1 //===---------------------------- StackMaps.cpp ---------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 
10 #include "llvm/CodeGen/StackMaps.h"
11 #include "llvm/CodeGen/AsmPrinter.h"
12 #include "llvm/CodeGen/MachineFrameInfo.h"
13 #include "llvm/CodeGen/MachineFunction.h"
14 #include "llvm/CodeGen/MachineInstr.h"
15 #include "llvm/IR/DataLayout.h"
16 #include "llvm/MC/MCContext.h"
17 #include "llvm/MC/MCExpr.h"
18 #include "llvm/MC/MCObjectFileInfo.h"
19 #include "llvm/MC/MCSectionMachO.h"
20 #include "llvm/MC/MCStreamer.h"
21 #include "llvm/Support/CommandLine.h"
22 #include "llvm/Target/TargetMachine.h"
23 #include "llvm/Target/TargetOpcodes.h"
24 #include "llvm/Target/TargetRegisterInfo.h"
25 #include "llvm/Target/TargetSubtargetInfo.h"
26 #include <iterator>
27 
28 using namespace llvm;
29 
30 #define DEBUG_TYPE "stackmaps"
31 
32 static cl::opt<int> StackMapVersion(
33     "stackmap-version", cl::init(1),
34     cl::desc("Specify the stackmap encoding version (default = 1)"));
35 
36 const char *StackMaps::WSMP = "Stack Maps: ";
37 
PatchPointOpers(const MachineInstr * MI)38 PatchPointOpers::PatchPointOpers(const MachineInstr *MI)
39     : MI(MI), HasDef(MI->getOperand(0).isReg() && MI->getOperand(0).isDef() &&
40                      !MI->getOperand(0).isImplicit()),
41       IsAnyReg(MI->getOperand(getMetaIdx(CCPos)).getImm() ==
42                CallingConv::AnyReg) {
43 #ifndef NDEBUG
44   unsigned CheckStartIdx = 0, e = MI->getNumOperands();
45   while (CheckStartIdx < e && MI->getOperand(CheckStartIdx).isReg() &&
46          MI->getOperand(CheckStartIdx).isDef() &&
47          !MI->getOperand(CheckStartIdx).isImplicit())
48     ++CheckStartIdx;
49 
50   assert(getMetaIdx() == CheckStartIdx &&
51          "Unexpected additional definition in Patchpoint intrinsic.");
52 #endif
53 }
54 
getNextScratchIdx(unsigned StartIdx) const55 unsigned PatchPointOpers::getNextScratchIdx(unsigned StartIdx) const {
56   if (!StartIdx)
57     StartIdx = getVarIdx();
58 
59   // Find the next scratch register (implicit def and early clobber)
60   unsigned ScratchIdx = StartIdx, e = MI->getNumOperands();
61   while (ScratchIdx < e &&
62          !(MI->getOperand(ScratchIdx).isReg() &&
63            MI->getOperand(ScratchIdx).isDef() &&
64            MI->getOperand(ScratchIdx).isImplicit() &&
65            MI->getOperand(ScratchIdx).isEarlyClobber()))
66     ++ScratchIdx;
67 
68   assert(ScratchIdx != e && "No scratch register available");
69   return ScratchIdx;
70 }
71 
StackMaps(AsmPrinter & AP)72 StackMaps::StackMaps(AsmPrinter &AP) : AP(AP) {
73   if (StackMapVersion != 1)
74     llvm_unreachable("Unsupported stackmap version!");
75 }
76 
77 /// Go up the super-register chain until we hit a valid dwarf register number.
