1 //===- SimplifyCFG.cpp - Code to perform CFG simplification ---------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Peephole optimize the CFG.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "llvm/Transforms/Utils/Local.h"
15 #include "llvm/ADT/DenseMap.h"
16 #include "llvm/ADT/STLExtras.h"
17 #include "llvm/ADT/SetOperations.h"
18 #include "llvm/ADT/SetVector.h"
19 #include "llvm/ADT/SmallPtrSet.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/ADT/Statistic.h"
22 #include "llvm/Analysis/ConstantFolding.h"
23 #include "llvm/Analysis/InstructionSimplify.h"
24 #include "llvm/Analysis/TargetTransformInfo.h"
25 #include "llvm/Analysis/ValueTracking.h"
26 #include "llvm/IR/CFG.h"
27 #include "llvm/IR/ConstantRange.h"
28 #include "llvm/IR/Constants.h"
29 #include "llvm/IR/DataLayout.h"
30 #include "llvm/IR/DerivedTypes.h"
31 #include "llvm/IR/GlobalVariable.h"
32 #include "llvm/IR/IRBuilder.h"
33 #include "llvm/IR/Instructions.h"
34 #include "llvm/IR/IntrinsicInst.h"
35 #include "llvm/IR/LLVMContext.h"
36 #include "llvm/IR/MDBuilder.h"
37 #include "llvm/IR/Metadata.h"
38 #include "llvm/IR/Module.h"
39 #include "llvm/IR/NoFolder.h"
40 #include "llvm/IR/Operator.h"
41 #include "llvm/IR/PatternMatch.h"
42 #include "llvm/IR/Type.h"
43 #include "llvm/Support/CommandLine.h"
44 #include "llvm/Support/Debug.h"
45 #include "llvm/Support/raw_ostream.h"
46 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
47 #include "llvm/Transforms/Utils/ValueMapper.h"
48 #include <algorithm>
49 #include <map>
50 #include <set>
51 using namespace llvm;
52 using namespace PatternMatch;
53
54 #define DEBUG_TYPE "simplifycfg"
55
56 // Chosen as 2 so as to be cheap, but still to have enough power to fold
57 // a select, so the "clamp" idiom (of a min followed by a max) will be caught.
58 // To catch this, we need to fold a compare and a select, hence '2' being the
59 // minimum reasonable default.
60 static cl::opt<unsigned>
61 PHINodeFoldingThreshold("phi-node-folding-threshold", cl::Hidden, cl::init(2),
62 cl::desc("Control the amount of phi node folding to perform (default = 2)"));
63
64 static cl::opt<bool>
65 DupRet("simplifycfg-dup-ret", cl::Hidden, cl::init(false),
66 cl::desc("Duplicate return instructions into unconditional branches"));
67
68 static cl::opt<bool>
69 SinkCommon("simplifycfg-sink-common", cl::Hidden, cl::init(true),
70 cl::desc("Sink common instructions down to the end block"));
71
72 static cl::opt<bool> HoistCondStores(
73 "simplifycfg-hoist-cond-stores", cl::Hidden, cl::init(true),
74 cl::desc("Hoist conditional stores if an unconditional store precedes"));
75
76 static cl::opt<bool> MergeCondStores(
77 "simplifycfg-merge-cond-stores", cl::Hidden, cl::init(true),
78 cl::desc("Hoist conditional stores even if an unconditional store does not "
79 "precede - hoist multiple conditional stores into a single "
80 "predicated store"));
81
82 static cl::opt<bool> MergeCondStoresAggressively(
83 "simplifycfg-merge-cond-stores-aggressively", cl::Hidden, cl::init(false),
84 cl::desc("When merging conditional stores, do so even if the resultant "
85 "basic blocks are unlikely to be if-converted as a result"));
86
87 static cl::opt<bool> SpeculateOneExpensiveInst(
88 "speculate-one-expensive-inst", cl::Hidden, cl::init(true),
89 cl::desc("Allow exactly one expensive instruction to be speculatively "
90 "executed"));
91
92 STATISTIC(NumBitMaps, "Number of switch instructions turned into bitmaps");
93 STATISTIC(NumLinearMaps, "Number of switch instructions turned into linear mapping");
94 STATISTIC(NumLookupTables, "Number of switch instructions turned into lookup tables");
95 STATISTIC(NumLookupTablesHoles, "Number of switch instructions turned into lookup tables (holes checked)");
96 STATISTIC(NumTableCmpReuses, "Number of reused switch table lookup compares");
97 STATISTIC(NumSinkCommons, "Number of common instructions sunk down to the end block");
98 STATISTIC(NumSpeculations, "Number of speculative executed instructions");
99
100 namespace {
101 // The first field contains the value that the switch produces when a certain
102 // case group is selected, and the second field is a vector containing the
103 // cases composing the case group.
104 typedef SmallVector<std::pair<Constant *, SmallVector<ConstantInt *, 4>>, 2>
105 SwitchCaseResultVectorTy;
106 // The first field contains the phi node that generates a result of the switch
107 // and the second field contains the value generated for a certain case in the
108 // switch for that PHI.
109 typedef SmallVector<std::pair<PHINode *, Constant *>, 4> SwitchCaseResultsTy;
110
111 /// ValueEqualityComparisonCase - Represents a case of a switch.
112 struct ValueEqualityComparisonCase {
113 ConstantInt *Value;
114 BasicBlock *Dest;
115
ValueEqualityComparisonCase__anonfb6897ed0111::ValueEqualityComparisonCase116 ValueEqualityComparisonCase(ConstantInt *Value, BasicBlock *Dest)
117 : Value(Value), Dest(Dest) {}
118
operator <__anonfb6897ed0111::ValueEqualityComparisonCase119 bool operator<(ValueEqualityComparisonCase RHS) const {
120 // Comparing pointers is ok as we only rely on the order for uniquing.
121 return Value < RHS.Value;
122 }
123
operator ==__anonfb6897ed0111::ValueEqualityComparisonCase124 bool operator==(BasicBlock *RHSDest) const { return Dest == RHSDest; }
125 };
126
127 class SimplifyCFGOpt {
128 const TargetTransformInfo &TTI;
129 const DataLayout &DL;
130 unsigned BonusInstThreshold;
131 AssumptionCache *AC;
132 Value *isValueEqualityComparison(TerminatorInst *TI);
133 BasicBlock *GetValueEqualityComparisonCases(TerminatorInst *TI,
134 std::vector<ValueEqualityComparisonCase> &Cases);
135 bool SimplifyEqualityComparisonWithOnlyPredecessor(TerminatorInst *TI,
136 BasicBlock *Pred,
137 IRBuilder<> &Builder);
138 bool FoldValueComparisonIntoPredecessors(TerminatorInst *TI,
139 IRBuilder<> &Builder);
140
141 bool SimplifyReturn(ReturnInst *RI, IRBuilder<> &Builder);
142 bool SimplifyResume(ResumeInst *RI, IRBuilder<> &Builder);
143 bool SimplifyCleanupReturn(CleanupReturnInst *RI);
144 bool SimplifyUnreachable(UnreachableInst *UI);
145 bool SimplifySwitch(SwitchInst *SI, IRBuilder<> &Builder);
146 bool SimplifyIndirectBr(IndirectBrInst *IBI);
147 bool SimplifyUncondBranch(BranchInst *BI, IRBuilder <> &Builder);
148 bool SimplifyCondBranch(BranchInst *BI, IRBuilder <>&Builder);
149
150 public:
SimplifyCFGOpt(const TargetTransformInfo & TTI,const DataLayout & DL,unsigned BonusInstThreshold,AssumptionCache * AC)151 SimplifyCFGOpt(const TargetTransformInfo &TTI, const DataLayout &DL,
152 unsigned BonusInstThreshold, AssumptionCache *AC)
153 : TTI(TTI), DL(DL), BonusInstThreshold(BonusInstThreshold), AC(AC) {}
154 bool run(BasicBlock *BB);
155 };
156 }
157
158 /// Return true if it is safe to merge these two
159 /// terminator instructions together.
SafeToMergeTerminators(TerminatorInst * SI1,TerminatorInst * SI2)160 static bool SafeToMergeTerminators(TerminatorInst *SI1, TerminatorInst *SI2) {
161 if (SI1 == SI2) return false; // Can't merge with self!
162
163 // It is not safe to merge these two switch instructions if they have a common
164 // successor, and if that successor has a PHI node, and if *that* PHI node has
165 // conflicting incoming values from the two switch blocks.
166 BasicBlock *SI1BB = SI1->getParent();
167 BasicBlock *SI2BB = SI2->getParent();
168 SmallPtrSet<BasicBlock*, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB));
169
170 for (succ_iterator I = succ_begin(SI2BB), E = succ_end(SI2BB); I != E; ++I)
171 if (SI1Succs.count(*I))
172 for (BasicBlock::iterator BBI = (*I)->begin();
173 isa<PHINode>(BBI); ++BBI) {
174 PHINode *PN = cast<PHINode>(BBI);
175 if (PN->getIncomingValueForBlock(SI1BB) !=
176 PN->getIncomingValueForBlock(SI2BB))
177 return false;
178 }
179
180 return true;
181 }
182
183 /// Return true if it is safe and profitable to merge these two terminator
184 /// instructions together, where SI1 is an unconditional branch. PhiNodes will
185 /// store all PHI nodes in common successors.
isProfitableToFoldUnconditional(BranchInst * SI1,BranchInst * SI2,Instruction * Cond,SmallVectorImpl<PHINode * > & PhiNodes)186 static bool isProfitableToFoldUnconditional(BranchInst *SI1,
187 BranchInst *SI2,
188 Instruction *Cond,
189 SmallVectorImpl<PHINode*> &PhiNodes) {
190 if (SI1 == SI2) return false; // Can't merge with self!
191 assert(SI1->isUnconditional() && SI2->isConditional());
192
193 // We fold the unconditional branch if we can easily update all PHI nodes in
194 // common successors:
195 // 1> We have a constant incoming value for the conditional branch;
196 // 2> We have "Cond" as the incoming value for the unconditional branch;
197 // 3> SI2->getCondition() and Cond have same operands.
198 CmpInst *Ci2 = dyn_cast<CmpInst>(SI2->getCondition());
199 if (!Ci2) return false;
200 if (!(Cond->getOperand(0) == Ci2->getOperand(0) &&
201 Cond->getOperand(1) == Ci2->getOperand(1)) &&
202 !(Cond->getOperand(0) == Ci2->getOperand(1) &&
203 Cond->getOperand(1) == Ci2->getOperand(0)))
204 return false;
205
206 BasicBlock *SI1BB = SI1->getParent();
207 BasicBlock *SI2BB = SI2->getParent();
208 SmallPtrSet<BasicBlock*, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB));
209 for (succ_iterator I = succ_begin(SI2BB), E = succ_end(SI2BB); I != E; ++I)
210 if (SI1Succs.count(*I))
211 for (BasicBlock::iterator BBI = (*I)->begin();
212 isa<PHINode>(BBI); ++BBI) {
213 PHINode *PN = cast<PHINode>(BBI);
214 if (PN->getIncomingValueForBlock(SI1BB) != Cond ||
215 !isa<ConstantInt>(PN->getIncomingValueForBlock(SI2BB)))
216 return false;
217 PhiNodes.push_back(PN);
218 }
219 return true;
220 }
221
222 /// Update PHI nodes in Succ to indicate that there will now be entries in it
223 /// from the 'NewPred' block. The values that will be flowing into the PHI nodes
224 /// will be the same as those coming in from ExistPred, an existing predecessor
225 /// of Succ.
AddPredecessorToBlock(BasicBlock * Succ,BasicBlock * NewPred,BasicBlock * ExistPred)226 static void AddPredecessorToBlock(BasicBlock *Succ, BasicBlock *NewPred,
227 BasicBlock *ExistPred) {
228 if (!isa<PHINode>(Succ->begin())) return; // Quick exit if nothing to do
229
230 PHINode *PN;
231 for (BasicBlock::iterator I = Succ->begin();
232 (PN = dyn_cast<PHINode>(I)); ++I)
233 PN->addIncoming(PN->getIncomingValueForBlock(ExistPred), NewPred);
234 }
235
236 /// Compute an abstract "cost" of speculating the given instruction,
237 /// which is assumed to be safe to speculate. TCC_Free means cheap,
238 /// TCC_Basic means less cheap, and TCC_Expensive means prohibitively
239 /// expensive.
ComputeSpeculationCost(const User * I,const TargetTransformInfo & TTI)240 static unsigned ComputeSpeculationCost(const User *I,
241 const TargetTransformInfo &TTI) {
242 assert(isSafeToSpeculativelyExecute(I) &&
243 "Instruction is not safe to speculatively execute!");
244 return TTI.getUserCost(I);
245 }
246
247 /// If we have a merge point of an "if condition" as accepted above,
248 /// return true if the specified value dominates the block. We
249 /// don't handle the true generality of domination here, just a special case
250 /// which works well enough for us.
251 ///
252 /// If AggressiveInsts is non-null, and if V does not dominate BB, we check to
253 /// see if V (which must be an instruction) and its recursive operands
254 /// that do not dominate BB have a combined cost lower than CostRemaining and
255 /// are non-trapping. If both are true, the instruction is inserted into the
256 /// set and true is returned.
257 ///
258 /// The cost for most non-trapping instructions is defined as 1 except for
259 /// Select whose cost is 2.
260 ///
261 /// After this function returns, CostRemaining is decreased by the cost of
262 /// V plus its non-dominating operands. If that cost is greater than
263 /// CostRemaining, false is returned and CostRemaining is undefined.
DominatesMergePoint(Value * V,BasicBlock * BB,SmallPtrSetImpl<Instruction * > * AggressiveInsts,unsigned & CostRemaining,const TargetTransformInfo & TTI,unsigned Depth=0)264 static bool DominatesMergePoint(Value *V, BasicBlock *BB,
265 SmallPtrSetImpl<Instruction*> *AggressiveInsts,
266 unsigned &CostRemaining,
267 const TargetTransformInfo &TTI,
268 unsigned Depth = 0) {
269 Instruction *I = dyn_cast<Instruction>(V);
270 if (!I) {
271 // Non-instructions all dominate instructions, but not all constantexprs
272 // can be executed unconditionally.
273 if (ConstantExpr *C = dyn_cast<ConstantExpr>(V))
274 if (C->canTrap())
275 return false;
276 return true;
277 }
278 BasicBlock *PBB = I->getParent();
279
280 // We don't want to allow weird loops that might have the "if condition" in
281 // the bottom of this block.
282 if (PBB == BB) return false;
283
284 // If this instruction is defined in a block that contains an unconditional
285 // branch to BB, then it must be in the 'conditional' part of the "if
286 // statement". If not, it definitely dominates the region.
287 BranchInst *BI = dyn_cast<BranchInst>(PBB->getTerminator());
288 if (!BI || BI->isConditional() || BI->getSuccessor(0) != BB)
289 return true;
290
291 // If we aren't allowing aggressive promotion anymore, then don't consider
292 // instructions in the 'if region'.
293 if (!AggressiveInsts) return false;
294
295 // If we have seen this instruction before, don't count it again.
296 if (AggressiveInsts->count(I)) return true;
297
298 // Okay, it looks like the instruction IS in the "condition". Check to
299 // see if it's a cheap instruction to unconditionally compute, and if it
300 // only uses stuff defined outside of the condition. If so, hoist it out.
301 if (!isSafeToSpeculativelyExecute(I))
302 return false;
303
304 unsigned Cost = ComputeSpeculationCost(I, TTI);
305
306 // Allow exactly one instruction to be speculated regardless of its cost
307 // (as long as it is safe to do so).
308 // This is intended to flatten the CFG even if the instruction is a division
309 // or other expensive operation. The speculation of an expensive instruction
310 // is expected to be undone in CodeGenPrepare if the speculation has not
311 // enabled further IR optimizations.
312 if (Cost > CostRemaining &&
313 (!SpeculateOneExpensiveInst || !AggressiveInsts->empty() || Depth > 0))
314 return false;
315
316 // Avoid unsigned wrap.
317 CostRemaining = (Cost > CostRemaining) ? 0 : CostRemaining - Cost;
318
319 // Okay, we can only really hoist these out if their operands do
320 // not take us over the cost threshold.
321 for (User::op_iterator i = I->op_begin(), e = I->op_end(); i != e; ++i)
322 if (!DominatesMergePoint(*i, BB, AggressiveInsts, CostRemaining, TTI,
323 Depth + 1))
324 return false;
325 // Okay, it's safe to do this! Remember this instruction.
326 AggressiveInsts->insert(I);
327 return true;
328 }
329
330 /// Extract ConstantInt from value, looking through IntToPtr
331 /// and PointerNullValue. Return NULL if value is not a constant int.
GetConstantInt(Value * V,const DataLayout & DL)332 static ConstantInt *GetConstantInt(Value *V, const DataLayout &DL) {
333 // Normal constant int.
334 ConstantInt *CI = dyn_cast<ConstantInt>(V);
335 if (CI || !isa<Constant>(V) || !V->getType()->isPointerTy())
336 return CI;
337
338 // This is some kind of pointer constant. Turn it into a pointer-sized
339 // ConstantInt if possible.
340 IntegerType *PtrTy = cast<IntegerType>(DL.getIntPtrType(V->getType()));
341
342 // Null pointer means 0, see SelectionDAGBuilder::getValue(const Value*).
343 if (isa<ConstantPointerNull>(V))
344 return ConstantInt::get(PtrTy, 0);
345
346 // IntToPtr const int.
347 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
348 if (CE->getOpcode() == Instruction::IntToPtr)
349 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(0))) {
350 // The constant is very likely to have the right type already.
351 if (CI->getType() == PtrTy)
352 return CI;
353 else
354 return cast<ConstantInt>
355 (ConstantExpr::getIntegerCast(CI, PtrTy, /*isSigned=*/false));
356 }
357 return nullptr;
358 }
359
360 namespace {
361
362 /// Given a chain of or (||) or and (&&) comparison of a value against a
363 /// constant, this will try to recover the information required for a switch
364 /// structure.
365 /// It will depth-first traverse the chain of comparison, seeking for patterns
366 /// like %a == 12 or %a < 4 and combine them to produce a set of integer
367 /// representing the different cases for the switch.
368 /// Note that if the chain is composed of '||' it will build the set of elements
369 /// that matches the comparisons (i.e. any of this value validate the chain)
370 /// while for a chain of '&&' it will build the set elements that make the test
371 /// fail.
372 struct ConstantComparesGatherer {
373 const DataLayout &DL;
374 Value *CompValue; /// Value found for the switch comparison
375 Value *Extra; /// Extra clause to be checked before the switch
376 SmallVector<ConstantInt *, 8> Vals; /// Set of integers to match in switch
377 unsigned UsedICmps; /// Number of comparisons matched in the and/or chain
378
379 /// Construct and compute the result for the comparison instruction Cond
ConstantComparesGatherer__anonfb6897ed0211::ConstantComparesGatherer380 ConstantComparesGatherer(Instruction *Cond, const DataLayout &DL)
381 : DL(DL), CompValue(nullptr), Extra(nullptr), UsedICmps(0) {
382 gather(Cond);
383 }
384
385 /// Prevent copy
386 ConstantComparesGatherer(const ConstantComparesGatherer &) = delete;
387 ConstantComparesGatherer &
388 operator=(const ConstantComparesGatherer &) = delete;
389
390 private:
391
392 /// Try to set the current value used for the comparison, it succeeds only if
393 /// it wasn't set before or if the new value is the same as the old one
setValueOnce__anonfb6897ed0211::ConstantComparesGatherer394 bool setValueOnce(Value *NewVal) {
395 if(CompValue && CompValue != NewVal) return false;
396 CompValue = NewVal;
397 return (CompValue != nullptr);
398 }
399
400 /// Try to match Instruction "I" as a comparison against a constant and
401 /// populates the array Vals with the set of values that match (or do not
402 /// match depending on isEQ).
403 /// Return false on failure. On success, the Value the comparison matched
404 /// against is placed in CompValue.
405 /// If CompValue is already set, the function is expected to fail if a match
406 /// is found but the value compared to is different.
matchInstruction__anonfb6897ed0211::ConstantComparesGatherer407 bool matchInstruction(Instruction *I, bool isEQ) {
408 // If this is an icmp against a constant, handle this as one of the cases.
409 ICmpInst *ICI;
410 ConstantInt *C;
411 if (!((ICI = dyn_cast<ICmpInst>(I)) &&
412 (C = GetConstantInt(I->getOperand(1), DL)))) {
413 return false;
414 }
415
416 Value *RHSVal;
417 ConstantInt *RHSC;
418
419 // Pattern match a special case
420 // (x & ~2^x) == y --> x == y || x == y|2^x
421 // This undoes a transformation done by instcombine to fuse 2 compares.
422 if (ICI->getPredicate() == (isEQ ? ICmpInst::ICMP_EQ:ICmpInst::ICMP_NE)) {
423 if (match(ICI->getOperand(0),
424 m_And(m_Value(RHSVal), m_ConstantInt(RHSC)))) {
425 APInt Not = ~RHSC->getValue();
426 if (Not.isPowerOf2()) {
427 // If we already have a value for the switch, it has to match!
428 if(!setValueOnce(RHSVal))
429 return false;
430
431 Vals.push_back(C);
432 Vals.push_back(ConstantInt::get(C->getContext(),
433 C->getValue() | Not));
434 UsedICmps++;
435 return true;
436 }
437 }
438
439 // If we already have a value for the switch, it has to match!
440 if(!setValueOnce(ICI->getOperand(0)))
441 return false;
442
443 UsedICmps++;
444 Vals.push_back(C);
445 return ICI->getOperand(0);
446 }
447
448 // If we have "x ult 3", for example, then we can add 0,1,2 to the set.
449 ConstantRange Span = ConstantRange::makeAllowedICmpRegion(
450 ICI->getPredicate(), C->getValue());
451
452 // Shift the range if the compare is fed by an add. This is the range
453 // compare idiom as emitted by instcombine.
454 Value *CandidateVal = I->getOperand(0);
455 if(match(I->getOperand(0), m_Add(m_Value(RHSVal), m_ConstantInt(RHSC)))) {
456 Span = Span.subtract(RHSC->getValue());
457 CandidateVal = RHSVal;
458 }
459
460 // If this is an and/!= check, then we are looking to build the set of
461 // value that *don't* pass the and chain. I.e. to turn "x ugt 2" into
462 // x != 0 && x != 1.
463 if (!isEQ)
464 Span = Span.inverse();
465
466 // If there are a ton of values, we don't want to make a ginormous switch.
467 if (Span.getSetSize().ugt(8) || Span.isEmptySet()) {
468 return false;
469 }
470
471 // If we already have a value for the switch, it has to match!
472 if(!setValueOnce(CandidateVal))
473 return false;
474
475 // Add all values from the range to the set
476 for (APInt Tmp = Span.getLower(); Tmp != Span.getUpper(); ++Tmp)
477 Vals.push_back(ConstantInt::get(I->getContext(), Tmp));
478
479 UsedICmps++;
480 return true;
481
482 }
483
484 /// Given a potentially 'or'd or 'and'd together collection of icmp
485 /// eq/ne/lt/gt instructions that compare a value against a constant, extract
486 /// the value being compared, and stick the list constants into the Vals
487 /// vector.
488 /// One "Extra" case is allowed to differ from the other.
gather__anonfb6897ed0211::ConstantComparesGatherer489 void gather(Value *V) {
490 Instruction *I = dyn_cast<Instruction>(V);
491 bool isEQ = (I->getOpcode() == Instruction::Or);
492
493 // Keep a stack (SmallVector for efficiency) for depth-first traversal
494 SmallVector<Value *, 8> DFT;
495
496 // Initialize
497 DFT.push_back(V);
498
499 while(!DFT.empty()) {
500 V = DFT.pop_back_val();
501
502 if (Instruction *I = dyn_cast<Instruction>(V)) {
503 // If it is a || (or && depending on isEQ), process the operands.
504 if (I->getOpcode() == (isEQ ? Instruction::Or : Instruction::And)) {
505 DFT.push_back(I->getOperand(1));
506 DFT.push_back(I->getOperand(0));
507 continue;
508 }
509
510 // Try to match the current instruction
511 if (matchInstruction(I, isEQ))
512 // Match succeed, continue the loop
513 continue;
514 }
515
516 // One element of the sequence of || (or &&) could not be match as a
517 // comparison against the same value as the others.
518 // We allow only one "Extra" case to be checked before the switch
519 if (!Extra) {
520 Extra = V;
521 continue;
522 }
523 // Failed to parse a proper sequence, abort now
524 CompValue = nullptr;
525 break;
526 }
527 }
528 };
529
530 }
531
EraseTerminatorInstAndDCECond(TerminatorInst * TI)532 static void EraseTerminatorInstAndDCECond(TerminatorInst *TI) {
533 Instruction *Cond = nullptr;
534 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
535 Cond = dyn_cast<Instruction>(SI->getCondition());
536 } else if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
537 if (BI->isConditional())
538 Cond = dyn_cast<Instruction>(BI->getCondition());
539 } else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(TI)) {
540 Cond = dyn_cast<Instruction>(IBI->getAddress());
541 }
542
543 TI->eraseFromParent();
544 if (Cond) RecursivelyDeleteTriviallyDeadInstructions(Cond);
545 }
546
547 /// Return true if the specified terminator checks
548 /// to see if a value is equal to constant integer value.
isValueEqualityComparison(TerminatorInst * TI)549 Value *SimplifyCFGOpt::isValueEqualityComparison(TerminatorInst *TI) {
550 Value *CV = nullptr;
551 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
552 // Do not permit merging of large switch instructions into their
553 // predecessors unless there is only one predecessor.
554 if (SI->getNumSuccessors()*std::distance(pred_begin(SI->getParent()),
555 pred_end(SI->getParent())) <= 128)
556 CV = SI->getCondition();
557 } else if (BranchInst *BI = dyn_cast<BranchInst>(TI))
558 if (BI->isConditional() && BI->getCondition()->hasOneUse())
559 if (ICmpInst *ICI = dyn_cast<ICmpInst>(BI->getCondition())) {
560 if (ICI->isEquality() && GetConstantInt(ICI->getOperand(1), DL))
561 CV = ICI->getOperand(0);
562 }
563
564 // Unwrap any lossless ptrtoint cast.
565 if (CV) {
566 if (PtrToIntInst *PTII = dyn_cast<PtrToIntInst>(CV)) {
567 Value *Ptr = PTII->getPointerOperand();
568 if (PTII->getType() == DL.getIntPtrType(Ptr->getType()))
569 CV = Ptr;
570 }
571 }
572 return CV;
573 }
574
575 /// Given a value comparison instruction,
576 /// decode all of the 'cases' that it represents and return the 'default' block.
577 BasicBlock *SimplifyCFGOpt::
GetValueEqualityComparisonCases(TerminatorInst * TI,std::vector<ValueEqualityComparisonCase> & Cases)578 GetValueEqualityComparisonCases(TerminatorInst *TI,
579 std::vector<ValueEqualityComparisonCase>
580 &Cases) {
581 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
582 Cases.reserve(SI->getNumCases());
583 for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end(); i != e; ++i)
584 Cases.push_back(ValueEqualityComparisonCase(i.getCaseValue(),
585 i.getCaseSuccessor()));
586 return SI->getDefaultDest();
587 }
588
589 BranchInst *BI = cast<BranchInst>(TI);
590 ICmpInst *ICI = cast<ICmpInst>(BI->getCondition());
591 BasicBlock *Succ = BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_NE);
592 Cases.push_back(ValueEqualityComparisonCase(GetConstantInt(ICI->getOperand(1),
593 DL),
594 Succ));
595 return BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_EQ);
596 }
597
598
599 /// Given a vector of bb/value pairs, remove any entries
600 /// in the list that match the specified block.
EliminateBlockCases(BasicBlock * BB,std::vector<ValueEqualityComparisonCase> & Cases)601 static void EliminateBlockCases(BasicBlock *BB,
602 std::vector<ValueEqualityComparisonCase> &Cases) {
603 Cases.erase(std::remove(Cases.begin(), Cases.end(), BB), Cases.end());
604 }
605
606 /// Return true if there are any keys in C1 that exist in C2 as well.
607 static bool
ValuesOverlap(std::vector<ValueEqualityComparisonCase> & C1,std::vector<ValueEqualityComparisonCase> & C2)608 ValuesOverlap(std::vector<ValueEqualityComparisonCase> &C1,
609 std::vector<ValueEqualityComparisonCase > &C2) {
610 std::vector<ValueEqualityComparisonCase> *V1 = &C1, *V2 = &C2;
611
612 // Make V1 be smaller than V2.
613 if (V1->size() > V2->size())
614 std::swap(V1, V2);
615
616 if (V1->size() == 0) return false;
617 if (V1->size() == 1) {
618 // Just scan V2.
619 ConstantInt *TheVal = (*V1)[0].Value;
620 for (unsigned i = 0, e = V2->size(); i != e; ++i)
621 if (TheVal == (*V2)[i].Value)
622 return true;
623 }
624
625 // Otherwise, just sort both lists and compare element by element.
626 array_pod_sort(V1->begin(), V1->end());
627 array_pod_sort(V2->begin(), V2->end());
628 unsigned i1 = 0, i2 = 0, e1 = V1->size(), e2 = V2->size();
629 while (i1 != e1 && i2 != e2) {
630 if ((*V1)[i1].Value == (*V2)[i2].Value)
631 return true;
632 if ((*V1)[i1].Value < (*V2)[i2].Value)
633 ++i1;
634 else
635 ++i2;
636 }
637 return false;
638 }
639
640 /// If TI is known to be a terminator instruction and its block is known to
641 /// only have a single predecessor block, check to see if that predecessor is
642 /// also a value comparison with the same value, and if that comparison
643 /// determines the outcome of this comparison. If so, simplify TI. This does a
644 /// very limited form of jump threading.
645 bool SimplifyCFGOpt::
SimplifyEqualityComparisonWithOnlyPredecessor(TerminatorInst * TI,BasicBlock * Pred,IRBuilder<> & Builder)646 SimplifyEqualityComparisonWithOnlyPredecessor(TerminatorInst *TI,
647 BasicBlock *Pred,
648 IRBuilder<> &Builder) {
649 Value *PredVal = isValueEqualityComparison(Pred->getTerminator());
650 if (!PredVal) return false; // Not a value comparison in predecessor.
