1 /*
2  * Copyright 2006 The Android Open Source Project
3  *
4  * Use of this source code is governed by a BSD-style license that can be
5  * found in the LICENSE file.
6  */
7 
8 #ifndef SkColorPriv_DEFINED
9 #define SkColorPriv_DEFINED
10 
11 // turn this own for extra debug checking when blending onto 565
12 #ifdef SK_DEBUG
13     #define CHECK_FOR_565_OVERFLOW
14 #endif
15 
16 #include "SkColor.h"
17 #include "SkMath.h"
18 
19 //////////////////////////////////////////////////////////////////////////////
20 
21 #define SkASSERT_IS_BYTE(x)     SkASSERT(0 == ((x) & ~0xFF))
22 
23 /*
24  *  Skia's 32bit backend only supports 1 sizzle order at a time (compile-time).
25  *  This is specified by 4 defines SK_A32_SHIFT, SK_R32_SHIFT, ... for G and B.
26  *
27  *  For easier compatibility with Skia's GPU backend, we further restrict these
28  *  to either (in memory-byte-order) RGBA or BGRA. Note that this "order" does
29  *  not directly correspond to the same shift-order, since we have to take endianess
30  *  into account.
31  *
32  *  Here we enforce this constraint.
33  */
34 
35 #ifdef SK_CPU_BENDIAN
36     #define SK_RGBA_R32_SHIFT   24
37     #define SK_RGBA_G32_SHIFT   16
38     #define SK_RGBA_B32_SHIFT   8
39     #define SK_RGBA_A32_SHIFT   0
40 
41     #define SK_BGRA_B32_SHIFT   24
42     #define SK_BGRA_G32_SHIFT   16
43     #define SK_BGRA_R32_SHIFT   8
44     #define SK_BGRA_A32_SHIFT   0
45 #else
46     #define SK_RGBA_R32_SHIFT   0
47     #define SK_RGBA_G32_SHIFT   8
48     #define SK_RGBA_B32_SHIFT   16
49     #define SK_RGBA_A32_SHIFT   24
50 
51     #define SK_BGRA_B32_SHIFT   0
52     #define SK_BGRA_G32_SHIFT   8
53     #define SK_BGRA_R32_SHIFT   16
54     #define SK_BGRA_A32_SHIFT   24
55 #endif
56 
57 #if defined(SK_PMCOLOR_IS_RGBA) && defined(SK_PMCOLOR_IS_BGRA)
58     #error "can't define PMCOLOR to be RGBA and BGRA"
59 #endif
60 
61 #define LOCAL_PMCOLOR_SHIFTS_EQUIVALENT_TO_RGBA  \
62     (SK_A32_SHIFT == SK_RGBA_A32_SHIFT &&    \
63      SK_R32_SHIFT == SK_RGBA_R32_SHIFT &&    \
64      SK_G32_SHIFT == SK_RGBA_G32_SHIFT &&    \
65      SK_B32_SHIFT == SK_RGBA_B32_SHIFT)
66 
67 #define LOCAL_PMCOLOR_SHIFTS_EQUIVALENT_TO_BGRA  \
68     (SK_A32_SHIFT == SK_BGRA_A32_SHIFT &&    \
69      SK_R32_SHIFT == SK_BGRA_R32_SHIFT &&    \
70      SK_G32_SHIFT == SK_BGRA_G32_SHIFT &&    \
71      SK_B32_SHIFT == SK_BGRA_B32_SHIFT)
72 
73 
74 #define SK_A_INDEX  (SK_A32_SHIFT/8)
75 #define SK_R_INDEX  (SK_R32_SHIFT/8)
76 #define SK_G_INDEX  (SK_G32_SHIFT/8)
77 #define SK_B_INDEX  (SK_B32_SHIFT/8)
78 
79 #if defined(SK_PMCOLOR_IS_RGBA) && !LOCAL_PMCOLOR_SHIFTS_EQUIVALENT_TO_RGBA
80     #error "SK_PMCOLOR_IS_RGBA does not match SK_*32_SHIFT values"
81 #endif
82 
83 #if defined(SK_PMCOLOR_IS_BGRA) && !LOCAL_PMCOLOR_SHIFTS_EQUIVALENT_TO_BGRA
84     #error "SK_PMCOLOR_IS_BGRA does not match SK_*32_SHIFT values"
85 #endif
86 
87 #if !defined(SK_PMCOLOR_IS_RGBA) && !defined(SK_PMCOLOR_IS_BGRA)
88     // deduce which to define from the _SHIFT defines
89 
90     #if LOCAL_PMCOLOR_SHIFTS_EQUIVALENT_TO_RGBA
91         #define SK_PMCOLOR_IS_RGBA
92     #elif LOCAL_PMCOLOR_SHIFTS_EQUIVALENT_TO_BGRA
93         #define SK_PMCOLOR_IS_BGRA
94     #else
95         #error "need 32bit packing to be either RGBA or BGRA"
96     #endif
97 #endif
98 
99 // hide these now that we're done
100 #undef LOCAL_PMCOLOR_SHIFTS_EQUIVALENT_TO_RGBA
101 #undef LOCAL_PMCOLOR_SHIFTS_EQUIVALENT_TO_BGRA
102 
103 //////////////////////////////////////////////////////////////////////////////
104 
105 // Reverse the bytes coorsponding to RED and BLUE in a packed pixels. Note the
106 // pair of them are in the same 2 slots in both RGBA and BGRA, thus there is
107 // no need to pass in the colortype to this function.
SkSwizzle_RB(uint32_t c)108 static inline uint32_t SkSwizzle_RB(uint32_t c) {
109     static const uint32_t kRBMask = (0xFF << SK_R32_SHIFT) | (0xFF << SK_B32_SHIFT);
110 
111     unsigned c0 = (c >> SK_R32_SHIFT) & 0xFF;
112     unsigned c1 = (c >> SK_B32_SHIFT) & 0xFF;
113     return (c & ~kRBMask) | (c0 << SK_B32_SHIFT) | (c1 << SK_R32_SHIFT);
114 }
115 
SkPackARGB_as_RGBA(U8CPU a,U8CPU r,U8CPU g,U8CPU b)116 static inline uint32_t SkPackARGB_as_RGBA(U8CPU a, U8CPU r, U8CPU g, U8CPU b) {
117     SkASSERT_IS_BYTE(a);
118     SkASSERT_IS_BYTE(r);
119     SkASSERT_IS_BYTE(g);
120     SkASSERT_IS_BYTE(b);
121     return (a << SK_RGBA_A32_SHIFT) | (r << SK_RGBA_R32_SHIFT) |
122            (g << SK_RGBA_G32_SHIFT) | (b << SK_RGBA_B32_SHIFT);
123 }
124 
SkPackARGB_as_BGRA(U8CPU a,U8CPU r,U8CPU g,U8CPU b)125 static inline uint32_t SkPackARGB_as_BGRA(U8CPU a, U8CPU r, U8CPU g, U8CPU b) {
126     SkASSERT_IS_BYTE(a);
127     SkASSERT_IS_BYTE(r);
128     SkASSERT_IS_BYTE(g);
129     SkASSERT_IS_BYTE(b);
130     return (a << SK_BGRA_A32_SHIFT) | (r << SK_BGRA_R32_SHIFT) |
131            (g << SK_BGRA_G32_SHIFT) | (b << SK_BGRA_B32_SHIFT);
132 }
133 
SkSwizzle_RGBA_to_PMColor(uint32_t c)134 static inline SkPMColor SkSwizzle_RGBA_to_PMColor(uint32_t c) {
135 #ifdef SK_PMCOLOR_IS_RGBA
136     return c;
137 #else
138     return SkSwizzle_RB(c);
139 #endif
140 }
141 
SkSwizzle_BGRA_to_PMColor(uint32_t c)142 static inline SkPMColor SkSwizzle_BGRA_to_PMColor(uint32_t c) {
143 #ifdef SK_PMCOLOR_IS_BGRA
144     return c;
145 #else
146     return SkSwizzle_RB(c);
147 #endif
148 }
149 
150 //////////////////////////////////////////////////////////////////////////////
151 
152 ///@{
153 /** See ITU-R Recommendation BT.709 at http://www.itu.int/rec/R-REC-BT.709/ .*/
154 #define SK_ITU_BT709_LUM_COEFF_R (0.2126f)
155 #define SK_ITU_BT709_LUM_COEFF_G (0.7152f)
156 #define SK_ITU_BT709_LUM_COEFF_B (0.0722f)
157 ///@}
158 
159 ///@{
160 /** A float value which specifies this channel's contribution to luminance. */
