1 //===- InstCombineMulDivRem.cpp -------------------------------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the visit functions for mul, fmul, sdiv, udiv, fdiv,
11 // srem, urem, frem.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #include "InstCombineInternal.h"
16 #include "llvm/Analysis/InstructionSimplify.h"
17 #include "llvm/IR/IntrinsicInst.h"
18 #include "llvm/IR/PatternMatch.h"
19 using namespace llvm;
20 using namespace PatternMatch;
21
22 #define DEBUG_TYPE "instcombine"
23
24
25 /// The specific integer value is used in a context where it is known to be
26 /// non-zero. If this allows us to simplify the computation, do so and return
27 /// the new operand, otherwise return null.
simplifyValueKnownNonZero(Value * V,InstCombiner & IC,Instruction & CxtI)28 static Value *simplifyValueKnownNonZero(Value *V, InstCombiner &IC,
29 Instruction &CxtI) {
30 // If V has multiple uses, then we would have to do more analysis to determine
31 // if this is safe. For example, the use could be in dynamically unreached
32 // code.
33 if (!V->hasOneUse()) return nullptr;
34
35 bool MadeChange = false;
36
37 // ((1 << A) >>u B) --> (1 << (A-B))
38 // Because V cannot be zero, we know that B is less than A.
39 Value *A = nullptr, *B = nullptr, *One = nullptr;
40 if (match(V, m_LShr(m_OneUse(m_Shl(m_Value(One), m_Value(A))), m_Value(B))) &&
41 match(One, m_One())) {
42 A = IC.Builder->CreateSub(A, B);
43 return IC.Builder->CreateShl(One, A);
44 }
45
46 // (PowerOfTwo >>u B) --> isExact since shifting out the result would make it
47 // inexact. Similarly for <<.
48 if (BinaryOperator *I = dyn_cast<BinaryOperator>(V))
49 if (I->isLogicalShift() &&
50 isKnownToBeAPowerOfTwo(I->getOperand(0), IC.getDataLayout(), false, 0,
51 IC.getAssumptionCache(), &CxtI,
52 IC.getDominatorTree())) {
53 // We know that this is an exact/nuw shift and that the input is a
54 // non-zero context as well.
55 if (Value *V2 = simplifyValueKnownNonZero(I->getOperand(0), IC, CxtI)) {
56 I->setOperand(0, V2);
57 MadeChange = true;
58 }
59
60 if (I->getOpcode() == Instruction::LShr && !I->isExact()) {
61 I->setIsExact();
62 MadeChange = true;
63 }
64
65 if (I->getOpcode() == Instruction::Shl && !I->hasNoUnsignedWrap()) {
66 I->setHasNoUnsignedWrap();
67 MadeChange = true;
68 }
69 }
70
71 // TODO: Lots more we could do here:
72 // If V is a phi node, we can call this on each of its operands.
73 // "select cond, X, 0" can simplify to "X".
74
75 return MadeChange ? V : nullptr;
76 }
77
78
79 /// True if the multiply can not be expressed in an int this size.
MultiplyOverflows(const APInt & C1,const APInt & C2,APInt & Product,bool IsSigned)80 static bool MultiplyOverflows(const APInt &C1, const APInt &C2, APInt &Product,
81 bool IsSigned) {
82 bool Overflow;
83 if (IsSigned)
84 Product = C1.smul_ov(C2, Overflow);
85 else
86 Product = C1.umul_ov(C2, Overflow);
87
88 return Overflow;
89 }
90
91 /// \brief True if C2 is a multiple of C1. Quotient contains C2/C1.
IsMultiple(const APInt & C1,const APInt & C2,APInt & Quotient,bool IsSigned)92 static bool IsMultiple(const APInt &C1, const APInt &C2, APInt &Quotient,
93 bool IsSigned) {
94 assert(C1.getBitWidth() == C2.getBitWidth() &&
95 "Inconsistent width of constants!");
96
97 // Bail if we will divide by zero.
98 if (C2.isMinValue())
99 return false;
100
101 // Bail if we would divide INT_MIN by -1.
102 if (IsSigned && C1.isMinSignedValue() && C2.isAllOnesValue())
103 return false;
104
105 APInt Remainder(C1.getBitWidth(), /*Val=*/0ULL, IsSigned);
106 if (IsSigned)
107 APInt::sdivrem(C1, C2, Quotient, Remainder);
108 else
109 APInt::udivrem(C1, C2, Quotient, Remainder);
110
111 return Remainder.isMinValue();
112 }
113
114 /// \brief A helper routine of InstCombiner::visitMul().
115 ///
116 /// If C is a vector of known powers of 2, then this function returns
117 /// a new vector obtained from C replacing each element with its logBase2.
118 /// Return a null pointer otherwise.
getLogBase2Vector(ConstantDataVector * CV)119 static Constant *getLogBase2Vector(ConstantDataVector *CV) {
120 const APInt *IVal;
121 SmallVector<Constant *, 4> Elts;
122
123 for (unsigned I = 0, E = CV->getNumElements(); I != E; ++I) {
124 Constant *Elt = CV->getElementAsConstant(I);
125 if (!match(Elt, m_APInt(IVal)) || !IVal->isPowerOf2())
126 return nullptr;
127 Elts.push_back(ConstantInt::get(Elt->getType(), IVal->logBase2()));
128 }
129
130 return ConstantVector::get(Elts);
131 }
132
133 /// \brief Return true if we can prove that:
134 /// (mul LHS, RHS) === (mul nsw LHS, RHS)
WillNotOverflowSignedMul(Value * LHS,Value * RHS,Instruction & CxtI)135 bool InstCombiner::WillNotOverflowSignedMul(Value *LHS, Value *RHS,
136 Instruction &CxtI) {
137 // Multiplying n * m significant bits yields a result of n + m significant
138 // bits. If the total number of significant bits does not exceed the
139 // result bit width (minus 1), there is no overflow.
140 // This means if we have enough leading sign bits in the operands
141 // we can guarantee that the result does not overflow.
142 // Ref: "Hacker's Delight" by Henry Warren
143 unsigned BitWidth = LHS->getType()->getScalarSizeInBits();
144
145 // Note that underestimating the number of sign bits gives a more
146 // conservative answer.
147 unsigned SignBits =
148 ComputeNumSignBits(LHS, 0, &CxtI) + ComputeNumSignBits(RHS, 0, &CxtI);
149
150 // First handle the easy case: if we have enough sign bits there's
151 // definitely no overflow.
152 if (SignBits > BitWidth + 1)
153 return true;
154
155 // There are two ambiguous cases where there can be no overflow:
156 // SignBits == BitWidth + 1 and
157 // SignBits == BitWidth
158 // The second case is difficult to check, therefore we only handle the
159 // first case.
160 if (SignBits == BitWidth + 1) {
161 // It overflows only when both arguments are negative and the true
162 // product is exactly the minimum negative number.
163 // E.g. mul i16 with 17 sign bits: 0xff00 * 0xff80 = 0x8000
164 // For simplicity we just check if at least one side is not negative.
165 bool LHSNonNegative, LHSNegative;
166 bool RHSNonNegative, RHSNegative;
167 ComputeSignBit(LHS, LHSNonNegative, LHSNegative, /*Depth=*/0, &CxtI);
168 ComputeSignBit(RHS, RHSNonNegative, RHSNegative, /*Depth=*/0, &CxtI);
169 if (LHSNonNegative || RHSNonNegative)
170 return true;
171 }
172 return false;
173 }
174
visitMul(BinaryOperator & I)175 Instruction *InstCombiner::visitMul(BinaryOperator &I) {
176 bool Changed = SimplifyAssociativeOrCommutative(I);
177 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
178
179 if (Value *V = SimplifyVectorOp(I))
180 return ReplaceInstUsesWith(I, V);
181
182 if (Value *V = SimplifyMulInst(Op0, Op1, DL, TLI, DT, AC))
183 return ReplaceInstUsesWith(I, V);
184
185 if (Value *V = SimplifyUsingDistributiveLaws(I))
186 return ReplaceInstUsesWith(I, V);
187
188 // X * -1 == 0 - X
189 if (match(Op1, m_AllOnes())) {
190 BinaryOperator *BO = BinaryOperator::CreateNeg(Op0, I.getName());
191 if (I.hasNoSignedWrap())
192 BO->setHasNoSignedWrap();
193 return BO;
194 }
195
196 // Also allow combining multiply instructions on vectors.
