1 //===-- SelectionDAGISel.cpp - Implement the SelectionDAGISel class -------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This implements the SelectionDAGISel class.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/CodeGen/GCStrategy.h"
15 #include "ScheduleDAGSDNodes.h"
16 #include "SelectionDAGBuilder.h"
17 #include "llvm/ADT/PostOrderIterator.h"
18 #include "llvm/ADT/Statistic.h"
19 #include "llvm/Analysis/AliasAnalysis.h"
20 #include "llvm/Analysis/BranchProbabilityInfo.h"
21 #include "llvm/Analysis/CFG.h"
22 #include "llvm/Analysis/EHPersonalities.h"
23 #include "llvm/Analysis/TargetLibraryInfo.h"
24 #include "llvm/CodeGen/Analysis.h"
25 #include "llvm/CodeGen/FastISel.h"
26 #include "llvm/CodeGen/FunctionLoweringInfo.h"
27 #include "llvm/CodeGen/GCMetadata.h"
28 #include "llvm/CodeGen/MachineFrameInfo.h"
29 #include "llvm/CodeGen/MachineFunction.h"
30 #include "llvm/CodeGen/MachineInstrBuilder.h"
31 #include "llvm/CodeGen/MachineModuleInfo.h"
32 #include "llvm/CodeGen/MachineRegisterInfo.h"
33 #include "llvm/CodeGen/ScheduleHazardRecognizer.h"
34 #include "llvm/CodeGen/SchedulerRegistry.h"
35 #include "llvm/CodeGen/SelectionDAG.h"
36 #include "llvm/CodeGen/SelectionDAGISel.h"
37 #include "llvm/CodeGen/WinEHFuncInfo.h"
38 #include "llvm/IR/Constants.h"
39 #include "llvm/IR/DebugInfo.h"
40 #include "llvm/IR/Function.h"
41 #include "llvm/IR/InlineAsm.h"
42 #include "llvm/IR/Instructions.h"
43 #include "llvm/IR/IntrinsicInst.h"
44 #include "llvm/IR/Intrinsics.h"
45 #include "llvm/IR/LLVMContext.h"
46 #include "llvm/IR/Module.h"
47 #include "llvm/MC/MCAsmInfo.h"
48 #include "llvm/Support/Compiler.h"
49 #include "llvm/Support/Debug.h"
50 #include "llvm/Support/ErrorHandling.h"
51 #include "llvm/Support/Timer.h"
52 #include "llvm/Support/raw_ostream.h"
53 #include "llvm/Target/TargetInstrInfo.h"
54 #include "llvm/Target/TargetIntrinsicInfo.h"
55 #include "llvm/Target/TargetLowering.h"
56 #include "llvm/Target/TargetMachine.h"
57 #include "llvm/Target/TargetOptions.h"
58 #include "llvm/Target/TargetRegisterInfo.h"
59 #include "llvm/Target/TargetSubtargetInfo.h"
60 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
61 #include <algorithm>
62 using namespace llvm;
63 
64 #define DEBUG_TYPE "isel"
65 
66 STATISTIC(NumFastIselFailures, "Number of instructions fast isel failed on");
67 STATISTIC(NumFastIselSuccess, "Number of instructions fast isel selected");
68 STATISTIC(NumFastIselBlocks, "Number of blocks selected entirely by fast isel");
69 STATISTIC(NumDAGBlocks, "Number of blocks selected using DAG");
70 STATISTIC(NumDAGIselRetries,"Number of times dag isel has to try another path");
71 STATISTIC(NumEntryBlocks, "Number of entry blocks encountered");
72 STATISTIC(NumFastIselFailLowerArguments,
73           "Number of entry blocks where fast isel failed to lower arguments");
74 
75 #ifndef NDEBUG
76 static cl::opt<bool>
77 EnableFastISelVerbose2("fast-isel-verbose2", cl::Hidden,
78           cl::desc("Enable extra verbose messages in the \"fast\" "
79                    "instruction selector"));
80 
81   // Terminators
82 STATISTIC(NumFastIselFailRet,"Fast isel fails on Ret");
83 STATISTIC(NumFastIselFailBr,"Fast isel fails on Br");
84 STATISTIC(NumFastIselFailSwitch,"Fast isel fails on Switch");
85 STATISTIC(NumFastIselFailIndirectBr,"Fast isel fails on IndirectBr");
86 STATISTIC(NumFastIselFailInvoke,"Fast isel fails on Invoke");
87 STATISTIC(NumFastIselFailResume,"Fast isel fails on Resume");
88 STATISTIC(NumFastIselFailUnreachable,"Fast isel fails on Unreachable");
89 
90   // Standard binary operators...
91 STATISTIC(NumFastIselFailAdd,"Fast isel fails on Add");
92 STATISTIC(NumFastIselFailFAdd,"Fast isel fails on FAdd");
93 STATISTIC(NumFastIselFailSub,"Fast isel fails on Sub");
94 STATISTIC(NumFastIselFailFSub,"Fast isel fails on FSub");
95 STATISTIC(NumFastIselFailMul,"Fast isel fails on Mul");
96 STATISTIC(NumFastIselFailFMul,"Fast isel fails on FMul");
97 STATISTIC(NumFastIselFailUDiv,"Fast isel fails on UDiv");
98 STATISTIC(NumFastIselFailSDiv,"Fast isel fails on SDiv");
99 STATISTIC(NumFastIselFailFDiv,"Fast isel fails on FDiv");
100 STATISTIC(NumFastIselFailURem,"Fast isel fails on URem");
101 STATISTIC(NumFastIselFailSRem,"Fast isel fails on SRem");
102 STATISTIC(NumFastIselFailFRem,"Fast isel fails on FRem");
103 
104   // Logical operators...
105 STATISTIC(NumFastIselFailAnd,"Fast isel fails on And");
106 STATISTIC(NumFastIselFailOr,"Fast isel fails on Or");
107 STATISTIC(NumFastIselFailXor,"Fast isel fails on Xor");
108 
109   // Memory instructions...
110 STATISTIC(NumFastIselFailAlloca,"Fast isel fails on Alloca");
111 STATISTIC(NumFastIselFailLoad,"Fast isel fails on Load");
112 STATISTIC(NumFastIselFailStore,"Fast isel fails on Store");
113 STATISTIC(NumFastIselFailAtomicCmpXchg,"Fast isel fails on AtomicCmpXchg");
114 STATISTIC(NumFastIselFailAtomicRMW,"Fast isel fails on AtomicRWM");
115 STATISTIC(NumFastIselFailFence,"Fast isel fails on Frence");
116 STATISTIC(NumFastIselFailGetElementPtr,"Fast isel fails on GetElementPtr");
117 
118   // Convert instructions...
119 STATISTIC(NumFastIselFailTrunc,"Fast isel fails on Trunc");
120 STATISTIC(NumFastIselFailZExt,"Fast isel fails on ZExt");
121 STATISTIC(NumFastIselFailSExt,"Fast isel fails on SExt");
122 STATISTIC(NumFastIselFailFPTrunc,"Fast isel fails on FPTrunc");
123 STATISTIC(NumFastIselFailFPExt,"Fast isel fails on FPExt");
124 STATISTIC(NumFastIselFailFPToUI,"Fast isel fails on FPToUI");
125 STATISTIC(NumFastIselFailFPToSI,"Fast isel fails on FPToSI");
126 STATISTIC(NumFastIselFailUIToFP,"Fast isel fails on UIToFP");
127 STATISTIC(NumFastIselFailSIToFP,"Fast isel fails on SIToFP");
128 STATISTIC(NumFastIselFailIntToPtr,"Fast isel fails on IntToPtr");
129 STATISTIC(NumFastIselFailPtrToInt,"Fast isel fails on PtrToInt");
130 STATISTIC(NumFastIselFailBitCast,"Fast isel fails on BitCast");
131 
132   // Other instructions...
133 STATISTIC(NumFastIselFailICmp,"Fast isel fails on ICmp");
134 STATISTIC(NumFastIselFailFCmp,"Fast isel fails on FCmp");
135 STATISTIC(NumFastIselFailPHI,"Fast isel fails on PHI");
136 STATISTIC(NumFastIselFailSelect,"Fast isel fails on Select");
137 STATISTIC(NumFastIselFailCall,"Fast isel fails on Call");
138 STATISTIC(NumFastIselFailShl,"Fast isel fails on Shl");
139 STATISTIC(NumFastIselFailLShr,"Fast isel fails on LShr");
140 STATISTIC(NumFastIselFailAShr,"Fast isel fails on AShr");
141 STATISTIC(NumFastIselFailVAArg,"Fast isel fails on VAArg");
142 STATISTIC(NumFastIselFailExtractElement,"Fast isel fails on ExtractElement");
143 STATISTIC(NumFastIselFailInsertElement,"Fast isel fails on InsertElement");
144 STATISTIC(NumFastIselFailShuffleVector,"Fast isel fails on ShuffleVector");
145 STATISTIC(NumFastIselFailExtractValue,"Fast isel fails on ExtractValue");
146 STATISTIC(NumFastIselFailInsertValue,"Fast isel fails on InsertValue");
147 STATISTIC(NumFastIselFailLandingPad,"Fast isel fails on LandingPad");
148 
149 // Intrinsic instructions...
150 STATISTIC(NumFastIselFailIntrinsicCall, "Fast isel fails on Intrinsic call");
151 STATISTIC(NumFastIselFailSAddWithOverflow,
152           "Fast isel fails on sadd.with.overflow");
153 STATISTIC(NumFastIselFailUAddWithOverflow,
154           "Fast isel fails on uadd.with.overflow");
155 STATISTIC(NumFastIselFailSSubWithOverflow,
156           "Fast isel fails on ssub.with.overflow");
157 STATISTIC(NumFastIselFailUSubWithOverflow,
158           "Fast isel fails on usub.with.overflow");
159 STATISTIC(NumFastIselFailSMulWithOverflow,
160           "Fast isel fails on smul.with.overflow");
161 STATISTIC(NumFastIselFailUMulWithOverflow,
162           "Fast isel fails on umul.with.overflow");
163 STATISTIC(NumFastIselFailFrameaddress, "Fast isel fails on Frameaddress");
164 STATISTIC(NumFastIselFailSqrt, "Fast isel fails on sqrt call");
165 STATISTIC(NumFastIselFailStackMap, "Fast isel fails on StackMap call");
166 STATISTIC(NumFastIselFailPatchPoint, "Fast isel fails on PatchPoint call");
167 #endif
168 
169 static cl::opt<bool>
170 EnableFastISelVerbose("fast-isel-verbose", cl::Hidden,
171           cl::desc("Enable verbose messages in the \"fast\" "
172                    "instruction selector"));
173 static cl::opt<int> EnableFastISelAbort(
174     "fast-isel-abort", cl::Hidden,
175     cl::desc("Enable abort calls when \"fast\" instruction selection "
176              "fails to lower an instruction: 0 disable the abort, 1 will "
177              "abort but for args, calls and terminators, 2 will also "
178              "abort for argument lowering, and 3 will never fallback "
179              "to SelectionDAG."));
180 
181 static cl::opt<bool>
182 UseMBPI("use-mbpi",
183         cl::desc("use Machine Branch Probability Info"),
184         cl::init(true), cl::Hidden);
185 
186 #ifndef NDEBUG
187 static cl::opt<std::string>
188 FilterDAGBasicBlockName("filter-view-dags", cl::Hidden,
189                         cl::desc("Only display the basic block whose name "
190                                  "matches this for all view-*-dags options"));
191 static cl::opt<bool>
192 ViewDAGCombine1("view-dag-combine1-dags", cl::Hidden,
193           cl::desc("Pop up a window to show dags before the first "
194                    "dag combine pass"));
195 static cl::opt<bool>
196 ViewLegalizeTypesDAGs("view-legalize-types-dags", cl::Hidden,
197           cl::desc("Pop up a window to show dags before legalize types"));
198 static cl::opt<bool>
199 ViewLegalizeDAGs("view-legalize-dags", cl::Hidden,
200           cl::desc("Pop up a window to show dags before legalize"));
201 static cl::opt<bool>
202 ViewDAGCombine2("view-dag-combine2-dags", cl::Hidden,
203           cl::desc("Pop up a window to show dags before the second "
204                    "dag combine pass"));
205 static cl::opt<bool>
206 ViewDAGCombineLT("view-dag-combine-lt-dags", cl::Hidden,
207           cl::desc("Pop up a window to show dags before the post legalize types"
208                    " dag combine pass"));
209 static cl::opt<bool>
210 ViewISelDAGs("view-isel-dags", cl::Hidden,
211           cl::desc("Pop up a window to show isel dags as they are selected"));
212 static cl::opt<bool>
213 ViewSchedDAGs("view-sched-dags", cl::Hidden,
214           cl::desc("Pop up a window to show sched dags as they are processed"));
215 static cl::opt<bool>
216 ViewSUnitDAGs("view-sunit-dags", cl::Hidden,
217       cl::desc("Pop up a window to show SUnit dags after they are processed"));
218 #else
219 static const bool ViewDAGCombine1 = false,
220                   ViewLegalizeTypesDAGs = false, ViewLegalizeDAGs = false,
221                   ViewDAGCombine2 = false,
222                   ViewDAGCombineLT = false,
223                   ViewISelDAGs = false, ViewSchedDAGs = false,
224                   ViewSUnitDAGs = false;
225 #endif
226 
227 //===---------------------------------------------------------------------===//
228 ///
229 /// RegisterScheduler class - Track the registration of instruction schedulers.
230 ///
231 //===---------------------------------------------------------------------===//
232 MachinePassRegistry RegisterScheduler::Registry;
233 
234 //===---------------------------------------------------------------------===//
235 ///
236 /// ISHeuristic command line option for instruction schedulers.
237 ///
238 //===---------------------------------------------------------------------===//
239 static cl::opt<RegisterScheduler::FunctionPassCtor, false,
240                RegisterPassParser<RegisterScheduler> >
241 ISHeuristic("pre-RA-sched",
242             cl::init(&createDefaultScheduler), cl::Hidden,
243             cl::desc("Instruction schedulers available (before register"
244                      " allocation):"));
245 
246 static RegisterScheduler
247 defaultListDAGScheduler("default", "Best scheduler for the target",
248                         createDefaultScheduler);
249 
250 namespace llvm {
251   //===--------------------------------------------------------------------===//
252   /// \brief This class is used by SelectionDAGISel to temporarily override
253   /// the optimization level on a per-function basis.
254   class OptLevelChanger {
255     SelectionDAGISel &IS;
256     CodeGenOpt::Level SavedOptLevel;
257     bool SavedFastISel;
258 
259   public:
OptLevelChanger(SelectionDAGISel & ISel,CodeGenOpt::Level NewOptLevel)260     OptLevelChanger(SelectionDAGISel &ISel,
261                     CodeGenOpt::Level NewOptLevel) : IS(ISel) {
262       SavedOptLevel = IS.OptLevel;
263       if (NewOptLevel == SavedOptLevel)
264         return;
265       IS.OptLevel = NewOptLevel;
266       IS.TM.setOptLevel(NewOptLevel);
267       DEBUG(dbgs() << "\nChanging optimization level for Function "
268             << IS.MF->getFunction()->getName() << "\n");
269       DEBUG(dbgs() << "\tBefore: -O" << SavedOptLevel
270             << " ; After: -O" << NewOptLevel << "\n");
271       SavedFastISel = IS.TM.Options.EnableFastISel;
272       if (NewOptLevel == CodeGenOpt::None) {
273         IS.TM.setFastISel(IS.TM.getO0WantsFastISel());
274         DEBUG(dbgs() << "\tFastISel is "
275               << (IS.TM.Options.EnableFastISel ? "enabled" : "disabled")
276               << "\n");
277       }
278     }
279 
~OptLevelChanger()280     ~OptLevelChanger() {
281       if (IS.OptLevel == SavedOptLevel)
282         return;
283       DEBUG(dbgs() << "\nRestoring optimization level for Function "
284             << IS.MF->getFunction()->getName() << "\n");
285       DEBUG(dbgs() << "\tBefore: -O" << IS.OptLevel
286             << " ; After: -O" << SavedOptLevel << "\n");
287       IS.OptLevel = SavedOptLevel;
288       IS.TM.setOptLevel(SavedOptLevel);
289       IS.TM.setFastISel(SavedFastISel);
290     }
291   };
292 
293   //===--------------------------------------------------------------------===//
294   /// createDefaultScheduler - This creates an instruction scheduler appropriate
295   /// for the target.
createDefaultScheduler(SelectionDAGISel * IS,CodeGenOpt::Level OptLevel)296   ScheduleDAGSDNodes* createDefaultScheduler(SelectionDAGISel *IS,
297                                              CodeGenOpt::Level OptLevel) {
298     const TargetLowering *TLI = IS->TLI;
299     const TargetSubtargetInfo &ST = IS->MF->getSubtarget();
300 
301     // Try first to see if the Target has its own way of selecting a scheduler
302     if (auto *SchedulerCtor = ST.getDAGScheduler(OptLevel)) {
303       return SchedulerCtor(IS, OptLevel);
304     }
305 
306     if (OptLevel == CodeGenOpt::None ||
307         (ST.enableMachineScheduler() && ST.enableMachineSchedDefaultSched()) ||
308         TLI->getSchedulingPreference() == Sched::Source)
309       return createSourceListDAGScheduler(IS, OptLevel);
310     if (TLI->getSchedulingPreference() == Sched::RegPressure)
311       return createBURRListDAGScheduler(IS, OptLevel);
312     if (TLI->getSchedulingPreference() == Sched::Hybrid)
313       return createHybridListDAGScheduler(IS, OptLevel);
314     if (TLI->getSchedulingPreference() == Sched::VLIW)
315       return createVLIWDAGScheduler(IS, OptLevel);
316     assert(TLI->getSchedulingPreference() == Sched::ILP &&
317            "Unknown sched type!");
318     return createILPListDAGScheduler(IS, OptLevel);
319   }
320 }
321 
322 // EmitInstrWithCustomInserter - This method should be implemented by targets
323 // that mark instructions with the 'usesCustomInserter' flag.  These
324 // instructions are special in various ways, which require special support to
325 // insert.  The specified MachineInstr is created but not inserted into any
326 // basic blocks, and this method is called to expand it into a sequence of
327 // instructions, potentially also creating new basic blocks and control flow.
328 // When new basic blocks are inserted and the edges from MBB to its successors
329 // are modified, the method should insert pairs of <OldSucc, NewSucc> into the
330 // DenseMap.
331 MachineBasicBlock *
EmitInstrWithCustomInserter(MachineInstr * MI,MachineBasicBlock * MBB) const332 TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
333                                             MachineBasicBlock *MBB) const {
334 #ifndef NDEBUG
335   dbgs() << "If a target marks an instruction with "
336           "'usesCustomInserter', it must implement "
337           "TargetLowering::EmitInstrWithCustomInserter!";
338 #endif
339   llvm_unreachable(nullptr);
340 }
341 
AdjustInstrPostInstrSelection(MachineInstr * MI,SDNode * Node) const342 void TargetLowering::AdjustInstrPostInstrSelection(MachineInstr *MI,
343                                                    SDNode *Node) const {
344   assert(!MI->hasPostISelHook() &&
345          "If a target marks an instruction with 'hasPostISelHook', "
346          "it must implement TargetLowering::AdjustInstrPostInstrSelection!");
347 }
348 
349 //===----------------------------------------------------------------------===//
350 // SelectionDAGISel code
351 //===----------------------------------------------------------------------===//
352 
SelectionDAGISel(TargetMachine & tm,CodeGenOpt::Level OL)353 SelectionDAGISel::SelectionDAGISel(TargetMachine &tm,
354                                    CodeGenOpt::Level OL) :
355   MachineFunctionPass(ID), TM(tm),
356   FuncInfo(new FunctionLoweringInfo()),
357   CurDAG(new SelectionDAG(tm, OL)),
358   SDB(new SelectionDAGBuilder(*CurDAG, *FuncInfo, OL)),
359   GFI(),
360   OptLevel(OL),
361   DAGSize(0) {
362     initializeGCModuleInfoPass(*PassRegistry::getPassRegistry());
363     initializeBranchProbabilityInfoWrapperPassPass(
364         *PassRegistry::getPassRegistry());
365     initializeAAResultsWrapperPassPass(*PassRegistry::getPassRegistry());
366     initializeTargetLibraryInfoWrapperPassPass(
367         *PassRegistry::getPassRegistry());
368   }
369 
~SelectionDAGISel()370 SelectionDAGISel::~SelectionDAGISel() {
371   delete SDB;
372   delete CurDAG;
373   delete FuncInfo;
374 }
375 
getAnalysisUsage(AnalysisUsage & AU) const376 void SelectionDAGISel::getAnalysisUsage(AnalysisUsage &AU) const {
377   AU.addRequired<AAResultsWrapperPass>();
378   AU.addRequired<GCModuleInfo>();
379   AU.addPreserved<GCModuleInfo>();
380   AU.addRequired<TargetLibraryInfoWrapperPass>();
381   if (UseMBPI && OptLevel != CodeGenOpt::None)
382     AU.addRequired<BranchProbabilityInfoWrapperPass>();
383   MachineFunctionPass::getAnalysisUsage(AU);
384 }
385 
386 /// SplitCriticalSideEffectEdges - Look for critical edges with a PHI value that
387 /// may trap on it.  In this case we have to split the edge so that the path
388 /// through the predecessor block that doesn't go to the phi block doesn't
389 /// execute the possibly trapping instruction.