161 #define SK_LUM_COEFF_R SK_ITU_BT709_LUM_COEFF_R
162 #define SK_LUM_COEFF_G SK_ITU_BT709_LUM_COEFF_G
163 #define SK_LUM_COEFF_B SK_ITU_BT709_LUM_COEFF_B
164 ///@}
165 
166 /** Computes the luminance from the given r, g, and b in accordance with
167     SK_LUM_COEFF_X. For correct results, r, g, and b should be in linear space.
168 */
SkComputeLuminance(U8CPU r,U8CPU g,U8CPU b)169 static inline U8CPU SkComputeLuminance(U8CPU r, U8CPU g, U8CPU b) {
170     //The following is
171     //r * SK_LUM_COEFF_R + g * SK_LUM_COEFF_G + b * SK_LUM_COEFF_B
172     //with SK_LUM_COEFF_X in 1.8 fixed point (rounding adjusted to sum to 256).
173     return (r * 54 + g * 183 + b * 19) >> 8;
174 }
175 
176 /** Turn 0..255 into 0..256 by adding 1 at the half-way point. Used to turn a
177     byte into a scale value, so that we can say scale * value >> 8 instead of
178     alpha * value / 255.
179 
180     In debugging, asserts that alpha is 0..255
181 */
SkAlpha255To256(U8CPU alpha)182 static inline unsigned SkAlpha255To256(U8CPU alpha) {
183     SkASSERT(SkToU8(alpha) == alpha);
184     // this one assues that blending on top of an opaque dst keeps it that way
185     // even though it is less accurate than a+(a>>7) for non-opaque dsts
186     return alpha + 1;
187 }
188 
189 /**
190  *  Turn a 0..255 value into a 0..256 value, rounding up if the value is >= 0x80.
191  *  This is slightly more accurate than SkAlpha255To256.
192  */
Sk255To256(U8CPU value)193 static inline unsigned Sk255To256(U8CPU value) {
194     SkASSERT(SkToU8(value) == value);
195     return value + (value >> 7);
196 }
197 
198 /** Multiplify value by 0..256, and shift the result down 8
199     (i.e. return (value * alpha256) >> 8)
200  */
201 #define SkAlphaMul(value, alpha256)     (((value) * (alpha256)) >> 8)
202 
203 //  The caller may want negative values, so keep all params signed (int)
204 //  so we don't accidentally slip into unsigned math and lose the sign
205 //  extension when we shift (in SkAlphaMul)
SkAlphaBlend(int src,int dst,int scale256)206 static inline int SkAlphaBlend(int src, int dst, int scale256) {
207     SkASSERT((unsigned)scale256 <= 256);
208     return dst + SkAlphaMul(src - dst, scale256);
209 }
210 
211 /**
212  *  Returns (src * alpha + dst * (255 - alpha)) / 255
213  *
214  *  This is more accurate than SkAlphaBlend, but slightly slower
215  */
SkAlphaBlend255(S16CPU src,S16CPU dst,U8CPU alpha)216 static inline int SkAlphaBlend255(S16CPU src, S16CPU dst, U8CPU alpha) {
217     SkASSERT((int16_t)src == src);
218     SkASSERT((int16_t)dst == dst);
219     SkASSERT((uint8_t)alpha == alpha);
220 
221     int prod = (src - dst) * alpha + 128;
222     prod = (prod + (prod >> 8)) >> 8;
223     return dst + prod;
224 }
225 
SkUnitScalarClampToByte(SkScalar x)226 static inline U8CPU SkUnitScalarClampToByte(SkScalar x) {
227     return static_cast<U8CPU>(SkScalarPin(x, 0, 1) * 255 + 0.5);
228 }
229 
230 #define SK_R16_BITS     5
231 #define SK_G16_BITS     6
232 #define SK_B16_BITS     5
233 
234 #define SK_R16_SHIFT    (SK_B16_BITS + SK_G16_BITS)
235 #define SK_G16_SHIFT    (SK_B16_BITS)
236 #define SK_B16_SHIFT    0
237 
238 #define SK_R16_MASK     ((1 << SK_R16_BITS) - 1)
239 #define SK_G16_MASK     ((1 << SK_G16_BITS) - 1)
240 #define SK_B16_MASK     ((1 << SK_B16_BITS) - 1)
241 
242 #define SkGetPackedR16(color)   (((unsigned)(color) >> SK_R16_SHIFT) & SK_R16_MASK)
243 #define SkGetPackedG16(color)   (((unsigned)(color) >> SK_G16_SHIFT) & SK_G16_MASK)
244 #define SkGetPackedB16(color)   (((unsigned)(color) >> SK_B16_SHIFT) & SK_B16_MASK)
245 
246 #define SkR16Assert(r)  SkASSERT((unsigned)(r) <= SK_R16_MASK)
247 #define SkG16Assert(g)  SkASSERT((unsigned)(g) <= SK_G16_MASK)
248 #define SkB16Assert(b)  SkASSERT((unsigned)(b) <= SK_B16_MASK)
249 
SkPackRGB16(unsigned r,unsigned g,unsigned b)250 static inline uint16_t SkPackRGB16(unsigned r, unsigned g, unsigned b) {
251     SkASSERT(r <= SK_R16_MASK);
252     SkASSERT(g <= SK_G16_MASK);
253     SkASSERT(b <= SK_B16_MASK);
254 
255     return SkToU16((r << SK_R16_SHIFT) | (g << SK_G16_SHIFT) | (b << SK_B16_SHIFT));
256 }
257 
258 #define SK_R16_MASK_IN_PLACE        (SK_R16_MASK << SK_R16_SHIFT)
259 #define SK_G16_MASK_IN_PLACE        (SK_G16_MASK << SK_G16_SHIFT)
260 #define SK_B16_MASK_IN_PLACE        (SK_B16_MASK << SK_B16_SHIFT)
261 
262 /** Expand the 16bit color into a 32bit value that can be scaled all at once
263     by a value up to 32. Used in conjunction with SkCompact_rgb_16.
264 */
SkExpand_rgb_16(U16CPU c)265 static inline uint32_t SkExpand_rgb_16(U16CPU c) {
266     SkASSERT(c == (uint16_t)c);
267 
268     return ((c & SK_G16_MASK_IN_PLACE) << 16) | (c & ~SK_G16_MASK_IN_PLACE);
269 }
270 
271 /** Compress an expanded value (from SkExpand_rgb_16) back down to a 16bit
272     color value. The computation yields only 16bits of valid data, but we claim
273     to return 32bits, so that the compiler won't generate extra instructions to
274     "clean" the top 16bits. However, the top 16 can contain garbage, so it is
275     up to the caller to safely ignore them.
