desc("Only display the basic block whose name "
190 "matches this for all view-*-dags options"));
191 static cl::opt<bool>
192 ViewDAGCombine1("view-dag-combine1-dags", cl::Hidden,
193 cl::desc("Pop up a window to show dags before the first "
194 "dag combine pass"));
195 static cl::opt<bool>
196 ViewLegalizeTypesDAGs("view-legalize-types-dags", cl::Hidden,
197 cl::desc("Pop up a window to show dags before legalize types"));
198 static cl::opt<bool>
199 ViewLegalizeDAGs("view-legalize-dags", cl::Hidden,
200 cl::desc("Pop up a window to show dags before legalize"));
201 static cl::opt<bool>
202 ViewDAGCombine2("view-dag-combine2-dags", cl::Hidden,
203 cl::desc("Pop up a window to show dags before the second "
204 "dag combine pass"));
205 static cl::opt<bool>
206 ViewDAGCombineLT("view-dag-combine-lt-dags", cl::Hidden,
207 cl::desc("Pop up a window to show dags before the post legalize types"
208 " dag combine pass"));
209 static cl::opt<bool>
210 ViewISelDAGs("view-isel-dags", cl::Hidden,
211 cl::desc("Pop up a window to show isel dags as they are selected"));
212 static cl::opt<bool>
213 ViewSchedDAGs("view-sched-dags", cl::Hidden,
214 cl::desc("Pop up a window to show sched dags as they are processed"));
215 static cl::opt<bool>
216 ViewSUnitDAGs("view-sunit-dags", cl::Hidden,
217 cl::desc("Pop up a window to show SUnit dags after they are processed"));
218 #else
219 static const bool ViewDAGCombine1 = false,
220 ViewLegalizeTypesDAGs = false, ViewLegalizeDAGs = false,
221 ViewDAGCombine2 = false,
222 ViewDAGCombineLT = false,
223 ViewISelDAGs = false, ViewSchedDAGs = false,
224 ViewSUnitDAGs = false;
225 #endif
226
227 //===---------------------------------------------------------------------===//
228 ///
229 /// RegisterScheduler class - Track the registration of instruction schedulers.
230 ///
231 //===---------------------------------------------------------------------===//
232 MachinePassRegistry RegisterScheduler::Registry;
233
234 //===---------------------------------------------------------------------===//
235 ///
236 /// ISHeuristic command line option for instruction schedulers.
237 ///
238 //===---------------------------------------------------------------------===//
239 static cl::opt<RegisterScheduler::FunctionPassCtor, false,
240 RegisterPassParser<RegisterScheduler> >
241 ISHeuristic("pre-RA-sched",
242 cl::init(&createDefaultScheduler), cl::Hidden,
243 cl::desc("Instruction schedulers available (before register"
244 " allocation):"));
245
246 static RegisterScheduler
247 defaultListDAGScheduler("default", "Best scheduler for the target",
248 createDefaultScheduler);
249
250 namespace llvm {
251 //===--------------------------------------------------------------------===//
252 /// \brief This class is used by SelectionDAGISel to temporarily override
253 /// the optimization level on a per-function basis.
254 class OptLevelChanger {
255 SelectionDAGISel &IS;
256 CodeGenOpt::Level SavedOptLevel;
257 bool SavedFastISel;
258
259 public:
OptLevelChanger(SelectionDAGISel & ISel,CodeGenOpt::Level NewOptLevel)260 OptLevelChanger(SelectionDAGISel &ISel,
261 CodeGenOpt::Level NewOptLevel) : IS(ISel) {
262 SavedOptLevel = IS.OptLevel;
263 if (NewOptLevel == SavedOptLevel)
264 return;
265 IS.OptLevel = NewOptLevel;
266 IS.TM.setOptLevel(NewOptLevel);
267 DEBUG(dbgs() << "\nChanging optimization level for Function "
268 << IS.MF->getFunction()->getName() << "\n");
269 DEBUG(dbgs() << "\tBefore: -O" << SavedOptLevel
270 << " ; After: -O" << NewOptLevel << "\n");
271 SavedFastISel = IS.TM.Options.EnableFastISel;
272 if (NewOptLevel == CodeGenOpt::None) {
273 IS.TM.setFastISel(IS.TM.getO0WantsFastISel());
274 DEBUG(dbgs() << "\tFastISel is "
275 << (IS.TM.Options.EnableFastISel ? "enabled" : "disabled")
276 << "\n");
277 }
278 }
279
~OptLevelChanger()280 ~OptLevelChanger() {
281 if (IS.OptLevel == SavedOptLevel)
282 return;
283 DEBUG(dbgs() << "\nRestoring optimization level for Function "
284 << IS.MF->getFunction()->getName() << "\n");
285 DEBUG(dbgs() << "\tBefore: -O" << IS.OptLevel
286 << " ; After: -O" << SavedOptLevel << "\n");
287 IS.OptLevel = SavedOptLevel;
288 IS.TM.setOptLevel(SavedOptLevel);
289 IS.TM.setFastISel(SavedFastISel);
290 }
291 };
292
293 //===--------------------------------------------------------------------===//
294 /// createDefaultScheduler - This creates an instruction scheduler appropriate
295 /// for the target.
createDefaultScheduler(SelectionDAGISel * IS,CodeGenOpt::Level OptLevel)296 ScheduleDAGSDNodes* createDefaultScheduler(SelectionDAGISel *IS,
297 CodeGenOpt::Level OptLevel) {
298 const TargetLowering *TLI = IS->TLI;
299 const TargetSubtargetInfo &ST = IS->MF->getSubtarget();
300
301 // Try first to see if the Target has its own way of selecting a scheduler
302 if (auto *SchedulerCtor = ST.getDAGScheduler(OptLevel)) {
303 return SchedulerCtor(IS, OptLevel);
304 }
305
306 if (OptLevel == CodeGenOpt::None ||
307 (ST.enableMachineScheduler() && ST.enableMachineSchedDefaultSched()) ||
308 TLI->getSchedulingPreference() == Sched::Source)
309 return createSourceListDAGScheduler(IS, OptLevel);
310 if (TLI->getSchedulingPreference() == Sched::RegPressure)
311 return createBURRListDAGScheduler(IS, OptLevel);
312 if (TLI->getSchedulingPreference() == Sched::Hybrid)
313 return createHybridListDAGScheduler(IS, OptLevel);
314 if (TLI->getSchedulingPreference() == Sched::VLIW)
315 return createVLIWDAGScheduler(IS, OptLevel);
316 assert(TLI->getSchedulingPreference() == Sched::ILP &&
317 "Unknown sched type!");
318 return createILPListDAGScheduler(IS, OptLevel);
319 }
320 }
321
322 // EmitInstrWithCustomInserter - This method should be implemented by targets
323 // that mark instructions with the 'usesCustomInserter' flag. These
324 // instructions are special in various ways, which require special support to
325 // insert. The specified MachineInstr is created but not inserted into any
326 // basic blocks, and this method is called to expand it into a sequence of
327 // instructions, potentially also creating new basic blocks and control flow.
328 // When new basic blocks are inserted and the edges from MBB to its successors
329 // are modified, the method should insert pairs of <OldSucc, NewSucc> into the
330 // DenseMap.
331 MachineBasicBlock *
EmitInstrWithCustomInserter(MachineInstr * MI,MachineBasicBlock * MBB) const332 TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
333 MachineBasicBlock *MBB) const {
334 #ifndef NDEBUG
335 dbgs() << "If a target marks an instruction with "
336 "'usesCustomInserter', it must implement "
337 "TargetLowering::EmitInstrWithCustomInserter!";
338 #endif
339 llvm_unreachable(nullptr);
340 }
341
AdjustInstrPostInstrSelection(MachineInstr * MI,SDNode * Node) const342 void TargetLowering::AdjustInstrPostInstrSelection(MachineInstr *MI,
343 SDNode *Node) const {
344 assert(!MI->hasPostISelHook() &&
345 "If a target marks an instruction with 'hasPostISelHook', "
346 "it must implement TargetLowering::AdjustInstrPostInstrSelection!");
347 }
348
349 //===----------------------------------------------------------------------===//
350 // SelectionDAGISel code
351 //===----------------------------------------------------------------------===//
352
SelectionDAGISel(TargetMachine & tm,CodeGenOpt::Level OL)353 SelectionDAGISel::SelectionDAGISel(TargetMachine &tm,
354 CodeGenOpt::Level OL) :
355 MachineFunctionPass(ID), TM(tm),
356 FuncInfo(new FunctionLoweringInfo()),
357 CurDAG(new SelectionDAG(tm, OL)),
358 SDB(new SelectionDAGBuilder(*CurDAG, *FuncInfo, OL)),
359 GFI(),
360 OptLevel(OL),
361 DAGSize(0) {
362 initializeGCModuleInfoPass(*PassRegistry::getPassRegistry());
363 initializeBranchProbabilityInfoWrapperPassPass(
364 *PassRegistry::getPassRegistry());
365 initializeAAResultsWrapperPassPass(*PassRegistry::getPassRegistry());
366 initializeTargetLibraryInfoWrapperPassPass(
367 *PassRegistry::getPassRegistry());
368 }
369
~SelectionDAGISel()370 SelectionDAGISel::~SelectionDAGISel() {
371 delete SDB;
372 delete CurDAG;
373 delete FuncInfo;
374 }
375
getAnalysisUsage(AnalysisUsage & AU) const376 void SelectionDAGISel::getAnalysisUsage(AnalysisUsage &AU) const {
377 AU.addRequired<AAResultsWrapperPass>();
378 AU.addRequired<GCModuleInfo>();
379 AU.addPreserved<GCModuleInfo>();
380 AU.addRequired<TargetLibraryInfoWrapperPass>();
381 if (UseMBPI && OptLevel != CodeGenOpt::None)
382 AU.addRequired<BranchProbabilityInfoWrapperPass>();
383 MachineFunctionPass::getAnalysisUsage(AU);
384 }
385
386 /// SplitCriticalSideEffectEdges - Look for critical edges with a PHI value that
387 /// may trap on it. In this case we have to split the edge so that the path
388 /// through the predecessor block that doesn't go to the phi block doesn't
389 /// execute the possibly trapping instruction.
390 ///
391 /// This is required for correctness, so it must be done at -O0.
392 ///
SplitCriticalSideEffectEdges(Function & Fn)393 static void SplitCriticalSideEffectEdges(Function &Fn) {
394 // Loop for blocks with phi nodes.
395 for (BasicBlock &BB : Fn) {
396 PHINode *PN = dyn_cast<PHINode>(BB.begin());
397 if (!PN) continue;
398
399 ReprocessBlock:
400 // For each block with a PHI node, check to see if any of the input values
401 // are potentially trapping constant expressions. Constant expressions are
402 // the only potentially trapping value that can occur as the argument to a
403 // PHI.
404 for (BasicBlock::iterator I = BB.begin(); (PN = dyn_cast<PHINode>(I)); ++I)
405 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
406 ConstantExpr *CE = dyn_cast<ConstantExpr>(PN->getIncomingValue(i));
407 if (!CE || !CE->canTrap()) continue;
408
409 // The only case we have to worry about is when the edge is critical.
410 // Since this block has a PHI Node, we assume it has multiple input
411 // edges: check to see if the pred has multiple successors.
412 BasicBlock *Pred = PN->getIncomingBlock(i);
413 if (Pred->getTerminator()->getNumSuccessors() == 1)
414 continue;
415
416 // Okay, we have to split this edge.
417 SplitCriticalEdge(
418 Pred->getTerminator(), GetSuccessorNumber(Pred, &BB),
419 CriticalEdgeSplittingOptions().setMergeIdenticalEdges());
420 goto ReprocessBlock;
421 }
422 }
423 }
424
runOnMachineFunction(MachineFunction & mf)425 bool SelectionDAGISel::runOnMachineFunction(MachineFunction &mf) {
426 // Do some sanity-checking on the command-line options.
427 assert((!EnableFastISelVerbose || TM.Options.EnableFastISel) &&
428 "-fast-isel-verbose requires -fast-isel");
429 assert((!EnableFastISelAbort || TM.Options.EnableFastISel) &&
430 "-fast-isel-abort > 0 requires -fast-isel");
431
432 const Function &Fn = *mf.getFunction();
433 MF = &mf;
434
435 // Reset the target options before resetting the optimization
436 // level below.
437 // FIXME: This is a horrible hack and should be processed via
438 // codegen looking at the optimization level explicitly when
439 // it wants to look at it.
440 TM.resetTargetOptions(Fn);
441 // Reset OptLevel to None for optnone functions.
442 CodeGenOpt::Level NewOptLevel = OptLevel;
443 if (Fn.hasFnAttribute(Attribute::OptimizeNone))
444 NewOptLevel = CodeGenOpt::None;
445 OptLevelChanger OLC(*this, NewOptLevel);
446
447 TII = MF->getSubtarget().getInstrInfo();
448 TLI = MF->getSubtarget().getTargetLowering();
449 RegInfo = &MF->getRegInfo();
450 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
451 LibInfo = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
452 GFI = Fn.hasGC() ? &getAnalysis<GCModuleInfo>().getFunctionInfo(Fn) : nullptr;
453
454 DEBUG(dbgs() << "\n\n\n=== " << Fn.getName() << "\n");
455
456 SplitCriticalSideEffectEdges(const_cast<Function &>(Fn));
457
458 CurDAG->init(*MF);
459 FuncInfo->set(Fn, *MF, CurDAG);
460
461 if (UseMBPI && OptLevel != CodeGenOpt::None)
462 FuncInfo->BPI = &getAnalysis<BranchProbabilityInfoWrapperPass>().getBPI();
463 else
464 FuncInfo->BPI = nullptr;
465
466 SDB->init(GFI, *AA, LibInfo);
467
468 MF->setHasInlineAsm(false);
469
470 FuncInfo->SplitCSR = false;
471 SmallVector<MachineBasicBlock*, 4> Returns;
472
473 // We split CSR if the target supports it for the given function
474 // and the function has only return exits.
475 if (TLI->supportSplitCSR(MF)) {
476 FuncInfo->SplitCSR = true;
477
478 // Collect all the return blocks.
479 for (const BasicBlock &BB : Fn) {
480 if (!succ_empty(&BB))
481 continue;
482
483 const TerminatorInst *Term = BB.getTerminator();
484 if (isa<UnreachableInst>(Term))
485 continue;
486 if (isa<ReturnInst>(Term)) {
487 Returns.push_back(FuncInfo->MBBMap[&BB]);
488 continue;
489 }
490
491 // Bail out if the exit block is not Return nor Unreachable.
492 FuncInfo->SplitCSR = false;
493 break;
494 }
495 }
496
497 MachineBasicBlock *EntryMBB = &MF->front();
498 if (FuncInfo->SplitCSR)
499 // This performs initialization so lowering for SplitCSR will be correct.
500 TLI->initializeSplitCSR(EntryMBB);
501
502 SelectAllBasicBlocks(Fn);
503
504 // If the first basic block in the function has live ins that need to be
505 // copied into vregs, emit the copies into the top of the block before
506 // emitting the code for the block.
507 const TargetRegisterInfo &TRI = *MF->getSubtarget().getRegisterInfo();
508 RegInfo->EmitLiveInCopies(EntryMBB, TRI, *TII);
509
510 // Insert copies in the entry block and the return blocks.
511 if (FuncInfo->SplitCSR)
512 TLI->insertCopiesSplitCSR(EntryMBB, Returns);
513
514 DenseMap<unsigned, unsigned> LiveInMap;
515 if (!FuncInfo->ArgDbgValues.empty())
516 for (MachineRegisterInfo::livein_iterator LI = RegInfo->livein_begin(),
517 E = RegInfo->livein_end(); LI != E; ++LI)
518 if (LI->second)
519 LiveInMap.insert(std::make_pair(LI->first, LI->second));
520
521 // Insert DBG_VALUE instructions for function arguments to the entry block.
522 for (unsigned i = 0, e = FuncInfo->ArgDbgValues.size(); i != e; ++i) {
523 MachineInstr *MI = FuncInfo->ArgDbgValues[e-i-1];
524 bool hasFI = MI->getOperand(0).isFI();
525 unsigned Reg =
526 hasFI ? TRI.getFrameRegister(*MF) : MI->getOperand(0).getReg();
527 if (TargetRegisterInfo::isPhysicalRegister(Reg))
528 EntryMBB->insert(EntryMBB->begin(), MI);
529 else {
530 MachineInstr *Def = RegInfo->getVRegDef(Reg);
531 if (Def) {
532 MachineBasicBlock::iterator InsertPos = Def;
533 // FIXME: VR def may not be in entry block.
534 Def->getParent()->insert(std::next(InsertPos), MI);
535 } else
536 DEBUG(dbgs() << "Dropping debug info for dead vreg"
537 << TargetRegisterInfo::virtReg2Index(Reg) << "\n");
538 }
539
540 // If Reg is live-in then update debug info to track its copy in a vreg.
541 DenseMap<unsigned, unsigned>::iterator LDI = LiveInMap.find(Reg);
542 if (LDI != LiveInMap.end()) {
543 assert(!hasFI && "There's no handling of frame pointer updating here yet "
544 "- add if needed");
545 MachineInstr *Def = RegInfo->getVRegDef(LDI->second);
546 MachineBasicBlock::iterator InsertPos = Def;
547 const MDNode *Variable = MI->getDebugVariable();
548 const MDNode *Expr = MI->getDebugExpression();
549 DebugLoc DL = MI->getDebugLoc();
550 bool IsIndirect = MI->isIndirectDebugValue();
551 unsigned Offset = IsIndirect ? MI->getOperand(1).getImm() : 0;
552 assert(cast<DILocalVariable>(Variable)->isValidLocationForIntrinsic(DL) &&
553 "Expected inlined-at fields to agree");
554 // Def is never a terminator here, so it is ok to increment InsertPos.
555 BuildMI(*EntryMBB, ++InsertPos, DL, TII->get(TargetOpcode::DBG_VALUE),
556 IsIndirect, LDI->second, Offset, Variable, Expr);
557
558 // If this vreg is directly copied into an exported register then
559 // that COPY instructions also need DBG_VALUE, if it is the only
560 // user of LDI->second.
561 MachineInstr *CopyUseMI = nullptr;
562 for (MachineRegisterInfo::use_instr_iterator
563 UI = RegInfo->use_instr_begin(LDI->second),
564 E = RegInfo->use_instr_end(); UI != E; ) {
565 MachineInstr *UseMI = &*(UI++);
566 if (UseMI->isDebugValue()) continue;
567 if (UseMI->isCopy() && !CopyUseMI && UseMI->getParent() == EntryMBB) {
568 CopyUseMI = UseMI; continue;
569 }
570 // Otherwise this is another use or second copy use.
571 CopyUseMI = nullptr; break;
572 }
573 if (CopyUseMI) {
574 // Use MI's debug location, which describes where Variable was
575 // declared, rather than whatever is attached to CopyUseMI.
576 MachineInstr *NewMI =
577 BuildMI(*MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsIndirect,
578 CopyUseMI->getOperand(0).getReg(), Offset, Variable, Expr);
579 MachineBasicBlock::iterator Pos = CopyUseMI;
580 EntryMBB->insertAfter(Pos, NewMI);
581 }
582 }
583 }
584
585 // Determine if there are any calls in this machine function.