651
652 Value *ThisVal = isValueEqualityComparison(TI);
653 assert(ThisVal && "This isn't a value comparison!!");
654 if (ThisVal != PredVal) return false; // Different predicates.
655
656 // TODO: Preserve branch weight metadata, similarly to how
657 // FoldValueComparisonIntoPredecessors preserves it.
658
659 // Find out information about when control will move from Pred to TI's block.
660 std::vector<ValueEqualityComparisonCase> PredCases;
661 BasicBlock *PredDef = GetValueEqualityComparisonCases(Pred->getTerminator(),
662 PredCases);
663 EliminateBlockCases(PredDef, PredCases); // Remove default from cases.
664
665 // Find information about how control leaves this block.
666 std::vector<ValueEqualityComparisonCase> ThisCases;
667 BasicBlock *ThisDef = GetValueEqualityComparisonCases(TI, ThisCases);
668 EliminateBlockCases(ThisDef, ThisCases); // Remove default from cases.
669
670 // If TI's block is the default block from Pred's comparison, potentially
671 // simplify TI based on this knowledge.
672 if (PredDef == TI->getParent()) {
673 // If we are here, we know that the value is none of those cases listed in
674 // PredCases. If there are any cases in ThisCases that are in PredCases, we
675 // can simplify TI.
676 if (!ValuesOverlap(PredCases, ThisCases))
677 return false;
678
679 if (isa<BranchInst>(TI)) {
680 // Okay, one of the successors of this condbr is dead. Convert it to a
681 // uncond br.
682 assert(ThisCases.size() == 1 && "Branch can only have one case!");
683 // Insert the new branch.
684 Instruction *NI = Builder.CreateBr(ThisDef);
685 (void) NI;
686
687 // Remove PHI node entries for the dead edge.
688 ThisCases[0].Dest->removePredecessor(TI->getParent());
689
690 DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
691 << "Through successor TI: " << *TI << "Leaving: " << *NI << "\n");
692
693 EraseTerminatorInstAndDCECond(TI);
694 return true;
695 }
696
697 SwitchInst *SI = cast<SwitchInst>(TI);
698 // Okay, TI has cases that are statically dead, prune them away.
699 SmallPtrSet<Constant*, 16> DeadCases;
700 for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
701 DeadCases.insert(PredCases[i].Value);
702
703 DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
704 << "Through successor TI: " << *TI);
705
706 // Collect branch weights into a vector.
707 SmallVector<uint32_t, 8> Weights;
708 MDNode *MD = SI->getMetadata(LLVMContext::MD_prof);
709 bool HasWeight = MD && (MD->getNumOperands() == 2 + SI->getNumCases());
710 if (HasWeight)
711 for (unsigned MD_i = 1, MD_e = MD->getNumOperands(); MD_i < MD_e;
712 ++MD_i) {
713 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(MD_i));
714 Weights.push_back(CI->getValue().getZExtValue());
715 }
716 for (SwitchInst::CaseIt i = SI->case_end(), e = SI->case_begin(); i != e;) {
717 --i;
718 if (DeadCases.count(i.getCaseValue())) {
719 if (HasWeight) {
720 std::swap(Weights[i.getCaseIndex()+1], Weights.back());
721 Weights.pop_back();
722 }
723 i.getCaseSuccessor()->removePredecessor(TI->getParent());
724 SI->removeCase(i);
725 }
726 }
727 if (HasWeight && Weights.size() >= 2)
728 SI->setMetadata(LLVMContext::MD_prof,
729 MDBuilder(SI->getParent()->getContext()).
730 createBranchWeights(Weights));
731
732 DEBUG(dbgs() << "Leaving: " << *TI << "\n");
733 return true;
734 }
735
736 // Otherwise, TI's block must correspond to some matched value. Find out
737 // which value (or set of values) this is.
738 ConstantInt *TIV = nullptr;
739 BasicBlock *TIBB = TI->getParent();
740 for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
741 if (PredCases[i].Dest == TIBB) {
742 if (TIV)
743 return false; // Cannot handle multiple values coming to this block.
744 TIV = PredCases[i].Value;
745 }
746 assert(TIV && "No edge from pred to succ?");
747
748 // Okay, we found the one constant that our value can be if we get into TI's
749 // BB. Find out which successor will unconditionally be branched to.
750 BasicBlock *TheRealDest = nullptr;
751 for (unsigned i = 0, e = ThisCases.size(); i != e; ++i)
752 if (ThisCases[i].Value == TIV) {
753 TheRealDest = ThisCases[i].Dest;
754 break;
755 }
756
757 // If not handled by any explicit cases, it is handled by the default case.
758 if (!TheRealDest) TheRealDest = ThisDef;
759
760 // Remove PHI node entries for dead edges.
761 BasicBlock *CheckEdge = TheRealDest;
762 for (succ_iterator SI = succ_begin(TIBB), e = succ_end(TIBB); SI != e; ++SI)
763 if (*SI != CheckEdge)
764 (*SI)->removePredecessor(TIBB);
765 else
766 CheckEdge = nullptr;
767
768 // Insert the new branch.
769 Instruction *NI = Builder.CreateBr(TheRealDest);
770 (void) NI;
771
772 DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
773 << "Through successor TI: " << *TI << "Leaving: " << *NI << "\n");
774
775 EraseTerminatorInstAndDCECond(TI);
776 return true;
777 }
778
779 namespace {
780 /// This class implements a stable ordering of constant
781 /// integers that does not depend on their address. This is important for
782 /// applications that sort ConstantInt's to ensure uniqueness.
783 struct ConstantIntOrdering {
operator ()__anonfb6897ed0311::ConstantIntOrdering784 bool operator()(const ConstantInt *LHS, const ConstantInt *RHS) const {
785 return LHS->getValue().ult(RHS->getValue());
786 }
787 };
788 }
789
ConstantIntSortPredicate(ConstantInt * const * P1,ConstantInt * const * P2)790 static int ConstantIntSortPredicate(ConstantInt *const *P1,
791 ConstantInt *const *P2) {
792 const ConstantInt *LHS = *P1;
793 const ConstantInt *RHS = *P2;
794 if (LHS->getValue().ult(RHS->getValue()))
795 return 1;
796 if (LHS->getValue() == RHS->getValue())
797 return 0;
798 return -1;
799 }
800
HasBranchWeights(const Instruction * I)801 static inline bool HasBranchWeights(const Instruction* I) {
802 MDNode *ProfMD = I->getMetadata(LLVMContext::MD_prof);
803 if (ProfMD && ProfMD->getOperand(0))
804 if (MDString* MDS = dyn_cast<MDString>(ProfMD->getOperand(0)))
805 return MDS->getString().equals("branch_weights");
806
807 return false;
808 }
809
810 /// Get Weights of a given TerminatorInst, the default weight is at the front
811 /// of the vector. If TI is a conditional eq, we need to swap the branch-weight
812 /// metadata.
GetBranchWeights(TerminatorInst * TI,SmallVectorImpl<uint64_t> & Weights)813 static void GetBranchWeights(TerminatorInst *TI,
814 SmallVectorImpl<uint64_t> &Weights) {
815 MDNode *MD = TI->getMetadata(LLVMContext::MD_prof);
816 assert(MD);
817 for (unsigned i = 1, e = MD->getNumOperands(); i < e; ++i) {
818 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(i));
819 Weights.push_back(CI->getValue().getZExtValue());
820 }
821
822 // If TI is a conditional eq, the default case is the false case,
823 // and the corresponding branch-weight data is at index 2. We swap the
824 // default weight to be the first entry.
825 if (BranchInst* BI = dyn_cast<BranchInst>(TI)) {
826 assert(Weights.size() == 2);
827 ICmpInst *ICI = cast<ICmpInst>(BI->getCondition());
828 if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
829 std::swap(Weights.front(), Weights.back());
830 }
831 }
832
833 /// Keep halving the weights until all can fit in uint32_t.
FitWeights(MutableArrayRef<uint64_t> Weights)834 static void FitWeights(MutableArrayRef<uint64_t> Weights) {
835 uint64_t Max = *std::max_element(Weights.begin(), Weights.end());
836 if (Max > UINT_MAX) {
837 unsigned Offset = 32 - countLeadingZeros(Max);
838 for (uint64_t &I : Weights)
839 I >>= Offset;
840 }
841 }
842
843 /// The specified terminator is a value equality comparison instruction
844 /// (either a switch or a branch on "X == c").
845 /// See if any of the predecessors of the terminator block are value comparisons
846 /// on the same value. If so, and if safe to do so, fold them together.
FoldValueComparisonIntoPredecessors(TerminatorInst * TI,IRBuilder<> & Builder)847 bool SimplifyCFGOpt::FoldValueComparisonIntoPredecessors(TerminatorInst *TI,
848 IRBuilder<> &Builder) {
849 BasicBlock *BB = TI->getParent();
850 Value *CV = isValueEqualityComparison(TI); // CondVal
851 assert(CV && "Not a comparison?");
852 bool Changed = false;
853
854 SmallVector<BasicBlock*, 16> Preds(pred_begin(BB), pred_end(BB));
855 while (!Preds.empty()) {
856 BasicBlock *Pred = Preds.pop_back_val();
857
858 // See if the predecessor is a comparison with the same value.
859 TerminatorInst *PTI = Pred->getTerminator();
860 Value *PCV = isValueEqualityComparison(PTI); // PredCondVal
861
862 if (PCV == CV && SafeToMergeTerminators(TI, PTI)) {
863 // Figure out which 'cases' to copy from SI to PSI.
864 std::vector<ValueEqualityComparisonCase> BBCases;
865 BasicBlock *BBDefault = GetValueEqualityComparisonCases(TI, BBCases);
866
867 std::vector<ValueEqualityComparisonCase> PredCases;
868 BasicBlock *PredDefault = GetValueEqualityComparisonCases(PTI, PredCases);
869
870 // Based on whether the default edge from PTI goes to BB or not, fill in
871 // PredCases and PredDefault with the new switch cases we would like to
872 // build.
873 SmallVector<BasicBlock*, 8> NewSuccessors;
874
875 // Update the branch weight metadata along the way
876 SmallVector<uint64_t, 8> Weights;
877 bool PredHasWeights = HasBranchWeights(PTI);
878 bool SuccHasWeights = HasBranchWeights(TI);
879
880 if (PredHasWeights) {
881 GetBranchWeights(PTI, Weights);
882 // branch-weight metadata is inconsistent here.
883 if (Weights.size() != 1 + PredCases.size())
884 PredHasWeights = SuccHasWeights = false;
885 } else if (SuccHasWeights)
886 // If there are no predecessor weights but there are successor weights,
887 // populate Weights with 1, which will later be scaled to the sum of
888 // successor's weights
889 Weights.assign(1 + PredCases.size(), 1);
890
891 SmallVector<uint64_t, 8> SuccWeights;
892 if (SuccHasWeights) {
893 GetBranchWeights(TI, SuccWeights);
894 // branch-weight metadata is inconsistent here.
895 if (SuccWeights.size() != 1 + BBCases.size())
896 PredHasWeights = SuccHasWeights = false;
897 } else if (PredHasWeights)
898 SuccWeights.assign(1 + BBCases.size(), 1);
899
900 if (PredDefault == BB) {
901 // If this is the default destination from PTI, only the edges in TI
902 // that don't occur in PTI, or that branch to BB will be activated.
903 std::set<ConstantInt*, ConstantIntOrdering> PTIHandled;
904 for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
905 if (PredCases[i].Dest != BB)
906 PTIHandled.insert(PredCases[i].Value);
907 else {
908 // The default destination is BB, we don't need explicit targets.
909 std::swap(PredCases[i], PredCases.back());
910
911 if (PredHasWeights || SuccHasWeights) {
912 // Increase weight for the default case.
913 Weights[0] += Weights[i+1];
914 std::swap(Weights[i+1], Weights.back());
915 Weights.pop_back();
916 }
917
918 PredCases.pop_back();
919 --i; --e;
920 }
921
922 // Reconstruct the new switch statement we will be building.
923 if (PredDefault != BBDefault) {
924 PredDefault->removePredecessor(Pred);
925 PredDefault = BBDefault;
926 NewSuccessors.push_back(BBDefault);
927 }
928
929 unsigned CasesFromPred = Weights.size();
930 uint64_t ValidTotalSuccWeight = 0;
931 for (unsigned i = 0, e = BBCases.size(); i != e; ++i)
932 if (!PTIHandled.count(BBCases[i].Value) &&
933 BBCases[i].Dest != BBDefault) {
934 PredCases.push_back(BBCases[i]);
935 NewSuccessors.push_back(BBCases[i].Dest);
936 if (SuccHasWeights || PredHasWeights) {
937 // The default weight is at index 0, so weight for the ith case
938 // should be at index i+1. Scale the cases from successor by
939 // PredDefaultWeight (Weights[0]).
940 Weights.push_back(Weights[0] * SuccWeights[i+1]);
941 ValidTotalSuccWeight += SuccWeights[i+1];
942 }
943 }
944
945 if (SuccHasWeights || PredHasWeights) {
946 ValidTotalSuccWeight += SuccWeights[0];
947 // Scale the cases from predecessor by ValidTotalSuccWeight.
948 for (unsigned i = 1; i < CasesFromPred; ++i)
949 Weights[i] *= ValidTotalSuccWeight;
950 // Scale the default weight by SuccDefaultWeight (SuccWeights[0]).
951 Weights[0] *= SuccWeights[0];
952 }
953 } else {
954 // If this is not the default destination from PSI, only the edges
955 // in SI that occur in PSI with a destination of BB will be
956 // activated.
957 std::set<ConstantInt*, ConstantIntOrdering> PTIHandled;
958 std::map<ConstantInt*, uint64_t> WeightsForHandled;
959 for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
960 if (PredCases[i].Dest == BB) {
961 PTIHandled.insert(PredCases[i].Value);
962
963 if (PredHasWeights || SuccHasWeights) {
964 WeightsForHandled[PredCases[i].Value] = Weights[i+1];
965 std::swap(Weights[i+1], Weights.back());
966 Weights.pop_back();
967 }
968
969 std::swap(PredCases[i], PredCases.back());
970 PredCases.pop_back();
971 --i; --e;
972 }
973
974 // Okay, now we know which constants were sent to BB from the
975 // predecessor. Figure out where they will all go now.
976 for (unsigned i = 0, e = BBCases.size(); i != e; ++i)
977 if (PTIHandled.count(BBCases[i].Value)) {
978 // If this is one we are capable of getting...
979 if (PredHasWeights || SuccHasWeights)
980 Weights.push_back(WeightsForHandled[BBCases[i].Value]);
981 PredCases.push_back(BBCases[i]);
982 NewSuccessors.push_back(BBCases[i].Dest);
983 PTIHandled.erase(BBCases[i].Value);// This constant is taken care of
984 }
985
986 // If there are any constants vectored to BB that TI doesn't handle,
987 // they must go to the default destination of TI.
988 for (std::set<ConstantInt*, ConstantIntOrdering>::iterator I =
989 PTIHandled.begin(),
990 E = PTIHandled.end(); I != E; ++I) {
991 if (PredHasWeights || SuccHasWeights)
992 Weights.push_back(WeightsForHandled[*I]);
993 PredCases.push_back(ValueEqualityComparisonCase(*I, BBDefault));
994 NewSuccessors.push_back(BBDefault);
995 }
996 }
997
998 // Okay, at this point, we know which new successor Pred will get. Make
999 // sure we update the number of entries in the PHI nodes for these
1000 // successors.
1001 for (BasicBlock *NewSuccessor : NewSuccessors)
1002 AddPredecessorToBlock(NewSuccessor, Pred, BB);
1003
1004 Builder.SetInsertPoint(PTI);
1005 // Convert pointer to int before we switch.
1006 if (CV->getType()->isPointerTy()) {
1007 CV = Builder.CreatePtrToInt(CV, DL.getIntPtrType(CV->getType()),
1008 "magicptr");
1009 }
1010
1011 // Now that the successors are updated, create the new Switch instruction.
1012 SwitchInst *NewSI = Builder.CreateSwitch(CV, PredDefault,
1013 PredCases.size());
1014 NewSI->setDebugLoc(PTI->getDebugLoc());
1015 for (ValueEqualityComparisonCase &V : PredCases)
1016 NewSI->addCase(V.Value, V.Dest);
1017
1018 if (PredHasWeights || SuccHasWeights) {
1019 // Halve the weights if any of them cannot fit in an uint32_t
1020 FitWeights(Weights);
1021
1022 SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end());
1023
1024 NewSI->setMetadata(LLVMContext::MD_prof,
1025 MDBuilder(BB->getContext()).
1026 createBranchWeights(MDWeights));
1027 }
1028
1029 EraseTerminatorInstAndDCECond(PTI);
1030
1031 // Okay, last check. If BB is still a successor of PSI, then we must
1032 // have an infinite loop case. If so, add an infinitely looping block
1033 // to handle the case to preserve the behavior of the code.
1034 BasicBlock *InfLoopBlock = nullptr;
1035 for (unsigned i = 0, e = NewSI->getNumSuccessors(); i != e; ++i)
1036 if (NewSI->getSuccessor(i) == BB) {
1037 if (!InfLoopBlock) {
1038 // Insert it at the end of the function, because it's either code,
1039 // or it won't matter if it's hot. :)
1040 InfLoopBlock = BasicBlock::Create(BB->getContext(),
1041 "infloop", BB->getParent());
1042 BranchInst::Create(InfLoopBlock, InfLoopBlock);
1043 }
1044 NewSI->setSuccessor(i, InfLoopBlock);
1045 }
1046
1047 Changed = true;
1048 }
1049 }
1050 return Changed;
1051 }
1052
1053 // If we would need to insert a select that uses the value of this invoke
1054 // (comments in HoistThenElseCodeToIf explain why we would need to do this), we
1055 // can't hoist the invoke, as there is nowhere to put the select in this case.
isSafeToHoistInvoke(BasicBlock * BB1,BasicBlock * BB2,Instruction * I1,Instruction * I2)1056 static bool isSafeToHoistInvoke(BasicBlock *BB1, BasicBlock *BB2,
1057 Instruction *I1, Instruction *I2) {
1058 for (succ_iterator SI = succ_begin(BB1), E = succ_end(BB1); SI != E; ++SI) {
1059 PHINode *PN;
1060 for (BasicBlock::iterator BBI = SI->begin();
1061 (PN = dyn_cast<PHINode>(BBI)); ++BBI) {
1062 Value *BB1V = PN->getIncomingValueForBlock(BB1);
1063 Value *BB2V = PN->getIncomingValueForBlock(BB2);
1064 if (BB1V != BB2V && (BB1V==I1 || BB2V==I2)) {
1065 return false;
1066 }
1067 }
1068 }
1069 return true;
1070 }
1071
1072 static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I);
1073
1074 /// Given a conditional branch that goes to BB1 and BB2, hoist any common code
1075 /// in the two blocks up into the branch block. The caller of this function
1076 /// guarantees that BI's block dominates BB1 and BB2.
HoistThenElseCodeToIf(BranchInst * BI,const TargetTransformInfo & TTI)1077 static bool HoistThenElseCodeToIf(BranchInst *BI,
1078 const TargetTransformInfo &TTI) {
1079 // This does very trivial matching, with limited scanning, to find identical
1080 // instructions in the two blocks. In particular, we don't want to get into
1081 // O(M*N) situations here where M and N are the sizes of BB1 and BB2. As
1082 // such, we currently just scan for obviously identical instructions in an
1083 // identical order.
1084 BasicBlock *BB1 = BI->getSuccessor(0); // The true destination.
1085 BasicBlock *BB2 = BI->getSuccessor(1); // The false destination
1086
1087 BasicBlock::iterator BB1_Itr = BB1->begin();
1088 BasicBlock::iterator BB2_Itr = BB2->begin();
1089
1090 Instruction *I1 = &*BB1_Itr++, *I2 = &*BB2_Itr++;
1091 // Skip debug info if it is not identical.
1092 DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1);
1093 DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2);
1094 if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) {
1095 while (isa<DbgInfoIntrinsic>(I1))
1096 I1 = &*BB1_Itr++;
1097 while (isa<DbgInfoIntrinsic>(I2))
1098 I2 = &*BB2_Itr++;
1099 }
1100 if (isa<PHINode>(I1) || !I1->isIdenticalToWhenDefined(I2) ||
1101 (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2)))
1102 return false;
1103
1104 BasicBlock *BIParent = BI->getParent();
1105
1106 bool Changed = false;
1107 do {
1108 // If we are hoisting the terminator instruction, don't move one (making a
1109 // broken BB), instead clone it, and remove BI.
1110 if (isa<TerminatorInst>(I1))
1111 goto HoistTerminator;
1112
1113 if (!TTI.isProfitableToHoist(I1) || !TTI.isProfitableToHoist(I2))
1114 return Changed;
1115
1116 // For a normal instruction, we just move one to right before the branch,
1117 // then replace all uses of the other with the first. Finally, we remove
1118 // the now redundant second instruction.
1119 BIParent->getInstList().splice(BI->getIterator(), BB1->getInstList(), I1);
1120 if (!I2->use_empty())
1121 I2->replaceAllUsesWith(I1);
1122 I1->intersectOptionalDataWith(I2);
1123 unsigned KnownIDs[] = {
1124 LLVMContext::MD_tbaa, LLVMContext::MD_range,
1125 LLVMContext::MD_fpmath, LLVMContext::MD_invariant_load,
1126 LLVMContext::MD_nonnull, LLVMContext::MD_invariant_group,
1127 LLVMContext::MD_align, LLVMContext::MD_dereferenceable,
1128 LLVMContext::MD_dereferenceable_or_null};
1129 combineMetadata(I1, I2, KnownIDs);
1130 I2->eraseFromParent();
1131 Changed = true;
1132
1133 I1 = &*BB1_Itr++;
1134 I2 = &*BB2_Itr++;
1135 // Skip debug info if it is not identical.
1136 DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1);
1137 DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2);
1138 if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) {
1139 while (isa<DbgInfoIntrinsic>(I1))
1140 I1 = &*BB1_Itr++;
1141 while (isa<DbgInfoIntrinsic>(I2))
1142 I2 = &*BB2_Itr++;
1143 }
1144 } while (I1->isIdenticalToWhenDefined(I2));
1145
1146 return true;
1147
1148 HoistTerminator:
1149 // It may not be possible to hoist an invoke.
1150 if (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2))
1151 return Changed;
1152
1153 for (succ_iterator SI = succ_begin(BB1), E = succ_end(BB1); SI != E; ++SI) {
1154 PHINode *PN;
1155 for (BasicBlock::iterator BBI = SI->begin();
1156 (PN = dyn_cast<PHINode>(BBI)); ++BBI) {
1157 Value *BB1V = PN->getIncomingValueForBlock(BB1);
1158 Value *BB2V = PN->getIncomingValueForBlock(BB2);
1159 if (BB1V == BB2V)
1160 continue;
1161
1162 // Check for passingValueIsAlwaysUndefined here because we would rather
1163 // eliminate undefined control flow then converting it to a select.
1164 if (passingValueIsAlwaysUndefined(BB1V, PN) ||
1165 passingValueIsAlwaysUndefined(BB2V, PN))
1166 return Changed;
1167
1168 if (isa<ConstantExpr>(BB1V) && !isSafeToSpeculativelyExecute(BB1V))
1169 return Changed;
1170 if (isa<ConstantExpr>(BB2V) && !isSafeToSpeculativelyExecute(BB2V))
1171 return Changed;
1172 }
1173 }
1174
1175 // Okay, it is safe to hoist the terminator.
1176 Instruction *NT = I1->clone();
1177 BIParent->getInstList().insert(BI->getIterator(), NT);
1178 if (!NT->getType()->isVoidTy()) {
1179 I1->replaceAllUsesWith(NT);
1180 I2->replaceAllUsesWith(NT);
1181 NT->takeName(I1);
1182 }
1183
1184 IRBuilder<true, NoFolder> Builder(NT);
1185 // Hoisting one of the terminators from our successor is a great thing.
1186 // Unfortunately, the successors of the if/else blocks may have PHI nodes in
1187 // them. If they do, all PHI entries for BB1/BB2 must agree for all PHI
1188 // nodes, so we insert select instruction to compute the final result.
1189 std::map<std::pair<Value*,Value*>, SelectInst*> InsertedSelects;
1190 for (succ_iterator SI = succ_begin(BB1), E = succ_end(BB1); SI != E; ++SI) {
1191 PHINode *PN;
1192 for (BasicBlock::iterator BBI = SI->begin();
1193 (PN = dyn_cast<PHINode>(BBI)); ++BBI) {
1194 Value *BB1V = PN->getIncomingValueForBlock(BB1);
1195 Value *BB2V = PN->getIncomingValueForBlock(BB2);
1196 if (BB1V == BB2V) continue;
1197
1198 // These values do not agree. Insert a select instruction before NT
1199 // that determines the right value.
1200 SelectInst *&SI = InsertedSelects[std::make_pair(BB1V, BB2V)];
1201 if (!SI)
1202 SI = cast<SelectInst>
1203 (Builder.CreateSelect(BI->getCondition(), BB1V, BB2V,
1204 BB1V->getName()+"."+BB2V->getName()));
1205
1206 // Make the PHI node use the select for all incoming values for BB1/BB2
1207 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
1208 if (PN->getIncomingBlock(i) == BB1 || PN->getIncomingBlock(i) == BB2)
1209 PN->setIncomingValue(i, SI);
1210 }
1211 }
1212
1213 // Update any PHI nodes in our new successors.
1214 for (succ_iterator SI = succ_begin(BB1), E = succ_end(BB1); SI != E; ++SI)
1215 AddPredecessorToBlock(*SI, BIParent, BB1);
1216
1217 EraseTerminatorInstAndDCECond(BI);
1218 return true;
1219 }
1220
1221 /// Given an unconditional branch that goes to BBEnd,
1222 /// check whether BBEnd has only two predecessors and the other predecessor
1223 /// ends with an unconditional branch. If it is true, sink any common code
1224 /// in the two predecessors to BBEnd.
SinkThenElseCodeToEnd(BranchInst * BI1)1225 static bool SinkThenElseCodeToEnd(BranchInst *BI1) {
1226 assert(BI1->isUnconditional());
1227 BasicBlock *BB1 = BI1->getParent();
1228 BasicBlock *BBEnd = BI1->getSuccessor(0);
1229
1230 // Check that BBEnd has two predecessors and the other predecessor ends with
1231 // an unconditional branch.
1232 pred_iterator PI = pred_begin(BBEnd), PE = pred_end(BBEnd);
1233 BasicBlock *Pred0 = *PI++;
1234 if (PI == PE) // Only one predecessor.
1235 return false;
1236 BasicBlock *Pred1 = *PI++;
1237 if (PI != PE) // More than two predecessors.
1238 return false;
1239 BasicBlock *BB2 = (Pred0 == BB1) ? Pred1 : Pred0;
1240 BranchInst *BI2 = dyn_cast<BranchInst>(BB2->getTerminator());
1241 if (!BI2 || !BI2->isUnconditional())
1242 return false;
1243
1244 // Gather the PHI nodes in BBEnd.
1245 SmallDenseMap<std::pair<Value *, Value *>, PHINode *> JointValueMap;
1246 Instruction *FirstNonPhiInBBEnd = nullptr;
1247 for (BasicBlock::iterator I = BBEnd->begin(), E = BBEnd->end(); I != E; ++I) {
1248 if (PHINode *PN = dyn_cast<PHINode>(I)) {
1249 Value *BB1V = PN->getIncomingValueForBlock(BB1);
1250 Value *BB2V = PN->getIncomingValueForBlock(BB2);
1251 JointValueMap[std::make_pair(BB1V, BB2V)] = PN;
1252 } else {
1253 FirstNonPhiInBBEnd = &*I;
1254 break;
1255 }
1256 }
1257 if (!FirstNonPhiInBBEnd)
1258 return false;
1259
1260 // This does very trivial matching, with limited scanning, to find identical
1261 // instructions in the two blocks. We scan backward for obviously identical
1262 // instructions in an identical order.
1263 BasicBlock::InstListType::reverse_iterator RI1 = BB1->getInstList().rbegin(),
1264 RE1 = BB1->getInstList().rend(),
1265 RI2 = BB2->getInstList().rbegin(),
1266 RE2 = BB2->getInstList().rend();
1267 // Skip debug info.
1268 while (RI1 != RE1 && isa<DbgInfoIntrinsic>(&*RI1)) ++RI1;
1269 if (RI1 == RE1)
1270 return false;
1271 while (RI2 != RE2 && isa<DbgInfoIntrinsic>(&*RI2)) ++RI2;
1272 if (RI2 == RE2)
1273 return false;
1274 // Skip the unconditional branches.
1275 ++RI1;
1276 ++RI2;
1277
1278 bool Changed = false;
1279 while (RI1 != RE1 && RI2 != RE2) {
1280 // Skip debug info.
1281 while (RI1 != RE1 && isa<DbgInfoIntrinsic>(&*RI1)) ++RI1;
1282 if (RI1 == RE1)
1283 return Changed;
1284 while (RI2 != RE2 && isa<DbgInfoIntrinsic>(&*RI2)) ++RI2;
1285 if (RI2 == RE2)
1286 return Changed;
1287
1288 Instruction *I1 = &*RI1, *I2 = &*RI2;
1289 auto InstPair = std::make_pair(I1, I2);
1290 // I1 and I2 should have a single use in the same PHI node, and they
1291 // perform the same operation.
1292 // Cannot move control-flow-involving, volatile loads, vaarg, etc.
1293 if (isa<PHINode>(I1) || isa<PHINode>(I2) ||
1294 isa<TerminatorInst>(I1) || isa<TerminatorInst>(I2) ||
1295 I1->isEHPad() || I2->isEHPad() ||
1296 isa<AllocaInst>(I1) || isa<AllocaInst>(I2) ||
1297 I1->mayHaveSideEffects() || I2->mayHaveSideEffects() ||
1298 I1->mayReadOrWriteMemory() || I2->mayReadOrWriteMemory() ||
1299 !I1->hasOneUse() || !I2->hasOneUse() ||
1300 !JointValueMap.count(InstPair))
1301 return Changed;
1302
1303 // Check whether we should swap the operands of ICmpInst.
1304 // TODO: Add support of communativity.