276 */
SkCompact_rgb_16(uint32_t c)277 static inline U16CPU SkCompact_rgb_16(uint32_t c) {
278     return ((c >> 16) & SK_G16_MASK_IN_PLACE) | (c & ~SK_G16_MASK_IN_PLACE);
279 }
280 
281 /** Scale the 16bit color value by the 0..256 scale parameter.
282     The computation yields only 16bits of valid data, but we claim
283     to return 32bits, so that the compiler won't generate extra instructions to
284     "clean" the top 16bits.
285 */
SkAlphaMulRGB16(U16CPU c,unsigned scale)286 static inline U16CPU SkAlphaMulRGB16(U16CPU c, unsigned scale) {
287     return SkCompact_rgb_16(SkExpand_rgb_16(c) * (scale >> 3) >> 5);
288 }
289 
290 // this helper explicitly returns a clean 16bit value (but slower)
291 #define SkAlphaMulRGB16_ToU16(c, s)  (uint16_t)SkAlphaMulRGB16(c, s)
292 
293 /** Blend pre-expanded RGB32 with 16bit color value by the 0..32 scale parameter.
294     The computation yields only 16bits of valid data, but we claim to return
295     32bits, so that the compiler won't generate extra instructions to "clean"
296     the top 16bits.
297 */
SkBlend32_RGB16(uint32_t src_expand,uint16_t dst,unsigned scale)298 static inline U16CPU SkBlend32_RGB16(uint32_t src_expand, uint16_t dst, unsigned scale) {
299     uint32_t dst_expand = SkExpand_rgb_16(dst) * scale;
300     return SkCompact_rgb_16((src_expand + dst_expand) >> 5);
301 }
302 
303 /** Blend src and dst 16bit colors by the 0..256 scale parameter.
304     The computation yields only 16bits of valid data, but we claim
305     to return 32bits, so that the compiler won't generate extra instructions to
306     "clean" the top 16bits.
307 */
SkBlendRGB16(U16CPU src,U16CPU dst,int srcScale)308 static inline U16CPU SkBlendRGB16(U16CPU src, U16CPU dst, int srcScale) {
309     SkASSERT((unsigned)srcScale <= 256);
310 
311     srcScale >>= 3;
312 
313     uint32_t src32 = SkExpand_rgb_16(src);
314     uint32_t dst32 = SkExpand_rgb_16(dst);
315     return SkCompact_rgb_16(dst32 + ((src32 - dst32) * srcScale >> 5));
316 }
317 
SkBlendRGB16(const uint16_t src[],uint16_t dst[],int srcScale,int count)318 static inline void SkBlendRGB16(const uint16_t src[], uint16_t dst[],
319                                 int srcScale, int count) {
320     SkASSERT(count > 0);
321     SkASSERT((unsigned)srcScale <= 256);
322 
323     srcScale >>= 3;
324 
325     do {
326         uint32_t src32 = SkExpand_rgb_16(*src++);
327         uint32_t dst32 = SkExpand_rgb_16(*dst);
328         *dst++ = static_cast<uint16_t>(
329             SkCompact_rgb_16(dst32 + ((src32 - dst32) * srcScale >> 5)));
330     } while (--count > 0);
331 }
332 
333 #ifdef SK_DEBUG
SkRGB16Add(U16CPU a,U16CPU b)334     static inline U16CPU SkRGB16Add(U16CPU a, U16CPU b) {
335         SkASSERT(SkGetPackedR16(a) + SkGetPackedR16(b) <= SK_R16_MASK);
336         SkASSERT(SkGetPackedG16(a) + SkGetPackedG16(b) <= SK_G16_MASK);
337         SkASSERT(SkGetPackedB16(a) + SkGetPackedB16(b) <= SK_B16_MASK);
338 
339         return a + b;
340     }
341 #else
342     #define SkRGB16Add(a, b)  ((a) + (b))
343 #endif
344 
345 ///////////////////////////////////////////////////////////////////////////////
346 
347 #define SK_A32_BITS     8
348 #define SK_R32_BITS     8
349 #define SK_G32_BITS     8
350 #define SK_B32_BITS     8
351 
352 #define SK_A32_MASK     ((1 << SK_A32_BITS) - 1)
353 #define SK_R32_MASK     ((1 << SK_R32_BITS) - 1)
354 #define SK_G32_MASK     ((1 << SK_G32_BITS) - 1)
355 #define SK_B32_MASK     ((1 << SK_B32_BITS) - 1)
356 
357 #define SkGetPackedA32(packed)      ((uint32_t)((packed) << (24 - SK_A32_SHIFT)) >> 24)
358 #define SkGetPackedR32(packed)      ((uint32_t)((packed) << (24 - SK_R32_SHIFT)) >> 24)
359 #define SkGetPackedG32(packed)      ((uint32_t)((packed) << (24 - SK_G32_SHIFT)) >> 24)
360 #define SkGetPackedB32(packed)      ((uint32_t)((packed) << (24 - SK_B32_SHIFT)) >> 24)
361 
362 #define SkA32Assert(a)  SkASSERT((unsigned)(a) <= SK_A32_MASK)
363 #define SkR32Assert(r)  SkASSERT((unsigned)(r) <= SK_R32_MASK)
364 #define SkG32Assert(g)  SkASSERT((unsigned)(g) <= SK_G32_MASK)
365 #define SkB32Assert(b)  SkASSERT((unsigned)(b) <= SK_B32_MASK)
366 
367 #ifdef SK_DEBUG
368     #define SkPMColorAssert(color_value)                                    \
369         do {                                                                \
370             SkPMColor pm_color_value = (color_value);                       \
371             uint32_t alpha_color_value = SkGetPackedA32(pm_color_value);    \
372             SkA32Assert(alpha_color_value);                                 \
373             SkASSERT(SkGetPackedR32(pm_color_value) <= alpha_color_value);  \
374             SkASSERT(SkGetPackedG32(pm_color_value) <= alpha_color_value);  \
375             SkASSERT(SkGetPackedB32(pm_color_value) <= alpha_color_value);  \
376         } while (false)
377 #else
378     #define SkPMColorAssert(c)
379 #endif
380 
SkPMColorValid(SkPMColor c)381 static inline bool SkPMColorValid(SkPMColor c) {
382     auto a = SkGetPackedA32(c);
383     bool valid = a <= SK_A32_MASK
384               && SkGetPackedR32(c) <= a
385               && SkGetPackedG32(c) <= a
386               && SkGetPackedB32(c) <= a;