586 MachineFrameInfo *MFI = MF->getFrameInfo();
587 for (const auto &MBB : *MF) {
588 if (MFI->hasCalls() && MF->hasInlineAsm())
589 break;
590
591 for (const auto &MI : MBB) {
592 const MCInstrDesc &MCID = TII->get(MI.getOpcode());
593 if ((MCID.isCall() && !MCID.isReturn()) ||
594 MI.isStackAligningInlineAsm()) {
595 MFI->setHasCalls(true);
596 }
597 if (MI.isInlineAsm()) {
598 MF->setHasInlineAsm(true);
599 }
600 }
601 }
602
603 // Determine if there is a call to setjmp in the machine function.
604 MF->setExposesReturnsTwice(Fn.callsFunctionThatReturnsTwice());
605
606 // Replace forward-declared registers with the registers containing
607 // the desired value.
608 MachineRegisterInfo &MRI = MF->getRegInfo();
609 for (DenseMap<unsigned, unsigned>::iterator
610 I = FuncInfo->RegFixups.begin(), E = FuncInfo->RegFixups.end();
611 I != E; ++I) {
612 unsigned From = I->first;
613 unsigned To = I->second;
614 // If To is also scheduled to be replaced, find what its ultimate
615 // replacement is.
616 for (;;) {
617 DenseMap<unsigned, unsigned>::iterator J = FuncInfo->RegFixups.find(To);
618 if (J == E) break;
619 To = J->second;
620 }
621 // Make sure the new register has a sufficiently constrained register class.
622 if (TargetRegisterInfo::isVirtualRegister(From) &&
623 TargetRegisterInfo::isVirtualRegister(To))
624 MRI.constrainRegClass(To, MRI.getRegClass(From));
625 // Replace it.
626
627
628 // Replacing one register with another won't touch the kill flags.
629 // We need to conservatively clear the kill flags as a kill on the old
630 // register might dominate existing uses of the new register.
631 if (!MRI.use_empty(To))
632 MRI.clearKillFlags(From);
633 MRI.replaceRegWith(From, To);
634 }
635
636 // Freeze the set of reserved registers now that MachineFrameInfo has been
637 // set up. All the information required by getReservedRegs() should be
638 // available now.
639 MRI.freezeReservedRegs(*MF);
640
641 // Release function-specific state. SDB and CurDAG are already cleared
642 // at this point.
643 FuncInfo->clear();
644
645 DEBUG(dbgs() << "*** MachineFunction at end of ISel ***\n");
646 DEBUG(MF->print(dbgs()));
647
648 return true;
649 }
650
SelectBasicBlock(BasicBlock::const_iterator Begin,BasicBlock::const_iterator End,bool & HadTailCall)651 void SelectionDAGISel::SelectBasicBlock(BasicBlock::const_iterator Begin,
652 BasicBlock::const_iterator End,
653 bool &HadTailCall) {
654 // Lower the instructions. If a call is emitted as a tail call, cease emitting
655 // nodes for this block.
656 for (BasicBlock::const_iterator I = Begin; I != End && !SDB->HasTailCall; ++I)
657 SDB->visit(*I);
658
659 // Make sure the root of the DAG is up-to-date.
660 CurDAG->setRoot(SDB->getControlRoot());
661 HadTailCall = SDB->HasTailCall;
662 SDB->clear();
663
664 // Final step, emit the lowered DAG as machine code.
665 CodeGenAndEmitDAG();
666 }
667
ComputeLiveOutVRegInfo()668 void SelectionDAGISel::ComputeLiveOutVRegInfo() {
669 SmallPtrSet<SDNode*, 128> VisitedNodes;
670 SmallVector<SDNode*, 128> Worklist;
671
672 Worklist.push_back(CurDAG->getRoot().getNode());
673
674 APInt KnownZero;
675 APInt KnownOne;
676
677 do {
678 SDNode *N = Worklist.pop_back_val();
679
680 // If we've already seen this node, ignore it.
681 if (!VisitedNodes.insert(N).second)
682 continue;
683
684 // Otherwise, add all chain operands to the worklist.
685 for (const SDValue &Op : N->op_values())
686 if (Op.getValueType() == MVT::Other)
687 Worklist.push_back(Op.getNode());
688
689 // If this is a CopyToReg with a vreg dest, process it.
690 if (N->getOpcode() != ISD::CopyToReg)
691 continue;
692
693 unsigned DestReg = cast<RegisterSDNode>(N->getOperand(1))->getReg();
694 if (!TargetRegisterInfo::isVirtualRegister(DestReg))
695 continue;
696
697 // Ignore non-scalar or non-integer values.
698 SDValue Src = N->getOperand(2);
699 EVT SrcVT = Src.getValueType();
700 if (!SrcVT.isInteger() || SrcVT.isVector())
701 continue;
702
703 unsigned NumSignBits = CurDAG->ComputeNumSignBits(Src);
704 CurDAG->computeKnownBits(Src, KnownZero, KnownOne);
705 FuncInfo->AddLiveOutRegInfo(DestReg, NumSignBits, KnownZero, KnownOne);
706 } while (!Worklist.empty());
707 }
708
CodeGenAndEmitDAG()709 void SelectionDAGISel::CodeGenAndEmitDAG() {
710 std::string GroupName;
711 if (TimePassesIsEnabled)
712 GroupName = "Instruction Selection and Scheduling";
713 std::string BlockName;
714 int BlockNumber = -1;
715 (void)BlockNumber;
716 bool MatchFilterBB = false; (void)MatchFilterBB;
717 #ifndef NDEBUG
718 MatchFilterBB = (FilterDAGBasicBlockName.empty() ||
719 FilterDAGBasicBlockName ==
720 FuncInfo->MBB->getBasicBlock()->getName().str());
721 #endif
722 #ifdef NDEBUG
723 if (ViewDAGCombine1 || ViewLegalizeTypesDAGs || ViewLegalizeDAGs ||
724 ViewDAGCombine2 || ViewDAGCombineLT || ViewISelDAGs || ViewSchedDAGs ||
725 ViewSUnitDAGs)
726 #endif
727 {
728 BlockNumber = FuncInfo->MBB->getNumber();
729 BlockName =
730 (MF->getName() + ":" + FuncInfo->MBB->getBasicBlock()->getName()).str();
731 }
732 DEBUG(dbgs() << "Initial selection DAG: BB#" << BlockNumber
733 << " '" << BlockName << "'\n"; CurDAG->dump());
734
735 if (ViewDAGCombine1 && MatchFilterBB)
736 CurDAG->viewGraph("dag-combine1 input for " + BlockName);
737
738 // Run the DAG combiner in pre-legalize mode.
739 {
740 NamedRegionTimer T("DAG Combining 1", GroupName, TimePassesIsEnabled);
741 CurDAG->Combine(BeforeLegalizeTypes, *AA, OptLevel);
742 }
743
744 DEBUG(dbgs() << "Optimized lowered selection DAG: BB#" << BlockNumber
745 << " '" << BlockName << "'\n"; CurDAG->dump());
746
747 // Second step, hack on the DAG until it only uses operations and types that
748 // the target supports.
749 if (ViewLegalizeTypesDAGs && MatchFilterBB)
750 CurDAG->viewGraph("legalize-types input for " + BlockName);
751
752 bool Changed;
753 {
754 NamedRegionTimer T("Type Legalization", GroupName, TimePassesIsEnabled);
755 Changed = CurDAG->LegalizeTypes();
756 }
757
758 DEBUG(dbgs() << "Type-legalized selection DAG: BB#" << BlockNumber
759 << " '" << BlockName << "'\n"; CurDAG->dump());
760
761 CurDAG->NewNodesMustHaveLegalTypes = true;
762
763 if (Changed) {
764 if (ViewDAGCombineLT && MatchFilterBB)
765 CurDAG->viewGraph("dag-combine-lt input for " + BlockName);
766
767 // Run the DAG combiner in post-type-legalize mode.
768 {
769 NamedRegionTimer T("DAG Combining after legalize types", GroupName,
770 TimePassesIsEnabled);
771 CurDAG->Combine(AfterLegalizeTypes, *AA, OptLevel);
772 }
773
774 DEBUG(dbgs() << "Optimized type-legalized selection DAG: BB#" << BlockNumber
775 << " '" << BlockName << "'\n"; CurDAG->dump());
776
777 }
778
779 {
780 NamedRegionTimer T("Vector Legalization", GroupName, TimePassesIsEnabled);
781 Changed = CurDAG->LegalizeVectors();
782 }
783
784 if (Changed) {
785 {
786 NamedRegionTimer T("Type Legalization 2", GroupName, TimePassesIsEnabled);
787 CurDAG->LegalizeTypes();
788 }
789
790 if (ViewDAGCombineLT && MatchFilterBB)
791 CurDAG->viewGraph("dag-combine-lv input for " + BlockName);
792
793 // Run the DAG combiner in post-type-legalize mode.
794 {
795 NamedRegionTimer T("DAG Combining after legalize vectors", GroupName,
796 TimePassesIsEnabled);
797 CurDAG->Combine(AfterLegalizeVectorOps, *AA, OptLevel);
798 }
799
800 DEBUG(dbgs() << "Optimized vector-legalized selection DAG: BB#"
801 << BlockNumber << " '" << BlockName << "'\n"; CurDAG->dump());
802 }
803
804 if (ViewLegalizeDAGs && MatchFilterBB)
805 CurDAG->viewGraph("legalize input for " + BlockName);
806
807 {
808 NamedRegionTimer T("DAG Legalization", GroupName, TimePassesIsEnabled);
809 CurDAG->Legalize();
810 }
811
812 DEBUG(dbgs() << "Legalized selection DAG: BB#" << BlockNumber
813 << " '" << BlockName << "'\n"; CurDAG->dump());
814
815 if (ViewDAGCombine2 && MatchFilterBB)
816 CurDAG->viewGraph("dag-combine2 input for " + BlockName);
817
818 // Run the DAG combiner in post-legalize mode.
819 {
820 NamedRegionTimer T("DAG Combining 2", GroupName, TimePassesIsEnabled);
821 CurDAG->Combine(AfterLegalizeDAG, *AA, OptLevel);
822 }
823
824 DEBUG(dbgs() << "Optimized legalized selection DAG: BB#" << BlockNumber
825 << " '" << BlockName << "'\n"; CurDAG->dump());
826
827 if (OptLevel != CodeGenOpt::None)
828 ComputeLiveOutVRegInfo();
829
830 if (ViewISelDAGs && MatchFilterBB)
831 CurDAG->viewGraph("isel input for " + BlockName);
832
833 // Third, instruction select all of the operations to machine code, adding the
834 // code to the MachineBasicBlock.
835 {
836 NamedRegionTimer T("Instruction Selection", GroupName, TimePassesIsEnabled);
837 DoInstructionSelection();
838 }
839
840 DEBUG(dbgs() << "Selected selection DAG: BB#" << BlockNumber
841 << " '" << BlockName << "'\n"; CurDAG->dump());
842
843 if (ViewSchedDAGs && MatchFilterBB)
844 CurDAG->viewGraph("scheduler input for " + BlockName);
845
846 // Schedule machine code.
847 ScheduleDAGSDNodes *Scheduler = CreateScheduler();
848 {
849 NamedRegionTimer T("Instruction Scheduling", GroupName,
850 TimePassesIsEnabled);
851 Scheduler->Run(CurDAG, FuncInfo->MBB);
852 }
853
854 if (ViewSUnitDAGs && MatchFilterBB) Scheduler->viewGraph();
855
856 // Emit machine code to BB. This can change 'BB' to the last block being
857 // inserted into.
858 MachineBasicBlock *FirstMBB = FuncInfo->MBB, *LastMBB;
859 {
860 NamedRegionTimer T("Instruction Creation", GroupName, TimePassesIsEnabled);
861
862 // FuncInfo->InsertPt is passed by reference and set to the end of the
863 // scheduled instructions.
864 LastMBB = FuncInfo->MBB = Scheduler->EmitSchedule(FuncInfo->InsertPt);
865 }
866
867 // If the block was split, make sure we update any references that are used to
868 // update PHI nodes later on.
869 if (FirstMBB != LastMBB)
870 SDB->UpdateSplitBlock(FirstMBB, LastMBB);
871
872 // Free the scheduler state.
873 {
874 NamedRegionTimer T("Instruction Scheduling Cleanup", GroupName,
875 TimePassesIsEnabled);
876 delete Scheduler;
877 }
878
879 // Free the SelectionDAG state, now that we're finished with it.
880 CurDAG->clear();
881 }
882
883 namespace {
884 /// ISelUpdater - helper class to handle updates of the instruction selection
885 /// graph.
886 class ISelUpdater : public SelectionDAG::DAGUpdateListener {
887 SelectionDAG::allnodes_iterator &ISelPosition;
888 public:
ISelUpdater(SelectionDAG & DAG,SelectionDAG::allnodes_iterator & isp)889 ISelUpdater(SelectionDAG &DAG, SelectionDAG::allnodes_iterator &isp)
890 : SelectionDAG::DAGUpdateListener(DAG), ISelPosition(isp) {}
891
892 /// NodeDeleted - Handle nodes deleted from the graph. If the node being
893 /// deleted is the current ISelPosition node, update ISelPosition.
894 ///
NodeDeleted(SDNode * N,SDNode * E)895 void NodeDeleted(SDNode *N, SDNode *E) override {
896 if (ISelPosition == SelectionDAG::allnodes_iterator(N))
897 ++ISelPosition;
898 }
899 };
900 } // end anonymous namespace
901
DoInstructionSelection()902 void SelectionDAGISel::DoInstructionSelection() {
903 DEBUG(dbgs() << "===== Instruction selection begins: BB#"
904 << FuncInfo->MBB->getNumber()
905 << " '" << FuncInfo->MBB->getName() << "'\n");
906
907 PreprocessISelDAG();
908
909 // Select target instructions for the DAG.
910 {
911 // Number all nodes with a topological order and set DAGSize.
912 DAGSize = CurDAG->AssignTopologicalOrder();
913
914 // Create a dummy node (which is not added to allnodes), that adds
915 // a reference to the root node, preventing it from being deleted,
916 // and tracking any changes of the root.
917 HandleSDNode Dummy(CurDAG->getRoot());
918 SelectionDAG::allnodes_iterator ISelPosition (CurDAG->getRoot().getNode());
919 ++ISelPosition;
920
921 // Make sure that ISelPosition gets properly updated when nodes are deleted
922 // in calls made from this function.
923 ISelUpdater ISU(*CurDAG, ISelPosition);
924
925 // The AllNodes list is now topological-sorted. Visit the
926 // nodes by starting at the end of the list (the root of the
927 // graph) and preceding back toward the beginning (the entry
928 // node).
929 while (ISelPosition != CurDAG->allnodes_begin()) {
930 SDNode *Node = &*--ISelPosition;
931 // Skip dead nodes. DAGCombiner is expected to eliminate all dead nodes,
932 // but there are currently some corner cases that it misses. Also, this
933 // makes it theoretically possible to disable the DAGCombiner.
934 if (Node->use_empty())
935 continue;
936
937 SDNode *ResNode = Select(Node);
938
939 // FIXME: This is pretty gross. 'Select' should be changed to not return
940 // anything at all and this code should be nuked with a tactical strike.
941
942 // If node should not be replaced, continue with the next one.
943 if (ResNode == Node || Node->getOpcode() == ISD::DELETED_NODE)
944 continue;
945 // Replace node.
946 if (ResNode) {
947 ReplaceUses(Node, ResNode);
948 }
949
950 // If after the replacement this node is not used any more,
951 // remove this dead node.
952 if (Node->use_empty()) // Don't delete EntryToken, etc.
953 CurDAG->RemoveDeadNode(Node);
954 }
955
956 CurDAG->setRoot(Dummy.getValue());
957 }
958
959 DEBUG(dbgs() << "===== Instruction selection ends:\n");
960
961 PostprocessISelDAG();
962 }
963
hasExceptionPointerOrCodeUser(const CatchPadInst * CPI)964 static bool hasExceptionPointerOrCodeUser(const CatchPadInst *CPI) {
965 for (const User *U : CPI->users()) {
966 if (const IntrinsicInst *EHPtrCall = dyn_cast<IntrinsicInst>(U)) {
967 Intrinsic::ID IID = EHPtrCall->getIntrinsicID();
968 if (IID == Intrinsic::eh_exceptionpointer ||
969 IID == Intrinsic::eh_exceptioncode)
970 return true;
971 }
972 }
973 return false;
974 }
975
976 /// PrepareEHLandingPad - Emit an EH_LABEL, set up live-in registers, and
977 /// do other setup for EH landing-pad blocks.
PrepareEHLandingPad()978 bool SelectionDAGISel::PrepareEHLandingPad() {
979 MachineBasicBlock *MBB = FuncInfo->MBB;
980 const Constant *PersonalityFn = FuncInfo->Fn->getPersonalityFn();
981 const BasicBlock *LLVMBB = MBB->getBasicBlock();
982 const TargetRegisterClass *PtrRC =
983 TLI->getRegClassFor(TLI->getPointerTy(CurDAG->getDataLayout()));
984
985 // Catchpads have one live-in register, which typically holds the exception
986 // pointer or code.
987 if (const auto *CPI = dyn_cast<CatchPadInst>(LLVMBB->getFirstNonPHI())) {
988 if (hasExceptionPointerOrCodeUser(CPI)) {
989 // Get or create the virtual register to hold the pointer or code. Mark
990 // the live in physreg and copy into the vreg.
991 MCPhysReg EHPhysReg = TLI->getExceptionPointerRegister(PersonalityFn);
992 assert(EHPhysReg && "target lacks exception pointer register");
993 MBB->addLiveIn(EHPhysReg);
994 unsigned VReg = FuncInfo->getCatchPadExceptionPointerVReg(CPI, PtrRC);
995 BuildMI(*MBB, FuncInfo->InsertPt, SDB->getCurDebugLoc(),
996 TII->get(TargetOpcode::COPY), VReg)
997 .addReg(EHPhysReg, RegState::Kill);
998 }
999 return true;
1000 }
1001
1002 if (!LLVMBB->isLandingPad())
1003 return true;
1004
1005 // Add a label to mark the beginning of the landing pad. Deletion of the
1006 // landing pad can thus be detected via the MachineModuleInfo.
1007 MCSymbol *Label = MF->getMMI().addLandingPad(MBB);
1008
1009 // Assign the call site to the landing pad's begin label.
1010 MF->getMMI().setCallSiteLandingPad(Label, SDB->LPadToCallSiteMap[MBB]);
1011
1012 const MCInstrDesc &II = TII->get(TargetOpcode::EH_LABEL);
1013 BuildMI(*MBB, FuncInfo->InsertPt, SDB->getCurDebugLoc(), II)
1014 .addSym(Label);
1015
1016 // Mark exception register as live in.
1017 if (unsigned Reg = TLI->getExceptionPointerRegister(PersonalityFn))
1018 FuncInfo->ExceptionPointerVirtReg = MBB->addLiveIn(Reg, PtrRC);
1019
1020 // Mark exception selector register as live in.
1021 if (unsigned Reg = TLI->getExceptionSelectorRegister(PersonalityFn))
1022 FuncInfo->ExceptionSelectorVirtReg = MBB->addLiveIn(Reg, PtrRC);
1023
1024 return true;
1025 }
1026
1027 /// isFoldedOrDeadInstruction - Return true if the specified instruction is
1028 /// side-effect free and is either dead or folded into a generated instruction.
1029 /// Return false if it needs to be emitted.
isFoldedOrDeadInstruction(const Instruction * I,FunctionLoweringInfo * FuncInfo)1030 static bool isFoldedOrDeadInstruction(const Instruction *I,
1031 FunctionLoweringInfo *FuncInfo) {
1032 return !I->mayWriteToMemory() && // Side-effecting instructions aren't folded.