1305 ICmpInst *ICmp1 = dyn_cast<ICmpInst>(I1), *ICmp2 = dyn_cast<ICmpInst>(I2);
1306 bool SwapOpnds = false;
1307 if (ICmp1 && ICmp2 &&
1308 ICmp1->getOperand(0) != ICmp2->getOperand(0) &&
1309 ICmp1->getOperand(1) != ICmp2->getOperand(1) &&
1310 (ICmp1->getOperand(0) == ICmp2->getOperand(1) ||
1311 ICmp1->getOperand(1) == ICmp2->getOperand(0))) {
1312 ICmp2->swapOperands();
1313 SwapOpnds = true;
1314 }
1315 if (!I1->isSameOperationAs(I2)) {
1316 if (SwapOpnds)
1317 ICmp2->swapOperands();
1318 return Changed;
1319 }
1320
1321 // The operands should be either the same or they need to be generated
1322 // with a PHI node after sinking. We only handle the case where there is
1323 // a single pair of different operands.
1324 Value *DifferentOp1 = nullptr, *DifferentOp2 = nullptr;
1325 unsigned Op1Idx = ~0U;
1326 for (unsigned I = 0, E = I1->getNumOperands(); I != E; ++I) {
1327 if (I1->getOperand(I) == I2->getOperand(I))
1328 continue;
1329 // Early exit if we have more-than one pair of different operands or if
1330 // we need a PHI node to replace a constant.
1331 if (Op1Idx != ~0U ||
1332 isa<Constant>(I1->getOperand(I)) ||
1333 isa<Constant>(I2->getOperand(I))) {
1334 // If we can't sink the instructions, undo the swapping.
1335 if (SwapOpnds)
1336 ICmp2->swapOperands();
1337 return Changed;
1338 }
1339 DifferentOp1 = I1->getOperand(I);
1340 Op1Idx = I;
1341 DifferentOp2 = I2->getOperand(I);
1342 }
1343
1344 DEBUG(dbgs() << "SINK common instructions " << *I1 << "\n");
1345 DEBUG(dbgs() << " " << *I2 << "\n");
1346
1347 // We insert the pair of different operands to JointValueMap and
1348 // remove (I1, I2) from JointValueMap.
1349 if (Op1Idx != ~0U) {
1350 auto &NewPN = JointValueMap[std::make_pair(DifferentOp1, DifferentOp2)];
1351 if (!NewPN) {
1352 NewPN =
1353 PHINode::Create(DifferentOp1->getType(), 2,
1354 DifferentOp1->getName() + ".sink", &BBEnd->front());
1355 NewPN->addIncoming(DifferentOp1, BB1);
1356 NewPN->addIncoming(DifferentOp2, BB2);
1357 DEBUG(dbgs() << "Create PHI node " << *NewPN << "\n";);
1358 }
1359 // I1 should use NewPN instead of DifferentOp1.
1360 I1->setOperand(Op1Idx, NewPN);
1361 }
1362 PHINode *OldPN = JointValueMap[InstPair];
1363 JointValueMap.erase(InstPair);
1364
1365 // We need to update RE1 and RE2 if we are going to sink the first
1366 // instruction in the basic block down.
1367 bool UpdateRE1 = (I1 == BB1->begin()), UpdateRE2 = (I2 == BB2->begin());
1368 // Sink the instruction.
1369 BBEnd->getInstList().splice(FirstNonPhiInBBEnd->getIterator(),
1370 BB1->getInstList(), I1);
1371 if (!OldPN->use_empty())
1372 OldPN->replaceAllUsesWith(I1);
1373 OldPN->eraseFromParent();
1374
1375 if (!I2->use_empty())
1376 I2->replaceAllUsesWith(I1);
1377 I1->intersectOptionalDataWith(I2);
1378 // TODO: Use combineMetadata here to preserve what metadata we can
1379 // (analogous to the hoisting case above).
1380 I2->eraseFromParent();
1381
1382 if (UpdateRE1)
1383 RE1 = BB1->getInstList().rend();
1384 if (UpdateRE2)
1385 RE2 = BB2->getInstList().rend();
1386 FirstNonPhiInBBEnd = &*I1;
1387 NumSinkCommons++;
1388 Changed = true;
1389 }
1390 return Changed;
1391 }
1392
1393 /// \brief Determine if we can hoist sink a sole store instruction out of a
1394 /// conditional block.
1395 ///
1396 /// We are looking for code like the following:
1397 /// BrBB:
1398 /// store i32 %add, i32* %arrayidx2
1399 /// ... // No other stores or function calls (we could be calling a memory
1400 /// ... // function).
1401 /// %cmp = icmp ult %x, %y
1402 /// br i1 %cmp, label %EndBB, label %ThenBB
1403 /// ThenBB:
1404 /// store i32 %add5, i32* %arrayidx2
1405 /// br label EndBB
1406 /// EndBB:
1407 /// ...
1408 /// We are going to transform this into:
1409 /// BrBB:
1410 /// store i32 %add, i32* %arrayidx2
1411 /// ... //
1412 /// %cmp = icmp ult %x, %y
1413 /// %add.add5 = select i1 %cmp, i32 %add, %add5
1414 /// store i32 %add.add5, i32* %arrayidx2
1415 /// ...
1416 ///
1417 /// \return The pointer to the value of the previous store if the store can be
1418 /// hoisted into the predecessor block. 0 otherwise.
isSafeToSpeculateStore(Instruction * I,BasicBlock * BrBB,BasicBlock * StoreBB,BasicBlock * EndBB)1419 static Value *isSafeToSpeculateStore(Instruction *I, BasicBlock *BrBB,
1420 BasicBlock *StoreBB, BasicBlock *EndBB) {
1421 StoreInst *StoreToHoist = dyn_cast<StoreInst>(I);
1422 if (!StoreToHoist)
1423 return nullptr;
1424
1425 // Volatile or atomic.
1426 if (!StoreToHoist->isSimple())
1427 return nullptr;
1428
1429 Value *StorePtr = StoreToHoist->getPointerOperand();
1430
1431 // Look for a store to the same pointer in BrBB.
1432 unsigned MaxNumInstToLookAt = 10;
1433 for (BasicBlock::reverse_iterator RI = BrBB->rbegin(),
1434 RE = BrBB->rend(); RI != RE && (--MaxNumInstToLookAt); ++RI) {
1435 Instruction *CurI = &*RI;
1436
1437 // Could be calling an instruction that effects memory like free().
1438 if (CurI->mayHaveSideEffects() && !isa<StoreInst>(CurI))
1439 return nullptr;
1440
1441 StoreInst *SI = dyn_cast<StoreInst>(CurI);
1442 // Found the previous store make sure it stores to the same location.
1443 if (SI && SI->getPointerOperand() == StorePtr)
1444 // Found the previous store, return its value operand.
1445 return SI->getValueOperand();
1446 else if (SI)
1447 return nullptr; // Unknown store.
1448 }
1449
1450 return nullptr;
1451 }
1452
1453 /// \brief Speculate a conditional basic block flattening the CFG.
1454 ///
1455 /// Note that this is a very risky transform currently. Speculating
1456 /// instructions like this is most often not desirable. Instead, there is an MI
1457 /// pass which can do it with full awareness of the resource constraints.
1458 /// However, some cases are "obvious" and we should do directly. An example of
1459 /// this is speculating a single, reasonably cheap instruction.
1460 ///
1461 /// There is only one distinct advantage to flattening the CFG at the IR level:
1462 /// it makes very common but simplistic optimizations such as are common in
1463 /// instcombine and the DAG combiner more powerful by removing CFG edges and
1464 /// modeling their effects with easier to reason about SSA value graphs.
1465 ///
1466 ///
1467 /// An illustration of this transform is turning this IR:
1468 /// \code
1469 /// BB:
1470 /// %cmp = icmp ult %x, %y
1471 /// br i1 %cmp, label %EndBB, label %ThenBB
1472 /// ThenBB:
1473 /// %sub = sub %x, %y
1474 /// br label BB2
1475 /// EndBB:
1476 /// %phi = phi [ %sub, %ThenBB ], [ 0, %EndBB ]
1477 /// ...
1478 /// \endcode
1479 ///
1480 /// Into this IR:
1481 /// \code
1482 /// BB:
1483 /// %cmp = icmp ult %x, %y
1484 /// %sub = sub %x, %y
1485 /// %cond = select i1 %cmp, 0, %sub
1486 /// ...
1487 /// \endcode
1488 ///
1489 /// \returns true if the conditional block is removed.
SpeculativelyExecuteBB(BranchInst * BI,BasicBlock * ThenBB,const TargetTransformInfo & TTI)1490 static bool SpeculativelyExecuteBB(BranchInst *BI, BasicBlock *ThenBB,
1491 const TargetTransformInfo &TTI) {
1492 // Be conservative for now. FP select instruction can often be expensive.
1493 Value *BrCond = BI->getCondition();
1494 if (isa<FCmpInst>(BrCond))
1495 return false;
1496
1497 BasicBlock *BB = BI->getParent();
1498 BasicBlock *EndBB = ThenBB->getTerminator()->getSuccessor(0);
1499
1500 // If ThenBB is actually on the false edge of the conditional branch, remember
1501 // to swap the select operands later.
1502 bool Invert = false;
1503 if (ThenBB != BI->getSuccessor(0)) {
1504 assert(ThenBB == BI->getSuccessor(1) && "No edge from 'if' block?");
1505 Invert = true;
1506 }
1507 assert(EndBB == BI->getSuccessor(!Invert) && "No edge from to end block");
1508
1509 // Keep a count of how many times instructions are used within CondBB when
1510 // they are candidates for sinking into CondBB. Specifically:
1511 // - They are defined in BB, and
1512 // - They have no side effects, and
1513 // - All of their uses are in CondBB.
1514 SmallDenseMap<Instruction *, unsigned, 4> SinkCandidateUseCounts;
1515
1516 unsigned SpeculationCost = 0;
1517 Value *SpeculatedStoreValue = nullptr;
1518 StoreInst *SpeculatedStore = nullptr;
1519 for (BasicBlock::iterator BBI = ThenBB->begin(),
1520 BBE = std::prev(ThenBB->end());
1521 BBI != BBE; ++BBI) {
1522 Instruction *I = &*BBI;
1523 // Skip debug info.
1524 if (isa<DbgInfoIntrinsic>(I))
1525 continue;
1526
1527 // Only speculatively execute a single instruction (not counting the
1528 // terminator) for now.
1529 ++SpeculationCost;
1530 if (SpeculationCost > 1)
1531 return false;
1532
1533 // Don't hoist the instruction if it's unsafe or expensive.
1534 if (!isSafeToSpeculativelyExecute(I) &&
1535 !(HoistCondStores && (SpeculatedStoreValue = isSafeToSpeculateStore(
1536 I, BB, ThenBB, EndBB))))
1537 return false;
1538 if (!SpeculatedStoreValue &&
1539 ComputeSpeculationCost(I, TTI) >
1540 PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic)
1541 return false;
1542
1543 // Store the store speculation candidate.
1544 if (SpeculatedStoreValue)
1545 SpeculatedStore = cast<StoreInst>(I);
1546
1547 // Do not hoist the instruction if any of its operands are defined but not
1548 // used in BB. The transformation will prevent the operand from
1549 // being sunk into the use block.
1550 for (User::op_iterator i = I->op_begin(), e = I->op_end();
1551 i != e; ++i) {
1552 Instruction *OpI = dyn_cast<Instruction>(*i);
1553 if (!OpI || OpI->getParent() != BB ||
1554 OpI->mayHaveSideEffects())
1555 continue; // Not a candidate for sinking.
1556
1557 ++SinkCandidateUseCounts[OpI];
1558 }
1559 }
1560
1561 // Consider any sink candidates which are only used in CondBB as costs for
1562 // speculation. Note, while we iterate over a DenseMap here, we are summing
1563 // and so iteration order isn't significant.
1564 for (SmallDenseMap<Instruction *, unsigned, 4>::iterator I =
1565 SinkCandidateUseCounts.begin(), E = SinkCandidateUseCounts.end();
1566 I != E; ++I)
1567 if (I->first->getNumUses() == I->second) {
1568 ++SpeculationCost;
1569 if (SpeculationCost > 1)
1570 return false;
1571 }
1572
1573 // Check that the PHI nodes can be converted to selects.
1574 bool HaveRewritablePHIs = false;
1575 for (BasicBlock::iterator I = EndBB->begin();
1576 PHINode *PN = dyn_cast<PHINode>(I); ++I) {
1577 Value *OrigV = PN->getIncomingValueForBlock(BB);
1578 Value *ThenV = PN->getIncomingValueForBlock(ThenBB);
1579
1580 // FIXME: Try to remove some of the duplication with HoistThenElseCodeToIf.
1581 // Skip PHIs which are trivial.
1582 if (ThenV == OrigV)
1583 continue;
1584
1585 // Don't convert to selects if we could remove undefined behavior instead.
1586 if (passingValueIsAlwaysUndefined(OrigV, PN) ||
1587 passingValueIsAlwaysUndefined(ThenV, PN))
1588 return false;
1589
1590 HaveRewritablePHIs = true;
1591 ConstantExpr *OrigCE = dyn_cast<ConstantExpr>(OrigV);
1592 ConstantExpr *ThenCE = dyn_cast<ConstantExpr>(ThenV);
1593 if (!OrigCE && !ThenCE)
1594 continue; // Known safe and cheap.
1595
1596 if ((ThenCE && !isSafeToSpeculativelyExecute(ThenCE)) ||
1597 (OrigCE && !isSafeToSpeculativelyExecute(OrigCE)))
1598 return false;
1599 unsigned OrigCost = OrigCE ? ComputeSpeculationCost(OrigCE, TTI) : 0;
1600 unsigned ThenCost = ThenCE ? ComputeSpeculationCost(ThenCE, TTI) : 0;
1601 unsigned MaxCost = 2 * PHINodeFoldingThreshold *
1602 TargetTransformInfo::TCC_Basic;
1603 if (OrigCost + ThenCost > MaxCost)
1604 return false;
1605
1606 // Account for the cost of an unfolded ConstantExpr which could end up
1607 // getting expanded into Instructions.
1608 // FIXME: This doesn't account for how many operations are combined in the
1609 // constant expression.
1610 ++SpeculationCost;
1611 if (SpeculationCost > 1)
1612 return false;
1613 }
1614
1615 // If there are no PHIs to process, bail early. This helps ensure idempotence
1616 // as well.
1617 if (!HaveRewritablePHIs && !(HoistCondStores && SpeculatedStoreValue))
1618 return false;
1619
1620 // If we get here, we can hoist the instruction and if-convert.
1621 DEBUG(dbgs() << "SPECULATIVELY EXECUTING BB" << *ThenBB << "\n";);
1622
1623 // Insert a select of the value of the speculated store.
1624 if (SpeculatedStoreValue) {
1625 IRBuilder<true, NoFolder> Builder(BI);
1626 Value *TrueV = SpeculatedStore->getValueOperand();
1627 Value *FalseV = SpeculatedStoreValue;
1628 if (Invert)
1629 std::swap(TrueV, FalseV);
1630 Value *S = Builder.CreateSelect(BrCond, TrueV, FalseV, TrueV->getName() +
1631 "." + FalseV->getName());
1632 SpeculatedStore->setOperand(0, S);
1633 }
1634
1635 // Metadata can be dependent on the condition we are hoisting above.
1636 // Conservatively strip all metadata on the instruction.
1637 for (auto &I: *ThenBB)
1638 I.dropUnknownNonDebugMetadata();
1639
1640 // Hoist the instructions.
1641 BB->getInstList().splice(BI->getIterator(), ThenBB->getInstList(),
1642 ThenBB->begin(), std::prev(ThenBB->end()));
1643
1644 // Insert selects and rewrite the PHI operands.
1645 IRBuilder<true, NoFolder> Builder(BI);
1646 for (BasicBlock::iterator I = EndBB->begin();
1647 PHINode *PN = dyn_cast<PHINode>(I); ++I) {
1648 unsigned OrigI = PN->getBasicBlockIndex(BB);
1649 unsigned ThenI = PN->getBasicBlockIndex(ThenBB);
1650 Value *OrigV = PN->getIncomingValue(OrigI);
1651 Value *ThenV = PN->getIncomingValue(ThenI);
1652
1653 // Skip PHIs which are trivial.
1654 if (OrigV == ThenV)
1655 continue;
1656
1657 // Create a select whose true value is the speculatively executed value and
1658 // false value is the preexisting value. Swap them if the branch
1659 // destinations were inverted.
1660 Value *TrueV = ThenV, *FalseV = OrigV;
1661 if (Invert)
1662 std::swap(TrueV, FalseV);
1663 Value *V = Builder.CreateSelect(BrCond, TrueV, FalseV,
1664 TrueV->getName() + "." + FalseV->getName());
1665 PN->setIncomingValue(OrigI, V);
1666 PN->setIncomingValue(ThenI, V);
1667 }
1668
1669 ++NumSpeculations;
1670 return true;
1671 }
1672
1673 /// \returns True if this block contains a CallInst with the NoDuplicate
1674 /// attribute.
HasNoDuplicateCall(const BasicBlock * BB)1675 static bool HasNoDuplicateCall(const BasicBlock *BB) {
1676 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I != E; ++I) {
1677 const CallInst *CI = dyn_cast<CallInst>(I);
1678 if (!CI)
1679 continue;
1680 if (CI->cannotDuplicate())
1681 return true;
1682 }
1683 return false;
1684 }
1685
1686 /// Return true if we can thread a branch across this block.
BlockIsSimpleEnoughToThreadThrough(BasicBlock * BB)1687 static bool BlockIsSimpleEnoughToThreadThrough(BasicBlock *BB) {
1688 BranchInst *BI = cast<BranchInst>(BB->getTerminator());
1689 unsigned Size = 0;
1690
1691 for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI) {
1692 if (isa<DbgInfoIntrinsic>(BBI))
1693 continue;
1694 if (Size > 10) return false; // Don't clone large BB's.
1695 ++Size;
1696
1697 // We can only support instructions that do not define values that are
1698 // live outside of the current basic block.
1699 for (User *U : BBI->users()) {
1700 Instruction *UI = cast<Instruction>(U);
1701 if (UI->getParent() != BB || isa<PHINode>(UI)) return false;
1702 }
1703
1704 // Looks ok, continue checking.
1705 }
1706
1707 return true;
1708 }
1709
1710 /// If we have a conditional branch on a PHI node value that is defined in the
1711 /// same block as the branch and if any PHI entries are constants, thread edges
1712 /// corresponding to that entry to be branches to their ultimate destination.
FoldCondBranchOnPHI(BranchInst * BI,const DataLayout & DL)1713 static bool FoldCondBranchOnPHI(BranchInst *BI, const DataLayout &DL) {
1714 BasicBlock *BB = BI->getParent();
1715 PHINode *PN = dyn_cast<PHINode>(BI->getCondition());
1716 // NOTE: we currently cannot transform this case if the PHI node is used
1717 // outside of the block.
1718 if (!PN || PN->getParent() != BB || !PN->hasOneUse())
1719 return false;
1720
1721 // Degenerate case of a single entry PHI.
1722 if (PN->getNumIncomingValues() == 1) {
1723 FoldSingleEntryPHINodes(PN->getParent());
1724 return true;
1725 }
1726
1727 // Now we know that this block has multiple preds and two succs.
1728 if (!BlockIsSimpleEnoughToThreadThrough(BB)) return false;
1729
1730 if (HasNoDuplicateCall(BB)) return false;
1731
1732 // Okay, this is a simple enough basic block. See if any phi values are
1733 // constants.
1734 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1735 ConstantInt *CB = dyn_cast<ConstantInt>(PN->getIncomingValue(i));
1736 if (!CB || !CB->getType()->isIntegerTy(1)) continue;
1737
1738 // Okay, we now know that all edges from PredBB should be revectored to
1739 // branch to RealDest.
1740 BasicBlock *PredBB = PN->getIncomingBlock(i);
1741 BasicBlock *RealDest = BI->getSuccessor(!CB->getZExtValue());
1742
1743 if (RealDest == BB) continue; // Skip self loops.
1744 // Skip if the predecessor's terminator is an indirect branch.
1745 if (isa<IndirectBrInst>(PredBB->getTerminator())) continue;
1746
1747 // The dest block might have PHI nodes, other predecessors and other
1748 // difficult cases. Instead of being smart about this, just insert a new
1749 // block that jumps to the destination block, effectively splitting
1750 // the edge we are about to create.
1751 BasicBlock *EdgeBB = BasicBlock::Create(BB->getContext(),
1752 RealDest->getName()+".critedge",
1753 RealDest->getParent(), RealDest);
1754 BranchInst::Create(RealDest, EdgeBB);
1755
1756 // Update PHI nodes.
1757 AddPredecessorToBlock(RealDest, EdgeBB, BB);
1758
1759 // BB may have instructions that are being threaded over. Clone these
1760 // instructions into EdgeBB. We know that there will be no uses of the
1761 // cloned instructions outside of EdgeBB.
1762 BasicBlock::iterator InsertPt = EdgeBB->begin();
1763 DenseMap<Value*, Value*> TranslateMap; // Track translated values.
1764 for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI) {
1765 if (PHINode *PN = dyn_cast<PHINode>(BBI)) {
1766 TranslateMap[PN] = PN->getIncomingValueForBlock(PredBB);
1767 continue;
1768 }
1769 // Clone the instruction.
1770 Instruction *N = BBI->clone();
1771 if (BBI->hasName()) N->setName(BBI->getName()+".c");
1772
1773 // Update operands due to translation.
1774 for (User::op_iterator i = N->op_begin(), e = N->op_end();
1775 i != e; ++i) {
1776 DenseMap<Value*, Value*>::iterator PI = TranslateMap.find(*i);
1777 if (PI != TranslateMap.end())
1778 *i = PI->second;
1779 }
1780
1781 // Check for trivial simplification.
1782 if (Value *V = SimplifyInstruction(N, DL)) {
1783 TranslateMap[&*BBI] = V;
1784 delete N; // Instruction folded away, don't need actual inst
1785 } else {
1786 // Insert the new instruction into its new home.
1787 EdgeBB->getInstList().insert(InsertPt, N);
1788 if (!BBI->use_empty())
1789 TranslateMap[&*BBI] = N;
1790 }
1791 }
1792
1793 // Loop over all of the edges from PredBB to BB, changing them to branch
1794 // to EdgeBB instead.
1795 TerminatorInst *PredBBTI = PredBB->getTerminator();
1796 for (unsigned i = 0, e = PredBBTI->getNumSuccessors(); i != e; ++i)
1797 if (PredBBTI->getSuccessor(i) == BB) {
1798 BB->removePredecessor(PredBB);
1799 PredBBTI->setSuccessor(i, EdgeBB);
1800 }
1801
1802 // Recurse, simplifying any other constants.
1803 return FoldCondBranchOnPHI(BI, DL) | true;
1804 }
1805
1806 return false;
1807 }
1808
1809 /// Given a BB that starts with the specified two-entry PHI node,
1810 /// see if we can eliminate it.
FoldTwoEntryPHINode(PHINode * PN,const TargetTransformInfo & TTI,const DataLayout & DL)1811 static bool FoldTwoEntryPHINode(PHINode *PN, const TargetTransformInfo &TTI,
1812 const DataLayout &DL) {
1813 // Ok, this is a two entry PHI node. Check to see if this is a simple "if
1814 // statement", which has a very simple dominance structure. Basically, we
1815 // are trying to find the condition that is being branched on, which
1816 // subsequently causes this merge to happen. We really want control
1817 // dependence information for this check, but simplifycfg can't keep it up
1818 // to date, and this catches most of the cases we care about anyway.
1819 BasicBlock *BB = PN->getParent();
1820 BasicBlock *IfTrue, *IfFalse;
1821 Value *IfCond = GetIfCondition(BB, IfTrue, IfFalse);
1822 if (!IfCond ||
1823 // Don't bother if the branch will be constant folded trivially.
1824 isa<ConstantInt>(IfCond))
1825 return false;
1826
1827 // Okay, we found that we can merge this two-entry phi node into a select.
1828 // Doing so would require us to fold *all* two entry phi nodes in this block.
1829 // At some point this becomes non-profitable (particularly if the target
1830 // doesn't support cmov's). Only do this transformation if there are two or
1831 // fewer PHI nodes in this block.
1832 unsigned NumPhis = 0;
1833 for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++NumPhis, ++I)
1834 if (NumPhis > 2)
1835 return false;
1836
1837 // Loop over the PHI's seeing if we can promote them all to select
1838 // instructions. While we are at it, keep track of the instructions
1839 // that need to be moved to the dominating block.
1840 SmallPtrSet<Instruction*, 4> AggressiveInsts;
1841 unsigned MaxCostVal0 = PHINodeFoldingThreshold,
1842 MaxCostVal1 = PHINodeFoldingThreshold;
1843 MaxCostVal0 *= TargetTransformInfo::TCC_Basic;
1844 MaxCostVal1 *= TargetTransformInfo::TCC_Basic;
1845
1846 for (BasicBlock::iterator II = BB->begin(); isa<PHINode>(II);) {
1847 PHINode *PN = cast<PHINode>(II++);
1848 if (Value *V = SimplifyInstruction(PN, DL)) {
1849 PN->replaceAllUsesWith(V);
1850 PN->eraseFromParent();
1851 continue;
1852 }
1853
1854 if (!DominatesMergePoint(PN->getIncomingValue(0), BB, &AggressiveInsts,
1855 MaxCostVal0, TTI) ||
1856 !DominatesMergePoint(PN->getIncomingValue(1), BB, &AggressiveInsts,
1857 MaxCostVal1, TTI))
1858 return false;
1859 }
1860
1861 // If we folded the first phi, PN dangles at this point. Refresh it. If
1862 // we ran out of PHIs then we simplified them all.
1863 PN = dyn_cast<PHINode>(BB->begin());
1864 if (!PN) return true;
1865
1866 // Don't fold i1 branches on PHIs which contain binary operators. These can
1867 // often be turned into switches and other things.
1868 if (PN->getType()->isIntegerTy(1) &&
1869 (isa<BinaryOperator>(PN->getIncomingValue(0)) ||
1870 isa<BinaryOperator>(PN->getIncomingValue(1)) ||
1871 isa<BinaryOperator>(IfCond)))
1872 return false;
1873
1874 // If we all PHI nodes are promotable, check to make sure that all
1875 // instructions in the predecessor blocks can be promoted as well. If
1876 // not, we won't be able to get rid of the control flow, so it's not
1877 // worth promoting to select instructions.
1878 BasicBlock *DomBlock = nullptr;
1879 BasicBlock *IfBlock1 = PN->getIncomingBlock(0);
1880 BasicBlock *IfBlock2 = PN->getIncomingBlock(1);
1881 if (cast<BranchInst>(IfBlock1->getTerminator())->isConditional()) {
1882 IfBlock1 = nullptr;
1883 } else {
1884 DomBlock = *pred_begin(IfBlock1);
1885 for (BasicBlock::iterator I = IfBlock1->begin();!isa<TerminatorInst>(I);++I)
1886 if (!AggressiveInsts.count(&*I) && !isa<DbgInfoIntrinsic>(I)) {
1887 // This is not an aggressive instruction that we can promote.
1888 // Because of this, we won't be able to get rid of the control
1889 // flow, so the xform is not worth it.
1890 return false;
1891 }
1892 }
1893
1894 if (cast<BranchInst>(IfBlock2->getTerminator())->isConditional()) {
1895 IfBlock2 = nullptr;
1896 } else {
1897 DomBlock = *pred_begin(IfBlock2);
1898 for (BasicBlock::iterator I = IfBlock2->begin();!isa<TerminatorInst>(I);++I)
1899 if (!AggressiveInsts.count(&*I) && !isa<DbgInfoIntrinsic>(I)) {
1900 // This is not an aggressive instruction that we can promote.
1901 // Because of this, we won't be able to get rid of the control
1902 // flow, so the xform is not worth it.
1903 return false;
1904 }
1905 }
1906
1907 DEBUG(dbgs() << "FOUND IF CONDITION! " << *IfCond << " T: "
1908 << IfTrue->getName() << " F: " << IfFalse->getName() << "\n");
1909
1910 // If we can still promote the PHI nodes after this gauntlet of tests,
1911 // do all of the PHI's now.
1912 Instruction *InsertPt = DomBlock->getTerminator();
1913 IRBuilder<true, NoFolder> Builder(InsertPt);
1914
1915 // Move all 'aggressive' instructions, which are defined in the
1916 // conditional parts of the if's up to the dominating block.
1917 if (IfBlock1)
1918 DomBlock->getInstList().splice(InsertPt->getIterator(),
1919 IfBlock1->getInstList(), IfBlock1->begin(),
1920 IfBlock1->getTerminator()->getIterator());
1921 if (IfBlock2)
1922 DomBlock->getInstList().splice(InsertPt->getIterator(),
1923 IfBlock2->getInstList(), IfBlock2->begin(),
1924 IfBlock2->getTerminator()->getIterator());
1925
1926 while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) {
1927 // Change the PHI node into a select instruction.
1928 Value *TrueVal = PN->getIncomingValue(PN->getIncomingBlock(0) == IfFalse);
1929 Value *FalseVal = PN->getIncomingValue(PN->getIncomingBlock(0) == IfTrue);
1930
1931 SelectInst *NV =
1932 cast<SelectInst>(Builder.CreateSelect(IfCond, TrueVal, FalseVal, ""));
1933 PN->replaceAllUsesWith(NV);
1934 NV->takeName(PN);
1935 PN->eraseFromParent();
1936 }
1937
1938 // At this point, IfBlock1 and IfBlock2 are both empty, so our if statement
1939 // has been flattened. Change DomBlock to jump directly to our new block to
1940 // avoid other simplifycfg's kicking in on the diamond.
1941 TerminatorInst *OldTI = DomBlock->getTerminator();
1942 Builder.SetInsertPoint(OldTI);
1943 Builder.CreateBr(BB);
1944 OldTI->eraseFromParent();
1945 return true;
1946 }
1947
1948 /// If we found a conditional branch that goes to two returning blocks,
1949 /// try to merge them together into one return,
1950 /// introducing a select if the return values disagree.