197 {
198 Value *NewOp;
199 Constant *C1, *C2;
200 const APInt *IVal;
201 if (match(&I, m_Mul(m_Shl(m_Value(NewOp), m_Constant(C2)),
202 m_Constant(C1))) &&
203 match(C1, m_APInt(IVal))) {
204 // ((X << C2)*C1) == (X * (C1 << C2))
205 Constant *Shl = ConstantExpr::getShl(C1, C2);
206 BinaryOperator *Mul = cast<BinaryOperator>(I.getOperand(0));
207 BinaryOperator *BO = BinaryOperator::CreateMul(NewOp, Shl);
208 if (I.hasNoUnsignedWrap() && Mul->hasNoUnsignedWrap())
209 BO->setHasNoUnsignedWrap();
210 if (I.hasNoSignedWrap() && Mul->hasNoSignedWrap() &&
211 Shl->isNotMinSignedValue())
212 BO->setHasNoSignedWrap();
213 return BO;
214 }
215
216 if (match(&I, m_Mul(m_Value(NewOp), m_Constant(C1)))) {
217 Constant *NewCst = nullptr;
218 if (match(C1, m_APInt(IVal)) && IVal->isPowerOf2())
219 // Replace X*(2^C) with X << C, where C is either a scalar or a splat.
220 NewCst = ConstantInt::get(NewOp->getType(), IVal->logBase2());
221 else if (ConstantDataVector *CV = dyn_cast<ConstantDataVector>(C1))
222 // Replace X*(2^C) with X << C, where C is a vector of known
223 // constant powers of 2.
224 NewCst = getLogBase2Vector(CV);
225
226 if (NewCst) {
227 unsigned Width = NewCst->getType()->getPrimitiveSizeInBits();
228 BinaryOperator *Shl = BinaryOperator::CreateShl(NewOp, NewCst);
229
230 if (I.hasNoUnsignedWrap())
231 Shl->setHasNoUnsignedWrap();
232 if (I.hasNoSignedWrap()) {
233 uint64_t V;
234 if (match(NewCst, m_ConstantInt(V)) && V != Width - 1)
235 Shl->setHasNoSignedWrap();
236 }
237
238 return Shl;
239 }
240 }
241 }
242
243 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
244 // (Y - X) * (-(2**n)) -> (X - Y) * (2**n), for positive nonzero n
245 // (Y + const) * (-(2**n)) -> (-constY) * (2**n), for positive nonzero n
246 // The "* (2**n)" thus becomes a potential shifting opportunity.
247 {
248 const APInt & Val = CI->getValue();
249 const APInt &PosVal = Val.abs();
250 if (Val.isNegative() && PosVal.isPowerOf2()) {
251 Value *X = nullptr, *Y = nullptr;
252 if (Op0->hasOneUse()) {
253 ConstantInt *C1;
254 Value *Sub = nullptr;
255 if (match(Op0, m_Sub(m_Value(Y), m_Value(X))))
256 Sub = Builder->CreateSub(X, Y, "suba");
257 else if (match(Op0, m_Add(m_Value(Y), m_ConstantInt(C1))))
258 Sub = Builder->CreateSub(Builder->CreateNeg(C1), Y, "subc");
259 if (Sub)
260 return
261 BinaryOperator::CreateMul(Sub,
262 ConstantInt::get(Y->getType(), PosVal));
263 }
264 }
265 }
266 }
267
268 // Simplify mul instructions with a constant RHS.
269 if (isa<Constant>(Op1)) {
270 // Try to fold constant mul into select arguments.
271 if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
272 if (Instruction *R = FoldOpIntoSelect(I, SI))
273 return R;
274
275 if (isa<PHINode>(Op0))
276 if (Instruction *NV = FoldOpIntoPhi(I))
277 return NV;
278
279 // Canonicalize (X+C1)*CI -> X*CI+C1*CI.
280 {
281 Value *X;
282 Constant *C1;
283 if (match(Op0, m_OneUse(m_Add(m_Value(X), m_Constant(C1))))) {
284 Value *Mul = Builder->CreateMul(C1, Op1);
285 // Only go forward with the transform if C1*CI simplifies to a tidier
286 // constant.
287 if (!match(Mul, m_Mul(m_Value(), m_Value())))
288 return BinaryOperator::CreateAdd(Builder->CreateMul(X, Op1), Mul);
289 }
290 }
291 }
292
293 if (Value *Op0v = dyn_castNegVal(Op0)) { // -X * -Y = X*Y
294 if (Value *Op1v = dyn_castNegVal(Op1)) {
295 BinaryOperator *BO = BinaryOperator::CreateMul(Op0v, Op1v);
296 if (I.hasNoSignedWrap() &&
297 match(Op0, m_NSWSub(m_Value(), m_Value())) &&
298 match(Op1, m_NSWSub(m_Value(), m_Value())))
299 BO->setHasNoSignedWrap();
300 return BO;
301 }
302 }
303
304 // (X / Y) * Y = X - (X % Y)
305 // (X / Y) * -Y = (X % Y) - X
306 {
307 Value *Op1C = Op1;
308 BinaryOperator *BO = dyn_cast<BinaryOperator>(Op0);
309 if (!BO ||
310 (BO->getOpcode() != Instruction::UDiv &&
311 BO->getOpcode() != Instruction::SDiv)) {
312 Op1C = Op0;
313 BO = dyn_cast<BinaryOperator>(Op1);
314 }
315 Value *Neg = dyn_castNegVal(Op1C);
316 if (BO && BO->hasOneUse() &&
317 (BO->getOperand(1) == Op1C || BO->getOperand(1) == Neg) &&
318 (BO->getOpcode() == Instruction::UDiv ||
319 BO->getOpcode() == Instruction::SDiv)) {
320 Value *Op0BO = BO->getOperand(0), *Op1BO = BO->getOperand(1);
321
322 // If the division is exact, X % Y is zero, so we end up with X or -X.
323 if (PossiblyExactOperator *SDiv = dyn_cast<PossiblyExactOperator>(BO))
324 if (SDiv->isExact()) {
325 if (Op1BO == Op1C)
326 return ReplaceInstUsesWith(I, Op0BO);
327 return BinaryOperator::CreateNeg(Op0BO);
328 }
329
330 Value *Rem;
331 if (BO->getOpcode() == Instruction::UDiv)
332 Rem = Builder->CreateURem(Op0BO, Op1BO);
333 else
334 Rem = Builder->CreateSRem(Op0BO, Op1BO);
335 Rem->takeName(BO);
336
337 if (Op1BO == Op1C)
338 return BinaryOperator::CreateSub(Op0BO, Rem);
339 return BinaryOperator::CreateSub(Rem, Op0BO);
340 }
341 }
342
343 /// i1 mul -> i1 and.
344 if (I.getType()->getScalarType()->isIntegerTy(1))
345 return BinaryOperator::CreateAnd(Op0, Op1);
346
347 // X*(1 << Y) --> X << Y
348 // (1 << Y)*X --> X << Y
349 {
350 Value *Y;
351 BinaryOperator *BO = nullptr;
352 bool ShlNSW = false;
353 if (match(Op0, m_Shl(m_One(), m_Value(Y)))) {
354 BO = BinaryOperator::CreateShl(Op1, Y);
355 ShlNSW = cast<ShlOperator>(Op0)->hasNoSignedWrap();
356 } else if (match(Op1, m_Shl(m_One(), m_Value(Y)))) {
357 BO = BinaryOperator::CreateShl(Op0, Y);
358 ShlNSW = cast<ShlOperator>(Op1)->hasNoSignedWrap();
359 }
360 if (BO) {
361 if (I.hasNoUnsignedWrap())
362 BO->setHasNoUnsignedWrap();
363 if (I.hasNoSignedWrap() && ShlNSW)
364 BO->setHasNoSignedWrap();
365 return BO;
366 }
367 }
368
369 // If one of the operands of the multiply is a cast from a boolean value, then
370 // we know the bool is either zero or one, so this is a 'masking' multiply.
371 // X * Y (where Y is 0 or 1) -> X & (0-Y)
372 if (!I.getType()->isVectorTy()) {
373 // -2 is "-1 << 1" so it is all bits set except the low one.