1033 !isa<TerminatorInst>(I) && // Terminators aren't folded.
1034 !isa<DbgInfoIntrinsic>(I) && // Debug instructions aren't folded.
1035 !I->isEHPad() && // EH pad instructions aren't folded.
1036 !FuncInfo->isExportedInst(I); // Exported instrs must be computed.
1037 }
1038
1039 #ifndef NDEBUG
1040 // Collect per Instruction statistics for fast-isel misses. Only those
1041 // instructions that cause the bail are accounted for. It does not account for
1042 // instructions higher in the block. Thus, summing the per instructions stats
1043 // will not add up to what is reported by NumFastIselFailures.
collectFailStats(const Instruction * I)1044 static void collectFailStats(const Instruction *I) {
1045 switch (I->getOpcode()) {
1046 default: assert (0 && "<Invalid operator> ");
1047
1048 // Terminators
1049 case Instruction::Ret: NumFastIselFailRet++; return;
1050 case Instruction::Br: NumFastIselFailBr++; return;
1051 case Instruction::Switch: NumFastIselFailSwitch++; return;
1052 case Instruction::IndirectBr: NumFastIselFailIndirectBr++; return;
1053 case Instruction::Invoke: NumFastIselFailInvoke++; return;
1054 case Instruction::Resume: NumFastIselFailResume++; return;
1055 case Instruction::Unreachable: NumFastIselFailUnreachable++; return;
1056
1057 // Standard binary operators...
1058 case Instruction::Add: NumFastIselFailAdd++; return;
1059 case Instruction::FAdd: NumFastIselFailFAdd++; return;
1060 case Instruction::Sub: NumFastIselFailSub++; return;
1061 case Instruction::FSub: NumFastIselFailFSub++; return;
1062 case Instruction::Mul: NumFastIselFailMul++; return;
1063 case Instruction::FMul: NumFastIselFailFMul++; return;
1064 case Instruction::UDiv: NumFastIselFailUDiv++; return;
1065 case Instruction::SDiv: NumFastIselFailSDiv++; return;
1066 case Instruction::FDiv: NumFastIselFailFDiv++; return;
1067 case Instruction::URem: NumFastIselFailURem++; return;
1068 case Instruction::SRem: NumFastIselFailSRem++; return;
1069 case Instruction::FRem: NumFastIselFailFRem++; return;
1070
1071 // Logical operators...
1072 case Instruction::And: NumFastIselFailAnd++; return;
1073 case Instruction::Or: NumFastIselFailOr++; return;
1074 case Instruction::Xor: NumFastIselFailXor++; return;
1075
1076 // Memory instructions...
1077 case Instruction::Alloca: NumFastIselFailAlloca++; return;
1078 case Instruction::Load: NumFastIselFailLoad++; return;
1079 case Instruction::Store: NumFastIselFailStore++; return;
1080 case Instruction::AtomicCmpXchg: NumFastIselFailAtomicCmpXchg++; return;
1081 case Instruction::AtomicRMW: NumFastIselFailAtomicRMW++; return;
1082 case Instruction::Fence: NumFastIselFailFence++; return;
1083 case Instruction::GetElementPtr: NumFastIselFailGetElementPtr++; return;
1084
1085 // Convert instructions...
1086 case Instruction::Trunc: NumFastIselFailTrunc++; return;
1087 case Instruction::ZExt: NumFastIselFailZExt++; return;
1088 case Instruction::SExt: NumFastIselFailSExt++; return;
1089 case Instruction::FPTrunc: NumFastIselFailFPTrunc++; return;
1090 case Instruction::FPExt: NumFastIselFailFPExt++; return;
1091 case Instruction::FPToUI: NumFastIselFailFPToUI++; return;
1092 case Instruction::FPToSI: NumFastIselFailFPToSI++; return;
1093 case Instruction::UIToFP: NumFastIselFailUIToFP++; return;
1094 case Instruction::SIToFP: NumFastIselFailSIToFP++; return;
1095 case Instruction::IntToPtr: NumFastIselFailIntToPtr++; return;
1096 case Instruction::PtrToInt: NumFastIselFailPtrToInt++; return;
1097 case Instruction::BitCast: NumFastIselFailBitCast++; return;
1098
1099 // Other instructions...
1100 case Instruction::ICmp: NumFastIselFailICmp++; return;
1101 case Instruction::FCmp: NumFastIselFailFCmp++; return;
1102 case Instruction::PHI: NumFastIselFailPHI++; return;
1103 case Instruction::Select: NumFastIselFailSelect++; return;
1104 case Instruction::Call: {
1105 if (auto const *Intrinsic = dyn_cast<IntrinsicInst>(I)) {
1106 switch (Intrinsic->getIntrinsicID()) {
1107 default:
1108 NumFastIselFailIntrinsicCall++; return;
1109 case Intrinsic::sadd_with_overflow:
1110 NumFastIselFailSAddWithOverflow++; return;
1111 case Intrinsic::uadd_with_overflow:
1112 NumFastIselFailUAddWithOverflow++; return;
1113 case Intrinsic::ssub_with_overflow:
1114 NumFastIselFailSSubWithOverflow++; return;
1115 case Intrinsic::usub_with_overflow:
1116 NumFastIselFailUSubWithOverflow++; return;
1117 case Intrinsic::smul_with_overflow:
1118 NumFastIselFailSMulWithOverflow++; return;
1119 case Intrinsic::umul_with_overflow:
1120 NumFastIselFailUMulWithOverflow++; return;
1121 case Intrinsic::frameaddress:
1122 NumFastIselFailFrameaddress++; return;
1123 case Intrinsic::sqrt:
1124 NumFastIselFailSqrt++; return;
1125 case Intrinsic::experimental_stackmap:
1126 NumFastIselFailStackMap++; return;
1127 case Intrinsic::experimental_patchpoint_void: // fall-through
1128 case Intrinsic::experimental_patchpoint_i64:
1129 NumFastIselFailPatchPoint++; return;
1130 }
1131 }
1132 NumFastIselFailCall++;
1133 return;
1134 }
1135 case Instruction::Shl: NumFastIselFailShl++; return;
1136 case Instruction::LShr: NumFastIselFailLShr++; return;
1137 case Instruction::AShr: NumFastIselFailAShr++; return;
1138 case Instruction::VAArg: NumFastIselFailVAArg++; return;
1139 case Instruction::ExtractElement: NumFastIselFailExtractElement++; return;
1140 case Instruction::InsertElement: NumFastIselFailInsertElement++; return;
1141 case Instruction::ShuffleVector: NumFastIselFailShuffleVector++; return;
1142 case Instruction::ExtractValue: NumFastIselFailExtractValue++; return;
1143 case Instruction::InsertValue: NumFastIselFailInsertValue++; return;
1144 case Instruction::LandingPad: NumFastIselFailLandingPad++; return;
1145 }
1146 }
1147 #endif
1148
SelectAllBasicBlocks(const Function & Fn)1149 void SelectionDAGISel::SelectAllBasicBlocks(const Function &Fn) {
1150 // Initialize the Fast-ISel state, if needed.
1151 FastISel *FastIS = nullptr;
1152 if (TM.Options.EnableFastISel)
1153 FastIS = TLI->createFastISel(*FuncInfo, LibInfo);
1154
1155 // Iterate over all basic blocks in the function.
1156 ReversePostOrderTraversal<const Function*> RPOT(&Fn);
1157 for (ReversePostOrderTraversal<const Function*>::rpo_iterator
1158 I = RPOT.begin(), E = RPOT.end(); I != E; ++I) {
1159 const BasicBlock *LLVMBB = *I;
1160
1161 if (OptLevel != CodeGenOpt::None) {
1162 bool AllPredsVisited = true;
1163 for (const_pred_iterator PI = pred_begin(LLVMBB), PE = pred_end(LLVMBB);
1164 PI != PE; ++PI) {
1165 if (!FuncInfo->VisitedBBs.count(*PI)) {
1166 AllPredsVisited = false;
1167 break;
1168 }
1169 }
1170
1171 if (AllPredsVisited) {
1172 for (BasicBlock::const_iterator I = LLVMBB->begin();
1173 const PHINode *PN = dyn_cast<PHINode>(I); ++I)
1174 FuncInfo->ComputePHILiveOutRegInfo(PN);
1175 } else {
1176 for (BasicBlock::const_iterator I = LLVMBB->begin();
1177 const PHINode *PN = dyn_cast<PHINode>(I); ++I)
1178 FuncInfo->InvalidatePHILiveOutRegInfo(PN);
1179 }
1180
1181 FuncInfo->VisitedBBs.insert(LLVMBB);
1182 }
1183
1184 BasicBlock::const_iterator const Begin =
1185 LLVMBB->getFirstNonPHI()->getIterator();
1186 BasicBlock::const_iterator const End = LLVMBB->end();
1187 BasicBlock::const_iterator BI = End;
1188
1189 FuncInfo->MBB = FuncInfo->MBBMap[LLVMBB];
1190 if (!FuncInfo->MBB)
1191 continue; // Some blocks like catchpads have no code or MBB.
1192 FuncInfo->InsertPt = FuncInfo->MBB->getFirstNonPHI();
1193
1194 // Setup an EH landing-pad block.
1195 FuncInfo->ExceptionPointerVirtReg = 0;
1196 FuncInfo->ExceptionSelectorVirtReg = 0;
1197 if (LLVMBB->isEHPad())
1198 if (!PrepareEHLandingPad())
1199 continue;
1200
1201 // Before doing SelectionDAG ISel, see if FastISel has been requested.
1202 if (FastIS) {
1203 FastIS->startNewBlock();
1204
1205 // Emit code for any incoming arguments. This must happen before
1206 // beginning FastISel on the entry block.
1207 if (LLVMBB == &Fn.getEntryBlock()) {
1208 ++NumEntryBlocks;
1209
1210 // Lower any arguments needed in this block if this is the entry block.
1211 if (!FastIS->lowerArguments()) {
1212 // Fast isel failed to lower these arguments
1213 ++NumFastIselFailLowerArguments;
1214 if (EnableFastISelAbort > 1)
1215 report_fatal_error("FastISel didn't lower all arguments");
1216
1217 // Use SelectionDAG argument lowering
1218 LowerArguments(Fn);
1219 CurDAG->setRoot(SDB->getControlRoot());
1220 SDB->clear();
1221 CodeGenAndEmitDAG();
1222 }
1223
1224 // If we inserted any instructions at the beginning, make a note of
1225 // where they are, so we can be sure to emit subsequent instructions
1226 // after them.
1227 if (FuncInfo->InsertPt != FuncInfo->MBB->begin())
1228 FastIS->setLastLocalValue(std::prev(FuncInfo->InsertPt));
1229 else
1230 FastIS->setLastLocalValue(nullptr);
1231 }
1232
1233 unsigned NumFastIselRemaining = std::distance(Begin, End);
1234 // Do FastISel on as many instructions as possible.
1235 for (; BI != Begin; --BI) {
1236 const Instruction *Inst = &*std::prev(BI);
1237
1238 // If we no longer require this instruction, skip it.
1239 if (isFoldedOrDeadInstruction(Inst, FuncInfo)) {
1240 --NumFastIselRemaining;
1241 continue;
1242 }
1243
1244 // Bottom-up: reset the insert pos at the top, after any local-value
1245 // instructions.
1246 FastIS->recomputeInsertPt();
1247
1248 // Try to select the instruction with FastISel.
1249 if (FastIS->selectInstruction(Inst)) {
1250 --NumFastIselRemaining;
1251 ++NumFastIselSuccess;
1252 // If fast isel succeeded, skip over all the folded instructions, and
1253 // then see if there is a load right before the selected instructions.
1254 // Try to fold the load if so.
1255 const Instruction *BeforeInst = Inst;
1256 while (BeforeInst != &*Begin) {
1257 BeforeInst = &*std::prev(BasicBlock::const_iterator(BeforeInst));
1258 if (!isFoldedOrDeadInstruction(BeforeInst, FuncInfo))
1259 break;
1260 }
1261 if (BeforeInst != Inst && isa<LoadInst>(BeforeInst) &&
1262 BeforeInst->hasOneUse() &&
1263 FastIS->tryToFoldLoad(cast<LoadInst>(BeforeInst), Inst)) {
1264 // If we succeeded, don't re-select the load.
1265 BI = std::next(BasicBlock::const_iterator(BeforeInst));
1266 --NumFastIselRemaining;
1267 ++NumFastIselSuccess;
1268 }
1269 continue;
1270 }
1271
1272 #ifndef NDEBUG
1273 if (EnableFastISelVerbose2)
1274 collectFailStats(Inst);
1275 #endif
1276
1277 // Then handle certain instructions as single-LLVM-Instruction blocks.
1278 if (isa<CallInst>(Inst)) {
1279
1280 if (EnableFastISelVerbose || EnableFastISelAbort) {
1281 dbgs() << "FastISel missed call: ";
1282 Inst->dump();
1283 }
1284 if (EnableFastISelAbort > 2)
1285 // FastISel selector couldn't handle something and bailed.
1286 // For the purpose of debugging, just abort.
1287 report_fatal_error("FastISel didn't select the entire block");
1288
1289 if (!Inst->getType()->isVoidTy() && !Inst->getType()->isTokenTy() &&
1290 !Inst->use_empty()) {
1291 unsigned &R = FuncInfo->ValueMap[Inst];
1292 if (!R)
1293 R = FuncInfo->CreateRegs(Inst->getType());
1294 }
1295
1296 bool HadTailCall = false;
1297 MachineBasicBlock::iterator SavedInsertPt = FuncInfo->InsertPt;
1298 SelectBasicBlock(Inst->getIterator(), BI, HadTailCall);
1299
1300 // If the call was emitted as a tail call, we're done with the block.
1301 // We also need to delete any previously emitted instructions.
1302 if (HadTailCall) {
1303 FastIS->removeDeadCode(SavedInsertPt, FuncInfo->MBB->end());
1304 --BI;
1305 break;
1306 }
1307
1308 // Recompute NumFastIselRemaining as Selection DAG instruction
1309 // selection may have handled the call, input args, etc.
1310 unsigned RemainingNow = std::distance(Begin, BI);
1311 NumFastIselFailures += NumFastIselRemaining - RemainingNow;
1312 NumFastIselRemaining = RemainingNow;
1313 continue;
1314 }
1315
1316 bool ShouldAbort = EnableFastISelAbort;
1317 if (EnableFastISelVerbose || EnableFastISelAbort) {
1318 if (isa<TerminatorInst>(Inst)) {
1319 // Use a different message for terminator misses.
1320 dbgs() << "FastISel missed terminator: ";
1321 // Don't abort unless for terminator unless the level is really high
1322 ShouldAbort = (EnableFastISelAbort > 2);
1323 } else {
1324 dbgs() << "FastISel miss: ";
1325 }
1326 Inst->dump();
1327 }
1328 if (ShouldAbort)
1329 // FastISel selector couldn't handle something and bailed.
1330 // For the purpose of debugging, just abort.
1331 report_fatal_error("FastISel didn't select the entire block");
1332
1333 NumFastIselFailures += NumFastIselRemaining;
1334 break;
1335 }
1336
1337 FastIS->recomputeInsertPt();
1338 } else {
1339 // Lower any arguments needed in this block if this is the entry block.
1340 if (LLVMBB == &Fn.getEntryBlock()) {
1341 ++NumEntryBlocks;
1342 LowerArguments(Fn);
1343 }
1344 }
1345
1346 if (Begin != BI)
1347 ++NumDAGBlocks;
1348 else
1349 ++NumFastIselBlocks;
1350
1351 if (Begin != BI) {
1352 // Run SelectionDAG instruction selection on the remainder of the block
1353 // not handled by FastISel. If FastISel is not run, this is the entire
1354 // block.
1355 bool HadTailCall;
1356 SelectBasicBlock(Begin, BI, HadTailCall);
1357 }
1358
1359 FinishBasicBlock();
1360 FuncInfo->PHINodesToUpdate.clear();
1361 }
1362
1363 delete FastIS;
1364 SDB->clearDanglingDebugInfo();
1365 SDB->SPDescriptor.resetPerFunctionState();
1366 }
1367
1368 /// Given that the input MI is before a partial terminator sequence TSeq, return
1369 /// true if M + TSeq also a partial terminator sequence.
1370 ///
1371 /// A Terminator sequence is a sequence of MachineInstrs which at this point in
1372 /// lowering copy vregs into physical registers, which are then passed into
1373 /// terminator instructors so we can satisfy ABI constraints. A partial
1374 /// terminator sequence is an improper subset of a terminator sequence (i.e. it
1375 /// may be the whole terminator sequence).
MIIsInTerminatorSequence(const MachineInstr * MI)1376 static bool MIIsInTerminatorSequence(const MachineInstr *MI) {
1377 // If we do not have a copy or an implicit def, we return true if and only if
1378 // MI is a debug value.
1379 if (!MI->isCopy() && !MI->isImplicitDef())
1380 // Sometimes DBG_VALUE MI sneak in between the copies from the vregs to the
1381 // physical registers if there is debug info associated with the terminator
1382 // of our mbb. We want to include said debug info in our terminator
1383 // sequence, so we return true in that case.
1384 return MI->isDebugValue();
1385
1386 // We have left the terminator sequence if we are not doing one of the
1387 // following:
1388 //
1389 // 1. Copying a vreg into a physical register.
1390 // 2. Copying a vreg into a vreg.
1391 // 3. Defining a register via an implicit def.
1392
1393 // OPI should always be a register definition...
1394 MachineInstr::const_mop_iterator OPI = MI->operands_begin();
1395 if (!OPI->isReg() || !OPI->isDef())
1396 return false;
1397
1398 // Defining any register via an implicit def is always ok.
1399 if (MI->isImplicitDef())
1400 return true;
1401
1402 // Grab the copy source...
1403 MachineInstr::const_mop_iterator OPI2 = OPI;
1404 ++OPI2;
1405 assert(OPI2 != MI->operands_end()
1406 && "Should have a copy implying we should have 2 arguments.");
1407
1408 // Make sure that the copy dest is not a vreg when the copy source is a
1409 // physical register.
1410 if (!OPI2->isReg() ||
1411 (!TargetRegisterInfo::isPhysicalRegister(OPI->getReg()) &&
1412 TargetRegisterInfo::isPhysicalRegister(OPI2->getReg())))
1413 return false;
1414
1415 return true;
1416 }
1417
1418 /// Find the split point at which to splice the end of BB into its success stack
1419 /// protector check machine basic block.
1420 ///
1421 /// On many platforms, due to ABI constraints, terminators, even before register
1422 /// allocation, use physical registers. This creates an issue for us since
1423 /// physical registers at this point can not travel across basic
1424 /// blocks. Luckily, selectiondag always moves physical registers into vregs
1425 /// when they enter functions and moves them through a sequence of copies back
1426 /// into the physical registers right before the terminator creating a
1427 /// ``Terminator Sequence''. This function is searching for the beginning of the
1428 /// terminator sequence so that we can ensure that we splice off not just the
1429 /// terminator, but additionally the copies that move the vregs into the
1430 /// physical registers.