387     if (valid) {
388         SkPMColorAssert(c);  // Make sure we're consistent when it counts.
389     }
390     return valid;
391 }
392 
393 /**
394  *  Pack the components into a SkPMColor, checking (in the debug version) that
395  *  the components are 0..255, and are already premultiplied (i.e. alpha >= color)
396  */
SkPackARGB32(U8CPU a,U8CPU r,U8CPU g,U8CPU b)397 static inline SkPMColor SkPackARGB32(U8CPU a, U8CPU r, U8CPU g, U8CPU b) {
398     SkA32Assert(a);
399     SkASSERT(r <= a);
400     SkASSERT(g <= a);
401     SkASSERT(b <= a);
402 
403     return (a << SK_A32_SHIFT) | (r << SK_R32_SHIFT) |
404            (g << SK_G32_SHIFT) | (b << SK_B32_SHIFT);
405 }
406 
SkPackPMColor_as_RGBA(SkPMColor c)407 static inline uint32_t SkPackPMColor_as_RGBA(SkPMColor c) {
408     return SkPackARGB_as_RGBA(SkGetPackedA32(c), SkGetPackedR32(c),
409                               SkGetPackedG32(c), SkGetPackedB32(c));
410 }
411 
SkPackPMColor_as_BGRA(SkPMColor c)412 static inline uint32_t SkPackPMColor_as_BGRA(SkPMColor c) {
413     return SkPackARGB_as_BGRA(SkGetPackedA32(c), SkGetPackedR32(c),
414                               SkGetPackedG32(c), SkGetPackedB32(c));
415 }
416 
417 /**
418  * Abstract 4-byte interpolation, implemented on top of SkPMColor
419  * utility functions. Third parameter controls blending of the first two:
420  *   (src, dst, 0) returns dst
421  *   (src, dst, 0xFF) returns src
422  *   srcWeight is [0..256], unlike SkFourByteInterp which takes [0..255]
423  */
SkFourByteInterp256(SkPMColor src,SkPMColor dst,unsigned scale)424 static inline SkPMColor SkFourByteInterp256(SkPMColor src, SkPMColor dst,
425                                          unsigned scale) {
426     unsigned a = SkAlphaBlend(SkGetPackedA32(src), SkGetPackedA32(dst), scale);
427     unsigned r = SkAlphaBlend(SkGetPackedR32(src), SkGetPackedR32(dst), scale);
428     unsigned g = SkAlphaBlend(SkGetPackedG32(src), SkGetPackedG32(dst), scale);
429     unsigned b = SkAlphaBlend(SkGetPackedB32(src), SkGetPackedB32(dst), scale);
430 
431     return SkPackARGB32(a, r, g, b);
432 }
433 
434 /**
435  * Abstract 4-byte interpolation, implemented on top of SkPMColor
436  * utility functions. Third parameter controls blending of the first two:
437  *   (src, dst, 0) returns dst
438  *   (src, dst, 0xFF) returns src
439  */
SkFourByteInterp(SkPMColor src,SkPMColor dst,U8CPU srcWeight)440 static inline SkPMColor SkFourByteInterp(SkPMColor src, SkPMColor dst,
441                                          U8CPU srcWeight) {
442     unsigned scale = SkAlpha255To256(srcWeight);
443     return SkFourByteInterp256(src, dst, scale);
444 }
445 
446 /**
447  * 0xAARRGGBB -> 0x00AA00GG, 0x00RR00BB
448  */
SkSplay(uint32_t color,uint32_t * ag,uint32_t * rb)449 static inline void SkSplay(uint32_t color, uint32_t* ag, uint32_t* rb) {
450     const uint32_t mask = 0x00FF00FF;
451     *ag = (color >> 8) & mask;
452     *rb = color & mask;
453 }
454 
455 /**
456  * 0xAARRGGBB -> 0x00AA00GG00RR00BB
457  * (note, ARGB -> AGRB)
458  */
SkSplay(uint32_t color)459 static inline uint64_t SkSplay(uint32_t color) {
460     const uint32_t mask = 0x00FF00FF;
461     uint64_t agrb = (color >> 8) & mask;  // 0x0000000000AA00GG
462     agrb <<= 32;                          // 0x00AA00GG00000000
463     agrb |= color & mask;                 // 0x00AA00GG00RR00BB
464     return agrb;
465 }
466 
467 /**
468  * 0xAAxxGGxx, 0xRRxxBBxx-> 0xAARRGGBB
469  */
SkUnsplay(uint32_t ag,uint32_t rb)470 static inline uint32_t SkUnsplay(uint32_t ag, uint32_t rb) {
471     const uint32_t mask = 0xFF00FF00;
472     return (ag & mask) | ((rb & mask) >> 8);
473 }
474 
475 /**
476  * 0xAAxxGGxxRRxxBBxx -> 0xAARRGGBB
477  * (note, AGRB -> ARGB)
478  */
SkUnsplay(uint64_t agrb)479 static inline uint32_t SkUnsplay(uint64_t agrb) {
480     const uint32_t mask = 0xFF00FF00;
481     return SkPMColor(
482         ((agrb & mask) >> 8) |   // 0x00RR00BB
483         ((agrb >> 32) & mask));  // 0xAARRGGBB
484 }
485 
SkFastFourByteInterp256_32(SkPMColor src,SkPMColor dst,unsigned scale)486 static inline SkPMColor SkFastFourByteInterp256_32(SkPMColor src, SkPMColor dst, unsigned scale) {
487     SkASSERT(scale <= 256);
488 
489     // Two 8-bit blends per two 32-bit registers, with space to make sure the math doesn't collide.
490     uint32_t src_ag, src_rb, dst_ag, dst_rb;
491     SkSplay(src, &src_ag, &src_rb);
492     SkSplay(dst, &dst_ag, &dst_rb);
493 
494     const uint32_t ret_ag = src_ag * scale + (256 - scale) * dst_ag;
495     const uint32_t ret_rb = src_rb * scale + (256 - scale) * dst_rb;
496 
497     return SkUnsplay(ret_ag, ret_rb);
498 }
499 
SkFastFourByteInterp256_64(SkPMColor src,SkPMColor dst,unsigned scale)500 static inline SkPMColor SkFastFourByteInterp256_64(SkPMColor src, SkPMColor dst, unsigned scale) {
501     SkASSERT(scale <= 256);
502     // Four 8-bit blends in one 64-bit register, with space to make sure the math doesn't collide.
503     return SkUnsplay(SkSplay(src) * scale + (256-scale) * SkSplay(dst));
504 }
505 
506 // TODO(mtklein): Replace slow versions with fast versions, using scale + (scale>>7) everywhere.
507 
508 /**
509  * Same as SkFourByteInterp256, but faster.
510  */
SkFastFourByteInterp256(SkPMColor src,SkPMColor dst,unsigned scale)511 static inline SkPMColor SkFastFourByteInterp256(SkPMColor src, SkPMColor dst, unsigned scale) {
512     // On a 64-bit machine, _64 is about 10% faster than _32, but ~40% slower on a 32-bit machine.
513     if (sizeof(void*) == 4) {
514         return SkFastFourByteInterp256_32(src, dst, scale);
515     } else {
516         return SkFastFourByteInterp256_64(src, dst, scale);
517     }
518 }
519 
520 /**
521  * Nearly the same as SkFourByteInterp, but faster and a touch more accurate, due to better
522  * srcWeight scaling to [0, 256].
523  */
SkFastFourByteInterp(SkPMColor src,SkPMColor dst,U8CPU srcWeight)524 static inline SkPMColor SkFastFourByteInterp(SkPMColor src,
525                                              SkPMColor dst,
526                                              U8CPU srcWeight) {
527     SkASSERT(srcWeight <= 255);
528     // scale = srcWeight + (srcWeight >> 7) is more accurate than
529     // scale = srcWeight + 1, but 7% slower
530     return SkFastFourByteInterp256(src, dst, srcWeight + (srcWeight >> 7));
531 }
532 
533 /**
534  *  Same as SkPackARGB32, but this version guarantees to not check that the
535  *  values are premultiplied in the debug version.
