1 //===- InstCombineSimplifyDemanded.cpp ------------------------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains logic for simplifying instructions based on information
11 // about how they are used.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #include "InstCombineInternal.h"
16 #include "llvm/Analysis/ValueTracking.h"
17 #include "llvm/IR/IntrinsicInst.h"
18 #include "llvm/IR/PatternMatch.h"
19
20 using namespace llvm;
21 using namespace llvm::PatternMatch;
22
23 #define DEBUG_TYPE "instcombine"
24
25 /// ShrinkDemandedConstant - Check to see if the specified operand of the
26 /// specified instruction is a constant integer. If so, check to see if there
27 /// are any bits set in the constant that are not demanded. If so, shrink the
28 /// constant and return true.
ShrinkDemandedConstant(Instruction * I,unsigned OpNo,APInt Demanded)29 static bool ShrinkDemandedConstant(Instruction *I, unsigned OpNo,
30 APInt Demanded) {
31 assert(I && "No instruction?");
32 assert(OpNo < I->getNumOperands() && "Operand index too large");
33
34 // If the operand is not a constant integer, nothing to do.
35 ConstantInt *OpC = dyn_cast<ConstantInt>(I->getOperand(OpNo));
36 if (!OpC) return false;
37
38 // If there are no bits set that aren't demanded, nothing to do.
39 Demanded = Demanded.zextOrTrunc(OpC->getValue().getBitWidth());
40 if ((~Demanded & OpC->getValue()) == 0)
41 return false;
42
43 // This instruction is producing bits that are not demanded. Shrink the RHS.
44 Demanded &= OpC->getValue();
45 I->setOperand(OpNo, ConstantInt::get(OpC->getType(), Demanded));
46
47 return true;
48 }
49
50
51
52 /// SimplifyDemandedInstructionBits - Inst is an integer instruction that
53 /// SimplifyDemandedBits knows about. See if the instruction has any
54 /// properties that allow us to simplify its operands.
SimplifyDemandedInstructionBits(Instruction & Inst)55 bool InstCombiner::SimplifyDemandedInstructionBits(Instruction &Inst) {
56 unsigned BitWidth = Inst.getType()->getScalarSizeInBits();
57 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
58 APInt DemandedMask(APInt::getAllOnesValue(BitWidth));
59
60 Value *V = SimplifyDemandedUseBits(&Inst, DemandedMask, KnownZero, KnownOne,
61 0, &Inst);
62 if (!V) return false;
63 if (V == &Inst) return true;
64 ReplaceInstUsesWith(Inst, V);
65 return true;
66 }
67
68 /// SimplifyDemandedBits - This form of SimplifyDemandedBits simplifies the
69 /// specified instruction operand if possible, updating it in place. It returns
70 /// true if it made any change and false otherwise.
SimplifyDemandedBits(Use & U,APInt DemandedMask,APInt & KnownZero,APInt & KnownOne,unsigned Depth)71 bool InstCombiner::SimplifyDemandedBits(Use &U, APInt DemandedMask,
72 APInt &KnownZero, APInt &KnownOne,
73 unsigned Depth) {
74 auto *UserI = dyn_cast<Instruction>(U.getUser());
75 Value *NewVal = SimplifyDemandedUseBits(U.get(), DemandedMask, KnownZero,
76 KnownOne, Depth, UserI);
77 if (!NewVal) return false;
78 U = NewVal;
79 return true;
80 }
81
82
83 /// SimplifyDemandedUseBits - This function attempts to replace V with a simpler
84 /// value based on the demanded bits. When this function is called, it is known
85 /// that only the bits set in DemandedMask of the result of V are ever used
86 /// downstream. Consequently, depending on the mask and V, it may be possible
87 /// to replace V with a constant or one of its operands. In such cases, this
88 /// function does the replacement and returns true. In all other cases, it
89 /// returns false after analyzing the expression and setting KnownOne and known
90 /// to be one in the expression. KnownZero contains all the bits that are known
91 /// to be zero in the expression. These are provided to potentially allow the
92 /// caller (which might recursively be SimplifyDemandedBits itself) to simplify
93 /// the expression. KnownOne and KnownZero always follow the invariant that
94 /// KnownOne & KnownZero == 0. That is, a bit can't be both 1 and 0. Note that
95 /// the bits in KnownOne and KnownZero may only be accurate for those bits set
96 /// in DemandedMask. Note also that the bitwidth of V, DemandedMask, KnownZero
97 /// and KnownOne must all be the same.
98 ///
99 /// This returns null if it did not change anything and it permits no
100 /// simplification. This returns V itself if it did some simplification of V's
101 /// operands based on the information about what bits are demanded. This returns
102 /// some other non-null value if it found out that V is equal to another value
103 /// in the context where the specified bits are demanded, but not for all users.
SimplifyDemandedUseBits(Value * V,APInt DemandedMask,APInt & KnownZero,APInt & KnownOne,unsigned Depth,Instruction * CxtI)104 Value *InstCombiner::SimplifyDemandedUseBits(Value *V, APInt DemandedMask,
105 APInt &KnownZero, APInt &KnownOne,
106 unsigned Depth,
107 Instruction *CxtI) {
108 assert(V != nullptr && "Null pointer of Value???");
109 assert(Depth <= 6 && "Limit Search Depth");
110 uint32_t BitWidth = DemandedMask.getBitWidth();
111 Type *VTy = V->getType();
112 assert(
113 (!VTy->isIntOrIntVectorTy() || VTy->getScalarSizeInBits() == BitWidth) &&
114 KnownZero.getBitWidth() == BitWidth &&
115 KnownOne.getBitWidth() == BitWidth &&
116 "Value *V, DemandedMask, KnownZero and KnownOne "
117 "must have same BitWidth");
118 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
119 // We know all of the bits for a constant!
120 KnownOne = CI->getValue() & DemandedMask;
121 KnownZero = ~KnownOne & DemandedMask;
122 return nullptr;
123 }
124 if (isa<ConstantPointerNull>(V)) {
125 // We know all of the bits for a constant!
126 KnownOne.clearAllBits();
127 KnownZero = DemandedMask;
128 return nullptr;
129 }
130
131 KnownZero.clearAllBits();
132 KnownOne.clearAllBits();
133 if (DemandedMask == 0) { // Not demanding any bits from V.
134 if (isa<UndefValue>(V))
135 return nullptr;
136 return UndefValue::get(VTy);
137 }
138
139 if (Depth == 6) // Limit search depth.
140 return nullptr;
141
142 APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0);
143 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
144
145 Instruction *I = dyn_cast<Instruction>(V);
146 if (!I) {
147 computeKnownBits(V, KnownZero, KnownOne, Depth, CxtI);
148 return nullptr; // Only analyze instructions.
149 }
150
151 // If there are multiple uses of this value and we aren't at the root, then
152 // we can't do any simplifications of the operands, because DemandedMask
153 // only reflects the bits demanded by *one* of the users.
154 if (Depth != 0 && !I->hasOneUse()) {
155 // Despite the fact that we can't simplify this instruction in all User's
156 // context, we can at least compute the knownzero/knownone bits, and we can
157 // do simplifications that apply to *just* the one user if we know that
158 // this instruction has a simpler value in that context.
159 if (I->getOpcode() == Instruction::And) {
160 // If either the LHS or the RHS are Zero, the result is zero.
161 computeKnownBits(I->getOperand(1), RHSKnownZero, RHSKnownOne, Depth + 1,
162 CxtI);
163 computeKnownBits(I->getOperand(0), LHSKnownZero, LHSKnownOne, Depth + 1,
164 CxtI);
165
166 // If all of the demanded bits are known 1 on one side, return the other.