1431 static MachineBasicBlock::iterator
FindSplitPointForStackProtector(MachineBasicBlock * BB,DebugLoc DL)1432 FindSplitPointForStackProtector(MachineBasicBlock *BB, DebugLoc DL) {
1433 MachineBasicBlock::iterator SplitPoint = BB->getFirstTerminator();
1434 //
1435 if (SplitPoint == BB->begin())
1436 return SplitPoint;
1437
1438 MachineBasicBlock::iterator Start = BB->begin();
1439 MachineBasicBlock::iterator Previous = SplitPoint;
1440 --Previous;
1441
1442 while (MIIsInTerminatorSequence(Previous)) {
1443 SplitPoint = Previous;
1444 if (Previous == Start)
1445 break;
1446 --Previous;
1447 }
1448
1449 return SplitPoint;
1450 }
1451
1452 void
FinishBasicBlock()1453 SelectionDAGISel::FinishBasicBlock() {
1454
1455 DEBUG(dbgs() << "Total amount of phi nodes to update: "
1456 << FuncInfo->PHINodesToUpdate.size() << "\n";
1457 for (unsigned i = 0, e = FuncInfo->PHINodesToUpdate.size(); i != e; ++i)
1458 dbgs() << "Node " << i << " : ("
1459 << FuncInfo->PHINodesToUpdate[i].first
1460 << ", " << FuncInfo->PHINodesToUpdate[i].second << ")\n");
1461
1462 // Next, now that we know what the last MBB the LLVM BB expanded is, update
1463 // PHI nodes in successors.
1464 for (unsigned i = 0, e = FuncInfo->PHINodesToUpdate.size(); i != e; ++i) {
1465 MachineInstrBuilder PHI(*MF, FuncInfo->PHINodesToUpdate[i].first);
1466 assert(PHI->isPHI() &&
1467 "This is not a machine PHI node that we are updating!");
1468 if (!FuncInfo->MBB->isSuccessor(PHI->getParent()))
1469 continue;
1470 PHI.addReg(FuncInfo->PHINodesToUpdate[i].second).addMBB(FuncInfo->MBB);
1471 }
1472
1473 // Handle stack protector.
1474 if (SDB->SPDescriptor.shouldEmitStackProtector()) {
1475 MachineBasicBlock *ParentMBB = SDB->SPDescriptor.getParentMBB();
1476 MachineBasicBlock *SuccessMBB = SDB->SPDescriptor.getSuccessMBB();
1477
1478 // Find the split point to split the parent mbb. At the same time copy all
1479 // physical registers used in the tail of parent mbb into virtual registers
1480 // before the split point and back into physical registers after the split
1481 // point. This prevents us needing to deal with Live-ins and many other
1482 // register allocation issues caused by us splitting the parent mbb. The
1483 // register allocator will clean up said virtual copies later on.
1484 MachineBasicBlock::iterator SplitPoint =
1485 FindSplitPointForStackProtector(ParentMBB, SDB->getCurDebugLoc());
1486
1487 // Splice the terminator of ParentMBB into SuccessMBB.
1488 SuccessMBB->splice(SuccessMBB->end(), ParentMBB,
1489 SplitPoint,
1490 ParentMBB->end());
1491
1492 // Add compare/jump on neq/jump to the parent BB.
1493 FuncInfo->MBB = ParentMBB;
1494 FuncInfo->InsertPt = ParentMBB->end();
1495 SDB->visitSPDescriptorParent(SDB->SPDescriptor, ParentMBB);
1496 CurDAG->setRoot(SDB->getRoot());
1497 SDB->clear();
1498 CodeGenAndEmitDAG();
1499
1500 // CodeGen Failure MBB if we have not codegened it yet.
1501 MachineBasicBlock *FailureMBB = SDB->SPDescriptor.getFailureMBB();
1502 if (!FailureMBB->size()) {
1503 FuncInfo->MBB = FailureMBB;
1504 FuncInfo->InsertPt = FailureMBB->end();
1505 SDB->visitSPDescriptorFailure(SDB->SPDescriptor);
1506 CurDAG->setRoot(SDB->getRoot());
1507 SDB->clear();
1508 CodeGenAndEmitDAG();
1509 }
1510
1511 // Clear the Per-BB State.
1512 SDB->SPDescriptor.resetPerBBState();
1513 }
1514
1515 for (unsigned i = 0, e = SDB->BitTestCases.size(); i != e; ++i) {
1516 // Lower header first, if it wasn't already lowered
1517 if (!SDB->BitTestCases[i].Emitted) {
1518 // Set the current basic block to the mbb we wish to insert the code into
1519 FuncInfo->MBB = SDB->BitTestCases[i].Parent;
1520 FuncInfo->InsertPt = FuncInfo->MBB->end();
1521 // Emit the code
1522 SDB->visitBitTestHeader(SDB->BitTestCases[i], FuncInfo->MBB);
1523 CurDAG->setRoot(SDB->getRoot());
1524 SDB->clear();
1525 CodeGenAndEmitDAG();
1526 }
1527
1528 BranchProbability UnhandledProb = SDB->BitTestCases[i].Prob;
1529 for (unsigned j = 0, ej = SDB->BitTestCases[i].Cases.size(); j != ej; ++j) {
1530 UnhandledProb -= SDB->BitTestCases[i].Cases[j].ExtraProb;
1531 // Set the current basic block to the mbb we wish to insert the code into
1532 FuncInfo->MBB = SDB->BitTestCases[i].Cases[j].ThisBB;
1533 FuncInfo->InsertPt = FuncInfo->MBB->end();
1534 // Emit the code
1535
1536 // If all cases cover a contiguous range, it is not necessary to jump to
1537 // the default block after the last bit test fails. This is because the
1538 // range check during bit test header creation has guaranteed that every
1539 // case here doesn't go outside the range.
1540 MachineBasicBlock *NextMBB;
1541 if (SDB->BitTestCases[i].ContiguousRange && j + 2 == ej)
1542 NextMBB = SDB->BitTestCases[i].Cases[j + 1].TargetBB;
1543 else if (j + 1 != ej)
1544 NextMBB = SDB->BitTestCases[i].Cases[j + 1].ThisBB;
1545 else
1546 NextMBB = SDB->BitTestCases[i].Default;
1547
1548 SDB->visitBitTestCase(SDB->BitTestCases[i],
1549 NextMBB,
1550 UnhandledProb,
1551 SDB->BitTestCases[i].Reg,
1552 SDB->BitTestCases[i].Cases[j],
1553 FuncInfo->MBB);
1554
1555 CurDAG->setRoot(SDB->getRoot());
1556 SDB->clear();
1557 CodeGenAndEmitDAG();
1558
1559 if (SDB->BitTestCases[i].ContiguousRange && j + 2 == ej)
1560 break;
1561 }
1562
1563 // Update PHI Nodes
1564 for (unsigned pi = 0, pe = FuncInfo->PHINodesToUpdate.size();
1565 pi != pe; ++pi) {
1566 MachineInstrBuilder PHI(*MF, FuncInfo->PHINodesToUpdate[pi].first);
1567 MachineBasicBlock *PHIBB = PHI->getParent();
1568 assert(PHI->isPHI() &&
1569 "This is not a machine PHI node that we are updating!");
1570 // This is "default" BB. We have two jumps to it. From "header" BB and
1571 // from last "case" BB.
1572 if (PHIBB == SDB->BitTestCases[i].Default)
1573 PHI.addReg(FuncInfo->PHINodesToUpdate[pi].second)
1574 .addMBB(SDB->BitTestCases[i].Parent)
1575 .addReg(FuncInfo->PHINodesToUpdate[pi].second)
1576 .addMBB(SDB->BitTestCases[i].Cases.back().ThisBB);
1577 // One of "cases" BB.
1578 for (unsigned j = 0, ej = SDB->BitTestCases[i].Cases.size();
1579 j != ej; ++j) {
1580 MachineBasicBlock* cBB = SDB->BitTestCases[i].Cases[j].ThisBB;
1581 if (cBB->isSuccessor(PHIBB))
1582 PHI.addReg(FuncInfo->PHINodesToUpdate[pi].second).addMBB(cBB);
1583 }
1584 }
1585 }
1586 SDB->BitTestCases.clear();
1587
1588 // If the JumpTable record is filled in, then we need to emit a jump table.
1589 // Updating the PHI nodes is tricky in this case, since we need to determine
1590 // whether the PHI is a successor of the range check MBB or the jump table MBB
1591 for (unsigned i = 0, e = SDB->JTCases.size(); i != e; ++i) {
1592 // Lower header first, if it wasn't already lowered
1593 if (!SDB->JTCases[i].first.Emitted) {
1594 // Set the current basic block to the mbb we wish to insert the code into
1595 FuncInfo->MBB = SDB->JTCases[i].first.HeaderBB;
1596 FuncInfo->InsertPt = FuncInfo->MBB->end();
1597 // Emit the code
1598 SDB->visitJumpTableHeader(SDB->JTCases[i].second, SDB->JTCases[i].first,
1599 FuncInfo->MBB);
1600 CurDAG->setRoot(SDB->getRoot());
1601 SDB->clear();
1602 CodeGenAndEmitDAG();
1603 }
1604
1605 // Set the current basic block to the mbb we wish to insert the code into
1606 FuncInfo->MBB = SDB->JTCases[i].second.MBB;
1607 FuncInfo->InsertPt = FuncInfo->MBB->end();
1608 // Emit the code
1609 SDB->visitJumpTable(SDB->JTCases[i].second);
1610 CurDAG->setRoot(SDB->getRoot());
1611 SDB->clear();
1612 CodeGenAndEmitDAG();
1613
1614 // Update PHI Nodes
1615 for (unsigned pi = 0, pe = FuncInfo->PHINodesToUpdate.size();
1616 pi != pe; ++pi) {
1617 MachineInstrBuilder PHI(*MF, FuncInfo->PHINodesToUpdate[pi].first);
1618 MachineBasicBlock *PHIBB = PHI->getParent();
1619 assert(PHI->isPHI() &&
1620 "This is not a machine PHI node that we are updating!");
1621 // "default" BB. We can go there only from header BB.
1622 if (PHIBB == SDB->JTCases[i].second.Default)
1623 PHI.addReg(FuncInfo->PHINodesToUpdate[pi].second)
1624 .addMBB(SDB->JTCases[i].first.HeaderBB);
1625 // JT BB. Just iterate over successors here
1626 if (FuncInfo->MBB->isSuccessor(PHIBB))
1627 PHI.addReg(FuncInfo->PHINodesToUpdate[pi].second).addMBB(FuncInfo->MBB);
1628 }
1629 }
1630 SDB->JTCases.clear();
1631
1632 // If we generated any switch lowering information, build and codegen any
1633 // additional DAGs necessary.
1634 for (unsigned i = 0, e = SDB->SwitchCases.size(); i != e; ++i) {
1635 // Set the current basic block to the mbb we wish to insert the code into
1636 FuncInfo->MBB = SDB->SwitchCases[i].ThisBB;
1637 FuncInfo->InsertPt = FuncInfo->MBB->end();
1638
1639 // Determine the unique successors.
1640 SmallVector<MachineBasicBlock *, 2> Succs;
1641 Succs.push_back(SDB->SwitchCases[i].TrueBB);
1642 if (SDB->SwitchCases[i].TrueBB != SDB->SwitchCases[i].FalseBB)
1643 Succs.push_back(SDB->SwitchCases[i].FalseBB);
1644
1645 // Emit the code. Note that this could result in FuncInfo->MBB being split.
1646 SDB->visitSwitchCase(SDB->SwitchCases[i], FuncInfo->MBB);
1647 CurDAG->setRoot(SDB->getRoot());
1648 SDB->clear();
1649 CodeGenAndEmitDAG();
1650
1651 // Remember the last block, now that any splitting is done, for use in
1652 // populating PHI nodes in successors.
1653 MachineBasicBlock *ThisBB = FuncInfo->MBB;
1654
1655 // Handle any PHI nodes in successors of this chunk, as if we were coming
1656 // from the original BB before switch expansion. Note that PHI nodes can
1657 // occur multiple times in PHINodesToUpdate. We have to be very careful to
1658 // handle them the right number of times.
1659 for (unsigned i = 0, e = Succs.size(); i != e; ++i) {
1660 FuncInfo->MBB = Succs[i];
1661 FuncInfo->InsertPt = FuncInfo->MBB->end();
1662 // FuncInfo->MBB may have been removed from the CFG if a branch was
1663 // constant folded.
1664 if (ThisBB->isSuccessor(FuncInfo->MBB)) {
1665 for (MachineBasicBlock::iterator
1666 MBBI = FuncInfo->MBB->begin(), MBBE = FuncInfo->MBB->end();
1667 MBBI != MBBE && MBBI->isPHI(); ++MBBI) {
1668 MachineInstrBuilder PHI(*MF, MBBI);
1669 // This value for this PHI node is recorded in PHINodesToUpdate.
1670 for (unsigned pn = 0; ; ++pn) {
1671 assert(pn != FuncInfo->PHINodesToUpdate.size() &&
1672 "Didn't find PHI entry!");
1673 if (FuncInfo->PHINodesToUpdate[pn].first == PHI) {
1674 PHI.addReg(FuncInfo->PHINodesToUpdate[pn].second).addMBB(ThisBB);
1675 break;
1676 }
1677 }
1678 }
1679 }
1680 }
1681 }
1682 SDB->SwitchCases.clear();
1683 }
1684
1685
1686 /// Create the scheduler. If a specific scheduler was specified
1687 /// via the SchedulerRegistry, use it, otherwise select the
1688 /// one preferred by the target.
1689 ///
CreateScheduler()1690 ScheduleDAGSDNodes *SelectionDAGISel::CreateScheduler() {
1691 return ISHeuristic(this, OptLevel);
1692 }
1693
1694 //===----------------------------------------------------------------------===//
1695 // Helper functions used by the generated instruction selector.
1696 //===----------------------------------------------------------------------===//
1697 // Calls to these methods are generated by tblgen.
1698
1699 /// CheckAndMask - The isel is trying to match something like (and X, 255). If
1700 /// the dag combiner simplified the 255, we still want to match. RHS is the
1701 /// actual value in the DAG on the RHS of an AND, and DesiredMaskS is the value
1702 /// specified in the .td file (e.g. 255).
CheckAndMask(SDValue LHS,ConstantSDNode * RHS,int64_t DesiredMaskS) const1703 bool SelectionDAGISel::CheckAndMask(SDValue LHS, ConstantSDNode *RHS,
1704 int64_t DesiredMaskS) const {
1705 const APInt &ActualMask = RHS->getAPIntValue();
1706 const APInt &DesiredMask = APInt(LHS.getValueSizeInBits(), DesiredMaskS);
1707
1708 // If the actual mask exactly matches, success!
1709 if (ActualMask == DesiredMask)
1710 return true;
1711
1712 // If the actual AND mask is allowing unallowed bits, this doesn't match.
1713 if (ActualMask.intersects(~DesiredMask))
1714 return false;
1715
1716 // Otherwise, the DAG Combiner may have proven that the value coming in is
1717 // either already zero or is not demanded. Check for known zero input bits.
1718 APInt NeededMask = DesiredMask & ~ActualMask;
1719 if (CurDAG->MaskedValueIsZero(LHS, NeededMask))
1720 return true;
1721
1722 // TODO: check to see if missing bits are just not demanded.
1723
1724 // Otherwise, this pattern doesn't match.
1725 return false;
1726 }
1727
1728 /// CheckOrMask - The isel is trying to match something like (or X, 255). If
1729 /// the dag combiner simplified the 255, we still want to match. RHS is the
1730 /// actual value in the DAG on the RHS of an OR, and DesiredMaskS is the value
1731 /// specified in the .td file (e.g. 255).
CheckOrMask(SDValue LHS,ConstantSDNode * RHS,int64_t DesiredMaskS) const1732 bool SelectionDAGISel::CheckOrMask(SDValue LHS, ConstantSDNode *RHS,
1733 int64_t DesiredMaskS) const {
1734 const APInt &ActualMask = RHS->getAPIntValue();
1735 const APInt &DesiredMask = APInt(LHS.getValueSizeInBits(), DesiredMaskS);
1736
1737 // If the actual mask exactly matches, success!
1738 if (ActualMask == DesiredMask)
1739 return true;
1740
1741 // If the actual AND mask is allowing unallowed bits, this doesn't match.
1742 if (ActualMask.intersects(~DesiredMask))
1743 return false;
1744
1745 // Otherwise, the DAG Combiner may have proven that the value coming in is
1746 // either already zero or is not demanded. Check for known zero input bits.
1747 APInt NeededMask = DesiredMask & ~ActualMask;
1748
1749 APInt KnownZero, KnownOne;
1750 CurDAG->computeKnownBits(LHS, KnownZero, KnownOne);
1751
1752 // If all the missing bits in the or are already known to be set, match!
1753 if ((NeededMask & KnownOne) == NeededMask)
1754 return true;
1755
1756 // TODO: check to see if missing bits are just not demanded.
1757
1758 // Otherwise, this pattern doesn't match.
1759 return false;
1760 }
1761
1762 /// SelectInlineAsmMemoryOperands - Calls to this are automatically generated
1763 /// by tblgen. Others should not call it.
1764 void SelectionDAGISel::
SelectInlineAsmMemoryOperands(std::vector<SDValue> & Ops,SDLoc DL)1765 SelectInlineAsmMemoryOperands(std::vector<SDValue> &Ops, SDLoc DL) {
1766 std::vector<SDValue> InOps;
1767 std::swap(InOps, Ops);
1768
1769 Ops.push_back(InOps[InlineAsm::Op_InputChain]); // 0
1770 Ops.push_back(InOps[InlineAsm::Op_AsmString]); // 1
1771 Ops.push_back(InOps[InlineAsm::Op_MDNode]); // 2, !srcloc
1772 Ops.push_back(InOps[InlineAsm::Op_ExtraInfo]); // 3 (SideEffect, AlignStack)
1773
1774 unsigned i = InlineAsm::Op_FirstOperand, e = InOps.size();
1775 if (InOps[e-1].getValueType() == MVT::Glue)
1776 --e; // Don't process a glue operand if it is here.
1777
1778 while (i != e) {
1779 unsigned Flags = cast<ConstantSDNode>(InOps[i])->getZExtValue();
1780 if (!InlineAsm::isMemKind(Flags)) {
1781 // Just skip over this operand, copying the operands verbatim.
1782 Ops.insert(Ops.end(), InOps.begin()+i,
1783 InOps.begin()+i+InlineAsm::getNumOperandRegisters(Flags) + 1);
1784 i += InlineAsm::getNumOperandRegisters(Flags) + 1;
1785 } else {
1786 assert(InlineAsm::getNumOperandRegisters(Flags) == 1 &&
1787 "Memory operand with multiple values?");
1788
1789 unsigned TiedToOperand;
1790 if (InlineAsm::isUseOperandTiedToDef(Flags, TiedToOperand)) {
1791 // We need the constraint ID from the operand this is tied to.
1792 unsigned CurOp = InlineAsm::Op_FirstOperand;
1793 Flags = cast<ConstantSDNode>(InOps[CurOp])->getZExtValue();
1794 for (; TiedToOperand; --TiedToOperand) {
1795 CurOp += InlineAsm::getNumOperandRegisters(Flags)+1;
1796 Flags = cast<ConstantSDNode>(InOps[CurOp])->getZExtValue();
1797 }
1798 }
1799
1800 // Otherwise, this is a memory operand. Ask the target to select it.
1801 std::vector<SDValue> SelOps;
1802 if (SelectInlineAsmMemoryOperand(InOps[i+1],
1803 InlineAsm::getMemoryConstraintID(Flags),
1804 SelOps))
1805 report_fatal_error("Could not match memory address. Inline asm"
1806 " failure!");
1807
1808 // Add this to the output node.