536  */
SkPackARGB32NoCheck(U8CPU a,U8CPU r,U8CPU g,U8CPU b)537 static inline SkPMColor SkPackARGB32NoCheck(U8CPU a, U8CPU r, U8CPU g, U8CPU b) {
538     return (a << SK_A32_SHIFT) | (r << SK_R32_SHIFT) |
539            (g << SK_G32_SHIFT) | (b << SK_B32_SHIFT);
540 }
541 
542 static inline
SkPremultiplyARGBInline(U8CPU a,U8CPU r,U8CPU g,U8CPU b)543 SkPMColor SkPremultiplyARGBInline(U8CPU a, U8CPU r, U8CPU g, U8CPU b) {
544     SkA32Assert(a);
545     SkR32Assert(r);
546     SkG32Assert(g);
547     SkB32Assert(b);
548 
549     if (a != 255) {
550         r = SkMulDiv255Round(r, a);
551         g = SkMulDiv255Round(g, a);
552         b = SkMulDiv255Round(b, a);
553     }
554     return SkPackARGB32(a, r, g, b);
555 }
556 
557 // When Android is compiled optimizing for size, SkAlphaMulQ doesn't get
558 // inlined; forcing inlining significantly improves performance.
SkAlphaMulQ(uint32_t c,unsigned scale)559 static SK_ALWAYS_INLINE uint32_t SkAlphaMulQ(uint32_t c, unsigned scale) {
560     uint32_t mask = 0xFF00FF;
561 
562     uint32_t rb = ((c & mask) * scale) >> 8;
563     uint32_t ag = ((c >> 8) & mask) * scale;
564     return (rb & mask) | (ag & ~mask);
565 }
566 
SkPMSrcOver(SkPMColor src,SkPMColor dst)567 static inline SkPMColor SkPMSrcOver(SkPMColor src, SkPMColor dst) {
568     return src + SkAlphaMulQ(dst, SkAlpha255To256(255 - SkGetPackedA32(src)));
569 }
570 
SkBlendARGB32(SkPMColor src,SkPMColor dst,U8CPU aa)571 static inline SkPMColor SkBlendARGB32(SkPMColor src, SkPMColor dst, U8CPU aa) {
572     SkASSERT((unsigned)aa <= 255);
573 
574     unsigned src_scale = SkAlpha255To256(aa);
575     unsigned dst_scale = SkAlpha255To256(255 - SkAlphaMul(SkGetPackedA32(src), src_scale));
576 
577     return SkAlphaMulQ(src, src_scale) + SkAlphaMulQ(dst, dst_scale);
578 }
579 
580 ////////////////////////////////////////////////////////////////////////////////////////////
581 // Convert a 32bit pixel to a 16bit pixel (no dither)
582 
583 #define SkR32ToR16_MACRO(r)   ((unsigned)(r) >> (SK_R32_BITS - SK_R16_BITS))
584 #define SkG32ToG16_MACRO(g)   ((unsigned)(g) >> (SK_G32_BITS - SK_G16_BITS))
585 #define SkB32ToB16_MACRO(b)   ((unsigned)(b) >> (SK_B32_BITS - SK_B16_BITS))
586 
587 #ifdef SK_DEBUG
SkR32ToR16(unsigned r)588     static inline unsigned SkR32ToR16(unsigned r) {
589         SkR32Assert(r);
590         return SkR32ToR16_MACRO(r);
591     }
SkG32ToG16(unsigned g)592     static inline unsigned SkG32ToG16(unsigned g) {
593         SkG32Assert(g);
594         return SkG32ToG16_MACRO(g);
595     }
SkB32ToB16(unsigned b)596     static inline unsigned SkB32ToB16(unsigned b) {
597         SkB32Assert(b);
598         return SkB32ToB16_MACRO(b);
599     }
600 #else
601     #define SkR32ToR16(r)   SkR32ToR16_MACRO(r)
602     #define SkG32ToG16(g)   SkG32ToG16_MACRO(g)
603     #define SkB32ToB16(b)   SkB32ToB16_MACRO(b)
604 #endif
605 
606 #define SkPacked32ToR16(c)  (((unsigned)(c) >> (SK_R32_SHIFT + SK_R32_BITS - SK_R16_BITS)) & SK_R16_MASK)
607 #define SkPacked32ToG16(c)  (((unsigned)(c) >> (SK_G32_SHIFT + SK_G32_BITS - SK_G16_BITS)) & SK_G16_MASK)
608 #define SkPacked32ToB16(c)  (((unsigned)(c) >> (SK_B32_SHIFT + SK_B32_BITS - SK_B16_BITS)) & SK_B16_MASK)
609 
SkPixel32ToPixel16(SkPMColor c)610 static inline U16CPU SkPixel32ToPixel16(SkPMColor c) {
611     unsigned r = ((c >> (SK_R32_SHIFT + (8 - SK_R16_BITS))) & SK_R16_MASK) << SK_R16_SHIFT;
612     unsigned g = ((c >> (SK_G32_SHIFT + (8 - SK_G16_BITS))) & SK_G16_MASK) << SK_G16_SHIFT;
613     unsigned b = ((c >> (SK_B32_SHIFT + (8 - SK_B16_BITS))) & SK_B16_MASK) << SK_B16_SHIFT;
614     return r | g | b;
615 }
616 
SkPack888ToRGB16(U8CPU r,U8CPU g,U8CPU b)617 static inline U16CPU SkPack888ToRGB16(U8CPU r, U8CPU g, U8CPU b) {
618     return  (SkR32ToR16(r) << SK_R16_SHIFT) |
619             (SkG32ToG16(g) << SK_G16_SHIFT) |
620             (SkB32ToB16(b) << SK_B16_SHIFT);
621 }
622 
623 #define SkPixel32ToPixel16_ToU16(src)   SkToU16(SkPixel32ToPixel16(src))
624 
625 /////////////////////////////////////////////////////////////////////////////////////////
626 // Fast dither from 32->16
627 
628 #define SkShouldDitherXY(x, y)  (((x) ^ (y)) & 1)
629 
SkDitherPack888ToRGB16(U8CPU r,U8CPU g,U8CPU b)630 static inline uint16_t SkDitherPack888ToRGB16(U8CPU r, U8CPU g, U8CPU b) {
631     r = ((r << 1) - ((r >> (8 - SK_R16_BITS) << (8 - SK_R16_BITS)) | (r >> SK_R16_BITS))) >> (8 - SK_R16_BITS);
632     g = ((g << 1) - ((g >> (8 - SK_G16_BITS) << (8 - SK_G16_BITS)) | (g >> SK_G16_BITS))) >> (8 - SK_G16_BITS);
633     b = ((b << 1) - ((b >> (8 - SK_B16_BITS) << (8 - SK_B16_BITS)) | (b >> SK_B16_BITS))) >> (8 - SK_B16_BITS);
634 
635     return SkPackRGB16(r, g, b);
636 }
637 
SkDitherPixel32ToPixel16(SkPMColor c)638 static inline uint16_t SkDitherPixel32ToPixel16(SkPMColor c) {
639     return SkDitherPack888ToRGB16(SkGetPackedR32(c), SkGetPackedG32(c), SkGetPackedB32(c));
640 }
641 
642 /*  Return c in expanded_rgb_16 format, but also scaled up by 32 (5 bits)
643     It is now suitable for combining with a scaled expanded_rgb_16 color
644     as in SkSrcOver32To16().
645     We must do this 565 high-bit replication, in order for the subsequent add
646     to saturate properly (and not overflow). If we take the 8 bits as is, it is
647     possible to overflow.