167 // These bits cannot contribute to the result of the 'and' in this
168 // context.
169 if ((DemandedMask & ~LHSKnownZero & RHSKnownOne) ==
170 (DemandedMask & ~LHSKnownZero))
171 return I->getOperand(0);
172 if ((DemandedMask & ~RHSKnownZero & LHSKnownOne) ==
173 (DemandedMask & ~RHSKnownZero))
174 return I->getOperand(1);
175
176 // If all of the demanded bits in the inputs are known zeros, return zero.
177 if ((DemandedMask & (RHSKnownZero|LHSKnownZero)) == DemandedMask)
178 return Constant::getNullValue(VTy);
179
180 } else if (I->getOpcode() == Instruction::Or) {
181 // We can simplify (X|Y) -> X or Y in the user's context if we know that
182 // only bits from X or Y are demanded.
183
184 // If either the LHS or the RHS are One, the result is One.
185 computeKnownBits(I->getOperand(1), RHSKnownZero, RHSKnownOne, Depth + 1,
186 CxtI);
187 computeKnownBits(I->getOperand(0), LHSKnownZero, LHSKnownOne, Depth + 1,
188 CxtI);
189
190 // If all of the demanded bits are known zero on one side, return the
191 // other. These bits cannot contribute to the result of the 'or' in this
192 // context.
193 if ((DemandedMask & ~LHSKnownOne & RHSKnownZero) ==
194 (DemandedMask & ~LHSKnownOne))
195 return I->getOperand(0);
196 if ((DemandedMask & ~RHSKnownOne & LHSKnownZero) ==
197 (DemandedMask & ~RHSKnownOne))
198 return I->getOperand(1);
199
200 // If all of the potentially set bits on one side are known to be set on
201 // the other side, just use the 'other' side.
202 if ((DemandedMask & (~RHSKnownZero) & LHSKnownOne) ==
203 (DemandedMask & (~RHSKnownZero)))
204 return I->getOperand(0);
205 if ((DemandedMask & (~LHSKnownZero) & RHSKnownOne) ==
206 (DemandedMask & (~LHSKnownZero)))
207 return I->getOperand(1);
208 } else if (I->getOpcode() == Instruction::Xor) {
209 // We can simplify (X^Y) -> X or Y in the user's context if we know that
210 // only bits from X or Y are demanded.
211
212 computeKnownBits(I->getOperand(1), RHSKnownZero, RHSKnownOne, Depth + 1,
213 CxtI);
214 computeKnownBits(I->getOperand(0), LHSKnownZero, LHSKnownOne, Depth + 1,
215 CxtI);
216
217 // If all of the demanded bits are known zero on one side, return the
218 // other.
219 if ((DemandedMask & RHSKnownZero) == DemandedMask)
220 return I->getOperand(0);
221 if ((DemandedMask & LHSKnownZero) == DemandedMask)
222 return I->getOperand(1);
223 }
224
225 // Compute the KnownZero/KnownOne bits to simplify things downstream.
226 computeKnownBits(I, KnownZero, KnownOne, Depth, CxtI);
227 return nullptr;
228 }
229
230 // If this is the root being simplified, allow it to have multiple uses,
231 // just set the DemandedMask to all bits so that we can try to simplify the
232 // operands. This allows visitTruncInst (for example) to simplify the
233 // operand of a trunc without duplicating all the logic below.
234 if (Depth == 0 && !V->hasOneUse())
235 DemandedMask = APInt::getAllOnesValue(BitWidth);
236
237 switch (I->getOpcode()) {
238 default:
239 computeKnownBits(I, KnownZero, KnownOne, Depth, CxtI);
240 break;
241 case Instruction::And:
242 // If either the LHS or the RHS are Zero, the result is zero.
243 if (SimplifyDemandedBits(I->getOperandUse(1), DemandedMask, RHSKnownZero,
244 RHSKnownOne, Depth + 1) ||
245 SimplifyDemandedBits(I->getOperandUse(0), DemandedMask & ~RHSKnownZero,
246 LHSKnownZero, LHSKnownOne, Depth + 1))
247 return I;
248 assert(!(RHSKnownZero & RHSKnownOne) && "Bits known to be one AND zero?");
249 assert(!(LHSKnownZero & LHSKnownOne) && "Bits known to be one AND zero?");
250
251 // If the client is only demanding bits that we know, return the known
252 // constant.
253 if ((DemandedMask & ((RHSKnownZero | LHSKnownZero)|
254 (RHSKnownOne & LHSKnownOne))) == DemandedMask)
255 return Constant::getIntegerValue(VTy, RHSKnownOne & LHSKnownOne);
256
257 // If all of the demanded bits are known 1 on one side, return the other.
258 // These bits cannot contribute to the result of the 'and'.
259 if ((DemandedMask & ~LHSKnownZero & RHSKnownOne) ==
260 (DemandedMask & ~LHSKnownZero))
261 return I->getOperand(0);
262 if ((DemandedMask & ~RHSKnownZero & LHSKnownOne) ==
263 (DemandedMask & ~RHSKnownZero))
264 return I->getOperand(1);
265
266 // If all of the demanded bits in the inputs are known zeros, return zero.
267 if ((DemandedMask & (RHSKnownZero|LHSKnownZero)) == DemandedMask)
268 return Constant::getNullValue(VTy);
269
270 // If the RHS is a constant, see if we can simplify it.
271 if (ShrinkDemandedConstant(I, 1, DemandedMask & ~LHSKnownZero))
272 return I;
273
274 // Output known-1 bits are only known if set in both the LHS & RHS.
275 KnownOne = RHSKnownOne & LHSKnownOne;
276 // Output known-0 are known to be clear if zero in either the LHS | RHS.
277 KnownZero = RHSKnownZero | LHSKnownZero;
278 break;
279 case Instruction::Or:
280 // If either the LHS or the RHS are One, the result is One.
281 if (SimplifyDemandedBits(I->getOperandUse(1), DemandedMask, RHSKnownZero,
282 RHSKnownOne, Depth + 1) ||
283 SimplifyDemandedBits(I->getOperandUse(0), DemandedMask & ~RHSKnownOne,
284 LHSKnownZero, LHSKnownOne, Depth + 1))
285 return I;
286 assert(!(RHSKnownZero & RHSKnownOne) && "Bits known to be one AND zero?");
287 assert(!(LHSKnownZero & LHSKnownOne) && "Bits known to be one AND zero?");
288
289 // If the client is only demanding bits that we know, return the known
290 // constant.
291 if ((DemandedMask & ((RHSKnownZero & LHSKnownZero)|
292 (RHSKnownOne | LHSKnownOne))) == DemandedMask)
293 return Constant::getIntegerValue(VTy, RHSKnownOne | LHSKnownOne);
294
295 // If all of the demanded bits are known zero on one side, return the other.
296 // These bits cannot contribute to the result of the 'or'.
297 if ((DemandedMask & ~LHSKnownOne & RHSKnownZero) ==
298 (DemandedMask & ~LHSKnownOne))
299 return I->getOperand(0);
300 if ((DemandedMask & ~RHSKnownOne & LHSKnownZero) ==
301 (DemandedMask & ~RHSKnownOne))
302 return I->getOperand(1);
303
304 // If all of the potentially set bits on one side are known to be set on
305 // the other side, just use the 'other' side.