390 ///
391 /// This is required for correctness, so it must be done at -O0.
392 ///
SplitCriticalSideEffectEdges(Function & Fn)393 static void SplitCriticalSideEffectEdges(Function &Fn) {
394   // Loop for blocks with phi nodes.
395   for (BasicBlock &BB : Fn) {
396     PHINode *PN = dyn_cast<PHINode>(BB.begin());
397     if (!PN) continue;
398 
399   ReprocessBlock:
400     // For each block with a PHI node, check to see if any of the input values
401     // are potentially trapping constant expressions.  Constant expressions are
402     // the only potentially trapping value that can occur as the argument to a
403     // PHI.
404     for (BasicBlock::iterator I = BB.begin(); (PN = dyn_cast<PHINode>(I)); ++I)
405       for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
406         ConstantExpr *CE = dyn_cast<ConstantExpr>(PN->getIncomingValue(i));
407         if (!CE || !CE->canTrap()) continue;
408 
409         // The only case we have to worry about is when the edge is critical.
410         // Since this block has a PHI Node, we assume it has multiple input
411         // edges: check to see if the pred has multiple successors.
412         BasicBlock *Pred = PN->getIncomingBlock(i);
413         if (Pred->getTerminator()->getNumSuccessors() == 1)
414           continue;
415 
416         // Okay, we have to split this edge.
417         SplitCriticalEdge(
418             Pred->getTerminator(), GetSuccessorNumber(Pred, &BB),
419             CriticalEdgeSplittingOptions().setMergeIdenticalEdges());
420         goto ReprocessBlock;
421       }
422   }
423 }
424 
runOnMachineFunction(MachineFunction & mf)425 bool SelectionDAGISel::runOnMachineFunction(MachineFunction &mf) {
426   // Do some sanity-checking on the command-line options.
427   assert((!EnableFastISelVerbose || TM.Options.EnableFastISel) &&
428          "-fast-isel-verbose requires -fast-isel");
429   assert((!EnableFastISelAbort || TM.Options.EnableFastISel) &&
430          "-fast-isel-abort > 0 requires -fast-isel");
431 
432   const Function &Fn = *mf.getFunction();
433   MF = &mf;
434 
435   // Reset the target options before resetting the optimization
436   // level below.
437   // FIXME: This is a horrible hack and should be processed via
438   // codegen looking at the optimization level explicitly when
439   // it wants to look at it.
440   TM.resetTargetOptions(Fn);
441   // Reset OptLevel to None for optnone functions.
442   CodeGenOpt::Level NewOptLevel = OptLevel;
443   if (Fn.hasFnAttribute(Attribute::OptimizeNone))
444     NewOptLevel = CodeGenOpt::None;
445   OptLevelChanger OLC(*this, NewOptLevel);
446 
447   TII = MF->getSubtarget().getInstrInfo();
448   TLI = MF->getSubtarget().getTargetLowering();
449   RegInfo = &MF->getRegInfo();
450   AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
451   LibInfo = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
452   GFI = Fn.hasGC() ? &getAnalysis<GCModuleInfo>().getFunctionInfo(Fn) : nullptr;
453 
454   DEBUG(dbgs() << "\n\n\n=== " << Fn.getName() << "\n");
455 
456   SplitCriticalSideEffectEdges(const_cast<Function &>(Fn));
457 
458   CurDAG->init(*MF);
459   FuncInfo->set(Fn, *MF, CurDAG);
460 
461   if (UseMBPI && OptLevel != CodeGenOpt::None)
462     FuncInfo->BPI = &getAnalysis<BranchProbabilityInfoWrapperPass>().getBPI();
463   else
464     FuncInfo->BPI = nullptr;
465 
466   SDB->init(GFI, *AA, LibInfo);
467 
468   MF->setHasInlineAsm(false);
469 
470   FuncInfo->SplitCSR = false;
471   SmallVector<MachineBasicBlock*, 4> Returns;
472 
473   // We split CSR if the target supports it for the given function
474   // and the function has only return exits.
475   if (TLI->supportSplitCSR(MF)) {
476     FuncInfo->SplitCSR = true;
477 
478     // Collect all the return blocks.
479     for (const BasicBlock &BB : Fn) {
480       if (!succ_empty(&BB))
481         continue;
482 
483       const TerminatorInst *Term = BB.getTerminator();
484       if (isa<UnreachableInst>(Term))
485         continue;
486       if (isa<ReturnInst>(Term)) {
487         Returns.push_back(FuncInfo->MBBMap[&BB]);
488         continue;
489       }
490 
491       // Bail out if the exit block is not Return nor Unreachable.
492       FuncInfo->SplitCSR = false;
493       break;
494     }
495   }
496 
497   MachineBasicBlock *EntryMBB = &MF->front();
498   if (FuncInfo->SplitCSR)
499     // This performs initialization so lowering for SplitCSR will be correct.
500     TLI->initializeSplitCSR(EntryMBB);
501 
502   SelectAllBasicBlocks(Fn);
503 
504   // If the first basic block in the function has live ins that need to be
505   // copied into vregs, emit the copies into the top of the block before
506   // emitting the code for the block.
507   const TargetRegisterInfo &TRI = *MF->getSubtarget().getRegisterInfo();
508   RegInfo->EmitLiveInCopies(EntryMBB, TRI, *TII);
509 
510   // Insert copies in the entry block and the return blocks.
511   if (FuncInfo->SplitCSR)
512     TLI->insertCopiesSplitCSR(EntryMBB, Returns);
513 
514   DenseMap<unsigned, unsigned> LiveInMap;
515   if (!FuncInfo->ArgDbgValues.empty())
516     for (MachineRegisterInfo::livein_iterator LI = RegInfo->livein_begin(),
517            E = RegInfo->livein_end(); LI != E; ++LI)
518       if (LI->second)
519         LiveInMap.insert(std::make_pair(LI->first, LI->second));
520 
521   // Insert DBG_VALUE instructions for function arguments to the entry block.
522   for (unsigned i = 0, e = FuncInfo->ArgDbgValues.size(); i != e; ++i) {
523     MachineInstr *MI = FuncInfo->ArgDbgValues[e-i-1];
524     bool hasFI = MI->getOperand(0).isFI();
525     unsigned Reg =
526         hasFI ? TRI.getFrameRegister(*MF) : MI->getOperand(0).getReg();
527     if (TargetRegisterInfo::isPhysicalRegister(Reg))
528       EntryMBB->insert(EntryMBB->begin(), MI);
529     else {
530       MachineInstr *Def = RegInfo->getVRegDef(Reg);
531       if (Def) {
532         MachineBasicBlock::iterator InsertPos = Def;
533         // FIXME: VR def may not be in entry block.
534         Def->getParent()->insert(std::next(InsertPos), MI);
535       } else
536         DEBUG(dbgs() << "Dropping debug info for dead vreg"
537               << TargetRegisterInfo::virtReg2Index(Reg) << "\n");
538     }
539 
540     // If Reg is live-in then update debug info to track its copy in a vreg.
541     DenseMap<unsigned, unsigned>::iterator LDI = LiveInMap.find(Reg);
542     if (LDI != LiveInMap.end()) {
543       assert(!hasFI && "There's no handling of frame pointer updating here yet "
544                        "- add if needed");
545       MachineInstr *Def = RegInfo->getVRegDef(LDI->second);
546       MachineBasicBlock::iterator InsertPos = Def;
547       const MDNode *Variable = MI->getDebugVariable();
548       const MDNode *Expr = MI->getDebugExpression();
549       DebugLoc DL = MI->getDebugLoc();
550       bool IsIndirect = MI->isIndirectDebugValue();
551       unsigned Offset = IsIndirect ? MI->getOperand(1).getImm() : 0;
552       assert(cast<DILocalVariable>(Variable)->isValidLocationForIntrinsic(DL) &&
553              "Expected inlined-at fields to agree");
554       // Def is never a terminator here, so it is ok to increment InsertPos.
555       BuildMI(*EntryMBB, ++InsertPos, DL, TII->get(TargetOpcode::DBG_VALUE),
556               IsIndirect, LDI->second, Offset, Variable, Expr);
557 
558       // If this vreg is directly copied into an exported register then
559       // that COPY instructions also need DBG_VALUE, if it is the only
560       // user of LDI->second.
561       MachineInstr *CopyUseMI = nullptr;
562       for (MachineRegisterInfo::use_instr_iterator
563            UI = RegInfo->use_instr_begin(LDI->second),
564            E = RegInfo->use_instr_end(); UI != E; ) {
565         MachineInstr *UseMI = &*(UI++);
566         if (UseMI->isDebugValue()) continue;
567         if (UseMI->isCopy() && !CopyUseMI && UseMI->getParent() == EntryMBB) {
568           CopyUseMI = UseMI; continue;
569         }
570         // Otherwise this is another use or second copy use.
571         CopyUseMI = nullptr; break;
572       }
573       if (CopyUseMI) {
574         // Use MI's debug location, which describes where Variable was
575         // declared, rather than whatever is attached to CopyUseMI.
576         MachineInstr *NewMI =
577             BuildMI(*MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsIndirect,
578                     CopyUseMI->getOperand(0).getReg(), Offset, Variable, Expr);
579         MachineBasicBlock::iterator Pos = CopyUseMI;
580         EntryMBB->insertAfter(Pos, NewMI);
581       }
582     }
583   }
584 
585   // Determine if there are any calls in this machine function.
586   MachineFrameInfo *MFI = MF->getFrameInfo();
587   for (const auto &MBB : *MF) {
588     if (MFI->hasCalls() && MF->hasInlineAsm())
589       break;
590 
591     for (const auto &MI : MBB) {
592       const MCInstrDesc &MCID = TII->get(MI.getOpcode());
593       if ((MCID.isCall() && !MCID.isReturn()) ||
594           MI.isStackAligningInlineAsm()) {
595         MFI->setHasCalls(true);
596       }
597       if (MI.isInlineAsm()) {
598         MF->setHasInlineAsm(true);
599       }
600     }
601   }
602 
603   // Determine if there is a call to setjmp in the machine function.
604   MF->setExposesReturnsTwice(Fn.callsFunctionThatReturnsTwice());
605 
606   // Replace forward-declared registers with the registers containing
607   // the desired value.
608   MachineRegisterInfo &MRI = MF->getRegInfo();
609   for (DenseMap<unsigned, unsigned>::iterator
610        I = FuncInfo->RegFixups.begin(), E = FuncInfo->RegFixups.end();
611        I != E; ++I) {
612     unsigned From = I->first;
613     unsigned To = I->second;
614     // If To is also scheduled to be replaced, find what its ultimate
615     // replacement is.
616     for (;;) {
617       DenseMap<unsigned, unsigned>::iterator J = FuncInfo->RegFixups.find(To);
618       if (J == E) break;
619       To = J->second;
620     }
621     // Make sure the new register has a sufficiently constrained register class.
622     if (TargetRegisterInfo::isVirtualRegister(From) &&
623         TargetRegisterInfo::isVirtualRegister(To))
624       MRI.constrainRegClass(To, MRI.getRegClass(From));
625     // Replace it.
626 
627 
628     // Replacing one register with another won't touch the kill flags.
629     // We need to conservatively clear the kill flags as a kill on the old
630     // register might dominate existing uses of the new register.
631     if (!MRI.use_empty(To))
632       MRI.clearKillFlags(From);
633     MRI.replaceRegWith(From, To);
634   }
635 
636   // Freeze the set of reserved registers now that MachineFrameInfo has been
637   // set up. All the information required by getReservedRegs() should be
638   // available now.
639   MRI.freezeReservedRegs(*MF);
640 
641   // Release function-specific state. SDB and CurDAG are already cleared
642   // at this point.
643   FuncInfo->clear();
644 
645   DEBUG(dbgs() << "*** MachineFunction at end of ISel ***\n");
646   DEBUG(MF->print(dbgs()));
647 
648   return true;
649 }
650 
SelectBasicBlock(BasicBlock::const_iterator Begin,BasicBlock::const_iterator End,bool & HadTailCall)651 void SelectionDAGISel::SelectBasicBlock(BasicBlock::const_iterator Begin,
652                                         BasicBlock::const_iterator End,
653                                         bool &HadTailCall) {
654   // Lower the instructions. If a call is emitted as a tail call, cease emitting
655   // nodes for this block.
656   for (BasicBlock::const_iterator I = Begin; I != End && !SDB->HasTailCall; ++I)
657     SDB->visit(*I);
658 
659   // Make sure the root of the DAG is up-to-date.
660   CurDAG->setRoot(SDB->getControlRoot());
661   HadTailCall = SDB->HasTailCall;
662   SDB->clear();
663 
664   // Final step, emit the lowered DAG as machine code.
665   CodeGenAndEmitDAG();
666 }
667 
ComputeLiveOutVRegInfo()668 void SelectionDAGISel::ComputeLiveOutVRegInfo() {
669   SmallPtrSet<SDNode*, 128> VisitedNodes;
670   SmallVector<SDNode*, 128> Worklist;
671 
672   Worklist.push_back(CurDAG->getRoot().getNode());
673 
674   APInt KnownZero;
675   APInt KnownOne;
676 
677   do {
678     SDNode *N = Worklist.pop_back_val();
679 
680     // If we've already seen this node, ignore it.
681     if (!VisitedNodes.insert(N).second)
682       continue;
683 
684     // Otherwise, add all chain operands to the worklist.
685     for (const SDValue &Op : N->op_values())
686       if (Op.getValueType() == MVT::Other)
687         Worklist.push_back(Op.getNode());
688 
689     // If this is a CopyToReg with a vreg dest, process it.
690     if (N->getOpcode() != ISD::CopyToReg)
691       continue;
692 
693     unsigned DestReg = cast<RegisterSDNode>(N->getOperand(1))->getReg();
694     if (!TargetRegisterInfo::isVirtualRegister(DestReg))
695       continue;
696 
697     // Ignore non-scalar or non-integer values.
698     SDValue Src = N->getOperand(2);
699     EVT SrcVT = Src.getValueType();
700     if (!SrcVT.isInteger() || SrcVT.isVector())
701       continue;
702 
703     unsigned NumSignBits = CurDAG->ComputeNumSignBits(Src);
704     CurDAG->computeKnownBits(Src, KnownZero, KnownOne);
705     FuncInfo->AddLiveOutRegInfo(DestReg, NumSignBits, KnownZero, KnownOne);
706   } while (!Worklist.empty());
707 }
708 
CodeGenAndEmitDAG()709 void SelectionDAGISel::CodeGenAndEmitDAG() {
710   std::string GroupName;
711   if (TimePassesIsEnabled)
712     GroupName = "Instruction Selection and Scheduling";
713   std::string BlockName;
714   int BlockNumber = -1;
715   (void)BlockNumber;
716   bool MatchFilterBB = false; (void)MatchFilterBB;
717 #ifndef NDEBUG
718   MatchFilterBB = (FilterDAGBasicBlockName.empty() ||
719                    FilterDAGBasicBlockName ==
720                        FuncInfo->MBB->getBasicBlock()->getName().str());
721 #endif
722 #ifdef NDEBUG
723   if (ViewDAGCombine1 || ViewLegalizeTypesDAGs || ViewLegalizeDAGs ||
724       ViewDAGCombine2 || ViewDAGCombineLT || ViewISelDAGs || ViewSchedDAGs ||
725       ViewSUnitDAGs)
726 #endif
727   {
728     BlockNumber = FuncInfo->MBB->getNumber();
729     BlockName =
730         (MF->getName() + ":" + FuncInfo->MBB->getBasicBlock()->getName()).str();
731   }
732   DEBUG(dbgs() << "Initial selection DAG: BB#" << BlockNumber
733         << " '" << BlockName << "'\n"; CurDAG->dump());
734 
735   if (ViewDAGCombine1 && MatchFilterBB)
736     CurDAG->viewGraph("dag-combine1 input for " + BlockName);
737 
738   // Run the DAG combiner in pre-legalize mode.
739   {
740     NamedRegionTimer T("DAG Combining 1", GroupName, TimePassesIsEnabled);
741     CurDAG->Combine(BeforeLegalizeTypes, *AA, OptLevel);
742   }
743 
744   DEBUG(dbgs() << "Optimized lowered selection DAG: BB#" << BlockNumber
745         << " '" << BlockName << "'\n"; CurDAG->dump());
746 
747   // Second step, hack on the DAG until it only uses operations and types that
748   // the target supports.
749   if (ViewLegalizeTypesDAGs && MatchFilterBB)
750     CurDAG->viewGraph("legalize-types input for " + BlockName);
751 
752   bool Changed;
753   {
754     NamedRegionTimer T("Type Legalization", GroupName, TimePassesIsEnabled);
755     Changed = CurDAG->LegalizeTypes();
756   }
757 
758   DEBUG(dbgs() << "Type-legalized selection DAG: BB#" << BlockNumber
759         << " '" << BlockName << "'\n"; CurDAG->dump());
760 
761   CurDAG->NewNodesMustHaveLegalTypes = true;
762 
763   if (Changed) {
764     if (ViewDAGCombineLT && MatchFilterBB)
765       CurDAG->viewGraph("dag-combine-lt input for " + BlockName);
766 
767     // Run the DAG combiner in post-type-legalize mode.
768     {
769       NamedRegionTimer T("DAG Combining after legalize types", GroupName,
770                          TimePassesIsEnabled);
771       CurDAG->Combine(AfterLegalizeTypes, *AA, OptLevel);
772     }
773 
774     DEBUG(dbgs() << "Optimized type-legalized selection DAG: BB#" << BlockNumber
775           << " '" << BlockName << "'\n"; CurDAG->dump());
776 
777   }
778 
779   {
780     NamedRegionTimer T("Vector Legalization", GroupName, TimePassesIsEnabled);
781     Changed = CurDAG->LegalizeVectors();
782   }
783 
784   if (Changed) {
785     {
786       NamedRegionTimer T("Type Legalization 2", GroupName, TimePassesIsEnabled);
787       CurDAG->LegalizeTypes();
788     }
789 
790     if (ViewDAGCombineLT && MatchFilterBB)
791       CurDAG->viewGraph("dag-combine-lv input for " + BlockName);
792 
793     // Run the DAG combiner in post-type-legalize mode.
794     {
795       NamedRegionTimer T("DAG Combining after legalize vectors", GroupName,
796                          TimePassesIsEnabled);
797       CurDAG->Combine(AfterLegalizeVectorOps, *AA, OptLevel);
798     }
799 
800     DEBUG(dbgs() << "Optimized vector-legalized selection DAG: BB#"
801           << BlockNumber << " '" << BlockName << "'\n"; CurDAG->dump());
802   }
803 
804   if (ViewLegalizeDAGs && MatchFilterBB)
805     CurDAG->viewGraph("legalize input for " + BlockName);
806 
807   {
808     NamedRegionTimer T("DAG Legalization", GroupName, TimePassesIsEnabled);
809     CurDAG->Legalize();
810   }
811 
812   DEBUG(dbgs() << "Legalized selection DAG: BB#" << BlockNumber
813         << " '" << BlockName << "'\n"; CurDAG->dump());
814 
815   if (ViewDAGCombine2 && MatchFilterBB)
816     CurDAG->viewGraph("dag-combine2 input for " + BlockName);
817 
818   // Run the DAG combiner in post-legalize mode.
819   {
820     NamedRegionTimer T("DAG Combining 2", GroupName, TimePassesIsEnabled);
821     CurDAG->Combine(AfterLegalizeDAG, *AA, OptLevel);
822   }
823 
824   DEBUG(dbgs() << "Optimized legalized selection DAG: BB#" << BlockNumber
825         << " '" << BlockName << "'\n"; CurDAG->dump());
826 
827   if (OptLevel != CodeGenOpt::None)
828     ComputeLiveOutVRegInfo();
829 
830   if (ViewISelDAGs && MatchFilterBB)
831     CurDAG->viewGraph("isel input for " + BlockName);
832 
833   // Third, instruction select all of the operations to machine code, adding the
834   // code to the MachineBasicBlock.
835   {
836     NamedRegionTimer T("Instruction Selection", GroupName, TimePassesIsEnabled);
837     DoInstructionSelection();
838   }
839 
840   DEBUG(dbgs() << "Selected selection DAG: BB#" << BlockNumber
841         << " '" << BlockName << "'\n"; CurDAG->dump());
842 
843   if (ViewSchedDAGs && MatchFilterBB)
844     CurDAG->viewGraph("scheduler input for " + BlockName);
845 
846   // Schedule machine code.
847   ScheduleDAGSDNodes *Scheduler = CreateScheduler();
848   {
849     NamedRegionTimer T("Instruction Scheduling", GroupName,
850                        TimePassesIsEnabled);
851     Scheduler->Run(CurDAG, FuncInfo->MBB);
852   }
853 
854   if (ViewSUnitDAGs && MatchFilterBB) Scheduler->viewGraph();
855 
856   // Emit machine code to BB.  This can change 'BB' to the last block being
857   // inserted into.