648 */
SkPMColorToExpanded16x5(SkPMColor c)649 static inline uint32_t SkPMColorToExpanded16x5(SkPMColor c) {
650     unsigned sr = SkPacked32ToR16(c);
651     unsigned sg = SkPacked32ToG16(c);
652     unsigned sb = SkPacked32ToB16(c);
653 
654     sr = (sr << 5) | sr;
655     sg = (sg << 5) | (sg >> 1);
656     sb = (sb << 5) | sb;
657     return (sr << 11) | (sg << 21) | (sb << 0);
658 }
659 
660 /*  SrcOver the 32bit src color with the 16bit dst, returning a 16bit value
661     (with dirt in the high 16bits, so caller beware).
662 */
SkSrcOver32To16(SkPMColor src,uint16_t dst)663 static inline U16CPU SkSrcOver32To16(SkPMColor src, uint16_t dst) {
664     unsigned sr = SkGetPackedR32(src);
665     unsigned sg = SkGetPackedG32(src);
666     unsigned sb = SkGetPackedB32(src);
667 
668     unsigned dr = SkGetPackedR16(dst);
669     unsigned dg = SkGetPackedG16(dst);
670     unsigned db = SkGetPackedB16(dst);
671 
672     unsigned isa = 255 - SkGetPackedA32(src);
673 
674     dr = (sr + SkMul16ShiftRound(dr, isa, SK_R16_BITS)) >> (8 - SK_R16_BITS);
675     dg = (sg + SkMul16ShiftRound(dg, isa, SK_G16_BITS)) >> (8 - SK_G16_BITS);
676     db = (sb + SkMul16ShiftRound(db, isa, SK_B16_BITS)) >> (8 - SK_B16_BITS);
677 
678     return SkPackRGB16(dr, dg, db);
679 }
680 
681 ////////////////////////////////////////////////////////////////////////////////////////////
682 // Convert a 16bit pixel to a 32bit pixel
683 
SkR16ToR32(unsigned r)684 static inline unsigned SkR16ToR32(unsigned r) {
685     return (r << (8 - SK_R16_BITS)) | (r >> (2 * SK_R16_BITS - 8));
686 }
687 
SkG16ToG32(unsigned g)688 static inline unsigned SkG16ToG32(unsigned g) {
689     return (g << (8 - SK_G16_BITS)) | (g >> (2 * SK_G16_BITS - 8));
690 }
691 
SkB16ToB32(unsigned b)692 static inline unsigned SkB16ToB32(unsigned b) {
693     return (b << (8 - SK_B16_BITS)) | (b >> (2 * SK_B16_BITS - 8));
694 }
695 
696 #define SkPacked16ToR32(c)      SkR16ToR32(SkGetPackedR16(c))
697 #define SkPacked16ToG32(c)      SkG16ToG32(SkGetPackedG16(c))
698 #define SkPacked16ToB32(c)      SkB16ToB32(SkGetPackedB16(c))
699 
SkPixel16ToPixel32(U16CPU src)700 static inline SkPMColor SkPixel16ToPixel32(U16CPU src) {
701     SkASSERT(src == SkToU16(src));
702 
703     unsigned    r = SkPacked16ToR32(src);
704     unsigned    g = SkPacked16ToG32(src);
705     unsigned    b = SkPacked16ToB32(src);
706 
707     SkASSERT((r >> (8 - SK_R16_BITS)) == SkGetPackedR16(src));
708     SkASSERT((g >> (8 - SK_G16_BITS)) == SkGetPackedG16(src));
709     SkASSERT((b >> (8 - SK_B16_BITS)) == SkGetPackedB16(src));
710 
711     return SkPackARGB32(0xFF, r, g, b);
712 }
713 
714 // similar to SkPixel16ToPixel32, but returns SkColor instead of SkPMColor
SkPixel16ToColor(U16CPU src)715 static inline SkColor SkPixel16ToColor(U16CPU src) {
716     SkASSERT(src == SkToU16(src));
717 
718     unsigned    r = SkPacked16ToR32(src);
719     unsigned    g = SkPacked16ToG32(src);
720     unsigned    b = SkPacked16ToB32(src);
721 
722     SkASSERT((r >> (8 - SK_R16_BITS)) == SkGetPackedR16(src));
723     SkASSERT((g >> (8 - SK_G16_BITS)) == SkGetPackedG16(src));
724     SkASSERT((b >> (8 - SK_B16_BITS)) == SkGetPackedB16(src));
725 
726     return SkColorSetRGB(r, g, b);
727 }
728 
729 ///////////////////////////////////////////////////////////////////////////////
730 
731 typedef uint16_t SkPMColor16;
732 
733 // Put in OpenGL order (r g b a)
734 #define SK_A4444_SHIFT    0
735 #define SK_R4444_SHIFT    12
736 #define SK_G4444_SHIFT    8
737 #define SK_B4444_SHIFT    4
738 
739 #define SkA32To4444(a)  ((unsigned)(a) >> 4)
740 #define SkR32To4444(r)  ((unsigned)(r) >> 4)
741 #define SkG32To4444(g)  ((unsigned)(g) >> 4)
742 #define SkB32To4444(b)  ((unsigned)(b) >> 4)
743 
SkReplicateNibble(unsigned nib)744 static inline U8CPU SkReplicateNibble(unsigned nib) {
745     SkASSERT(nib <= 0xF);
746     return (nib << 4) | nib;
747 }
748 
749 #define SkA4444ToA32(a)     SkReplicateNibble(a)
750 #define SkR4444ToR32(r)     SkReplicateNibble(r)
751 #define SkG4444ToG32(g)     SkReplicateNibble(g)
752 #define SkB4444ToB32(b)     SkReplicateNibble(b)
753 
754 #define SkGetPackedA4444(c)     (((unsigned)(c) >> SK_A4444_SHIFT) & 0xF)
755 #define SkGetPackedR4444(c)     (((unsigned)(c) >> SK_R4444_SHIFT) & 0xF)
756 #define SkGetPackedG4444(c)     (((unsigned)(c) >> SK_G4444_SHIFT) & 0xF)
757 #define SkGetPackedB4444(c)     (((unsigned)(c) >> SK_B4444_SHIFT) & 0xF)
758 
759 #define SkPacked4444ToA32(c)    SkReplicateNibble(SkGetPackedA4444(c))
760 #define SkPacked4444ToR32(c)    SkReplicateNibble(SkGetPackedR4444(c))
761 #define SkPacked4444ToG32(c)    SkReplicateNibble(SkGetPackedG4444(c))
762 #define SkPacked4444ToB32(c)    SkReplicateNibble(SkGetPackedB4444(c))
763 
764 #ifdef SK_DEBUG
SkPMColor16Assert(U16CPU c)765 static inline void SkPMColor16Assert(U16CPU c) {
766     unsigned a = SkGetPackedA4444(c);
767     unsigned r = SkGetPackedR4444(c);
768     unsigned g = SkGetPackedG4444(c);
769     unsigned b = SkGetPackedB4444(c);
770 
771     SkASSERT(a <= 0xF);
772     SkASSERT(r <= a);
773     SkASSERT(g <= a);
774     SkASSERT(b <= a);
775 }
776 #else
777 #define SkPMColor16Assert(c)
778 #endif
779 
SkAlpha15To16(unsigned a)780 static inline unsigned SkAlpha15To16(unsigned a) {
781     SkASSERT(a <= 0xF);
782     return a + (a >> 3);
783 }
784 
785 #ifdef SK_DEBUG
SkAlphaMul4(int value,int scale)786     static inline int SkAlphaMul4(int value, int scale) {