306 if ((DemandedMask & (~RHSKnownZero) & LHSKnownOne) ==
307 (DemandedMask & (~RHSKnownZero)))
308 return I->getOperand(0);
309 if ((DemandedMask & (~LHSKnownZero) & RHSKnownOne) ==
310 (DemandedMask & (~LHSKnownZero)))
311 return I->getOperand(1);
312
313 // If the RHS is a constant, see if we can simplify it.
314 if (ShrinkDemandedConstant(I, 1, DemandedMask))
315 return I;
316
317 // Output known-0 bits are only known if clear in both the LHS & RHS.
318 KnownZero = RHSKnownZero & LHSKnownZero;
319 // Output known-1 are known to be set if set in either the LHS | RHS.
320 KnownOne = RHSKnownOne | LHSKnownOne;
321 break;
322 case Instruction::Xor: {
323 if (SimplifyDemandedBits(I->getOperandUse(1), DemandedMask, RHSKnownZero,
324 RHSKnownOne, Depth + 1) ||
325 SimplifyDemandedBits(I->getOperandUse(0), DemandedMask, LHSKnownZero,
326 LHSKnownOne, Depth + 1))
327 return I;
328 assert(!(RHSKnownZero & RHSKnownOne) && "Bits known to be one AND zero?");
329 assert(!(LHSKnownZero & LHSKnownOne) && "Bits known to be one AND zero?");
330
331 // Output known-0 bits are known if clear or set in both the LHS & RHS.
332 APInt IKnownZero = (RHSKnownZero & LHSKnownZero) |
333 (RHSKnownOne & LHSKnownOne);
334 // Output known-1 are known to be set if set in only one of the LHS, RHS.
335 APInt IKnownOne = (RHSKnownZero & LHSKnownOne) |
336 (RHSKnownOne & LHSKnownZero);
337
338 // If the client is only demanding bits that we know, return the known
339 // constant.
340 if ((DemandedMask & (IKnownZero|IKnownOne)) == DemandedMask)
341 return Constant::getIntegerValue(VTy, IKnownOne);
342
343 // If all of the demanded bits are known zero on one side, return the other.
344 // These bits cannot contribute to the result of the 'xor'.
345 if ((DemandedMask & RHSKnownZero) == DemandedMask)
346 return I->getOperand(0);
347 if ((DemandedMask & LHSKnownZero) == DemandedMask)
348 return I->getOperand(1);
349
350 // If all of the demanded bits are known to be zero on one side or the
351 // other, turn this into an *inclusive* or.
352 // e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0
353 if ((DemandedMask & ~RHSKnownZero & ~LHSKnownZero) == 0) {
354 Instruction *Or =
355 BinaryOperator::CreateOr(I->getOperand(0), I->getOperand(1),
356 I->getName());
357 return InsertNewInstWith(Or, *I);
358 }
359
360 // If all of the demanded bits on one side are known, and all of the set
361 // bits on that side are also known to be set on the other side, turn this
362 // into an AND, as we know the bits will be cleared.
363 // e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2
364 if ((DemandedMask & (RHSKnownZero|RHSKnownOne)) == DemandedMask) {
365 // all known
366 if ((RHSKnownOne & LHSKnownOne) == RHSKnownOne) {
367 Constant *AndC = Constant::getIntegerValue(VTy,
368 ~RHSKnownOne & DemandedMask);
369 Instruction *And = BinaryOperator::CreateAnd(I->getOperand(0), AndC);
370 return InsertNewInstWith(And, *I);
371 }
372 }
373
374 // If the RHS is a constant, see if we can simplify it.
375 // FIXME: for XOR, we prefer to force bits to 1 if they will make a -1.
376 if (ShrinkDemandedConstant(I, 1, DemandedMask))
377 return I;
378
379 // If our LHS is an 'and' and if it has one use, and if any of the bits we
380 // are flipping are known to be set, then the xor is just resetting those
381 // bits to zero. We can just knock out bits from the 'and' and the 'xor',
382 // simplifying both of them.
383 if (Instruction *LHSInst = dyn_cast<Instruction>(I->getOperand(0)))
384 if (LHSInst->getOpcode() == Instruction::And && LHSInst->hasOneUse() &&
385 isa<ConstantInt>(I->getOperand(1)) &&
386 isa<ConstantInt>(LHSInst->getOperand(1)) &&
387 (LHSKnownOne & RHSKnownOne & DemandedMask) != 0) {
388 ConstantInt *AndRHS = cast<ConstantInt>(LHSInst->getOperand(1));
389 ConstantInt *XorRHS = cast<ConstantInt>(I->getOperand(1));
390 APInt NewMask = ~(LHSKnownOne & RHSKnownOne & DemandedMask);
391
392 Constant *AndC =
393 ConstantInt::get(I->getType(), NewMask & AndRHS->getValue());
394 Instruction *NewAnd = BinaryOperator::CreateAnd(I->getOperand(0), AndC);
395 InsertNewInstWith(NewAnd, *I);
396
397 Constant *XorC =
398 ConstantInt::get(I->getType(), NewMask & XorRHS->getValue());
399 Instruction *NewXor = BinaryOperator::CreateXor(NewAnd, XorC);
400 return InsertNewInstWith(NewXor, *I);
401 }
402
403 // Output known-0 bits are known if clear or set in both the LHS & RHS.
404 KnownZero= (RHSKnownZero & LHSKnownZero) | (RHSKnownOne & LHSKnownOne);
405 // Output known-1 are known to be set if set in only one of the LHS, RHS.
406 KnownOne = (RHSKnownZero & LHSKnownOne) | (RHSKnownOne & LHSKnownZero);
407 break;
408 }
409 case Instruction::Select:
410 // If this is a select as part of a min/max pattern, don't simplify any
411 // further in case we break the structure.
412 Value *LHS, *RHS;
413 if (matchSelectPattern(I, LHS, RHS).Flavor != SPF_UNKNOWN)
414 return nullptr;
415
416 if (SimplifyDemandedBits(I->getOperandUse(2), DemandedMask, RHSKnownZero,
417 RHSKnownOne, Depth + 1) ||
418 SimplifyDemandedBits(I->getOperandUse(1), DemandedMask, LHSKnownZero,
419 LHSKnownOne, Depth + 1))
420 return I;
421 assert(!(RHSKnownZero & RHSKnownOne) && "Bits known to be one AND zero?");
422 assert(!(LHSKnownZero & LHSKnownOne) && "Bits known to be one AND zero?");
423
424 // If the operands are constants, see if we can simplify them.
425 if (ShrinkDemandedConstant(I, 1, DemandedMask) ||
426 ShrinkDemandedConstant(I, 2, DemandedMask))
427 return I;
428
429 // Only known if known in both the LHS and RHS.
430 KnownOne = RHSKnownOne & LHSKnownOne;
431 KnownZero = RHSKnownZero & LHSKnownZero;
432 break;
433 case Instruction::Trunc: {
434 unsigned truncBf = I->getOperand(0)->getType()->getScalarSizeInBits();
435 DemandedMask = DemandedMask.zext(truncBf);
436 KnownZero = KnownZero.zext(truncBf);
437 KnownOne = KnownOne.zext(truncBf);
438 if (SimplifyDemandedBits(I->getOperandUse(0), DemandedMask, KnownZero,
439 KnownOne, Depth + 1))
440 return I;
441 DemandedMask = DemandedMask.trunc(BitWidth);
442 KnownZero = KnownZero.trunc(BitWidth);
443 KnownOne = KnownOne.trunc(BitWidth);
444 assert(!(KnownZero & KnownOne) && "Bits known to be one AND zero?");
445 break;
446 }
447 case Instruction::BitCast:
448 if (!I->getOperand(0)->getType()->isIntOrIntVectorTy())
449 return nullptr; // vector->int or fp->int?