1809 unsigned NewFlags =
1810 InlineAsm::getFlagWord(InlineAsm::Kind_Mem, SelOps.size());
1811 Ops.push_back(CurDAG->getTargetConstant(NewFlags, DL, MVT::i32));
1812 Ops.insert(Ops.end(), SelOps.begin(), SelOps.end());
1813 i += 2;
1814 }
1815 }
1816
1817 // Add the glue input back if present.
1818 if (e != InOps.size())
1819 Ops.push_back(InOps.back());
1820 }
1821
1822 /// findGlueUse - Return use of MVT::Glue value produced by the specified
1823 /// SDNode.
1824 ///
findGlueUse(SDNode * N)1825 static SDNode *findGlueUse(SDNode *N) {
1826 unsigned FlagResNo = N->getNumValues()-1;
1827 for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
1828 SDUse &Use = I.getUse();
1829 if (Use.getResNo() == FlagResNo)
1830 return Use.getUser();
1831 }
1832 return nullptr;
1833 }
1834
1835 /// findNonImmUse - Return true if "Use" is a non-immediate use of "Def".
1836 /// This function recursively traverses up the operand chain, ignoring
1837 /// certain nodes.
findNonImmUse(SDNode * Use,SDNode * Def,SDNode * ImmedUse,SDNode * Root,SmallPtrSetImpl<SDNode * > & Visited,bool IgnoreChains)1838 static bool findNonImmUse(SDNode *Use, SDNode* Def, SDNode *ImmedUse,
1839 SDNode *Root, SmallPtrSetImpl<SDNode*> &Visited,
1840 bool IgnoreChains) {
1841 // The NodeID's are given uniques ID's where a node ID is guaranteed to be
1842 // greater than all of its (recursive) operands. If we scan to a point where
1843 // 'use' is smaller than the node we're scanning for, then we know we will
1844 // never find it.
1845 //
1846 // The Use may be -1 (unassigned) if it is a newly allocated node. This can
1847 // happen because we scan down to newly selected nodes in the case of glue
1848 // uses.
1849 if ((Use->getNodeId() < Def->getNodeId() && Use->getNodeId() != -1))
1850 return false;
1851
1852 // Don't revisit nodes if we already scanned it and didn't fail, we know we
1853 // won't fail if we scan it again.
1854 if (!Visited.insert(Use).second)
1855 return false;
1856
1857 for (const SDValue &Op : Use->op_values()) {
1858 // Ignore chain uses, they are validated by HandleMergeInputChains.
1859 if (Op.getValueType() == MVT::Other && IgnoreChains)
1860 continue;
1861
1862 SDNode *N = Op.getNode();
1863 if (N == Def) {
1864 if (Use == ImmedUse || Use == Root)
1865 continue; // We are not looking for immediate use.
1866 assert(N != Root);
1867 return true;
1868 }
1869
1870 // Traverse up the operand chain.
1871 if (findNonImmUse(N, Def, ImmedUse, Root, Visited, IgnoreChains))
1872 return true;
1873 }
1874 return false;
1875 }
1876
1877 /// IsProfitableToFold - Returns true if it's profitable to fold the specific
1878 /// operand node N of U during instruction selection that starts at Root.
IsProfitableToFold(SDValue N,SDNode * U,SDNode * Root) const1879 bool SelectionDAGISel::IsProfitableToFold(SDValue N, SDNode *U,
1880 SDNode *Root) const {
1881 if (OptLevel == CodeGenOpt::None) return false;
1882 return N.hasOneUse();
1883 }
1884
1885 /// IsLegalToFold - Returns true if the specific operand node N of
1886 /// U can be folded during instruction selection that starts at Root.
IsLegalToFold(SDValue N,SDNode * U,SDNode * Root,CodeGenOpt::Level OptLevel,bool IgnoreChains)1887 bool SelectionDAGISel::IsLegalToFold(SDValue N, SDNode *U, SDNode *Root,
1888 CodeGenOpt::Level OptLevel,
1889 bool IgnoreChains) {
1890 if (OptLevel == CodeGenOpt::None) return false;
1891
1892 // If Root use can somehow reach N through a path that that doesn't contain
1893 // U then folding N would create a cycle. e.g. In the following
1894 // diagram, Root can reach N through X. If N is folded into into Root, then
1895 // X is both a predecessor and a successor of U.
1896 //
1897 // [N*] //
1898 // ^ ^ //
1899 // / \ //
1900 // [U*] [X]? //
1901 // ^ ^ //
1902 // \ / //
1903 // \ / //
1904 // [Root*] //
1905 //
1906 // * indicates nodes to be folded together.
1907 //
1908 // If Root produces glue, then it gets (even more) interesting. Since it
1909 // will be "glued" together with its glue use in the scheduler, we need to
1910 // check if it might reach N.
1911 //
1912 // [N*] //
1913 // ^ ^ //
1914 // / \ //
1915 // [U*] [X]? //
1916 // ^ ^ //
1917 // \ \ //
1918 // \ | //
1919 // [Root*] | //
1920 // ^ | //
1921 // f | //
1922 // | / //
1923 // [Y] / //
1924 // ^ / //
1925 // f / //
1926 // | / //
1927 // [GU] //
1928 //
1929 // If GU (glue use) indirectly reaches N (the load), and Root folds N
1930 // (call it Fold), then X is a predecessor of GU and a successor of
1931 // Fold. But since Fold and GU are glued together, this will create
1932 // a cycle in the scheduling graph.
1933
1934 // If the node has glue, walk down the graph to the "lowest" node in the
1935 // glueged set.
1936 EVT VT = Root->getValueType(Root->getNumValues()-1);
1937 while (VT == MVT::Glue) {
1938 SDNode *GU = findGlueUse(Root);
1939 if (!GU)
1940 break;
1941 Root = GU;
1942 VT = Root->getValueType(Root->getNumValues()-1);
1943
1944 // If our query node has a glue result with a use, we've walked up it. If
1945 // the user (which has already been selected) has a chain or indirectly uses
1946 // the chain, our WalkChainUsers predicate will not consider it. Because of
1947 // this, we cannot ignore chains in this predicate.
1948 IgnoreChains = false;
1949 }
1950
1951
1952 SmallPtrSet<SDNode*, 16> Visited;
1953 return !findNonImmUse(Root, N.getNode(), U, Root, Visited, IgnoreChains);
1954 }
1955
Select_INLINEASM(SDNode * N)1956 SDNode *SelectionDAGISel::Select_INLINEASM(SDNode *N) {
1957 SDLoc DL(N);
1958
1959 std::vector<SDValue> Ops(N->op_begin(), N->op_end());
1960 SelectInlineAsmMemoryOperands(Ops, DL);
1961
1962 const EVT VTs[] = {MVT::Other, MVT::Glue};
1963 SDValue New = CurDAG->getNode(ISD::INLINEASM, DL, VTs, Ops);
1964 New->setNodeId(-1);
1965 return New.getNode();
1966 }
1967
1968 SDNode
Select_READ_REGISTER(SDNode * Op)1969 *SelectionDAGISel::Select_READ_REGISTER(SDNode *Op) {
1970 SDLoc dl(Op);
1971 MDNodeSDNode *MD = dyn_cast<MDNodeSDNode>(Op->getOperand(1));
1972 const MDString *RegStr = dyn_cast<MDString>(MD->getMD()->getOperand(0));
1973 unsigned Reg =
1974 TLI->getRegisterByName(RegStr->getString().data(), Op->getValueType(0),
1975 *CurDAG);
1976 SDValue New = CurDAG->getCopyFromReg(
1977 Op->getOperand(0), dl, Reg, Op->getValueType(0));
1978 New->setNodeId(-1);
1979 return New.getNode();
1980 }
1981
1982 SDNode
Select_WRITE_REGISTER(SDNode * Op)1983 *SelectionDAGISel::Select_WRITE_REGISTER(SDNode *Op) {
1984 SDLoc dl(Op);
1985 MDNodeSDNode *MD = dyn_cast<MDNodeSDNode>(Op->getOperand(1));
1986 const MDString *RegStr = dyn_cast<MDString>(MD->getMD()->getOperand(0));
1987 unsigned Reg = TLI->getRegisterByName(RegStr->getString().data(),
1988 Op->getOperand(2).getValueType(),
1989 *CurDAG);
1990 SDValue New = CurDAG->getCopyToReg(
1991 Op->getOperand(0), dl, Reg, Op->getOperand(2));
1992 New->setNodeId(-1);
1993 return New.getNode();
1994 }
1995
1996
1997
Select_UNDEF(SDNode * N)1998 SDNode *SelectionDAGISel::Select_UNDEF(SDNode *N) {
1999 return CurDAG->SelectNodeTo(N, TargetOpcode::IMPLICIT_DEF,N->getValueType(0));
2000 }
2001
2002 /// GetVBR - decode a vbr encoding whose top bit is set.
2003 LLVM_ATTRIBUTE_ALWAYS_INLINE static inline uint64_t
GetVBR(uint64_t Val,const unsigned char * MatcherTable,unsigned & Idx)2004 GetVBR(uint64_t Val, const unsigned char *MatcherTable, unsigned &Idx) {
2005 assert(Val >= 128 && "Not a VBR");
2006 Val &= 127; // Remove first vbr bit.
2007
2008 unsigned Shift = 7;
2009 uint64_t NextBits;
2010 do {
2011 NextBits = MatcherTable[Idx++];
2012 Val |= (NextBits&127) << Shift;
2013 Shift += 7;
2014 } while (NextBits & 128);
2015
2016 return Val;
2017 }
2018
2019
2020 /// UpdateChainsAndGlue - When a match is complete, this method updates uses of
2021 /// interior glue and chain results to use the new glue and chain results.
2022 void SelectionDAGISel::
UpdateChainsAndGlue(SDNode * NodeToMatch,SDValue InputChain,const SmallVectorImpl<SDNode * > & ChainNodesMatched,SDValue InputGlue,const SmallVectorImpl<SDNode * > & GlueResultNodesMatched,bool isMorphNodeTo)2023 UpdateChainsAndGlue(SDNode *NodeToMatch, SDValue InputChain,
2024 const SmallVectorImpl<SDNode*> &ChainNodesMatched,
2025 SDValue InputGlue,
2026 const SmallVectorImpl<SDNode*> &GlueResultNodesMatched,
2027 bool isMorphNodeTo) {
2028 SmallVector<SDNode*, 4> NowDeadNodes;
2029
2030 // Now that all the normal results are replaced, we replace the chain and
2031 // glue results if present.
2032 if (!ChainNodesMatched.empty()) {
2033 assert(InputChain.getNode() &&
2034 "Matched input chains but didn't produce a chain");
2035 // Loop over all of the nodes we matched that produced a chain result.
2036 // Replace all the chain results with the final chain we ended up with.
2037 for (unsigned i = 0, e = ChainNodesMatched.size(); i != e; ++i) {
2038 SDNode *ChainNode = ChainNodesMatched[i];
2039
2040 // If this node was already deleted, don't look at it.
2041 if (ChainNode->getOpcode() == ISD::DELETED_NODE)
2042 continue;
2043
2044 // Don't replace the results of the root node if we're doing a
2045 // MorphNodeTo.
2046 if (ChainNode == NodeToMatch && isMorphNodeTo)
2047 continue;
2048
2049 SDValue ChainVal = SDValue(ChainNode, ChainNode->getNumValues()-1);
2050 if (ChainVal.getValueType() == MVT::Glue)
2051 ChainVal = ChainVal.getValue(ChainVal->getNumValues()-2);
2052 assert(ChainVal.getValueType() == MVT::Other && "Not a chain?");
2053 CurDAG->ReplaceAllUsesOfValueWith(ChainVal, InputChain);
2054
2055 // If the node became dead and we haven't already seen it, delete it.
2056 if (ChainNode->use_empty() &&
2057 !std::count(NowDeadNodes.begin(), NowDeadNodes.end(), ChainNode))
2058 NowDeadNodes.push_back(ChainNode);
2059 }
2060 }
2061
2062 // If the result produces glue, update any glue results in the matched
2063 // pattern with the glue result.
2064 if (InputGlue.getNode()) {
2065 // Handle any interior nodes explicitly marked.
2066 for (unsigned i = 0, e = GlueResultNodesMatched.size(); i != e; ++i) {
2067 SDNode *FRN = GlueResultNodesMatched[i];
2068
2069 // If this node was already deleted, don't look at it.
2070 if (FRN->getOpcode() == ISD::DELETED_NODE)
2071 continue;
2072
2073 assert(FRN->getValueType(FRN->getNumValues()-1) == MVT::Glue &&
2074 "Doesn't have a glue result");
2075 CurDAG->ReplaceAllUsesOfValueWith(SDValue(FRN, FRN->getNumValues()-1),
2076 InputGlue);
2077
2078 // If the node became dead and we haven't already seen it, delete it.
2079 if (FRN->use_empty() &&
2080 !std::count(NowDeadNodes.begin(), NowDeadNodes.end(), FRN))
2081 NowDeadNodes.push_back(FRN);
2082 }
2083 }
2084
2085 if (!NowDeadNodes.empty())
2086 CurDAG->RemoveDeadNodes(NowDeadNodes);
2087
2088 DEBUG(dbgs() << "ISEL: Match complete!\n");
2089 }
2090
2091 enum ChainResult {
2092 CR_Simple,
2093 CR_InducesCycle,
2094 CR_LeadsToInteriorNode
2095 };
2096
2097 /// WalkChainUsers - Walk down the users of the specified chained node that is
2098 /// part of the pattern we're matching, looking at all of the users we find.
2099 /// This determines whether something is an interior node, whether we have a
2100 /// non-pattern node in between two pattern nodes (which prevent folding because
2101 /// it would induce a cycle) and whether we have a TokenFactor node sandwiched
2102 /// between pattern nodes (in which case the TF becomes part of the pattern).
2103 ///
2104 /// The walk we do here is guaranteed to be small because we quickly get down to
2105 /// already selected nodes "below" us.
2106 static ChainResult
WalkChainUsers(const SDNode * ChainedNode,SmallVectorImpl<SDNode * > & ChainedNodesInPattern,SmallVectorImpl<SDNode * > & InteriorChainedNodes)2107 WalkChainUsers(const SDNode *ChainedNode,
2108 SmallVectorImpl<SDNode*> &ChainedNodesInPattern,
2109 SmallVectorImpl<SDNode*> &InteriorChainedNodes) {
2110 ChainResult Result = CR_Simple;
2111
2112 for (SDNode::use_iterator UI = ChainedNode->use_begin(),
2113 E = ChainedNode->use_end(); UI != E; ++UI) {
2114 // Make sure the use is of the chain, not some other value we produce.
2115 if (UI.getUse().getValueType() != MVT::Other) continue;
2116
2117 SDNode *User = *UI;
2118
2119 if (User->getOpcode() == ISD::HANDLENODE) // Root of the graph.
2120 continue;
2121
2122 // If we see an already-selected machine node, then we've gone beyond the
2123 // pattern that we're selecting down into the already selected chunk of the
2124 // DAG.
2125 unsigned UserOpcode = User->getOpcode();
2126 if (User->isMachineOpcode() ||
2127 UserOpcode == ISD::CopyToReg ||
2128 UserOpcode == ISD::CopyFromReg ||
2129 UserOpcode == ISD::INLINEASM ||
2130 UserOpcode == ISD::EH_LABEL ||
2131 UserOpcode == ISD::LIFETIME_START ||
2132 UserOpcode == ISD::LIFETIME_END) {
2133 // If their node ID got reset to -1 then they've already been selected.
2134 // Treat them like a MachineOpcode.
2135 if (User->getNodeId() == -1)
2136 continue;
2137 }
2138
2139 // If we have a TokenFactor, we handle it specially.
2140 if (User->getOpcode() != ISD::TokenFactor) {
2141 // If the node isn't a token factor and isn't part of our pattern, then it
2142 // must be a random chained node in between two nodes we're selecting.
2143 // This happens when we have something like:
2144 // x = load ptr
2145 // call
2146 // y = x+4
2147 // store y -> ptr
2148 // Because we structurally match the load/store as a read/modify/write,
2149 // but the call is chained between them. We cannot fold in this case
2150 // because it would induce a cycle in the graph.
2151 if (!std::count(ChainedNodesInPattern.begin(),
2152 ChainedNodesInPattern.end(), User))
2153 return CR_InducesCycle;
2154
2155 // Otherwise we found a node that is part of our pattern. For example in:
2156 // x = load ptr
2157 // y = x+4
2158 // store y -> ptr
2159 // This would happen when we're scanning down from the load and see the
2160 // store as a user. Record that there is a use of ChainedNode that is
2161 // part of the pattern and keep scanning uses.
2162 Result = CR_LeadsToInteriorNode;
2163 InteriorChainedNodes.push_back(User);
2164 continue;
2165 }
2166
2167 // If we found a TokenFactor, there are two cases to consider: first if the
2168 // TokenFactor is just hanging "below" the pattern we're matching (i.e. no
2169 // uses of the TF are in our pattern) we just want to ignore it. Second,
2170 // the TokenFactor can be sandwiched in between two chained nodes, like so:
2171 // [Load chain]
2172 // ^
2173 // |
2174 // [Load]
2175 // ^ ^
2176 // | \ DAG's like cheese
2177 // / \ do you?
2178 // / |
2179 // [TokenFactor] [Op]
2180 // ^ ^
2181 // | |
2182 // \ /
2183 // \ /
2184 // [Store]
2185 //
2186 // In this case, the TokenFactor becomes part of our match and we rewrite it
2187 // as a new TokenFactor.
2188 //
2189 // To distinguish these two cases, do a recursive walk down the uses.
2190 switch (WalkChainUsers(User, ChainedNodesInPattern, InteriorChainedNodes)) {
2191 case CR_Simple:
2192 // If the uses of the TokenFactor are just already-selected nodes, ignore
2193 // it, it is "below" our pattern.
2194 continue;
2195 case CR_InducesCycle:
2196 // If the uses of the TokenFactor lead to nodes that are not part of our
2197 // pattern that are not selected, folding would turn this into a cycle,
2198 // bail out now.
2199 return CR_InducesCycle;
2200 case CR_LeadsToInteriorNode:
2201 break; // Otherwise, keep processing.
2202 }
2203
2204 // Okay, we know we're in the interesting interior case. The TokenFactor
2205 // is now going to be considered part of the pattern so that we rewrite its
2206 // uses (it may have uses that are not part of the pattern) with the
2207 // ultimate chain result of the generated code. We will also add its chain
2208 // inputs as inputs to the ultimate TokenFactor we create.
2209 Result = CR_LeadsToInteriorNode;
2210 ChainedNodesInPattern.push_back(User);
2211 InteriorChainedNodes.push_back(User);
2212 continue;
2213 }
2214
2215 return Result;
2216 }
2217
2218 /// HandleMergeInputChains - This implements the OPC_EmitMergeInputChains
2219 /// operation for when the pattern matched at least one node with a chains. The
2220 /// input vector contains a list of all of the chained nodes that we match. We
2221 /// must determine if this is a valid thing to cover (i.e. matching it won't
2222 /// induce cycles in the DAG) and if so, creating a TokenFactor node. that will
2223 /// be used as the input node chain for the generated nodes.
2224 static SDValue
HandleMergeInputChains(SmallVectorImpl<SDNode * > & ChainNodesMatched,SelectionDAG * CurDAG)2225 HandleMergeInputChains(SmallVectorImpl<SDNode*> &ChainNodesMatched,
2226 SelectionDAG *CurDAG) {
2227 // Walk all of the chained nodes we've matched, recursively scanning down the
2228 // users of the chain result. This adds any TokenFactor nodes that are caught
2229 // in between chained nodes to the chained and interior nodes list.