858   MachineBasicBlock *FirstMBB = FuncInfo->MBB, *LastMBB;
859   {
860     NamedRegionTimer T("Instruction Creation", GroupName, TimePassesIsEnabled);
861 
862     // FuncInfo->InsertPt is passed by reference and set to the end of the
863     // scheduled instructions.
864     LastMBB = FuncInfo->MBB = Scheduler->EmitSchedule(FuncInfo->InsertPt);
865   }
866 
867   // If the block was split, make sure we update any references that are used to
868   // update PHI nodes later on.
869   if (FirstMBB != LastMBB)
870     SDB->UpdateSplitBlock(FirstMBB, LastMBB);
871 
872   // Free the scheduler state.
873   {
874     NamedRegionTimer T("Instruction Scheduling Cleanup", GroupName,
875                        TimePassesIsEnabled);
876     delete Scheduler;
877   }
878 
879   // Free the SelectionDAG state, now that we're finished with it.
880   CurDAG->clear();
881 }
882 
883 namespace {
884 /// ISelUpdater - helper class to handle updates of the instruction selection
885 /// graph.
886 class ISelUpdater : public SelectionDAG::DAGUpdateListener {
887   SelectionDAG::allnodes_iterator &ISelPosition;
888 public:
ISelUpdater(SelectionDAG & DAG,SelectionDAG::allnodes_iterator & isp)889   ISelUpdater(SelectionDAG &DAG, SelectionDAG::allnodes_iterator &isp)
890     : SelectionDAG::DAGUpdateListener(DAG), ISelPosition(isp) {}
891 
892   /// NodeDeleted - Handle nodes deleted from the graph. If the node being
893   /// deleted is the current ISelPosition node, update ISelPosition.
894   ///
NodeDeleted(SDNode * N,SDNode * E)895   void NodeDeleted(SDNode *N, SDNode *E) override {
896     if (ISelPosition == SelectionDAG::allnodes_iterator(N))
897       ++ISelPosition;
898   }
899 };
900 } // end anonymous namespace
901 
DoInstructionSelection()902 void SelectionDAGISel::DoInstructionSelection() {
903   DEBUG(dbgs() << "===== Instruction selection begins: BB#"
904         << FuncInfo->MBB->getNumber()
905         << " '" << FuncInfo->MBB->getName() << "'\n");
906 
907   PreprocessISelDAG();
908 
909   // Select target instructions for the DAG.
910   {
911     // Number all nodes with a topological order and set DAGSize.
912     DAGSize = CurDAG->AssignTopologicalOrder();
913 
914     // Create a dummy node (which is not added to allnodes), that adds
915     // a reference to the root node, preventing it from being deleted,
916     // and tracking any changes of the root.
917     HandleSDNode Dummy(CurDAG->getRoot());
918     SelectionDAG::allnodes_iterator ISelPosition (CurDAG->getRoot().getNode());
919     ++ISelPosition;
920 
921     // Make sure that ISelPosition gets properly updated when nodes are deleted
922     // in calls made from this function.
923     ISelUpdater ISU(*CurDAG, ISelPosition);
924 
925     // The AllNodes list is now topological-sorted. Visit the
926     // nodes by starting at the end of the list (the root of the
927     // graph) and preceding back toward the beginning (the entry
928     // node).
929     while (ISelPosition != CurDAG->allnodes_begin()) {
930       SDNode *Node = &*--ISelPosition;
931       // Skip dead nodes. DAGCombiner is expected to eliminate all dead nodes,
932       // but there are currently some corner cases that it misses. Also, this
933       // makes it theoretically possible to disable the DAGCombiner.
934       if (Node->use_empty())
935         continue;
936 
937       SDNode *ResNode = Select(Node);
938 
939       // FIXME: This is pretty gross.  'Select' should be changed to not return
940       // anything at all and this code should be nuked with a tactical strike.
941 
942       // If node should not be replaced, continue with the next one.
943       if (ResNode == Node || Node->getOpcode() == ISD::DELETED_NODE)
944         continue;
945       // Replace node.
946       if (ResNode) {
947         ReplaceUses(Node, ResNode);
948       }
949 
950       // If after the replacement this node is not used any more,
951       // remove this dead node.
952       if (Node->use_empty()) // Don't delete EntryToken, etc.
953         CurDAG->RemoveDeadNode(Node);
954     }
955 
956     CurDAG->setRoot(Dummy.getValue());
957   }
958 
959   DEBUG(dbgs() << "===== Instruction selection ends:\n");
960 
961   PostprocessISelDAG();
962 }
963 
hasExceptionPointerOrCodeUser(const CatchPadInst * CPI)964 static bool hasExceptionPointerOrCodeUser(const CatchPadInst *CPI) {
965   for (const User *U : CPI->users()) {
966     if (const IntrinsicInst *EHPtrCall = dyn_cast<IntrinsicInst>(U)) {
967       Intrinsic::ID IID = EHPtrCall->getIntrinsicID();
968       if (IID == Intrinsic::eh_exceptionpointer ||
969           IID == Intrinsic::eh_exceptioncode)
970         return true;
971     }
972   }
973   return false;
974 }
975 
976 /// PrepareEHLandingPad - Emit an EH_LABEL, set up live-in registers, and
977 /// do other setup for EH landing-pad blocks.
PrepareEHLandingPad()978 bool SelectionDAGISel::PrepareEHLandingPad() {
979   MachineBasicBlock *MBB = FuncInfo->MBB;
980   const Constant *PersonalityFn = FuncInfo->Fn->getPersonalityFn();
981   const BasicBlock *LLVMBB = MBB->getBasicBlock();
982   const TargetRegisterClass *PtrRC =
983       TLI->getRegClassFor(TLI->getPointerTy(CurDAG->getDataLayout()));
984 
985   // Catchpads have one live-in register, which typically holds the exception
986   // pointer or code.
987   if (const auto *CPI = dyn_cast<CatchPadInst>(LLVMBB->getFirstNonPHI())) {
988     if (hasExceptionPointerOrCodeUser(CPI)) {
989       // Get or create the virtual register to hold the pointer or code.  Mark
990       // the live in physreg and copy into the vreg.
991       MCPhysReg EHPhysReg = TLI->getExceptionPointerRegister(PersonalityFn);
992       assert(EHPhysReg && "target lacks exception pointer register");
993       MBB->addLiveIn(EHPhysReg);
994       unsigned VReg = FuncInfo->getCatchPadExceptionPointerVReg(CPI, PtrRC);
995       BuildMI(*MBB, FuncInfo->InsertPt, SDB->getCurDebugLoc(),
996               TII->get(TargetOpcode::COPY), VReg)
997           .addReg(EHPhysReg, RegState::Kill);
998     }
999     return true;
1000   }
1001 
1002   if (!LLVMBB->isLandingPad())
1003     return true;
1004 
1005   // Add a label to mark the beginning of the landing pad.  Deletion of the
1006   // landing pad can thus be detected via the MachineModuleInfo.
1007   MCSymbol *Label = MF->getMMI().addLandingPad(MBB);
1008 
1009   // Assign the call site to the landing pad's begin label.
1010   MF->getMMI().setCallSiteLandingPad(Label, SDB->LPadToCallSiteMap[MBB]);
1011 
1012   const MCInstrDesc &II = TII->get(TargetOpcode::EH_LABEL);
1013   BuildMI(*MBB, FuncInfo->InsertPt, SDB->getCurDebugLoc(), II)
1014     .addSym(Label);
1015 
1016   // Mark exception register as live in.
1017   if (unsigned Reg = TLI->getExceptionPointerRegister(PersonalityFn))
1018     FuncInfo->ExceptionPointerVirtReg = MBB->addLiveIn(Reg, PtrRC);
1019 
1020   // Mark exception selector register as live in.
1021   if (unsigned Reg = TLI->getExceptionSelectorRegister(PersonalityFn))
1022     FuncInfo->ExceptionSelectorVirtReg = MBB->addLiveIn(Reg, PtrRC);
1023 
1024   return true;
1025 }
1026 
1027 /// isFoldedOrDeadInstruction - Return true if the specified instruction is
1028 /// side-effect free and is either dead or folded into a generated instruction.
1029 /// Return false if it needs to be emitted.
isFoldedOrDeadInstruction(const Instruction * I,FunctionLoweringInfo * FuncInfo)1030 static bool isFoldedOrDeadInstruction(const Instruction *I,
1031                                       FunctionLoweringInfo *FuncInfo) {
1032   return !I->mayWriteToMemory() && // Side-effecting instructions aren't folded.
1033          !isa<TerminatorInst>(I) &&    // Terminators aren't folded.
1034          !isa<DbgInfoIntrinsic>(I) &&  // Debug instructions aren't folded.
1035          !I->isEHPad() &&              // EH pad instructions aren't folded.
1036          !FuncInfo->isExportedInst(I); // Exported instrs must be computed.
1037 }
1038 
1039 #ifndef NDEBUG
1040 // Collect per Instruction statistics for fast-isel misses.  Only those
1041 // instructions that cause the bail are accounted for.  It does not account for
1042 // instructions higher in the block.  Thus, summing the per instructions stats
1043 // will not add up to what is reported by NumFastIselFailures.
collectFailStats(const Instruction * I)1044 static void collectFailStats(const Instruction *I) {
1045   switch (I->getOpcode()) {
1046   default: assert (0 && "<Invalid operator> ");
1047 
1048   // Terminators
1049   case Instruction::Ret:         NumFastIselFailRet++; return;
1050   case Instruction::Br:          NumFastIselFailBr++; return;
1051   case Instruction::Switch:      NumFastIselFailSwitch++; return;
1052   case Instruction::IndirectBr:  NumFastIselFailIndirectBr++; return;
1053   case Instruction::Invoke:      NumFastIselFailInvoke++; return;
1054   case Instruction::Resume:      NumFastIselFailResume++; return;
1055   case Instruction::Unreachable: NumFastIselFailUnreachable++; return;
1056 
1057   // Standard binary operators...
1058   case Instruction::Add:  NumFastIselFailAdd++; return;
1059   case Instruction::FAdd: NumFastIselFailFAdd++; return;
1060   case Instruction::Sub:  NumFastIselFailSub++; return;
1061   case Instruction::FSub: NumFastIselFailFSub++; return;
1062   case Instruction::Mul:  NumFastIselFailMul++; return;
1063   case Instruction::FMul: NumFastIselFailFMul++; return;
1064   case Instruction::UDiv: NumFastIselFailUDiv++; return;
1065   case Instruction::SDiv: NumFastIselFailSDiv++; return;
1066   case Instruction::FDiv: NumFastIselFailFDiv++; return;
1067   case Instruction::URem: NumFastIselFailURem++; return;
1068   case Instruction::SRem: NumFastIselFailSRem++; return;
1069   case Instruction::FRem: NumFastIselFailFRem++; return;
1070 
1071   // Logical operators...
1072   case Instruction::And: NumFastIselFailAnd++; return;
1073   case Instruction::Or:  NumFastIselFailOr++; return;
1074   case Instruction::Xor: NumFastIselFailXor++; return;
1075 
1076   // Memory instructions...
1077   case Instruction::Alloca:        NumFastIselFailAlloca++; return;
1078   case Instruction::Load:          NumFastIselFailLoad++; return;
1079   case Instruction::Store:         NumFastIselFailStore++; return;
1080   case Instruction::AtomicCmpXchg: NumFastIselFailAtomicCmpXchg++; return;
1081   case Instruction::AtomicRMW:     NumFastIselFailAtomicRMW++; return;
1082   case Instruction::Fence:         NumFastIselFailFence++; return;
1083   case Instruction::GetElementPtr: NumFastIselFailGetElementPtr++; return;
1084 
1085   // Convert instructions...
1086   case Instruction::Trunc:    NumFastIselFailTrunc++; return;
1087   case Instruction::ZExt:     NumFastIselFailZExt++; return;
1088   case Instruction::SExt:     NumFastIselFailSExt++; return;
1089   case Instruction::FPTrunc:  NumFastIselFailFPTrunc++; return;
1090   case Instruction::FPExt:    NumFastIselFailFPExt++; return;
1091   case Instruction::FPToUI:   NumFastIselFailFPToUI++; return;
1092   case Instruction::FPToSI:   NumFastIselFailFPToSI++; return;
1093   case Instruction::UIToFP:   NumFastIselFailUIToFP++; return;
1094   case Instruction::SIToFP:   NumFastIselFailSIToFP++; return;
1095   case Instruction::IntToPtr: NumFastIselFailIntToPtr++; return;
1096   case Instruction::PtrToInt: NumFastIselFailPtrToInt++; return;
1097   case Instruction::BitCast:  NumFastIselFailBitCast++; return;
1098 
1099   // Other instructions...
1100   case Instruction::ICmp:           NumFastIselFailICmp++; return;
1101   case Instruction::FCmp:           NumFastIselFailFCmp++; return;
1102   case Instruction::PHI:            NumFastIselFailPHI++; return;
1103   case Instruction::Select:         NumFastIselFailSelect++; return;
1104   case Instruction::Call: {
1105     if (auto const *Intrinsic = dyn_cast<IntrinsicInst>(I)) {
1106       switch (Intrinsic->getIntrinsicID()) {
1107       default:
1108         NumFastIselFailIntrinsicCall++; return;
1109       case Intrinsic::sadd_with_overflow:
1110         NumFastIselFailSAddWithOverflow++; return;
1111       case Intrinsic::uadd_with_overflow:
1112         NumFastIselFailUAddWithOverflow++; return;
1113       case Intrinsic::ssub_with_overflow:
1114         NumFastIselFailSSubWithOverflow++; return;
1115       case Intrinsic::usub_with_overflow:
1116         NumFastIselFailUSubWithOverflow++; return;
1117       case Intrinsic::smul_with_overflow:
1118         NumFastIselFailSMulWithOverflow++; return;
1119       case Intrinsic::umul_with_overflow:
1120         NumFastIselFailUMulWithOverflow++; return;
1121       case Intrinsic::frameaddress:
1122         NumFastIselFailFrameaddress++; return;
1123       case Intrinsic::sqrt:
1124           NumFastIselFailSqrt++; return;
1125       case Intrinsic::experimental_stackmap:
1126         NumFastIselFailStackMap++; return;
1127       case Intrinsic::experimental_patchpoint_void: // fall-through
1128       case Intrinsic::experimental_patchpoint_i64:
1129         NumFastIselFailPatchPoint++; return;
1130       }
1131     }
1132     NumFastIselFailCall++;
1133     return;
1134   }
1135   case Instruction::Shl:            NumFastIselFailShl++; return;
1136   case Instruction::LShr:           NumFastIselFailLShr++; return;
1137   case Instruction::AShr:           NumFastIselFailAShr++; return;
1138   case Instruction::VAArg:          NumFastIselFailVAArg++; return;
1139   case Instruction::ExtractElement: NumFastIselFailExtractElement++; return;
1140   case Instruction::InsertElement:  NumFastIselFailInsertElement++; return;
1141   case Instruction::ShuffleVector:  NumFastIselFailShuffleVector++; return;
1142   case Instruction::ExtractValue:   NumFastIselFailExtractValue++; return;
1143   case Instruction::InsertValue:    NumFastIselFailInsertValue++; return;
1144   case Instruction::LandingPad:     NumFastIselFailLandingPad++; return;
1145   }
1146 }
1147 #endif
1148 
SelectAllBasicBlocks(const Function & Fn)1149 void SelectionDAGISel::SelectAllBasicBlocks(const Function &Fn) {
1150   // Initialize the Fast-ISel state, if needed.
1151   FastISel *FastIS = nullptr;
1152   if (TM.Options.EnableFastISel)
1153     FastIS = TLI->createFastISel(*FuncInfo, LibInfo);
1154 
1155   // Iterate over all basic blocks in the function.
1156   ReversePostOrderTraversal<const Function*> RPOT(&Fn);
1157   for (ReversePostOrderTraversal<const Function*>::rpo_iterator
1158        I = RPOT.begin(), E = RPOT.end(); I != E; ++I) {
1159     const BasicBlock *LLVMBB = *I;
1160 
1161     if (OptLevel != CodeGenOpt::None) {
1162       bool AllPredsVisited = true;
1163       for (const_pred_iterator PI = pred_begin(LLVMBB), PE = pred_end(LLVMBB);
1164            PI != PE; ++PI) {
1165         if (!FuncInfo->VisitedBBs.count(*PI)) {
1166           AllPredsVisited = false;
1167           break;
1168         }
1169       }
1170 
1171       if (AllPredsVisited) {
1172         for (BasicBlock::const_iterator I = LLVMBB->begin();
1173              const PHINode *PN = dyn_cast<PHINode>(I); ++I)
1174           FuncInfo->ComputePHILiveOutRegInfo(PN);
1175       } else {
1176         for (BasicBlock::const_iterator I = LLVMBB->begin();
1177              const PHINode *PN = dyn_cast<PHINode>(I); ++I)
1178           FuncInfo->InvalidatePHILiveOutRegInfo(PN);
1179       }
1180 
1181       FuncInfo->VisitedBBs.insert(LLVMBB);
1182     }
1183 
1184     BasicBlock::const_iterator const Begin =
1185         LLVMBB->getFirstNonPHI()->getIterator();
1186     BasicBlock::const_iterator const End = LLVMBB->end();
1187     BasicBlock::const_iterator BI = End;
1188 
1189     FuncInfo->MBB = FuncInfo->MBBMap[LLVMBB];
1190     if (!FuncInfo->MBB)
1191       continue; // Some blocks like catchpads have no code or MBB.
1192     FuncInfo->InsertPt = FuncInfo->MBB->getFirstNonPHI();
1193 
1194     // Setup an EH landing-pad block.
1195     FuncInfo->ExceptionPointerVirtReg = 0;
1196     FuncInfo->ExceptionSelectorVirtReg = 0;
1197     if (LLVMBB->isEHPad())
1198       if (!PrepareEHLandingPad())
1199         continue;
1200 
1201     // Before doing SelectionDAG ISel, see if FastISel has been requested.
1202     if (FastIS) {
1203       FastIS->startNewBlock();
1204 
1205       // Emit code for any incoming arguments. This must happen before
1206       // beginning FastISel on the entry block.
1207       if (LLVMBB == &Fn.getEntryBlock()) {
1208         ++NumEntryBlocks;
1209 
1210         // Lower any arguments needed in this block if this is the entry block.
1211         if (!FastIS->lowerArguments()) {
1212           // Fast isel failed to lower these arguments
1213           ++NumFastIselFailLowerArguments;
1214           if (EnableFastISelAbort > 1)
1215             report_fatal_error("FastISel didn't lower all arguments");
1216 
1217           // Use SelectionDAG argument lowering
1218           LowerArguments(Fn);
1219           CurDAG->setRoot(SDB->getControlRoot());
1220           SDB->clear();
1221           CodeGenAndEmitDAG();
1222         }
1223 
1224         // If we inserted any instructions at the beginning, make a note of
1225         // where they are, so we can be sure to emit subsequent instructions
1226         // after them.
1227         if (FuncInfo->InsertPt != FuncInfo->MBB->begin())
1228           FastIS->setLastLocalValue(std::prev(FuncInfo->InsertPt));
1229         else
1230           FastIS->setLastLocalValue(nullptr);
1231       }
1232 
1233       unsigned NumFastIselRemaining = std::distance(Begin, End);
1234       // Do FastISel on as many instructions as possible.
1235       for (; BI != Begin; --BI) {
1236         const Instruction *Inst = &*std::prev(BI);
1237 
1238         // If we no longer require this instruction, skip it.
1239         if (isFoldedOrDeadInstruction(Inst, FuncInfo)) {
1240           --NumFastIselRemaining;
1241           continue;
1242         }
1243 
1244         // Bottom-up: reset the insert pos at the top, after any local-value
1245         // instructions.
1246         FastIS->recomputeInsertPt();
1247 
1248         // Try to select the instruction with FastISel.
1249         if (FastIS->selectInstruction(Inst)) {
1250           --NumFastIselRemaining;
1251           ++NumFastIselSuccess;
1252           // If fast isel succeeded, skip over all the folded instructions, and
1253           // then see if there is a load right before the selected instructions.
1254           // Try to fold the load if so.
1255           const Instruction *BeforeInst = Inst;
1256           while (BeforeInst != &*Begin) {
1257             BeforeInst = &*std::prev(BasicBlock::const_iterator(BeforeInst));
1258             if (!isFoldedOrDeadInstruction(BeforeInst, FuncInfo))
1259               break;
1260           }
1261           if (BeforeInst != Inst && isa<LoadInst>(BeforeInst) &&
1262               BeforeInst->hasOneUse() &&
1263               FastIS->tryToFoldLoad(cast<LoadInst>(BeforeInst), Inst)) {
1264             // If we succeeded, don't re-select the load.
1265             BI = std::next(BasicBlock::const_iterator(BeforeInst));
1266             --NumFastIselRemaining;
1267             ++NumFastIselSuccess;
1268           }
1269           continue;
1270         }
1271 
1272 #ifndef NDEBUG
1273         if (EnableFastISelVerbose2)
1274           collectFailStats(Inst);
1275 #endif
1276 
1277         // Then handle certain instructions as single-LLVM-Instruction blocks.