374 APInt Negative2(I.getType()->getPrimitiveSizeInBits(), (uint64_t)-2, true);
375
376 Value *BoolCast = nullptr, *OtherOp = nullptr;
377 if (MaskedValueIsZero(Op0, Negative2, 0, &I))
378 BoolCast = Op0, OtherOp = Op1;
379 else if (MaskedValueIsZero(Op1, Negative2, 0, &I))
380 BoolCast = Op1, OtherOp = Op0;
381
382 if (BoolCast) {
383 Value *V = Builder->CreateSub(Constant::getNullValue(I.getType()),
384 BoolCast);
385 return BinaryOperator::CreateAnd(V, OtherOp);
386 }
387 }
388
389 if (!I.hasNoSignedWrap() && WillNotOverflowSignedMul(Op0, Op1, I)) {
390 Changed = true;
391 I.setHasNoSignedWrap(true);
392 }
393
394 if (!I.hasNoUnsignedWrap() &&
395 computeOverflowForUnsignedMul(Op0, Op1, &I) ==
396 OverflowResult::NeverOverflows) {
397 Changed = true;
398 I.setHasNoUnsignedWrap(true);
399 }
400
401 return Changed ? &I : nullptr;
402 }
403
404 /// Detect pattern log2(Y * 0.5) with corresponding fast math flags.
detectLog2OfHalf(Value * & Op,Value * & Y,IntrinsicInst * & Log2)405 static void detectLog2OfHalf(Value *&Op, Value *&Y, IntrinsicInst *&Log2) {
406 if (!Op->hasOneUse())
407 return;
408
409 IntrinsicInst *II = dyn_cast<IntrinsicInst>(Op);
410 if (!II)
411 return;
412 if (II->getIntrinsicID() != Intrinsic::log2 || !II->hasUnsafeAlgebra())
413 return;
414 Log2 = II;
415
416 Value *OpLog2Of = II->getArgOperand(0);
417 if (!OpLog2Of->hasOneUse())
418 return;
419
420 Instruction *I = dyn_cast<Instruction>(OpLog2Of);
421 if (!I)
422 return;
423 if (I->getOpcode() != Instruction::FMul || !I->hasUnsafeAlgebra())
424 return;
425
426 if (match(I->getOperand(0), m_SpecificFP(0.5)))
427 Y = I->getOperand(1);
428 else if (match(I->getOperand(1), m_SpecificFP(0.5)))
429 Y = I->getOperand(0);
430 }
431
isFiniteNonZeroFp(Constant * C)432 static bool isFiniteNonZeroFp(Constant *C) {
433 if (C->getType()->isVectorTy()) {
434 for (unsigned I = 0, E = C->getType()->getVectorNumElements(); I != E;
435 ++I) {
436 ConstantFP *CFP = dyn_cast_or_null<ConstantFP>(C->getAggregateElement(I));
437 if (!CFP || !CFP->getValueAPF().isFiniteNonZero())
438 return false;
439 }
440 return true;
441 }
442
443 return isa<ConstantFP>(C) &&
444 cast<ConstantFP>(C)->getValueAPF().isFiniteNonZero();
445 }
446
isNormalFp(Constant * C)447 static bool isNormalFp(Constant *C) {
448 if (C->getType()->isVectorTy()) {
449 for (unsigned I = 0, E = C->getType()->getVectorNumElements(); I != E;
450 ++I) {
451 ConstantFP *CFP = dyn_cast_or_null<ConstantFP>(C->getAggregateElement(I));
452 if (!CFP || !CFP->getValueAPF().isNormal())
453 return false;
454 }
455 return true;
456 }
457
458 return isa<ConstantFP>(C) && cast<ConstantFP>(C)->getValueAPF().isNormal();
459 }
460
461 /// Helper function of InstCombiner::visitFMul(BinaryOperator(). It returns
462 /// true iff the given value is FMul or FDiv with one and only one operand
463 /// being a normal constant (i.e. not Zero/NaN/Infinity).
isFMulOrFDivWithConstant(Value * V)464 static bool isFMulOrFDivWithConstant(Value *V) {
465 Instruction *I = dyn_cast<Instruction>(V);
466 if (!I || (I->getOpcode() != Instruction::FMul &&
467 I->getOpcode() != Instruction::FDiv))
468 return false;
469
470 Constant *C0 = dyn_cast<Constant>(I->getOperand(0));
471 Constant *C1 = dyn_cast<Constant>(I->getOperand(1));
472
473 if (C0 && C1)
474 return false;
475
476 return (C0 && isFiniteNonZeroFp(C0)) || (C1 && isFiniteNonZeroFp(C1));
477 }
478
479 /// foldFMulConst() is a helper routine of InstCombiner::visitFMul().
480 /// The input \p FMulOrDiv is a FMul/FDiv with one and only one operand
481 /// being a constant (i.e. isFMulOrFDivWithConstant(FMulOrDiv) == true).
482 /// This function is to simplify "FMulOrDiv * C" and returns the
483 /// resulting expression. Note that this function could return NULL in
484 /// case the constants cannot be folded into a normal floating-point.
485 ///
foldFMulConst(Instruction * FMulOrDiv,Constant * C,Instruction * InsertBefore)486 Value *InstCombiner::foldFMulConst(Instruction *FMulOrDiv, Constant *C,
487 Instruction *InsertBefore) {
488 assert(isFMulOrFDivWithConstant(FMulOrDiv) && "V is invalid");
489
490 Value *Opnd0 = FMulOrDiv->getOperand(0);
491 Value *Opnd1 = FMulOrDiv->getOperand(1);
492
493 Constant *C0 = dyn_cast<Constant>(Opnd0);
494 Constant *C1 = dyn_cast<Constant>(Opnd1);
495
496 BinaryOperator *R = nullptr;
497
498 // (X * C0) * C => X * (C0*C)
499 if (FMulOrDiv->getOpcode() == Instruction::FMul) {
500 Constant *F = ConstantExpr::getFMul(C1 ? C1 : C0, C);
501 if (isNormalFp(F))
502 R = BinaryOperator::CreateFMul(C1 ? Opnd0 : Opnd1, F);
503 } else {
504 if (C0) {
505 // (C0 / X) * C => (C0 * C) / X
506 if (FMulOrDiv->hasOneUse()) {
507 // It would otherwise introduce another div.
508 Constant *F = ConstantExpr::getFMul(C0, C);
509 if (isNormalFp(F))
510 R = BinaryOperator::CreateFDiv(F, Opnd1);
511 }
512 } else {
513 // (X / C1) * C => X * (C/C1) if C/C1 is not a denormal
514 Constant *F = ConstantExpr::getFDiv(C, C1);
515 if (isNormalFp(F)) {
516 R = BinaryOperator::CreateFMul(Opnd0, F);
517 } else {
518 // (X / C1) * C => X / (C1/C)
519 Constant *F = ConstantExpr::getFDiv(C1, C);
520 if (isNormalFp(F))
521 R = BinaryOperator::CreateFDiv(Opnd0, F);
522 }
523 }
524 }
525
526 if (R) {
527 R->setHasUnsafeAlgebra(true);
528 InsertNewInstWith(R, *InsertBefore);
529 }
530
531 return R;
532 }
533
visitFMul(BinaryOperator & I)534 Instruction *InstCombiner::visitFMul(BinaryOperator &I) {
535 bool Changed = SimplifyAssociativeOrCommutative(I);
536 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
537
538 if (Value *V = SimplifyVectorOp(I))
539 return ReplaceInstUsesWith(I, V);
540
541 if (isa<Constant>(Op0))
542 std::swap(Op0, Op1);
543
544 if (Value *V =
545 SimplifyFMulInst(Op0, Op1, I.getFastMathFlags(), DL, TLI, DT, AC))
546 return ReplaceInstUsesWith(I, V);
547
548 bool AllowReassociate = I.hasUnsafeAlgebra();
549
550 // Simplify mul instructions with a constant RHS.
551 if (isa<Constant>(Op1)) {
552 // Try to fold constant mul into select arguments.
553 if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
554 if (Instruction *R = FoldOpIntoSelect(I, SI))
555 return R;
556
557 if (isa<PHINode>(Op0))
558 if (Instruction *NV = FoldOpIntoPhi(I))
559 return NV;
560
561 // (fmul X, -1.0) --> (fsub -0.0, X)
562 if (match(Op1, m_SpecificFP(-1.0))) {
563 Constant *NegZero = ConstantFP::getNegativeZero(Op1->getType());
564 Instruction *RI = BinaryOperator::CreateFSub(NegZero, Op0);
565 RI->copyFastMathFlags(&I);
566 return RI;
567 }
568
569 Constant *C = cast<Constant>(Op1);
570 if (AllowReassociate && isFiniteNonZeroFp(C)) {
571 // Let MDC denote an expression in one of these forms:
572 // X * C, C/X, X/C, where C is a constant.