getDwarfRegNum(unsigned Reg,const TargetRegisterInfo * TRI)78 static unsigned getDwarfRegNum(unsigned Reg, const TargetRegisterInfo *TRI) {
79   int RegNum = TRI->getDwarfRegNum(Reg, false);
80   for (MCSuperRegIterator SR(Reg, TRI); SR.isValid() && RegNum < 0; ++SR)
81     RegNum = TRI->getDwarfRegNum(*SR, false);
82 
83   assert(RegNum >= 0 && "Invalid Dwarf register number.");
84   return (unsigned)RegNum;
85 }
86 
87 MachineInstr::const_mop_iterator
parseOperand(MachineInstr::const_mop_iterator MOI,MachineInstr::const_mop_iterator MOE,LocationVec & Locs,LiveOutVec & LiveOuts) const88 StackMaps::parseOperand(MachineInstr::const_mop_iterator MOI,
89                         MachineInstr::const_mop_iterator MOE, LocationVec &Locs,
90                         LiveOutVec &LiveOuts) const {
91   const TargetRegisterInfo *TRI = AP.MF->getSubtarget().getRegisterInfo();
92   if (MOI->isImm()) {
93     switch (MOI->getImm()) {
94     default:
95       llvm_unreachable("Unrecognized operand type.");
96     case StackMaps::DirectMemRefOp: {
97       auto &DL = AP.MF->getDataLayout();
98 
99       unsigned Size = DL.getPointerSizeInBits();
100       assert((Size % 8) == 0 && "Need pointer size in bytes.");
101       Size /= 8;
102       unsigned Reg = (++MOI)->getReg();
103       int64_t Imm = (++MOI)->getImm();
104       Locs.emplace_back(StackMaps::Location::Direct, Size,
105                         getDwarfRegNum(Reg, TRI), Imm);
106       break;
107     }
108     case StackMaps::IndirectMemRefOp: {
109       int64_t Size = (++MOI)->getImm();
110       assert(Size > 0 && "Need a valid size for indirect memory locations.");
111       unsigned Reg = (++MOI)->getReg();
112       int64_t Imm = (++MOI)->getImm();
113       Locs.emplace_back(StackMaps::Location::Indirect, Size,
114                         getDwarfRegNum(Reg, TRI), Imm);
115       break;
116     }
117     case StackMaps::ConstantOp: {
118       ++MOI;
119       assert(MOI->isImm() && "Expected constant operand.");
120       int64_t Imm = MOI->getImm();
121       Locs.emplace_back(Location::Constant, sizeof(int64_t), 0, Imm);
122       break;
123     }
124     }
125     return ++MOI;
126   }
127 
128   // The physical register number will ultimately be encoded as a DWARF regno.
129   // The stack map also records the size of a spill slot that can hold the
130   // register content. (The runtime can track the actual size of the data type
131   // if it needs to.)
132   if (MOI->isReg()) {
133     // Skip implicit registers (this includes our scratch registers)
134     if (MOI->isImplicit())
135       return ++MOI;
136 
137     assert(TargetRegisterInfo::isPhysicalRegister(MOI->getReg()) &&
138            "Virtreg operands should have been rewritten before now.");
139     const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(MOI->getReg());
140     assert(!MOI->getSubReg() && "Physical subreg still around.");
141 
142     unsigned Offset = 0;
143     unsigned DwarfRegNum = getDwarfRegNum(MOI->getReg(), TRI);
144     unsigned LLVMRegNum = TRI->getLLVMRegNum(DwarfRegNum, false);
145     unsigned SubRegIdx = TRI->getSubRegIndex(LLVMRegNum, MOI->getReg());
146     if (SubRegIdx)
147       Offset = TRI->getSubRegIdxOffset(SubRegIdx);
148 
149     Locs.emplace_back(Location::Register, RC->getSize(), DwarfRegNum, Offset);
150     return ++MOI;
151   }
152 
153   if (MOI->isRegLiveOut())
154     LiveOuts = parseRegisterLiveOutMask(MOI->getRegLiveOut());
155 
156   return ++MOI;
157 }
158 
print(raw_ostream & OS)159 void StackMaps::print(raw_ostream &OS) {
160   const TargetRegisterInfo *TRI =
161       AP.MF ? AP.MF->getSubtarget().getRegisterInfo() : nullptr;
162   OS << WSMP << "callsites:\n";
163   for (const auto &CSI : CSInfos) {
164     const LocationVec &CSLocs = CSI.Locations;
165     const LiveOutVec &LiveOuts = CSI.LiveOuts;
166 
167     OS << WSMP << "callsite " << CSI.ID << "\n";