SimplifyCondBranchToTwoReturns(BranchInst * BI,IRBuilder<> & Builder)1951 static bool SimplifyCondBranchToTwoReturns(BranchInst *BI,
1952 IRBuilder<> &Builder) {
1953 assert(BI->isConditional() && "Must be a conditional branch");
1954 BasicBlock *TrueSucc = BI->getSuccessor(0);
1955 BasicBlock *FalseSucc = BI->getSuccessor(1);
1956 ReturnInst *TrueRet = cast<ReturnInst>(TrueSucc->getTerminator());
1957 ReturnInst *FalseRet = cast<ReturnInst>(FalseSucc->getTerminator());
1958
1959 // Check to ensure both blocks are empty (just a return) or optionally empty
1960 // with PHI nodes. If there are other instructions, merging would cause extra
1961 // computation on one path or the other.
1962 if (!TrueSucc->getFirstNonPHIOrDbg()->isTerminator())
1963 return false;
1964 if (!FalseSucc->getFirstNonPHIOrDbg()->isTerminator())
1965 return false;
1966
1967 Builder.SetInsertPoint(BI);
1968 // Okay, we found a branch that is going to two return nodes. If
1969 // there is no return value for this function, just change the
1970 // branch into a return.
1971 if (FalseRet->getNumOperands() == 0) {
1972 TrueSucc->removePredecessor(BI->getParent());
1973 FalseSucc->removePredecessor(BI->getParent());
1974 Builder.CreateRetVoid();
1975 EraseTerminatorInstAndDCECond(BI);
1976 return true;
1977 }
1978
1979 // Otherwise, figure out what the true and false return values are
1980 // so we can insert a new select instruction.
1981 Value *TrueValue = TrueRet->getReturnValue();
1982 Value *FalseValue = FalseRet->getReturnValue();
1983
1984 // Unwrap any PHI nodes in the return blocks.
1985 if (PHINode *TVPN = dyn_cast_or_null<PHINode>(TrueValue))
1986 if (TVPN->getParent() == TrueSucc)
1987 TrueValue = TVPN->getIncomingValueForBlock(BI->getParent());
1988 if (PHINode *FVPN = dyn_cast_or_null<PHINode>(FalseValue))
1989 if (FVPN->getParent() == FalseSucc)
1990 FalseValue = FVPN->getIncomingValueForBlock(BI->getParent());
1991
1992 // In order for this transformation to be safe, we must be able to
1993 // unconditionally execute both operands to the return. This is
1994 // normally the case, but we could have a potentially-trapping
1995 // constant expression that prevents this transformation from being
1996 // safe.
1997 if (ConstantExpr *TCV = dyn_cast_or_null<ConstantExpr>(TrueValue))
1998 if (TCV->canTrap())
1999 return false;
2000 if (ConstantExpr *FCV = dyn_cast_or_null<ConstantExpr>(FalseValue))
2001 if (FCV->canTrap())
2002 return false;
2003
2004 // Okay, we collected all the mapped values and checked them for sanity, and
2005 // defined to really do this transformation. First, update the CFG.
2006 TrueSucc->removePredecessor(BI->getParent());
2007 FalseSucc->removePredecessor(BI->getParent());
2008
2009 // Insert select instructions where needed.
2010 Value *BrCond = BI->getCondition();
2011 if (TrueValue) {
2012 // Insert a select if the results differ.
2013 if (TrueValue == FalseValue || isa<UndefValue>(FalseValue)) {
2014 } else if (isa<UndefValue>(TrueValue)) {
2015 TrueValue = FalseValue;
2016 } else {
2017 TrueValue = Builder.CreateSelect(BrCond, TrueValue,
2018 FalseValue, "retval");
2019 }
2020 }
2021
2022 Value *RI = !TrueValue ?
2023 Builder.CreateRetVoid() : Builder.CreateRet(TrueValue);
2024
2025 (void) RI;
2026
2027 DEBUG(dbgs() << "\nCHANGING BRANCH TO TWO RETURNS INTO SELECT:"
2028 << "\n " << *BI << "NewRet = " << *RI
2029 << "TRUEBLOCK: " << *TrueSucc << "FALSEBLOCK: "<< *FalseSucc);
2030
2031 EraseTerminatorInstAndDCECond(BI);
2032
2033 return true;
2034 }
2035
2036 /// Given a conditional BranchInstruction, retrieve the probabilities of the
2037 /// branch taking each edge. Fills in the two APInt parameters and returns true,
2038 /// or returns false if no or invalid metadata was found.
ExtractBranchMetadata(BranchInst * BI,uint64_t & ProbTrue,uint64_t & ProbFalse)2039 static bool ExtractBranchMetadata(BranchInst *BI,
2040 uint64_t &ProbTrue, uint64_t &ProbFalse) {
2041 assert(BI->isConditional() &&
2042 "Looking for probabilities on unconditional branch?");
2043 MDNode *ProfileData = BI->getMetadata(LLVMContext::MD_prof);
2044 if (!ProfileData || ProfileData->getNumOperands() != 3) return false;
2045 ConstantInt *CITrue =
2046 mdconst::dyn_extract<ConstantInt>(ProfileData->getOperand(1));
2047 ConstantInt *CIFalse =
2048 mdconst::dyn_extract<ConstantInt>(ProfileData->getOperand(2));
2049 if (!CITrue || !CIFalse) return false;
2050 ProbTrue = CITrue->getValue().getZExtValue();
2051 ProbFalse = CIFalse->getValue().getZExtValue();
2052 return true;
2053 }
2054
2055 /// Return true if the given instruction is available
2056 /// in its predecessor block. If yes, the instruction will be removed.
checkCSEInPredecessor(Instruction * Inst,BasicBlock * PB)2057 static bool checkCSEInPredecessor(Instruction *Inst, BasicBlock *PB) {
2058 if (!isa<BinaryOperator>(Inst) && !isa<CmpInst>(Inst))
2059 return false;
2060 for (BasicBlock::iterator I = PB->begin(), E = PB->end(); I != E; I++) {
2061 Instruction *PBI = &*I;
2062 // Check whether Inst and PBI generate the same value.
2063 if (Inst->isIdenticalTo(PBI)) {
2064 Inst->replaceAllUsesWith(PBI);
2065 Inst->eraseFromParent();
2066 return true;
2067 }
2068 }
2069 return false;
2070 }
2071
2072 /// If this basic block is simple enough, and if a predecessor branches to us
2073 /// and one of our successors, fold the block into the predecessor and use
2074 /// logical operations to pick the right destination.
FoldBranchToCommonDest(BranchInst * BI,unsigned BonusInstThreshold)2075 bool llvm::FoldBranchToCommonDest(BranchInst *BI, unsigned BonusInstThreshold) {
2076 BasicBlock *BB = BI->getParent();
2077
2078 Instruction *Cond = nullptr;
2079 if (BI->isConditional())
2080 Cond = dyn_cast<Instruction>(BI->getCondition());
2081 else {
2082 // For unconditional branch, check for a simple CFG pattern, where
2083 // BB has a single predecessor and BB's successor is also its predecessor's
2084 // successor. If such pattern exisits, check for CSE between BB and its
2085 // predecessor.
2086 if (BasicBlock *PB = BB->getSinglePredecessor())
2087 if (BranchInst *PBI = dyn_cast<BranchInst>(PB->getTerminator()))
2088 if (PBI->isConditional() &&
2089 (BI->getSuccessor(0) == PBI->getSuccessor(0) ||
2090 BI->getSuccessor(0) == PBI->getSuccessor(1))) {
2091 for (BasicBlock::iterator I = BB->begin(), E = BB->end();
2092 I != E; ) {
2093 Instruction *Curr = &*I++;
2094 if (isa<CmpInst>(Curr)) {
2095 Cond = Curr;
2096 break;
2097 }
2098 // Quit if we can't remove this instruction.
2099 if (!checkCSEInPredecessor(Curr, PB))
2100 return false;
2101 }
2102 }
2103
2104 if (!Cond)
2105 return false;
2106 }
2107
2108 if (!Cond || (!isa<CmpInst>(Cond) && !isa<BinaryOperator>(Cond)) ||
2109 Cond->getParent() != BB || !Cond->hasOneUse())
2110 return false;
2111
2112 // Make sure the instruction after the condition is the cond branch.
2113 BasicBlock::iterator CondIt = ++Cond->getIterator();
2114
2115 // Ignore dbg intrinsics.
2116 while (isa<DbgInfoIntrinsic>(CondIt)) ++CondIt;
2117
2118 if (&*CondIt != BI)
2119 return false;
2120
2121 // Only allow this transformation if computing the condition doesn't involve
2122 // too many instructions and these involved instructions can be executed
2123 // unconditionally. We denote all involved instructions except the condition
2124 // as "bonus instructions", and only allow this transformation when the
2125 // number of the bonus instructions does not exceed a certain threshold.
2126 unsigned NumBonusInsts = 0;
2127 for (auto I = BB->begin(); Cond != I; ++I) {
2128 // Ignore dbg intrinsics.
2129 if (isa<DbgInfoIntrinsic>(I))
2130 continue;
2131 if (!I->hasOneUse() || !isSafeToSpeculativelyExecute(&*I))
2132 return false;
2133 // I has only one use and can be executed unconditionally.
2134 Instruction *User = dyn_cast<Instruction>(I->user_back());
2135 if (User == nullptr || User->getParent() != BB)
2136 return false;
2137 // I is used in the same BB. Since BI uses Cond and doesn't have more slots
2138 // to use any other instruction, User must be an instruction between next(I)
2139 // and Cond.
2140 ++NumBonusInsts;
2141 // Early exits once we reach the limit.
2142 if (NumBonusInsts > BonusInstThreshold)
2143 return false;
2144 }
2145
2146 // Cond is known to be a compare or binary operator. Check to make sure that
2147 // neither operand is a potentially-trapping constant expression.
2148 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(0)))
2149 if (CE->canTrap())
2150 return false;
2151 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(1)))
2152 if (CE->canTrap())
2153 return false;
2154
2155 // Finally, don't infinitely unroll conditional loops.
2156 BasicBlock *TrueDest = BI->getSuccessor(0);
2157 BasicBlock *FalseDest = (BI->isConditional()) ? BI->getSuccessor(1) : nullptr;
2158 if (TrueDest == BB || FalseDest == BB)
2159 return false;
2160
2161 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
2162 BasicBlock *PredBlock = *PI;
2163 BranchInst *PBI = dyn_cast<BranchInst>(PredBlock->getTerminator());
2164
2165 // Check that we have two conditional branches. If there is a PHI node in
2166 // the common successor, verify that the same value flows in from both
2167 // blocks.
2168 SmallVector<PHINode*, 4> PHIs;
2169 if (!PBI || PBI->isUnconditional() ||
2170 (BI->isConditional() &&
2171 !SafeToMergeTerminators(BI, PBI)) ||
2172 (!BI->isConditional() &&
2173 !isProfitableToFoldUnconditional(BI, PBI, Cond, PHIs)))
2174 continue;
2175
2176 // Determine if the two branches share a common destination.
2177 Instruction::BinaryOps Opc = Instruction::BinaryOpsEnd;
2178 bool InvertPredCond = false;
2179
2180 if (BI->isConditional()) {
2181 if (PBI->getSuccessor(0) == TrueDest)
2182 Opc = Instruction::Or;
2183 else if (PBI->getSuccessor(1) == FalseDest)
2184 Opc = Instruction::And;
2185 else if (PBI->getSuccessor(0) == FalseDest)
2186 Opc = Instruction::And, InvertPredCond = true;
2187 else if (PBI->getSuccessor(1) == TrueDest)
2188 Opc = Instruction::Or, InvertPredCond = true;
2189 else
2190 continue;
2191 } else {
2192 if (PBI->getSuccessor(0) != TrueDest && PBI->getSuccessor(1) != TrueDest)
2193 continue;
2194 }
2195
2196 DEBUG(dbgs() << "FOLDING BRANCH TO COMMON DEST:\n" << *PBI << *BB);
2197 IRBuilder<> Builder(PBI);
2198
2199 // If we need to invert the condition in the pred block to match, do so now.
2200 if (InvertPredCond) {
2201 Value *NewCond = PBI->getCondition();
2202
2203 if (NewCond->hasOneUse() && isa<CmpInst>(NewCond)) {
2204 CmpInst *CI = cast<CmpInst>(NewCond);
2205 CI->setPredicate(CI->getInversePredicate());
2206 } else {
2207 NewCond = Builder.CreateNot(NewCond,
2208 PBI->getCondition()->getName()+".not");
2209 }
2210
2211 PBI->setCondition(NewCond);
2212 PBI->swapSuccessors();
2213 }
2214
2215 // If we have bonus instructions, clone them into the predecessor block.
2216 // Note that there may be multiple predecessor blocks, so we cannot move
2217 // bonus instructions to a predecessor block.
2218 ValueToValueMapTy VMap; // maps original values to cloned values
2219 // We already make sure Cond is the last instruction before BI. Therefore,
2220 // all instructions before Cond other than DbgInfoIntrinsic are bonus
2221 // instructions.
2222 for (auto BonusInst = BB->begin(); Cond != BonusInst; ++BonusInst) {
2223 if (isa<DbgInfoIntrinsic>(BonusInst))
2224 continue;
2225 Instruction *NewBonusInst = BonusInst->clone();
2226 RemapInstruction(NewBonusInst, VMap,
2227 RF_NoModuleLevelChanges | RF_IgnoreMissingEntries);
2228 VMap[&*BonusInst] = NewBonusInst;
2229
2230 // If we moved a load, we cannot any longer claim any knowledge about
2231 // its potential value. The previous information might have been valid
2232 // only given the branch precondition.
2233 // For an analogous reason, we must also drop all the metadata whose
2234 // semantics we don't understand.
2235 NewBonusInst->dropUnknownNonDebugMetadata();
2236
2237 PredBlock->getInstList().insert(PBI->getIterator(), NewBonusInst);
2238 NewBonusInst->takeName(&*BonusInst);
2239 BonusInst->setName(BonusInst->getName() + ".old");
2240 }
2241
2242 // Clone Cond into the predecessor basic block, and or/and the
2243 // two conditions together.
2244 Instruction *New = Cond->clone();
2245 RemapInstruction(New, VMap,
2246 RF_NoModuleLevelChanges | RF_IgnoreMissingEntries);
2247 PredBlock->getInstList().insert(PBI->getIterator(), New);
2248 New->takeName(Cond);
2249 Cond->setName(New->getName() + ".old");
2250
2251 if (BI->isConditional()) {
2252 Instruction *NewCond =
2253 cast<Instruction>(Builder.CreateBinOp(Opc, PBI->getCondition(),
2254 New, "or.cond"));
2255 PBI->setCondition(NewCond);
2256
2257 uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight;
2258 bool PredHasWeights = ExtractBranchMetadata(PBI, PredTrueWeight,
2259 PredFalseWeight);
2260 bool SuccHasWeights = ExtractBranchMetadata(BI, SuccTrueWeight,
2261 SuccFalseWeight);
2262 SmallVector<uint64_t, 8> NewWeights;
2263
2264 if (PBI->getSuccessor(0) == BB) {
2265 if (PredHasWeights && SuccHasWeights) {
2266 // PBI: br i1 %x, BB, FalseDest
2267 // BI: br i1 %y, TrueDest, FalseDest
2268 //TrueWeight is TrueWeight for PBI * TrueWeight for BI.
2269 NewWeights.push_back(PredTrueWeight * SuccTrueWeight);
2270 //FalseWeight is FalseWeight for PBI * TotalWeight for BI +
2271 // TrueWeight for PBI * FalseWeight for BI.
2272 // We assume that total weights of a BranchInst can fit into 32 bits.
2273 // Therefore, we will not have overflow using 64-bit arithmetic.
2274 NewWeights.push_back(PredFalseWeight * (SuccFalseWeight +
2275 SuccTrueWeight) + PredTrueWeight * SuccFalseWeight);
2276 }
2277 AddPredecessorToBlock(TrueDest, PredBlock, BB);
2278 PBI->setSuccessor(0, TrueDest);
2279 }
2280 if (PBI->getSuccessor(1) == BB) {
2281 if (PredHasWeights && SuccHasWeights) {
2282 // PBI: br i1 %x, TrueDest, BB
2283 // BI: br i1 %y, TrueDest, FalseDest
2284 //TrueWeight is TrueWeight for PBI * TotalWeight for BI +
2285 // FalseWeight for PBI * TrueWeight for BI.
2286 NewWeights.push_back(PredTrueWeight * (SuccFalseWeight +
2287 SuccTrueWeight) + PredFalseWeight * SuccTrueWeight);
2288 //FalseWeight is FalseWeight for PBI * FalseWeight for BI.
2289 NewWeights.push_back(PredFalseWeight * SuccFalseWeight);
2290 }
2291 AddPredecessorToBlock(FalseDest, PredBlock, BB);
2292 PBI->setSuccessor(1, FalseDest);
2293 }
2294 if (NewWeights.size() == 2) {
2295 // Halve the weights if any of them cannot fit in an uint32_t
2296 FitWeights(NewWeights);
2297
2298 SmallVector<uint32_t, 8> MDWeights(NewWeights.begin(),NewWeights.end());
2299 PBI->setMetadata(LLVMContext::MD_prof,
2300 MDBuilder(BI->getContext()).
2301 createBranchWeights(MDWeights));
2302 } else
2303 PBI->setMetadata(LLVMContext::MD_prof, nullptr);
2304 } else {
2305 // Update PHI nodes in the common successors.
2306 for (unsigned i = 0, e = PHIs.size(); i != e; ++i) {
2307 ConstantInt *PBI_C = cast<ConstantInt>(
2308 PHIs[i]->getIncomingValueForBlock(PBI->getParent()));
2309 assert(PBI_C->getType()->isIntegerTy(1));
2310 Instruction *MergedCond = nullptr;
2311 if (PBI->getSuccessor(0) == TrueDest) {
2312 // Create (PBI_Cond and PBI_C) or (!PBI_Cond and BI_Value)
2313 // PBI_C is true: PBI_Cond or (!PBI_Cond and BI_Value)
2314 // is false: !PBI_Cond and BI_Value
2315 Instruction *NotCond =
2316 cast<Instruction>(Builder.CreateNot(PBI->getCondition(),
2317 "not.cond"));
2318 MergedCond =
2319 cast<Instruction>(Builder.CreateBinOp(Instruction::And,
2320 NotCond, New,
2321 "and.cond"));
2322 if (PBI_C->isOne())
2323 MergedCond =
2324 cast<Instruction>(Builder.CreateBinOp(Instruction::Or,
2325 PBI->getCondition(), MergedCond,
2326 "or.cond"));
2327 } else {
2328 // Create (PBI_Cond and BI_Value) or (!PBI_Cond and PBI_C)
2329 // PBI_C is true: (PBI_Cond and BI_Value) or (!PBI_Cond)
2330 // is false: PBI_Cond and BI_Value
2331 MergedCond =
2332 cast<Instruction>(Builder.CreateBinOp(Instruction::And,
2333 PBI->getCondition(), New,
2334 "and.cond"));
2335 if (PBI_C->isOne()) {
2336 Instruction *NotCond =
2337 cast<Instruction>(Builder.CreateNot(PBI->getCondition(),
2338 "not.cond"));
2339 MergedCond =
2340 cast<Instruction>(Builder.CreateBinOp(Instruction::Or,
2341 NotCond, MergedCond,
2342 "or.cond"));
2343 }
2344 }
2345 // Update PHI Node.
2346 PHIs[i]->setIncomingValue(PHIs[i]->getBasicBlockIndex(PBI->getParent()),
2347 MergedCond);
2348 }
2349 // Change PBI from Conditional to Unconditional.
2350 BranchInst *New_PBI = BranchInst::Create(TrueDest, PBI);
2351 EraseTerminatorInstAndDCECond(PBI);
2352 PBI = New_PBI;
2353 }
2354
2355 // TODO: If BB is reachable from all paths through PredBlock, then we
2356 // could replace PBI's branch probabilities with BI's.
2357
2358 // Copy any debug value intrinsics into the end of PredBlock.
2359 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
2360 if (isa<DbgInfoIntrinsic>(*I))
2361 I->clone()->insertBefore(PBI);
2362
2363 return true;
2364 }
2365 return false;
2366 }
2367
2368 // If there is only one store in BB1 and BB2, return it, otherwise return
2369 // nullptr.
findUniqueStoreInBlocks(BasicBlock * BB1,BasicBlock * BB2)2370 static StoreInst *findUniqueStoreInBlocks(BasicBlock *BB1, BasicBlock *BB2) {
2371 StoreInst *S = nullptr;
2372 for (auto *BB : {BB1, BB2}) {
2373 if (!BB)
2374 continue;
2375 for (auto &I : *BB)
2376 if (auto *SI = dyn_cast<StoreInst>(&I)) {
2377 if (S)
2378 // Multiple stores seen.
2379 return nullptr;
2380 else
2381 S = SI;
2382 }
2383 }
2384 return S;
2385 }
2386
ensureValueAvailableInSuccessor(Value * V,BasicBlock * BB,Value * AlternativeV=nullptr)2387 static Value *ensureValueAvailableInSuccessor(Value *V, BasicBlock *BB,
2388 Value *AlternativeV = nullptr) {
2389 // PHI is going to be a PHI node that allows the value V that is defined in
2390 // BB to be referenced in BB's only successor.
2391 //
2392 // If AlternativeV is nullptr, the only value we care about in PHI is V. It
2393 // doesn't matter to us what the other operand is (it'll never get used). We
2394 // could just create a new PHI with an undef incoming value, but that could
2395 // increase register pressure if EarlyCSE/InstCombine can't fold it with some
2396 // other PHI. So here we directly look for some PHI in BB's successor with V
2397 // as an incoming operand. If we find one, we use it, else we create a new
2398 // one.
2399 //
2400 // If AlternativeV is not nullptr, we care about both incoming values in PHI.
2401 // PHI must be exactly: phi <ty> [ %BB, %V ], [ %OtherBB, %AlternativeV]
2402 // where OtherBB is the single other predecessor of BB's only successor.
2403 PHINode *PHI = nullptr;
2404 BasicBlock *Succ = BB->getSingleSuccessor();
2405
2406 for (auto I = Succ->begin(); isa<PHINode>(I); ++I)
2407 if (cast<PHINode>(I)->getIncomingValueForBlock(BB) == V) {
2408 PHI = cast<PHINode>(I);
2409 if (!AlternativeV)
2410 break;
2411
2412 assert(std::distance(pred_begin(Succ), pred_end(Succ)) == 2);
2413 auto PredI = pred_begin(Succ);
2414 BasicBlock *OtherPredBB = *PredI == BB ? *++PredI : *PredI;
2415 if (PHI->getIncomingValueForBlock(OtherPredBB) == AlternativeV)
2416 break;
2417 PHI = nullptr;
2418 }
2419 if (PHI)
2420 return PHI;
2421
2422 // If V is not an instruction defined in BB, just return it.
2423 if (!AlternativeV &&
2424 (!isa<Instruction>(V) || cast<Instruction>(V)->getParent() != BB))
2425 return V;
2426
2427 PHI = PHINode::Create(V->getType(), 2, "simplifycfg.merge", &Succ->front());
2428 PHI->addIncoming(V, BB);
2429 for (BasicBlock *PredBB : predecessors(Succ))
2430 if (PredBB != BB)
2431 PHI->addIncoming(AlternativeV ? AlternativeV : UndefValue::get(V->getType()),
2432 PredBB);
2433 return PHI;
2434 }
2435
mergeConditionalStoreToAddress(BasicBlock * PTB,BasicBlock * PFB,BasicBlock * QTB,BasicBlock * QFB,BasicBlock * PostBB,Value * Address,bool InvertPCond,bool InvertQCond)2436 static bool mergeConditionalStoreToAddress(BasicBlock *PTB, BasicBlock *PFB,
2437 BasicBlock *QTB, BasicBlock *QFB,
2438 BasicBlock *PostBB, Value *Address,
2439 bool InvertPCond, bool InvertQCond) {
2440 auto IsaBitcastOfPointerType = [](const Instruction &I) {
2441 return Operator::getOpcode(&I) == Instruction::BitCast &&
2442 I.getType()->isPointerTy();
2443 };
2444
2445 // If we're not in aggressive mode, we only optimize if we have some
2446 // confidence that by optimizing we'll allow P and/or Q to be if-converted.
2447 auto IsWorthwhile = [&](BasicBlock *BB) {
2448 if (!BB)
2449 return true;
2450 // Heuristic: if the block can be if-converted/phi-folded and the
2451 // instructions inside are all cheap (arithmetic/GEPs), it's worthwhile to
2452 // thread this store.
2453 unsigned N = 0;
2454 for (auto &I : *BB) {
2455 // Cheap instructions viable for folding.
2456 if (isa<BinaryOperator>(I) || isa<GetElementPtrInst>(I) ||
2457 isa<StoreInst>(I))
2458 ++N;
2459 // Free instructions.
2460 else if (isa<TerminatorInst>(I) || isa<DbgInfoIntrinsic>(I) ||
2461 IsaBitcastOfPointerType(I))
2462 continue;
2463 else
2464 return false;
2465 }
2466 return N <= PHINodeFoldingThreshold;
2467 };
2468
2469 if (!MergeCondStoresAggressively && (!IsWorthwhile(PTB) ||
2470 !IsWorthwhile(PFB) ||
2471 !IsWorthwhile(QTB) ||
2472 !IsWorthwhile(QFB)))
2473 return false;
2474
2475 // For every pointer, there must be exactly two stores, one coming from
2476 // PTB or PFB, and the other from QTB or QFB. We don't support more than one
2477 // store (to any address) in PTB,PFB or QTB,QFB.
2478 // FIXME: We could relax this restriction with a bit more work and performance
2479 // testing.
2480 StoreInst *PStore = findUniqueStoreInBlocks(PTB, PFB);
2481 StoreInst *QStore = findUniqueStoreInBlocks(QTB, QFB);
2482 if (!PStore || !QStore)
2483 return false;
2484
2485 // Now check the stores are compatible.
2486 if (!QStore->isUnordered() || !PStore->isUnordered())
2487 return false;
2488
2489 // Check that sinking the store won't cause program behavior changes. Sinking
2490 // the store out of the Q blocks won't change any behavior as we're sinking
2491 // from a block to its unconditional successor. But we're moving a store from
2492 // the P blocks down through the middle block (QBI) and past both QFB and QTB.
2493 // So we need to check that there are no aliasing loads or stores in
2494 // QBI, QTB and QFB. We also need to check there are no conflicting memory
2495 // operations between PStore and the end of its parent block.
2496 //
2497 // The ideal way to do this is to query AliasAnalysis, but we don't
2498 // preserve AA currently so that is dangerous. Be super safe and just
2499 // check there are no other memory operations at all.
2500 for (auto &I : *QFB->getSinglePredecessor())
2501 if (I.mayReadOrWriteMemory())
2502 return false;
2503 for (auto &I : *QFB)
2504 if (&I != QStore && I.mayReadOrWriteMemory())
2505 return false;
2506 if (QTB)
2507 for (auto &I : *QTB)
2508 if (&I != QStore && I.mayReadOrWriteMemory())
2509 return false;
2510 for (auto I = BasicBlock::iterator(PStore), E = PStore->getParent()->end();
2511 I != E; ++I)
2512 if (&*I != PStore && I->mayReadOrWriteMemory())
2513 return false;
2514
2515 // OK, we're going to sink the stores to PostBB. The store has to be
2516 // conditional though, so first create the predicate.
2517 Value *PCond = cast<BranchInst>(PFB->getSinglePredecessor()->getTerminator())
2518 ->getCondition();
2519 Value *QCond = cast<BranchInst>(QFB->getSinglePredecessor()->getTerminator())
2520 ->getCondition();
2521
2522 Value *PPHI = ensureValueAvailableInSuccessor(PStore->getValueOperand(),
2523 PStore->getParent());
2524 Value *QPHI = ensureValueAvailableInSuccessor(QStore->getValueOperand(),
2525 QStore->getParent(), PPHI);
2526
2527 IRBuilder<> QB(&*PostBB->getFirstInsertionPt());
2528
2529 Value *PPred = PStore->getParent() == PTB ? PCond : QB.CreateNot(PCond);
2530 Value *QPred = QStore->getParent() == QTB ? QCond : QB.CreateNot(QCond);
2531
2532 if (InvertPCond)
2533 PPred = QB.CreateNot(PPred);
2534 if (InvertQCond)
2535 QPred = QB.CreateNot(QPred);
2536 Value *CombinedPred = QB.CreateOr(PPred, QPred);
2537
2538 auto *T =
2539 SplitBlockAndInsertIfThen(CombinedPred, &*QB.GetInsertPoint(), false);
2540 QB.SetInsertPoint(T);
2541 StoreInst *SI = cast<StoreInst>(QB.CreateStore(QPHI, Address));
2542 AAMDNodes AAMD;
2543 PStore->getAAMetadata(AAMD, /*Merge=*/false);
2544 PStore->getAAMetadata(AAMD, /*Merge=*/true);
2545 SI->setAAMetadata(AAMD);
2546
2547 QStore->eraseFromParent();
2548 PStore->eraseFromParent();
2549
2550 return true;
2551 }
2552
mergeConditionalStores(BranchInst * PBI,BranchInst * QBI)2553 static bool mergeConditionalStores(BranchInst *PBI, BranchInst *QBI) {
2554 // The intention here is to find diamonds or triangles (see below) where each
2555 // conditional block contains a store to the same address. Both of these
2556 // stores are conditional, so they can't be unconditionally sunk. But it may
2557 // be profitable to speculatively sink the stores into one merged store at the
2558 // end, and predicate the merged store on the union of the two conditions of
2559 // PBI and QBI.
2560 //
2561 // This can reduce the number of stores executed if both of the conditions are
2562 // true, and can allow the blocks to become small enough to be if-converted.
2563 // This optimization will also chain, so that ladders of test-and-set
2564 // sequences can be if-converted away.
2565 //
2566 // We only deal with simple diamonds or triangles:
2567 //
2568 // PBI or PBI or a combination of the two
2569 // / \ | \
2570 // PTB PFB | PFB
2571 // \ / | /
2572 // QBI QBI
2573 // / \ | \
2574 // QTB QFB | QFB
2575 // \ / | /
2576 // PostBB PostBB
2577 //
2578 // We model triangles as a type of diamond with a nullptr "true" block.
2579 // Triangles are canonicalized so that the fallthrough edge is represented by
2580 // a true condition, as in the diagram above.