573 //
574 // Try to simplify "MDC * Constant"
575 if (isFMulOrFDivWithConstant(Op0))
576 if (Value *V = foldFMulConst(cast<Instruction>(Op0), C, &I))
577 return ReplaceInstUsesWith(I, V);
578
579 // (MDC +/- C1) * C => (MDC * C) +/- (C1 * C)
580 Instruction *FAddSub = dyn_cast<Instruction>(Op0);
581 if (FAddSub &&
582 (FAddSub->getOpcode() == Instruction::FAdd ||
583 FAddSub->getOpcode() == Instruction::FSub)) {
584 Value *Opnd0 = FAddSub->getOperand(0);
585 Value *Opnd1 = FAddSub->getOperand(1);
586 Constant *C0 = dyn_cast<Constant>(Opnd0);
587 Constant *C1 = dyn_cast<Constant>(Opnd1);
588 bool Swap = false;
589 if (C0) {
590 std::swap(C0, C1);
591 std::swap(Opnd0, Opnd1);
592 Swap = true;
593 }
594
595 if (C1 && isFiniteNonZeroFp(C1) && isFMulOrFDivWithConstant(Opnd0)) {
596 Value *M1 = ConstantExpr::getFMul(C1, C);
597 Value *M0 = isNormalFp(cast<Constant>(M1)) ?
598 foldFMulConst(cast<Instruction>(Opnd0), C, &I) :
599 nullptr;
600 if (M0 && M1) {
601 if (Swap && FAddSub->getOpcode() == Instruction::FSub)
602 std::swap(M0, M1);
603
604 Instruction *RI = (FAddSub->getOpcode() == Instruction::FAdd)
605 ? BinaryOperator::CreateFAdd(M0, M1)
606 : BinaryOperator::CreateFSub(M0, M1);
607 RI->copyFastMathFlags(&I);
608 return RI;
609 }
610 }
611 }
612 }
613 }
614
615 // sqrt(X) * sqrt(X) -> X
616 if (AllowReassociate && (Op0 == Op1))
617 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Op0))
618 if (II->getIntrinsicID() == Intrinsic::sqrt)
619 return ReplaceInstUsesWith(I, II->getOperand(0));
620
621 // Under unsafe algebra do:
622 // X * log2(0.5*Y) = X*log2(Y) - X
623 if (AllowReassociate) {
624 Value *OpX = nullptr;
625 Value *OpY = nullptr;
626 IntrinsicInst *Log2;
627 detectLog2OfHalf(Op0, OpY, Log2);
628 if (OpY) {
629 OpX = Op1;
630 } else {
631 detectLog2OfHalf(Op1, OpY, Log2);
632 if (OpY) {
633 OpX = Op0;
634 }
635 }
636 // if pattern detected emit alternate sequence
637 if (OpX && OpY) {
638 BuilderTy::FastMathFlagGuard Guard(*Builder);
639 Builder->SetFastMathFlags(Log2->getFastMathFlags());
640 Log2->setArgOperand(0, OpY);
641 Value *FMulVal = Builder->CreateFMul(OpX, Log2);
642 Value *FSub = Builder->CreateFSub(FMulVal, OpX);
643 FSub->takeName(&I);
644 return ReplaceInstUsesWith(I, FSub);
645 }
646 }
647
648 // Handle symmetric situation in a 2-iteration loop
649 Value *Opnd0 = Op0;
650 Value *Opnd1 = Op1;
651 for (int i = 0; i < 2; i++) {
652 bool IgnoreZeroSign = I.hasNoSignedZeros();
653 if (BinaryOperator::isFNeg(Opnd0, IgnoreZeroSign)) {
654 BuilderTy::FastMathFlagGuard Guard(*Builder);
655 Builder->SetFastMathFlags(I.getFastMathFlags());
656
657 Value *N0 = dyn_castFNegVal(Opnd0, IgnoreZeroSign);
658 Value *N1 = dyn_castFNegVal(Opnd1, IgnoreZeroSign);
659
660 // -X * -Y => X*Y
661 if (N1) {
662 Value *FMul = Builder->CreateFMul(N0, N1);
663 FMul->takeName(&I);
664 return ReplaceInstUsesWith(I, FMul);
665 }
666
667 if (Opnd0->hasOneUse()) {
668 // -X * Y => -(X*Y) (Promote negation as high as possible)
669 Value *T = Builder->CreateFMul(N0, Opnd1);
670 Value *Neg = Builder->CreateFNeg(T);
671 Neg->takeName(&I);
672 return ReplaceInstUsesWith(I, Neg);
673 }
674 }
675
676 // (X*Y) * X => (X*X) * Y where Y != X
677 // The purpose is two-fold:
678 // 1) to form a power expression (of X).
679 // 2) potentially shorten the critical path: After transformation, the
680 // latency of the instruction Y is amortized by the expression of X*X,
681 // and therefore Y is in a "less critical" position compared to what it
682 // was before the transformation.
683 //
684 if (AllowReassociate) {
685 Value *Opnd0_0, *Opnd0_1;
686 if (Opnd0->hasOneUse() &&
687 match(Opnd0, m_FMul(m_Value(Opnd0_0), m_Value(Opnd0_1)))) {
688 Value *Y = nullptr;
689 if (Opnd0_0 == Opnd1 && Opnd0_1 != Opnd1)
690 Y = Opnd0_1;
691 else if (Opnd0_1 == Opnd1 && Opnd0_0 != Opnd1)
692 Y = Opnd0_0;
693
694 if (Y) {
695 BuilderTy::FastMathFlagGuard Guard(*Builder);
696 Builder->SetFastMathFlags(I.getFastMathFlags());
697 Value *T = Builder->CreateFMul(Opnd1, Opnd1);
698
699 Value *R = Builder->CreateFMul(T, Y);
700 R->takeName(&I);
701 return ReplaceInstUsesWith(I, R);
702 }
703 }
704 }
705
706 if (!isa<Constant>(Op1))
707 std::swap(Opnd0, Opnd1);
708 else
709 break;
710 }
711
712 return Changed ? &I : nullptr;
713 }
714
715 /// Try to fold a divide or remainder of a select instruction.
SimplifyDivRemOfSelect(BinaryOperator & I)716 bool InstCombiner::SimplifyDivRemOfSelect(BinaryOperator &I) {
717 SelectInst *SI = cast<SelectInst>(I.getOperand(1));
718
719 // div/rem X, (Cond ? 0 : Y) -> div/rem X, Y
720 int NonNullOperand = -1;
721 if (Constant *ST = dyn_cast<Constant>(SI->getOperand(1)))
722 if (ST->isNullValue())
723 NonNullOperand = 2;
724 // div/rem X, (Cond ? Y : 0) -> div/rem X, Y
725 if (Constant *ST = dyn_cast<Constant>(SI->getOperand(2)))
726 if (ST->isNullValue())
727 NonNullOperand = 1;
728
729 if (NonNullOperand == -1)
730 return false;
731
732 Value *SelectCond = SI->getOperand(0);
733
734 // Change the div/rem to use 'Y' instead of the select.
735 I.setOperand(1, SI->getOperand(NonNullOperand));
736
737 // Okay, we know we replace the operand of the div/rem with 'Y' with no
738 // problem. However, the select, or the condition of the select may have
739 // multiple uses. Based on our knowledge that the operand must be non-zero,
740 // propagate the known value for the select into other uses of it, and
741 // propagate a known value of the condition into its other users.
742
743 // If the select and condition only have a single use, don't bother with this,
744 // early exit.
745 if (SI->use_empty() && SelectCond->hasOneUse())
746 return true;
747
748 // Scan the current block backward, looking for other uses of SI.
749 BasicBlock::iterator BBI = I.getIterator(), BBFront = I.getParent()->begin();
750
751 while (BBI != BBFront) {
752 --BBI;
753 // If we found a call to a function, we can't assume it will return, so
754 // information from below it cannot be propagated above it.
755 if (isa<CallInst>(BBI) && !isa<IntrinsicInst>(BBI))
756 break;
757
758 // Replace uses of the select or its condition with the known values.
759 for (Instruction::op_iterator I = BBI->op_begin(), E = BBI->op_end();
760 I != E; ++I) {
761 if (*I == SI) {
762 *I = SI->getOperand(NonNullOperand);
763 Worklist.Add(&*BBI);
764 } else if (*I == SelectCond) {
765 *I = Builder->getInt1(NonNullOperand == 1);
766 Worklist.Add(&*BBI);
767 }
768 }
769
770 // If we past the instruction, quit looking for it.
771 if (&*BBI == SI)
772 SI = nullptr;
773 if (&*BBI == SelectCond)
774 SelectCond = nullptr;
775
776 // If we ran out of things to eliminate, break out of the loop.
777 if (!SelectCond && !SI)
778 break;
779
780 }
781 return true;
782 }
783
784
785 /// This function implements the transforms common to both integer division
786 /// instructions (udiv and sdiv). It is called by the visitors to those integer
787 /// division instructions.
788 /// @brief Common integer divide transforms
commonIDivTransforms(BinaryOperator & I)789 Instruction *InstCombiner::commonIDivTransforms(BinaryOperator &I) {
790 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
791
792 // The RHS is known non-zero.