1278         if (isa<CallInst>(Inst)) {
1279 
1280           if (EnableFastISelVerbose || EnableFastISelAbort) {
1281             dbgs() << "FastISel missed call: ";
1282             Inst->dump();
1283           }
1284           if (EnableFastISelAbort > 2)
1285             // FastISel selector couldn't handle something and bailed.
1286             // For the purpose of debugging, just abort.
1287             report_fatal_error("FastISel didn't select the entire block");
1288 
1289           if (!Inst->getType()->isVoidTy() && !Inst->getType()->isTokenTy() &&
1290               !Inst->use_empty()) {
1291             unsigned &R = FuncInfo->ValueMap[Inst];
1292             if (!R)
1293               R = FuncInfo->CreateRegs(Inst->getType());
1294           }
1295 
1296           bool HadTailCall = false;
1297           MachineBasicBlock::iterator SavedInsertPt = FuncInfo->InsertPt;
1298           SelectBasicBlock(Inst->getIterator(), BI, HadTailCall);
1299 
1300           // If the call was emitted as a tail call, we're done with the block.
1301           // We also need to delete any previously emitted instructions.
1302           if (HadTailCall) {
1303             FastIS->removeDeadCode(SavedInsertPt, FuncInfo->MBB->end());
1304             --BI;
1305             break;
1306           }
1307 
1308           // Recompute NumFastIselRemaining as Selection DAG instruction
1309           // selection may have handled the call, input args, etc.
1310           unsigned RemainingNow = std::distance(Begin, BI);
1311           NumFastIselFailures += NumFastIselRemaining - RemainingNow;
1312           NumFastIselRemaining = RemainingNow;
1313           continue;
1314         }
1315 
1316         bool ShouldAbort = EnableFastISelAbort;
1317         if (EnableFastISelVerbose || EnableFastISelAbort) {
1318           if (isa<TerminatorInst>(Inst)) {
1319             // Use a different message for terminator misses.
1320             dbgs() << "FastISel missed terminator: ";
1321             // Don't abort unless for terminator unless the level is really high
1322             ShouldAbort = (EnableFastISelAbort > 2);
1323           } else {
1324             dbgs() << "FastISel miss: ";
1325           }
1326           Inst->dump();
1327         }
1328         if (ShouldAbort)
1329           // FastISel selector couldn't handle something and bailed.
1330           // For the purpose of debugging, just abort.
1331           report_fatal_error("FastISel didn't select the entire block");
1332 
1333         NumFastIselFailures += NumFastIselRemaining;
1334         break;
1335       }
1336 
1337       FastIS->recomputeInsertPt();
1338     } else {
1339       // Lower any arguments needed in this block if this is the entry block.
1340       if (LLVMBB == &Fn.getEntryBlock()) {
1341         ++NumEntryBlocks;
1342         LowerArguments(Fn);
1343       }
1344     }
1345 
1346     if (Begin != BI)
1347       ++NumDAGBlocks;
1348     else
1349       ++NumFastIselBlocks;
1350 
1351     if (Begin != BI) {
1352       // Run SelectionDAG instruction selection on the remainder of the block
1353       // not handled by FastISel. If FastISel is not run, this is the entire
1354       // block.
1355       bool HadTailCall;
1356       SelectBasicBlock(Begin, BI, HadTailCall);
1357     }
1358 
1359     FinishBasicBlock();
1360     FuncInfo->PHINodesToUpdate.clear();
1361   }
1362 
1363   delete FastIS;
1364   SDB->clearDanglingDebugInfo();
1365   SDB->SPDescriptor.resetPerFunctionState();
1366 }
1367 
1368 /// Given that the input MI is before a partial terminator sequence TSeq, return
1369 /// true if M + TSeq also a partial terminator sequence.
1370 ///
1371 /// A Terminator sequence is a sequence of MachineInstrs which at this point in
1372 /// lowering copy vregs into physical registers, which are then passed into
1373 /// terminator instructors so we can satisfy ABI constraints. A partial
1374 /// terminator sequence is an improper subset of a terminator sequence (i.e. it
1375 /// may be the whole terminator sequence).
MIIsInTerminatorSequence(const MachineInstr * MI)1376 static bool MIIsInTerminatorSequence(const MachineInstr *MI) {
1377   // If we do not have a copy or an implicit def, we return true if and only if
1378   // MI is a debug value.
1379   if (!MI->isCopy() && !MI->isImplicitDef())
1380     // Sometimes DBG_VALUE MI sneak in between the copies from the vregs to the
1381     // physical registers if there is debug info associated with the terminator
1382     // of our mbb. We want to include said debug info in our terminator
1383     // sequence, so we return true in that case.
1384     return MI->isDebugValue();
1385 
1386   // We have left the terminator sequence if we are not doing one of the
1387   // following:
1388   //
1389   // 1. Copying a vreg into a physical register.
1390   // 2. Copying a vreg into a vreg.
1391   // 3. Defining a register via an implicit def.
1392 
1393   // OPI should always be a register definition...
1394   MachineInstr::const_mop_iterator OPI = MI->operands_begin();
1395   if (!OPI->isReg() || !OPI->isDef())
1396     return false;
1397 
1398   // Defining any register via an implicit def is always ok.
1399   if (MI->isImplicitDef())
1400     return true;
1401 
1402   // Grab the copy source...
1403   MachineInstr::const_mop_iterator OPI2 = OPI;
1404   ++OPI2;
1405   assert(OPI2 != MI->operands_end()
1406          && "Should have a copy implying we should have 2 arguments.");
1407 
1408   // Make sure that the copy dest is not a vreg when the copy source is a
1409   // physical register.
1410   if (!OPI2->isReg() ||
1411       (!TargetRegisterInfo::isPhysicalRegister(OPI->getReg()) &&
1412        TargetRegisterInfo::isPhysicalRegister(OPI2->getReg())))
1413     return false;
1414 
1415   return true;
1416 }
1417 
1418 /// Find the split point at which to splice the end of BB into its success stack
1419 /// protector check machine basic block.
1420 ///
1421 /// On many platforms, due to ABI constraints, terminators, even before register
1422 /// allocation, use physical registers. This creates an issue for us since
1423 /// physical registers at this point can not travel across basic
1424 /// blocks. Luckily, selectiondag always moves physical registers into vregs
1425 /// when they enter functions and moves them through a sequence of copies back
1426 /// into the physical registers right before the terminator creating a
1427 /// ``Terminator Sequence''. This function is searching for the beginning of the
1428 /// terminator sequence so that we can ensure that we splice off not just the
1429 /// terminator, but additionally the copies that move the vregs into the
1430 /// physical registers.
1431 static MachineBasicBlock::iterator
FindSplitPointForStackProtector(MachineBasicBlock * BB,DebugLoc DL)1432 FindSplitPointForStackProtector(MachineBasicBlock *BB, DebugLoc DL) {
1433   MachineBasicBlock::iterator SplitPoint = BB->getFirstTerminator();
1434   //
1435   if (SplitPoint == BB->begin())
1436     return SplitPoint;
1437 
1438   MachineBasicBlock::iterator Start = BB->begin();
1439   MachineBasicBlock::iterator Previous = SplitPoint;
1440   --Previous;
1441 
1442   while (MIIsInTerminatorSequence(Previous)) {
1443     SplitPoint = Previous;
1444     if (Previous == Start)
1445       break;
1446     --Previous;
1447   }
1448 
1449   return SplitPoint;
1450 }
1451 
1452 void
FinishBasicBlock()1453 SelectionDAGISel::FinishBasicBlock() {
1454 
1455   DEBUG(dbgs() << "Total amount of phi nodes to update: "
1456                << FuncInfo->PHINodesToUpdate.size() << "\n";
1457         for (unsigned i = 0, e = FuncInfo->PHINodesToUpdate.size(); i != e; ++i)
1458           dbgs() << "Node " << i << " : ("
1459                  << FuncInfo->PHINodesToUpdate[i].first
1460                  << ", " << FuncInfo->PHINodesToUpdate[i].second << ")\n");
1461 
1462   // Next, now that we know what the last MBB the LLVM BB expanded is, update
1463   // PHI nodes in successors.
1464   for (unsigned i = 0, e = FuncInfo->PHINodesToUpdate.size(); i != e; ++i) {
1465     MachineInstrBuilder PHI(*MF, FuncInfo->PHINodesToUpdate[i].first);
1466     assert(PHI->isPHI() &&
1467            "This is not a machine PHI node that we are updating!");
1468     if (!FuncInfo->MBB->isSuccessor(PHI->getParent()))
1469       continue;
1470     PHI.addReg(FuncInfo->PHINodesToUpdate[i].second).addMBB(FuncInfo->MBB);
1471   }
1472 
1473   // Handle stack protector.
1474   if (SDB->SPDescriptor.shouldEmitStackProtector()) {
1475     MachineBasicBlock *ParentMBB = SDB->SPDescriptor.getParentMBB();
1476     MachineBasicBlock *SuccessMBB = SDB->SPDescriptor.getSuccessMBB();
1477 
1478     // Find the split point to split the parent mbb. At the same time copy all
1479     // physical registers used in the tail of parent mbb into virtual registers
1480     // before the split point and back into physical registers after the split
1481     // point. This prevents us needing to deal with Live-ins and many other
1482     // register allocation issues caused by us splitting the parent mbb. The
1483     // register allocator will clean up said virtual copies later on.
1484     MachineBasicBlock::iterator SplitPoint =
1485       FindSplitPointForStackProtector(ParentMBB, SDB->getCurDebugLoc());
1486 
1487     // Splice the terminator of ParentMBB into SuccessMBB.
1488     SuccessMBB->splice(SuccessMBB->end(), ParentMBB,
1489                        SplitPoint,
1490                        ParentMBB->end());
1491 
1492     // Add compare/jump on neq/jump to the parent BB.
1493     FuncInfo->MBB = ParentMBB;
1494     FuncInfo->InsertPt = ParentMBB->end();
1495     SDB->visitSPDescriptorParent(SDB->SPDescriptor, ParentMBB);
1496     CurDAG->setRoot(SDB->getRoot());
1497     SDB->clear();
1498     CodeGenAndEmitDAG();
1499 
1500     // CodeGen Failure MBB if we have not codegened it yet.
1501     MachineBasicBlock *FailureMBB = SDB->SPDescriptor.getFailureMBB();
1502     if (!FailureMBB->size()) {
1503       FuncInfo->MBB = FailureMBB;
1504       FuncInfo->InsertPt = FailureMBB->end();
1505       SDB->visitSPDescriptorFailure(SDB->SPDescriptor);
1506       CurDAG->setRoot(SDB->getRoot());
1507       SDB->clear();
1508       CodeGenAndEmitDAG();
1509     }
1510 
1511     // Clear the Per-BB State.
1512     SDB->SPDescriptor.resetPerBBState();
1513   }
1514 
1515   for (unsigned i = 0, e = SDB->BitTestCases.size(); i != e; ++i) {
1516     // Lower header first, if it wasn't already lowered
1517     if (!SDB->BitTestCases[i].Emitted) {
1518       // Set the current basic block to the mbb we wish to insert the code into
1519       FuncInfo->MBB = SDB->BitTestCases[i].Parent;
1520       FuncInfo->InsertPt = FuncInfo->MBB->end();
1521       // Emit the code
1522       SDB->visitBitTestHeader(SDB->BitTestCases[i], FuncInfo->MBB);
1523       CurDAG->setRoot(SDB->getRoot());
1524       SDB->clear();
1525       CodeGenAndEmitDAG();
1526     }
1527 
1528     BranchProbability UnhandledProb = SDB->BitTestCases[i].Prob;
1529     for (unsigned j = 0, ej = SDB->BitTestCases[i].Cases.size(); j != ej; ++j) {
1530       UnhandledProb -= SDB->BitTestCases[i].Cases[j].ExtraProb;
1531       // Set the current basic block to the mbb we wish to insert the code into
1532       FuncInfo->MBB = SDB->BitTestCases[i].Cases[j].ThisBB;
1533       FuncInfo->InsertPt = FuncInfo->MBB->end();
1534       // Emit the code
1535 
1536       // If all cases cover a contiguous range, it is not necessary to jump to
1537       // the default block after the last bit test fails. This is because the
1538       // range check during bit test header creation has guaranteed that every
1539       // case here doesn't go outside the range.
1540       MachineBasicBlock *NextMBB;
1541       if (SDB->BitTestCases[i].ContiguousRange && j + 2 == ej)
1542         NextMBB = SDB->BitTestCases[i].Cases[j + 1].TargetBB;
1543       else if (j + 1 != ej)
1544         NextMBB = SDB->BitTestCases[i].Cases[j + 1].ThisBB;
1545       else
1546         NextMBB = SDB->BitTestCases[i].Default;
1547 
1548       SDB->visitBitTestCase(SDB->BitTestCases[i],
1549                             NextMBB,
1550                             UnhandledProb,
1551                             SDB->BitTestCases[i].Reg,
1552                             SDB->BitTestCases[i].Cases[j],
1553                             FuncInfo->MBB);
1554 
1555       CurDAG->setRoot(SDB->getRoot());
1556       SDB->clear();
1557       CodeGenAndEmitDAG();
1558 
1559       if (SDB->BitTestCases[i].ContiguousRange && j + 2 == ej)
1560         break;
1561     }
1562 
1563     // Update PHI Nodes
1564     for (unsigned pi = 0, pe = FuncInfo->PHINodesToUpdate.size();
1565          pi != pe; ++pi) {
1566       MachineInstrBuilder PHI(*MF, FuncInfo->PHINodesToUpdate[pi].first);
1567       MachineBasicBlock *PHIBB = PHI->getParent();
1568       assert(PHI->isPHI() &&
1569              "This is not a machine PHI node that we are updating!");
1570       // This is "default" BB. We have two jumps to it. From "header" BB and
1571       // from last "case" BB.
1572       if (PHIBB == SDB->BitTestCases[i].Default)
1573         PHI.addReg(FuncInfo->PHINodesToUpdate[pi].second)
1574            .addMBB(SDB->BitTestCases[i].Parent)
1575            .addReg(FuncInfo->PHINodesToUpdate[pi].second)
1576            .addMBB(SDB->BitTestCases[i].Cases.back().ThisBB);
1577       // One of "cases" BB.
1578       for (unsigned j = 0, ej = SDB->BitTestCases[i].Cases.size();
1579            j != ej; ++j) {
1580         MachineBasicBlock* cBB = SDB->BitTestCases[i].Cases[j].ThisBB;
1581         if (cBB->isSuccessor(PHIBB))
1582           PHI.addReg(FuncInfo->PHINodesToUpdate[pi].second).addMBB(cBB);
1583       }
1584     }
1585   }
1586   SDB->BitTestCases.clear();
1587 
1588   // If the JumpTable record is filled in, then we need to emit a jump table.
1589   // Updating the PHI nodes is tricky in this case, since we need to determine
1590   // whether the PHI is a successor of the range check MBB or the jump table MBB
1591   for (unsigned i = 0, e = SDB->JTCases.size(); i != e; ++i) {
1592     // Lower header first, if it wasn't already lowered
1593     if (!SDB->JTCases[i].first.Emitted) {
1594       // Set the current basic block to the mbb we wish to insert the code into
1595       FuncInfo->MBB = SDB->JTCases[i].first.HeaderBB;
1596       FuncInfo->InsertPt = FuncInfo->MBB->end();
1597       // Emit the code
1598       SDB->visitJumpTableHeader(SDB->JTCases[i].second, SDB->JTCases[i].first,
1599                                 FuncInfo->MBB);
1600       CurDAG->setRoot(SDB->getRoot());
1601       SDB->clear();
1602       CodeGenAndEmitDAG();
1603     }
1604 
1605     // Set the current basic block to the mbb we wish to insert the code into
1606     FuncInfo->MBB = SDB->JTCases[i].second.MBB;
1607     FuncInfo->InsertPt = FuncInfo->MBB->end();
1608     // Emit the code
1609     SDB->visitJumpTable(SDB->JTCases[i].second);
1610     CurDAG->setRoot(SDB->getRoot());
1611     SDB->clear();
1612     CodeGenAndEmitDAG();
1613 
1614     // Update PHI Nodes
1615     for (unsigned pi = 0, pe = FuncInfo->PHINodesToUpdate.size();
1616          pi != pe; ++pi) {
1617       MachineInstrBuilder PHI(*MF, FuncInfo->PHINodesToUpdate[pi].first);
1618       MachineBasicBlock *PHIBB = PHI->getParent();
1619       assert(PHI->isPHI() &&
1620              "This is not a machine PHI node that we are updating!");
1621       // "default" BB. We can go there only from header BB.
1622       if (PHIBB == SDB->JTCases[i].second.Default)
1623         PHI.addReg(FuncInfo->PHINodesToUpdate[pi].second)
1624            .addMBB(SDB->JTCases[i].first.HeaderBB);
1625       // JT BB. Just iterate over successors here
1626       if (FuncInfo->MBB->isSuccessor(PHIBB))
1627         PHI.addReg(FuncInfo->PHINodesToUpdate[pi].second).addMBB(FuncInfo->MBB);
1628     }
1629   }
1630   SDB->JTCases.clear();
1631 
1632   // If we generated any switch lowering information, build and codegen any
1633   // additional DAGs necessary.
1634   for (unsigned i = 0, e = SDB->SwitchCases.size(); i != e; ++i) {
1635     // Set the current basic block to the mbb we wish to insert the code into
1636     FuncInfo->MBB = SDB->SwitchCases[i].ThisBB;
1637     FuncInfo->InsertPt = FuncInfo->MBB->end();
1638 
1639     // Determine the unique successors.
1640     SmallVector<MachineBasicBlock *, 2> Succs;
1641     Succs.push_back(SDB->SwitchCases[i].TrueBB);
1642     if (SDB->SwitchCases[i].TrueBB != SDB->SwitchCases[i].FalseBB)
1643       Succs.push_back(SDB->SwitchCases[i].FalseBB);
1644 
1645     // Emit the code. Note that this could result in FuncInfo->MBB being split.
1646     SDB->visitSwitchCase(SDB->SwitchCases[i], FuncInfo->MBB);
1647     CurDAG->setRoot(SDB->getRoot());
1648     SDB->clear();
1649     CodeGenAndEmitDAG();
1650 
1651     // Remember the last block, now that any splitting is done, for use in
1652     // populating PHI nodes in successors.
1653     MachineBasicBlock *ThisBB = FuncInfo->MBB;
1654 
1655     // Handle any PHI nodes in successors of this chunk, as if we were coming
1656     // from the original BB before switch expansion.  Note that PHI nodes can
1657     // occur multiple times in PHINodesToUpdate.  We have to be very careful to
1658     // handle them the right number of times.
1659     for (unsigned i = 0, e = Succs.size(); i != e; ++i) {
1660       FuncInfo->MBB = Succs[i];
1661       FuncInfo->InsertPt = FuncInfo->MBB->end();
1662       // FuncInfo->MBB may have been removed from the CFG if a branch was
1663       // constant folded.
1664       if (ThisBB->isSuccessor(FuncInfo->MBB)) {
1665         for (MachineBasicBlock::iterator
1666              MBBI = FuncInfo->MBB->begin(), MBBE = FuncInfo->MBB->end();
1667              MBBI != MBBE && MBBI->isPHI(); ++MBBI) {
1668           MachineInstrBuilder PHI(*MF, MBBI);
1669           // This value for this PHI node is recorded in PHINodesToUpdate.
1670           for (unsigned pn = 0; ; ++pn) {
1671             assert(pn != FuncInfo->PHINodesToUpdate.size() &&
1672                    "Didn't find PHI entry!");
1673             if (FuncInfo->PHINodesToUpdate[pn].first == PHI) {
1674               PHI.addReg(FuncInfo->PHINodesToUpdate[pn].second).addMBB(ThisBB);
1675               break;
1676             }
1677           }
1678         }
1679       }
1680     }
1681   }
1682   SDB->SwitchCases.clear();
1683 }
1684 
1685 
1686 /// Create the scheduler. If a specific scheduler was specified
1687 /// via the SchedulerRegistry, use it, otherwise select the
1688 /// one preferred by the target.
1689 ///
CreateScheduler()1690 ScheduleDAGSDNodes *SelectionDAGISel::CreateScheduler() {
1691   return ISHeuristic(this, OptLevel);
1692 }
1693 
1694 //===----------------------------------------------------------------------===//
1695 // Helper functions used by the generated instruction selector.
1696 //===----------------------------------------------------------------------===//
1697 // Calls to these methods are generated by tblgen.
1698 
1699 /// CheckAndMask - The isel is trying to match something like (and X, 255).  If
1700 /// the dag combiner simplified the 255, we still want to match.  RHS is the
1701 /// actual value in the DAG on the RHS of an AND, and DesiredMaskS is the value
1702 /// specified in the .td file (e.g. 255).
CheckAndMask(SDValue LHS,ConstantSDNode * RHS,int64_t DesiredMaskS) const1703 bool SelectionDAGISel::CheckAndMask(SDValue LHS, ConstantSDNode *RHS,
1704                                     int64_t DesiredMaskS) const {
1705   const APInt &ActualMask = RHS->getAPIntValue();
1706   const APInt &DesiredMask = APInt(LHS.getValueSizeInBits(), DesiredMaskS);
1707 
1708   // If the actual mask exactly matches, success!