450
451 if (VectorType *DstVTy = dyn_cast<VectorType>(I->getType())) {
452 if (VectorType *SrcVTy =
453 dyn_cast<VectorType>(I->getOperand(0)->getType())) {
454 if (DstVTy->getNumElements() != SrcVTy->getNumElements())
455 // Don't touch a bitcast between vectors of different element counts.
456 return nullptr;
457 } else
458 // Don't touch a scalar-to-vector bitcast.
459 return nullptr;
460 } else if (I->getOperand(0)->getType()->isVectorTy())
461 // Don't touch a vector-to-scalar bitcast.
462 return nullptr;
463
464 if (SimplifyDemandedBits(I->getOperandUse(0), DemandedMask, KnownZero,
465 KnownOne, Depth + 1))
466 return I;
467 assert(!(KnownZero & KnownOne) && "Bits known to be one AND zero?");
468 break;
469 case Instruction::ZExt: {
470 // Compute the bits in the result that are not present in the input.
471 unsigned SrcBitWidth =I->getOperand(0)->getType()->getScalarSizeInBits();
472
473 DemandedMask = DemandedMask.trunc(SrcBitWidth);
474 KnownZero = KnownZero.trunc(SrcBitWidth);
475 KnownOne = KnownOne.trunc(SrcBitWidth);
476 if (SimplifyDemandedBits(I->getOperandUse(0), DemandedMask, KnownZero,
477 KnownOne, Depth + 1))
478 return I;
479 DemandedMask = DemandedMask.zext(BitWidth);
480 KnownZero = KnownZero.zext(BitWidth);
481 KnownOne = KnownOne.zext(BitWidth);
482 assert(!(KnownZero & KnownOne) && "Bits known to be one AND zero?");
483 // The top bits are known to be zero.
484 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth);
485 break;
486 }
487 case Instruction::SExt: {
488 // Compute the bits in the result that are not present in the input.
489 unsigned SrcBitWidth =I->getOperand(0)->getType()->getScalarSizeInBits();
490
491 APInt InputDemandedBits = DemandedMask &
492 APInt::getLowBitsSet(BitWidth, SrcBitWidth);
493
494 APInt NewBits(APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth));
495 // If any of the sign extended bits are demanded, we know that the sign
496 // bit is demanded.
497 if ((NewBits & DemandedMask) != 0)
498 InputDemandedBits.setBit(SrcBitWidth-1);
499
500 InputDemandedBits = InputDemandedBits.trunc(SrcBitWidth);
501 KnownZero = KnownZero.trunc(SrcBitWidth);
502 KnownOne = KnownOne.trunc(SrcBitWidth);
503 if (SimplifyDemandedBits(I->getOperandUse(0), InputDemandedBits, KnownZero,
504 KnownOne, Depth + 1))
505 return I;
506 InputDemandedBits = InputDemandedBits.zext(BitWidth);
507 KnownZero = KnownZero.zext(BitWidth);
508 KnownOne = KnownOne.zext(BitWidth);
509 assert(!(KnownZero & KnownOne) && "Bits known to be one AND zero?");
510
511 // If the sign bit of the input is known set or clear, then we know the
512 // top bits of the result.
513
514 // If the input sign bit is known zero, or if the NewBits are not demanded
515 // convert this into a zero extension.
516 if (KnownZero[SrcBitWidth-1] || (NewBits & ~DemandedMask) == NewBits) {
517 // Convert to ZExt cast
518 CastInst *NewCast = new ZExtInst(I->getOperand(0), VTy, I->getName());
519 return InsertNewInstWith(NewCast, *I);
520 } else if (KnownOne[SrcBitWidth-1]) { // Input sign bit known set
521 KnownOne |= NewBits;
522 }
523 break;
524 }
525 case Instruction::Add:
526 case Instruction::Sub: {
527 /// If the high-bits of an ADD/SUB are not demanded, then we do not care
528 /// about the high bits of the operands.
529 unsigned NLZ = DemandedMask.countLeadingZeros();
530 if (NLZ > 0) {
531 // Right fill the mask of bits for this ADD/SUB to demand the most
532 // significant bit and all those below it.
533 APInt DemandedFromOps(APInt::getLowBitsSet(BitWidth, BitWidth-NLZ));
534 if (SimplifyDemandedBits(I->getOperandUse(0), DemandedFromOps,
535 LHSKnownZero, LHSKnownOne, Depth + 1) ||
536 ShrinkDemandedConstant(I, 1, DemandedFromOps) ||
537 SimplifyDemandedBits(I->getOperandUse(1), DemandedFromOps,
538 LHSKnownZero, LHSKnownOne, Depth + 1)) {
539 // Disable the nsw and nuw flags here: We can no longer guarantee that
540 // we won't wrap after simplification. Removing the nsw/nuw flags is
541 // legal here because the top bit is not demanded.
542 BinaryOperator &BinOP = *cast<BinaryOperator>(I);
543 BinOP.setHasNoSignedWrap(false);
544 BinOP.setHasNoUnsignedWrap(false);
545 return I;
546 }
547 }
548
549 // Otherwise just hand the add/sub off to computeKnownBits to fill in
550 // the known zeros and ones.
551 computeKnownBits(V, KnownZero, KnownOne, Depth, CxtI);
552 break;
553 }
554 case Instruction::Shl:
555 if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
556 {
557 Value *VarX; ConstantInt *C1;
558 if (match(I->getOperand(0), m_Shr(m_Value(VarX), m_ConstantInt(C1)))) {
559 Instruction *Shr = cast<Instruction>(I->getOperand(0));
560 Value *R = SimplifyShrShlDemandedBits(Shr, I, DemandedMask,
561 KnownZero, KnownOne);
562 if (R)
563 return R;
564 }
565 }
566
567 uint64_t ShiftAmt = SA->getLimitedValue(BitWidth-1);
568 APInt DemandedMaskIn(DemandedMask.lshr(ShiftAmt));
569
570 // If the shift is NUW/NSW, then it does demand the high bits.
571 ShlOperator *IOp = cast<ShlOperator>(I);
572 if (IOp->hasNoSignedWrap())
573 DemandedMaskIn |= APInt::getHighBitsSet(BitWidth, ShiftAmt+1);
574 else if (IOp->hasNoUnsignedWrap())
575 DemandedMaskIn |= APInt::getHighBitsSet(BitWidth, ShiftAmt);
576
577 if (SimplifyDemandedBits(I->getOperandUse(0), DemandedMaskIn, KnownZero,
578 KnownOne, Depth + 1))
579 return I;
580 assert(!(KnownZero & KnownOne) && "Bits known to be one AND zero?");
581 KnownZero <<= ShiftAmt;
582 KnownOne <<= ShiftAmt;
583 // low bits known zero.
584 if (ShiftAmt)
585 KnownZero |= APInt::getLowBitsSet(BitWidth, ShiftAmt);
586 }
587 break;
588 case Instruction::LShr:
589 // For a logical shift right
590 if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
591 uint64_t ShiftAmt = SA->getLimitedValue(BitWidth-1);
592
593 // Unsigned shift right.
594 APInt DemandedMaskIn(DemandedMask.shl(ShiftAmt));
595
596 // If the shift is exact, then it does demand the low bits (and knows that
597 // they are zero).