2230 SmallVector<SDNode*, 3> InteriorChainedNodes;
2231 for (unsigned i = 0, e = ChainNodesMatched.size(); i != e; ++i) {
2232 if (WalkChainUsers(ChainNodesMatched[i], ChainNodesMatched,
2233 InteriorChainedNodes) == CR_InducesCycle)
2234 return SDValue(); // Would induce a cycle.
2235 }
2236
2237 // Okay, we have walked all the matched nodes and collected TokenFactor nodes
2238 // that we are interested in. Form our input TokenFactor node.
2239 SmallVector<SDValue, 3> InputChains;
2240 for (unsigned i = 0, e = ChainNodesMatched.size(); i != e; ++i) {
2241 // Add the input chain of this node to the InputChains list (which will be
2242 // the operands of the generated TokenFactor) if it's not an interior node.
2243 SDNode *N = ChainNodesMatched[i];
2244 if (N->getOpcode() != ISD::TokenFactor) {
2245 if (std::count(InteriorChainedNodes.begin(),InteriorChainedNodes.end(),N))
2246 continue;
2247
2248 // Otherwise, add the input chain.
2249 SDValue InChain = ChainNodesMatched[i]->getOperand(0);
2250 assert(InChain.getValueType() == MVT::Other && "Not a chain");
2251 InputChains.push_back(InChain);
2252 continue;
2253 }
2254
2255 // If we have a token factor, we want to add all inputs of the token factor
2256 // that are not part of the pattern we're matching.
2257 for (const SDValue &Op : N->op_values()) {
2258 if (!std::count(ChainNodesMatched.begin(), ChainNodesMatched.end(),
2259 Op.getNode()))
2260 InputChains.push_back(Op);
2261 }
2262 }
2263
2264 if (InputChains.size() == 1)
2265 return InputChains[0];
2266 return CurDAG->getNode(ISD::TokenFactor, SDLoc(ChainNodesMatched[0]),
2267 MVT::Other, InputChains);
2268 }
2269
2270 /// MorphNode - Handle morphing a node in place for the selector.
2271 SDNode *SelectionDAGISel::
MorphNode(SDNode * Node,unsigned TargetOpc,SDVTList VTList,ArrayRef<SDValue> Ops,unsigned EmitNodeInfo)2272 MorphNode(SDNode *Node, unsigned TargetOpc, SDVTList VTList,
2273 ArrayRef<SDValue> Ops, unsigned EmitNodeInfo) {
2274 // It is possible we're using MorphNodeTo to replace a node with no
2275 // normal results with one that has a normal result (or we could be
2276 // adding a chain) and the input could have glue and chains as well.
2277 // In this case we need to shift the operands down.
2278 // FIXME: This is a horrible hack and broken in obscure cases, no worse
2279 // than the old isel though.
2280 int OldGlueResultNo = -1, OldChainResultNo = -1;
2281
2282 unsigned NTMNumResults = Node->getNumValues();
2283 if (Node->getValueType(NTMNumResults-1) == MVT::Glue) {
2284 OldGlueResultNo = NTMNumResults-1;
2285 if (NTMNumResults != 1 &&
2286 Node->getValueType(NTMNumResults-2) == MVT::Other)
2287 OldChainResultNo = NTMNumResults-2;
2288 } else if (Node->getValueType(NTMNumResults-1) == MVT::Other)
2289 OldChainResultNo = NTMNumResults-1;
2290
2291 // Call the underlying SelectionDAG routine to do the transmogrification. Note
2292 // that this deletes operands of the old node that become dead.
2293 SDNode *Res = CurDAG->MorphNodeTo(Node, ~TargetOpc, VTList, Ops);
2294
2295 // MorphNodeTo can operate in two ways: if an existing node with the
2296 // specified operands exists, it can just return it. Otherwise, it
2297 // updates the node in place to have the requested operands.
2298 if (Res == Node) {
2299 // If we updated the node in place, reset the node ID. To the isel,
2300 // this should be just like a newly allocated machine node.
2301 Res->setNodeId(-1);
2302 }
2303
2304 unsigned ResNumResults = Res->getNumValues();
2305 // Move the glue if needed.
2306 if ((EmitNodeInfo & OPFL_GlueOutput) && OldGlueResultNo != -1 &&
2307 (unsigned)OldGlueResultNo != ResNumResults-1)
2308 CurDAG->ReplaceAllUsesOfValueWith(SDValue(Node, OldGlueResultNo),
2309 SDValue(Res, ResNumResults-1));
2310
2311 if ((EmitNodeInfo & OPFL_GlueOutput) != 0)
2312 --ResNumResults;
2313
2314 // Move the chain reference if needed.
2315 if ((EmitNodeInfo & OPFL_Chain) && OldChainResultNo != -1 &&
2316 (unsigned)OldChainResultNo != ResNumResults-1)
2317 CurDAG->ReplaceAllUsesOfValueWith(SDValue(Node, OldChainResultNo),
2318 SDValue(Res, ResNumResults-1));
2319
2320 // Otherwise, no replacement happened because the node already exists. Replace
2321 // Uses of the old node with the new one.
2322 if (Res != Node)
2323 CurDAG->ReplaceAllUsesWith(Node, Res);
2324
2325 return Res;
2326 }
2327
2328 /// CheckSame - Implements OP_CheckSame.
2329 LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool
CheckSame(const unsigned char * MatcherTable,unsigned & MatcherIndex,SDValue N,const SmallVectorImpl<std::pair<SDValue,SDNode * >> & RecordedNodes)2330 CheckSame(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2331 SDValue N,
2332 const SmallVectorImpl<std::pair<SDValue, SDNode*> > &RecordedNodes) {
2333 // Accept if it is exactly the same as a previously recorded node.
2334 unsigned RecNo = MatcherTable[MatcherIndex++];
2335 assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
2336 return N == RecordedNodes[RecNo].first;
2337 }
2338
2339 /// CheckChildSame - Implements OP_CheckChildXSame.
2340 LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool
CheckChildSame(const unsigned char * MatcherTable,unsigned & MatcherIndex,SDValue N,const SmallVectorImpl<std::pair<SDValue,SDNode * >> & RecordedNodes,unsigned ChildNo)2341 CheckChildSame(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2342 SDValue N,
2343 const SmallVectorImpl<std::pair<SDValue, SDNode*> > &RecordedNodes,
2344 unsigned ChildNo) {
2345 if (ChildNo >= N.getNumOperands())
2346 return false; // Match fails if out of range child #.
2347 return ::CheckSame(MatcherTable, MatcherIndex, N.getOperand(ChildNo),
2348 RecordedNodes);
2349 }
2350
2351 /// CheckPatternPredicate - Implements OP_CheckPatternPredicate.
2352 LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool
CheckPatternPredicate(const unsigned char * MatcherTable,unsigned & MatcherIndex,const SelectionDAGISel & SDISel)2353 CheckPatternPredicate(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2354 const SelectionDAGISel &SDISel) {
2355 return SDISel.CheckPatternPredicate(MatcherTable[MatcherIndex++]);
2356 }
2357
2358 /// CheckNodePredicate - Implements OP_CheckNodePredicate.
2359 LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool
CheckNodePredicate(const unsigned char * MatcherTable,unsigned & MatcherIndex,const SelectionDAGISel & SDISel,SDNode * N)2360 CheckNodePredicate(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2361 const SelectionDAGISel &SDISel, SDNode *N) {
2362 return SDISel.CheckNodePredicate(N, MatcherTable[MatcherIndex++]);
2363 }
2364
2365 LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool
CheckOpcode(const unsigned char * MatcherTable,unsigned & MatcherIndex,SDNode * N)2366 CheckOpcode(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2367 SDNode *N) {
2368 uint16_t Opc = MatcherTable[MatcherIndex++];
2369 Opc |= (unsigned short)MatcherTable[MatcherIndex++] << 8;
2370 return N->getOpcode() == Opc;
2371 }
2372
2373 LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool
CheckType(const unsigned char * MatcherTable,unsigned & MatcherIndex,SDValue N,const TargetLowering * TLI,const DataLayout & DL)2374 CheckType(const unsigned char *MatcherTable, unsigned &MatcherIndex, SDValue N,
2375 const TargetLowering *TLI, const DataLayout &DL) {
2376 MVT::SimpleValueType VT = (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
2377 if (N.getValueType() == VT) return true;
2378
2379 // Handle the case when VT is iPTR.
2380 return VT == MVT::iPTR && N.getValueType() == TLI->getPointerTy(DL);
2381 }
2382
2383 LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool
CheckChildType(const unsigned char * MatcherTable,unsigned & MatcherIndex,SDValue N,const TargetLowering * TLI,const DataLayout & DL,unsigned ChildNo)2384 CheckChildType(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2385 SDValue N, const TargetLowering *TLI, const DataLayout &DL,
2386 unsigned ChildNo) {
2387 if (ChildNo >= N.getNumOperands())
2388 return false; // Match fails if out of range child #.
2389 return ::CheckType(MatcherTable, MatcherIndex, N.getOperand(ChildNo), TLI,
2390 DL);
2391 }
2392
2393 LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool
CheckCondCode(const unsigned char * MatcherTable,unsigned & MatcherIndex,SDValue N)2394 CheckCondCode(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2395 SDValue N) {
2396 return cast<CondCodeSDNode>(N)->get() ==
2397 (ISD::CondCode)MatcherTable[MatcherIndex++];
2398 }
2399
2400 LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool
CheckValueType(const unsigned char * MatcherTable,unsigned & MatcherIndex,SDValue N,const TargetLowering * TLI,const DataLayout & DL)2401 CheckValueType(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2402 SDValue N, const TargetLowering *TLI, const DataLayout &DL) {
2403 MVT::SimpleValueType VT = (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
2404 if (cast<VTSDNode>(N)->getVT() == VT)
2405 return true;
2406
2407 // Handle the case when VT is iPTR.
2408 return VT == MVT::iPTR && cast<VTSDNode>(N)->getVT() == TLI->getPointerTy(DL);
2409 }
2410
2411 LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool
CheckInteger(const unsigned char * MatcherTable,unsigned & MatcherIndex,SDValue N)2412 CheckInteger(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2413 SDValue N) {
2414 int64_t Val = MatcherTable[MatcherIndex++];
2415 if (Val & 128)
2416 Val = GetVBR(Val, MatcherTable, MatcherIndex);
2417
2418 ConstantSDNode *C = dyn_cast<ConstantSDNode>(N);
2419 return C && C->getSExtValue() == Val;
2420 }
2421
2422 LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool
CheckChildInteger(const unsigned char * MatcherTable,unsigned & MatcherIndex,SDValue N,unsigned ChildNo)2423 CheckChildInteger(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2424 SDValue N, unsigned ChildNo) {
2425 if (ChildNo >= N.getNumOperands())
2426 return false; // Match fails if out of range child #.
2427 return ::CheckInteger(MatcherTable, MatcherIndex, N.getOperand(ChildNo));
2428 }
2429
2430 LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool
CheckAndImm(const unsigned char * MatcherTable,unsigned & MatcherIndex,SDValue N,const SelectionDAGISel & SDISel)2431 CheckAndImm(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2432 SDValue N, const SelectionDAGISel &SDISel) {
2433 int64_t Val = MatcherTable[MatcherIndex++];
2434 if (Val & 128)
2435 Val = GetVBR(Val, MatcherTable, MatcherIndex);
2436
2437 if (N->getOpcode() != ISD::AND) return false;
2438
2439 ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
2440 return C && SDISel.CheckAndMask(N.getOperand(0), C, Val);
2441 }
2442
2443 LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool
CheckOrImm(const unsigned char * MatcherTable,unsigned & MatcherIndex,SDValue N,const SelectionDAGISel & SDISel)2444 CheckOrImm(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2445 SDValue N, const SelectionDAGISel &SDISel) {
2446 int64_t Val = MatcherTable[MatcherIndex++];
2447 if (Val & 128)
2448 Val = GetVBR(Val, MatcherTable, MatcherIndex);
2449
2450 if (N->getOpcode() != ISD::OR) return false;
2451
2452 ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
2453 return C && SDISel.CheckOrMask(N.getOperand(0), C, Val);
2454 }
2455
2456 /// IsPredicateKnownToFail - If we know how and can do so without pushing a
2457 /// scope, evaluate the current node. If the current predicate is known to
2458 /// fail, set Result=true and return anything. If the current predicate is
2459 /// known to pass, set Result=false and return the MatcherIndex to continue
2460 /// with. If the current predicate is unknown, set Result=false and return the
2461 /// MatcherIndex to continue with.
IsPredicateKnownToFail(const unsigned char * Table,unsigned Index,SDValue N,bool & Result,const SelectionDAGISel & SDISel,SmallVectorImpl<std::pair<SDValue,SDNode * >> & RecordedNodes)2462 static unsigned IsPredicateKnownToFail(const unsigned char *Table,
2463 unsigned Index, SDValue N,
2464 bool &Result,
2465 const SelectionDAGISel &SDISel,
2466 SmallVectorImpl<std::pair<SDValue, SDNode*> > &RecordedNodes) {
2467 switch (Table[Index++]) {
2468 default:
2469 Result = false;
2470 return Index-1; // Could not evaluate this predicate.
2471 case SelectionDAGISel::OPC_CheckSame:
2472 Result = !::CheckSame(Table, Index, N, RecordedNodes);
2473 return Index;
2474 case SelectionDAGISel::OPC_CheckChild0Same:
2475 case SelectionDAGISel::OPC_CheckChild1Same:
2476 case SelectionDAGISel::OPC_CheckChild2Same:
2477 case SelectionDAGISel::OPC_CheckChild3Same:
2478 Result = !::CheckChildSame(Table, Index, N, RecordedNodes,
2479 Table[Index-1] - SelectionDAGISel::OPC_CheckChild0Same);
2480 return Index;
2481 case SelectionDAGISel::OPC_CheckPatternPredicate:
2482 Result = !::CheckPatternPredicate(Table, Index, SDISel);
2483 return Index;
2484 case SelectionDAGISel::OPC_CheckPredicate:
2485 Result = !::CheckNodePredicate(Table, Index, SDISel, N.getNode());
2486 return Index;
2487 case SelectionDAGISel::OPC_CheckOpcode:
2488 Result = !::CheckOpcode(Table, Index, N.getNode());
2489 return Index;
2490 case SelectionDAGISel::OPC_CheckType:
2491 Result = !::CheckType(Table, Index, N, SDISel.TLI,
2492 SDISel.CurDAG->getDataLayout());
2493 return Index;
2494 case SelectionDAGISel::OPC_CheckChild0Type:
2495 case SelectionDAGISel::OPC_CheckChild1Type:
2496 case SelectionDAGISel::OPC_CheckChild2Type:
2497 case SelectionDAGISel::OPC_CheckChild3Type:
2498 case SelectionDAGISel::OPC_CheckChild4Type:
2499 case SelectionDAGISel::OPC_CheckChild5Type:
2500 case SelectionDAGISel::OPC_CheckChild6Type:
2501 case SelectionDAGISel::OPC_CheckChild7Type:
2502 Result = !::CheckChildType(
2503 Table, Index, N, SDISel.TLI, SDISel.CurDAG->getDataLayout(),
2504 Table[Index - 1] - SelectionDAGISel::OPC_CheckChild0Type);
2505 return Index;
2506 case SelectionDAGISel::OPC_CheckCondCode:
2507 Result = !::CheckCondCode(Table, Index, N);
2508 return Index;
2509 case SelectionDAGISel::OPC_CheckValueType:
2510 Result = !::CheckValueType(Table, Index, N, SDISel.TLI,
2511 SDISel.CurDAG->getDataLayout());
2512 return Index;
2513 case SelectionDAGISel::OPC_CheckInteger:
2514 Result = !::CheckInteger(Table, Index, N);
2515 return Index;
2516 case SelectionDAGISel::OPC_CheckChild0Integer:
2517 case SelectionDAGISel::OPC_CheckChild1Integer:
2518 case SelectionDAGISel::OPC_CheckChild2Integer:
2519 case SelectionDAGISel::OPC_CheckChild3Integer:
2520 case SelectionDAGISel::OPC_CheckChild4Integer:
2521 Result = !::CheckChildInteger(Table, Index, N,
2522 Table[Index-1] - SelectionDAGISel::OPC_CheckChild0Integer);
2523 return Index;
2524 case SelectionDAGISel::OPC_CheckAndImm:
2525 Result = !::CheckAndImm(Table, Index, N, SDISel);
2526 return Index;
2527 case SelectionDAGISel::OPC_CheckOrImm:
2528 Result = !::CheckOrImm(Table, Index, N, SDISel);
2529 return Index;
2530 }
2531 }
2532
2533 namespace {
2534
2535 struct MatchScope {
2536 /// FailIndex - If this match fails, this is the index to continue with.
2537 unsigned FailIndex;
2538
2539 /// NodeStack - The node stack when the scope was formed.
2540 SmallVector<SDValue, 4> NodeStack;
2541
2542 /// NumRecordedNodes - The number of recorded nodes when the scope was formed.
2543 unsigned NumRecordedNodes;
2544
2545 /// NumMatchedMemRefs - The number of matched memref entries.
2546 unsigned NumMatchedMemRefs;
2547
2548 /// InputChain/InputGlue - The current chain/glue
2549 SDValue InputChain, InputGlue;
2550
2551 /// HasChainNodesMatched - True if the ChainNodesMatched list is non-empty.
2552 bool HasChainNodesMatched, HasGlueResultNodesMatched;
2553 };
2554
2555 /// \\brief A DAG update listener to keep the matching state
2556 /// (i.e. RecordedNodes and MatchScope) uptodate if the target is allowed to
2557 /// change the DAG while matching. X86 addressing mode matcher is an example
2558 /// for this.
2559 class MatchStateUpdater : public SelectionDAG::DAGUpdateListener
2560 {
2561 SmallVectorImpl<std::pair<SDValue, SDNode*> > &RecordedNodes;
2562 SmallVectorImpl<MatchScope> &MatchScopes;
2563 public:
MatchStateUpdater(SelectionDAG & DAG,SmallVectorImpl<std::pair<SDValue,SDNode * >> & RN,SmallVectorImpl<MatchScope> & MS)2564 MatchStateUpdater(SelectionDAG &DAG,
2565 SmallVectorImpl<std::pair<SDValue, SDNode*> > &RN,
2566 SmallVectorImpl<MatchScope> &MS) :
2567 SelectionDAG::DAGUpdateListener(DAG),
2568 RecordedNodes(RN), MatchScopes(MS) { }
2569
NodeDeleted(SDNode * N,SDNode * E)2570 void NodeDeleted(SDNode *N, SDNode *E) override {
2571 // Some early-returns here to avoid the search if we deleted the node or
2572 // if the update comes from MorphNodeTo (MorphNodeTo is the last thing we
2573 // do, so it's unnecessary to update matching state at that point).
2574 // Neither of these can occur currently because we only install this
2575 // update listener during matching a complex patterns.
2576 if (!E || E->isMachineOpcode())
2577 return;
2578 // Performing linear search here does not matter because we almost never
2579 // run this code. You'd have to have a CSE during complex pattern
2580 // matching.