1709   if (ActualMask == DesiredMask)
1710     return true;
1711 
1712   // If the actual AND mask is allowing unallowed bits, this doesn't match.
1713   if (ActualMask.intersects(~DesiredMask))
1714     return false;
1715 
1716   // Otherwise, the DAG Combiner may have proven that the value coming in is
1717   // either already zero or is not demanded.  Check for known zero input bits.
1718   APInt NeededMask = DesiredMask & ~ActualMask;
1719   if (CurDAG->MaskedValueIsZero(LHS, NeededMask))
1720     return true;
1721 
1722   // TODO: check to see if missing bits are just not demanded.
1723 
1724   // Otherwise, this pattern doesn't match.
1725   return false;
1726 }
1727 
1728 /// CheckOrMask - The isel is trying to match something like (or X, 255).  If
1729 /// the dag combiner simplified the 255, we still want to match.  RHS is the
1730 /// actual value in the DAG on the RHS of an OR, and DesiredMaskS is the value
1731 /// specified in the .td file (e.g. 255).
CheckOrMask(SDValue LHS,ConstantSDNode * RHS,int64_t DesiredMaskS) const1732 bool SelectionDAGISel::CheckOrMask(SDValue LHS, ConstantSDNode *RHS,
1733                                    int64_t DesiredMaskS) const {
1734   const APInt &ActualMask = RHS->getAPIntValue();
1735   const APInt &DesiredMask = APInt(LHS.getValueSizeInBits(), DesiredMaskS);
1736 
1737   // If the actual mask exactly matches, success!
1738   if (ActualMask == DesiredMask)
1739     return true;
1740 
1741   // If the actual AND mask is allowing unallowed bits, this doesn't match.
1742   if (ActualMask.intersects(~DesiredMask))
1743     return false;
1744 
1745   // Otherwise, the DAG Combiner may have proven that the value coming in is
1746   // either already zero or is not demanded.  Check for known zero input bits.
1747   APInt NeededMask = DesiredMask & ~ActualMask;
1748 
1749   APInt KnownZero, KnownOne;
1750   CurDAG->computeKnownBits(LHS, KnownZero, KnownOne);
1751 
1752   // If all the missing bits in the or are already known to be set, match!
1753   if ((NeededMask & KnownOne) == NeededMask)
1754     return true;
1755 
1756   // TODO: check to see if missing bits are just not demanded.
1757 
1758   // Otherwise, this pattern doesn't match.
1759   return false;
1760 }
1761 
1762 /// SelectInlineAsmMemoryOperands - Calls to this are automatically generated
1763 /// by tblgen.  Others should not call it.
1764 void SelectionDAGISel::
SelectInlineAsmMemoryOperands(std::vector<SDValue> & Ops,SDLoc DL)1765 SelectInlineAsmMemoryOperands(std::vector<SDValue> &Ops, SDLoc DL) {
1766   std::vector<SDValue> InOps;
1767   std::swap(InOps, Ops);
1768 
1769   Ops.push_back(InOps[InlineAsm::Op_InputChain]); // 0
1770   Ops.push_back(InOps[InlineAsm::Op_AsmString]);  // 1
1771   Ops.push_back(InOps[InlineAsm::Op_MDNode]);     // 2, !srcloc
1772   Ops.push_back(InOps[InlineAsm::Op_ExtraInfo]);  // 3 (SideEffect, AlignStack)
1773 
1774   unsigned i = InlineAsm::Op_FirstOperand, e = InOps.size();
1775   if (InOps[e-1].getValueType() == MVT::Glue)
1776     --e;  // Don't process a glue operand if it is here.
1777 
1778   while (i != e) {
1779     unsigned Flags = cast<ConstantSDNode>(InOps[i])->getZExtValue();
1780     if (!InlineAsm::isMemKind(Flags)) {
1781       // Just skip over this operand, copying the operands verbatim.
1782       Ops.insert(Ops.end(), InOps.begin()+i,
1783                  InOps.begin()+i+InlineAsm::getNumOperandRegisters(Flags) + 1);
1784       i += InlineAsm::getNumOperandRegisters(Flags) + 1;
1785     } else {
1786       assert(InlineAsm::getNumOperandRegisters(Flags) == 1 &&
1787              "Memory operand with multiple values?");
1788 
1789       unsigned TiedToOperand;
1790       if (InlineAsm::isUseOperandTiedToDef(Flags, TiedToOperand)) {
1791         // We need the constraint ID from the operand this is tied to.
1792         unsigned CurOp = InlineAsm::Op_FirstOperand;
1793         Flags = cast<ConstantSDNode>(InOps[CurOp])->getZExtValue();
1794         for (; TiedToOperand; --TiedToOperand) {
1795           CurOp += InlineAsm::getNumOperandRegisters(Flags)+1;
1796           Flags = cast<ConstantSDNode>(InOps[CurOp])->getZExtValue();
1797         }
1798       }
1799 
1800       // Otherwise, this is a memory operand.  Ask the target to select it.
1801       std::vector<SDValue> SelOps;
1802       if (SelectInlineAsmMemoryOperand(InOps[i+1],
1803                                        InlineAsm::getMemoryConstraintID(Flags),
1804                                        SelOps))
1805         report_fatal_error("Could not match memory address.  Inline asm"
1806                            " failure!");
1807 
1808       // Add this to the output node.
1809       unsigned NewFlags =
1810         InlineAsm::getFlagWord(InlineAsm::Kind_Mem, SelOps.size());
1811       Ops.push_back(CurDAG->getTargetConstant(NewFlags, DL, MVT::i32));
1812       Ops.insert(Ops.end(), SelOps.begin(), SelOps.end());
1813       i += 2;
1814     }
1815   }
1816 
1817   // Add the glue input back if present.
1818   if (e != InOps.size())
1819     Ops.push_back(InOps.back());
1820 }
1821 
1822 /// findGlueUse - Return use of MVT::Glue value produced by the specified
1823 /// SDNode.
1824 ///
findGlueUse(SDNode * N)1825 static SDNode *findGlueUse(SDNode *N) {
1826   unsigned FlagResNo = N->getNumValues()-1;
1827   for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
1828     SDUse &Use = I.getUse();
1829     if (Use.getResNo() == FlagResNo)
1830       return Use.getUser();
1831   }
1832   return nullptr;
1833 }
1834 
1835 /// findNonImmUse - Return true if "Use" is a non-immediate use of "Def".
1836 /// This function recursively traverses up the operand chain, ignoring
1837 /// certain nodes.
findNonImmUse(SDNode * Use,SDNode * Def,SDNode * ImmedUse,SDNode * Root,SmallPtrSetImpl<SDNode * > & Visited,bool IgnoreChains)1838 static bool findNonImmUse(SDNode *Use, SDNode* Def, SDNode *ImmedUse,
1839                           SDNode *Root, SmallPtrSetImpl<SDNode*> &Visited,
1840                           bool IgnoreChains) {
1841   // The NodeID's are given uniques ID's where a node ID is guaranteed to be
1842   // greater than all of its (recursive) operands.  If we scan to a point where
1843   // 'use' is smaller than the node we're scanning for, then we know we will
1844   // never find it.
1845   //
1846   // The Use may be -1 (unassigned) if it is a newly allocated node.  This can
1847   // happen because we scan down to newly selected nodes in the case of glue
1848   // uses.
1849   if ((Use->getNodeId() < Def->getNodeId() && Use->getNodeId() != -1))
1850     return false;
1851 
1852   // Don't revisit nodes if we already scanned it and didn't fail, we know we
1853   // won't fail if we scan it again.
1854   if (!Visited.insert(Use).second)
1855     return false;
1856 
1857   for (const SDValue &Op : Use->op_values()) {
1858     // Ignore chain uses, they are validated by HandleMergeInputChains.
1859     if (Op.getValueType() == MVT::Other && IgnoreChains)
1860       continue;
1861 
1862     SDNode *N = Op.getNode();
1863     if (N == Def) {
1864       if (Use == ImmedUse || Use == Root)
1865         continue;  // We are not looking for immediate use.
1866       assert(N != Root);
1867       return true;
1868     }
1869 
1870     // Traverse up the operand chain.
1871     if (findNonImmUse(N, Def, ImmedUse, Root, Visited, IgnoreChains))
1872       return true;
1873   }
1874   return false;
1875 }
1876 
1877 /// IsProfitableToFold - Returns true if it's profitable to fold the specific
1878 /// operand node N of U during instruction selection that starts at Root.
IsProfitableToFold(SDValue N,SDNode * U,SDNode * Root) const1879 bool SelectionDAGISel::IsProfitableToFold(SDValue N, SDNode *U,
1880                                           SDNode *Root) const {
1881   if (OptLevel == CodeGenOpt::None) return false;
1882   return N.hasOneUse();
1883 }
1884 
1885 /// IsLegalToFold - Returns true if the specific operand node N of
1886 /// U can be folded during instruction selection that starts at Root.
IsLegalToFold(SDValue N,SDNode * U,SDNode * Root,CodeGenOpt::Level OptLevel,bool IgnoreChains)1887 bool SelectionDAGISel::IsLegalToFold(SDValue N, SDNode *U, SDNode *Root,
1888                                      CodeGenOpt::Level OptLevel,
1889                                      bool IgnoreChains) {
1890   if (OptLevel == CodeGenOpt::None) return false;
1891 
1892   // If Root use can somehow reach N through a path that that doesn't contain
1893   // U then folding N would create a cycle. e.g. In the following
1894   // diagram, Root can reach N through X. If N is folded into into Root, then
1895   // X is both a predecessor and a successor of U.
1896   //
1897   //          [N*]           //
1898   //         ^   ^           //
1899   //        /     \          //
1900   //      [U*]    [X]?       //
1901   //        ^     ^          //
1902   //         \   /           //
1903   //          \ /            //
1904   //         [Root*]         //
1905   //
1906   // * indicates nodes to be folded together.
1907   //
1908   // If Root produces glue, then it gets (even more) interesting. Since it
1909   // will be "glued" together with its glue use in the scheduler, we need to
1910   // check if it might reach N.
1911   //
1912   //          [N*]           //
1913   //         ^   ^           //
1914   //        /     \          //
1915   //      [U*]    [X]?       //
1916   //        ^       ^        //
1917   //         \       \       //
1918   //          \      |       //
1919   //         [Root*] |       //
1920   //          ^      |       //
1921   //          f      |       //
1922   //          |      /       //
1923   //         [Y]    /        //
1924   //           ^   /         //
1925   //           f  /          //
1926   //           | /           //
1927   //          [GU]           //
1928   //
1929   // If GU (glue use) indirectly reaches N (the load), and Root folds N
1930   // (call it Fold), then X is a predecessor of GU and a successor of
1931   // Fold. But since Fold and GU are glued together, this will create
1932   // a cycle in the scheduling graph.
1933 
1934   // If the node has glue, walk down the graph to the "lowest" node in the
1935   // glueged set.
1936   EVT VT = Root->getValueType(Root->getNumValues()-1);
1937   while (VT == MVT::Glue) {
1938     SDNode *GU = findGlueUse(Root);
1939     if (!GU)
1940       break;
1941     Root = GU;
1942     VT = Root->getValueType(Root->getNumValues()-1);
1943 
1944     // If our query node has a glue result with a use, we've walked up it.  If
1945     // the user (which has already been selected) has a chain or indirectly uses
1946     // the chain, our WalkChainUsers predicate will not consider it.  Because of
1947     // this, we cannot ignore chains in this predicate.
1948     IgnoreChains = false;
1949   }
1950 
1951 
1952   SmallPtrSet<SDNode*, 16> Visited;
1953   return !findNonImmUse(Root, N.getNode(), U, Root, Visited, IgnoreChains);
1954 }
1955 
Select_INLINEASM(SDNode * N)1956 SDNode *SelectionDAGISel::Select_INLINEASM(SDNode *N) {
1957   SDLoc DL(N);
1958 
1959   std::vector<SDValue> Ops(N->op_begin(), N->op_end());
1960   SelectInlineAsmMemoryOperands(Ops, DL);
1961 
1962   const EVT VTs[] = {MVT::Other, MVT::Glue};
1963   SDValue New = CurDAG->getNode(ISD::INLINEASM, DL, VTs, Ops);
1964   New->setNodeId(-1);
1965   return New.getNode();
1966 }
1967 
1968 SDNode
Select_READ_REGISTER(SDNode * Op)1969 *SelectionDAGISel::Select_READ_REGISTER(SDNode *Op) {
1970   SDLoc dl(Op);
1971   MDNodeSDNode *MD = dyn_cast<MDNodeSDNode>(Op->getOperand(1));
1972   const MDString *RegStr = dyn_cast<MDString>(MD->getMD()->getOperand(0));
1973   unsigned Reg =
1974       TLI->getRegisterByName(RegStr->getString().data(), Op->getValueType(0),
1975                              *CurDAG);
1976   SDValue New = CurDAG->getCopyFromReg(
1977                         Op->getOperand(0), dl, Reg, Op->getValueType(0));
1978   New->setNodeId(-1);
1979   return New.getNode();
1980 }
1981 
1982 SDNode
Select_WRITE_REGISTER(SDNode * Op)1983 *SelectionDAGISel::Select_WRITE_REGISTER(SDNode *Op) {
1984   SDLoc dl(Op);
1985   MDNodeSDNode *MD = dyn_cast<MDNodeSDNode>(Op->getOperand(1));
1986   const MDString *RegStr = dyn_cast<MDString>(MD->getMD()->getOperand(0));
1987   unsigned Reg = TLI->getRegisterByName(RegStr->getString().data(),
1988                                         Op->getOperand(2).getValueType(),
1989                                         *CurDAG);
1990   SDValue New = CurDAG->getCopyToReg(
1991                         Op->getOperand(0), dl, Reg, Op->getOperand(2));
1992   New->setNodeId(-1);
1993   return New.getNode();
1994 }
1995 
1996 
1997 
Select_UNDEF(SDNode * N)1998 SDNode *SelectionDAGISel::Select_UNDEF(SDNode *N) {
1999   return CurDAG->SelectNodeTo(N, TargetOpcode::IMPLICIT_DEF,N->getValueType(0));
2000 }
2001 
2002 /// GetVBR - decode a vbr encoding whose top bit is set.
2003 LLVM_ATTRIBUTE_ALWAYS_INLINE static inline uint64_t
GetVBR(uint64_t Val,const unsigned char * MatcherTable,unsigned & Idx)2004 GetVBR(uint64_t Val, const unsigned char *MatcherTable, unsigned &Idx) {
2005   assert(Val >= 128 && "Not a VBR");
2006   Val &= 127;  // Remove first vbr bit.
2007 
2008   unsigned Shift = 7;
2009   uint64_t NextBits;
2010   do {
2011     NextBits = MatcherTable[Idx++];
2012     Val |= (NextBits&127) << Shift;
2013     Shift += 7;
2014   } while (NextBits & 128);
2015 
2016   return Val;
2017 }
2018 
2019 
2020 /// UpdateChainsAndGlue - When a match is complete, this method updates uses of
2021 /// interior glue and chain results to use the new glue and chain results.
2022 void SelectionDAGISel::
UpdateChainsAndGlue(SDNode * NodeToMatch,SDValue InputChain,const SmallVectorImpl<SDNode * > & ChainNodesMatched,SDValue InputGlue,const SmallVectorImpl<SDNode * > & GlueResultNodesMatched,bool isMorphNodeTo)2023 UpdateChainsAndGlue(SDNode *NodeToMatch, SDValue InputChain,
2024                     const SmallVectorImpl<SDNode*> &ChainNodesMatched,
2025                     SDValue InputGlue,
2026                     const SmallVectorImpl<SDNode*> &GlueResultNodesMatched,
2027                     bool isMorphNodeTo) {
2028   SmallVector<SDNode*, 4> NowDeadNodes;
2029 
2030   // Now that all the normal results are replaced, we replace the chain and
2031   // glue results if present.
2032   if (!ChainNodesMatched.empty()) {
2033     assert(InputChain.getNode() &&
2034            "Matched input chains but didn't produce a chain");
2035     // Loop over all of the nodes we matched that produced a chain result.
2036     // Replace all the chain results with the final chain we ended up with.
2037     for (unsigned i = 0, e = ChainNodesMatched.size(); i != e; ++i) {
2038       SDNode *ChainNode = ChainNodesMatched[i];
2039 
2040       // If this node was already deleted, don't look at it.
2041       if (ChainNode->getOpcode() == ISD::DELETED_NODE)
2042         continue;
2043 
2044       // Don't replace the results of the root node if we're doing a
2045       // MorphNodeTo.
2046       if (ChainNode == NodeToMatch && isMorphNodeTo)
2047         continue;
2048 
2049       SDValue ChainVal = SDValue(ChainNode, ChainNode->getNumValues()-1);
2050       if (ChainVal.getValueType() == MVT::Glue)
2051         ChainVal = ChainVal.getValue(ChainVal->getNumValues()-2);
2052       assert(ChainVal.getValueType() == MVT::Other && "Not a chain?");
2053       CurDAG->ReplaceAllUsesOfValueWith(ChainVal, InputChain);
2054 
2055       // If the node became dead and we haven't already seen it, delete it.
2056       if (ChainNode->use_empty() &&
2057           !std::count(NowDeadNodes.begin(), NowDeadNodes.end(), ChainNode))
2058         NowDeadNodes.push_back(ChainNode);
2059     }
2060   }
2061 
2062   // If the result produces glue, update any glue results in the matched
2063   // pattern with the glue result.
2064   if (InputGlue.getNode()) {
2065     // Handle any interior nodes explicitly marked.
2066     for (unsigned i = 0, e = GlueResultNodesMatched.size(); i != e; ++i) {
2067       SDNode *FRN = GlueResultNodesMatched[i];
2068 
2069       // If this node was already deleted, don't look at it.
2070       if (FRN->getOpcode() == ISD::DELETED_NODE)
2071         continue;
2072 
2073       assert(FRN->getValueType(FRN->getNumValues()-1) == MVT::Glue &&
2074              "Doesn't have a glue result");
2075       CurDAG->ReplaceAllUsesOfValueWith(SDValue(FRN, FRN->getNumValues()-1),
2076                                         InputGlue);
2077 
2078       // If the node became dead and we haven't already seen it, delete it.
2079       if (FRN->use_empty() &&
2080           !std::count(NowDeadNodes.begin(), NowDeadNodes.end(), FRN))
2081         NowDeadNodes.push_back(FRN);
2082     }
2083   }
2084 
2085   if (!NowDeadNodes.empty())
2086     CurDAG->RemoveDeadNodes(NowDeadNodes);
2087 
2088   DEBUG(dbgs() << "ISEL: Match complete!\n");
2089 }
2090 
2091 enum ChainResult {
2092   CR_Simple,
2093   CR_InducesCycle,
2094   CR_LeadsToInteriorNode
2095 };
2096 
2097 /// WalkChainUsers - Walk down the users of the specified chained node that is
2098 /// part of the pattern we're matching, looking at all of the users we find.
2099 /// This determines whether something is an interior node, whether we have a
2100 /// non-pattern node in between two pattern nodes (which prevent folding because
2101 /// it would induce a cycle) and whether we have a TokenFactor node sandwiched
2102 /// between pattern nodes (in which case the TF becomes part of the pattern).
2103 ///
2104 /// The walk we do here is guaranteed to be small because we quickly get down to
2105 /// already selected nodes "below" us.
2106 static ChainResult
WalkChainUsers(const SDNode * ChainedNode,SmallVectorImpl<SDNode * > & ChainedNodesInPattern,SmallVectorImpl<SDNode * > & InteriorChainedNodes)2107 WalkChainUsers(const SDNode *ChainedNode,
2108                SmallVectorImpl<SDNode*> &ChainedNodesInPattern,
2109                SmallVectorImpl<SDNode*> &InteriorChainedNodes) {
2110   ChainResult Result = CR_Simple;
2111 
2112   for (SDNode::use_iterator UI = ChainedNode->use_begin(),
2113          E = ChainedNode->use_end(); UI != E; ++UI) {
2114     // Make sure the use is of the chain, not some other value we produce.
2115     if (UI.getUse().getValueType() != MVT::Other) continue;
2116 
2117     SDNode *User = *UI;
2118 
2119     if (User->getOpcode() == ISD::HANDLENODE)  // Root of the graph.
2120       continue;
2121 
2122     // If we see an already-selected machine node, then we've gone beyond the
2123     // pattern that we're selecting down into the already selected chunk of the
2124     // DAG.
2125     unsigned UserOpcode = User->getOpcode();
2126     if (User->isMachineOpcode() ||
2127         UserOpcode == ISD::CopyToReg ||
2128         UserOpcode == ISD::CopyFromReg ||
2129         UserOpcode == ISD::INLINEASM ||
2130         UserOpcode == ISD::EH_LABEL ||
2131         UserOpcode == ISD::LIFETIME_START ||
2132         UserOpcode == ISD::LIFETIME_END) {
2133       // If their node ID got reset to -1 then they've already been selected.