598 if (cast<LShrOperator>(I)->isExact())
599 DemandedMaskIn |= APInt::getLowBitsSet(BitWidth, ShiftAmt);
600
601 if (SimplifyDemandedBits(I->getOperandUse(0), DemandedMaskIn, KnownZero,
602 KnownOne, Depth + 1))
603 return I;
604 assert(!(KnownZero & KnownOne) && "Bits known to be one AND zero?");
605 KnownZero = APIntOps::lshr(KnownZero, ShiftAmt);
606 KnownOne = APIntOps::lshr(KnownOne, ShiftAmt);
607 if (ShiftAmt) {
608 // Compute the new bits that are at the top now.
609 APInt HighBits(APInt::getHighBitsSet(BitWidth, ShiftAmt));
610 KnownZero |= HighBits; // high bits known zero.
611 }
612 }
613 break;
614 case Instruction::AShr:
615 // If this is an arithmetic shift right and only the low-bit is set, we can
616 // always convert this into a logical shr, even if the shift amount is
617 // variable. The low bit of the shift cannot be an input sign bit unless
618 // the shift amount is >= the size of the datatype, which is undefined.
619 if (DemandedMask == 1) {
620 // Perform the logical shift right.
621 Instruction *NewVal = BinaryOperator::CreateLShr(
622 I->getOperand(0), I->getOperand(1), I->getName());
623 return InsertNewInstWith(NewVal, *I);
624 }
625
626 // If the sign bit is the only bit demanded by this ashr, then there is no
627 // need to do it, the shift doesn't change the high bit.
628 if (DemandedMask.isSignBit())
629 return I->getOperand(0);
630
631 if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
632 uint32_t ShiftAmt = SA->getLimitedValue(BitWidth-1);
633
634 // Signed shift right.
635 APInt DemandedMaskIn(DemandedMask.shl(ShiftAmt));
636 // If any of the "high bits" are demanded, we should set the sign bit as
637 // demanded.
638 if (DemandedMask.countLeadingZeros() <= ShiftAmt)
639 DemandedMaskIn.setBit(BitWidth-1);
640
641 // If the shift is exact, then it does demand the low bits (and knows that
642 // they are zero).
643 if (cast<AShrOperator>(I)->isExact())
644 DemandedMaskIn |= APInt::getLowBitsSet(BitWidth, ShiftAmt);
645
646 if (SimplifyDemandedBits(I->getOperandUse(0), DemandedMaskIn, KnownZero,
647 KnownOne, Depth + 1))
648 return I;
649 assert(!(KnownZero & KnownOne) && "Bits known to be one AND zero?");
650 // Compute the new bits that are at the top now.
651 APInt HighBits(APInt::getHighBitsSet(BitWidth, ShiftAmt));
652 KnownZero = APIntOps::lshr(KnownZero, ShiftAmt);
653 KnownOne = APIntOps::lshr(KnownOne, ShiftAmt);
654
655 // Handle the sign bits.
656 APInt SignBit(APInt::getSignBit(BitWidth));
657 // Adjust to where it is now in the mask.
658 SignBit = APIntOps::lshr(SignBit, ShiftAmt);
659
660 // If the input sign bit is known to be zero, or if none of the top bits
661 // are demanded, turn this into an unsigned shift right.
662 if (BitWidth <= ShiftAmt || KnownZero[BitWidth-ShiftAmt-1] ||
663 (HighBits & ~DemandedMask) == HighBits) {
664 // Perform the logical shift right.
665 BinaryOperator *NewVal = BinaryOperator::CreateLShr(I->getOperand(0),
666 SA, I->getName());
667 NewVal->setIsExact(cast<BinaryOperator>(I)->isExact());
668 return InsertNewInstWith(NewVal, *I);
669 } else if ((KnownOne & SignBit) != 0) { // New bits are known one.
670 KnownOne |= HighBits;
671 }
672 }
673 break;
674 case Instruction::SRem:
675 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) {
676 // X % -1 demands all the bits because we don't want to introduce
677 // INT_MIN % -1 (== undef) by accident.
678 if (Rem->isAllOnesValue())
679 break;
680 APInt RA = Rem->getValue().abs();
681 if (RA.isPowerOf2()) {
682 if (DemandedMask.ult(RA)) // srem won't affect demanded bits
683 return I->getOperand(0);
684
685 APInt LowBits = RA - 1;
686 APInt Mask2 = LowBits | APInt::getSignBit(BitWidth);
687 if (SimplifyDemandedBits(I->getOperandUse(0), Mask2, LHSKnownZero,
688 LHSKnownOne, Depth + 1))
689 return I;
690
691 // The low bits of LHS are unchanged by the srem.
692 KnownZero = LHSKnownZero & LowBits;
693 KnownOne = LHSKnownOne & LowBits;
694
695 // If LHS is non-negative or has all low bits zero, then the upper bits
696 // are all zero.
697 if (LHSKnownZero[BitWidth-1] || ((LHSKnownZero & LowBits) == LowBits))
698 KnownZero |= ~LowBits;
699
700 // If LHS is negative and not all low bits are zero, then the upper bits
701 // are all one.
702 if (LHSKnownOne[BitWidth-1] && ((LHSKnownOne & LowBits) != 0))
703 KnownOne |= ~LowBits;
704
705 assert(!(KnownZero & KnownOne) && "Bits known to be one AND zero?");
706 }
707 }
708
709 // The sign bit is the LHS's sign bit, except when the result of the
710 // remainder is zero.
711 if (DemandedMask.isNegative() && KnownZero.isNonNegative()) {
712 APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0);
713 computeKnownBits(I->getOperand(0), LHSKnownZero, LHSKnownOne, Depth + 1,
714 CxtI);
715 // If it's known zero, our sign bit is also zero.
716 if (LHSKnownZero.isNegative())
717 KnownZero.setBit(KnownZero.getBitWidth() - 1);
718 }
719 break;
720 case Instruction::URem: {
721 APInt KnownZero2(BitWidth, 0), KnownOne2(BitWidth, 0);
722 APInt AllOnes = APInt::getAllOnesValue(BitWidth);
723 if (SimplifyDemandedBits(I->getOperandUse(0), AllOnes, KnownZero2,
724 KnownOne2, Depth + 1) ||
725 SimplifyDemandedBits(I->getOperandUse(1), AllOnes, KnownZero2,
726 KnownOne2, Depth + 1))
727 return I;
728
729 unsigned Leaders = KnownZero2.countLeadingOnes();
730 Leaders = std::max(Leaders,
731 KnownZero2.countLeadingOnes());
732 KnownZero = APInt::getHighBitsSet(BitWidth, Leaders) & DemandedMask;
733 break;
734 }
735 case Instruction::Call:
736 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
737 switch (II->getIntrinsicID()) {
738 default: break;
739 case Intrinsic::bswap: {
740 // If the only bits demanded come from one byte of the bswap result,
741 // just shift the input byte into position to eliminate the bswap.
742 unsigned NLZ = DemandedMask.countLeadingZeros();
743 unsigned NTZ = DemandedMask.countTrailingZeros();
744
745 // Round NTZ down to the next byte. If we have 11 trailing zeros, then
746 // we need all the bits down to bit 8. Likewise, round NLZ. If we
747 // have 14 leading zeros, round to 8.
748 NLZ &= ~7;
749 NTZ &= ~7;
750 // If we need exactly one byte, we can do this transformation.
751 if (BitWidth-NLZ-NTZ == 8) {
752 unsigned ResultBit = NTZ;
753 unsigned InputBit = BitWidth-NTZ-8;
754
755 // Replace this with either a left or right shift to get the byte into
756 // the right place.