2581 for (auto &I : RecordedNodes)
2582 if (I.first.getNode() == N)
2583 I.first.setNode(E);
2584
2585 for (auto &I : MatchScopes)
2586 for (auto &J : I.NodeStack)
2587 if (J.getNode() == N)
2588 J.setNode(E);
2589 }
2590 };
2591 }
2592
2593 SDNode *SelectionDAGISel::
SelectCodeCommon(SDNode * NodeToMatch,const unsigned char * MatcherTable,unsigned TableSize)2594 SelectCodeCommon(SDNode *NodeToMatch, const unsigned char *MatcherTable,
2595 unsigned TableSize) {
2596 // FIXME: Should these even be selected? Handle these cases in the caller?
2597 switch (NodeToMatch->getOpcode()) {
2598 default:
2599 break;
2600 case ISD::EntryToken: // These nodes remain the same.
2601 case ISD::BasicBlock:
2602 case ISD::Register:
2603 case ISD::RegisterMask:
2604 case ISD::HANDLENODE:
2605 case ISD::MDNODE_SDNODE:
2606 case ISD::TargetConstant:
2607 case ISD::TargetConstantFP:
2608 case ISD::TargetConstantPool:
2609 case ISD::TargetFrameIndex:
2610 case ISD::TargetExternalSymbol:
2611 case ISD::MCSymbol:
2612 case ISD::TargetBlockAddress:
2613 case ISD::TargetJumpTable:
2614 case ISD::TargetGlobalTLSAddress:
2615 case ISD::TargetGlobalAddress:
2616 case ISD::TokenFactor:
2617 case ISD::CopyFromReg:
2618 case ISD::CopyToReg:
2619 case ISD::EH_LABEL:
2620 case ISD::LIFETIME_START:
2621 case ISD::LIFETIME_END:
2622 NodeToMatch->setNodeId(-1); // Mark selected.
2623 return nullptr;
2624 case ISD::AssertSext:
2625 case ISD::AssertZext:
2626 CurDAG->ReplaceAllUsesOfValueWith(SDValue(NodeToMatch, 0),
2627 NodeToMatch->getOperand(0));
2628 return nullptr;
2629 case ISD::INLINEASM: return Select_INLINEASM(NodeToMatch);
2630 case ISD::READ_REGISTER: return Select_READ_REGISTER(NodeToMatch);
2631 case ISD::WRITE_REGISTER: return Select_WRITE_REGISTER(NodeToMatch);
2632 case ISD::UNDEF: return Select_UNDEF(NodeToMatch);
2633 }
2634
2635 assert(!NodeToMatch->isMachineOpcode() && "Node already selected!");
2636
2637 // Set up the node stack with NodeToMatch as the only node on the stack.
2638 SmallVector<SDValue, 8> NodeStack;
2639 SDValue N = SDValue(NodeToMatch, 0);
2640 NodeStack.push_back(N);
2641
2642 // MatchScopes - Scopes used when matching, if a match failure happens, this
2643 // indicates where to continue checking.
2644 SmallVector<MatchScope, 8> MatchScopes;
2645
2646 // RecordedNodes - This is the set of nodes that have been recorded by the
2647 // state machine. The second value is the parent of the node, or null if the
2648 // root is recorded.
2649 SmallVector<std::pair<SDValue, SDNode*>, 8> RecordedNodes;
2650
2651 // MatchedMemRefs - This is the set of MemRef's we've seen in the input
2652 // pattern.
2653 SmallVector<MachineMemOperand*, 2> MatchedMemRefs;
2654
2655 // These are the current input chain and glue for use when generating nodes.
2656 // Various Emit operations change these. For example, emitting a copytoreg
2657 // uses and updates these.
2658 SDValue InputChain, InputGlue;
2659
2660 // ChainNodesMatched - If a pattern matches nodes that have input/output
2661 // chains, the OPC_EmitMergeInputChains operation is emitted which indicates
2662 // which ones they are. The result is captured into this list so that we can
2663 // update the chain results when the pattern is complete.
2664 SmallVector<SDNode*, 3> ChainNodesMatched;
2665 SmallVector<SDNode*, 3> GlueResultNodesMatched;
2666
2667 DEBUG(dbgs() << "ISEL: Starting pattern match on root node: ";
2668 NodeToMatch->dump(CurDAG);
2669 dbgs() << '\n');
2670
2671 // Determine where to start the interpreter. Normally we start at opcode #0,
2672 // but if the state machine starts with an OPC_SwitchOpcode, then we
2673 // accelerate the first lookup (which is guaranteed to be hot) with the
2674 // OpcodeOffset table.
2675 unsigned MatcherIndex = 0;
2676
2677 if (!OpcodeOffset.empty()) {
2678 // Already computed the OpcodeOffset table, just index into it.
2679 if (N.getOpcode() < OpcodeOffset.size())
2680 MatcherIndex = OpcodeOffset[N.getOpcode()];
2681 DEBUG(dbgs() << " Initial Opcode index to " << MatcherIndex << "\n");
2682
2683 } else if (MatcherTable[0] == OPC_SwitchOpcode) {
2684 // Otherwise, the table isn't computed, but the state machine does start
2685 // with an OPC_SwitchOpcode instruction. Populate the table now, since this
2686 // is the first time we're selecting an instruction.
2687 unsigned Idx = 1;
2688 while (1) {
2689 // Get the size of this case.
2690 unsigned CaseSize = MatcherTable[Idx++];
2691 if (CaseSize & 128)
2692 CaseSize = GetVBR(CaseSize, MatcherTable, Idx);
2693 if (CaseSize == 0) break;
2694
2695 // Get the opcode, add the index to the table.
2696 uint16_t Opc = MatcherTable[Idx++];
2697 Opc |= (unsigned short)MatcherTable[Idx++] << 8;
2698 if (Opc >= OpcodeOffset.size())
2699 OpcodeOffset.resize((Opc+1)*2);
2700 OpcodeOffset[Opc] = Idx;
2701 Idx += CaseSize;
2702 }
2703
2704 // Okay, do the lookup for the first opcode.
2705 if (N.getOpcode() < OpcodeOffset.size())
2706 MatcherIndex = OpcodeOffset[N.getOpcode()];
2707 }
2708
2709 while (1) {
2710 assert(MatcherIndex < TableSize && "Invalid index");
2711 #ifndef NDEBUG
2712 unsigned CurrentOpcodeIndex = MatcherIndex;
2713 #endif
2714 BuiltinOpcodes Opcode = (BuiltinOpcodes)MatcherTable[MatcherIndex++];
2715 switch (Opcode) {
2716 case OPC_Scope: {
2717 // Okay, the semantics of this operation are that we should push a scope
2718 // then evaluate the first child. However, pushing a scope only to have
2719 // the first check fail (which then pops it) is inefficient. If we can
2720 // determine immediately that the first check (or first several) will
2721 // immediately fail, don't even bother pushing a scope for them.
2722 unsigned FailIndex;
2723
2724 while (1) {
2725 unsigned NumToSkip = MatcherTable[MatcherIndex++];
2726 if (NumToSkip & 128)
2727 NumToSkip = GetVBR(NumToSkip, MatcherTable, MatcherIndex);
2728 // Found the end of the scope with no match.
2729 if (NumToSkip == 0) {
2730 FailIndex = 0;
2731 break;
2732 }
2733
2734 FailIndex = MatcherIndex+NumToSkip;
2735
2736 unsigned MatcherIndexOfPredicate = MatcherIndex;
2737 (void)MatcherIndexOfPredicate; // silence warning.
2738
2739 // If we can't evaluate this predicate without pushing a scope (e.g. if
2740 // it is a 'MoveParent') or if the predicate succeeds on this node, we
2741 // push the scope and evaluate the full predicate chain.
2742 bool Result;
2743 MatcherIndex = IsPredicateKnownToFail(MatcherTable, MatcherIndex, N,
2744 Result, *this, RecordedNodes);
2745 if (!Result)
2746 break;
2747
2748 DEBUG(dbgs() << " Skipped scope entry (due to false predicate) at "
2749 << "index " << MatcherIndexOfPredicate
2750 << ", continuing at " << FailIndex << "\n");
2751 ++NumDAGIselRetries;
2752
2753 // Otherwise, we know that this case of the Scope is guaranteed to fail,
2754 // move to the next case.
2755 MatcherIndex = FailIndex;
2756 }
2757
2758 // If the whole scope failed to match, bail.
2759 if (FailIndex == 0) break;
2760
2761 // Push a MatchScope which indicates where to go if the first child fails
2762 // to match.
2763 MatchScope NewEntry;
2764 NewEntry.FailIndex = FailIndex;
2765 NewEntry.NodeStack.append(NodeStack.begin(), NodeStack.end());
2766 NewEntry.NumRecordedNodes = RecordedNodes.size();
2767 NewEntry.NumMatchedMemRefs = MatchedMemRefs.size();
2768 NewEntry.InputChain = InputChain;
2769 NewEntry.InputGlue = InputGlue;
2770 NewEntry.HasChainNodesMatched = !ChainNodesMatched.empty();
2771 NewEntry.HasGlueResultNodesMatched = !GlueResultNodesMatched.empty();
2772 MatchScopes.push_back(NewEntry);
2773 continue;
2774 }
2775 case OPC_RecordNode: {
2776 // Remember this node, it may end up being an operand in the pattern.
2777 SDNode *Parent = nullptr;
2778 if (NodeStack.size() > 1)
2779 Parent = NodeStack[NodeStack.size()-2].getNode();
2780 RecordedNodes.push_back(std::make_pair(N, Parent));
2781 continue;
2782 }
2783
2784 case OPC_RecordChild0: case OPC_RecordChild1:
2785 case OPC_RecordChild2: case OPC_RecordChild3:
2786 case OPC_RecordChild4: case OPC_RecordChild5:
2787 case OPC_RecordChild6: case OPC_RecordChild7: {
2788 unsigned ChildNo = Opcode-OPC_RecordChild0;
2789 if (ChildNo >= N.getNumOperands())
2790 break; // Match fails if out of range child #.
2791
2792 RecordedNodes.push_back(std::make_pair(N->getOperand(ChildNo),
2793 N.getNode()));
2794 continue;
2795 }
2796 case OPC_RecordMemRef:
2797 MatchedMemRefs.push_back(cast<MemSDNode>(N)->getMemOperand());
2798 continue;
2799
2800 case OPC_CaptureGlueInput:
2801 // If the current node has an input glue, capture it in InputGlue.
2802 if (N->getNumOperands() != 0 &&
2803 N->getOperand(N->getNumOperands()-1).getValueType() == MVT::Glue)
2804 InputGlue = N->getOperand(N->getNumOperands()-1);
2805 continue;
2806
2807 case OPC_MoveChild: {
2808 unsigned ChildNo = MatcherTable[MatcherIndex++];
2809 if (ChildNo >= N.getNumOperands())
2810 break; // Match fails if out of range child #.
2811 N = N.getOperand(ChildNo);
2812 NodeStack.push_back(N);
2813 continue;
2814 }
2815
2816 case OPC_MoveParent:
2817 // Pop the current node off the NodeStack.
2818 NodeStack.pop_back();
2819 assert(!NodeStack.empty() && "Node stack imbalance!");
2820 N = NodeStack.back();
2821 continue;
2822
2823 case OPC_CheckSame:
2824 if (!::CheckSame(MatcherTable, MatcherIndex, N, RecordedNodes)) break;
2825 continue;
2826
2827 case OPC_CheckChild0Same: case OPC_CheckChild1Same:
2828 case OPC_CheckChild2Same: case OPC_CheckChild3Same:
2829 if (!::CheckChildSame(MatcherTable, MatcherIndex, N, RecordedNodes,
2830 Opcode-OPC_CheckChild0Same))
2831 break;
2832 continue;
2833
2834 case OPC_CheckPatternPredicate:
2835 if (!::CheckPatternPredicate(MatcherTable, MatcherIndex, *this)) break;
2836 continue;
2837 case OPC_CheckPredicate:
2838 if (!::CheckNodePredicate(MatcherTable, MatcherIndex, *this,
2839 N.getNode()))
2840 break;
2841 continue;
2842 case OPC_CheckComplexPat: {
2843 unsigned CPNum = MatcherTable[MatcherIndex++];
2844 unsigned RecNo = MatcherTable[MatcherIndex++];
2845 assert(RecNo < RecordedNodes.size() && "Invalid CheckComplexPat");
2846
2847 // If target can modify DAG during matching, keep the matching state
2848 // consistent.
2849 std::unique_ptr<MatchStateUpdater> MSU;
2850 if (ComplexPatternFuncMutatesDAG())
2851 MSU.reset(new MatchStateUpdater(*CurDAG, RecordedNodes,
2852 MatchScopes));
2853
2854 if (!CheckComplexPattern(NodeToMatch, RecordedNodes[RecNo].second,
2855 RecordedNodes[RecNo].first, CPNum,
2856 RecordedNodes))
2857 break;
2858 continue;
2859 }
2860 case OPC_CheckOpcode:
2861 if (!::CheckOpcode(MatcherTable, MatcherIndex, N.getNode())) break;
2862 continue;
2863
2864 case OPC_CheckType:
2865 if (!::CheckType(MatcherTable, MatcherIndex, N, TLI,
2866 CurDAG->getDataLayout()))
2867 break;
2868 continue;
2869
2870 case OPC_SwitchOpcode: {
2871 unsigned CurNodeOpcode = N.getOpcode();
2872 unsigned SwitchStart = MatcherIndex-1; (void)SwitchStart;
2873 unsigned CaseSize;
2874 while (1) {
2875 // Get the size of this case.
2876 CaseSize = MatcherTable[MatcherIndex++];
2877 if (CaseSize & 128)
2878 CaseSize = GetVBR(CaseSize, MatcherTable, MatcherIndex);
2879 if (CaseSize == 0) break;
2880
2881 uint16_t Opc = MatcherTable[MatcherIndex++];
2882 Opc |= (unsigned short)MatcherTable[MatcherIndex++] << 8;
2883
2884 // If the opcode matches, then we will execute this case.
2885 if (CurNodeOpcode == Opc)
2886 break;
2887
2888 // Otherwise, skip over this case.
2889 MatcherIndex += CaseSize;
2890 }
2891
2892 // If no cases matched, bail out.
2893 if (CaseSize == 0) break;
2894
2895 // Otherwise, execute the case we found.
2896 DEBUG(dbgs() << " OpcodeSwitch from " << SwitchStart
2897 << " to " << MatcherIndex << "\n");
2898 continue;
2899 }
2900
2901 case OPC_SwitchType: {
2902 MVT CurNodeVT = N.getSimpleValueType();
2903 unsigned SwitchStart = MatcherIndex-1; (void)SwitchStart;
2904 unsigned CaseSize;
2905 while (1) {
2906 // Get the size of this case.
2907 CaseSize = MatcherTable[MatcherIndex++];
2908 if (CaseSize & 128)
2909 CaseSize = GetVBR(CaseSize, MatcherTable, MatcherIndex);
2910 if (CaseSize == 0) break;
2911
2912 MVT CaseVT = (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
2913 if (CaseVT == MVT::iPTR)
2914 CaseVT = TLI->getPointerTy(CurDAG->getDataLayout());
2915
2916 // If the VT matches, then we will execute this case.
2917 if (CurNodeVT == CaseVT)
2918 break;
2919
2920 // Otherwise, skip over this case.
2921 MatcherIndex += CaseSize;
2922 }
2923
2924 // If no cases matched, bail out.
2925 if (CaseSize == 0) break;
2926
2927 // Otherwise, execute the case we found.
2928 DEBUG(dbgs() << " TypeSwitch[" << EVT(CurNodeVT).getEVTString()
2929 << "] from " << SwitchStart << " to " << MatcherIndex<<'\n');
2930 continue;
2931 }
2932 case OPC_CheckChild0Type: case OPC_CheckChild1Type:
2933 case OPC_CheckChild2Type: case OPC_CheckChild3Type:
2934 case OPC_CheckChild4Type: case OPC_CheckChild5Type:
2935 case OPC_CheckChild6Type: case OPC_CheckChild7Type:
2936 if (!::CheckChildType(MatcherTable, MatcherIndex, N, TLI,
2937 CurDAG->getDataLayout(),
2938 Opcode - OPC_CheckChild0Type))
2939 break;
2940 continue;
2941 case OPC_CheckCondCode:
2942 if (!::CheckCondCode(MatcherTable, MatcherIndex, N)) break;
2943 continue;
2944 case OPC_CheckValueType:
2945 if (!::CheckValueType(MatcherTable, MatcherIndex, N, TLI,
2946 CurDAG->getDataLayout()))
2947 break;
2948 continue;
2949 case OPC_CheckInteger:
2950 if (!::CheckInteger(MatcherTable, MatcherIndex, N)) break;
2951 continue;
2952 case OPC_CheckChild0Integer: case OPC_CheckChild1Integer:
2953 case OPC_CheckChild2Integer: case OPC_CheckChild3Integer:
2954 case OPC_CheckChild4Integer:
2955 if (!::CheckChildInteger(MatcherTable, MatcherIndex, N,
2956 Opcode-OPC_CheckChild0Integer)) break;
2957 continue;
2958 case OPC_CheckAndImm:
2959 if (!::CheckAndImm(MatcherTable, MatcherIndex, N, *this)) break;
2960 continue;
2961 case OPC_CheckOrImm:
2962 if (!::CheckOrImm(MatcherTable, MatcherIndex, N, *this)) break;
2963 continue;
2964
2965 case OPC_CheckFoldableChainNode: {
2966 assert(NodeStack.size() != 1 && "No parent node");
2967 // Verify that all intermediate nodes between the root and this one have
2968 // a single use.
2969 bool HasMultipleUses = false;
2970 for (unsigned i = 1, e = NodeStack.size()-1; i != e; ++i)
2971 if (!NodeStack[i].hasOneUse()) {
2972 HasMultipleUses = true;
2973 break;
2974 }
2975 if (HasMultipleUses) break;
2976
2977 // Check to see that the target thinks this is profitable to fold and that
2978 // we can fold it without inducing cycles in the graph.
2979 if (!IsProfitableToFold(N, NodeStack[NodeStack.size()-2].getNode(),
2980 NodeToMatch) ||
2981 !IsLegalToFold(N, NodeStack[NodeStack.size()-2].getNode(),
2982 NodeToMatch, OptLevel,
2983 true/*We validate our own chains*/))
2984 break;
2985
2986 continue;
2987 }
2988 case OPC_EmitInteger: {
2989 MVT::SimpleValueType VT =
2990 (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
2991 int64_t Val = MatcherTable[MatcherIndex++];
2992 if (Val & 128)
2993 Val = GetVBR(Val, MatcherTable, MatcherIndex);
2994 RecordedNodes.push_back(std::pair<SDValue, SDNode*>(
2995 CurDAG->getTargetConstant(Val, SDLoc(NodeToMatch),
2996 VT), nullptr));
2997 continue;
2998 }
2999 case OPC_EmitRegister: {
3000 MVT::SimpleValueType VT =
3001 (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
3002 unsigned RegNo = MatcherTable[MatcherIndex++];
3003 RecordedNodes.push_back(std::pair<SDValue, SDNode*>(
3004 CurDAG->getRegister(RegNo, VT), nullptr));
3005 continue;
3006 }
3007 case OPC_EmitRegister2: {
3008 // For targets w/ more than 256 register names, the register enum
3009 // values are stored in two bytes in the matcher table (just like
3010 // opcodes).
3011 MVT::SimpleValueType VT =
3012 (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
3013 unsigned RegNo = MatcherTable[MatcherIndex++];
3014 RegNo |= MatcherTable[MatcherIndex++] << 8;
3015 RecordedNodes.push_back(std::pair<SDValue, SDNode*>(
3016 CurDAG->getRegister(RegNo, VT), nullptr));
3017 continue;
3018 }
3019
3020 case OPC_EmitConvertToTarget: {
3021 // Convert from IMM/FPIMM to target version.