793 if (Value *V = simplifyValueKnownNonZero(I.getOperand(1), *this, I)) {
794 I.setOperand(1, V);
795 return &I;
796 }
797
798 // Handle cases involving: [su]div X, (select Cond, Y, Z)
799 // This does not apply for fdiv.
800 if (isa<SelectInst>(Op1) && SimplifyDivRemOfSelect(I))
801 return &I;
802
803 if (Instruction *LHS = dyn_cast<Instruction>(Op0)) {
804 const APInt *C2;
805 if (match(Op1, m_APInt(C2))) {
806 Value *X;
807 const APInt *C1;
808 bool IsSigned = I.getOpcode() == Instruction::SDiv;
809
810 // (X / C1) / C2 -> X / (C1*C2)
811 if ((IsSigned && match(LHS, m_SDiv(m_Value(X), m_APInt(C1)))) ||
812 (!IsSigned && match(LHS, m_UDiv(m_Value(X), m_APInt(C1))))) {
813 APInt Product(C1->getBitWidth(), /*Val=*/0ULL, IsSigned);
814 if (!MultiplyOverflows(*C1, *C2, Product, IsSigned))
815 return BinaryOperator::Create(I.getOpcode(), X,
816 ConstantInt::get(I.getType(), Product));
817 }
818
819 if ((IsSigned && match(LHS, m_NSWMul(m_Value(X), m_APInt(C1)))) ||
820 (!IsSigned && match(LHS, m_NUWMul(m_Value(X), m_APInt(C1))))) {
821 APInt Quotient(C1->getBitWidth(), /*Val=*/0ULL, IsSigned);
822
823 // (X * C1) / C2 -> X / (C2 / C1) if C2 is a multiple of C1.
824 if (IsMultiple(*C2, *C1, Quotient, IsSigned)) {
825 BinaryOperator *BO = BinaryOperator::Create(
826 I.getOpcode(), X, ConstantInt::get(X->getType(), Quotient));
827 BO->setIsExact(I.isExact());
828 return BO;
829 }
830
831 // (X * C1) / C2 -> X * (C1 / C2) if C1 is a multiple of C2.
832 if (IsMultiple(*C1, *C2, Quotient, IsSigned)) {
833 BinaryOperator *BO = BinaryOperator::Create(
834 Instruction::Mul, X, ConstantInt::get(X->getType(), Quotient));
835 BO->setHasNoUnsignedWrap(
836 !IsSigned &&
837 cast<OverflowingBinaryOperator>(LHS)->hasNoUnsignedWrap());
838 BO->setHasNoSignedWrap(
839 cast<OverflowingBinaryOperator>(LHS)->hasNoSignedWrap());
840 return BO;
841 }
842 }
843
844 if ((IsSigned && match(LHS, m_NSWShl(m_Value(X), m_APInt(C1))) &&
845 *C1 != C1->getBitWidth() - 1) ||
846 (!IsSigned && match(LHS, m_NUWShl(m_Value(X), m_APInt(C1))))) {
847 APInt Quotient(C1->getBitWidth(), /*Val=*/0ULL, IsSigned);
848 APInt C1Shifted = APInt::getOneBitSet(
849 C1->getBitWidth(), static_cast<unsigned>(C1->getLimitedValue()));
850
851 // (X << C1) / C2 -> X / (C2 >> C1) if C2 is a multiple of C1.
852 if (IsMultiple(*C2, C1Shifted, Quotient, IsSigned)) {
853 BinaryOperator *BO = BinaryOperator::Create(
854 I.getOpcode(), X, ConstantInt::get(X->getType(), Quotient));
855 BO->setIsExact(I.isExact());
856 return BO;
857 }
858
859 // (X << C1) / C2 -> X * (C2 >> C1) if C1 is a multiple of C2.
860 if (IsMultiple(C1Shifted, *C2, Quotient, IsSigned)) {
861 BinaryOperator *BO = BinaryOperator::Create(
862 Instruction::Mul, X, ConstantInt::get(X->getType(), Quotient));
863 BO->setHasNoUnsignedWrap(
864 !IsSigned &&
865 cast<OverflowingBinaryOperator>(LHS)->hasNoUnsignedWrap());
866 BO->setHasNoSignedWrap(
867 cast<OverflowingBinaryOperator>(LHS)->hasNoSignedWrap());
868 return BO;
869 }
870 }
871
872 if (*C2 != 0) { // avoid X udiv 0
873 if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
874 if (Instruction *R = FoldOpIntoSelect(I, SI))
875 return R;
876 if (isa<PHINode>(Op0))
877 if (Instruction *NV = FoldOpIntoPhi(I))
878 return NV;
879 }
880 }
881 }
882
883 if (ConstantInt *One = dyn_cast<ConstantInt>(Op0)) {
884 if (One->isOne() && !I.getType()->isIntegerTy(1)) {
885 bool isSigned = I.getOpcode() == Instruction::SDiv;
886 if (isSigned) {
887 // If Op1 is 0 then it's undefined behaviour, if Op1 is 1 then the
888 // result is one, if Op1 is -1 then the result is minus one, otherwise
889 // it's zero.
890 Value *Inc = Builder->CreateAdd(Op1, One);
891 Value *Cmp = Builder->CreateICmpULT(
892 Inc, ConstantInt::get(I.getType(), 3));
893 return SelectInst::Create(Cmp, Op1, ConstantInt::get(I.getType(), 0));
894 } else {
895 // If Op1 is 0 then it's undefined behaviour. If Op1 is 1 then the
896 // result is one, otherwise it's zero.
897 return new ZExtInst(Builder->CreateICmpEQ(Op1, One), I.getType());
898 }
899 }
900 }
901
902 // See if we can fold away this div instruction.
903 if (SimplifyDemandedInstructionBits(I))
904 return &I;
905
906 // (X - (X rem Y)) / Y -> X / Y; usually originates as ((X / Y) * Y) / Y
907 Value *X = nullptr, *Z = nullptr;
908 if (match(Op0, m_Sub(m_Value(X), m_Value(Z)))) { // (X - Z) / Y; Y = Op1
909 bool isSigned = I.getOpcode() == Instruction::SDiv;
910 if ((isSigned && match(Z, m_SRem(m_Specific(X), m_Specific(Op1)))) ||
911 (!isSigned && match(Z, m_URem(m_Specific(X), m_Specific(Op1)))))
912 return BinaryOperator::Create(I.getOpcode(), X, Op1);
913 }
914
915 return nullptr;
916 }
917
918 /// dyn_castZExtVal - Checks if V is a zext or constant that can
919 /// be truncated to Ty without losing bits.
dyn_castZExtVal(Value * V,Type * Ty)920 static Value *dyn_castZExtVal(Value *V, Type *Ty) {
921 if (ZExtInst *Z = dyn_cast<ZExtInst>(V)) {
922 if (Z->getSrcTy() == Ty)
923 return Z->getOperand(0);
924 } else if (ConstantInt *C = dyn_cast<ConstantInt>(V)) {
925 if (C->getValue().getActiveBits() <= cast<IntegerType>(Ty)->getBitWidth())
926 return ConstantExpr::getTrunc(C, Ty);
927 }
928 return nullptr;
929 }
930
931 namespace {
932 const unsigned MaxDepth = 6;
933 typedef Instruction *(*FoldUDivOperandCb)(Value *Op0, Value *Op1,
934 const BinaryOperator &I,
935 InstCombiner &IC);
936
937 /// \brief Used to maintain state for visitUDivOperand().
938 struct UDivFoldAction {
939 FoldUDivOperandCb FoldAction; ///< Informs visitUDiv() how to fold this
940 ///< operand. This can be zero if this action
941 ///< joins two actions together.
942
943 Value *OperandToFold; ///< Which operand to fold.
944 union {
945 Instruction *FoldResult; ///< The instruction returned when FoldAction is
946 ///< invoked.
947
948 size_t SelectLHSIdx; ///< Stores the LHS action index if this action
949 ///< joins two actions together.