757 Instruction *NewVal;
758 if (InputBit > ResultBit)
759 NewVal = BinaryOperator::CreateLShr(II->getArgOperand(0),
760 ConstantInt::get(I->getType(), InputBit-ResultBit));
761 else
762 NewVal = BinaryOperator::CreateShl(II->getArgOperand(0),
763 ConstantInt::get(I->getType(), ResultBit-InputBit));
764 NewVal->takeName(I);
765 return InsertNewInstWith(NewVal, *I);
766 }
767
768 // TODO: Could compute known zero/one bits based on the input.
769 break;
770 }
771 case Intrinsic::x86_sse42_crc32_64_64:
772 KnownZero = APInt::getHighBitsSet(64, 32);
773 return nullptr;
774 }
775 }
776 computeKnownBits(V, KnownZero, KnownOne, Depth, CxtI);
777 break;
778 }
779
780 // If the client is only demanding bits that we know, return the known
781 // constant.
782 if ((DemandedMask & (KnownZero|KnownOne)) == DemandedMask)
783 return Constant::getIntegerValue(VTy, KnownOne);
784 return nullptr;
785 }
786
787 /// Helper routine of SimplifyDemandedUseBits. It tries to simplify
788 /// "E1 = (X lsr C1) << C2", where the C1 and C2 are constant, into
789 /// "E2 = X << (C2 - C1)" or "E2 = X >> (C1 - C2)", depending on the sign
790 /// of "C2-C1".
791 ///
792 /// Suppose E1 and E2 are generally different in bits S={bm, bm+1,
793 /// ..., bn}, without considering the specific value X is holding.
794 /// This transformation is legal iff one of following conditions is hold:
795 /// 1) All the bit in S are 0, in this case E1 == E2.
796 /// 2) We don't care those bits in S, per the input DemandedMask.
797 /// 3) Combination of 1) and 2). Some bits in S are 0, and we don't care the
798 /// rest bits.
799 ///
800 /// Currently we only test condition 2).
801 ///
802 /// As with SimplifyDemandedUseBits, it returns NULL if the simplification was
803 /// not successful.
SimplifyShrShlDemandedBits(Instruction * Shr,Instruction * Shl,APInt DemandedMask,APInt & KnownZero,APInt & KnownOne)804 Value *InstCombiner::SimplifyShrShlDemandedBits(Instruction *Shr,
805 Instruction *Shl, APInt DemandedMask, APInt &KnownZero, APInt &KnownOne) {
806
807 const APInt &ShlOp1 = cast<ConstantInt>(Shl->getOperand(1))->getValue();
808 const APInt &ShrOp1 = cast<ConstantInt>(Shr->getOperand(1))->getValue();
809 if (!ShlOp1 || !ShrOp1)
810 return nullptr; // Noop.
811
812 Value *VarX = Shr->getOperand(0);
813 Type *Ty = VarX->getType();
814 unsigned BitWidth = Ty->getIntegerBitWidth();
815 if (ShlOp1.uge(BitWidth) || ShrOp1.uge(BitWidth))
816 return nullptr; // Undef.
817
818 unsigned ShlAmt = ShlOp1.getZExtValue();
819 unsigned ShrAmt = ShrOp1.getZExtValue();
820
821 KnownOne.clearAllBits();
822 KnownZero = APInt::getBitsSet(KnownZero.getBitWidth(), 0, ShlAmt-1);
823 KnownZero &= DemandedMask;
824
825 APInt BitMask1(APInt::getAllOnesValue(BitWidth));
826 APInt BitMask2(APInt::getAllOnesValue(BitWidth));
827
828 bool isLshr = (Shr->getOpcode() == Instruction::LShr);
829 BitMask1 = isLshr ? (BitMask1.lshr(ShrAmt) << ShlAmt) :
830 (BitMask1.ashr(ShrAmt) << ShlAmt);
831
832 if (ShrAmt <= ShlAmt) {
833 BitMask2 <<= (ShlAmt - ShrAmt);
834 } else {
835 BitMask2 = isLshr ? BitMask2.lshr(ShrAmt - ShlAmt):
836 BitMask2.ashr(ShrAmt - ShlAmt);
837 }
838
839 // Check if condition-2 (see the comment to this function) is satified.
840 if ((BitMask1 & DemandedMask) == (BitMask2 & DemandedMask)) {
841 if (ShrAmt == ShlAmt)
842 return VarX;
843
844 if (!Shr->hasOneUse())
845 return nullptr;
846
847 BinaryOperator *New;
848 if (ShrAmt < ShlAmt) {
849 Constant *Amt = ConstantInt::get(VarX->getType(), ShlAmt - ShrAmt);
850 New = BinaryOperator::CreateShl(VarX, Amt);
851 BinaryOperator *Orig = cast<BinaryOperator>(Shl);
852 New->setHasNoSignedWrap(Orig->hasNoSignedWrap());
853 New->setHasNoUnsignedWrap(Orig->hasNoUnsignedWrap());
854 } else {
855 Constant *Amt = ConstantInt::get(VarX->getType(), ShrAmt - ShlAmt);
856 New = isLshr ? BinaryOperator::CreateLShr(VarX, Amt) :
857 BinaryOperator::CreateAShr(VarX, Amt);
858 if (cast<BinaryOperator>(Shr)->isExact())
859 New->setIsExact(true);
860 }
861
862 return InsertNewInstWith(New, *Shl);
863 }
864
865 return nullptr;
866 }
867
868 /// SimplifyDemandedVectorElts - The specified value produces a vector with
869 /// any number of elements. DemandedElts contains the set of elements that are
870 /// actually used by the caller. This method analyzes which elements of the
871 /// operand are undef and returns that information in UndefElts.
872 ///
873 /// If the information about demanded elements can be used to simplify the
874 /// operation, the operation is simplified, then the resultant value is
875 /// returned. This returns null if no change was made.
SimplifyDemandedVectorElts(Value * V,APInt DemandedElts,APInt & UndefElts,unsigned Depth)876 Value *InstCombiner::SimplifyDemandedVectorElts(Value *V, APInt DemandedElts,
877 APInt &UndefElts,
878 unsigned Depth) {
879 unsigned VWidth = cast<VectorType>(V->getType())->getNumElements();
880 APInt EltMask(APInt::getAllOnesValue(VWidth));
881 assert((DemandedElts & ~EltMask) == 0 && "Invalid DemandedElts!");
882
883 if (isa<UndefValue>(V)) {
884 // If the entire vector is undefined, just return this info.
885 UndefElts = EltMask;
886 return nullptr;
887 }
888
889 if (DemandedElts == 0) { // If nothing is demanded, provide undef.
890 UndefElts = EltMask;
891 return UndefValue::get(V->getType());
892 }
893
894 UndefElts = 0;
895
896 // Handle ConstantAggregateZero, ConstantVector, ConstantDataSequential.
897 if (Constant *C = dyn_cast<Constant>(V)) {
898 // Check if this is identity. If so, return 0 since we are not simplifying
899 // anything.
900 if (DemandedElts.isAllOnesValue())
901 return nullptr;
902
903 Type *EltTy = cast<VectorType>(V->getType())->getElementType();
904 Constant *Undef = UndefValue::get(EltTy);
905
906 SmallVector<Constant*, 16> Elts;
907 for (unsigned i = 0; i != VWidth; ++i) {
908 if (!DemandedElts[i]) { // If not demanded, set to undef.
909 Elts.push_back(Undef);
910 UndefElts.setBit(i);
911 continue;
912 }
913
914 Constant *Elt = C->getAggregateElement(i);
915 if (!Elt) return nullptr;
916
917 if (isa<UndefValue>(Elt)) { // Already undef.
918 Elts.push_back(Undef);
919 UndefElts.setBit(i);
920 } else { // Otherwise, defined.