2581 //
2582 BasicBlock *PTB = PBI->getSuccessor(0);
2583 BasicBlock *PFB = PBI->getSuccessor(1);
2584 BasicBlock *QTB = QBI->getSuccessor(0);
2585 BasicBlock *QFB = QBI->getSuccessor(1);
2586 BasicBlock *PostBB = QFB->getSingleSuccessor();
2587
2588 bool InvertPCond = false, InvertQCond = false;
2589 // Canonicalize fallthroughs to the true branches.
2590 if (PFB == QBI->getParent()) {
2591 std::swap(PFB, PTB);
2592 InvertPCond = true;
2593 }
2594 if (QFB == PostBB) {
2595 std::swap(QFB, QTB);
2596 InvertQCond = true;
2597 }
2598
2599 // From this point on we can assume PTB or QTB may be fallthroughs but PFB
2600 // and QFB may not. Model fallthroughs as a nullptr block.
2601 if (PTB == QBI->getParent())
2602 PTB = nullptr;
2603 if (QTB == PostBB)
2604 QTB = nullptr;
2605
2606 // Legality bailouts. We must have at least the non-fallthrough blocks and
2607 // the post-dominating block, and the non-fallthroughs must only have one
2608 // predecessor.
2609 auto HasOnePredAndOneSucc = [](BasicBlock *BB, BasicBlock *P, BasicBlock *S) {
2610 return BB->getSinglePredecessor() == P &&
2611 BB->getSingleSuccessor() == S;
2612 };
2613 if (!PostBB ||
2614 !HasOnePredAndOneSucc(PFB, PBI->getParent(), QBI->getParent()) ||
2615 !HasOnePredAndOneSucc(QFB, QBI->getParent(), PostBB))
2616 return false;
2617 if ((PTB && !HasOnePredAndOneSucc(PTB, PBI->getParent(), QBI->getParent())) ||
2618 (QTB && !HasOnePredAndOneSucc(QTB, QBI->getParent(), PostBB)))
2619 return false;
2620 if (PostBB->getNumUses() != 2 || QBI->getParent()->getNumUses() != 2)
2621 return false;
2622
2623 // OK, this is a sequence of two diamonds or triangles.
2624 // Check if there are stores in PTB or PFB that are repeated in QTB or QFB.
2625 SmallPtrSet<Value *,4> PStoreAddresses, QStoreAddresses;
2626 for (auto *BB : {PTB, PFB}) {
2627 if (!BB)
2628 continue;
2629 for (auto &I : *BB)
2630 if (StoreInst *SI = dyn_cast<StoreInst>(&I))
2631 PStoreAddresses.insert(SI->getPointerOperand());
2632 }
2633 for (auto *BB : {QTB, QFB}) {
2634 if (!BB)
2635 continue;
2636 for (auto &I : *BB)
2637 if (StoreInst *SI = dyn_cast<StoreInst>(&I))
2638 QStoreAddresses.insert(SI->getPointerOperand());
2639 }
2640
2641 set_intersect(PStoreAddresses, QStoreAddresses);
2642 // set_intersect mutates PStoreAddresses in place. Rename it here to make it
2643 // clear what it contains.
2644 auto &CommonAddresses = PStoreAddresses;
2645
2646 bool Changed = false;
2647 for (auto *Address : CommonAddresses)
2648 Changed |= mergeConditionalStoreToAddress(
2649 PTB, PFB, QTB, QFB, PostBB, Address, InvertPCond, InvertQCond);
2650 return Changed;
2651 }
2652
2653 /// If we have a conditional branch as a predecessor of another block,
2654 /// this function tries to simplify it. We know
2655 /// that PBI and BI are both conditional branches, and BI is in one of the
2656 /// successor blocks of PBI - PBI branches to BI.
SimplifyCondBranchToCondBranch(BranchInst * PBI,BranchInst * BI,const DataLayout & DL)2657 static bool SimplifyCondBranchToCondBranch(BranchInst *PBI, BranchInst *BI,
2658 const DataLayout &DL) {
2659 assert(PBI->isConditional() && BI->isConditional());
2660 BasicBlock *BB = BI->getParent();
2661
2662 // If this block ends with a branch instruction, and if there is a
2663 // predecessor that ends on a branch of the same condition, make
2664 // this conditional branch redundant.
2665 if (PBI->getCondition() == BI->getCondition() &&
2666 PBI->getSuccessor(0) != PBI->getSuccessor(1)) {
2667 // Okay, the outcome of this conditional branch is statically
2668 // knowable. If this block had a single pred, handle specially.
2669 if (BB->getSinglePredecessor()) {
2670 // Turn this into a branch on constant.
2671 bool CondIsTrue = PBI->getSuccessor(0) == BB;
2672 BI->setCondition(ConstantInt::get(Type::getInt1Ty(BB->getContext()),
2673 CondIsTrue));
2674 return true; // Nuke the branch on constant.
2675 }
2676
2677 // Otherwise, if there are multiple predecessors, insert a PHI that merges
2678 // in the constant and simplify the block result. Subsequent passes of
2679 // simplifycfg will thread the block.
2680 if (BlockIsSimpleEnoughToThreadThrough(BB)) {
2681 pred_iterator PB = pred_begin(BB), PE = pred_end(BB);
2682 PHINode *NewPN = PHINode::Create(
2683 Type::getInt1Ty(BB->getContext()), std::distance(PB, PE),
2684 BI->getCondition()->getName() + ".pr", &BB->front());
2685 // Okay, we're going to insert the PHI node. Since PBI is not the only
2686 // predecessor, compute the PHI'd conditional value for all of the preds.
2687 // Any predecessor where the condition is not computable we keep symbolic.
2688 for (pred_iterator PI = PB; PI != PE; ++PI) {
2689 BasicBlock *P = *PI;
2690 if ((PBI = dyn_cast<BranchInst>(P->getTerminator())) &&
2691 PBI != BI && PBI->isConditional() &&
2692 PBI->getCondition() == BI->getCondition() &&
2693 PBI->getSuccessor(0) != PBI->getSuccessor(1)) {
2694 bool CondIsTrue = PBI->getSuccessor(0) == BB;
2695 NewPN->addIncoming(ConstantInt::get(Type::getInt1Ty(BB->getContext()),
2696 CondIsTrue), P);
2697 } else {
2698 NewPN->addIncoming(BI->getCondition(), P);
2699 }
2700 }
2701
2702 BI->setCondition(NewPN);
2703 return true;
2704 }
2705 }
2706
2707 if (auto *CE = dyn_cast<ConstantExpr>(BI->getCondition()))
2708 if (CE->canTrap())
2709 return false;
2710
2711 // If BI is reached from the true path of PBI and PBI's condition implies
2712 // BI's condition, we know the direction of the BI branch.
2713 if (PBI->getSuccessor(0) == BI->getParent() &&
2714 isImpliedCondition(PBI->getCondition(), BI->getCondition(), DL) &&
2715 PBI->getSuccessor(0) != PBI->getSuccessor(1) &&
2716 BB->getSinglePredecessor()) {
2717 // Turn this into a branch on constant.
2718 auto *OldCond = BI->getCondition();
2719 BI->setCondition(ConstantInt::getTrue(BB->getContext()));
2720 RecursivelyDeleteTriviallyDeadInstructions(OldCond);
2721 return true; // Nuke the branch on constant.
2722 }
2723
2724 // If both branches are conditional and both contain stores to the same
2725 // address, remove the stores from the conditionals and create a conditional
2726 // merged store at the end.
2727 if (MergeCondStores && mergeConditionalStores(PBI, BI))
2728 return true;
2729
2730 // If this is a conditional branch in an empty block, and if any
2731 // predecessors are a conditional branch to one of our destinations,
2732 // fold the conditions into logical ops and one cond br.
2733 BasicBlock::iterator BBI = BB->begin();
2734 // Ignore dbg intrinsics.
2735 while (isa<DbgInfoIntrinsic>(BBI))
2736 ++BBI;
2737 if (&*BBI != BI)
2738 return false;
2739
2740 int PBIOp, BIOp;
2741 if (PBI->getSuccessor(0) == BI->getSuccessor(0))
2742 PBIOp = BIOp = 0;
2743 else if (PBI->getSuccessor(0) == BI->getSuccessor(1))
2744 PBIOp = 0, BIOp = 1;
2745 else if (PBI->getSuccessor(1) == BI->getSuccessor(0))
2746 PBIOp = 1, BIOp = 0;
2747 else if (PBI->getSuccessor(1) == BI->getSuccessor(1))
2748 PBIOp = BIOp = 1;
2749 else
2750 return false;
2751
2752 // Check to make sure that the other destination of this branch
2753 // isn't BB itself. If so, this is an infinite loop that will
2754 // keep getting unwound.
2755 if (PBI->getSuccessor(PBIOp) == BB)
2756 return false;
2757
2758 // Do not perform this transformation if it would require
2759 // insertion of a large number of select instructions. For targets
2760 // without predication/cmovs, this is a big pessimization.
2761
2762 // Also do not perform this transformation if any phi node in the common
2763 // destination block can trap when reached by BB or PBB (PR17073). In that
2764 // case, it would be unsafe to hoist the operation into a select instruction.
2765
2766 BasicBlock *CommonDest = PBI->getSuccessor(PBIOp);
2767 unsigned NumPhis = 0;
2768 for (BasicBlock::iterator II = CommonDest->begin();
2769 isa<PHINode>(II); ++II, ++NumPhis) {
2770 if (NumPhis > 2) // Disable this xform.
2771 return false;
2772
2773 PHINode *PN = cast<PHINode>(II);
2774 Value *BIV = PN->getIncomingValueForBlock(BB);
2775 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(BIV))
2776 if (CE->canTrap())
2777 return false;
2778
2779 unsigned PBBIdx = PN->getBasicBlockIndex(PBI->getParent());
2780 Value *PBIV = PN->getIncomingValue(PBBIdx);
2781 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(PBIV))
2782 if (CE->canTrap())
2783 return false;
2784 }
2785
2786 // Finally, if everything is ok, fold the branches to logical ops.
2787 BasicBlock *OtherDest = BI->getSuccessor(BIOp ^ 1);
2788
2789 DEBUG(dbgs() << "FOLDING BRs:" << *PBI->getParent()
2790 << "AND: " << *BI->getParent());
2791
2792
2793 // If OtherDest *is* BB, then BB is a basic block with a single conditional
2794 // branch in it, where one edge (OtherDest) goes back to itself but the other
2795 // exits. We don't *know* that the program avoids the infinite loop
2796 // (even though that seems likely). If we do this xform naively, we'll end up
2797 // recursively unpeeling the loop. Since we know that (after the xform is
2798 // done) that the block *is* infinite if reached, we just make it an obviously
2799 // infinite loop with no cond branch.
2800 if (OtherDest == BB) {
2801 // Insert it at the end of the function, because it's either code,
2802 // or it won't matter if it's hot. :)
2803 BasicBlock *InfLoopBlock = BasicBlock::Create(BB->getContext(),
2804 "infloop", BB->getParent());
2805 BranchInst::Create(InfLoopBlock, InfLoopBlock);
2806 OtherDest = InfLoopBlock;
2807 }
2808
2809 DEBUG(dbgs() << *PBI->getParent()->getParent());
2810
2811 // BI may have other predecessors. Because of this, we leave
2812 // it alone, but modify PBI.
2813
2814 // Make sure we get to CommonDest on True&True directions.
2815 Value *PBICond = PBI->getCondition();
2816 IRBuilder<true, NoFolder> Builder(PBI);
2817 if (PBIOp)
2818 PBICond = Builder.CreateNot(PBICond, PBICond->getName()+".not");
2819
2820 Value *BICond = BI->getCondition();
2821 if (BIOp)
2822 BICond = Builder.CreateNot(BICond, BICond->getName()+".not");
2823
2824 // Merge the conditions.
2825 Value *Cond = Builder.CreateOr(PBICond, BICond, "brmerge");
2826
2827 // Modify PBI to branch on the new condition to the new dests.
2828 PBI->setCondition(Cond);
2829 PBI->setSuccessor(0, CommonDest);
2830 PBI->setSuccessor(1, OtherDest);
2831
2832 // Update branch weight for PBI.
2833 uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight;
2834 bool PredHasWeights = ExtractBranchMetadata(PBI, PredTrueWeight,
2835 PredFalseWeight);
2836 bool SuccHasWeights = ExtractBranchMetadata(BI, SuccTrueWeight,
2837 SuccFalseWeight);
2838 if (PredHasWeights && SuccHasWeights) {
2839 uint64_t PredCommon = PBIOp ? PredFalseWeight : PredTrueWeight;
2840 uint64_t PredOther = PBIOp ?PredTrueWeight : PredFalseWeight;
2841 uint64_t SuccCommon = BIOp ? SuccFalseWeight : SuccTrueWeight;
2842 uint64_t SuccOther = BIOp ? SuccTrueWeight : SuccFalseWeight;
2843 // The weight to CommonDest should be PredCommon * SuccTotal +
2844 // PredOther * SuccCommon.
2845 // The weight to OtherDest should be PredOther * SuccOther.
2846 uint64_t NewWeights[2] = {PredCommon * (SuccCommon + SuccOther) +
2847 PredOther * SuccCommon,
2848 PredOther * SuccOther};
2849 // Halve the weights if any of them cannot fit in an uint32_t
2850 FitWeights(NewWeights);
2851
2852 PBI->setMetadata(LLVMContext::MD_prof,
2853 MDBuilder(BI->getContext())
2854 .createBranchWeights(NewWeights[0], NewWeights[1]));
2855 }
2856
2857 // OtherDest may have phi nodes. If so, add an entry from PBI's
2858 // block that are identical to the entries for BI's block.
2859 AddPredecessorToBlock(OtherDest, PBI->getParent(), BB);
2860
2861 // We know that the CommonDest already had an edge from PBI to
2862 // it. If it has PHIs though, the PHIs may have different
2863 // entries for BB and PBI's BB. If so, insert a select to make
2864 // them agree.
2865 PHINode *PN;
2866 for (BasicBlock::iterator II = CommonDest->begin();
2867 (PN = dyn_cast<PHINode>(II)); ++II) {
2868 Value *BIV = PN->getIncomingValueForBlock(BB);
2869 unsigned PBBIdx = PN->getBasicBlockIndex(PBI->getParent());
2870 Value *PBIV = PN->getIncomingValue(PBBIdx);
2871 if (BIV != PBIV) {
2872 // Insert a select in PBI to pick the right value.
2873 Value *NV = cast<SelectInst>
2874 (Builder.CreateSelect(PBICond, PBIV, BIV, PBIV->getName()+".mux"));
2875 PN->setIncomingValue(PBBIdx, NV);
2876 }
2877 }
2878
2879 DEBUG(dbgs() << "INTO: " << *PBI->getParent());
2880 DEBUG(dbgs() << *PBI->getParent()->getParent());
2881
2882 // This basic block is probably dead. We know it has at least
2883 // one fewer predecessor.
2884 return true;
2885 }
2886
2887 // Simplifies a terminator by replacing it with a branch to TrueBB if Cond is
2888 // true or to FalseBB if Cond is false.
2889 // Takes care of updating the successors and removing the old terminator.
2890 // Also makes sure not to introduce new successors by assuming that edges to
2891 // non-successor TrueBBs and FalseBBs aren't reachable.
SimplifyTerminatorOnSelect(TerminatorInst * OldTerm,Value * Cond,BasicBlock * TrueBB,BasicBlock * FalseBB,uint32_t TrueWeight,uint32_t FalseWeight)2892 static bool SimplifyTerminatorOnSelect(TerminatorInst *OldTerm, Value *Cond,
2893 BasicBlock *TrueBB, BasicBlock *FalseBB,
2894 uint32_t TrueWeight,
2895 uint32_t FalseWeight){
2896 // Remove any superfluous successor edges from the CFG.
2897 // First, figure out which successors to preserve.
2898 // If TrueBB and FalseBB are equal, only try to preserve one copy of that
2899 // successor.
2900 BasicBlock *KeepEdge1 = TrueBB;
2901 BasicBlock *KeepEdge2 = TrueBB != FalseBB ? FalseBB : nullptr;
2902
2903 // Then remove the rest.
2904 for (BasicBlock *Succ : OldTerm->successors()) {
2905 // Make sure only to keep exactly one copy of each edge.
2906 if (Succ == KeepEdge1)
2907 KeepEdge1 = nullptr;
2908 else if (Succ == KeepEdge2)
2909 KeepEdge2 = nullptr;
2910 else
2911 Succ->removePredecessor(OldTerm->getParent(),
2912 /*DontDeleteUselessPHIs=*/true);
2913 }
2914
2915 IRBuilder<> Builder(OldTerm);
2916 Builder.SetCurrentDebugLocation(OldTerm->getDebugLoc());
2917
2918 // Insert an appropriate new terminator.
2919 if (!KeepEdge1 && !KeepEdge2) {
2920 if (TrueBB == FalseBB)
2921 // We were only looking for one successor, and it was present.
2922 // Create an unconditional branch to it.
2923 Builder.CreateBr(TrueBB);
2924 else {
2925 // We found both of the successors we were looking for.
2926 // Create a conditional branch sharing the condition of the select.
2927 BranchInst *NewBI = Builder.CreateCondBr(Cond, TrueBB, FalseBB);
2928 if (TrueWeight != FalseWeight)
2929 NewBI->setMetadata(LLVMContext::MD_prof,
2930 MDBuilder(OldTerm->getContext()).
2931 createBranchWeights(TrueWeight, FalseWeight));
2932 }
2933 } else if (KeepEdge1 && (KeepEdge2 || TrueBB == FalseBB)) {
2934 // Neither of the selected blocks were successors, so this
2935 // terminator must be unreachable.
2936 new UnreachableInst(OldTerm->getContext(), OldTerm);
2937 } else {
2938 // One of the selected values was a successor, but the other wasn't.
2939 // Insert an unconditional branch to the one that was found;
2940 // the edge to the one that wasn't must be unreachable.
2941 if (!KeepEdge1)
2942 // Only TrueBB was found.
2943 Builder.CreateBr(TrueBB);
2944 else
2945 // Only FalseBB was found.
2946 Builder.CreateBr(FalseBB);
2947 }
2948
2949 EraseTerminatorInstAndDCECond(OldTerm);
2950 return true;
2951 }
2952
2953 // Replaces
2954 // (switch (select cond, X, Y)) on constant X, Y
2955 // with a branch - conditional if X and Y lead to distinct BBs,
2956 // unconditional otherwise.
SimplifySwitchOnSelect(SwitchInst * SI,SelectInst * Select)2957 static bool SimplifySwitchOnSelect(SwitchInst *SI, SelectInst *Select) {
2958 // Check for constant integer values in the select.
2959 ConstantInt *TrueVal = dyn_cast<ConstantInt>(Select->getTrueValue());
2960 ConstantInt *FalseVal = dyn_cast<ConstantInt>(Select->getFalseValue());
2961 if (!TrueVal || !FalseVal)
2962 return false;
2963
2964 // Find the relevant condition and destinations.
2965 Value *Condition = Select->getCondition();
2966 BasicBlock *TrueBB = SI->findCaseValue(TrueVal).getCaseSuccessor();
2967 BasicBlock *FalseBB = SI->findCaseValue(FalseVal).getCaseSuccessor();
2968
2969 // Get weight for TrueBB and FalseBB.
2970 uint32_t TrueWeight = 0, FalseWeight = 0;
2971 SmallVector<uint64_t, 8> Weights;
2972 bool HasWeights = HasBranchWeights(SI);
2973 if (HasWeights) {
2974 GetBranchWeights(SI, Weights);
2975 if (Weights.size() == 1 + SI->getNumCases()) {
2976 TrueWeight = (uint32_t)Weights[SI->findCaseValue(TrueVal).
2977 getSuccessorIndex()];
2978 FalseWeight = (uint32_t)Weights[SI->findCaseValue(FalseVal).
2979 getSuccessorIndex()];
2980 }
2981 }
2982
2983 // Perform the actual simplification.
2984 return SimplifyTerminatorOnSelect(SI, Condition, TrueBB, FalseBB,
2985 TrueWeight, FalseWeight);
2986 }
2987
2988 // Replaces
2989 // (indirectbr (select cond, blockaddress(@fn, BlockA),
2990 // blockaddress(@fn, BlockB)))
2991 // with
2992 // (br cond, BlockA, BlockB).
SimplifyIndirectBrOnSelect(IndirectBrInst * IBI,SelectInst * SI)2993 static bool SimplifyIndirectBrOnSelect(IndirectBrInst *IBI, SelectInst *SI) {
2994 // Check that both operands of the select are block addresses.
2995 BlockAddress *TBA = dyn_cast<BlockAddress>(SI->getTrueValue());
2996 BlockAddress *FBA = dyn_cast<BlockAddress>(SI->getFalseValue());
2997 if (!TBA || !FBA)
2998 return false;
2999
3000 // Extract the actual blocks.
3001 BasicBlock *TrueBB = TBA->getBasicBlock();
3002 BasicBlock *FalseBB = FBA->getBasicBlock();
3003
3004 // Perform the actual simplification.
3005 return SimplifyTerminatorOnSelect(IBI, SI->getCondition(), TrueBB, FalseBB,
3006 0, 0);
3007 }
3008
3009 /// This is called when we find an icmp instruction
3010 /// (a seteq/setne with a constant) as the only instruction in a
3011 /// block that ends with an uncond branch. We are looking for a very specific
3012 /// pattern that occurs when "A == 1 || A == 2 || A == 3" gets simplified. In
3013 /// this case, we merge the first two "or's of icmp" into a switch, but then the
3014 /// default value goes to an uncond block with a seteq in it, we get something
3015 /// like:
3016 ///
3017 /// switch i8 %A, label %DEFAULT [ i8 1, label %end i8 2, label %end ]
3018 /// DEFAULT:
3019 /// %tmp = icmp eq i8 %A, 92
3020 /// br label %end
3021 /// end:
3022 /// ... = phi i1 [ true, %entry ], [ %tmp, %DEFAULT ], [ true, %entry ]
3023 ///
3024 /// We prefer to split the edge to 'end' so that there is a true/false entry to
3025 /// the PHI, merging the third icmp into the switch.
TryToSimplifyUncondBranchWithICmpInIt(ICmpInst * ICI,IRBuilder<> & Builder,const DataLayout & DL,const TargetTransformInfo & TTI,unsigned BonusInstThreshold,AssumptionCache * AC)3026 static bool TryToSimplifyUncondBranchWithICmpInIt(
3027 ICmpInst *ICI, IRBuilder<> &Builder, const DataLayout &DL,
3028 const TargetTransformInfo &TTI, unsigned BonusInstThreshold,
3029 AssumptionCache *AC) {
3030 BasicBlock *BB = ICI->getParent();
3031
3032 // If the block has any PHIs in it or the icmp has multiple uses, it is too
3033 // complex.
3034 if (isa<PHINode>(BB->begin()) || !ICI->hasOneUse()) return false;
3035
3036 Value *V = ICI->getOperand(0);
3037 ConstantInt *Cst = cast<ConstantInt>(ICI->getOperand(1));
3038
3039 // The pattern we're looking for is where our only predecessor is a switch on
3040 // 'V' and this block is the default case for the switch. In this case we can
3041 // fold the compared value into the switch to simplify things.
3042 BasicBlock *Pred = BB->getSinglePredecessor();
3043 if (!Pred || !isa<SwitchInst>(Pred->getTerminator())) return false;
3044
3045 SwitchInst *SI = cast<SwitchInst>(Pred->getTerminator());
3046 if (SI->getCondition() != V)
3047 return false;
3048
3049 // If BB is reachable on a non-default case, then we simply know the value of
3050 // V in this block. Substitute it and constant fold the icmp instruction
3051 // away.
3052 if (SI->getDefaultDest() != BB) {
3053 ConstantInt *VVal = SI->findCaseDest(BB);
3054 assert(VVal && "Should have a unique destination value");
3055 ICI->setOperand(0, VVal);
3056
3057 if (Value *V = SimplifyInstruction(ICI, DL)) {
3058 ICI->replaceAllUsesWith(V);
3059 ICI->eraseFromParent();
3060 }
3061 // BB is now empty, so it is likely to simplify away.
3062 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
3063 }
3064
3065 // Ok, the block is reachable from the default dest. If the constant we're
3066 // comparing exists in one of the other edges, then we can constant fold ICI
3067 // and zap it.
3068 if (SI->findCaseValue(Cst) != SI->case_default()) {
3069 Value *V;
3070 if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
3071 V = ConstantInt::getFalse(BB->getContext());
3072 else
3073 V = ConstantInt::getTrue(BB->getContext());
3074
3075 ICI->replaceAllUsesWith(V);
3076 ICI->eraseFromParent();
3077 // BB is now empty, so it is likely to simplify away.
3078 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
3079 }
3080
3081 // The use of the icmp has to be in the 'end' block, by the only PHI node in
3082 // the block.
3083 BasicBlock *SuccBlock = BB->getTerminator()->getSuccessor(0);
3084 PHINode *PHIUse = dyn_cast<PHINode>(ICI->user_back());
3085 if (PHIUse == nullptr || PHIUse != &SuccBlock->front() ||
3086 isa<PHINode>(++BasicBlock::iterator(PHIUse)))
3087 return false;
3088
3089 // If the icmp is a SETEQ, then the default dest gets false, the new edge gets
3090 // true in the PHI.
3091 Constant *DefaultCst = ConstantInt::getTrue(BB->getContext());
3092 Constant *NewCst = ConstantInt::getFalse(BB->getContext());
3093
3094 if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
3095 std::swap(DefaultCst, NewCst);
3096
3097 // Replace ICI (which is used by the PHI for the default value) with true or
3098 // false depending on if it is EQ or NE.
3099 ICI->replaceAllUsesWith(DefaultCst);
3100 ICI->eraseFromParent();
3101
3102 // Okay, the switch goes to this block on a default value. Add an edge from
3103 // the switch to the merge point on the compared value.
3104 BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), "switch.edge",
3105 BB->getParent(), BB);
3106 SmallVector<uint64_t, 8> Weights;
3107 bool HasWeights = HasBranchWeights(SI);
3108 if (HasWeights) {
3109 GetBranchWeights(SI, Weights);
3110 if (Weights.size() == 1 + SI->getNumCases()) {
3111 // Split weight for default case to case for "Cst".
3112 Weights[0] = (Weights[0]+1) >> 1;
3113 Weights.push_back(Weights[0]);
3114
3115 SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end());
3116 SI->setMetadata(LLVMContext::MD_prof,
3117 MDBuilder(SI->getContext()).
3118 createBranchWeights(MDWeights));
3119 }
3120 }
3121 SI->addCase(Cst, NewBB);
3122
3123 // NewBB branches to the phi block, add the uncond branch and the phi entry.
3124 Builder.SetInsertPoint(NewBB);
3125 Builder.SetCurrentDebugLocation(SI->getDebugLoc());
3126 Builder.CreateBr(SuccBlock);
3127 PHIUse->addIncoming(NewCst, NewBB);
3128 return true;
3129 }
3130
3131 /// The specified branch is a conditional branch.
3132 /// Check to see if it is branching on an or/and chain of icmp instructions, and
3133 /// fold it into a switch instruction if so.
SimplifyBranchOnICmpChain(BranchInst * BI,IRBuilder<> & Builder,const DataLayout & DL)3134 static bool SimplifyBranchOnICmpChain(BranchInst *BI, IRBuilder<> &Builder,
3135 const DataLayout &DL) {
3136 Instruction *Cond = dyn_cast<Instruction>(BI->getCondition());
3137 if (!Cond) return false;
3138
3139 // Change br (X == 0 | X == 1), T, F into a switch instruction.
3140 // If this is a bunch of seteq's or'd together, or if it's a bunch of
3141 // 'setne's and'ed together, collect them.
3142
3143 // Try to gather values from a chain of and/or to be turned into a switch
3144 ConstantComparesGatherer ConstantCompare(Cond, DL);
3145 // Unpack the result
3146 SmallVectorImpl<ConstantInt*> &Values = ConstantCompare.Vals;
3147 Value *CompVal = ConstantCompare.CompValue;
3148 unsigned UsedICmps = ConstantCompare.UsedICmps;
3149 Value *ExtraCase = ConstantCompare.Extra;
3150
3151 // If we didn't have a multiply compared value, fail.
3152 if (!CompVal) return false;
3153
3154 // Avoid turning single icmps into a switch.
3155 if (UsedICmps <= 1)
3156 return false;
3157
3158 bool TrueWhenEqual = (Cond->getOpcode() == Instruction::Or);
3159
3160 // There might be duplicate constants in the list, which the switch
3161 // instruction can't handle, remove them now.
3162 array_pod_sort(Values.begin(), Values.end(), ConstantIntSortPredicate);
3163 Values.erase(std::unique(Values.begin(), Values.end()), Values.end());
3164
3165 // If Extra was used, we require at least two switch values to do the
3166 // transformation. A switch with one value is just a conditional branch.
3167 if (ExtraCase && Values.size() < 2) return false;
3168
3169 // TODO: Preserve branch weight metadata, similarly to how
3170 // FoldValueComparisonIntoPredecessors preserves it.
3171
3172 // Figure out which block is which destination.
3173 BasicBlock *DefaultBB = BI->getSuccessor(1);
3174 BasicBlock *EdgeBB = BI->getSuccessor(0);
3175 if (!TrueWhenEqual) std::swap(DefaultBB, EdgeBB);
3176
3177 BasicBlock *BB = BI->getParent();
3178
3179 DEBUG(dbgs() << "Converting 'icmp' chain with " << Values.size()
3180 << " cases into SWITCH. BB is:\n" << *BB);
3181
3182 // If there are any extra values that couldn't be folded into the switch
3183 // then we evaluate them with an explicit branch first. Split the block
3184 // right before the condbr to handle it.
3185 if (ExtraCase) {
3186 BasicBlock *NewBB =
3187 BB->splitBasicBlock(BI->getIterator(), "switch.early.test");
3188 // Remove the uncond branch added to the old block.
3189 TerminatorInst *OldTI = BB->getTerminator();
3190 Builder.SetInsertPoint(OldTI);
3191
3192 if (TrueWhenEqual)
3193 Builder.CreateCondBr(ExtraCase, EdgeBB, NewBB);
3194 else
3195 Builder.CreateCondBr(ExtraCase, NewBB, EdgeBB);
3196
3197 OldTI->eraseFromParent();
3198
3199 // If there are PHI nodes in EdgeBB, then we need to add a new entry to them
3200 // for the edge we just added.