787         SkASSERT((unsigned)scale <= 0x10);
788         return value * scale >> 4;
789     }
790 #else
791     #define SkAlphaMul4(value, scale)   ((value) * (scale) >> 4)
792 #endif
793 
SkR4444ToR565(unsigned r)794 static inline unsigned SkR4444ToR565(unsigned r) {
795     SkASSERT(r <= 0xF);
796     return (r << (SK_R16_BITS - 4)) | (r >> (8 - SK_R16_BITS));
797 }
798 
SkG4444ToG565(unsigned g)799 static inline unsigned SkG4444ToG565(unsigned g) {
800     SkASSERT(g <= 0xF);
801     return (g << (SK_G16_BITS - 4)) | (g >> (8 - SK_G16_BITS));
802 }
803 
SkB4444ToB565(unsigned b)804 static inline unsigned SkB4444ToB565(unsigned b) {
805     SkASSERT(b <= 0xF);
806     return (b << (SK_B16_BITS - 4)) | (b >> (8 - SK_B16_BITS));
807 }
808 
SkPackARGB4444(unsigned a,unsigned r,unsigned g,unsigned b)809 static inline SkPMColor16 SkPackARGB4444(unsigned a, unsigned r,
810                                          unsigned g, unsigned b) {
811     SkASSERT(a <= 0xF);
812     SkASSERT(r <= a);
813     SkASSERT(g <= a);
814     SkASSERT(b <= a);
815 
816     return (SkPMColor16)((a << SK_A4444_SHIFT) | (r << SK_R4444_SHIFT) |
817                          (g << SK_G4444_SHIFT) | (b << SK_B4444_SHIFT));
818 }
819 
SkAlphaMulQ4(SkPMColor16 c,int scale)820 static inline SkPMColor16 SkAlphaMulQ4(SkPMColor16 c, int scale) {
821     SkASSERT(scale <= 16);
822 
823     const unsigned mask = 0xF0F;    //gMask_0F0F;
824 
825 #if 0
826     unsigned rb = ((c & mask) * scale) >> 4;
827     unsigned ag = ((c >> 4) & mask) * scale;
828     return (rb & mask) | (ag & ~mask);
829 #else
830     unsigned expanded_c = (c & mask) | ((c & (mask << 4)) << 12);
831     unsigned scaled_c = (expanded_c * scale) >> 4;
832     return (scaled_c & mask) | ((scaled_c >> 12) & (mask << 4));
833 #endif
834 }
835 
836 /** Expand the SkPMColor16 color into a 32bit value that can be scaled all at
837     once by a value up to 16.
838 */
SkExpand_4444(U16CPU c)839 static inline uint32_t SkExpand_4444(U16CPU c) {
840     SkASSERT(c == (uint16_t)c);
841 
842     const unsigned mask = 0xF0F;    //gMask_0F0F;
843     return (c & mask) | ((c & ~mask) << 12);
844 }
845 
SkSrcOver4444To16(SkPMColor16 s,uint16_t d)846 static inline uint16_t SkSrcOver4444To16(SkPMColor16 s, uint16_t d) {
847     unsigned sa = SkGetPackedA4444(s);
848     unsigned sr = SkR4444ToR565(SkGetPackedR4444(s));
849     unsigned sg = SkG4444ToG565(SkGetPackedG4444(s));
850     unsigned sb = SkB4444ToB565(SkGetPackedB4444(s));
851 
852     // To avoid overflow, we have to clear the low bit of the synthetic sg
853     // if the src alpha is <= 7.
854     // to see why, try blending 0x4444 on top of 565-white and watch green
855     // overflow (sum == 64)
856     sg &= ~(~(sa >> 3) & 1);
857 
858     unsigned scale = SkAlpha15To16(15 - sa);
859     unsigned dr = SkAlphaMul4(SkGetPackedR16(d), scale);
860     unsigned dg = SkAlphaMul4(SkGetPackedG16(d), scale);
861     unsigned db = SkAlphaMul4(SkGetPackedB16(d), scale);
862 
863 #if 0
864     if (sg + dg > 63) {
865         SkDebugf("---- SkSrcOver4444To16 src=%x dst=%x scale=%d, sg=%d dg=%d\n", s, d, scale, sg, dg);
866     }
867 #endif
868     return SkPackRGB16(sr + dr, sg + dg, sb + db);
869 }
870 
SkBlend4444To16(SkPMColor16 src,uint16_t dst,int scale16)871 static inline uint16_t SkBlend4444To16(SkPMColor16 src, uint16_t dst, int scale16) {
872     SkASSERT((unsigned)scale16 <= 16);
873 
874     return SkSrcOver4444To16(SkAlphaMulQ4(src, scale16), dst);
875 }
876 
SkPixel4444ToPixel32(U16CPU c)877 static inline SkPMColor SkPixel4444ToPixel32(U16CPU c) {
878     uint32_t d = (SkGetPackedA4444(c) << SK_A32_SHIFT) |
879                  (SkGetPackedR4444(c) << SK_R32_SHIFT) |
880                  (SkGetPackedG4444(c) << SK_G32_SHIFT) |
881                  (SkGetPackedB4444(c) << SK_B32_SHIFT);
882     return d | (d << 4);
883 }
884 
SkPixel32ToPixel4444(SkPMColor c)885 static inline SkPMColor16 SkPixel32ToPixel4444(SkPMColor c) {
886     return  (((c >> (SK_A32_SHIFT + 4)) & 0xF) << SK_A4444_SHIFT) |
887     (((c >> (SK_R32_SHIFT + 4)) & 0xF) << SK_R4444_SHIFT) |
888     (((c >> (SK_G32_SHIFT + 4)) & 0xF) << SK_G4444_SHIFT) |
889     (((c >> (SK_B32_SHIFT + 4)) & 0xF) << SK_B4444_SHIFT);
890 }
891 
892 // cheap 2x2 dither
SkDitherARGB32To4444(U8CPU a,U8CPU r,U8CPU g,U8CPU b)893 static inline SkPMColor16 SkDitherARGB32To4444(U8CPU a, U8CPU r,
894                                                U8CPU g, U8CPU b) {
895     // to ensure that we stay a legal premultiplied color, we take the max()
896     // of the truncated and dithered alpha values. If we didn't, cases like
897     // SkDitherARGB32To4444(0x31, 0x2E, ...) would generate SkPackARGB4444(2, 3, ...)
898     // which is not legal premultiplied, since a < color
899     unsigned dithered_a = ((a << 1) - ((a >> 4 << 4) | (a >> 4))) >> 4;
900     a = SkMax32(a >> 4, dithered_a);
901     // these we just dither in place
902     r = ((r << 1) - ((r >> 4 << 4) | (r >> 4))) >> 4;
903     g = ((g << 1) - ((g >> 4 << 4) | (g >> 4))) >> 4;
904     b = ((b << 1) - ((b >> 4 << 4) | (b >> 4))) >> 4;
905 
906     return SkPackARGB4444(a, r, g, b);
907 }
908 
SkDitherPixel32To4444(SkPMColor c)909 static inline SkPMColor16 SkDitherPixel32To4444(SkPMColor c) {
910     return SkDitherARGB32To4444(SkGetPackedA32(c), SkGetPackedR32(c),
911                                 SkGetPackedG32(c), SkGetPackedB32(c));
912 }
913 
914 /*  Assumes 16bit is in standard RGBA order.