3022 unsigned RecNo = MatcherTable[MatcherIndex++];
3023 assert(RecNo < RecordedNodes.size() && "Invalid EmitConvertToTarget");
3024 SDValue Imm = RecordedNodes[RecNo].first;
3025
3026 if (Imm->getOpcode() == ISD::Constant) {
3027 const ConstantInt *Val=cast<ConstantSDNode>(Imm)->getConstantIntValue();
3028 Imm = CurDAG->getConstant(*Val, SDLoc(NodeToMatch), Imm.getValueType(),
3029 true);
3030 } else if (Imm->getOpcode() == ISD::ConstantFP) {
3031 const ConstantFP *Val=cast<ConstantFPSDNode>(Imm)->getConstantFPValue();
3032 Imm = CurDAG->getConstantFP(*Val, SDLoc(NodeToMatch),
3033 Imm.getValueType(), true);
3034 }
3035
3036 RecordedNodes.push_back(std::make_pair(Imm, RecordedNodes[RecNo].second));
3037 continue;
3038 }
3039
3040 case OPC_EmitMergeInputChains1_0: // OPC_EmitMergeInputChains, 1, 0
3041 case OPC_EmitMergeInputChains1_1: { // OPC_EmitMergeInputChains, 1, 1
3042 // These are space-optimized forms of OPC_EmitMergeInputChains.
3043 assert(!InputChain.getNode() &&
3044 "EmitMergeInputChains should be the first chain producing node");
3045 assert(ChainNodesMatched.empty() &&
3046 "Should only have one EmitMergeInputChains per match");
3047
3048 // Read all of the chained nodes.
3049 unsigned RecNo = Opcode == OPC_EmitMergeInputChains1_1;
3050 assert(RecNo < RecordedNodes.size() && "Invalid EmitMergeInputChains");
3051 ChainNodesMatched.push_back(RecordedNodes[RecNo].first.getNode());
3052
3053 // FIXME: What if other value results of the node have uses not matched
3054 // by this pattern?
3055 if (ChainNodesMatched.back() != NodeToMatch &&
3056 !RecordedNodes[RecNo].first.hasOneUse()) {
3057 ChainNodesMatched.clear();
3058 break;
3059 }
3060
3061 // Merge the input chains if they are not intra-pattern references.
3062 InputChain = HandleMergeInputChains(ChainNodesMatched, CurDAG);
3063
3064 if (!InputChain.getNode())
3065 break; // Failed to merge.
3066 continue;
3067 }
3068
3069 case OPC_EmitMergeInputChains: {
3070 assert(!InputChain.getNode() &&
3071 "EmitMergeInputChains should be the first chain producing node");
3072 // This node gets a list of nodes we matched in the input that have
3073 // chains. We want to token factor all of the input chains to these nodes
3074 // together. However, if any of the input chains is actually one of the
3075 // nodes matched in this pattern, then we have an intra-match reference.
3076 // Ignore these because the newly token factored chain should not refer to
3077 // the old nodes.
3078 unsigned NumChains = MatcherTable[MatcherIndex++];
3079 assert(NumChains != 0 && "Can't TF zero chains");
3080
3081 assert(ChainNodesMatched.empty() &&
3082 "Should only have one EmitMergeInputChains per match");
3083
3084 // Read all of the chained nodes.
3085 for (unsigned i = 0; i != NumChains; ++i) {
3086 unsigned RecNo = MatcherTable[MatcherIndex++];
3087 assert(RecNo < RecordedNodes.size() && "Invalid EmitMergeInputChains");
3088 ChainNodesMatched.push_back(RecordedNodes[RecNo].first.getNode());
3089
3090 // FIXME: What if other value results of the node have uses not matched
3091 // by this pattern?
3092 if (ChainNodesMatched.back() != NodeToMatch &&
3093 !RecordedNodes[RecNo].first.hasOneUse()) {
3094 ChainNodesMatched.clear();
3095 break;
3096 }
3097 }
3098
3099 // If the inner loop broke out, the match fails.
3100 if (ChainNodesMatched.empty())
3101 break;
3102
3103 // Merge the input chains if they are not intra-pattern references.
3104 InputChain = HandleMergeInputChains(ChainNodesMatched, CurDAG);
3105
3106 if (!InputChain.getNode())
3107 break; // Failed to merge.
3108
3109 continue;
3110 }
3111
3112 case OPC_EmitCopyToReg: {
3113 unsigned RecNo = MatcherTable[MatcherIndex++];
3114 assert(RecNo < RecordedNodes.size() && "Invalid EmitCopyToReg");
3115 unsigned DestPhysReg = MatcherTable[MatcherIndex++];
3116
3117 if (!InputChain.getNode())
3118 InputChain = CurDAG->getEntryNode();
3119
3120 InputChain = CurDAG->getCopyToReg(InputChain, SDLoc(NodeToMatch),
3121 DestPhysReg, RecordedNodes[RecNo].first,
3122 InputGlue);
3123
3124 InputGlue = InputChain.getValue(1);
3125 continue;
3126 }
3127
3128 case OPC_EmitNodeXForm: {
3129 unsigned XFormNo = MatcherTable[MatcherIndex++];
3130 unsigned RecNo = MatcherTable[MatcherIndex++];
3131 assert(RecNo < RecordedNodes.size() && "Invalid EmitNodeXForm");
3132 SDValue Res = RunSDNodeXForm(RecordedNodes[RecNo].first, XFormNo);
3133 RecordedNodes.push_back(std::pair<SDValue,SDNode*>(Res, nullptr));
3134 continue;
3135 }
3136
3137 case OPC_EmitNode:
3138 case OPC_MorphNodeTo: {
3139 uint16_t TargetOpc = MatcherTable[MatcherIndex++];
3140 TargetOpc |= (unsigned short)MatcherTable[MatcherIndex++] << 8;
3141 unsigned EmitNodeInfo = MatcherTable[MatcherIndex++];
3142 // Get the result VT list.
3143 unsigned NumVTs = MatcherTable[MatcherIndex++];
3144 SmallVector<EVT, 4> VTs;
3145 for (unsigned i = 0; i != NumVTs; ++i) {
3146 MVT::SimpleValueType VT =
3147 (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
3148 if (VT == MVT::iPTR)
3149 VT = TLI->getPointerTy(CurDAG->getDataLayout()).SimpleTy;
3150 VTs.push_back(VT);
3151 }
3152
3153 if (EmitNodeInfo & OPFL_Chain)
3154 VTs.push_back(MVT::Other);
3155 if (EmitNodeInfo & OPFL_GlueOutput)
3156 VTs.push_back(MVT::Glue);
3157
3158 // This is hot code, so optimize the two most common cases of 1 and 2
3159 // results.
3160 SDVTList VTList;
3161 if (VTs.size() == 1)
3162 VTList = CurDAG->getVTList(VTs[0]);
3163 else if (VTs.size() == 2)
3164 VTList = CurDAG->getVTList(VTs[0], VTs[1]);
3165 else
3166 VTList = CurDAG->getVTList(VTs);
3167
3168 // Get the operand list.
3169 unsigned NumOps = MatcherTable[MatcherIndex++];
3170 SmallVector<SDValue, 8> Ops;
3171 for (unsigned i = 0; i != NumOps; ++i) {
3172 unsigned RecNo = MatcherTable[MatcherIndex++];
3173 if (RecNo & 128)
3174 RecNo = GetVBR(RecNo, MatcherTable, MatcherIndex);
3175
3176 assert(RecNo < RecordedNodes.size() && "Invalid EmitNode");
3177 Ops.push_back(RecordedNodes[RecNo].first);
3178 }
3179
3180 // If there are variadic operands to add, handle them now.
3181 if (EmitNodeInfo & OPFL_VariadicInfo) {
3182 // Determine the start index to copy from.
3183 unsigned FirstOpToCopy = getNumFixedFromVariadicInfo(EmitNodeInfo);
3184 FirstOpToCopy += (EmitNodeInfo & OPFL_Chain) ? 1 : 0;
3185 assert(NodeToMatch->getNumOperands() >= FirstOpToCopy &&
3186 "Invalid variadic node");
3187 // Copy all of the variadic operands, not including a potential glue
3188 // input.
3189 for (unsigned i = FirstOpToCopy, e = NodeToMatch->getNumOperands();
3190 i != e; ++i) {
3191 SDValue V = NodeToMatch->getOperand(i);
3192 if (V.getValueType() == MVT::Glue) break;
3193 Ops.push_back(V);
3194 }
3195 }
3196
3197 // If this has chain/glue inputs, add them.
3198 if (EmitNodeInfo & OPFL_Chain)
3199 Ops.push_back(InputChain);
3200 if ((EmitNodeInfo & OPFL_GlueInput) && InputGlue.getNode() != nullptr)
3201 Ops.push_back(InputGlue);
3202
3203 // Create the node.
3204 SDNode *Res = nullptr;
3205 if (Opcode != OPC_MorphNodeTo) {
3206 // If this is a normal EmitNode command, just create the new node and
3207 // add the results to the RecordedNodes list.
3208 Res = CurDAG->getMachineNode(TargetOpc, SDLoc(NodeToMatch),
3209 VTList, Ops);
3210
3211 // Add all the non-glue/non-chain results to the RecordedNodes list.
3212 for (unsigned i = 0, e = VTs.size(); i != e; ++i) {
3213 if (VTs[i] == MVT::Other || VTs[i] == MVT::Glue) break;
3214 RecordedNodes.push_back(std::pair<SDValue,SDNode*>(SDValue(Res, i),
3215 nullptr));
3216 }
3217
3218 } else if (NodeToMatch->getOpcode() != ISD::DELETED_NODE) {
3219 Res = MorphNode(NodeToMatch, TargetOpc, VTList, Ops, EmitNodeInfo);
3220 } else {
3221 // NodeToMatch was eliminated by CSE when the target changed the DAG.
3222 // We will visit the equivalent node later.
3223 DEBUG(dbgs() << "Node was eliminated by CSE\n");
3224 return nullptr;
3225 }
3226
3227 // If the node had chain/glue results, update our notion of the current
3228 // chain and glue.
3229 if (EmitNodeInfo & OPFL_GlueOutput) {
3230 InputGlue = SDValue(Res, VTs.size()-1);
3231 if (EmitNodeInfo & OPFL_Chain)
3232 InputChain = SDValue(Res, VTs.size()-2);
3233 } else if (EmitNodeInfo & OPFL_Chain)
3234 InputChain = SDValue(Res, VTs.size()-1);
3235
3236 // If the OPFL_MemRefs glue is set on this node, slap all of the
3237 // accumulated memrefs onto it.
3238 //
3239 // FIXME: This is vastly incorrect for patterns with multiple outputs
3240 // instructions that access memory and for ComplexPatterns that match
3241 // loads.
3242 if (EmitNodeInfo & OPFL_MemRefs) {
3243 // Only attach load or store memory operands if the generated
3244 // instruction may load or store.
3245 const MCInstrDesc &MCID = TII->get(TargetOpc);
3246 bool mayLoad = MCID.mayLoad();
3247 bool mayStore = MCID.mayStore();
3248
3249 unsigned NumMemRefs = 0;
3250 for (SmallVectorImpl<MachineMemOperand *>::const_iterator I =
3251 MatchedMemRefs.begin(), E = MatchedMemRefs.end(); I != E; ++I) {
3252 if ((*I)->isLoad()) {
3253 if (mayLoad)
3254 ++NumMemRefs;
3255 } else if ((*I)->isStore()) {
3256 if (mayStore)
3257 ++NumMemRefs;
3258 } else {
3259 ++NumMemRefs;
3260 }
3261 }
3262
3263 MachineSDNode::mmo_iterator MemRefs =
3264 MF->allocateMemRefsArray(NumMemRefs);
3265
3266 MachineSDNode::mmo_iterator MemRefsPos = MemRefs;
3267 for (SmallVectorImpl<MachineMemOperand *>::const_iterator I =
3268 MatchedMemRefs.begin(), E = MatchedMemRefs.end(); I != E; ++I) {
3269 if ((*I)->isLoad()) {
3270 if (mayLoad)
3271 *MemRefsPos++ = *I;
3272 } else if ((*I)->isStore()) {
3273 if (mayStore)
3274 *MemRefsPos++ = *I;
3275 } else {
3276 *MemRefsPos++ = *I;
3277 }
3278 }
3279
3280 cast<MachineSDNode>(Res)
3281 ->setMemRefs(MemRefs, MemRefs + NumMemRefs);
3282 }
3283
3284 DEBUG(dbgs() << " "
3285 << (Opcode == OPC_MorphNodeTo ? "Morphed" : "Created")
3286 << " node: "; Res->dump(CurDAG); dbgs() << "\n");
3287
3288 // If this was a MorphNodeTo then we're completely done!
3289 if (Opcode == OPC_MorphNodeTo) {
3290 // Update chain and glue uses.
3291 UpdateChainsAndGlue(NodeToMatch, InputChain, ChainNodesMatched,
3292 InputGlue, GlueResultNodesMatched, true);
3293 return Res;
3294 }
3295
3296 continue;
3297 }
3298
3299 case OPC_MarkGlueResults: {
3300 unsigned NumNodes = MatcherTable[MatcherIndex++];
3301
3302 // Read and remember all the glue-result nodes.
3303 for (unsigned i = 0; i != NumNodes; ++i) {
3304 unsigned RecNo = MatcherTable[MatcherIndex++];
3305 if (RecNo & 128)
3306 RecNo = GetVBR(RecNo, MatcherTable, MatcherIndex);
3307
3308 assert(RecNo < RecordedNodes.size() && "Invalid MarkGlueResults");
3309 GlueResultNodesMatched.push_back(RecordedNodes[RecNo].first.getNode());
3310 }
3311 continue;
3312 }
3313
3314 case OPC_CompleteMatch: {
3315 // The match has been completed, and any new nodes (if any) have been
3316 // created. Patch up references to the matched dag to use the newly
3317 // created nodes.
3318 unsigned NumResults = MatcherTable[MatcherIndex++];
3319
3320 for (unsigned i = 0; i != NumResults; ++i) {
3321 unsigned ResSlot = MatcherTable[MatcherIndex++];
3322 if (ResSlot & 128)
3323 ResSlot = GetVBR(ResSlot, MatcherTable, MatcherIndex);
3324
3325 assert(ResSlot < RecordedNodes.size() && "Invalid CompleteMatch");
3326 SDValue Res = RecordedNodes[ResSlot].first;
3327
3328 assert(i < NodeToMatch->getNumValues() &&
3329 NodeToMatch->getValueType(i) != MVT::Other &&
3330 NodeToMatch->getValueType(i) != MVT::Glue &&
3331 "Invalid number of results to complete!");
3332 assert((NodeToMatch->getValueType(i) == Res.getValueType() ||
3333 NodeToMatch->getValueType(i) == MVT::iPTR ||
3334 Res.getValueType() == MVT::iPTR ||
3335 NodeToMatch->getValueType(i).getSizeInBits() ==
3336 Res.getValueType().getSizeInBits()) &&
3337 "invalid replacement");
3338 CurDAG->ReplaceAllUsesOfValueWith(SDValue(NodeToMatch, i), Res);
3339 }
3340
3341 // If the root node defines glue, add it to the glue nodes to update list.
3342 if (NodeToMatch->getValueType(NodeToMatch->getNumValues()-1) == MVT::Glue)
3343 GlueResultNodesMatched.push_back(NodeToMatch);
3344
3345 // Update chain and glue uses.
3346 UpdateChainsAndGlue(NodeToMatch, InputChain, ChainNodesMatched,
3347 InputGlue, GlueResultNodesMatched, false);
3348
3349 assert(NodeToMatch->use_empty() &&
3350 "Didn't replace all uses of the node?");
3351
3352 // FIXME: We just return here, which interacts correctly with SelectRoot
3353 // above. We should fix this to not return an SDNode* anymore.
3354 return nullptr;
3355 }
3356 }
3357
3358 // If the code reached this point, then the match failed. See if there is
3359 // another child to try in the current 'Scope', otherwise pop it until we
3360 // find a case to check.
3361 DEBUG(dbgs() << " Match failed at index " << CurrentOpcodeIndex << "\n");
3362 ++NumDAGIselRetries;
3363 while (1) {
3364 if (MatchScopes.empty()) {
3365 CannotYetSelect(NodeToMatch);
3366 return nullptr;
3367 }
3368
3369 // Restore the interpreter state back to the point where the scope was
3370 // formed.
3371 MatchScope &LastScope = MatchScopes.back();
3372 RecordedNodes.resize(LastScope.NumRecordedNodes);
3373 NodeStack.clear();
3374 NodeStack.append(LastScope.NodeStack.begin(), LastScope.NodeStack.end());
3375 N = NodeStack.back();
3376
3377 if (LastScope.NumMatchedMemRefs != MatchedMemRefs.size())
3378 MatchedMemRefs.resize(LastScope.NumMatchedMemRefs);
3379 MatcherIndex = LastScope.FailIndex;
3380
3381 DEBUG(dbgs() << " Continuing at " << MatcherIndex << "\n");
3382
3383 InputChain = LastScope.InputChain;
3384 InputGlue = LastScope.InputGlue;
3385 if (!LastScope.HasChainNodesMatched)
3386 ChainNodesMatched.clear();
3387 if (!LastScope.HasGlueResultNodesMatched)
3388 GlueResultNodesMatched.clear();
3389
3390 // Check to see what the offset is at the new MatcherIndex. If it is zero
3391 // we have reached the end of this scope, otherwise we have another child
3392 // in the current scope to try.
3393 unsigned NumToSkip = MatcherTable[MatcherIndex++];
3394 if (NumToSkip & 128)
3395 NumToSkip = GetVBR(NumToSkip, MatcherTable, MatcherIndex);
3396
3397 // If we have another child in this scope to match, update FailIndex and
3398 // try it.
3399 if (NumToSkip != 0) {
3400 LastScope.FailIndex = MatcherIndex+NumToSkip;
3401 break;
3402 }
3403
3404 // End of this scope, pop it and try the next child in the containing
3405 // scope.
3406 MatchScopes.pop_back();
3407 }
3408 }
3409 }
3410
3411
3412
CannotYetSelect(SDNode * N)3413 void SelectionDAGISel::CannotYetSelect(SDNode *N) {
3414 std::string msg;
3415 raw_string_ostream Msg(msg);
3416 Msg << "Cannot select: ";
3417
3418 if (N->getOpcode() != ISD::INTRINSIC_W_CHAIN &&
3419 N->getOpcode() != ISD::INTRINSIC_WO_CHAIN &&
3420 N->getOpcode() != ISD::INTRINSIC_VOID) {
3421 N->printrFull(Msg, CurDAG);
3422 Msg << "\nIn function: " << MF->getName();
3423 } else {
3424 bool HasInputChain = N->getOperand(0).getValueType() == MVT::Other;
3425 unsigned iid =
3426 cast<ConstantSDNode>(N->getOperand(HasInputChain))->getZExtValue();
3427 if (iid < Intrinsic::num_intrinsics)
3428 Msg << "intrinsic %" << Intrinsic::getName((Intrinsic::ID)iid);
3429 else if (const TargetIntrinsicInfo *TII = TM.getIntrinsicInfo())
3430 Msg << "target intrinsic %" << TII->getName(iid);
3431 else
3432 Msg << "unknown intrinsic #" << iid;
3433 }
3434 report_fatal_error(Msg.str());
3435 }
3436
3437 char SelectionDAGISel::ID = 0;
3438