3201 AddPredecessorToBlock(EdgeBB, BB, NewBB);
3202
3203 DEBUG(dbgs() << " ** 'icmp' chain unhandled condition: " << *ExtraCase
3204 << "\nEXTRABB = " << *BB);
3205 BB = NewBB;
3206 }
3207
3208 Builder.SetInsertPoint(BI);
3209 // Convert pointer to int before we switch.
3210 if (CompVal->getType()->isPointerTy()) {
3211 CompVal = Builder.CreatePtrToInt(
3212 CompVal, DL.getIntPtrType(CompVal->getType()), "magicptr");
3213 }
3214
3215 // Create the new switch instruction now.
3216 SwitchInst *New = Builder.CreateSwitch(CompVal, DefaultBB, Values.size());
3217
3218 // Add all of the 'cases' to the switch instruction.
3219 for (unsigned i = 0, e = Values.size(); i != e; ++i)
3220 New->addCase(Values[i], EdgeBB);
3221
3222 // We added edges from PI to the EdgeBB. As such, if there were any
3223 // PHI nodes in EdgeBB, they need entries to be added corresponding to
3224 // the number of edges added.
3225 for (BasicBlock::iterator BBI = EdgeBB->begin();
3226 isa<PHINode>(BBI); ++BBI) {
3227 PHINode *PN = cast<PHINode>(BBI);
3228 Value *InVal = PN->getIncomingValueForBlock(BB);
3229 for (unsigned i = 0, e = Values.size()-1; i != e; ++i)
3230 PN->addIncoming(InVal, BB);
3231 }
3232
3233 // Erase the old branch instruction.
3234 EraseTerminatorInstAndDCECond(BI);
3235
3236 DEBUG(dbgs() << " ** 'icmp' chain result is:\n" << *BB << '\n');
3237 return true;
3238 }
3239
SimplifyResume(ResumeInst * RI,IRBuilder<> & Builder)3240 bool SimplifyCFGOpt::SimplifyResume(ResumeInst *RI, IRBuilder<> &Builder) {
3241 // If this is a trivial landing pad that just continues unwinding the caught
3242 // exception then zap the landing pad, turning its invokes into calls.
3243 BasicBlock *BB = RI->getParent();
3244 LandingPadInst *LPInst = dyn_cast<LandingPadInst>(BB->getFirstNonPHI());
3245 if (RI->getValue() != LPInst)
3246 // Not a landing pad, or the resume is not unwinding the exception that
3247 // caused control to branch here.
3248 return false;
3249
3250 // Check that there are no other instructions except for debug intrinsics.
3251 BasicBlock::iterator I = LPInst->getIterator(), E = RI->getIterator();
3252 while (++I != E)
3253 if (!isa<DbgInfoIntrinsic>(I))
3254 return false;
3255
3256 // Turn all invokes that unwind here into calls and delete the basic block.
3257 for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE;) {
3258 BasicBlock *Pred = *PI++;
3259 removeUnwindEdge(Pred);
3260 }
3261
3262 // The landingpad is now unreachable. Zap it.
3263 BB->eraseFromParent();
3264 return true;
3265 }
3266
SimplifyCleanupReturn(CleanupReturnInst * RI)3267 bool SimplifyCFGOpt::SimplifyCleanupReturn(CleanupReturnInst *RI) {
3268 // If this is a trivial cleanup pad that executes no instructions, it can be
3269 // eliminated. If the cleanup pad continues to the caller, any predecessor
3270 // that is an EH pad will be updated to continue to the caller and any
3271 // predecessor that terminates with an invoke instruction will have its invoke
3272 // instruction converted to a call instruction. If the cleanup pad being
3273 // simplified does not continue to the caller, each predecessor will be
3274 // updated to continue to the unwind destination of the cleanup pad being
3275 // simplified.
3276 BasicBlock *BB = RI->getParent();
3277 CleanupPadInst *CPInst = RI->getCleanupPad();
3278 if (CPInst->getParent() != BB)
3279 // This isn't an empty cleanup.
3280 return false;
3281
3282 // Check that there are no other instructions except for debug intrinsics.
3283 BasicBlock::iterator I = CPInst->getIterator(), E = RI->getIterator();
3284 while (++I != E)
3285 if (!isa<DbgInfoIntrinsic>(I))
3286 return false;
3287
3288 // If the cleanup return we are simplifying unwinds to the caller, this will
3289 // set UnwindDest to nullptr.
3290 BasicBlock *UnwindDest = RI->getUnwindDest();
3291 Instruction *DestEHPad = UnwindDest ? UnwindDest->getFirstNonPHI() : nullptr;
3292
3293 // We're about to remove BB from the control flow. Before we do, sink any
3294 // PHINodes into the unwind destination. Doing this before changing the
3295 // control flow avoids some potentially slow checks, since we can currently
3296 // be certain that UnwindDest and BB have no common predecessors (since they
3297 // are both EH pads).
3298 if (UnwindDest) {
3299 // First, go through the PHI nodes in UnwindDest and update any nodes that
3300 // reference the block we are removing
3301 for (BasicBlock::iterator I = UnwindDest->begin(),
3302 IE = DestEHPad->getIterator();
3303 I != IE; ++I) {
3304 PHINode *DestPN = cast<PHINode>(I);
3305
3306 int Idx = DestPN->getBasicBlockIndex(BB);
3307 // Since BB unwinds to UnwindDest, it has to be in the PHI node.
3308 assert(Idx != -1);
3309 // This PHI node has an incoming value that corresponds to a control
3310 // path through the cleanup pad we are removing. If the incoming
3311 // value is in the cleanup pad, it must be a PHINode (because we
3312 // verified above that the block is otherwise empty). Otherwise, the
3313 // value is either a constant or a value that dominates the cleanup
3314 // pad being removed.
3315 //
3316 // Because BB and UnwindDest are both EH pads, all of their
3317 // predecessors must unwind to these blocks, and since no instruction
3318 // can have multiple unwind destinations, there will be no overlap in
3319 // incoming blocks between SrcPN and DestPN.
3320 Value *SrcVal = DestPN->getIncomingValue(Idx);
3321 PHINode *SrcPN = dyn_cast<PHINode>(SrcVal);
3322
3323 // Remove the entry for the block we are deleting.
3324 DestPN->removeIncomingValue(Idx, false);
3325
3326 if (SrcPN && SrcPN->getParent() == BB) {
3327 // If the incoming value was a PHI node in the cleanup pad we are
3328 // removing, we need to merge that PHI node's incoming values into
3329 // DestPN.
3330 for (unsigned SrcIdx = 0, SrcE = SrcPN->getNumIncomingValues();
3331 SrcIdx != SrcE; ++SrcIdx) {
3332 DestPN->addIncoming(SrcPN->getIncomingValue(SrcIdx),
3333 SrcPN->getIncomingBlock(SrcIdx));
3334 }
3335 } else {
3336 // Otherwise, the incoming value came from above BB and
3337 // so we can just reuse it. We must associate all of BB's
3338 // predecessors with this value.
3339 for (auto *pred : predecessors(BB)) {
3340 DestPN->addIncoming(SrcVal, pred);
3341 }
3342 }
3343 }
3344
3345 // Sink any remaining PHI nodes directly into UnwindDest.
3346 Instruction *InsertPt = DestEHPad;
3347 for (BasicBlock::iterator I = BB->begin(),
3348 IE = BB->getFirstNonPHI()->getIterator();
3349 I != IE;) {
3350 // The iterator must be incremented here because the instructions are
3351 // being moved to another block.
3352 PHINode *PN = cast<PHINode>(I++);
3353 if (PN->use_empty())
3354 // If the PHI node has no uses, just leave it. It will be erased
3355 // when we erase BB below.
3356 continue;
3357
3358 // Otherwise, sink this PHI node into UnwindDest.
3359 // Any predecessors to UnwindDest which are not already represented
3360 // must be back edges which inherit the value from the path through
3361 // BB. In this case, the PHI value must reference itself.
3362 for (auto *pred : predecessors(UnwindDest))
3363 if (pred != BB)
3364 PN->addIncoming(PN, pred);
3365 PN->moveBefore(InsertPt);
3366 }
3367 }
3368
3369 for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE;) {
3370 // The iterator must be updated here because we are removing this pred.
3371 BasicBlock *PredBB = *PI++;
3372 if (UnwindDest == nullptr) {
3373 removeUnwindEdge(PredBB);
3374 } else {
3375 TerminatorInst *TI = PredBB->getTerminator();
3376 TI->replaceUsesOfWith(BB, UnwindDest);
3377 }
3378 }
3379
3380 // The cleanup pad is now unreachable. Zap it.
3381 BB->eraseFromParent();
3382 return true;
3383 }
3384
SimplifyReturn(ReturnInst * RI,IRBuilder<> & Builder)3385 bool SimplifyCFGOpt::SimplifyReturn(ReturnInst *RI, IRBuilder<> &Builder) {
3386 BasicBlock *BB = RI->getParent();
3387 if (!BB->getFirstNonPHIOrDbg()->isTerminator()) return false;
3388
3389 // Find predecessors that end with branches.
3390 SmallVector<BasicBlock*, 8> UncondBranchPreds;
3391 SmallVector<BranchInst*, 8> CondBranchPreds;
3392 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
3393 BasicBlock *P = *PI;
3394 TerminatorInst *PTI = P->getTerminator();
3395 if (BranchInst *BI = dyn_cast<BranchInst>(PTI)) {
3396 if (BI->isUnconditional())
3397 UncondBranchPreds.push_back(P);
3398 else
3399 CondBranchPreds.push_back(BI);
3400 }
3401 }
3402
3403 // If we found some, do the transformation!
3404 if (!UncondBranchPreds.empty() && DupRet) {
3405 while (!UncondBranchPreds.empty()) {
3406 BasicBlock *Pred = UncondBranchPreds.pop_back_val();
3407 DEBUG(dbgs() << "FOLDING: " << *BB
3408 << "INTO UNCOND BRANCH PRED: " << *Pred);
3409 (void)FoldReturnIntoUncondBranch(RI, BB, Pred);
3410 }
3411
3412 // If we eliminated all predecessors of the block, delete the block now.
3413 if (pred_empty(BB))
3414 // We know there are no successors, so just nuke the block.
3415 BB->eraseFromParent();
3416
3417 return true;
3418 }
3419
3420 // Check out all of the conditional branches going to this return
3421 // instruction. If any of them just select between returns, change the
3422 // branch itself into a select/return pair.
3423 while (!CondBranchPreds.empty()) {
3424 BranchInst *BI = CondBranchPreds.pop_back_val();
3425
3426 // Check to see if the non-BB successor is also a return block.
3427 if (isa<ReturnInst>(BI->getSuccessor(0)->getTerminator()) &&
3428 isa<ReturnInst>(BI->getSuccessor(1)->getTerminator()) &&
3429 SimplifyCondBranchToTwoReturns(BI, Builder))
3430 return true;
3431 }
3432 return false;
3433 }
3434
SimplifyUnreachable(UnreachableInst * UI)3435 bool SimplifyCFGOpt::SimplifyUnreachable(UnreachableInst *UI) {
3436 BasicBlock *BB = UI->getParent();
3437
3438 bool Changed = false;
3439
3440 // If there are any instructions immediately before the unreachable that can
3441 // be removed, do so.
3442 while (UI->getIterator() != BB->begin()) {
3443 BasicBlock::iterator BBI = UI->getIterator();
3444 --BBI;
3445 // Do not delete instructions that can have side effects which might cause
3446 // the unreachable to not be reachable; specifically, calls and volatile
3447 // operations may have this effect.
3448 if (isa<CallInst>(BBI) && !isa<DbgInfoIntrinsic>(BBI)) break;
3449
3450 if (BBI->mayHaveSideEffects()) {
3451 if (StoreInst *SI = dyn_cast<StoreInst>(BBI)) {
3452 if (SI->isVolatile())
3453 break;
3454 } else if (LoadInst *LI = dyn_cast<LoadInst>(BBI)) {
3455 if (LI->isVolatile())
3456 break;
3457 } else if (AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(BBI)) {
3458 if (RMWI->isVolatile())
3459 break;
3460 } else if (AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(BBI)) {
3461 if (CXI->isVolatile())
3462 break;
3463 } else if (!isa<FenceInst>(BBI) && !isa<VAArgInst>(BBI) &&
3464 !isa<LandingPadInst>(BBI)) {
3465 break;
3466 }
3467 // Note that deleting LandingPad's here is in fact okay, although it
3468 // involves a bit of subtle reasoning. If this inst is a LandingPad,
3469 // all the predecessors of this block will be the unwind edges of Invokes,
3470 // and we can therefore guarantee this block will be erased.
3471 }
3472
3473 // Delete this instruction (any uses are guaranteed to be dead)
3474 if (!BBI->use_empty())
3475 BBI->replaceAllUsesWith(UndefValue::get(BBI->getType()));
3476 BBI->eraseFromParent();
3477 Changed = true;
3478 }
3479
3480 // If the unreachable instruction is the first in the block, take a gander
3481 // at all of the predecessors of this instruction, and simplify them.
3482 if (&BB->front() != UI) return Changed;
3483
3484 SmallVector<BasicBlock*, 8> Preds(pred_begin(BB), pred_end(BB));
3485 for (unsigned i = 0, e = Preds.size(); i != e; ++i) {
3486 TerminatorInst *TI = Preds[i]->getTerminator();
3487 IRBuilder<> Builder(TI);
3488 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
3489 if (BI->isUnconditional()) {
3490 if (BI->getSuccessor(0) == BB) {
3491 new UnreachableInst(TI->getContext(), TI);
3492 TI->eraseFromParent();
3493 Changed = true;
3494 }
3495 } else {
3496 if (BI->getSuccessor(0) == BB) {
3497 Builder.CreateBr(BI->getSuccessor(1));
3498 EraseTerminatorInstAndDCECond(BI);
3499 } else if (BI->getSuccessor(1) == BB) {
3500 Builder.CreateBr(BI->getSuccessor(0));
3501 EraseTerminatorInstAndDCECond(BI);
3502 Changed = true;
3503 }
3504 }
3505 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
3506 for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end();
3507 i != e; ++i)
3508 if (i.getCaseSuccessor() == BB) {
3509 BB->removePredecessor(SI->getParent());
3510 SI->removeCase(i);
3511 --i; --e;
3512 Changed = true;
3513 }
3514 } else if ((isa<InvokeInst>(TI) &&
3515 cast<InvokeInst>(TI)->getUnwindDest() == BB) ||
3516 isa<CatchSwitchInst>(TI)) {
3517 removeUnwindEdge(TI->getParent());
3518 Changed = true;
3519 } else if (isa<CleanupReturnInst>(TI)) {
3520 new UnreachableInst(TI->getContext(), TI);
3521 TI->eraseFromParent();
3522 Changed = true;
3523 }
3524 // TODO: We can remove a catchswitch if all it's catchpads end in
3525 // unreachable.
3526 }
3527
3528 // If this block is now dead, remove it.
3529 if (pred_empty(BB) &&
3530 BB != &BB->getParent()->getEntryBlock()) {
3531 // We know there are no successors, so just nuke the block.
3532 BB->eraseFromParent();
3533 return true;
3534 }
3535
3536 return Changed;
3537 }
3538
CasesAreContiguous(SmallVectorImpl<ConstantInt * > & Cases)3539 static bool CasesAreContiguous(SmallVectorImpl<ConstantInt *> &Cases) {
3540 assert(Cases.size() >= 1);
3541
3542 array_pod_sort(Cases.begin(), Cases.end(), ConstantIntSortPredicate);
3543 for (size_t I = 1, E = Cases.size(); I != E; ++I) {
3544 if (Cases[I - 1]->getValue() != Cases[I]->getValue() + 1)
3545 return false;
3546 }
3547 return true;
3548 }
3549
3550 /// Turn a switch with two reachable destinations into an integer range
3551 /// comparison and branch.
TurnSwitchRangeIntoICmp(SwitchInst * SI,IRBuilder<> & Builder)3552 static bool TurnSwitchRangeIntoICmp(SwitchInst *SI, IRBuilder<> &Builder) {
3553 assert(SI->getNumCases() > 1 && "Degenerate switch?");
3554
3555 bool HasDefault =
3556 !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg());
3557
3558 // Partition the cases into two sets with different destinations.
3559 BasicBlock *DestA = HasDefault ? SI->getDefaultDest() : nullptr;
3560 BasicBlock *DestB = nullptr;
3561 SmallVector <ConstantInt *, 16> CasesA;
3562 SmallVector <ConstantInt *, 16> CasesB;
3563
3564 for (SwitchInst::CaseIt I : SI->cases()) {
3565 BasicBlock *Dest = I.getCaseSuccessor();
3566 if (!DestA) DestA = Dest;
3567 if (Dest == DestA) {
3568 CasesA.push_back(I.getCaseValue());
3569 continue;
3570 }
3571 if (!DestB) DestB = Dest;
3572 if (Dest == DestB) {
3573 CasesB.push_back(I.getCaseValue());
3574 continue;
3575 }
3576 return false; // More than two destinations.
3577 }
3578
3579 assert(DestA && DestB && "Single-destination switch should have been folded.");
3580 assert(DestA != DestB);
3581 assert(DestB != SI->getDefaultDest());
3582 assert(!CasesB.empty() && "There must be non-default cases.");
3583 assert(!CasesA.empty() || HasDefault);
3584
3585 // Figure out if one of the sets of cases form a contiguous range.
3586 SmallVectorImpl<ConstantInt *> *ContiguousCases = nullptr;
3587 BasicBlock *ContiguousDest = nullptr;
3588 BasicBlock *OtherDest = nullptr;
3589 if (!CasesA.empty() && CasesAreContiguous(CasesA)) {
3590 ContiguousCases = &CasesA;
3591 ContiguousDest = DestA;
3592 OtherDest = DestB;
3593 } else if (CasesAreContiguous(CasesB)) {
3594 ContiguousCases = &CasesB;
3595 ContiguousDest = DestB;
3596 OtherDest = DestA;
3597 } else
3598 return false;
3599
3600 // Start building the compare and branch.
3601
3602 Constant *Offset = ConstantExpr::getNeg(ContiguousCases->back());
3603 Constant *NumCases = ConstantInt::get(Offset->getType(), ContiguousCases->size());
3604
3605 Value *Sub = SI->getCondition();
3606 if (!Offset->isNullValue())
3607 Sub = Builder.CreateAdd(Sub, Offset, Sub->getName() + ".off");
3608
3609 Value *Cmp;
3610 // If NumCases overflowed, then all possible values jump to the successor.
3611 if (NumCases->isNullValue() && !ContiguousCases->empty())
3612 Cmp = ConstantInt::getTrue(SI->getContext());
3613 else
3614 Cmp = Builder.CreateICmpULT(Sub, NumCases, "switch");
3615 BranchInst *NewBI = Builder.CreateCondBr(Cmp, ContiguousDest, OtherDest);
3616
3617 // Update weight for the newly-created conditional branch.
3618 if (HasBranchWeights(SI)) {
3619 SmallVector<uint64_t, 8> Weights;
3620 GetBranchWeights(SI, Weights);
3621 if (Weights.size() == 1 + SI->getNumCases()) {
3622 uint64_t TrueWeight = 0;
3623 uint64_t FalseWeight = 0;
3624 for (size_t I = 0, E = Weights.size(); I != E; ++I) {
3625 if (SI->getSuccessor(I) == ContiguousDest)
3626 TrueWeight += Weights[I];
3627 else
3628 FalseWeight += Weights[I];
3629 }
3630 while (TrueWeight > UINT32_MAX || FalseWeight > UINT32_MAX) {
3631 TrueWeight /= 2;
3632 FalseWeight /= 2;
3633 }
3634 NewBI->setMetadata(LLVMContext::MD_prof,
3635 MDBuilder(SI->getContext()).createBranchWeights(
3636 (uint32_t)TrueWeight, (uint32_t)FalseWeight));
3637 }
3638 }
3639
3640 // Prune obsolete incoming values off the successors' PHI nodes.
3641 for (auto BBI = ContiguousDest->begin(); isa<PHINode>(BBI); ++BBI) {
3642 unsigned PreviousEdges = ContiguousCases->size();
3643 if (ContiguousDest == SI->getDefaultDest()) ++PreviousEdges;
3644 for (unsigned I = 0, E = PreviousEdges - 1; I != E; ++I)
3645 cast<PHINode>(BBI)->removeIncomingValue(SI->getParent());
3646 }
3647 for (auto BBI = OtherDest->begin(); isa<PHINode>(BBI); ++BBI) {
3648 unsigned PreviousEdges = SI->getNumCases() - ContiguousCases->size();
3649 if (OtherDest == SI->getDefaultDest()) ++PreviousEdges;
3650 for (unsigned I = 0, E = PreviousEdges - 1; I != E; ++I)
3651 cast<PHINode>(BBI)->removeIncomingValue(SI->getParent());
3652 }
3653
3654 // Drop the switch.
3655 SI->eraseFromParent();
3656
3657 return true;
3658 }
3659
3660 /// Compute masked bits for the condition of a switch
3661 /// and use it to remove dead cases.
EliminateDeadSwitchCases(SwitchInst * SI,AssumptionCache * AC,const DataLayout & DL)3662 static bool EliminateDeadSwitchCases(SwitchInst *SI, AssumptionCache *AC,
3663 const DataLayout &DL) {
3664 Value *Cond = SI->getCondition();
3665 unsigned Bits = Cond->getType()->getIntegerBitWidth();
3666 APInt KnownZero(Bits, 0), KnownOne(Bits, 0);
3667 computeKnownBits(Cond, KnownZero, KnownOne, DL, 0, AC, SI);
3668
3669 // Gather dead cases.
3670 SmallVector<ConstantInt*, 8> DeadCases;
3671 for (SwitchInst::CaseIt I = SI->case_begin(), E = SI->case_end(); I != E; ++I) {
3672 if ((I.getCaseValue()->getValue() & KnownZero) != 0 ||
3673 (I.getCaseValue()->getValue() & KnownOne) != KnownOne) {
3674 DeadCases.push_back(I.getCaseValue());
3675 DEBUG(dbgs() << "SimplifyCFG: switch case '"
3676 << I.getCaseValue() << "' is dead.\n");
3677 }
3678 }
3679
3680 // If we can prove that the cases must cover all possible values, the
3681 // default destination becomes dead and we can remove it. If we know some
3682 // of the bits in the value, we can use that to more precisely compute the
3683 // number of possible unique case values.
3684 bool HasDefault =
3685 !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg());
3686 const unsigned NumUnknownBits = Bits -
3687 (KnownZero.Or(KnownOne)).countPopulation();
3688 assert(NumUnknownBits <= Bits);
3689 if (HasDefault && DeadCases.empty() &&
3690 NumUnknownBits < 64 /* avoid overflow */ &&
3691 SI->getNumCases() == (1ULL << NumUnknownBits)) {
3692 DEBUG(dbgs() << "SimplifyCFG: switch default is dead.\n");
3693 BasicBlock *NewDefault = SplitBlockPredecessors(SI->getDefaultDest(),
3694 SI->getParent(), "");
3695 SI->setDefaultDest(&*NewDefault);
3696 SplitBlock(&*NewDefault, &NewDefault->front());
3697 auto *OldTI = NewDefault->getTerminator();
3698 new UnreachableInst(SI->getContext(), OldTI);
3699 EraseTerminatorInstAndDCECond(OldTI);
3700 return true;
3701 }
3702
3703 SmallVector<uint64_t, 8> Weights;
3704 bool HasWeight = HasBranchWeights(SI);
3705 if (HasWeight) {
3706 GetBranchWeights(SI, Weights);
3707 HasWeight = (Weights.size() == 1 + SI->getNumCases());
3708 }
3709
3710 // Remove dead cases from the switch.
3711 for (unsigned I = 0, E = DeadCases.size(); I != E; ++I) {
3712 SwitchInst::CaseIt Case = SI->findCaseValue(DeadCases[I]);
3713 assert(Case != SI->case_default() &&
3714 "Case was not found. Probably mistake in DeadCases forming.");
3715 if (HasWeight) {
3716 std::swap(Weights[Case.getCaseIndex()+1], Weights.back());
3717 Weights.pop_back();
3718 }
3719
3720 // Prune unused values from PHI nodes.
3721 Case.getCaseSuccessor()->removePredecessor(SI->getParent());
3722 SI->removeCase(Case);
3723 }
3724 if (HasWeight && Weights.size() >= 2) {
3725 SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end());
3726 SI->setMetadata(LLVMContext::MD_prof,
3727 MDBuilder(SI->getParent()->getContext()).
3728 createBranchWeights(MDWeights));
3729 }
3730
3731 return !DeadCases.empty();
3732 }
3733
3734 /// If BB would be eligible for simplification by
3735 /// TryToSimplifyUncondBranchFromEmptyBlock (i.e. it is empty and terminated
3736 /// by an unconditional branch), look at the phi node for BB in the successor
3737 /// block and see if the incoming value is equal to CaseValue. If so, return
3738 /// the phi node, and set PhiIndex to BB's index in the phi node.
FindPHIForConditionForwarding(ConstantInt * CaseValue,BasicBlock * BB,int * PhiIndex)3739 static PHINode *FindPHIForConditionForwarding(ConstantInt *CaseValue,
3740 BasicBlock *BB,
3741 int *PhiIndex) {
3742 if (BB->getFirstNonPHIOrDbg() != BB->getTerminator())
3743 return nullptr; // BB must be empty to be a candidate for simplification.
3744 if (!BB->getSinglePredecessor())
3745 return nullptr; // BB must be dominated by the switch.
3746
3747 BranchInst *Branch = dyn_cast<BranchInst>(BB->getTerminator());
3748 if (!Branch || !Branch->isUnconditional())
3749 return nullptr; // Terminator must be unconditional branch.
3750
3751 BasicBlock *Succ = Branch->getSuccessor(0);
3752
3753 BasicBlock::iterator I = Succ->begin();
3754 while (PHINode *PHI = dyn_cast<PHINode>(I++)) {
3755 int Idx = PHI->getBasicBlockIndex(BB);
3756 assert(Idx >= 0 && "PHI has no entry for predecessor?");
3757
3758 Value *InValue = PHI->getIncomingValue(Idx);
3759 if (InValue != CaseValue) continue;
3760
3761 *PhiIndex = Idx;
3762 return PHI;
3763 }
3764
3765 return nullptr;
3766 }
3767
3768 /// Try to forward the condition of a switch instruction to a phi node
3769 /// dominated by the switch, if that would mean that some of the destination
3770 /// blocks of the switch can be folded away.
3771 /// Returns true if a change is made.
ForwardSwitchConditionToPHI(SwitchInst * SI)3772 static bool ForwardSwitchConditionToPHI(SwitchInst *SI) {
3773 typedef DenseMap<PHINode*, SmallVector<int,4> > ForwardingNodesMap;
3774 ForwardingNodesMap ForwardingNodes;
3775
3776 for (SwitchInst::CaseIt I = SI->case_begin(), E = SI->case_end(); I != E; ++I) {
3777 ConstantInt *CaseValue = I.getCaseValue();
3778 BasicBlock *CaseDest = I.getCaseSuccessor();
3779
3780 int PhiIndex;
3781 PHINode *PHI = FindPHIForConditionForwarding(CaseValue, CaseDest,
3782 &PhiIndex);
3783 if (!PHI) continue;
3784
3785 ForwardingNodes[PHI].push_back(PhiIndex);
3786 }
3787
3788 bool Changed = false;
3789
3790 for (ForwardingNodesMap::iterator I = ForwardingNodes.begin(),
3791 E = ForwardingNodes.end(); I != E; ++I) {
3792 PHINode *Phi = I->first;
3793 SmallVectorImpl<int> &Indexes = I->second;
3794
3795 if (Indexes.size() < 2) continue;
3796
3797 for (size_t I = 0, E = Indexes.size(); I != E; ++I)
3798 Phi->setIncomingValue(Indexes[I], SI->getCondition());
3799 Changed = true;
3800 }
3801
3802 return Changed;
3803 }
3804
3805 /// Return true if the backend will be able to handle
3806 /// initializing an array of constants like C.
ValidLookupTableConstant(Constant * C)3807 static bool ValidLookupTableConstant(Constant *C) {
3808 if (C->isThreadDependent())
3809 return false;
3810 if (C->isDLLImportDependent())
3811 return false;
3812
3813 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
3814 return CE->isGEPWithNoNotionalOverIndexing();
3815
3816 return isa<ConstantFP>(C) ||
3817 isa<ConstantInt>(C) ||
3818 isa<ConstantPointerNull>(C) ||
3819 isa<GlobalValue>(C) ||
3820 isa<UndefValue>(C);
3821 }
3822
3823 /// If V is a Constant, return it. Otherwise, try to look up
3824 /// its constant value in ConstantPool, returning 0 if it's not there.
LookupConstant(Value * V,const SmallDenseMap<Value *,Constant * > & ConstantPool)3825 static Constant *LookupConstant(Value *V,
3826 const SmallDenseMap<Value*, Constant*>& ConstantPool) {
3827 if (Constant *C = dyn_cast<Constant>(V))
3828 return C;
3829 return ConstantPool.lookup(V);
3830 }
3831
3832 /// Try to fold instruction I into a constant. This works for
3833 /// simple instructions such as binary operations where both operands are
3834 /// constant or can be replaced by constants from the ConstantPool. Returns the
3835 /// resulting constant on success, 0 otherwise.