950 };
951
UDivFoldAction__anon33be398a0111::UDivFoldAction952 UDivFoldAction(FoldUDivOperandCb FA, Value *InputOperand)
953 : FoldAction(FA), OperandToFold(InputOperand), FoldResult(nullptr) {}
UDivFoldAction__anon33be398a0111::UDivFoldAction954 UDivFoldAction(FoldUDivOperandCb FA, Value *InputOperand, size_t SLHS)
955 : FoldAction(FA), OperandToFold(InputOperand), SelectLHSIdx(SLHS) {}
956 };
957 }
958
959 // X udiv 2^C -> X >> C
foldUDivPow2Cst(Value * Op0,Value * Op1,const BinaryOperator & I,InstCombiner & IC)960 static Instruction *foldUDivPow2Cst(Value *Op0, Value *Op1,
961 const BinaryOperator &I, InstCombiner &IC) {
962 const APInt &C = cast<Constant>(Op1)->getUniqueInteger();
963 BinaryOperator *LShr = BinaryOperator::CreateLShr(
964 Op0, ConstantInt::get(Op0->getType(), C.logBase2()));
965 if (I.isExact())
966 LShr->setIsExact();
967 return LShr;
968 }
969
970 // X udiv C, where C >= signbit
foldUDivNegCst(Value * Op0,Value * Op1,const BinaryOperator & I,InstCombiner & IC)971 static Instruction *foldUDivNegCst(Value *Op0, Value *Op1,
972 const BinaryOperator &I, InstCombiner &IC) {
973 Value *ICI = IC.Builder->CreateICmpULT(Op0, cast<ConstantInt>(Op1));
974
975 return SelectInst::Create(ICI, Constant::getNullValue(I.getType()),
976 ConstantInt::get(I.getType(), 1));
977 }
978
979 // X udiv (C1 << N), where C1 is "1<<C2" --> X >> (N+C2)
foldUDivShl(Value * Op0,Value * Op1,const BinaryOperator & I,InstCombiner & IC)980 static Instruction *foldUDivShl(Value *Op0, Value *Op1, const BinaryOperator &I,
981 InstCombiner &IC) {
982 Instruction *ShiftLeft = cast<Instruction>(Op1);
983 if (isa<ZExtInst>(ShiftLeft))
984 ShiftLeft = cast<Instruction>(ShiftLeft->getOperand(0));
985
986 const APInt &CI =
987 cast<Constant>(ShiftLeft->getOperand(0))->getUniqueInteger();
988 Value *N = ShiftLeft->getOperand(1);
989 if (CI != 1)
990 N = IC.Builder->CreateAdd(N, ConstantInt::get(N->getType(), CI.logBase2()));
991 if (ZExtInst *Z = dyn_cast<ZExtInst>(Op1))
992 N = IC.Builder->CreateZExt(N, Z->getDestTy());
993 BinaryOperator *LShr = BinaryOperator::CreateLShr(Op0, N);
994 if (I.isExact())
995 LShr->setIsExact();
996 return LShr;
997 }
998
999 // \brief Recursively visits the possible right hand operands of a udiv
1000 // instruction, seeing through select instructions, to determine if we can
1001 // replace the udiv with something simpler. If we find that an operand is not
1002 // able to simplify the udiv, we abort the entire transformation.
visitUDivOperand(Value * Op0,Value * Op1,const BinaryOperator & I,SmallVectorImpl<UDivFoldAction> & Actions,unsigned Depth=0)1003 static size_t visitUDivOperand(Value *Op0, Value *Op1, const BinaryOperator &I,
1004 SmallVectorImpl<UDivFoldAction> &Actions,
1005 unsigned Depth = 0) {
1006 // Check to see if this is an unsigned division with an exact power of 2,
1007 // if so, convert to a right shift.
1008 if (match(Op1, m_Power2())) {
1009 Actions.push_back(UDivFoldAction(foldUDivPow2Cst, Op1));
1010 return Actions.size();
1011 }
1012
1013 if (ConstantInt *C = dyn_cast<ConstantInt>(Op1))
1014 // X udiv C, where C >= signbit
1015 if (C->getValue().isNegative()) {
1016 Actions.push_back(UDivFoldAction(foldUDivNegCst, C));
1017 return Actions.size();
1018 }
1019
1020 // X udiv (C1 << N), where C1 is "1<<C2" --> X >> (N+C2)
1021 if (match(Op1, m_Shl(m_Power2(), m_Value())) ||
1022 match(Op1, m_ZExt(m_Shl(m_Power2(), m_Value())))) {
1023 Actions.push_back(UDivFoldAction(foldUDivShl, Op1));
1024 return Actions.size();
1025 }
1026
1027 // The remaining tests are all recursive, so bail out if we hit the limit.
1028 if (Depth++ == MaxDepth)
1029 return 0;
1030
1031 if (SelectInst *SI = dyn_cast<SelectInst>(Op1))
1032 if (size_t LHSIdx =
1033 visitUDivOperand(Op0, SI->getOperand(1), I, Actions, Depth))
1034 if (visitUDivOperand(Op0, SI->getOperand(2), I, Actions, Depth)) {
1035 Actions.push_back(UDivFoldAction(nullptr, Op1, LHSIdx - 1));
1036 return Actions.size();
1037 }
1038
1039 return 0;
1040 }
1041
visitUDiv(BinaryOperator & I)1042 Instruction *InstCombiner::visitUDiv(BinaryOperator &I) {
1043 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
1044
1045 if (Value *V = SimplifyVectorOp(I))
1046 return ReplaceInstUsesWith(I, V);
1047
1048 if (Value *V = SimplifyUDivInst(Op0, Op1, DL, TLI, DT, AC))
1049 return ReplaceInstUsesWith(I, V);
1050
1051 // Handle the integer div common cases
1052 if (Instruction *Common = commonIDivTransforms(I))
1053 return Common;
1054
1055 // (x lshr C1) udiv C2 --> x udiv (C2 << C1)
1056 {
1057 Value *X;
1058 const APInt *C1, *C2;
1059 if (match(Op0, m_LShr(m_Value(X), m_APInt(C1))) &&
1060 match(Op1, m_APInt(C2))) {
1061 bool Overflow;
1062 APInt C2ShlC1 = C2->ushl_ov(*C1, Overflow);
1063 if (!Overflow) {
1064 bool IsExact = I.isExact() && match(Op0, m_Exact(m_Value()));
1065 BinaryOperator *BO = BinaryOperator::CreateUDiv(
1066 X, ConstantInt::get(X->getType(), C2ShlC1));
1067 if (IsExact)
1068 BO->setIsExact();
1069 return BO;
1070 }
1071 }
1072 }
1073
1074 // (zext A) udiv (zext B) --> zext (A udiv B)
1075 if (ZExtInst *ZOp0 = dyn_cast<ZExtInst>(Op0))
1076 if (Value *ZOp1 = dyn_castZExtVal(Op1, ZOp0->getSrcTy()))
1077 return new ZExtInst(
1078 Builder->CreateUDiv(ZOp0->getOperand(0), ZOp1, "div", I.isExact()),
1079 I.getType());
1080
1081 // (LHS udiv (select (select (...)))) -> (LHS >> (select (select (...))))
1082 SmallVector<UDivFoldAction, 6> UDivActions;
1083 if (visitUDivOperand(Op0, Op1, I, UDivActions))
1084 for (unsigned i = 0, e = UDivActions.size(); i != e; ++i) {
1085 FoldUDivOperandCb Action = UDivActions[i].FoldAction;
1086 Value *ActionOp1 = UDivActions[i].OperandToFold;
1087 Instruction *Inst;
1088 if (Action)
1089 Inst = Action(Op0, ActionOp1, I, *this);
1090 else {
1091 // This action joins two actions together. The RHS of this action is
1092 // simply the last action we processed, we saved the LHS action index in
1093 // the joining action.
1094 size_t SelectRHSIdx = i - 1;
1095 Value *SelectRHS = UDivActions[SelectRHSIdx].FoldResult;
1096 size_t SelectLHSIdx = UDivActions[i].SelectLHSIdx;
1097 Value *SelectLHS = UDivActions[SelectLHSIdx].FoldResult;
1098 Inst = SelectInst::Create(cast<SelectInst>(ActionOp1)->getCondition(),
1099 SelectLHS, SelectRHS);
1100 }
1101
1102 // If this is the last action to process, return it to the InstCombiner.
1103 // Otherwise, we insert it before the UDiv and record it so that we may
1104 // use it as part of a joining action (i.e., a SelectInst).