2134       // Treat them like a MachineOpcode.
2135       if (User->getNodeId() == -1)
2136         continue;
2137     }
2138 
2139     // If we have a TokenFactor, we handle it specially.
2140     if (User->getOpcode() != ISD::TokenFactor) {
2141       // If the node isn't a token factor and isn't part of our pattern, then it
2142       // must be a random chained node in between two nodes we're selecting.
2143       // This happens when we have something like:
2144       //   x = load ptr
2145       //   call
2146       //   y = x+4
2147       //   store y -> ptr
2148       // Because we structurally match the load/store as a read/modify/write,
2149       // but the call is chained between them.  We cannot fold in this case
2150       // because it would induce a cycle in the graph.
2151       if (!std::count(ChainedNodesInPattern.begin(),
2152                       ChainedNodesInPattern.end(), User))
2153         return CR_InducesCycle;
2154 
2155       // Otherwise we found a node that is part of our pattern.  For example in:
2156       //   x = load ptr
2157       //   y = x+4
2158       //   store y -> ptr
2159       // This would happen when we're scanning down from the load and see the
2160       // store as a user.  Record that there is a use of ChainedNode that is
2161       // part of the pattern and keep scanning uses.
2162       Result = CR_LeadsToInteriorNode;
2163       InteriorChainedNodes.push_back(User);
2164       continue;
2165     }
2166 
2167     // If we found a TokenFactor, there are two cases to consider: first if the
2168     // TokenFactor is just hanging "below" the pattern we're matching (i.e. no
2169     // uses of the TF are in our pattern) we just want to ignore it.  Second,
2170     // the TokenFactor can be sandwiched in between two chained nodes, like so:
2171     //     [Load chain]
2172     //         ^
2173     //         |
2174     //       [Load]
2175     //       ^    ^
2176     //       |    \                    DAG's like cheese
2177     //      /       \                       do you?
2178     //     /         |
2179     // [TokenFactor] [Op]
2180     //     ^          ^
2181     //     |          |
2182     //      \        /
2183     //       \      /
2184     //       [Store]
2185     //
2186     // In this case, the TokenFactor becomes part of our match and we rewrite it
2187     // as a new TokenFactor.
2188     //
2189     // To distinguish these two cases, do a recursive walk down the uses.
2190     switch (WalkChainUsers(User, ChainedNodesInPattern, InteriorChainedNodes)) {
2191     case CR_Simple:
2192       // If the uses of the TokenFactor are just already-selected nodes, ignore
2193       // it, it is "below" our pattern.
2194       continue;
2195     case CR_InducesCycle:
2196       // If the uses of the TokenFactor lead to nodes that are not part of our
2197       // pattern that are not selected, folding would turn this into a cycle,
2198       // bail out now.
2199       return CR_InducesCycle;
2200     case CR_LeadsToInteriorNode:
2201       break;  // Otherwise, keep processing.
2202     }
2203 
2204     // Okay, we know we're in the interesting interior case.  The TokenFactor
2205     // is now going to be considered part of the pattern so that we rewrite its
2206     // uses (it may have uses that are not part of the pattern) with the
2207     // ultimate chain result of the generated code.  We will also add its chain
2208     // inputs as inputs to the ultimate TokenFactor we create.
2209     Result = CR_LeadsToInteriorNode;
2210     ChainedNodesInPattern.push_back(User);
2211     InteriorChainedNodes.push_back(User);
2212     continue;
2213   }
2214 
2215   return Result;
2216 }
2217 
2218 /// HandleMergeInputChains - This implements the OPC_EmitMergeInputChains
2219 /// operation for when the pattern matched at least one node with a chains.  The
2220 /// input vector contains a list of all of the chained nodes that we match.  We
2221 /// must determine if this is a valid thing to cover (i.e. matching it won't
2222 /// induce cycles in the DAG) and if so, creating a TokenFactor node. that will
2223 /// be used as the input node chain for the generated nodes.
2224 static SDValue
HandleMergeInputChains(SmallVectorImpl<SDNode * > & ChainNodesMatched,SelectionDAG * CurDAG)2225 HandleMergeInputChains(SmallVectorImpl<SDNode*> &ChainNodesMatched,
2226                        SelectionDAG *CurDAG) {
2227   // Walk all of the chained nodes we've matched, recursively scanning down the
2228   // users of the chain result. This adds any TokenFactor nodes that are caught
2229   // in between chained nodes to the chained and interior nodes list.
2230   SmallVector<SDNode*, 3> InteriorChainedNodes;
2231   for (unsigned i = 0, e = ChainNodesMatched.size(); i != e; ++i) {
2232     if (WalkChainUsers(ChainNodesMatched[i], ChainNodesMatched,
2233                        InteriorChainedNodes) == CR_InducesCycle)
2234       return SDValue(); // Would induce a cycle.
2235   }
2236 
2237   // Okay, we have walked all the matched nodes and collected TokenFactor nodes
2238   // that we are interested in.  Form our input TokenFactor node.
2239   SmallVector<SDValue, 3> InputChains;
2240   for (unsigned i = 0, e = ChainNodesMatched.size(); i != e; ++i) {
2241     // Add the input chain of this node to the InputChains list (which will be
2242     // the operands of the generated TokenFactor) if it's not an interior node.
2243     SDNode *N = ChainNodesMatched[i];
2244     if (N->getOpcode() != ISD::TokenFactor) {
2245       if (std::count(InteriorChainedNodes.begin(),InteriorChainedNodes.end(),N))
2246         continue;
2247 
2248       // Otherwise, add the input chain.
2249       SDValue InChain = ChainNodesMatched[i]->getOperand(0);
2250       assert(InChain.getValueType() == MVT::Other && "Not a chain");
2251       InputChains.push_back(InChain);
2252       continue;
2253     }
2254 
2255     // If we have a token factor, we want to add all inputs of the token factor
2256     // that are not part of the pattern we're matching.
2257     for (const SDValue &Op : N->op_values()) {
2258       if (!std::count(ChainNodesMatched.begin(), ChainNodesMatched.end(),
2259                       Op.getNode()))
2260         InputChains.push_back(Op);
2261     }
2262   }
2263 
2264   if (InputChains.size() == 1)
2265     return InputChains[0];
2266   return CurDAG->getNode(ISD::TokenFactor, SDLoc(ChainNodesMatched[0]),
2267                          MVT::Other, InputChains);
2268 }
2269 
2270 /// MorphNode - Handle morphing a node in place for the selector.
2271 SDNode *SelectionDAGISel::
MorphNode(SDNode * Node,unsigned TargetOpc,SDVTList VTList,ArrayRef<SDValue> Ops,unsigned EmitNodeInfo)2272 MorphNode(SDNode *Node, unsigned TargetOpc, SDVTList VTList,
2273           ArrayRef<SDValue> Ops, unsigned EmitNodeInfo) {
2274   // It is possible we're using MorphNodeTo to replace a node with no
2275   // normal results with one that has a normal result (or we could be
2276   // adding a chain) and the input could have glue and chains as well.
2277   // In this case we need to shift the operands down.
2278   // FIXME: This is a horrible hack and broken in obscure cases, no worse
2279   // than the old isel though.
2280   int OldGlueResultNo = -1, OldChainResultNo = -1;
2281 
2282   unsigned NTMNumResults = Node->getNumValues();
2283   if (Node->getValueType(NTMNumResults-1) == MVT::Glue) {
2284     OldGlueResultNo = NTMNumResults-1;
2285     if (NTMNumResults != 1 &&
2286         Node->getValueType(NTMNumResults-2) == MVT::Other)
2287       OldChainResultNo = NTMNumResults-2;
2288   } else if (Node->getValueType(NTMNumResults-1) == MVT::Other)
2289     OldChainResultNo = NTMNumResults-1;
2290 
2291   // Call the underlying SelectionDAG routine to do the transmogrification. Note
2292   // that this deletes operands of the old node that become dead.
2293   SDNode *Res = CurDAG->MorphNodeTo(Node, ~TargetOpc, VTList, Ops);
2294 
2295   // MorphNodeTo can operate in two ways: if an existing node with the
2296   // specified operands exists, it can just return it.  Otherwise, it
2297   // updates the node in place to have the requested operands.
2298   if (Res == Node) {
2299     // If we updated the node in place, reset the node ID.  To the isel,
2300     // this should be just like a newly allocated machine node.
2301     Res->setNodeId(-1);
2302   }
2303 
2304   unsigned ResNumResults = Res->getNumValues();
2305   // Move the glue if needed.
2306   if ((EmitNodeInfo & OPFL_GlueOutput) && OldGlueResultNo != -1 &&
2307       (unsigned)OldGlueResultNo != ResNumResults-1)
2308     CurDAG->ReplaceAllUsesOfValueWith(SDValue(Node, OldGlueResultNo),
2309                                       SDValue(Res, ResNumResults-1));
2310 
2311   if ((EmitNodeInfo & OPFL_GlueOutput) != 0)
2312     --ResNumResults;
2313 
2314   // Move the chain reference if needed.
2315   if ((EmitNodeInfo & OPFL_Chain) && OldChainResultNo != -1 &&
2316       (unsigned)OldChainResultNo != ResNumResults-1)
2317     CurDAG->ReplaceAllUsesOfValueWith(SDValue(Node, OldChainResultNo),
2318                                       SDValue(Res, ResNumResults-1));
2319 
2320   // Otherwise, no replacement happened because the node already exists. Replace
2321   // Uses of the old node with the new one.
2322   if (Res != Node)
2323     CurDAG->ReplaceAllUsesWith(Node, Res);
2324 
2325   return Res;
2326 }
2327 
2328 /// CheckSame - Implements OP_CheckSame.
2329 LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool
CheckSame(const unsigned char * MatcherTable,unsigned & MatcherIndex,SDValue N,const SmallVectorImpl<std::pair<SDValue,SDNode * >> & RecordedNodes)2330 CheckSame(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2331           SDValue N,
2332           const SmallVectorImpl<std::pair<SDValue, SDNode*> > &RecordedNodes) {
2333   // Accept if it is exactly the same as a previously recorded node.
2334   unsigned RecNo = MatcherTable[MatcherIndex++];
2335   assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
2336   return N == RecordedNodes[RecNo].first;
2337 }
2338 
2339 /// CheckChildSame - Implements OP_CheckChildXSame.
2340 LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool
CheckChildSame(const unsigned char * MatcherTable,unsigned & MatcherIndex,SDValue N,const SmallVectorImpl<std::pair<SDValue,SDNode * >> & RecordedNodes,unsigned ChildNo)2341 CheckChildSame(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2342              SDValue N,
2343              const SmallVectorImpl<std::pair<SDValue, SDNode*> > &RecordedNodes,
2344              unsigned ChildNo) {
2345   if (ChildNo >= N.getNumOperands())
2346     return false;  // Match fails if out of range child #.
2347   return ::CheckSame(MatcherTable, MatcherIndex, N.getOperand(ChildNo),
2348                      RecordedNodes);
2349 }
2350 
2351 /// CheckPatternPredicate - Implements OP_CheckPatternPredicate.
2352 LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool
CheckPatternPredicate(const unsigned char * MatcherTable,unsigned & MatcherIndex,const SelectionDAGISel & SDISel)2353 CheckPatternPredicate(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2354                       const SelectionDAGISel &SDISel) {
2355   return SDISel.CheckPatternPredicate(MatcherTable[MatcherIndex++]);
2356 }
2357 
2358 /// CheckNodePredicate - Implements OP_CheckNodePredicate.
2359 LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool
CheckNodePredicate(const unsigned char * MatcherTable,unsigned & MatcherIndex,const SelectionDAGISel & SDISel,SDNode * N)2360 CheckNodePredicate(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2361                    const SelectionDAGISel &SDISel, SDNode *N) {
2362   return SDISel.CheckNodePredicate(N, MatcherTable[MatcherIndex++]);
2363 }
2364 
2365 LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool
CheckOpcode(const unsigned char * MatcherTable,unsigned & MatcherIndex,SDNode * N)2366 CheckOpcode(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2367             SDNode *N) {
2368   uint16_t Opc = MatcherTable[MatcherIndex++];
2369   Opc |= (unsigned short)MatcherTable[MatcherIndex++] << 8;
2370   return N->getOpcode() == Opc;
2371 }
2372 
2373 LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool
CheckType(const unsigned char * MatcherTable,unsigned & MatcherIndex,SDValue N,const TargetLowering * TLI,const DataLayout & DL)2374 CheckType(const unsigned char *MatcherTable, unsigned &MatcherIndex, SDValue N,
2375           const TargetLowering *TLI, const DataLayout &DL) {
2376   MVT::SimpleValueType VT = (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
2377   if (N.getValueType() == VT) return true;
2378 
2379   // Handle the case when VT is iPTR.
2380   return VT == MVT::iPTR && N.getValueType() == TLI->getPointerTy(DL);
2381 }
2382 
2383 LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool
CheckChildType(const unsigned char * MatcherTable,unsigned & MatcherIndex,SDValue N,const TargetLowering * TLI,const DataLayout & DL,unsigned ChildNo)2384 CheckChildType(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2385                SDValue N, const TargetLowering *TLI, const DataLayout &DL,
2386                unsigned ChildNo) {
2387   if (ChildNo >= N.getNumOperands())
2388     return false;  // Match fails if out of range child #.
2389   return ::CheckType(MatcherTable, MatcherIndex, N.getOperand(ChildNo), TLI,
2390                      DL);
2391 }
2392 
2393 LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool
CheckCondCode(const unsigned char * MatcherTable,unsigned & MatcherIndex,SDValue N)2394 CheckCondCode(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2395               SDValue N) {
2396   return cast<CondCodeSDNode>(N)->get() ==
2397       (ISD::CondCode)MatcherTable[MatcherIndex++];
2398 }
2399 
2400 LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool
CheckValueType(const unsigned char * MatcherTable,unsigned & MatcherIndex,SDValue N,const TargetLowering * TLI,const DataLayout & DL)2401 CheckValueType(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2402                SDValue N, const TargetLowering *TLI, const DataLayout &DL) {
2403   MVT::SimpleValueType VT = (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
2404   if (cast<VTSDNode>(N)->getVT() == VT)
2405     return true;
2406 
2407   // Handle the case when VT is iPTR.
2408   return VT == MVT::iPTR && cast<VTSDNode>(N)->getVT() == TLI->getPointerTy(DL);
2409 }
2410 
2411 LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool
CheckInteger(const unsigned char * MatcherTable,unsigned & MatcherIndex,SDValue N)2412 CheckInteger(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2413              SDValue N) {
2414   int64_t Val = MatcherTable[MatcherIndex++];
2415   if (Val & 128)
2416     Val = GetVBR(Val, MatcherTable, MatcherIndex);
2417 
2418   ConstantSDNode *C = dyn_cast<ConstantSDNode>(N);
2419   return C && C->getSExtValue() == Val;
2420 }
2421 
2422 LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool
CheckChildInteger(const unsigned char * MatcherTable,unsigned & MatcherIndex,SDValue N,unsigned ChildNo)2423 CheckChildInteger(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2424                   SDValue N, unsigned ChildNo) {
2425   if (ChildNo >= N.getNumOperands())
2426     return false;  // Match fails if out of range child #.
2427   return ::CheckInteger(MatcherTable, MatcherIndex, N.getOperand(ChildNo));
2428 }
2429 
2430 LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool
CheckAndImm(const unsigned char * MatcherTable,unsigned & MatcherIndex,SDValue N,const SelectionDAGISel & SDISel)2431 CheckAndImm(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2432             SDValue N, const SelectionDAGISel &SDISel) {
2433   int64_t Val = MatcherTable[MatcherIndex++];
2434   if (Val & 128)
2435     Val = GetVBR(Val, MatcherTable, MatcherIndex);
2436 
2437   if (N->getOpcode() != ISD::AND) return false;
2438 
2439   ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
2440   return C && SDISel.CheckAndMask(N.getOperand(0), C, Val);
2441 }
2442 
2443 LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool
CheckOrImm(const unsigned char * MatcherTable,unsigned & MatcherIndex,SDValue N,const SelectionDAGISel & SDISel)2444 CheckOrImm(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2445            SDValue N, const SelectionDAGISel &SDISel) {
2446   int64_t Val = MatcherTable[MatcherIndex++];
2447   if (Val & 128)
2448     Val = GetVBR(Val, MatcherTable, MatcherIndex);
2449 
2450   if (N->getOpcode() != ISD::OR) return false;
2451 
2452   ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
2453   return C && SDISel.CheckOrMask(N.getOperand(0), C, Val);
2454 }
2455 
2456 /// IsPredicateKnownToFail - If we know how and can do so without pushing a
2457 /// scope, evaluate the current node.  If the current predicate is known to
2458 /// fail, set Result=true and return anything.  If the current predicate is
2459 /// known to pass, set Result=false and return the MatcherIndex to continue
2460 /// with.  If the current predicate is unknown, set Result=false and return the
2461 /// MatcherIndex to continue with.
IsPredicateKnownToFail(const unsigned char * Table,unsigned Index,SDValue N,bool & Result,const SelectionDAGISel & SDISel,SmallVectorImpl<std::pair<SDValue,SDNode * >> & RecordedNodes)2462 static unsigned IsPredicateKnownToFail(const unsigned char *Table,
2463                                        unsigned Index, SDValue N,
2464                                        bool &Result,
2465                                        const SelectionDAGISel &SDISel,
2466                  SmallVectorImpl<std::pair<SDValue, SDNode*> > &RecordedNodes) {
2467   switch (Table[Index++]) {
2468   default:
2469     Result = false;
2470     return Index-1;  // Could not evaluate this predicate.
2471   case SelectionDAGISel::OPC_CheckSame:
2472     Result = !::CheckSame(Table, Index, N, RecordedNodes);
2473     return Index;
2474   case SelectionDAGISel::OPC_CheckChild0Same:
2475   case SelectionDAGISel::OPC_CheckChild1Same:
2476   case SelectionDAGISel::OPC_CheckChild2Same:
2477   case SelectionDAGISel::OPC_CheckChild3Same:
2478     Result = !::CheckChildSame(Table, Index, N, RecordedNodes,
2479                         Table[Index-1] - SelectionDAGISel::OPC_CheckChild0Same);
2480     return Index;
2481   case SelectionDAGISel::OPC_CheckPatternPredicate:
2482     Result = !::CheckPatternPredicate(Table, Index, SDISel);
2483     return Index;
2484   case SelectionDAGISel::OPC_CheckPredicate:
2485     Result = !::CheckNodePredicate(Table, Index, SDISel, N.getNode());
2486     return Index;
2487   case SelectionDAGISel::OPC_CheckOpcode:
2488     Result = !::CheckOpcode(Table, Index, N.getNode());
2489     return Index;
2490   case SelectionDAGISel::OPC_CheckType:
2491     Result = !::CheckType(Table, Index, N, SDISel.TLI,
2492                           SDISel.CurDAG->getDataLayout());
2493     return Index;
2494   case SelectionDAGISel::OPC_CheckChild0Type:
2495   case SelectionDAGISel::OPC_CheckChild1Type:
2496   case SelectionDAGISel::OPC_CheckChild2Type:
2497   case SelectionDAGISel::OPC_CheckChild3Type:
2498   case SelectionDAGISel::OPC_CheckChild4Type:
2499   case SelectionDAGISel::OPC_CheckChild5Type:
2500   case SelectionDAGISel::OPC_CheckChild6Type:
2501   case SelectionDAGISel::OPC_CheckChild7Type:
2502     Result = !::CheckChildType(
2503                  Table, Index, N, SDISel.TLI, SDISel.CurDAG->getDataLayout(),
2504                  Table[Index - 1] - SelectionDAGISel::OPC_CheckChild0Type);
2505     return Index;
2506   case SelectionDAGISel::OPC_CheckCondCode:
2507     Result = !::CheckCondCode(Table, Index, N);
2508     return Index;
2509   case SelectionDAGISel::OPC_CheckValueType:
2510     Result = !::CheckValueType(Table, Index, N, SDISel.TLI,
2511                                SDISel.CurDAG->getDataLayout());
2512     return Index;
2513   case SelectionDAGISel::OPC_CheckInteger:
2514     Result = !::CheckInteger(Table, Index, N);
2515     return Index;
2516   case SelectionDAGISel::OPC_CheckChild0Integer:
2517   case SelectionDAGISel::OPC_CheckChild1Integer:
2518   case SelectionDAGISel::OPC_CheckChild2Integer:
2519   case SelectionDAGISel::OPC_CheckChild3Integer:
2520   case SelectionDAGISel::OPC_CheckChild4Integer:
2521     Result = !::CheckChildInteger(Table, Index, N,
2522                      Table[Index-1] - SelectionDAGISel::OPC_CheckChild0Integer);
2523     return Index;
2524   case SelectionDAGISel::OPC_CheckAndImm:
2525     Result = !::CheckAndImm(Table, Index, N, SDISel);
2526     return Index;
2527   case SelectionDAGISel::OPC_CheckOrImm:
2528     Result = !::CheckOrImm(Table, Index, N, SDISel);
2529     return Index;
2530   }
2531 }
2532 
2533 namespace {
2534 
2535 struct MatchScope {
2536   /// FailIndex - If this match fails, this is the index to continue with.