168     OS << WSMP << "  has " << CSLocs.size() << " locations\n";
169 
170     unsigned Idx = 0;
171     for (const auto &Loc : CSLocs) {
172       OS << WSMP << "\t\tLoc " << Idx << ": ";
173       switch (Loc.Type) {
174       case Location::Unprocessed:
175         OS << "<Unprocessed operand>";
176         break;
177       case Location::Register:
178         OS << "Register ";
179         if (TRI)
180           OS << TRI->getName(Loc.Reg);
181         else
182           OS << Loc.Reg;
183         break;
184       case Location::Direct:
185         OS << "Direct ";
186         if (TRI)
187           OS << TRI->getName(Loc.Reg);
188         else
189           OS << Loc.Reg;
190         if (Loc.Offset)
191           OS << " + " << Loc.Offset;
192         break;
193       case Location::Indirect:
194         OS << "Indirect ";
195         if (TRI)
196           OS << TRI->getName(Loc.Reg);
197         else
198           OS << Loc.Reg;
199         OS << "+" << Loc.Offset;
200         break;
201       case Location::Constant:
202         OS << "Constant " << Loc.Offset;
203         break;
204       case Location::ConstantIndex:
205         OS << "Constant Index " << Loc.Offset;
206         break;
207       }
208       OS << "\t[encoding: .byte " << Loc.Type << ", .byte " << Loc.Size
209          << ", .short " << Loc.Reg << ", .int " << Loc.Offset << "]\n";
210       Idx++;
211     }
212 
213     OS << WSMP << "\thas " << LiveOuts.size() << " live-out registers\n";
214 
215     Idx = 0;
216     for (const auto &LO : LiveOuts) {
217       OS << WSMP << "\t\tLO " << Idx << ": ";
218       if (TRI)
219         OS << TRI->getName(LO.Reg);
220       else
221         OS << LO.Reg;
222       OS << "\t[encoding: .short " << LO.DwarfRegNum << ", .byte 0, .byte "
223          << LO.Size << "]\n";
224       Idx++;
225     }
226   }
227 }
228 
229 /// Create a live-out register record for the given register Reg.
230 StackMaps::LiveOutReg
createLiveOutReg(unsigned Reg,const TargetRegisterInfo * TRI) const231 StackMaps::createLiveOutReg(unsigned Reg, const TargetRegisterInfo *TRI) const {
232   unsigned DwarfRegNum = getDwarfRegNum(Reg, TRI);
233   unsigned Size = TRI->getMinimalPhysRegClass(Reg)->getSize();
234   return LiveOutReg(Reg, DwarfRegNum, Size);
235 }
236 
237 /// Parse the register live-out mask and return a vector of live-out registers
238 /// that need to be recorded in the stackmap.
239 StackMaps::LiveOutVec
parseRegisterLiveOutMask(const uint32_t * Mask) const240 StackMaps::parseRegisterLiveOutMask(const uint32_t *Mask) const {
241   assert(Mask && "No register mask specified");
242   const TargetRegisterInfo *TRI = AP.MF->getSubtarget().getRegisterInfo();
243   LiveOutVec LiveOuts;
244 
245   // Create a LiveOutReg for each bit that is set in the register mask.
246   for (unsigned Reg = 0, NumRegs = TRI->getNumRegs(); Reg != NumRegs; ++Reg)
247     if ((Mask[Reg / 32] >> Reg % 32) & 1)
248       LiveOuts.push_back(createLiveOutReg(Reg, TRI));
249 
250   // We don't need to keep track of a register if its super-register is already
251   // in the list. Merge entries that refer to the same dwarf register and use
252   // the maximum size that needs to be spilled.
253 
254   std::sort(LiveOuts.begin(), LiveOuts.end(),
255             [](const LiveOutReg &LHS, const LiveOutReg &RHS) {
256               // Only sort by the dwarf register number.
257               return LHS.DwarfRegNum < RHS.DwarfRegNum;
258             });
259 
260   for (auto I = LiveOuts.begin(), E = LiveOuts.end(); I != E; ++I) {
261     for (auto II = std::next(I); II != E; ++II) {
262       if (I->DwarfRegNum != II->DwarfRegNum) {
263         // Skip all the now invalid entries.
264         I = --II;
265         break;
266       }
267       I->Size = std::max(I->Size, II->Size);
268       if (TRI->isSuperRegister(I->Reg, II->Reg))