1105 if (e - i != 1) {
1106 Inst->insertBefore(&I);
1107 UDivActions[i].FoldResult = Inst;
1108 } else
1109 return Inst;
1110 }
1111
1112 return nullptr;
1113 }
1114
visitSDiv(BinaryOperator & I)1115 Instruction *InstCombiner::visitSDiv(BinaryOperator &I) {
1116 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
1117
1118 if (Value *V = SimplifyVectorOp(I))
1119 return ReplaceInstUsesWith(I, V);
1120
1121 if (Value *V = SimplifySDivInst(Op0, Op1, DL, TLI, DT, AC))
1122 return ReplaceInstUsesWith(I, V);
1123
1124 // Handle the integer div common cases
1125 if (Instruction *Common = commonIDivTransforms(I))
1126 return Common;
1127
1128 // sdiv X, -1 == -X
1129 if (match(Op1, m_AllOnes()))
1130 return BinaryOperator::CreateNeg(Op0);
1131
1132 if (ConstantInt *RHS = dyn_cast<ConstantInt>(Op1)) {
1133 // sdiv X, C --> ashr exact X, log2(C)
1134 if (I.isExact() && RHS->getValue().isNonNegative() &&
1135 RHS->getValue().isPowerOf2()) {
1136 Value *ShAmt = llvm::ConstantInt::get(RHS->getType(),
1137 RHS->getValue().exactLogBase2());
1138 return BinaryOperator::CreateExactAShr(Op0, ShAmt, I.getName());
1139 }
1140 }
1141
1142 if (Constant *RHS = dyn_cast<Constant>(Op1)) {
1143 // X/INT_MIN -> X == INT_MIN
1144 if (RHS->isMinSignedValue())
1145 return new ZExtInst(Builder->CreateICmpEQ(Op0, Op1), I.getType());
1146
1147 // -X/C --> X/-C provided the negation doesn't overflow.
1148 Value *X;
1149 if (match(Op0, m_NSWSub(m_Zero(), m_Value(X)))) {
1150 auto *BO = BinaryOperator::CreateSDiv(X, ConstantExpr::getNeg(RHS));
1151 BO->setIsExact(I.isExact());
1152 return BO;
1153 }
1154 }
1155
1156 // If the sign bits of both operands are zero (i.e. we can prove they are
1157 // unsigned inputs), turn this into a udiv.
1158 if (I.getType()->isIntegerTy()) {
1159 APInt Mask(APInt::getSignBit(I.getType()->getPrimitiveSizeInBits()));
1160 if (MaskedValueIsZero(Op0, Mask, 0, &I)) {
1161 if (MaskedValueIsZero(Op1, Mask, 0, &I)) {
1162 // X sdiv Y -> X udiv Y, iff X and Y don't have sign bit set
1163 auto *BO = BinaryOperator::CreateUDiv(Op0, Op1, I.getName());
1164 BO->setIsExact(I.isExact());
1165 return BO;
1166 }
1167
1168 if (isKnownToBeAPowerOfTwo(Op1, DL, /*OrZero*/ true, 0, AC, &I, DT)) {
1169 // X sdiv (1 << Y) -> X udiv (1 << Y) ( -> X u>> Y)
1170 // Safe because the only negative value (1 << Y) can take on is
1171 // INT_MIN, and X sdiv INT_MIN == X udiv INT_MIN == 0 if X doesn't have
1172 // the sign bit set.
1173 auto *BO = BinaryOperator::CreateUDiv(Op0, Op1, I.getName());
1174 BO->setIsExact(I.isExact());
1175 return BO;
1176 }
1177 }
1178 }
1179
1180 return nullptr;
1181 }
1182
1183 /// CvtFDivConstToReciprocal tries to convert X/C into X*1/C if C not a special
1184 /// FP value and:
1185 /// 1) 1/C is exact, or
1186 /// 2) reciprocal is allowed.
1187 /// If the conversion was successful, the simplified expression "X * 1/C" is
1188 /// returned; otherwise, NULL is returned.
1189 ///
CvtFDivConstToReciprocal(Value * Dividend,Constant * Divisor,bool AllowReciprocal)1190 static Instruction *CvtFDivConstToReciprocal(Value *Dividend, Constant *Divisor,
1191 bool AllowReciprocal) {
1192 if (!isa<ConstantFP>(Divisor)) // TODO: handle vectors.
1193 return nullptr;
1194
1195 const APFloat &FpVal = cast<ConstantFP>(Divisor)->getValueAPF();
1196 APFloat Reciprocal(FpVal.getSemantics());
1197 bool Cvt = FpVal.getExactInverse(&Reciprocal);
1198
1199 if (!Cvt && AllowReciprocal && FpVal.isFiniteNonZero()) {
1200 Reciprocal = APFloat(FpVal.getSemantics(), 1.0f);
1201 (void)Reciprocal.divide(FpVal, APFloat::rmNearestTiesToEven);
1202 Cvt = !Reciprocal.isDenormal();
1203 }
1204
1205 if (!Cvt)
1206 return nullptr;
1207
1208 ConstantFP *R;
1209 R = ConstantFP::get(Dividend->getType()->getContext(), Reciprocal);
1210 return BinaryOperator::CreateFMul(Dividend, R);
1211 }
1212
visitFDiv(BinaryOperator & I)1213 Instruction *InstCombiner::visitFDiv(BinaryOperator &I) {
1214 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
1215
1216 if (Value *V = SimplifyVectorOp(I))
1217 return ReplaceInstUsesWith(I, V);
1218
1219 if (Value *V = SimplifyFDivInst(Op0, Op1, I.getFastMathFlags(),
1220 DL, TLI, DT, AC))
1221 return ReplaceInstUsesWith(I, V);
1222
1223 if (isa<Constant>(Op0))
1224 if (SelectInst *SI = dyn_cast<SelectInst>(Op1))
1225 if (Instruction *R = FoldOpIntoSelect(I, SI))
1226 return R;
1227
1228 bool AllowReassociate = I.hasUnsafeAlgebra();
1229 bool AllowReciprocal = I.hasAllowReciprocal();
1230
1231 if (Constant *Op1C = dyn_cast<Constant>(Op1)) {
1232 if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
1233 if (Instruction *R = FoldOpIntoSelect(I, SI))
1234 return R;
1235
1236 if (AllowReassociate) {
1237 Constant *C1 = nullptr;
1238 Constant *C2 = Op1C;
1239 Value *X;
1240 Instruction *Res = nullptr;
1241
1242 if (match(Op0, m_FMul(m_Value(X), m_Constant(C1)))) {
1243 // (X*C1)/C2 => X * (C1/C2)
1244 //
1245 Constant *C = ConstantExpr::getFDiv(C1, C2);
1246 if (isNormalFp(C))
1247 Res = BinaryOperator::CreateFMul(X, C);
1248 } else if (match(Op0, m_FDiv(m_Value(X), m_Constant(C1)))) {
1249 // (X/C1)/C2 => X /(C2*C1) [=> X * 1/(C2*C1) if reciprocal is allowed]
1250 //
1251 Constant *C = ConstantExpr::getFMul(C1, C2);
1252 if (isNormalFp(C)) {
1253 Res = CvtFDivConstToReciprocal(X, C, AllowReciprocal);
1254 if (!Res)
1255 Res = BinaryOperator::CreateFDiv(X, C);
1256 }
1257 }
1258
1259 if (Res) {
1260 Res->setFastMathFlags(I.getFastMathFlags());
1261 return Res;
1262 }
1263 }
1264
1265 // X / C => X * 1/C
1266 if (Instruction *T = CvtFDivConstToReciprocal(Op0, Op1C, AllowReciprocal)) {
1267 T->copyFastMathFlags(&I);
1268 return T;
1269 }
1270
1271 return nullptr;
1272 }
1273
1274 if (AllowReassociate && isa<Constant>(Op0)) {
1275 Constant *C1 = cast<Constant>(Op0), *C2;
1276 Constant *Fold = nullptr;
1277 Value *X;
1278 bool CreateDiv = true;
1279
1280 // C1 / (X*C2) => (C1/C2) / X
1281 if (match(Op1, m_FMul(m_Value(X), m_Constant(C2))))
1282 Fold = ConstantExpr::getFDiv(C1, C2);
1283 else if (match(Op1, m_FDiv(m_Value(X), m_Constant(C2)))) {
1284 // C1 / (X/C2) => (C1*C2) / X
1285 Fold = ConstantExpr::getFMul(C1, C2);
1286 } else if (match(Op1, m_FDiv(m_Constant(C2), m_Value(X)))) {
1287 // C1 / (C2/X) => (C1/C2) * X
1288 Fold = ConstantExpr::getFDiv(C1, C2);
1289 CreateDiv = false;
1290 }
1291
1292 if (Fold && isNormalFp(Fold)) {
1293 Instruction *R = CreateDiv ? BinaryOperator::CreateFDiv(Fold, X)
1294 : BinaryOperator::CreateFMul(X, Fold);
1295 R->setFastMathFlags(I.getFastMathFlags());
1296 return R;
1297 }
1298 return nullptr;
1299 }
1300
1301 if (AllowReassociate) {
1302 Value *X, *Y;
1303 Value *NewInst = nullptr;
1304 Instruction *SimpR = nullptr;
1305
1306 if (Op0->hasOneUse() && match(Op0, m_FDiv(m_Value(X), m_Value(Y)))) {
1307 // (X/Y) / Z => X / (Y*Z)
1308 //
1309 if (!isa<Constant>(Y) || !isa<Constant>(Op1)) {
1310 NewInst = Builder->CreateFMul(Y, Op1);
1311 if (Instruction *RI = dyn_cast<Instruction>(NewInst)) {
1312 FastMathFlags Flags = I.getFastMathFlags();
1313 Flags &= cast<Instruction>(Op0)->getFastMathFlags();
1314 RI->setFastMathFlags(Flags);
1315 }
1316 SimpR = BinaryOperator::CreateFDiv(X, NewInst);
1317 }
1318 } else if (Op1->hasOneUse() && match(Op1, m_FDiv(m_Value(X), m_Value(Y)))) {
1319 // Z / (X/Y) => Z*Y / X
1320 //
1321 if (!isa<Constant>(Y) || !isa<Constant>(Op0)) {
1322 NewInst = Builder->CreateFMul(Op0, Y);
1323 if (Instruction *RI = dyn_cast<Instruction>(NewInst)) {
1324 FastMathFlags Flags = I.getFastMathFlags();
1325 Flags &= cast<Instruction>(Op1)->getFastMathFlags();
1326 RI->setFastMathFlags(Flags);
1327 }
1328 SimpR = BinaryOperator::CreateFDiv(NewInst, X);
1329 }
1330 }
1331
1332 if (NewInst) {
1333 if (Instruction *T = dyn_cast<Instruction>(NewInst))
1334 T->setDebugLoc(I.getDebugLoc());
1335 SimpR->setFastMathFlags(I.getFastMathFlags());
1336 return SimpR;
1337 }
1338 }
1339
1340 return nullptr;
1341 }
1342
1343 /// This function implements the transforms common to both integer remainder
1344 /// instructions (urem and srem). It is called by the visitors to those integer
1345 /// remainder instructions.