921 Elts.push_back(Elt);
922 }
923 }
924
925 // If we changed the constant, return it.
926 Constant *NewCV = ConstantVector::get(Elts);
927 return NewCV != C ? NewCV : nullptr;
928 }
929
930 // Limit search depth.
931 if (Depth == 10)
932 return nullptr;
933
934 // If multiple users are using the root value, proceed with
935 // simplification conservatively assuming that all elements
936 // are needed.
937 if (!V->hasOneUse()) {
938 // Quit if we find multiple users of a non-root value though.
939 // They'll be handled when it's their turn to be visited by
940 // the main instcombine process.
941 if (Depth != 0)
942 // TODO: Just compute the UndefElts information recursively.
943 return nullptr;
944
945 // Conservatively assume that all elements are needed.
946 DemandedElts = EltMask;
947 }
948
949 Instruction *I = dyn_cast<Instruction>(V);
950 if (!I) return nullptr; // Only analyze instructions.
951
952 bool MadeChange = false;
953 APInt UndefElts2(VWidth, 0);
954 Value *TmpV;
955 switch (I->getOpcode()) {
956 default: break;
957
958 case Instruction::InsertElement: {
959 // If this is a variable index, we don't know which element it overwrites.
960 // demand exactly the same input as we produce.
961 ConstantInt *Idx = dyn_cast<ConstantInt>(I->getOperand(2));
962 if (!Idx) {
963 // Note that we can't propagate undef elt info, because we don't know
964 // which elt is getting updated.
965 TmpV = SimplifyDemandedVectorElts(I->getOperand(0), DemandedElts,
966 UndefElts2, Depth + 1);
967 if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; }
968 break;
969 }
970
971 // If this is inserting an element that isn't demanded, remove this
972 // insertelement.
973 unsigned IdxNo = Idx->getZExtValue();
974 if (IdxNo >= VWidth || !DemandedElts[IdxNo]) {
975 Worklist.Add(I);
976 return I->getOperand(0);
977 }
978
979 // Otherwise, the element inserted overwrites whatever was there, so the
980 // input demanded set is simpler than the output set.
981 APInt DemandedElts2 = DemandedElts;
982 DemandedElts2.clearBit(IdxNo);
983 TmpV = SimplifyDemandedVectorElts(I->getOperand(0), DemandedElts2,
984 UndefElts, Depth + 1);
985 if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; }
986
987 // The inserted element is defined.
988 UndefElts.clearBit(IdxNo);
989 break;
990 }
991 case Instruction::ShuffleVector: {
992 ShuffleVectorInst *Shuffle = cast<ShuffleVectorInst>(I);
993 uint64_t LHSVWidth =
994 cast<VectorType>(Shuffle->getOperand(0)->getType())->getNumElements();
995 APInt LeftDemanded(LHSVWidth, 0), RightDemanded(LHSVWidth, 0);
996 for (unsigned i = 0; i < VWidth; i++) {
997 if (DemandedElts[i]) {
998 unsigned MaskVal = Shuffle->getMaskValue(i);
999 if (MaskVal != -1u) {
1000 assert(MaskVal < LHSVWidth * 2 &&
1001 "shufflevector mask index out of range!");
1002 if (MaskVal < LHSVWidth)
1003 LeftDemanded.setBit(MaskVal);
1004 else
1005 RightDemanded.setBit(MaskVal - LHSVWidth);
1006 }
1007 }
1008 }
1009
1010 APInt UndefElts4(LHSVWidth, 0);
1011 TmpV = SimplifyDemandedVectorElts(I->getOperand(0), LeftDemanded,
1012 UndefElts4, Depth + 1);
1013 if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; }
1014
1015 APInt UndefElts3(LHSVWidth, 0);
1016 TmpV = SimplifyDemandedVectorElts(I->getOperand(1), RightDemanded,
1017 UndefElts3, Depth + 1);
1018 if (TmpV) { I->setOperand(1, TmpV); MadeChange = true; }
1019
1020 bool NewUndefElts = false;
1021 for (unsigned i = 0; i < VWidth; i++) {
1022 unsigned MaskVal = Shuffle->getMaskValue(i);
1023 if (MaskVal == -1u) {
1024 UndefElts.setBit(i);
1025 } else if (!DemandedElts[i]) {
1026 NewUndefElts = true;
1027 UndefElts.setBit(i);
1028 } else if (MaskVal < LHSVWidth) {
1029 if (UndefElts4[MaskVal]) {
1030 NewUndefElts = true;
1031 UndefElts.setBit(i);
1032 }
1033 } else {
1034 if (UndefElts3[MaskVal - LHSVWidth]) {
1035 NewUndefElts = true;
1036 UndefElts.setBit(i);
1037 }
1038 }
1039 }
1040
1041 if (NewUndefElts) {
1042 // Add additional discovered undefs.
1043 SmallVector<Constant*, 16> Elts;
1044 for (unsigned i = 0; i < VWidth; ++i) {
1045 if (UndefElts[i])
1046 Elts.push_back(UndefValue::get(Type::getInt32Ty(I->getContext())));
1047 else
1048 Elts.push_back(ConstantInt::get(Type::getInt32Ty(I->getContext()),
1049 Shuffle->getMaskValue(i)));
1050 }
1051 I->setOperand(2, ConstantVector::get(Elts));
1052 MadeChange = true;
1053 }
1054 break;
1055 }
1056 case Instruction::Select: {
1057 APInt LeftDemanded(DemandedElts), RightDemanded(DemandedElts);
1058 if (ConstantVector* CV = dyn_cast<ConstantVector>(I->getOperand(0))) {
1059 for (unsigned i = 0; i < VWidth; i++) {
1060 Constant *CElt = CV->getAggregateElement(i);
1061 // Method isNullValue always returns false when called on a
1062 // ConstantExpr. If CElt is a ConstantExpr then skip it in order to
1063 // to avoid propagating incorrect information.
1064 if (isa<ConstantExpr>(CElt))
1065 continue;
1066 if (CElt->isNullValue())
1067 LeftDemanded.clearBit(i);
1068 else
1069 RightDemanded.clearBit(i);
1070 }
1071 }
1072
1073 TmpV = SimplifyDemandedVectorElts(I->getOperand(1), LeftDemanded, UndefElts,
1074 Depth + 1);
1075 if (TmpV) { I->setOperand(1, TmpV); MadeChange = true; }
1076
1077 TmpV = SimplifyDemandedVectorElts(I->getOperand(2), RightDemanded,
1078 UndefElts2, Depth + 1);
1079 if (TmpV) { I->setOperand(2, TmpV); MadeChange = true; }
1080
1081 // Output elements are undefined if both are undefined.
1082 UndefElts &= UndefElts2;
1083 break;
1084 }
1085 case Instruction::BitCast: {
1086 // Vector->vector casts only.
1087 VectorType *VTy = dyn_cast<VectorType>(I->getOperand(0)->getType());
1088 if (!VTy) break;
1089 unsigned InVWidth = VTy->getNumElements();
1090 APInt InputDemandedElts(InVWidth, 0);
1091 UndefElts2 = APInt(InVWidth, 0);
1092 unsigned Ratio;
1093
1094 if (VWidth == InVWidth) {
1095 // If we are converting from <4 x i32> -> <4 x f32>, we demand the same
1096 // elements as are demanded of us.
1097 Ratio = 1;
1098 InputDemandedElts = DemandedElts;
1099 } else if ((VWidth % InVWidth) == 0) {
1100 // If the number of elements in the output is a multiple of the number of
1101 // elements in the input then an input element is live if any of the
1102 // corresponding output elements are live.