2537   unsigned FailIndex;
2538 
2539   /// NodeStack - The node stack when the scope was formed.
2540   SmallVector<SDValue, 4> NodeStack;
2541 
2542   /// NumRecordedNodes - The number of recorded nodes when the scope was formed.
2543   unsigned NumRecordedNodes;
2544 
2545   /// NumMatchedMemRefs - The number of matched memref entries.
2546   unsigned NumMatchedMemRefs;
2547 
2548   /// InputChain/InputGlue - The current chain/glue
2549   SDValue InputChain, InputGlue;
2550 
2551   /// HasChainNodesMatched - True if the ChainNodesMatched list is non-empty.
2552   bool HasChainNodesMatched, HasGlueResultNodesMatched;
2553 };
2554 
2555 /// \\brief A DAG update listener to keep the matching state
2556 /// (i.e. RecordedNodes and MatchScope) uptodate if the target is allowed to
2557 /// change the DAG while matching.  X86 addressing mode matcher is an example
2558 /// for this.
2559 class MatchStateUpdater : public SelectionDAG::DAGUpdateListener
2560 {
2561       SmallVectorImpl<std::pair<SDValue, SDNode*> > &RecordedNodes;
2562       SmallVectorImpl<MatchScope> &MatchScopes;
2563 public:
MatchStateUpdater(SelectionDAG & DAG,SmallVectorImpl<std::pair<SDValue,SDNode * >> & RN,SmallVectorImpl<MatchScope> & MS)2564   MatchStateUpdater(SelectionDAG &DAG,
2565                     SmallVectorImpl<std::pair<SDValue, SDNode*> > &RN,
2566                     SmallVectorImpl<MatchScope> &MS) :
2567     SelectionDAG::DAGUpdateListener(DAG),
2568     RecordedNodes(RN), MatchScopes(MS) { }
2569 
NodeDeleted(SDNode * N,SDNode * E)2570   void NodeDeleted(SDNode *N, SDNode *E) override {
2571     // Some early-returns here to avoid the search if we deleted the node or
2572     // if the update comes from MorphNodeTo (MorphNodeTo is the last thing we
2573     // do, so it's unnecessary to update matching state at that point).
2574     // Neither of these can occur currently because we only install this
2575     // update listener during matching a complex patterns.
2576     if (!E || E->isMachineOpcode())
2577       return;
2578     // Performing linear search here does not matter because we almost never
2579     // run this code.  You'd have to have a CSE during complex pattern
2580     // matching.
2581     for (auto &I : RecordedNodes)
2582       if (I.first.getNode() == N)
2583         I.first.setNode(E);
2584 
2585     for (auto &I : MatchScopes)
2586       for (auto &J : I.NodeStack)
2587         if (J.getNode() == N)
2588           J.setNode(E);
2589   }
2590 };
2591 }
2592 
2593 SDNode *SelectionDAGISel::
SelectCodeCommon(SDNode * NodeToMatch,const unsigned char * MatcherTable,unsigned TableSize)2594 SelectCodeCommon(SDNode *NodeToMatch, const unsigned char *MatcherTable,
2595                  unsigned TableSize) {
2596   // FIXME: Should these even be selected?  Handle these cases in the caller?
2597   switch (NodeToMatch->getOpcode()) {
2598   default:
2599     break;
2600   case ISD::EntryToken:       // These nodes remain the same.
2601   case ISD::BasicBlock:
2602   case ISD::Register:
2603   case ISD::RegisterMask:
2604   case ISD::HANDLENODE:
2605   case ISD::MDNODE_SDNODE:
2606   case ISD::TargetConstant:
2607   case ISD::TargetConstantFP:
2608   case ISD::TargetConstantPool:
2609   case ISD::TargetFrameIndex:
2610   case ISD::TargetExternalSymbol:
2611   case ISD::MCSymbol:
2612   case ISD::TargetBlockAddress:
2613   case ISD::TargetJumpTable:
2614   case ISD::TargetGlobalTLSAddress:
2615   case ISD::TargetGlobalAddress:
2616   case ISD::TokenFactor:
2617   case ISD::CopyFromReg:
2618   case ISD::CopyToReg:
2619   case ISD::EH_LABEL:
2620   case ISD::LIFETIME_START:
2621   case ISD::LIFETIME_END:
2622     NodeToMatch->setNodeId(-1); // Mark selected.
2623     return nullptr;
2624   case ISD::AssertSext:
2625   case ISD::AssertZext:
2626     CurDAG->ReplaceAllUsesOfValueWith(SDValue(NodeToMatch, 0),
2627                                       NodeToMatch->getOperand(0));
2628     return nullptr;
2629   case ISD::INLINEASM: return Select_INLINEASM(NodeToMatch);
2630   case ISD::READ_REGISTER: return Select_READ_REGISTER(NodeToMatch);
2631   case ISD::WRITE_REGISTER: return Select_WRITE_REGISTER(NodeToMatch);
2632   case ISD::UNDEF:     return Select_UNDEF(NodeToMatch);
2633   }
2634 
2635   assert(!NodeToMatch->isMachineOpcode() && "Node already selected!");
2636 
2637   // Set up the node stack with NodeToMatch as the only node on the stack.
2638   SmallVector<SDValue, 8> NodeStack;
2639   SDValue N = SDValue(NodeToMatch, 0);
2640   NodeStack.push_back(N);
2641 
2642   // MatchScopes - Scopes used when matching, if a match failure happens, this
2643   // indicates where to continue checking.
2644   SmallVector<MatchScope, 8> MatchScopes;
2645 
2646   // RecordedNodes - This is the set of nodes that have been recorded by the
2647   // state machine.  The second value is the parent of the node, or null if the
2648   // root is recorded.
2649   SmallVector<std::pair<SDValue, SDNode*>, 8> RecordedNodes;
2650 
2651   // MatchedMemRefs - This is the set of MemRef's we've seen in the input
2652   // pattern.
2653   SmallVector<MachineMemOperand*, 2> MatchedMemRefs;
2654 
2655   // These are the current input chain and glue for use when generating nodes.
2656   // Various Emit operations change these.  For example, emitting a copytoreg
2657   // uses and updates these.
2658   SDValue InputChain, InputGlue;
2659 
2660   // ChainNodesMatched - If a pattern matches nodes that have input/output
2661   // chains, the OPC_EmitMergeInputChains operation is emitted which indicates
2662   // which ones they are.  The result is captured into this list so that we can
2663   // update the chain results when the pattern is complete.
2664   SmallVector<SDNode*, 3> ChainNodesMatched;
2665   SmallVector<SDNode*, 3> GlueResultNodesMatched;
2666 
2667   DEBUG(dbgs() << "ISEL: Starting pattern match on root node: ";
2668         NodeToMatch->dump(CurDAG);
2669         dbgs() << '\n');
2670 
2671   // Determine where to start the interpreter.  Normally we start at opcode #0,
2672   // but if the state machine starts with an OPC_SwitchOpcode, then we
2673   // accelerate the first lookup (which is guaranteed to be hot) with the
2674   // OpcodeOffset table.
2675   unsigned MatcherIndex = 0;
2676 
2677   if (!OpcodeOffset.empty()) {
2678     // Already computed the OpcodeOffset table, just index into it.
2679     if (N.getOpcode() < OpcodeOffset.size())
2680       MatcherIndex = OpcodeOffset[N.getOpcode()];
2681     DEBUG(dbgs() << "  Initial Opcode index to " << MatcherIndex << "\n");
2682 
2683   } else if (MatcherTable[0] == OPC_SwitchOpcode) {
2684     // Otherwise, the table isn't computed, but the state machine does start
2685     // with an OPC_SwitchOpcode instruction.  Populate the table now, since this
2686     // is the first time we're selecting an instruction.
2687     unsigned Idx = 1;
2688     while (1) {
2689       // Get the size of this case.
2690       unsigned CaseSize = MatcherTable[Idx++];
2691       if (CaseSize & 128)
2692         CaseSize = GetVBR(CaseSize, MatcherTable, Idx);
2693       if (CaseSize == 0) break;
2694 
2695       // Get the opcode, add the index to the table.
2696       uint16_t Opc = MatcherTable[Idx++];
2697       Opc |= (unsigned short)MatcherTable[Idx++] << 8;
2698       if (Opc >= OpcodeOffset.size())
2699         OpcodeOffset.resize((Opc+1)*2);
2700       OpcodeOffset[Opc] = Idx;
2701       Idx += CaseSize;
2702     }
2703 
2704     // Okay, do the lookup for the first opcode.
2705     if (N.getOpcode() < OpcodeOffset.size())
2706       MatcherIndex = OpcodeOffset[N.getOpcode()];
2707   }
2708 
2709   while (1) {
2710     assert(MatcherIndex < TableSize && "Invalid index");
2711 #ifndef NDEBUG
2712     unsigned CurrentOpcodeIndex = MatcherIndex;
2713 #endif
2714     BuiltinOpcodes Opcode = (BuiltinOpcodes)MatcherTable[MatcherIndex++];
2715     switch (Opcode) {
2716     case OPC_Scope: {
2717       // Okay, the semantics of this operation are that we should push a scope
2718       // then evaluate the first child.  However, pushing a scope only to have
2719       // the first check fail (which then pops it) is inefficient.  If we can
2720       // determine immediately that the first check (or first several) will
2721       // immediately fail, don't even bother pushing a scope for them.
2722       unsigned FailIndex;
2723 
2724       while (1) {
2725         unsigned NumToSkip = MatcherTable[MatcherIndex++];
2726         if (NumToSkip & 128)
2727           NumToSkip = GetVBR(NumToSkip, MatcherTable, MatcherIndex);
2728         // Found the end of the scope with no match.
2729         if (NumToSkip == 0) {
2730           FailIndex = 0;
2731           break;
2732         }
2733 
2734         FailIndex = MatcherIndex+NumToSkip;
2735 
2736         unsigned MatcherIndexOfPredicate = MatcherIndex;
2737         (void)MatcherIndexOfPredicate; // silence warning.
2738 
2739         // If we can't evaluate this predicate without pushing a scope (e.g. if
2740         // it is a 'MoveParent') or if the predicate succeeds on this node, we
2741         // push the scope and evaluate the full predicate chain.
2742         bool Result;
2743         MatcherIndex = IsPredicateKnownToFail(MatcherTable, MatcherIndex, N,
2744                                               Result, *this, RecordedNodes);
2745         if (!Result)
2746           break;
2747 
2748         DEBUG(dbgs() << "  Skipped scope entry (due to false predicate) at "
2749                      << "index " << MatcherIndexOfPredicate
2750                      << ", continuing at " << FailIndex << "\n");
2751         ++NumDAGIselRetries;
2752 
2753         // Otherwise, we know that this case of the Scope is guaranteed to fail,
2754         // move to the next case.
2755         MatcherIndex = FailIndex;
2756       }
2757 
2758       // If the whole scope failed to match, bail.
2759       if (FailIndex == 0) break;
2760 
2761       // Push a MatchScope which indicates where to go if the first child fails
2762       // to match.
2763       MatchScope NewEntry;
2764       NewEntry.FailIndex = FailIndex;
2765       NewEntry.NodeStack.append(NodeStack.begin(), NodeStack.end());
2766       NewEntry.NumRecordedNodes = RecordedNodes.size();
2767       NewEntry.NumMatchedMemRefs = MatchedMemRefs.size();
2768       NewEntry.InputChain = InputChain;
2769       NewEntry.InputGlue = InputGlue;
2770       NewEntry.HasChainNodesMatched = !ChainNodesMatched.empty();
2771       NewEntry.HasGlueResultNodesMatched = !GlueResultNodesMatched.empty();
2772       MatchScopes.push_back(NewEntry);
2773       continue;
2774     }
2775     case OPC_RecordNode: {
2776       // Remember this node, it may end up being an operand in the pattern.
2777       SDNode *Parent = nullptr;
2778       if (NodeStack.size() > 1)
2779         Parent = NodeStack[NodeStack.size()-2].getNode();
2780       RecordedNodes.push_back(std::make_pair(N, Parent));
2781       continue;
2782     }
2783 
2784     case OPC_RecordChild0: case OPC_RecordChild1:
2785     case OPC_RecordChild2: case OPC_RecordChild3:
2786     case OPC_RecordChild4: case OPC_RecordChild5:
2787     case OPC_RecordChild6: case OPC_RecordChild7: {
2788       unsigned ChildNo = Opcode-OPC_RecordChild0;
2789       if (ChildNo >= N.getNumOperands())
2790         break;  // Match fails if out of range child #.
2791 
2792       RecordedNodes.push_back(std::make_pair(N->getOperand(ChildNo),
2793                                              N.getNode()));
2794       continue;
2795     }
2796     case OPC_RecordMemRef:
2797       MatchedMemRefs.push_back(cast<MemSDNode>(N)->getMemOperand());
2798       continue;
2799 
2800     case OPC_CaptureGlueInput:
2801       // If the current node has an input glue, capture it in InputGlue.
2802       if (N->getNumOperands() != 0 &&
2803           N->getOperand(N->getNumOperands()-1).getValueType() == MVT::Glue)
2804         InputGlue = N->getOperand(N->getNumOperands()-1);
2805       continue;
2806 
2807     case OPC_MoveChild: {
2808       unsigned ChildNo = MatcherTable[MatcherIndex++];
2809       if (ChildNo >= N.getNumOperands())
2810         break;  // Match fails if out of range child #.
2811       N = N.getOperand(ChildNo);
2812       NodeStack.push_back(N);
2813       continue;
2814     }
2815 
2816     case OPC_MoveParent:
2817       // Pop the current node off the NodeStack.
2818       NodeStack.pop_back();
2819       assert(!NodeStack.empty() && "Node stack imbalance!");
2820       N = NodeStack.back();
2821       continue;
2822 
2823     case OPC_CheckSame:
2824       if (!::CheckSame(MatcherTable, MatcherIndex, N, RecordedNodes)) break;
2825       continue;
2826 
2827     case OPC_CheckChild0Same: case OPC_CheckChild1Same:
2828     case OPC_CheckChild2Same: case OPC_CheckChild3Same:
2829       if (!::CheckChildSame(MatcherTable, MatcherIndex, N, RecordedNodes,
2830                             Opcode-OPC_CheckChild0Same))
2831         break;
2832       continue;
2833 
2834     case OPC_CheckPatternPredicate:
2835       if (!::CheckPatternPredicate(MatcherTable, MatcherIndex, *this)) break;
2836       continue;
2837     case OPC_CheckPredicate:
2838       if (!::CheckNodePredicate(MatcherTable, MatcherIndex, *this,
2839                                 N.getNode()))
2840         break;
2841       continue;
2842     case OPC_CheckComplexPat: {
2843       unsigned CPNum = MatcherTable[MatcherIndex++];
2844       unsigned RecNo = MatcherTable[MatcherIndex++];
2845       assert(RecNo < RecordedNodes.size() && "Invalid CheckComplexPat");
2846 
2847       // If target can modify DAG during matching, keep the matching state
2848       // consistent.
2849       std::unique_ptr<MatchStateUpdater> MSU;
2850       if (ComplexPatternFuncMutatesDAG())
2851         MSU.reset(new MatchStateUpdater(*CurDAG, RecordedNodes,
2852                                         MatchScopes));
2853 
2854       if (!CheckComplexPattern(NodeToMatch, RecordedNodes[RecNo].second,
2855                                RecordedNodes[RecNo].first, CPNum,
2856                                RecordedNodes))
2857         break;
2858       continue;
2859     }
2860     case OPC_CheckOpcode:
2861       if (!::CheckOpcode(MatcherTable, MatcherIndex, N.getNode())) break;
2862       continue;
2863 
2864     case OPC_CheckType:
2865       if (!::CheckType(MatcherTable, MatcherIndex, N, TLI,
2866                        CurDAG->getDataLayout()))
2867         break;
2868       continue;
2869 
2870     case OPC_SwitchOpcode: {
2871       unsigned CurNodeOpcode = N.getOpcode();
2872       unsigned SwitchStart = MatcherIndex-1; (void)SwitchStart;
2873       unsigned CaseSize;
2874       while (1) {
2875         // Get the size of this case.
2876         CaseSize = MatcherTable[MatcherIndex++];
2877         if (CaseSize & 128)
2878           CaseSize = GetVBR(CaseSize, MatcherTable, MatcherIndex);
2879         if (CaseSize == 0) break;
2880 
2881         uint16_t Opc = MatcherTable[MatcherIndex++];
2882         Opc |= (unsigned short)MatcherTable[MatcherIndex++] << 8;
2883 
2884         // If the opcode matches, then we will execute this case.
2885         if (CurNodeOpcode == Opc)
2886           break;
2887 
2888         // Otherwise, skip over this case.
2889         MatcherIndex += CaseSize;
2890       }
2891 
2892       // If no cases matched, bail out.
2893       if (CaseSize == 0) break;
2894 
2895       // Otherwise, execute the case we found.
2896       DEBUG(dbgs() << "  OpcodeSwitch from " << SwitchStart
2897                    << " to " << MatcherIndex << "\n");
2898       continue;
2899     }
2900 
2901     case OPC_SwitchType: {
2902       MVT CurNodeVT = N.getSimpleValueType();
2903       unsigned SwitchStart = MatcherIndex-1; (void)SwitchStart;
2904       unsigned CaseSize;
2905       while (1) {
2906         // Get the size of this case.
2907         CaseSize = MatcherTable[MatcherIndex++];
2908         if (CaseSize & 128)
2909           CaseSize = GetVBR(CaseSize, MatcherTable, MatcherIndex);
2910         if (CaseSize == 0) break;
2911 
2912         MVT CaseVT = (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
2913         if (CaseVT == MVT::iPTR)
2914           CaseVT = TLI->getPointerTy(CurDAG->getDataLayout());
2915 
2916         // If the VT matches, then we will execute this case.
2917         if (CurNodeVT == CaseVT)
2918           break;
2919 
2920         // Otherwise, skip over this case.
2921         MatcherIndex += CaseSize;
2922       }
2923 
2924       // If no cases matched, bail out.
2925       if (CaseSize == 0) break;
2926 
2927       // Otherwise, execute the case we found.
2928       DEBUG(dbgs() << "  TypeSwitch[" << EVT(CurNodeVT).getEVTString()
2929                    << "] from " << SwitchStart << " to " << MatcherIndex<<'\n');
2930       continue;
2931     }
2932     case OPC_CheckChild0Type: case OPC_CheckChild1Type:
2933     case OPC_CheckChild2Type: case OPC_CheckChild3Type:
2934     case OPC_CheckChild4Type: case OPC_CheckChild5Type:
2935     case OPC_CheckChild6Type: case OPC_CheckChild7Type:
2936       if (!::CheckChildType(MatcherTable, MatcherIndex, N, TLI,
2937                             CurDAG->getDataLayout(),
2938                             Opcode - OPC_CheckChild0Type))
2939         break;
2940       continue;
2941     case OPC_CheckCondCode:
2942       if (!::CheckCondCode(MatcherTable, MatcherIndex, N)) break;
2943       continue;
2944     case OPC_CheckValueType:
2945       if (!::CheckValueType(MatcherTable, MatcherIndex, N, TLI,
2946                             CurDAG->getDataLayout()))
2947         break;
2948       continue;
2949     case OPC_CheckInteger:
2950       if (!::CheckInteger(MatcherTable, MatcherIndex, N)) break;
2951       continue;
2952     case OPC_CheckChild0Integer: case OPC_CheckChild1Integer:
2953     case OPC_CheckChild2Integer: case OPC_CheckChild3Integer:
2954     case OPC_CheckChild4Integer:
2955       if (!::CheckChildInteger(MatcherTable, MatcherIndex, N,
2956                                Opcode-OPC_CheckChild0Integer)) break;
2957       continue;
2958     case OPC_CheckAndImm:
2959       if (!::CheckAndImm(MatcherTable, MatcherIndex, N, *this)) break;
2960       continue;
2961     case OPC_CheckOrImm:
2962       if (!::CheckOrImm(MatcherTable, MatcherIndex, N, *this)) break;
2963       continue;
2964 
2965     case OPC_CheckFoldableChainNode: {
2966       assert(NodeStack.size() != 1 && "No parent node");
2967       // Verify that all intermediate nodes between the root and this one have
2968       // a single use.
2969       bool HasMultipleUses = false;
2970       for (unsigned i = 1, e = NodeStack.size()-1; i != e; ++i)
2971         if (!NodeStack[i].hasOneUse()) {
2972           HasMultipleUses = true;
2973           break;
2974         }
2975       if (HasMultipleUses) break;
2976 
2977       // Check to see that the target thinks this is profitable to fold and that
2978       // we can fold it without inducing cycles in the graph.