269         I->Reg = II->Reg;
270       II->Reg = 0; // mark for deletion.
271     }
272   }
273 
274   LiveOuts.erase(
275       std::remove_if(LiveOuts.begin(), LiveOuts.end(),
276                      [](const LiveOutReg &LO) { return LO.Reg == 0; }),
277       LiveOuts.end());
278 
279   return LiveOuts;
280 }
281 
recordStackMapOpers(const MachineInstr & MI,uint64_t ID,MachineInstr::const_mop_iterator MOI,MachineInstr::const_mop_iterator MOE,bool recordResult)282 void StackMaps::recordStackMapOpers(const MachineInstr &MI, uint64_t ID,
283                                     MachineInstr::const_mop_iterator MOI,
284                                     MachineInstr::const_mop_iterator MOE,
285                                     bool recordResult) {
286 
287   MCContext &OutContext = AP.OutStreamer->getContext();
288   MCSymbol *MILabel = OutContext.createTempSymbol();
289   AP.OutStreamer->EmitLabel(MILabel);
290 
291   LocationVec Locations;
292   LiveOutVec LiveOuts;
293 
294   if (recordResult) {
295     assert(PatchPointOpers(&MI).hasDef() && "Stackmap has no return value.");
296     parseOperand(MI.operands_begin(), std::next(MI.operands_begin()), Locations,
297                  LiveOuts);
298   }
299 
300   // Parse operands.
301   while (MOI != MOE) {
302     MOI = parseOperand(MOI, MOE, Locations, LiveOuts);
303   }
304 
305   // Move large constants into the constant pool.
306   for (auto &Loc : Locations) {
307     // Constants are encoded as sign-extended integers.
308     // -1 is directly encoded as .long 0xFFFFFFFF with no constant pool.
309     if (Loc.Type == Location::Constant && !isInt<32>(Loc.Offset)) {
310       Loc.Type = Location::ConstantIndex;
311       // ConstPool is intentionally a MapVector of 'uint64_t's (as
312       // opposed to 'int64_t's).  We should never be in a situation
313       // where we have to insert either the tombstone or the empty
314       // keys into a map, and for a DenseMap<uint64_t, T> these are
315       // (uint64_t)0 and (uint64_t)-1.  They can be and are
316       // represented using 32 bit integers.
317       assert((uint64_t)Loc.Offset != DenseMapInfo<uint64_t>::getEmptyKey() &&
318              (uint64_t)Loc.Offset !=
319                  DenseMapInfo<uint64_t>::getTombstoneKey() &&
320              "empty and tombstone keys should fit in 32 bits!");
321       auto Result = ConstPool.insert(std::make_pair(Loc.Offset, Loc.Offset));
322       Loc.Offset = Result.first - ConstPool.begin();
323     }
324   }
325 
326   // Create an expression to calculate the offset of the callsite from function
327   // entry.
328   const MCExpr *CSOffsetExpr = MCBinaryExpr::createSub(
329       MCSymbolRefExpr::create(MILabel, OutContext),
330       MCSymbolRefExpr::create(AP.CurrentFnSymForSize, OutContext), OutContext);
331 
332   CSInfos.emplace_back(CSOffsetExpr, ID, std::move(Locations),
333                        std::move(LiveOuts));
334 
335   // Record the stack size of the current function.
336   const MachineFrameInfo *MFI = AP.MF->getFrameInfo();
337   const TargetRegisterInfo *RegInfo = AP.MF->getSubtarget().getRegisterInfo();
338   bool HasDynamicFrameSize =
339       MFI->hasVarSizedObjects() || RegInfo->needsStackRealignment(*(AP.MF));
340   FnStackSize[AP.CurrentFnSym] =
341       HasDynamicFrameSize ? UINT64_MAX : MFI->getStackSize();
342 }
343 
recordStackMap(const MachineInstr & MI)344 void StackMaps::recordStackMap(const MachineInstr &MI) {
345   assert(MI.getOpcode() == TargetOpcode::STACKMAP && "expected stackmap");
346 
347   int64_t ID = MI.getOperand(0).getImm();
348   recordStackMapOpers(MI, ID, std::next(MI.operands_begin(), 2),
349                       MI.operands_end());
350 }
351 
recordPatchPoint(const MachineInstr & MI)352 void StackMaps::recordPatchPoint(const MachineInstr &MI) {
353   assert(MI.getOpcode() == TargetOpcode::PATCHPOINT && "expected patchpoint");
354 
355   PatchPointOpers opers(&MI);
356   int64_t ID = opers.getMetaOper(PatchPointOpers::IDPos).getImm();
357 
358   auto MOI = std::next(MI.operands_begin(), opers.getStackMapStartIdx());
359   recordStackMapOpers(MI, ID, MOI, MI.operands_end(),
360                       opers.isAnyReg() && opers.hasDef());
361 
362 #ifndef NDEBUG
363   // verify anyregcc
364   auto &Locations = CSInfos.back().Locations;
365   if (opers.isAnyReg()) {
366     unsigned NArgs = opers.getMetaOper(PatchPointOpers::NArgPos).getImm();
367     for (unsigned i = 0, e = (opers.hasDef() ? NArgs + 1 : NArgs); i != e; ++i)
368       assert(Locations[i].Type == Location::Register &&
369              "anyreg arg must be in reg.");
370   }
371 #endif
372 }
recordStatepoint(const MachineInstr & MI)373 void StackMaps::recordStatepoint(const MachineInstr &MI) {
374   assert(MI.getOpcode() == TargetOpcode::STATEPOINT && "expected statepoint");
375 
376   StatepointOpers opers(&MI);
377   // Record all the deopt and gc operands (they're contiguous and run from the
378   // initial index to the end of the operand list)
379   const unsigned StartIdx = opers.getVarIdx();
380   recordStackMapOpers(MI, opers.getID(), MI.operands_begin() + StartIdx,
381                       MI.operands_end(), false);
382 }
383 
384 /// Emit the stackmap header.