915     Transforms a normal ARGB_8888 into the same byte order as
916     expanded ARGB_4444, but keeps each component 8bits
917 */
SkExpand_8888(SkPMColor c)918 static inline uint32_t SkExpand_8888(SkPMColor c) {
919     return  (((c >> SK_R32_SHIFT) & 0xFF) << 24) |
920             (((c >> SK_G32_SHIFT) & 0xFF) <<  8) |
921             (((c >> SK_B32_SHIFT) & 0xFF) << 16) |
922             (((c >> SK_A32_SHIFT) & 0xFF) <<  0);
923 }
924 
925 /*  Undo the operation of SkExpand_8888, turning the argument back into
926     a SkPMColor.
927 */
SkCompact_8888(uint32_t c)928 static inline SkPMColor SkCompact_8888(uint32_t c) {
929     return  (((c >> 24) & 0xFF) << SK_R32_SHIFT) |
930             (((c >>  8) & 0xFF) << SK_G32_SHIFT) |
931             (((c >> 16) & 0xFF) << SK_B32_SHIFT) |
932             (((c >>  0) & 0xFF) << SK_A32_SHIFT);
933 }
934 
935 /*  Like SkExpand_8888, this transforms a pmcolor into the expanded 4444 format,
936     but this routine just keeps the high 4bits of each component in the low
937     4bits of the result (just like a newly expanded PMColor16).
938 */
SkExpand32_4444(SkPMColor c)939 static inline uint32_t SkExpand32_4444(SkPMColor c) {
940     return  (((c >> (SK_R32_SHIFT + 4)) & 0xF) << 24) |
941             (((c >> (SK_G32_SHIFT + 4)) & 0xF) <<  8) |
942             (((c >> (SK_B32_SHIFT + 4)) & 0xF) << 16) |
943             (((c >> (SK_A32_SHIFT + 4)) & 0xF) <<  0);
944 }
945 
946 // takes two values and alternamtes them as part of a memset16
947 // used for cheap 2x2 dithering when the colors are opaque
948 void sk_dither_memset16(uint16_t dst[], uint16_t value, uint16_t other, int n);
949 
950 ///////////////////////////////////////////////////////////////////////////////
951 
SkUpscale31To32(int value)952 static inline int SkUpscale31To32(int value) {
953     SkASSERT((unsigned)value <= 31);
954     return value + (value >> 4);
955 }
956 
SkBlend32(int src,int dst,int scale)957 static inline int SkBlend32(int src, int dst, int scale) {
958     SkASSERT((unsigned)src <= 0xFF);
959     SkASSERT((unsigned)dst <= 0xFF);
960     SkASSERT((unsigned)scale <= 32);
961     return dst + ((src - dst) * scale >> 5);
962 }
963 
SkBlendLCD16(int srcA,int srcR,int srcG,int srcB,SkPMColor dst,uint16_t mask)964 static inline SkPMColor SkBlendLCD16(int srcA, int srcR, int srcG, int srcB,
965                                      SkPMColor dst, uint16_t mask) {
966     if (mask == 0) {
967         return dst;
968     }
969 
970     /*  We want all of these in 5bits, hence the shifts in case one of them
971      *  (green) is 6bits.
972      */
973     int maskR = SkGetPackedR16(mask) >> (SK_R16_BITS - 5);
974     int maskG = SkGetPackedG16(mask) >> (SK_G16_BITS - 5);
975     int maskB = SkGetPackedB16(mask) >> (SK_B16_BITS - 5);
976 
977     // Now upscale them to 0..32, so we can use blend32
978     maskR = SkUpscale31To32(maskR);
979     maskG = SkUpscale31To32(maskG);
980     maskB = SkUpscale31To32(maskB);
981 
982     // srcA has been upscaled to 256 before passed into this function
983     maskR = maskR * srcA >> 8;
984     maskG = maskG * srcA >> 8;
985     maskB = maskB * srcA >> 8;
986 
987     int dstR = SkGetPackedR32(dst);
988     int dstG = SkGetPackedG32(dst);
989     int dstB = SkGetPackedB32(dst);
990 
991     // LCD blitting is only supported if the dst is known/required
992     // to be opaque
993     return SkPackARGB32(0xFF,
994                         SkBlend32(srcR, dstR, maskR),
995                         SkBlend32(srcG, dstG, maskG),
996                         SkBlend32(srcB, dstB, maskB));
997 }
998 
SkBlendLCD16Opaque(int srcR,int srcG,int srcB,SkPMColor dst,uint16_t mask,SkPMColor opaqueDst)999 static inline SkPMColor SkBlendLCD16Opaque(int srcR, int srcG, int srcB,
1000                                            SkPMColor dst, uint16_t mask,
1001                                            SkPMColor opaqueDst) {
1002     if (mask == 0) {
1003         return dst;
1004     }
1005 
1006     if (0xFFFF == mask) {
1007         return opaqueDst;
1008     }
1009 
1010     /*  We want all of these in 5bits, hence the shifts in case one of them
1011      *  (green) is 6bits.
1012      */
1013     int maskR = SkGetPackedR16(mask) >> (SK_R16_BITS - 5);
1014     int maskG = SkGetPackedG16(mask) >> (SK_G16_BITS - 5);
1015     int maskB = SkGetPackedB16(mask) >> (SK_B16_BITS - 5);
1016 
1017     // Now upscale them to 0..32, so we can use blend32
1018     maskR = SkUpscale31To32(maskR);
1019     maskG = SkUpscale31To32(maskG);
1020     maskB = SkUpscale31To32(maskB);
1021 
1022     int dstR = SkGetPackedR32(dst);
1023     int dstG = SkGetPackedG32(dst);
1024     int dstB = SkGetPackedB32(dst);
1025 
1026     // LCD blitting is only supported if the dst is known/required
1027     // to be opaque
1028     return SkPackARGB32(0xFF,
1029                         SkBlend32(srcR, dstR, maskR),
1030                         SkBlend32(srcG, dstG, maskG),
1031                         SkBlend32(srcB, dstB, maskB));
1032 }
1033 
SkBlitLCD16Row(SkPMColor dst[],const uint16_t mask[],SkColor src,int width,SkPMColor)1034 static inline void SkBlitLCD16Row(SkPMColor dst[], const uint16_t mask[],
1035                                   SkColor src, int width, SkPMColor) {
1036     int srcA = SkColorGetA(src);
1037     int srcR = SkColorGetR(src);
1038     int srcG = SkColorGetG(src);
1039     int srcB = SkColorGetB(src);
1040 
1041     srcA = SkAlpha255To256(srcA);
1042 
1043     for (int i = 0; i < width; i++) {
1044         dst[i] = SkBlendLCD16(srcA, srcR, srcG, srcB, dst[i], mask[i]);
1045     }
1046 }
1047 
SkBlitLCD16OpaqueRow(SkPMColor dst[],const uint16_t mask[],SkColor src,int width,SkPMColor opaqueDst)1048 static inline void SkBlitLCD16OpaqueRow(SkPMColor dst[], const uint16_t mask[],
1049                                         SkColor src, int width,
1050                                         SkPMColor opaqueDst) {
1051     int srcR = SkColorGetR(src);
1052     int srcG = SkColorGetG(src);
1053     int srcB = SkColorGetB(src);
1054 
1055     for (int i = 0; i < width; i++) {
1056         dst[i] = SkBlendLCD16Opaque(srcR, srcG, srcB, dst[i], mask[i],
1057                                     opaqueDst);
1058     }
1059 }
1060 
1061 #endif
1062