2979       if (!IsProfitableToFold(N, NodeStack[NodeStack.size()-2].getNode(),
2980                               NodeToMatch) ||
2981           !IsLegalToFold(N, NodeStack[NodeStack.size()-2].getNode(),
2982                          NodeToMatch, OptLevel,
2983                          true/*We validate our own chains*/))
2984         break;
2985 
2986       continue;
2987     }
2988     case OPC_EmitInteger: {
2989       MVT::SimpleValueType VT =
2990         (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
2991       int64_t Val = MatcherTable[MatcherIndex++];
2992       if (Val & 128)
2993         Val = GetVBR(Val, MatcherTable, MatcherIndex);
2994       RecordedNodes.push_back(std::pair<SDValue, SDNode*>(
2995                               CurDAG->getTargetConstant(Val, SDLoc(NodeToMatch),
2996                                                         VT), nullptr));
2997       continue;
2998     }
2999     case OPC_EmitRegister: {
3000       MVT::SimpleValueType VT =
3001         (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
3002       unsigned RegNo = MatcherTable[MatcherIndex++];
3003       RecordedNodes.push_back(std::pair<SDValue, SDNode*>(
3004                               CurDAG->getRegister(RegNo, VT), nullptr));
3005       continue;
3006     }
3007     case OPC_EmitRegister2: {
3008       // For targets w/ more than 256 register names, the register enum
3009       // values are stored in two bytes in the matcher table (just like
3010       // opcodes).
3011       MVT::SimpleValueType VT =
3012         (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
3013       unsigned RegNo = MatcherTable[MatcherIndex++];
3014       RegNo |= MatcherTable[MatcherIndex++] << 8;
3015       RecordedNodes.push_back(std::pair<SDValue, SDNode*>(
3016                               CurDAG->getRegister(RegNo, VT), nullptr));
3017       continue;
3018     }
3019 
3020     case OPC_EmitConvertToTarget:  {
3021       // Convert from IMM/FPIMM to target version.
3022       unsigned RecNo = MatcherTable[MatcherIndex++];
3023       assert(RecNo < RecordedNodes.size() && "Invalid EmitConvertToTarget");
3024       SDValue Imm = RecordedNodes[RecNo].first;
3025 
3026       if (Imm->getOpcode() == ISD::Constant) {
3027         const ConstantInt *Val=cast<ConstantSDNode>(Imm)->getConstantIntValue();
3028         Imm = CurDAG->getConstant(*Val, SDLoc(NodeToMatch), Imm.getValueType(),
3029                                   true);
3030       } else if (Imm->getOpcode() == ISD::ConstantFP) {
3031         const ConstantFP *Val=cast<ConstantFPSDNode>(Imm)->getConstantFPValue();
3032         Imm = CurDAG->getConstantFP(*Val, SDLoc(NodeToMatch),
3033                                     Imm.getValueType(), true);
3034       }
3035 
3036       RecordedNodes.push_back(std::make_pair(Imm, RecordedNodes[RecNo].second));
3037       continue;
3038     }
3039 
3040     case OPC_EmitMergeInputChains1_0:    // OPC_EmitMergeInputChains, 1, 0
3041     case OPC_EmitMergeInputChains1_1: {  // OPC_EmitMergeInputChains, 1, 1
3042       // These are space-optimized forms of OPC_EmitMergeInputChains.
3043       assert(!InputChain.getNode() &&
3044              "EmitMergeInputChains should be the first chain producing node");
3045       assert(ChainNodesMatched.empty() &&
3046              "Should only have one EmitMergeInputChains per match");
3047 
3048       // Read all of the chained nodes.
3049       unsigned RecNo = Opcode == OPC_EmitMergeInputChains1_1;
3050       assert(RecNo < RecordedNodes.size() && "Invalid EmitMergeInputChains");
3051       ChainNodesMatched.push_back(RecordedNodes[RecNo].first.getNode());
3052 
3053       // FIXME: What if other value results of the node have uses not matched
3054       // by this pattern?
3055       if (ChainNodesMatched.back() != NodeToMatch &&
3056           !RecordedNodes[RecNo].first.hasOneUse()) {
3057         ChainNodesMatched.clear();
3058         break;
3059       }
3060 
3061       // Merge the input chains if they are not intra-pattern references.
3062       InputChain = HandleMergeInputChains(ChainNodesMatched, CurDAG);
3063 
3064       if (!InputChain.getNode())
3065         break;  // Failed to merge.
3066       continue;
3067     }
3068 
3069     case OPC_EmitMergeInputChains: {
3070       assert(!InputChain.getNode() &&
3071              "EmitMergeInputChains should be the first chain producing node");
3072       // This node gets a list of nodes we matched in the input that have
3073       // chains.  We want to token factor all of the input chains to these nodes
3074       // together.  However, if any of the input chains is actually one of the
3075       // nodes matched in this pattern, then we have an intra-match reference.
3076       // Ignore these because the newly token factored chain should not refer to
3077       // the old nodes.
3078       unsigned NumChains = MatcherTable[MatcherIndex++];
3079       assert(NumChains != 0 && "Can't TF zero chains");
3080 
3081       assert(ChainNodesMatched.empty() &&
3082              "Should only have one EmitMergeInputChains per match");
3083 
3084       // Read all of the chained nodes.
3085       for (unsigned i = 0; i != NumChains; ++i) {
3086         unsigned RecNo = MatcherTable[MatcherIndex++];
3087         assert(RecNo < RecordedNodes.size() && "Invalid EmitMergeInputChains");
3088         ChainNodesMatched.push_back(RecordedNodes[RecNo].first.getNode());
3089 
3090         // FIXME: What if other value results of the node have uses not matched
3091         // by this pattern?
3092         if (ChainNodesMatched.back() != NodeToMatch &&
3093             !RecordedNodes[RecNo].first.hasOneUse()) {
3094           ChainNodesMatched.clear();
3095           break;
3096         }
3097       }
3098 
3099       // If the inner loop broke out, the match fails.
3100       if (ChainNodesMatched.empty())
3101         break;
3102 
3103       // Merge the input chains if they are not intra-pattern references.
3104       InputChain = HandleMergeInputChains(ChainNodesMatched, CurDAG);
3105 
3106       if (!InputChain.getNode())
3107         break;  // Failed to merge.
3108 
3109       continue;
3110     }
3111 
3112     case OPC_EmitCopyToReg: {
3113       unsigned RecNo = MatcherTable[MatcherIndex++];
3114       assert(RecNo < RecordedNodes.size() && "Invalid EmitCopyToReg");
3115       unsigned DestPhysReg = MatcherTable[MatcherIndex++];
3116 
3117       if (!InputChain.getNode())
3118         InputChain = CurDAG->getEntryNode();
3119 
3120       InputChain = CurDAG->getCopyToReg(InputChain, SDLoc(NodeToMatch),
3121                                         DestPhysReg, RecordedNodes[RecNo].first,
3122                                         InputGlue);
3123 
3124       InputGlue = InputChain.getValue(1);
3125       continue;
3126     }
3127 
3128     case OPC_EmitNodeXForm: {
3129       unsigned XFormNo = MatcherTable[MatcherIndex++];
3130       unsigned RecNo = MatcherTable[MatcherIndex++];
3131       assert(RecNo < RecordedNodes.size() && "Invalid EmitNodeXForm");
3132       SDValue Res = RunSDNodeXForm(RecordedNodes[RecNo].first, XFormNo);
3133       RecordedNodes.push_back(std::pair<SDValue,SDNode*>(Res, nullptr));
3134       continue;
3135     }
3136 
3137     case OPC_EmitNode:
3138     case OPC_MorphNodeTo: {
3139       uint16_t TargetOpc = MatcherTable[MatcherIndex++];
3140       TargetOpc |= (unsigned short)MatcherTable[MatcherIndex++] << 8;
3141       unsigned EmitNodeInfo = MatcherTable[MatcherIndex++];
3142       // Get the result VT list.
3143       unsigned NumVTs = MatcherTable[MatcherIndex++];
3144       SmallVector<EVT, 4> VTs;
3145       for (unsigned i = 0; i != NumVTs; ++i) {
3146         MVT::SimpleValueType VT =
3147           (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
3148         if (VT == MVT::iPTR)
3149           VT = TLI->getPointerTy(CurDAG->getDataLayout()).SimpleTy;
3150         VTs.push_back(VT);
3151       }
3152 
3153       if (EmitNodeInfo & OPFL_Chain)
3154         VTs.push_back(MVT::Other);
3155       if (EmitNodeInfo & OPFL_GlueOutput)
3156         VTs.push_back(MVT::Glue);
3157 
3158       // This is hot code, so optimize the two most common cases of 1 and 2
3159       // results.
3160       SDVTList VTList;
3161       if (VTs.size() == 1)
3162         VTList = CurDAG->getVTList(VTs[0]);
3163       else if (VTs.size() == 2)
3164         VTList = CurDAG->getVTList(VTs[0], VTs[1]);
3165       else
3166         VTList = CurDAG->getVTList(VTs);
3167 
3168       // Get the operand list.
3169       unsigned NumOps = MatcherTable[MatcherIndex++];
3170       SmallVector<SDValue, 8> Ops;
3171       for (unsigned i = 0; i != NumOps; ++i) {
3172         unsigned RecNo = MatcherTable[MatcherIndex++];
3173         if (RecNo & 128)
3174           RecNo = GetVBR(RecNo, MatcherTable, MatcherIndex);
3175 
3176         assert(RecNo < RecordedNodes.size() && "Invalid EmitNode");
3177         Ops.push_back(RecordedNodes[RecNo].first);
3178       }
3179 
3180       // If there are variadic operands to add, handle them now.
3181       if (EmitNodeInfo & OPFL_VariadicInfo) {
3182         // Determine the start index to copy from.
3183         unsigned FirstOpToCopy = getNumFixedFromVariadicInfo(EmitNodeInfo);
3184         FirstOpToCopy += (EmitNodeInfo & OPFL_Chain) ? 1 : 0;
3185         assert(NodeToMatch->getNumOperands() >= FirstOpToCopy &&
3186                "Invalid variadic node");
3187         // Copy all of the variadic operands, not including a potential glue
3188         // input.
3189         for (unsigned i = FirstOpToCopy, e = NodeToMatch->getNumOperands();
3190              i != e; ++i) {
3191           SDValue V = NodeToMatch->getOperand(i);
3192           if (V.getValueType() == MVT::Glue) break;
3193           Ops.push_back(V);
3194         }
3195       }
3196 
3197       // If this has chain/glue inputs, add them.
3198       if (EmitNodeInfo & OPFL_Chain)
3199         Ops.push_back(InputChain);
3200       if ((EmitNodeInfo & OPFL_GlueInput) && InputGlue.getNode() != nullptr)
3201         Ops.push_back(InputGlue);
3202 
3203       // Create the node.
3204       SDNode *Res = nullptr;
3205       if (Opcode != OPC_MorphNodeTo) {
3206         // If this is a normal EmitNode command, just create the new node and
3207         // add the results to the RecordedNodes list.
3208         Res = CurDAG->getMachineNode(TargetOpc, SDLoc(NodeToMatch),
3209                                      VTList, Ops);
3210 
3211         // Add all the non-glue/non-chain results to the RecordedNodes list.
3212         for (unsigned i = 0, e = VTs.size(); i != e; ++i) {
3213           if (VTs[i] == MVT::Other || VTs[i] == MVT::Glue) break;
3214           RecordedNodes.push_back(std::pair<SDValue,SDNode*>(SDValue(Res, i),
3215                                                              nullptr));
3216         }
3217 
3218       } else if (NodeToMatch->getOpcode() != ISD::DELETED_NODE) {
3219         Res = MorphNode(NodeToMatch, TargetOpc, VTList, Ops, EmitNodeInfo);
3220       } else {
3221         // NodeToMatch was eliminated by CSE when the target changed the DAG.
3222         // We will visit the equivalent node later.
3223         DEBUG(dbgs() << "Node was eliminated by CSE\n");
3224         return nullptr;
3225       }
3226 
3227       // If the node had chain/glue results, update our notion of the current
3228       // chain and glue.
3229       if (EmitNodeInfo & OPFL_GlueOutput) {
3230         InputGlue = SDValue(Res, VTs.size()-1);
3231         if (EmitNodeInfo & OPFL_Chain)
3232           InputChain = SDValue(Res, VTs.size()-2);
3233       } else if (EmitNodeInfo & OPFL_Chain)
3234         InputChain = SDValue(Res, VTs.size()-1);
3235 
3236       // If the OPFL_MemRefs glue is set on this node, slap all of the
3237       // accumulated memrefs onto it.
3238       //
3239       // FIXME: This is vastly incorrect for patterns with multiple outputs
3240       // instructions that access memory and for ComplexPatterns that match
3241       // loads.
3242       if (EmitNodeInfo & OPFL_MemRefs) {
3243         // Only attach load or store memory operands if the generated
3244         // instruction may load or store.
3245         const MCInstrDesc &MCID = TII->get(TargetOpc);
3246         bool mayLoad = MCID.mayLoad();
3247         bool mayStore = MCID.mayStore();
3248 
3249         unsigned NumMemRefs = 0;
3250         for (SmallVectorImpl<MachineMemOperand *>::const_iterator I =
3251                MatchedMemRefs.begin(), E = MatchedMemRefs.end(); I != E; ++I) {
3252           if ((*I)->isLoad()) {
3253             if (mayLoad)
3254               ++NumMemRefs;
3255           } else if ((*I)->isStore()) {
3256             if (mayStore)
3257               ++NumMemRefs;
3258           } else {
3259             ++NumMemRefs;
3260           }
3261         }
3262 
3263         MachineSDNode::mmo_iterator MemRefs =
3264           MF->allocateMemRefsArray(NumMemRefs);
3265 
3266         MachineSDNode::mmo_iterator MemRefsPos = MemRefs;
3267         for (SmallVectorImpl<MachineMemOperand *>::const_iterator I =
3268                MatchedMemRefs.begin(), E = MatchedMemRefs.end(); I != E; ++I) {
3269           if ((*I)->isLoad()) {
3270             if (mayLoad)
3271               *MemRefsPos++ = *I;
3272           } else if ((*I)->isStore()) {
3273             if (mayStore)
3274               *MemRefsPos++ = *I;
3275           } else {
3276             *MemRefsPos++ = *I;
3277           }
3278         }
3279 
3280         cast<MachineSDNode>(Res)
3281           ->setMemRefs(MemRefs, MemRefs + NumMemRefs);
3282       }
3283 
3284       DEBUG(dbgs() << "  "
3285                    << (Opcode == OPC_MorphNodeTo ? "Morphed" : "Created")
3286                    << " node: "; Res->dump(CurDAG); dbgs() << "\n");
3287 
3288       // If this was a MorphNodeTo then we're completely done!
3289       if (Opcode == OPC_MorphNodeTo) {
3290         // Update chain and glue uses.
3291         UpdateChainsAndGlue(NodeToMatch, InputChain, ChainNodesMatched,
3292                             InputGlue, GlueResultNodesMatched, true);
3293         return Res;
3294       }
3295 
3296       continue;
3297     }
3298 
3299     case OPC_MarkGlueResults: {
3300       unsigned NumNodes = MatcherTable[MatcherIndex++];
3301 
3302       // Read and remember all the glue-result nodes.
3303       for (unsigned i = 0; i != NumNodes; ++i) {
3304         unsigned RecNo = MatcherTable[MatcherIndex++];
3305         if (RecNo & 128)
3306           RecNo = GetVBR(RecNo, MatcherTable, MatcherIndex);
3307 
3308         assert(RecNo < RecordedNodes.size() && "Invalid MarkGlueResults");
3309         GlueResultNodesMatched.push_back(RecordedNodes[RecNo].first.getNode());
3310       }
3311       continue;
3312     }
3313 
3314     case OPC_CompleteMatch: {
3315       // The match has been completed, and any new nodes (if any) have been
3316       // created.  Patch up references to the matched dag to use the newly
3317       // created nodes.
3318       unsigned NumResults = MatcherTable[MatcherIndex++];
3319 
3320       for (unsigned i = 0; i != NumResults; ++i) {
3321         unsigned ResSlot = MatcherTable[MatcherIndex++];
3322         if (ResSlot & 128)
3323           ResSlot = GetVBR(ResSlot, MatcherTable, MatcherIndex);
3324 
3325         assert(ResSlot < RecordedNodes.size() && "Invalid CompleteMatch");
3326         SDValue Res = RecordedNodes[ResSlot].first;
3327 
3328         assert(i < NodeToMatch->getNumValues() &&
3329                NodeToMatch->getValueType(i) != MVT::Other &&
3330                NodeToMatch->getValueType(i) != MVT::Glue &&
3331                "Invalid number of results to complete!");
3332         assert((NodeToMatch->getValueType(i) == Res.getValueType() ||
3333                 NodeToMatch->getValueType(i) == MVT::iPTR ||
3334                 Res.getValueType() == MVT::iPTR ||
3335                 NodeToMatch->getValueType(i).getSizeInBits() ==
3336                     Res.getValueType().getSizeInBits()) &&
3337                "invalid replacement");
3338         CurDAG->ReplaceAllUsesOfValueWith(SDValue(NodeToMatch, i), Res);
3339       }
3340 
3341       // If the root node defines glue, add it to the glue nodes to update list.
3342       if (NodeToMatch->getValueType(NodeToMatch->getNumValues()-1) == MVT::Glue)
3343         GlueResultNodesMatched.push_back(NodeToMatch);
3344 
3345       // Update chain and glue uses.
3346       UpdateChainsAndGlue(NodeToMatch, InputChain, ChainNodesMatched,
3347                           InputGlue, GlueResultNodesMatched, false);
3348 
3349       assert(NodeToMatch->use_empty() &&
3350              "Didn't replace all uses of the node?");
3351 
3352       // FIXME: We just return here, which interacts correctly with SelectRoot
3353       // above.  We should fix this to not return an SDNode* anymore.
3354       return nullptr;
3355     }
3356     }
3357 
3358     // If the code reached this point, then the match failed.  See if there is
3359     // another child to try in the current 'Scope', otherwise pop it until we
3360     // find a case to check.
3361     DEBUG(dbgs() << "  Match failed at index " << CurrentOpcodeIndex << "\n");
3362     ++NumDAGIselRetries;
3363     while (1) {
3364       if (MatchScopes.empty()) {
3365         CannotYetSelect(NodeToMatch);
3366         return nullptr;
3367       }
3368 
3369       // Restore the interpreter state back to the point where the scope was
3370       // formed.
3371       MatchScope &LastScope = MatchScopes.back();
3372       RecordedNodes.resize(LastScope.NumRecordedNodes);
3373       NodeStack.clear();
3374       NodeStack.append(LastScope.NodeStack.begin(), LastScope.NodeStack.end());
3375       N = NodeStack.back();
3376 
3377       if (LastScope.NumMatchedMemRefs != MatchedMemRefs.size())
3378         MatchedMemRefs.resize(LastScope.NumMatchedMemRefs);
3379       MatcherIndex = LastScope.FailIndex;
3380 
3381       DEBUG(dbgs() << "  Continuing at " << MatcherIndex << "\n");
3382 
3383       InputChain = LastScope.InputChain;
3384       InputGlue = LastScope.InputGlue;
3385       if (!LastScope.HasChainNodesMatched)
3386         ChainNodesMatched.clear();
3387       if (!LastScope.HasGlueResultNodesMatched)
3388         GlueResultNodesMatched.clear();
3389 
3390       // Check to see what the offset is at the new MatcherIndex.  If it is zero
3391       // we have reached the end of this scope, otherwise we have another child
3392       // in the current scope to try.
3393       unsigned NumToSkip = MatcherTable[MatcherIndex++];
3394       if (NumToSkip & 128)
3395         NumToSkip = GetVBR(NumToSkip, MatcherTable, MatcherIndex);
3396 
3397       // If we have another child in this scope to match, update FailIndex and
3398       // try it.
3399       if (NumToSkip != 0) {
3400         LastScope.FailIndex = MatcherIndex+NumToSkip;
3401         break;
3402       }
3403 
3404       // End of this scope, pop it and try the next child in the containing
3405       // scope.
3406       MatchScopes.pop_back();
3407     }
3408   }
3409 }
3410 
3411 
3412 
CannotYetSelect(SDNode * N)3413 void SelectionDAGISel::CannotYetSelect(SDNode *N) {
3414   std::string msg;
3415   raw_string_ostream Msg(msg);
3416   Msg << "Cannot select: ";
3417 
3418   if (N->getOpcode() != ISD::INTRINSIC_W_CHAIN &&
3419       N->getOpcode() != ISD::INTRINSIC_WO_CHAIN &&
3420       N->getOpcode() != ISD::INTRINSIC_VOID) {
3421     N->printrFull(Msg, CurDAG);
3422     Msg << "\nIn function: " << MF->getName();
3423   } else {
3424     bool HasInputChain = N->getOperand(0).getValueType() == MVT::Other;
3425     unsigned iid =
3426       cast<ConstantSDNode>(N->getOperand(HasInputChain))->getZExtValue();
3427     if (iid < Intrinsic::num_intrinsics)
3428       Msg << "intrinsic %" << Intrinsic::getName((Intrinsic::ID)iid);
3429     else if (const TargetIntrinsicInfo *TII = TM.getIntrinsicInfo())
3430       Msg << "target intrinsic %" << TII->getName(iid);
3431     else
3432       Msg << "unknown intrinsic #" << iid;
3433   }
3434   report_fatal_error(Msg.str());
3435 }
3436 
3437 char SelectionDAGISel::ID = 0;
3438