385 ///
386 /// Header {
387 ///   uint8  : Stack Map Version (currently 1)
388 ///   uint8  : Reserved (expected to be 0)
389 ///   uint16 : Reserved (expected to be 0)
390 /// }
391 /// uint32 : NumFunctions
392 /// uint32 : NumConstants
393 /// uint32 : NumRecords
emitStackmapHeader(MCStreamer & OS)394 void StackMaps::emitStackmapHeader(MCStreamer &OS) {
395   // Header.
396   OS.EmitIntValue(StackMapVersion, 1); // Version.
397   OS.EmitIntValue(0, 1);               // Reserved.
398   OS.EmitIntValue(0, 2);               // Reserved.
399 
400   // Num functions.
401   DEBUG(dbgs() << WSMP << "#functions = " << FnStackSize.size() << '\n');
402   OS.EmitIntValue(FnStackSize.size(), 4);
403   // Num constants.
404   DEBUG(dbgs() << WSMP << "#constants = " << ConstPool.size() << '\n');
405   OS.EmitIntValue(ConstPool.size(), 4);
406   // Num callsites.
407   DEBUG(dbgs() << WSMP << "#callsites = " << CSInfos.size() << '\n');
408   OS.EmitIntValue(CSInfos.size(), 4);
409 }
410 
411 /// Emit the function frame record for each function.
412 ///
413 /// StkSizeRecord[NumFunctions] {
414 ///   uint64 : Function Address
415 ///   uint64 : Stack Size
416 /// }
emitFunctionFrameRecords(MCStreamer & OS)417 void StackMaps::emitFunctionFrameRecords(MCStreamer &OS) {
418   // Function Frame records.
419   DEBUG(dbgs() << WSMP << "functions:\n");
420   for (auto const &FR : FnStackSize) {
421     DEBUG(dbgs() << WSMP << "function addr: " << FR.first
422                  << " frame size: " << FR.second);
423     OS.EmitSymbolValue(FR.first, 8);
424     OS.EmitIntValue(FR.second, 8);
425   }
426 }
427 
428 /// Emit the constant pool.
429 ///
430 /// int64  : Constants[NumConstants]
emitConstantPoolEntries(MCStreamer & OS)431 void StackMaps::emitConstantPoolEntries(MCStreamer &OS) {
432   // Constant pool entries.
433   DEBUG(dbgs() << WSMP << "constants:\n");
434   for (const auto &ConstEntry : ConstPool) {
435     DEBUG(dbgs() << WSMP << ConstEntry.second << '\n');
436     OS.EmitIntValue(ConstEntry.second, 8);
437   }
438 }
439 
440 /// Emit the callsite info for each callsite.