1103 Ratio = VWidth / InVWidth;
1104 for (unsigned OutIdx = 0; OutIdx != VWidth; ++OutIdx)
1105 if (DemandedElts[OutIdx])
1106 InputDemandedElts.setBit(OutIdx / Ratio);
1107 } else if ((InVWidth % VWidth) == 0) {
1108 // If the number of elements in the input is a multiple of the number of
1109 // elements in the output then an input element is live if the
1110 // corresponding output element is live.
1111 Ratio = InVWidth / VWidth;
1112 for (unsigned InIdx = 0; InIdx != InVWidth; ++InIdx)
1113 if (DemandedElts[InIdx / Ratio])
1114 InputDemandedElts.setBit(InIdx);
1115 } else {
1116 // Unsupported so far.
1117 break;
1118 }
1119
1120 // div/rem demand all inputs, because they don't want divide by zero.
1121 TmpV = SimplifyDemandedVectorElts(I->getOperand(0), InputDemandedElts,
1122 UndefElts2, Depth + 1);
1123 if (TmpV) {
1124 I->setOperand(0, TmpV);
1125 MadeChange = true;
1126 }
1127
1128 if (VWidth == InVWidth) {
1129 UndefElts = UndefElts2;
1130 } else if ((VWidth % InVWidth) == 0) {
1131 // If the number of elements in the output is a multiple of the number of
1132 // elements in the input then an output element is undef if the
1133 // corresponding input element is undef.
1134 for (unsigned OutIdx = 0; OutIdx != VWidth; ++OutIdx)
1135 if (UndefElts2[OutIdx / Ratio])
1136 UndefElts.setBit(OutIdx);
1137 } else if ((InVWidth % VWidth) == 0) {
1138 // If the number of elements in the input is a multiple of the number of
1139 // elements in the output then an output element is undef if all of the
1140 // corresponding input elements are undef.
1141 for (unsigned OutIdx = 0; OutIdx != VWidth; ++OutIdx) {
1142 APInt SubUndef = UndefElts2.lshr(OutIdx * Ratio).zextOrTrunc(Ratio);
1143 if (SubUndef.countPopulation() == Ratio)
1144 UndefElts.setBit(OutIdx);
1145 }
1146 } else {
1147 llvm_unreachable("Unimp");
1148 }
1149 break;
1150 }
1151 case Instruction::And:
1152 case Instruction::Or:
1153 case Instruction::Xor:
1154 case Instruction::Add:
1155 case Instruction::Sub:
1156 case Instruction::Mul:
1157 // div/rem demand all inputs, because they don't want divide by zero.
1158 TmpV = SimplifyDemandedVectorElts(I->getOperand(0), DemandedElts, UndefElts,
1159 Depth + 1);
1160 if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; }
1161 TmpV = SimplifyDemandedVectorElts(I->getOperand(1), DemandedElts,
1162 UndefElts2, Depth + 1);
1163 if (TmpV) { I->setOperand(1, TmpV); MadeChange = true; }
1164
1165 // Output elements are undefined if both are undefined. Consider things
1166 // like undef&0. The result is known zero, not undef.
1167 UndefElts &= UndefElts2;
1168 break;
1169 case Instruction::FPTrunc:
1170 case Instruction::FPExt:
1171 TmpV = SimplifyDemandedVectorElts(I->getOperand(0), DemandedElts, UndefElts,
1172 Depth + 1);
1173 if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; }
1174 break;
1175
1176 case Instruction::Call: {
1177 IntrinsicInst *II = dyn_cast<IntrinsicInst>(I);
1178 if (!II) break;
1179 switch (II->getIntrinsicID()) {
1180 default: break;
1181
1182 // Binary vector operations that work column-wise. A dest element is a
1183 // function of the corresponding input elements from the two inputs.
1184 case Intrinsic::x86_sse_sub_ss:
1185 case Intrinsic::x86_sse_mul_ss:
1186 case Intrinsic::x86_sse_min_ss:
1187 case Intrinsic::x86_sse_max_ss:
1188 case Intrinsic::x86_sse2_sub_sd:
1189 case Intrinsic::x86_sse2_mul_sd:
1190 case Intrinsic::x86_sse2_min_sd:
1191 case Intrinsic::x86_sse2_max_sd:
1192 TmpV = SimplifyDemandedVectorElts(II->getArgOperand(0), DemandedElts,
1193 UndefElts, Depth + 1);
1194 if (TmpV) { II->setArgOperand(0, TmpV); MadeChange = true; }
1195 TmpV = SimplifyDemandedVectorElts(II->getArgOperand(1), DemandedElts,
1196 UndefElts2, Depth + 1);
1197 if (TmpV) { II->setArgOperand(1, TmpV); MadeChange = true; }
1198
1199 // If only the low elt is demanded and this is a scalarizable intrinsic,
1200 // scalarize it now.
1201 if (DemandedElts == 1) {
1202 switch (II->getIntrinsicID()) {
1203 default: break;
1204 case Intrinsic::x86_sse_sub_ss:
1205 case Intrinsic::x86_sse_mul_ss:
1206 case Intrinsic::x86_sse2_sub_sd:
1207 case Intrinsic::x86_sse2_mul_sd:
1208 // TODO: Lower MIN/MAX/ABS/etc
1209 Value *LHS = II->getArgOperand(0);
1210 Value *RHS = II->getArgOperand(1);
1211 // Extract the element as scalars.
1212 LHS = InsertNewInstWith(ExtractElementInst::Create(LHS,
1213 ConstantInt::get(Type::getInt32Ty(I->getContext()), 0U)), *II);
1214 RHS = InsertNewInstWith(ExtractElementInst::Create(RHS,
1215 ConstantInt::get(Type::getInt32Ty(I->getContext()), 0U)), *II);
1216
1217 switch (II->getIntrinsicID()) {
1218 default: llvm_unreachable("Case stmts out of sync!");
1219 case Intrinsic::x86_sse_sub_ss:
1220 case Intrinsic::x86_sse2_sub_sd:
1221 TmpV = InsertNewInstWith(BinaryOperator::CreateFSub(LHS, RHS,
1222 II->getName()), *II);
1223 break;
1224 case Intrinsic::x86_sse_mul_ss:
1225 case Intrinsic::x86_sse2_mul_sd:
1226 TmpV = InsertNewInstWith(BinaryOperator::CreateFMul(LHS, RHS,
1227 II->getName()), *II);
1228 break;
1229 }
1230
1231 Instruction *New =
1232 InsertElementInst::Create(
1233 UndefValue::get(II->getType()), TmpV,
1234 ConstantInt::get(Type::getInt32Ty(I->getContext()), 0U, false),
1235 II->getName());
1236 InsertNewInstWith(New, *II);
1237 return New;
1238 }
1239 }
1240
1241 // Output elements are undefined if both are undefined. Consider things
1242 // like undef&0. The result is known zero, not undef.
1243 UndefElts &= UndefElts2;
1244 break;
1245
1246 // SSE4A instructions leave the upper 64-bits of the 128-bit result
1247 // in an undefined state.
1248 case Intrinsic::x86_sse4a_extrq:
1249 case Intrinsic::x86_sse4a_extrqi:
1250 case Intrinsic::x86_sse4a_insertq:
1251 case Intrinsic::x86_sse4a_insertqi:
1252 UndefElts |= APInt::getHighBitsSet(VWidth, VWidth / 2);
1253 break;
1254 }
1255 break;
1256 }
1257 }
1258 return MadeChange ? I : nullptr;
1259 }
1260