1346 /// @brief Common integer remainder transforms
commonIRemTransforms(BinaryOperator & I)1347 Instruction *InstCombiner::commonIRemTransforms(BinaryOperator &I) {
1348 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
1349
1350 // The RHS is known non-zero.
1351 if (Value *V = simplifyValueKnownNonZero(I.getOperand(1), *this, I)) {
1352 I.setOperand(1, V);
1353 return &I;
1354 }
1355
1356 // Handle cases involving: rem X, (select Cond, Y, Z)
1357 if (isa<SelectInst>(Op1) && SimplifyDivRemOfSelect(I))
1358 return &I;
1359
1360 if (isa<Constant>(Op1)) {
1361 if (Instruction *Op0I = dyn_cast<Instruction>(Op0)) {
1362 if (SelectInst *SI = dyn_cast<SelectInst>(Op0I)) {
1363 if (Instruction *R = FoldOpIntoSelect(I, SI))
1364 return R;
1365 } else if (isa<PHINode>(Op0I)) {
1366 if (Instruction *NV = FoldOpIntoPhi(I))
1367 return NV;
1368 }
1369
1370 // See if we can fold away this rem instruction.
1371 if (SimplifyDemandedInstructionBits(I))
1372 return &I;
1373 }
1374 }
1375
1376 return nullptr;
1377 }
1378
visitURem(BinaryOperator & I)1379 Instruction *InstCombiner::visitURem(BinaryOperator &I) {
1380 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
1381
1382 if (Value *V = SimplifyVectorOp(I))
1383 return ReplaceInstUsesWith(I, V);
1384
1385 if (Value *V = SimplifyURemInst(Op0, Op1, DL, TLI, DT, AC))
1386 return ReplaceInstUsesWith(I, V);
1387
1388 if (Instruction *common = commonIRemTransforms(I))
1389 return common;
1390
1391 // (zext A) urem (zext B) --> zext (A urem B)
1392 if (ZExtInst *ZOp0 = dyn_cast<ZExtInst>(Op0))
1393 if (Value *ZOp1 = dyn_castZExtVal(Op1, ZOp0->getSrcTy()))
1394 return new ZExtInst(Builder->CreateURem(ZOp0->getOperand(0), ZOp1),
1395 I.getType());
1396
1397 // X urem Y -> X and Y-1, where Y is a power of 2,
1398 if (isKnownToBeAPowerOfTwo(Op1, DL, /*OrZero*/ true, 0, AC, &I, DT)) {
1399 Constant *N1 = Constant::getAllOnesValue(I.getType());
1400 Value *Add = Builder->CreateAdd(Op1, N1);
1401 return BinaryOperator::CreateAnd(Op0, Add);
1402 }
1403
1404 // 1 urem X -> zext(X != 1)
1405 if (match(Op0, m_One())) {
1406 Value *Cmp = Builder->CreateICmpNE(Op1, Op0);
1407 Value *Ext = Builder->CreateZExt(Cmp, I.getType());
1408 return ReplaceInstUsesWith(I, Ext);
1409 }
1410
1411 return nullptr;
1412 }
1413
visitSRem(BinaryOperator & I)1414 Instruction *InstCombiner::visitSRem(BinaryOperator &I) {
1415 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
1416
1417 if (Value *V = SimplifyVectorOp(I))
1418 return ReplaceInstUsesWith(I, V);
1419
1420 if (Value *V = SimplifySRemInst(Op0, Op1, DL, TLI, DT, AC))
1421 return ReplaceInstUsesWith(I, V);
1422
1423 // Handle the integer rem common cases
1424 if (Instruction *Common = commonIRemTransforms(I))
1425 return Common;
1426
1427 {
1428 const APInt *Y;
1429 // X % -Y -> X % Y
1430 if (match(Op1, m_APInt(Y)) && Y->isNegative() && !Y->isMinSignedValue()) {
1431 Worklist.AddValue(I.getOperand(1));
1432 I.setOperand(1, ConstantInt::get(I.getType(), -*Y));
1433 return &I;
1434 }
1435 }
1436
1437 // If the sign bits of both operands are zero (i.e. we can prove they are
1438 // unsigned inputs), turn this into a urem.
1439 if (I.getType()->isIntegerTy()) {
1440 APInt Mask(APInt::getSignBit(I.getType()->getPrimitiveSizeInBits()));
1441 if (MaskedValueIsZero(Op1, Mask, 0, &I) &&
1442 MaskedValueIsZero(Op0, Mask, 0, &I)) {
1443 // X srem Y -> X urem Y, iff X and Y don't have sign bit set
1444 return BinaryOperator::CreateURem(Op0, Op1, I.getName());
1445 }
1446 }
1447
1448 // If it's a constant vector, flip any negative values positive.
1449 if (isa<ConstantVector>(Op1) || isa<ConstantDataVector>(Op1)) {
1450 Constant *C = cast<Constant>(Op1);
1451 unsigned VWidth = C->getType()->getVectorNumElements();
1452
1453 bool hasNegative = false;
1454 bool hasMissing = false;
1455 for (unsigned i = 0; i != VWidth; ++i) {
1456 Constant *Elt = C->getAggregateElement(i);
1457 if (!Elt) {
1458 hasMissing = true;
1459 break;
1460 }
1461
1462 if (ConstantInt *RHS = dyn_cast<ConstantInt>(Elt))
1463 if (RHS->isNegative())
1464 hasNegative = true;
1465 }
1466
1467 if (hasNegative && !hasMissing) {
1468 SmallVector<Constant *, 16> Elts(VWidth);
1469 for (unsigned i = 0; i != VWidth; ++i) {
1470 Elts[i] = C->getAggregateElement(i); // Handle undef, etc.
1471 if (ConstantInt *RHS = dyn_cast<ConstantInt>(Elts[i])) {
1472 if (RHS->isNegative())
1473 Elts[i] = cast<ConstantInt>(ConstantExpr::getNeg(RHS));
1474 }
1475 }
1476
1477 Constant *NewRHSV = ConstantVector::get(Elts);
1478 if (NewRHSV != C) { // Don't loop on -MININT
1479 Worklist.AddValue(I.getOperand(1));
1480 I.setOperand(1, NewRHSV);
1481 return &I;
1482 }
1483 }
1484 }
1485
1486 return nullptr;
1487 }
1488
visitFRem(BinaryOperator & I)1489 Instruction *InstCombiner::visitFRem(BinaryOperator &I) {
1490 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
1491
1492 if (Value *V = SimplifyVectorOp(I))
1493 return ReplaceInstUsesWith(I, V);
1494
1495 if (Value *V = SimplifyFRemInst(Op0, Op1, I.getFastMathFlags(),
1496 DL, TLI, DT, AC))
1497 return ReplaceInstUsesWith(I, V);
1498
1499 // Handle cases involving: rem X, (select Cond, Y, Z)
1500 if (isa<SelectInst>(Op1) && SimplifyDivRemOfSelect(I))
1501 return &I;
1502
1503 return nullptr;
1504 }
1505