441 ///
442 /// StkMapRecord[NumRecords] {
443 ///   uint64 : PatchPoint ID
444 ///   uint32 : Instruction Offset
445 ///   uint16 : Reserved (record flags)
446 ///   uint16 : NumLocations
447 ///   Location[NumLocations] {
448 ///     uint8  : Register | Direct | Indirect | Constant | ConstantIndex
449 ///     uint8  : Size in Bytes
450 ///     uint16 : Dwarf RegNum
451 ///     int32  : Offset
452 ///   }
453 ///   uint16 : Padding
454 ///   uint16 : NumLiveOuts
455 ///   LiveOuts[NumLiveOuts] {
456 ///     uint16 : Dwarf RegNum
457 ///     uint8  : Reserved
458 ///     uint8  : Size in Bytes
459 ///   }
460 ///   uint32 : Padding (only if required to align to 8 byte)
461 /// }
462 ///
463 /// Location Encoding, Type, Value:
464 ///   0x1, Register, Reg                 (value in register)
465 ///   0x2, Direct, Reg + Offset          (frame index)
466 ///   0x3, Indirect, [Reg + Offset]      (spilled value)
467 ///   0x4, Constant, Offset              (small constant)
468 ///   0x5, ConstIndex, Constants[Offset] (large constant)
emitCallsiteEntries(MCStreamer & OS)469 void StackMaps::emitCallsiteEntries(MCStreamer &OS) {
470   DEBUG(print(dbgs()));
471   // Callsite entries.
472   for (const auto &CSI : CSInfos) {
473     const LocationVec &CSLocs = CSI.Locations;
474     const LiveOutVec &LiveOuts = CSI.LiveOuts;
475 
476     // Verify stack map entry. It's better to communicate a problem to the
477     // runtime than crash in case of in-process compilation. Currently, we do
478     // simple overflow checks, but we may eventually communicate other
479     // compilation errors this way.
480     if (CSLocs.size() > UINT16_MAX || LiveOuts.size() > UINT16_MAX) {
481       OS.EmitIntValue(UINT64_MAX, 8); // Invalid ID.
482       OS.EmitValue(CSI.CSOffsetExpr, 4);
483       OS.EmitIntValue(0, 2); // Reserved.
484       OS.EmitIntValue(0, 2); // 0 locations.
485       OS.EmitIntValue(0, 2); // padding.
486       OS.EmitIntValue(0, 2); // 0 live-out registers.
487       OS.EmitIntValue(0, 4); // padding.
488       continue;
489     }
490 
491     OS.EmitIntValue(CSI.ID, 8);
492     OS.EmitValue(CSI.CSOffsetExpr, 4);
493 
494     // Reserved for flags.
495     OS.EmitIntValue(0, 2);
496     OS.EmitIntValue(CSLocs.size(), 2);
497 
498     for (const auto &Loc : CSLocs) {
499       OS.EmitIntValue(Loc.Type, 1);
500       OS.EmitIntValue(Loc.Size, 1);
501       OS.EmitIntValue(Loc.Reg, 2);
502       OS.EmitIntValue(Loc.Offset, 4);
503     }
504 
505     // Num live-out registers and padding to align to 4 byte.
506     OS.EmitIntValue(0, 2);
507     OS.EmitIntValue(LiveOuts.size(), 2);
508 
509     for (const auto &LO : LiveOuts) {
510       OS.EmitIntValue(LO.DwarfRegNum, 2);
511       OS.EmitIntValue(0, 1);
512       OS.EmitIntValue(LO.Size, 1);
513     }
514     // Emit alignment to 8 byte.
515     OS.EmitValueToAlignment(8);
516   }
517 }
518 
519 /// Serialize the stackmap data.
serializeToStackMapSection()520 void StackMaps::serializeToStackMapSection() {
521   (void)WSMP;
522   // Bail out if there's no stack map data.
523   assert((!CSInfos.empty() || (CSInfos.empty() && ConstPool.empty())) &&
524          "Expected empty constant pool too!");
525   assert((!CSInfos.empty() || (CSInfos.empty() && FnStackSize.empty())) &&
526          "Expected empty function record too!");
527   if (CSInfos.empty())
528     return;
529 
530   MCContext &OutContext = AP.OutStreamer->getContext();
531   MCStreamer &OS = *AP.OutStreamer;
532 
533   // Create the section.
534   MCSection *StackMapSection =
535       OutContext.getObjectFileInfo()->getStackMapSection();
536   OS.SwitchSection(StackMapSection);
537 
538   // Emit a dummy symbol to force section inclusion.
539   OS.EmitLabel(OutContext.getOrCreateSymbol(Twine("__LLVM_StackMaps")));
540 
541   // Serialize data.
542   DEBUG(dbgs() << "********** Stack Map Output **********\n");
543   emitStackmapHeader(OS);
544   emitFunctionFrameRecords(OS);
545   emitConstantPoolEntries(OS);
546   emitCallsiteEntries(OS);
547   OS.AddBlankLine();
548 
549   // Clean up.
550   CSInfos.clear();
551   ConstPool.clear();
552 }
553