3836 static Constant *
ConstantFold(Instruction * I,const DataLayout & DL,const SmallDenseMap<Value *,Constant * > & ConstantPool)3837 ConstantFold(Instruction *I, const DataLayout &DL,
3838 const SmallDenseMap<Value *, Constant *> &ConstantPool) {
3839 if (SelectInst *Select = dyn_cast<SelectInst>(I)) {
3840 Constant *A = LookupConstant(Select->getCondition(), ConstantPool);
3841 if (!A)
3842 return nullptr;
3843 if (A->isAllOnesValue())
3844 return LookupConstant(Select->getTrueValue(), ConstantPool);
3845 if (A->isNullValue())
3846 return LookupConstant(Select->getFalseValue(), ConstantPool);
3847 return nullptr;
3848 }
3849
3850 SmallVector<Constant *, 4> COps;
3851 for (unsigned N = 0, E = I->getNumOperands(); N != E; ++N) {
3852 if (Constant *A = LookupConstant(I->getOperand(N), ConstantPool))
3853 COps.push_back(A);
3854 else
3855 return nullptr;
3856 }
3857
3858 if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) {
3859 return ConstantFoldCompareInstOperands(Cmp->getPredicate(), COps[0],
3860 COps[1], DL);
3861 }
3862
3863 return ConstantFoldInstOperands(I->getOpcode(), I->getType(), COps, DL);
3864 }
3865
3866 /// Try to determine the resulting constant values in phi nodes
3867 /// at the common destination basic block, *CommonDest, for one of the case
3868 /// destionations CaseDest corresponding to value CaseVal (0 for the default
3869 /// case), of a switch instruction SI.
3870 static bool
GetCaseResults(SwitchInst * SI,ConstantInt * CaseVal,BasicBlock * CaseDest,BasicBlock ** CommonDest,SmallVectorImpl<std::pair<PHINode *,Constant * >> & Res,const DataLayout & DL)3871 GetCaseResults(SwitchInst *SI, ConstantInt *CaseVal, BasicBlock *CaseDest,
3872 BasicBlock **CommonDest,
3873 SmallVectorImpl<std::pair<PHINode *, Constant *>> &Res,
3874 const DataLayout &DL) {
3875 // The block from which we enter the common destination.
3876 BasicBlock *Pred = SI->getParent();
3877
3878 // If CaseDest is empty except for some side-effect free instructions through
3879 // which we can constant-propagate the CaseVal, continue to its successor.
3880 SmallDenseMap<Value*, Constant*> ConstantPool;
3881 ConstantPool.insert(std::make_pair(SI->getCondition(), CaseVal));
3882 for (BasicBlock::iterator I = CaseDest->begin(), E = CaseDest->end(); I != E;
3883 ++I) {
3884 if (TerminatorInst *T = dyn_cast<TerminatorInst>(I)) {
3885 // If the terminator is a simple branch, continue to the next block.
3886 if (T->getNumSuccessors() != 1)
3887 return false;
3888 Pred = CaseDest;
3889 CaseDest = T->getSuccessor(0);
3890 } else if (isa<DbgInfoIntrinsic>(I)) {
3891 // Skip debug intrinsic.
3892 continue;
3893 } else if (Constant *C = ConstantFold(&*I, DL, ConstantPool)) {
3894 // Instruction is side-effect free and constant.
3895
3896 // If the instruction has uses outside this block or a phi node slot for
3897 // the block, it is not safe to bypass the instruction since it would then
3898 // no longer dominate all its uses.
3899 for (auto &Use : I->uses()) {
3900 User *User = Use.getUser();
3901 if (Instruction *I = dyn_cast<Instruction>(User))
3902 if (I->getParent() == CaseDest)
3903 continue;
3904 if (PHINode *Phi = dyn_cast<PHINode>(User))
3905 if (Phi->getIncomingBlock(Use) == CaseDest)
3906 continue;
3907 return false;
3908 }
3909
3910 ConstantPool.insert(std::make_pair(&*I, C));
3911 } else {
3912 break;
3913 }
3914 }
3915
3916 // If we did not have a CommonDest before, use the current one.
3917 if (!*CommonDest)
3918 *CommonDest = CaseDest;
3919 // If the destination isn't the common one, abort.
3920 if (CaseDest != *CommonDest)
3921 return false;
3922
3923 // Get the values for this case from phi nodes in the destination block.
3924 BasicBlock::iterator I = (*CommonDest)->begin();
3925 while (PHINode *PHI = dyn_cast<PHINode>(I++)) {
3926 int Idx = PHI->getBasicBlockIndex(Pred);
3927 if (Idx == -1)
3928 continue;
3929
3930 Constant *ConstVal = LookupConstant(PHI->getIncomingValue(Idx),
3931 ConstantPool);
3932 if (!ConstVal)
3933 return false;
3934
3935 // Be conservative about which kinds of constants we support.
3936 if (!ValidLookupTableConstant(ConstVal))
3937 return false;
3938
3939 Res.push_back(std::make_pair(PHI, ConstVal));
3940 }
3941
3942 return Res.size() > 0;
3943 }
3944
3945 // Helper function used to add CaseVal to the list of cases that generate
3946 // Result.
MapCaseToResult(ConstantInt * CaseVal,SwitchCaseResultVectorTy & UniqueResults,Constant * Result)3947 static void MapCaseToResult(ConstantInt *CaseVal,
3948 SwitchCaseResultVectorTy &UniqueResults,
3949 Constant *Result) {
3950 for (auto &I : UniqueResults) {
3951 if (I.first == Result) {
3952 I.second.push_back(CaseVal);
3953 return;
3954 }
3955 }
3956 UniqueResults.push_back(std::make_pair(Result,
3957 SmallVector<ConstantInt*, 4>(1, CaseVal)));
3958 }
3959
3960 // Helper function that initializes a map containing
3961 // results for the PHI node of the common destination block for a switch
3962 // instruction. Returns false if multiple PHI nodes have been found or if
3963 // there is not a common destination block for the switch.
InitializeUniqueCases(SwitchInst * SI,PHINode * & PHI,BasicBlock * & CommonDest,SwitchCaseResultVectorTy & UniqueResults,Constant * & DefaultResult,const DataLayout & DL)3964 static bool InitializeUniqueCases(SwitchInst *SI, PHINode *&PHI,
3965 BasicBlock *&CommonDest,
3966 SwitchCaseResultVectorTy &UniqueResults,
3967 Constant *&DefaultResult,
3968 const DataLayout &DL) {
3969 for (auto &I : SI->cases()) {
3970 ConstantInt *CaseVal = I.getCaseValue();
3971
3972 // Resulting value at phi nodes for this case value.
3973 SwitchCaseResultsTy Results;
3974 if (!GetCaseResults(SI, CaseVal, I.getCaseSuccessor(), &CommonDest, Results,
3975 DL))
3976 return false;
3977
3978 // Only one value per case is permitted
3979 if (Results.size() > 1)
3980 return false;
3981 MapCaseToResult(CaseVal, UniqueResults, Results.begin()->second);
3982
3983 // Check the PHI consistency.
3984 if (!PHI)
3985 PHI = Results[0].first;
3986 else if (PHI != Results[0].first)
3987 return false;
3988 }
3989 // Find the default result value.
3990 SmallVector<std::pair<PHINode *, Constant *>, 1> DefaultResults;
3991 BasicBlock *DefaultDest = SI->getDefaultDest();
3992 GetCaseResults(SI, nullptr, SI->getDefaultDest(), &CommonDest, DefaultResults,
3993 DL);
3994 // If the default value is not found abort unless the default destination
3995 // is unreachable.
3996 DefaultResult =
3997 DefaultResults.size() == 1 ? DefaultResults.begin()->second : nullptr;
3998 if ((!DefaultResult &&
3999 !isa<UnreachableInst>(DefaultDest->getFirstNonPHIOrDbg())))
4000 return false;
4001
4002 return true;
4003 }
4004
4005 // Helper function that checks if it is possible to transform a switch with only
4006 // two cases (or two cases + default) that produces a result into a select.
4007 // Example:
4008 // switch (a) {
4009 // case 10: %0 = icmp eq i32 %a, 10
4010 // return 10; %1 = select i1 %0, i32 10, i32 4
4011 // case 20: ----> %2 = icmp eq i32 %a, 20
4012 // return 2; %3 = select i1 %2, i32 2, i32 %1
4013 // default:
4014 // return 4;
4015 // }
4016 static Value *
ConvertTwoCaseSwitch(const SwitchCaseResultVectorTy & ResultVector,Constant * DefaultResult,Value * Condition,IRBuilder<> & Builder)4017 ConvertTwoCaseSwitch(const SwitchCaseResultVectorTy &ResultVector,
4018 Constant *DefaultResult, Value *Condition,
4019 IRBuilder<> &Builder) {
4020 assert(ResultVector.size() == 2 &&
4021 "We should have exactly two unique results at this point");
4022 // If we are selecting between only two cases transform into a simple
4023 // select or a two-way select if default is possible.
4024 if (ResultVector[0].second.size() == 1 &&
4025 ResultVector[1].second.size() == 1) {
4026 ConstantInt *const FirstCase = ResultVector[0].second[0];
4027 ConstantInt *const SecondCase = ResultVector[1].second[0];
4028
4029 bool DefaultCanTrigger = DefaultResult;
4030 Value *SelectValue = ResultVector[1].first;
4031 if (DefaultCanTrigger) {
4032 Value *const ValueCompare =
4033 Builder.CreateICmpEQ(Condition, SecondCase, "switch.selectcmp");
4034 SelectValue = Builder.CreateSelect(ValueCompare, ResultVector[1].first,
4035 DefaultResult, "switch.select");
4036 }
4037 Value *const ValueCompare =
4038 Builder.CreateICmpEQ(Condition, FirstCase, "switch.selectcmp");
4039 return Builder.CreateSelect(ValueCompare, ResultVector[0].first, SelectValue,
4040 "switch.select");
4041 }
4042
4043 return nullptr;
4044 }
4045
4046 // Helper function to cleanup a switch instruction that has been converted into
4047 // a select, fixing up PHI nodes and basic blocks.
RemoveSwitchAfterSelectConversion(SwitchInst * SI,PHINode * PHI,Value * SelectValue,IRBuilder<> & Builder)4048 static void RemoveSwitchAfterSelectConversion(SwitchInst *SI, PHINode *PHI,
4049 Value *SelectValue,
4050 IRBuilder<> &Builder) {
4051 BasicBlock *SelectBB = SI->getParent();
4052 while (PHI->getBasicBlockIndex(SelectBB) >= 0)
4053 PHI->removeIncomingValue(SelectBB);
4054 PHI->addIncoming(SelectValue, SelectBB);
4055
4056 Builder.CreateBr(PHI->getParent());
4057
4058 // Remove the switch.
4059 for (unsigned i = 0, e = SI->getNumSuccessors(); i < e; ++i) {
4060 BasicBlock *Succ = SI->getSuccessor(i);
4061
4062 if (Succ == PHI->getParent())
4063 continue;
4064 Succ->removePredecessor(SelectBB);
4065 }
4066 SI->eraseFromParent();
4067 }
4068
4069 /// If the switch is only used to initialize one or more
4070 /// phi nodes in a common successor block with only two different
4071 /// constant values, replace the switch with select.
SwitchToSelect(SwitchInst * SI,IRBuilder<> & Builder,AssumptionCache * AC,const DataLayout & DL)4072 static bool SwitchToSelect(SwitchInst *SI, IRBuilder<> &Builder,
4073 AssumptionCache *AC, const DataLayout &DL) {
4074 Value *const Cond = SI->getCondition();
4075 PHINode *PHI = nullptr;
4076 BasicBlock *CommonDest = nullptr;
4077 Constant *DefaultResult;
4078 SwitchCaseResultVectorTy UniqueResults;
4079 // Collect all the cases that will deliver the same value from the switch.
4080 if (!InitializeUniqueCases(SI, PHI, CommonDest, UniqueResults, DefaultResult,
4081 DL))
4082 return false;
4083 // Selects choose between maximum two values.
4084 if (UniqueResults.size() != 2)
4085 return false;
4086 assert(PHI != nullptr && "PHI for value select not found");
4087
4088 Builder.SetInsertPoint(SI);
4089 Value *SelectValue = ConvertTwoCaseSwitch(
4090 UniqueResults,
4091 DefaultResult, Cond, Builder);
4092 if (SelectValue) {
4093 RemoveSwitchAfterSelectConversion(SI, PHI, SelectValue, Builder);
4094 return true;
4095 }
4096 // The switch couldn't be converted into a select.
4097 return false;
4098 }
4099
4100 namespace {
4101 /// This class represents a lookup table that can be used to replace a switch.
4102 class SwitchLookupTable {
4103 public:
4104 /// Create a lookup table to use as a switch replacement with the contents
4105 /// of Values, using DefaultValue to fill any holes in the table.
4106 SwitchLookupTable(
4107 Module &M, uint64_t TableSize, ConstantInt *Offset,
4108 const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values,
4109 Constant *DefaultValue, const DataLayout &DL);
4110
4111 /// Build instructions with Builder to retrieve the value at
4112 /// the position given by Index in the lookup table.
4113 Value *BuildLookup(Value *Index, IRBuilder<> &Builder);
4114
4115 /// Return true if a table with TableSize elements of
4116 /// type ElementType would fit in a target-legal register.
4117 static bool WouldFitInRegister(const DataLayout &DL, uint64_t TableSize,
4118 Type *ElementType);
4119
4120 private:
4121 // Depending on the contents of the table, it can be represented in
4122 // different ways.
4123 enum {
4124 // For tables where each element contains the same value, we just have to
4125 // store that single value and return it for each lookup.
4126 SingleValueKind,
4127
4128 // For tables where there is a linear relationship between table index
4129 // and values. We calculate the result with a simple multiplication
4130 // and addition instead of a table lookup.
4131 LinearMapKind,
4132
4133 // For small tables with integer elements, we can pack them into a bitmap
4134 // that fits into a target-legal register. Values are retrieved by
4135 // shift and mask operations.
4136 BitMapKind,
4137
4138 // The table is stored as an array of values. Values are retrieved by load
4139 // instructions from the table.
4140 ArrayKind
4141 } Kind;
4142
4143 // For SingleValueKind, this is the single value.
4144 Constant *SingleValue;
4145
4146 // For BitMapKind, this is the bitmap.
4147 ConstantInt *BitMap;
4148 IntegerType *BitMapElementTy;
4149
4150 // For LinearMapKind, these are the constants used to derive the value.
4151 ConstantInt *LinearOffset;
4152 ConstantInt *LinearMultiplier;
4153
4154 // For ArrayKind, this is the array.
4155 GlobalVariable *Array;
4156 };
4157 }
4158
SwitchLookupTable(Module & M,uint64_t TableSize,ConstantInt * Offset,const SmallVectorImpl<std::pair<ConstantInt *,Constant * >> & Values,Constant * DefaultValue,const DataLayout & DL)4159 SwitchLookupTable::SwitchLookupTable(
4160 Module &M, uint64_t TableSize, ConstantInt *Offset,
4161 const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values,
4162 Constant *DefaultValue, const DataLayout &DL)
4163 : SingleValue(nullptr), BitMap(nullptr), BitMapElementTy(nullptr),
4164 LinearOffset(nullptr), LinearMultiplier(nullptr), Array(nullptr) {
4165 assert(Values.size() && "Can't build lookup table without values!");
4166 assert(TableSize >= Values.size() && "Can't fit values in table!");
4167
4168 // If all values in the table are equal, this is that value.
4169 SingleValue = Values.begin()->second;
4170
4171 Type *ValueType = Values.begin()->second->getType();
4172
4173 // Build up the table contents.
4174 SmallVector<Constant*, 64> TableContents(TableSize);
4175 for (size_t I = 0, E = Values.size(); I != E; ++I) {
4176 ConstantInt *CaseVal = Values[I].first;
4177 Constant *CaseRes = Values[I].second;
4178 assert(CaseRes->getType() == ValueType);
4179
4180 uint64_t Idx = (CaseVal->getValue() - Offset->getValue())
4181 .getLimitedValue();
4182 TableContents[Idx] = CaseRes;
4183
4184 if (CaseRes != SingleValue)
4185 SingleValue = nullptr;
4186 }
4187
4188 // Fill in any holes in the table with the default result.
4189 if (Values.size() < TableSize) {
4190 assert(DefaultValue &&
4191 "Need a default value to fill the lookup table holes.");
4192 assert(DefaultValue->getType() == ValueType);
4193 for (uint64_t I = 0; I < TableSize; ++I) {
4194 if (!TableContents[I])
4195 TableContents[I] = DefaultValue;
4196 }
4197
4198 if (DefaultValue != SingleValue)
4199 SingleValue = nullptr;
4200 }
4201
4202 // If each element in the table contains the same value, we only need to store
4203 // that single value.
4204 if (SingleValue) {
4205 Kind = SingleValueKind;
4206 return;
4207 }
4208
4209 // Check if we can derive the value with a linear transformation from the
4210 // table index.
4211 if (isa<IntegerType>(ValueType)) {
4212 bool LinearMappingPossible = true;
4213 APInt PrevVal;
4214 APInt DistToPrev;
4215 assert(TableSize >= 2 && "Should be a SingleValue table.");
4216 // Check if there is the same distance between two consecutive values.
4217 for (uint64_t I = 0; I < TableSize; ++I) {
4218 ConstantInt *ConstVal = dyn_cast<ConstantInt>(TableContents[I]);
4219 if (!ConstVal) {
4220 // This is an undef. We could deal with it, but undefs in lookup tables
4221 // are very seldom. It's probably not worth the additional complexity.
4222 LinearMappingPossible = false;
4223 break;
4224 }
4225 APInt Val = ConstVal->getValue();
4226 if (I != 0) {
4227 APInt Dist = Val - PrevVal;
4228 if (I == 1) {
4229 DistToPrev = Dist;
4230 } else if (Dist != DistToPrev) {
4231 LinearMappingPossible = false;
4232 break;
4233 }
4234 }
4235 PrevVal = Val;
4236 }
4237 if (LinearMappingPossible) {
4238 LinearOffset = cast<ConstantInt>(TableContents[0]);
4239 LinearMultiplier = ConstantInt::get(M.getContext(), DistToPrev);
4240 Kind = LinearMapKind;
4241 ++NumLinearMaps;
4242 return;
4243 }
4244 }
4245
4246 // If the type is integer and the table fits in a register, build a bitmap.
4247 if (WouldFitInRegister(DL, TableSize, ValueType)) {
4248 IntegerType *IT = cast<IntegerType>(ValueType);
4249 APInt TableInt(TableSize * IT->getBitWidth(), 0);
4250 for (uint64_t I = TableSize; I > 0; --I) {
4251 TableInt <<= IT->getBitWidth();
4252 // Insert values into the bitmap. Undef values are set to zero.
4253 if (!isa<UndefValue>(TableContents[I - 1])) {
4254 ConstantInt *Val = cast<ConstantInt>(TableContents[I - 1]);
4255 TableInt |= Val->getValue().zext(TableInt.getBitWidth());
4256 }
4257 }
4258 BitMap = ConstantInt::get(M.getContext(), TableInt);
4259 BitMapElementTy = IT;
4260 Kind = BitMapKind;
4261 ++NumBitMaps;
4262 return;
4263 }
4264
4265 // Store the table in an array.
4266 ArrayType *ArrayTy = ArrayType::get(ValueType, TableSize);
4267 Constant *Initializer = ConstantArray::get(ArrayTy, TableContents);
4268
4269 Array = new GlobalVariable(M, ArrayTy, /*constant=*/ true,
4270 GlobalVariable::PrivateLinkage,
4271 Initializer,
4272 "switch.table");
4273 Array->setUnnamedAddr(true);
4274 Kind = ArrayKind;
4275 }
4276
BuildLookup(Value * Index,IRBuilder<> & Builder)4277 Value *SwitchLookupTable::BuildLookup(Value *Index, IRBuilder<> &Builder) {
4278 switch (Kind) {
4279 case SingleValueKind:
4280 return SingleValue;
4281 case LinearMapKind: {
4282 // Derive the result value from the input value.
4283 Value *Result = Builder.CreateIntCast(Index, LinearMultiplier->getType(),
4284 false, "switch.idx.cast");
4285 if (!LinearMultiplier->isOne())
4286 Result = Builder.CreateMul(Result, LinearMultiplier, "switch.idx.mult");
4287 if (!LinearOffset->isZero())
4288 Result = Builder.CreateAdd(Result, LinearOffset, "switch.offset");
4289 return Result;
4290 }
4291 case BitMapKind: {
4292 // Type of the bitmap (e.g. i59).
4293 IntegerType *MapTy = BitMap->getType();
4294
4295 // Cast Index to the same type as the bitmap.
4296 // Note: The Index is <= the number of elements in the table, so
4297 // truncating it to the width of the bitmask is safe.
4298 Value *ShiftAmt = Builder.CreateZExtOrTrunc(Index, MapTy, "switch.cast");
4299
4300 // Multiply the shift amount by the element width.
4301 ShiftAmt = Builder.CreateMul(ShiftAmt,
4302 ConstantInt::get(MapTy, BitMapElementTy->getBitWidth()),
4303 "switch.shiftamt");
4304
4305 // Shift down.
4306 Value *DownShifted = Builder.CreateLShr(BitMap, ShiftAmt,
4307 "switch.downshift");
4308 // Mask off.
4309 return Builder.CreateTrunc(DownShifted, BitMapElementTy,
4310 "switch.masked");
4311 }
4312 case ArrayKind: {
4313 // Make sure the table index will not overflow when treated as signed.
4314 IntegerType *IT = cast<IntegerType>(Index->getType());
4315 uint64_t TableSize = Array->getInitializer()->getType()
4316 ->getArrayNumElements();
4317 if (TableSize > (1ULL << (IT->getBitWidth() - 1)))
4318 Index = Builder.CreateZExt(Index,
4319 IntegerType::get(IT->getContext(),
4320 IT->getBitWidth() + 1),
4321 "switch.tableidx.zext");
4322
4323 Value *GEPIndices[] = { Builder.getInt32(0), Index };
4324 Value *GEP = Builder.CreateInBoundsGEP(Array->getValueType(), Array,
4325 GEPIndices, "switch.gep");
4326 return Builder.CreateLoad(GEP, "switch.load");
4327 }
4328 }
4329 llvm_unreachable("Unknown lookup table kind!");
4330 }
4331
WouldFitInRegister(const DataLayout & DL,uint64_t TableSize,Type * ElementType)4332 bool SwitchLookupTable::WouldFitInRegister(const DataLayout &DL,
4333 uint64_t TableSize,
4334 Type *ElementType) {
4335 auto *IT = dyn_cast<IntegerType>(ElementType);
4336 if (!IT)
4337 return false;
4338 // FIXME: If the type is wider than it needs to be, e.g. i8 but all values
4339 // are <= 15, we could try to narrow the type.
4340
4341 // Avoid overflow, fitsInLegalInteger uses unsigned int for the width.
4342 if (TableSize >= UINT_MAX/IT->getBitWidth())
4343 return false;
4344 return DL.fitsInLegalInteger(TableSize * IT->getBitWidth());
4345 }
4346
4347 /// Determine whether a lookup table should be built for this switch, based on
4348 /// the number of cases, size of the table, and the types of the results.
4349 static bool
ShouldBuildLookupTable(SwitchInst * SI,uint64_t TableSize,const TargetTransformInfo & TTI,const DataLayout & DL,const SmallDenseMap<PHINode *,Type * > & ResultTypes)4350 ShouldBuildLookupTable(SwitchInst *SI, uint64_t TableSize,
4351 const TargetTransformInfo &TTI, const DataLayout &DL,
4352 const SmallDenseMap<PHINode *, Type *> &ResultTypes) {
4353 if (SI->getNumCases() > TableSize || TableSize >= UINT64_MAX / 10)
4354 return false; // TableSize overflowed, or mul below might overflow.
4355
4356 bool AllTablesFitInRegister = true;
4357 bool HasIllegalType = false;
4358 for (const auto &I : ResultTypes) {
4359 Type *Ty = I.second;
4360
4361 // Saturate this flag to true.
4362 HasIllegalType = HasIllegalType || !TTI.isTypeLegal(Ty);
4363
4364 // Saturate this flag to false.
4365 AllTablesFitInRegister = AllTablesFitInRegister &&
4366 SwitchLookupTable::WouldFitInRegister(DL, TableSize, Ty);
4367
4368 // If both flags saturate, we're done. NOTE: This *only* works with
4369 // saturating flags, and all flags have to saturate first due to the
4370 // non-deterministic behavior of iterating over a dense map.
4371 if (HasIllegalType && !AllTablesFitInRegister)
4372 break;
4373 }
4374
4375 // If each table would fit in a register, we should build it anyway.
4376 if (AllTablesFitInRegister)
4377 return true;
4378
4379 // Don't build a table that doesn't fit in-register if it has illegal types.
4380 if (HasIllegalType)
4381 return false;
4382
4383 // The table density should be at least 40%. This is the same criterion as for
4384 // jump tables, see SelectionDAGBuilder::handleJTSwitchCase.
4385 // FIXME: Find the best cut-off.
4386 return SI->getNumCases() * 10 >= TableSize * 4;
4387 }
4388
4389 /// Try to reuse the switch table index compare. Following pattern:
4390 /// \code
4391 /// if (idx < tablesize)
4392 /// r = table[idx]; // table does not contain default_value
4393 /// else
4394 /// r = default_value;
4395 /// if (r != default_value)
4396 /// ...
4397 /// \endcode
4398 /// Is optimized to:
4399 /// \code
4400 /// cond = idx < tablesize;
4401 /// if (cond)
4402 /// r = table[idx];
4403 /// else
4404 /// r = default_value;
4405 /// if (cond)
4406 /// ...
4407 /// \endcode
4408 /// Jump threading will then eliminate the second if(cond).
reuseTableCompare(User * PhiUser,BasicBlock * PhiBlock,BranchInst * RangeCheckBranch,Constant * DefaultValue,const SmallVectorImpl<std::pair<ConstantInt *,Constant * >> & Values)4409 static void reuseTableCompare(User *PhiUser, BasicBlock *PhiBlock,
4410 BranchInst *RangeCheckBranch, Constant *DefaultValue,
4411 const SmallVectorImpl<std::pair<ConstantInt*, Constant*> >& Values) {
4412
4413 ICmpInst *CmpInst = dyn_cast<ICmpInst>(PhiUser);
4414 if (!CmpInst)
4415 return;
4416
4417 // We require that the compare is in the same block as the phi so that jump
4418 // threading can do its work afterwards.
4419 if (CmpInst->getParent() != PhiBlock)
4420 return;
4421
4422 Constant *CmpOp1 = dyn_cast<Constant>(CmpInst->getOperand(1));
4423 if (!CmpOp1)
4424 return;
4425
4426 Value *RangeCmp = RangeCheckBranch->getCondition();
4427 Constant *TrueConst = ConstantInt::getTrue(RangeCmp->getType());
4428 Constant *FalseConst = ConstantInt::getFalse(RangeCmp->getType());
4429
4430 // Check if the compare with the default value is constant true or false.
4431 Constant *DefaultConst = ConstantExpr::getICmp(CmpInst->getPredicate(),
4432 DefaultValue, CmpOp1, true);
4433 if (DefaultConst != TrueConst && DefaultConst != FalseConst)
4434 return;
4435
4436 // Check if the compare with the case values is distinct from the default
4437 // compare result.
4438 for (auto ValuePair : Values) {
4439 Constant *CaseConst = ConstantExpr::getICmp(CmpInst->getPredicate(),
4440 ValuePair.second, CmpOp1, true);
4441 if (!CaseConst || CaseConst == DefaultConst)
4442 return;
4443 assert((CaseConst == TrueConst || CaseConst == FalseConst) &&
4444 "Expect true or false as compare result.");
4445 }
4446
4447 // Check if the branch instruction dominates the phi node. It's a simple
4448 // dominance check, but sufficient for our needs.
4449 // Although this check is invariant in the calling loops, it's better to do it
4450 // at this late stage. Practically we do it at most once for a switch.
4451 BasicBlock *BranchBlock = RangeCheckBranch->getParent();
4452 for (auto PI = pred_begin(PhiBlock), E = pred_end(PhiBlock); PI != E; ++PI) {
4453 BasicBlock *Pred = *PI;
4454 if (Pred != BranchBlock && Pred->getUniquePredecessor() != BranchBlock)
4455 return;
4456 }
4457
4458 if (DefaultConst == FalseConst) {
4459 // The compare yields the same result. We can replace it.
4460 CmpInst->replaceAllUsesWith(RangeCmp);
4461 ++NumTableCmpReuses;
4462 } else {
4463 // The compare yields the same result, just inverted. We can replace it.
4464 Value *InvertedTableCmp = BinaryOperator::CreateXor(RangeCmp,
4465 ConstantInt::get(RangeCmp->getType(), 1), "inverted.cmp",
4466 RangeCheckBranch);
4467 CmpInst->replaceAllUsesWith(InvertedTableCmp);
4468 ++NumTableCmpReuses;
4469 }
4470 }
4471
4472 /// If the switch is only used to initialize one or more phi nodes in a common
4473 /// successor block with different constant values, replace the switch with
4474 /// lookup tables.
SwitchToLookupTable(SwitchInst * SI,IRBuilder<> & Builder,const DataLayout & DL,const TargetTransformInfo & TTI)4475 static bool SwitchToLookupTable(SwitchInst *SI, IRBuilder<> &Builder,
4476 const DataLayout &DL,
4477 const TargetTransformInfo &TTI) {
4478 assert(SI->getNumCases() > 1 && "Degenerate switch?");
4479
4480 // Only build lookup table when we have a target that supports it.
4481 if (!TTI.shouldBuildLookupTables())
4482 return false;
4483
4484 // FIXME: If the switch is too sparse for a lookup table, perhaps we could
4485 // split off a dense part and build a lookup table for that.
4486
4487 // FIXME: This creates arrays of GEPs to constant strings, which means each
4488 // GEP needs a runtime relocation in PIC code. We should just build one big
4489 // string and lookup indices into that.
4490
4491 // Ignore switches with less than three cases. Lookup tables will not make them
4492 // faster, so we don't analyze them.
4493 if (SI->getNumCases() < 3)
4494 return false;
4495
4496 // Figure out the corresponding result for each case value and phi node in the
4497 // common destination, as well as the min and max case values.
4498 assert(SI->case_begin() != SI->case_end());
4499 SwitchInst::CaseIt CI = SI->case_begin();
4500 ConstantInt *MinCaseVal = CI.getCaseValue();
4501 ConstantInt *MaxCaseVal = CI.getCaseValue();
4502
4503 BasicBlock *CommonDest = nullptr;
4504 typedef SmallVector<std::pair<ConstantInt*, Constant*>, 4> ResultListTy;
4505 SmallDenseMap<PHINode*, ResultListTy> ResultLists;
4506 SmallDenseMap<PHINode*, Constant*> DefaultResults;
4507 SmallDenseMap<PHINode*, Type*> ResultTypes;
4508 SmallVector<PHINode*, 4> PHIs;
4509
4510 for (SwitchInst::CaseIt E = SI->case_end(); CI != E; ++CI) {
4511 ConstantInt *CaseVal = CI.getCaseValue();
4512 if (CaseVal->getValue().slt(MinCaseVal->getValue()))
4513 MinCaseVal = CaseVal;
4514 if (CaseVal->getValue().sgt(MaxCaseVal->getValue()))
4515 MaxCaseVal = CaseVal;
4516
4517 // Resulting value at phi nodes for this case value.
4518 typedef SmallVector<std::pair<PHINode*, Constant*>, 4> ResultsTy;
4519 ResultsTy Results;
4520 if (!GetCaseResults(SI, CaseVal, CI.getCaseSuccessor(), &CommonDest,
4521 Results, DL))
4522 return false;
4523
4524 // Append the result from this case to the list for each phi.
4525 for (const auto &I : Results) {
4526 PHINode *PHI = I.first;
4527 Constant *Value = I.second;
4528 if (!ResultLists.count(PHI))
4529 PHIs.push_back(PHI);
4530 ResultLists[PHI].push_back(std::make_pair(CaseVal, Value));
4531 }
4532 }
4533
4534 // Keep track of the result types.
4535 for (PHINode *PHI : PHIs) {
4536 ResultTypes[PHI] = ResultLists[PHI][0].second->getType();
4537 }
4538
4539 uint64_t NumResults = ResultLists[PHIs[0]].size();
4540 APInt RangeSpread = MaxCaseVal->getValue() - MinCaseVal->getValue();
4541 uint64_t TableSize = RangeSpread.getLimitedValue() + 1;
4542 bool TableHasHoles = (NumResults < TableSize);
4543
4544 // If the table has holes, we need a constant result for the default case
4545 // or a bitmask that fits in a register.
4546 SmallVector<std::pair<PHINode*, Constant*>, 4> DefaultResultsList;
4547 bool HasDefaultResults = GetCaseResults(SI, nullptr, SI->getDefaultDest(),
4548 &CommonDest, DefaultResultsList, DL);
4549
4550 bool NeedMask = (TableHasHoles && !HasDefaultResults);
4551 if (NeedMask) {
4552 // As an extra penalty for the validity test we require more cases.
4553 if (SI->getNumCases() < 4) // FIXME: Find best threshold value (benchmark).
4554 return false;
4555 if (!DL.fitsInLegalInteger(TableSize))
4556 return false;
4557 }
4558
4559 for (const auto &I : DefaultResultsList) {
4560 PHINode *PHI = I.first;
4561 Constant *Result = I.second;
4562 DefaultResults[PHI] = Result;
4563 }
4564
4565 if (!ShouldBuildLookupTable(SI, TableSize, TTI, DL, ResultTypes))
4566 return false;
4567
4568 // Create the BB that does the lookups.
4569 Module &Mod = *CommonDest->getParent()->getParent();
4570 BasicBlock *LookupBB = BasicBlock::Create(Mod.getContext(),
4571 "switch.lookup",
4572 CommonDest->getParent(),
4573 CommonDest);
4574
4575 // Compute the table index value.
4576 Builder.SetInsertPoint(SI);
4577 Value *TableIndex = Builder.CreateSub(SI->getCondition(), MinCaseVal,
4578 "switch.tableidx");
4579
4580 // Compute the maximum table size representable by the integer type we are
4581 // switching upon.
4582 unsigned CaseSize = MinCaseVal->getType()->getPrimitiveSizeInBits();
4583 uint64_t MaxTableSize = CaseSize > 63 ? UINT64_MAX : 1ULL << CaseSize;
4584 assert(MaxTableSize >= TableSize &&
4585 "It is impossible for a switch to have more entries than the max "
4586 "representable value of its input integer type's size.");
4587
4588 // If the default destination is unreachable, or if the lookup table covers
4589 // all values of the conditional variable, branch directly to the lookup table
4590 // BB. Otherwise, check that the condition is within the case range.
4591 const bool DefaultIsReachable =
4592 !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg());
4593 const bool GeneratingCoveredLookupTable = (MaxTableSize == TableSize);
4594 BranchInst *RangeCheckBranch = nullptr;
4595
4596 if (!DefaultIsReachable || GeneratingCoveredLookupTable) {
4597 Builder.CreateBr(LookupBB);
4598 // Note: We call removeProdecessor later since we need to be able to get the
4599 // PHI value for the default case in case we're using a bit mask.
4600 } else {
4601 Value *Cmp = Builder.CreateICmpULT(TableIndex, ConstantInt::get(
4602 MinCaseVal->getType(), TableSize));
4603 RangeCheckBranch = Builder.CreateCondBr(Cmp, LookupBB, SI->getDefaultDest());
4604 }
4605
4606 // Populate the BB that does the lookups.
4607 Builder.SetInsertPoint(LookupBB);
4608
4609 if (NeedMask) {
4610 // Before doing the lookup we do the hole check.
4611 // The LookupBB is therefore re-purposed to do the hole check
4612 // and we create a new LookupBB.
4613 BasicBlock *MaskBB = LookupBB;
4614 MaskBB->setName("switch.hole_check");
4615 LookupBB = BasicBlock::Create(Mod.getContext(),
4616 "switch.lookup",
4617 CommonDest->getParent(),
4618 CommonDest);
4619
4620 // Make the mask's bitwidth at least 8bit and a power-of-2 to avoid
4621 // unnecessary illegal types.
4622 uint64_t TableSizePowOf2 = NextPowerOf2(std::max(7ULL, TableSize - 1ULL));
4623 APInt MaskInt(TableSizePowOf2, 0);
4624 APInt One(TableSizePowOf2, 1);
4625 // Build bitmask; fill in a 1 bit for every case.
4626 const ResultListTy &ResultList = ResultLists[PHIs[0]];
4627 for (size_t I = 0, E = ResultList.size(); I != E; ++I) {
4628 uint64_t Idx = (ResultList[I].first->getValue() -
4629 MinCaseVal->getValue()).getLimitedValue();
4630 MaskInt |= One << Idx;
4631 }
4632 ConstantInt *TableMask = ConstantInt::get(Mod.getContext(), MaskInt);
4633
4634 // Get the TableIndex'th bit of the bitmask.
4635 // If this bit is 0 (meaning hole) jump to the default destination,
4636 // else continue with table lookup.
4637 IntegerType *MapTy = TableMask->getType();
4638 Value *MaskIndex = Builder.CreateZExtOrTrunc(TableIndex, MapTy,
4639 "switch.maskindex");
4640 Value *Shifted = Builder.CreateLShr(TableMask, MaskIndex,
4641 "switch.shifted");
4642 Value *LoBit = Builder.CreateTrunc(Shifted,
4643 Type::getInt1Ty(Mod.getContext()),
4644 "switch.lobit");
4645 Builder.CreateCondBr(LoBit, LookupBB, SI->getDefaultDest());
4646
4647 Builder.SetInsertPoint(LookupBB);
4648 AddPredecessorToBlock(SI->getDefaultDest(), MaskBB, SI->getParent());
4649 }
4650
4651 if (!DefaultIsReachable || GeneratingCoveredLookupTable) {
4652 // We cached PHINodes in PHIs, to avoid accessing deleted PHINodes later,
4653 // do not delete PHINodes here.
4654 SI->getDefaultDest()->removePredecessor(SI->getParent(),
4655 /*DontDeleteUselessPHIs=*/true);
4656 }
4657
4658 bool ReturnedEarly = false;
4659 for (size_t I = 0, E = PHIs.size(); I != E; ++I) {
4660 PHINode *PHI = PHIs[I];
4661 const ResultListTy &ResultList = ResultLists[PHI];
4662
4663 // If using a bitmask, use any value to fill the lookup table holes.
4664 Constant *DV = NeedMask ? ResultLists[PHI][0].second : DefaultResults[PHI];
4665 SwitchLookupTable Table(Mod, TableSize, MinCaseVal, ResultList, DV, DL);
4666
4667 Value *Result = Table.BuildLookup(TableIndex, Builder);
4668
4669 // If the result is used to return immediately from the function, we want to
4670 // do that right here.
4671 if (PHI->hasOneUse() && isa<ReturnInst>(*PHI->user_begin()) &&
4672 PHI->user_back() == CommonDest->getFirstNonPHIOrDbg()) {
4673 Builder.CreateRet(Result);
4674 ReturnedEarly = true;
4675 break;
4676 }
4677
4678 // Do a small peephole optimization: re-use the switch table compare if
4679 // possible.
4680 if (!TableHasHoles && HasDefaultResults && RangeCheckBranch) {
4681 BasicBlock *PhiBlock = PHI->getParent();
4682 // Search for compare instructions which use the phi.
4683 for (auto *User : PHI->users()) {
4684 reuseTableCompare(User, PhiBlock, RangeCheckBranch, DV, ResultList);
4685 }
4686 }
4687
4688 PHI->addIncoming(Result, LookupBB);
4689 }
4690
4691 if (!ReturnedEarly)
4692 Builder.CreateBr(CommonDest);
4693
4694 // Remove the switch.
4695 for (unsigned i = 0, e = SI->getNumSuccessors(); i < e; ++i) {
4696 BasicBlock *Succ = SI->getSuccessor(i);
4697
4698 if (Succ == SI->getDefaultDest())
4699 continue;
4700 Succ->removePredecessor(SI->getParent());
4701 }
4702 SI->eraseFromParent();
4703
4704 ++NumLookupTables;
4705 if (NeedMask)
4706 ++NumLookupTablesHoles;
4707 return true;
4708 }
4709
SimplifySwitch(SwitchInst * SI,IRBuilder<> & Builder)4710 bool SimplifyCFGOpt::SimplifySwitch(SwitchInst *SI, IRBuilder<> &Builder) {
4711 BasicBlock *BB = SI->getParent();
4712
4713 if (isValueEqualityComparison(SI)) {
4714 // If we only have one predecessor, and if it is a branch on this value,
4715 // see if that predecessor totally determines the outcome of this switch.
4716 if (BasicBlock *OnlyPred = BB->getSinglePredecessor())
4717 if (SimplifyEqualityComparisonWithOnlyPredecessor(SI, OnlyPred, Builder))
4718 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
4719
4720 Value *Cond = SI->getCondition();
4721 if (SelectInst *Select = dyn_cast<SelectInst>(Cond))
4722 if (SimplifySwitchOnSelect(SI, Select))
4723 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
4724
4725 // If the block only contains the switch, see if we can fold the block
4726 // away into any preds.
4727 BasicBlock::iterator BBI = BB->begin();
4728 // Ignore dbg intrinsics.
4729 while (isa<DbgInfoIntrinsic>(BBI))
4730 ++BBI;
4731 if (SI == &*BBI)
4732 if (FoldValueComparisonIntoPredecessors(SI, Builder))
4733 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
4734 }
4735
4736 // Try to transform the switch into an icmp and a branch.
4737 if (TurnSwitchRangeIntoICmp(SI, Builder))
4738 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
4739
4740 // Remove unreachable cases.
4741 if (EliminateDeadSwitchCases(SI, AC, DL))
4742 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
4743
4744 if (SwitchToSelect(SI, Builder, AC, DL))
4745 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
4746
4747 if (ForwardSwitchConditionToPHI(SI))
4748 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
4749
4750 if (SwitchToLookupTable(SI, Builder, DL, TTI))
4751 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
4752
4753 return false;
4754 }
4755
SimplifyIndirectBr(IndirectBrInst * IBI)4756 bool SimplifyCFGOpt::SimplifyIndirectBr(IndirectBrInst *IBI) {
4757 BasicBlock *BB = IBI->getParent();
4758 bool Changed = false;
4759
4760 // Eliminate redundant destinations.
4761 SmallPtrSet<Value *, 8> Succs;
4762 for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) {
4763 BasicBlock *Dest = IBI->getDestination(i);
4764 if (!Dest->hasAddressTaken() || !Succs.insert(Dest).second) {
4765 Dest->removePredecessor(BB);
4766 IBI->removeDestination(i);
4767 --i; --e;
4768 Changed = true;
4769 }
4770 }
4771
4772 if (IBI->getNumDestinations() == 0) {
4773 // If the indirectbr has no successors, change it to unreachable.
4774 new UnreachableInst(IBI->getContext(), IBI);
4775 EraseTerminatorInstAndDCECond(IBI);
4776 return true;
4777 }
4778
4779 if (IBI->getNumDestinations() == 1) {
4780 // If the indirectbr has one successor, change it to a direct branch.
4781 BranchInst::Create(IBI->getDestination(0), IBI);
4782 EraseTerminatorInstAndDCECond(IBI);
4783 return true;
4784 }
4785
4786 if (SelectInst *SI = dyn_cast<SelectInst>(IBI->getAddress())) {
4787 if (SimplifyIndirectBrOnSelect(IBI, SI))
4788 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
4789 }
4790 return Changed;
4791 }
4792
4793 /// Given an block with only a single landing pad and a unconditional branch
4794 /// try to find another basic block which this one can be merged with. This
4795 /// handles cases where we have multiple invokes with unique landing pads, but
4796 /// a shared handler.
4797 ///
4798 /// We specifically choose to not worry about merging non-empty blocks
4799 /// here. That is a PRE/scheduling problem and is best solved elsewhere. In
4800 /// practice, the optimizer produces empty landing pad blocks quite frequently
4801 /// when dealing with exception dense code. (see: instcombine, gvn, if-else
4802 /// sinking in this file)
4803 ///
4804 /// This is primarily a code size optimization. We need to avoid performing
4805 /// any transform which might inhibit optimization (such as our ability to
4806 /// specialize a particular handler via tail commoning). We do this by not
4807 /// merging any blocks which require us to introduce a phi. Since the same
4808 /// values are flowing through both blocks, we don't loose any ability to
4809 /// specialize. If anything, we make such specialization more likely.
4810 ///
4811 /// TODO - This transformation could remove entries from a phi in the target
4812 /// block when the inputs in the phi are the same for the two blocks being
4813 /// merged. In some cases, this could result in removal of the PHI entirely.
TryToMergeLandingPad(LandingPadInst * LPad,BranchInst * BI,BasicBlock * BB)4814 static bool TryToMergeLandingPad(LandingPadInst *LPad, BranchInst *BI,
4815 BasicBlock *BB) {
4816 auto Succ = BB->getUniqueSuccessor();
4817 assert(Succ);
4818 // If there's a phi in the successor block, we'd likely have to introduce
4819 // a phi into the merged landing pad block.
4820 if (isa<PHINode>(*Succ->begin()))
4821 return false;
4822
4823 for (BasicBlock *OtherPred : predecessors(Succ)) {
4824 if (BB == OtherPred)
4825 continue;
4826 BasicBlock::iterator I = OtherPred->begin();
4827 LandingPadInst *LPad2 = dyn_cast<LandingPadInst>(I);
4828 if (!LPad2 || !LPad2->isIdenticalTo(LPad))
4829 continue;
4830 for (++I; isa<DbgInfoIntrinsic>(I); ++I) {}
4831 BranchInst *BI2 = dyn_cast<BranchInst>(I);
4832 if (!BI2 || !BI2->isIdenticalTo(BI))
4833 continue;
4834
4835 // We've found an identical block. Update our predeccessors to take that
4836 // path instead and make ourselves dead.
4837 SmallSet<BasicBlock *, 16> Preds;
4838 Preds.insert(pred_begin(BB), pred_end(BB));
4839 for (BasicBlock *Pred : Preds) {
4840 InvokeInst *II = cast<InvokeInst>(Pred->getTerminator());
4841 assert(II->getNormalDest() != BB &&
4842 II->getUnwindDest() == BB && "unexpected successor");
4843 II->setUnwindDest(OtherPred);
4844 }
4845
4846 // The debug info in OtherPred doesn't cover the merged control flow that
4847 // used to go through BB. We need to delete it or update it.
4848 for (auto I = OtherPred->begin(), E = OtherPred->end();
4849 I != E;) {
4850 Instruction &Inst = *I; I++;
4851 if (isa<DbgInfoIntrinsic>(Inst))
4852 Inst.eraseFromParent();
4853 }
4854
4855 SmallSet<BasicBlock *, 16> Succs;
4856 Succs.insert(succ_begin(BB), succ_end(BB));
4857 for (BasicBlock *Succ : Succs) {
4858 Succ->removePredecessor(BB);
4859 }
4860
4861 IRBuilder<> Builder(BI);
4862 Builder.CreateUnreachable();
4863 BI->eraseFromParent();
4864 return true;
4865 }
4866 return false;
4867 }
4868
SimplifyUncondBranch(BranchInst * BI,IRBuilder<> & Builder)4869 bool SimplifyCFGOpt::SimplifyUncondBranch(BranchInst *BI, IRBuilder<> &Builder){
4870 BasicBlock *BB = BI->getParent();
4871
4872 if (SinkCommon && SinkThenElseCodeToEnd(BI))
4873 return true;
4874
4875 // If the Terminator is the only non-phi instruction, simplify the block.
4876 BasicBlock::iterator I = BB->getFirstNonPHIOrDbg()->getIterator();
4877 if (I->isTerminator() && BB != &BB->getParent()->getEntryBlock() &&
4878 TryToSimplifyUncondBranchFromEmptyBlock(BB))
4879 return true;
4880
4881 // If the only instruction in the block is a seteq/setne comparison
4882 // against a constant, try to simplify the block.
4883 if (ICmpInst *ICI = dyn_cast<ICmpInst>(I))
4884 if (ICI->isEquality() && isa<ConstantInt>(ICI->getOperand(1))) {
4885 for (++I; isa<DbgInfoIntrinsic>(I); ++I)
4886 ;
4887 if (I->isTerminator() &&
4888 TryToSimplifyUncondBranchWithICmpInIt(ICI, Builder, DL, TTI,
4889 BonusInstThreshold, AC))
4890 return true;
4891 }
4892
4893 // See if we can merge an empty landing pad block with another which is
4894 // equivalent.
4895 if (LandingPadInst *LPad = dyn_cast<LandingPadInst>(I)) {
4896 for (++I; isa<DbgInfoIntrinsic>(I); ++I) {}
4897 if (I->isTerminator() &&
4898 TryToMergeLandingPad(LPad, BI, BB))
4899 return true;
4900 }
4901
4902 // If this basic block is ONLY a compare and a branch, and if a predecessor
4903 // branches to us and our successor, fold the comparison into the
4904 // predecessor and use logical operations to update the incoming value
4905 // for PHI nodes in common successor.
4906 if (FoldBranchToCommonDest(BI, BonusInstThreshold))
4907 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
4908 return false;
4909 }
4910
allPredecessorsComeFromSameSource(BasicBlock * BB)4911 static BasicBlock *allPredecessorsComeFromSameSource(BasicBlock *BB) {
4912 BasicBlock *PredPred = nullptr;
4913 for (auto *P : predecessors(BB)) {
4914 BasicBlock *PPred = P->getSinglePredecessor();
4915 if (!PPred || (PredPred && PredPred != PPred))
4916 return nullptr;
4917 PredPred = PPred;
4918 }
4919 return PredPred;
4920 }
4921
SimplifyCondBranch(BranchInst * BI,IRBuilder<> & Builder)4922 bool SimplifyCFGOpt::SimplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder) {
4923 BasicBlock *BB = BI->getParent();
4924
4925 // Conditional branch
4926 if (isValueEqualityComparison(BI)) {
4927 // If we only have one predecessor, and if it is a branch on this value,
4928 // see if that predecessor totally determines the outcome of this
4929 // switch.
4930 if (BasicBlock *OnlyPred = BB->getSinglePredecessor())
4931 if (SimplifyEqualityComparisonWithOnlyPredecessor(BI, OnlyPred, Builder))
4932 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
4933
4934 // This block must be empty, except for the setcond inst, if it exists.
4935 // Ignore dbg intrinsics.
4936 BasicBlock::iterator I = BB->begin();
4937 // Ignore dbg intrinsics.
4938 while (isa<DbgInfoIntrinsic>(I))
4939 ++I;
4940 if (&*I == BI) {
4941 if (FoldValueComparisonIntoPredecessors(BI, Builder))
4942 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
4943 } else if (&*I == cast<Instruction>(BI->getCondition())){
4944 ++I;
4945 // Ignore dbg intrinsics.
4946 while (isa<DbgInfoIntrinsic>(I))
4947 ++I;
4948 if (&*I == BI && FoldValueComparisonIntoPredecessors(BI, Builder))
4949 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
4950 }
4951 }
4952
4953 // Try to turn "br (X == 0 | X == 1), T, F" into a switch instruction.
4954 if (SimplifyBranchOnICmpChain(BI, Builder, DL))
4955 return true;
4956
4957 // If this basic block is ONLY a compare and a branch, and if a predecessor
4958 // branches to us and one of our successors, fold the comparison into the
4959 // predecessor and use logical operations to pick the right destination.
4960 if (FoldBranchToCommonDest(BI, BonusInstThreshold))
4961 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
4962
4963 // We have a conditional branch to two blocks that are only reachable
4964 // from BI. We know that the condbr dominates the two blocks, so see if
4965 // there is any identical code in the "then" and "else" blocks. If so, we
4966 // can hoist it up to the branching block.
4967 if (BI->getSuccessor(0)->getSinglePredecessor()) {
4968 if (BI->getSuccessor(1)->getSinglePredecessor()) {
4969 if (HoistThenElseCodeToIf(BI, TTI))
4970 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
4971 } else {
4972 // If Successor #1 has multiple preds, we may be able to conditionally
4973 // execute Successor #0 if it branches to Successor #1.
4974 TerminatorInst *Succ0TI = BI->getSuccessor(0)->getTerminator();
4975 if (Succ0TI->getNumSuccessors() == 1 &&
4976 Succ0TI->getSuccessor(0) == BI->getSuccessor(1))
4977 if (SpeculativelyExecuteBB(BI, BI->getSuccessor(0), TTI))
4978 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
4979 }
4980 } else if (BI->getSuccessor(1)->getSinglePredecessor()) {
4981 // If Successor #0 has multiple preds, we may be able to conditionally
4982 // execute Successor #1 if it branches to Successor #0.
4983 TerminatorInst *Succ1TI = BI->getSuccessor(1)->getTerminator();
4984 if (Succ1TI->getNumSuccessors() == 1 &&
4985 Succ1TI->getSuccessor(0) == BI->getSuccessor(0))
4986 if (SpeculativelyExecuteBB(BI, BI->getSuccessor(1), TTI))
4987 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
4988 }
4989
4990 // If this is a branch on a phi node in the current block, thread control
4991 // through this block if any PHI node entries are constants.
4992 if (PHINode *PN = dyn_cast<PHINode>(BI->getCondition()))
4993 if (PN->getParent() == BI->getParent())
4994 if (FoldCondBranchOnPHI(BI, DL))
4995 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
4996
4997 // Scan predecessor blocks for conditional branches.
4998 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
4999 if (BranchInst *PBI = dyn_cast<BranchInst>((*PI)->getTerminator()))
5000 if (PBI != BI && PBI->isConditional())
5001 if (SimplifyCondBranchToCondBranch(PBI, BI, DL))
5002 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
5003
5004 // Look for diamond patterns.
5005 if (MergeCondStores)
5006 if (BasicBlock *PrevBB = allPredecessorsComeFromSameSource(BB))
5007 if (BranchInst *PBI = dyn_cast<BranchInst>(PrevBB->getTerminator()))
5008 if (PBI != BI && PBI->isConditional())
5009 if (mergeConditionalStores(PBI, BI))
5010 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
5011
5012 return false;
5013 }
5014
5015 /// Check if passing a value to an instruction will cause undefined behavior.
passingValueIsAlwaysUndefined(Value * V,Instruction * I)5016 static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I) {
5017 Constant *C = dyn_cast<Constant>(V);
5018 if (!C)
5019 return false;
5020
5021 if (I->use_empty())
5022 return false;
5023
5024 if (C->isNullValue()) {
5025 // Only look at the first use, avoid hurting compile time with long uselists
5026 User *Use = *I->user_begin();
5027
5028 // Now make sure that there are no instructions in between that can alter
5029 // control flow (eg. calls)
5030 for (BasicBlock::iterator i = ++BasicBlock::iterator(I); &*i != Use; ++i)
5031 if (i == I->getParent()->end() || i->mayHaveSideEffects())
5032 return false;
5033
5034 // Look through GEPs. A load from a GEP derived from NULL is still undefined
5035 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Use))
5036 if (GEP->getPointerOperand() == I)
5037 return passingValueIsAlwaysUndefined(V, GEP);
5038
5039 // Look through bitcasts.
5040 if (BitCastInst *BC = dyn_cast<BitCastInst>(Use))
5041 return passingValueIsAlwaysUndefined(V, BC);
5042
5043 // Load from null is undefined.
5044 if (LoadInst *LI = dyn_cast<LoadInst>(Use))
5045 if (!LI->isVolatile())
5046 return LI->getPointerAddressSpace() == 0;
5047
5048 // Store to null is undefined.
5049 if (StoreInst *SI = dyn_cast<StoreInst>(Use))
5050 if (!SI->isVolatile())
5051 return SI->getPointerAddressSpace() == 0 && SI->getPointerOperand() == I;
5052 }
5053 return false;
5054 }
5055
5056 /// If BB has an incoming value that will always trigger undefined behavior
5057 /// (eg. null pointer dereference), remove the branch leading here.
removeUndefIntroducingPredecessor(BasicBlock * BB)5058 static bool removeUndefIntroducingPredecessor(BasicBlock *BB) {
5059 for (BasicBlock::iterator i = BB->begin();
5060 PHINode *PHI = dyn_cast<PHINode>(i); ++i)
5061 for (unsigned i = 0, e = PHI->getNumIncomingValues(); i != e; ++i)
5062 if (passingValueIsAlwaysUndefined(PHI->getIncomingValue(i), PHI)) {
5063 TerminatorInst *T = PHI->getIncomingBlock(i)->getTerminator();
5064 IRBuilder<> Builder(T);
5065 if (BranchInst *BI = dyn_cast<BranchInst>(T)) {
5066 BB->removePredecessor(PHI->getIncomingBlock(i));
5067 // Turn uncoditional branches into unreachables and remove the dead
5068 // destination from conditional branches.
5069 if (BI->isUnconditional())
5070 Builder.CreateUnreachable();
5071 else
5072 Builder.CreateBr(BI->getSuccessor(0) == BB ? BI->getSuccessor(1) :
5073 BI->getSuccessor(0));
5074 BI->eraseFromParent();
5075 return true;
5076 }
5077 // TODO: SwitchInst.
5078 }
5079
5080 return false;
5081 }
5082
run(BasicBlock * BB)5083 bool SimplifyCFGOpt::run(BasicBlock *BB) {
5084 bool Changed = false;
5085
5086 assert(BB && BB->getParent() && "Block not embedded in function!");
5087 assert(BB->getTerminator() && "Degenerate basic block encountered!");
5088
5089 // Remove basic blocks that have no predecessors (except the entry block)...
5090 // or that just have themself as a predecessor. These are unreachable.
5091 if ((pred_empty(BB) &&
5092 BB != &BB->getParent()->getEntryBlock()) ||
5093 BB->getSinglePredecessor() == BB) {
5094 DEBUG(dbgs() << "Removing BB: \n" << *BB);
5095 DeleteDeadBlock(BB);
5096 return true;
5097 }
5098
5099 // Check to see if we can constant propagate this terminator instruction
5100 // away...
5101 Changed |= ConstantFoldTerminator(BB, true);
5102
5103 // Check for and eliminate duplicate PHI nodes in this block.
5104 Changed |= EliminateDuplicatePHINodes(BB);
5105
5106 // Check for and remove branches that will always cause undefined behavior.
5107 Changed |= removeUndefIntroducingPredecessor(BB);
5108
5109 // Merge basic blocks into their predecessor if there is only one distinct
5110 // pred, and if there is only one distinct successor of the predecessor, and
5111 // if there are no PHI nodes.
5112 //
5113 if (MergeBlockIntoPredecessor(BB))
5114 return true;
5115
5116 IRBuilder<> Builder(BB);
5117
5118 // If there is a trivial two-entry PHI node in this basic block, and we can
5119 // eliminate it, do so now.
5120 if (PHINode *PN = dyn_cast<PHINode>(BB->begin()))
5121 if (PN->getNumIncomingValues() == 2)
5122 Changed |= FoldTwoEntryPHINode(PN, TTI, DL);
5123
5124 Builder.SetInsertPoint(BB->getTerminator());
5125 if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) {
5126 if (BI->isUnconditional()) {
5127 if (SimplifyUncondBranch(BI, Builder)) return true;
5128 } else {
5129 if (SimplifyCondBranch(BI, Builder)) return true;
5130 }
5131 } else if (ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator())) {
5132 if (SimplifyReturn(RI, Builder)) return true;
5133 } else if (ResumeInst *RI = dyn_cast<ResumeInst>(BB->getTerminator())) {
5134 if (SimplifyResume(RI, Builder)) return true;
5135 } else if (CleanupReturnInst *RI =
5136 dyn_cast<CleanupReturnInst>(BB->getTerminator())) {
5137 if (SimplifyCleanupReturn(RI)) return true;
5138 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator())) {
5139 if (SimplifySwitch(SI, Builder)) return true;
5140 } else if (UnreachableInst *UI =
5141 dyn_cast<UnreachableInst>(BB->getTerminator())) {
5142 if (SimplifyUnreachable(UI)) return true;
5143 } else if (IndirectBrInst *IBI =
5144 dyn_cast<IndirectBrInst>(BB->getTerminator())) {
5145 if (SimplifyIndirectBr(IBI)) return true;
5146 }
5147
5148 return Changed;
5149 }
5150
5151 /// This function is used to do simplification of a CFG.
5152 /// For example, it adjusts branches to branches to eliminate the extra hop,
5153 /// eliminates unreachable basic blocks, and does other "peephole" optimization
5154 /// of the CFG. It returns true if a modification was made.
5155 ///
SimplifyCFG(BasicBlock * BB,const TargetTransformInfo & TTI,unsigned BonusInstThreshold,AssumptionCache * AC)5156 bool llvm::SimplifyCFG(BasicBlock *BB, const TargetTransformInfo &TTI,
5157 unsigned BonusInstThreshold, AssumptionCache *AC) {
5158 return SimplifyCFGOpt(TTI, BB->getModule()->getDataLayout(),
5159 BonusInstThreshold, AC).run(BB);
5160 }
5161