1 //===-- X86FloatingPoint.cpp - Floating point Reg -> Stack converter ------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines the pass which converts floating point instructions from
11 // pseudo registers into register stack instructions.  This pass uses live
12 // variable information to indicate where the FPn registers are used and their
13 // lifetimes.
14 //
15 // The x87 hardware tracks liveness of the stack registers, so it is necessary
16 // to implement exact liveness tracking between basic blocks. The CFG edges are
17 // partitioned into bundles where the same FP registers must be live in
18 // identical stack positions. Instructions are inserted at the end of each basic
19 // block to rearrange the live registers to match the outgoing bundle.
20 //
21 // This approach avoids splitting critical edges at the potential cost of more
22 // live register shuffling instructions when critical edges are present.
23 //
24 //===----------------------------------------------------------------------===//
25 
26 #include "X86.h"
27 #include "X86InstrInfo.h"
28 #include "llvm/ADT/DepthFirstIterator.h"
29 #include "llvm/ADT/STLExtras.h"
30 #include "llvm/ADT/SmallPtrSet.h"
31 #include "llvm/ADT/SmallSet.h"
32 #include "llvm/ADT/SmallVector.h"
33 #include "llvm/ADT/Statistic.h"
34 #include "llvm/CodeGen/EdgeBundles.h"
35 #include "llvm/CodeGen/LivePhysRegs.h"
36 #include "llvm/CodeGen/MachineFunctionPass.h"
37 #include "llvm/CodeGen/MachineInstrBuilder.h"
38 #include "llvm/CodeGen/MachineRegisterInfo.h"
39 #include "llvm/CodeGen/Passes.h"
40 #include "llvm/IR/InlineAsm.h"
41 #include "llvm/Support/Debug.h"
42 #include "llvm/Support/ErrorHandling.h"
43 #include "llvm/Support/raw_ostream.h"
44 #include "llvm/Target/TargetInstrInfo.h"
45 #include "llvm/Target/TargetMachine.h"
46 #include "llvm/Target/TargetSubtargetInfo.h"
47 #include <algorithm>
48 #include <bitset>
49 using namespace llvm;
50 
51 #define DEBUG_TYPE "x86-codegen"
52 
53 STATISTIC(NumFXCH, "Number of fxch instructions inserted");
54 STATISTIC(NumFP  , "Number of floating point instructions");
55 
56 namespace {
57   const unsigned ScratchFPReg = 7;
58 
59   struct FPS : public MachineFunctionPass {
60     static char ID;
FPS__anon455145810111::FPS61     FPS() : MachineFunctionPass(ID) {
62       initializeEdgeBundlesPass(*PassRegistry::getPassRegistry());
63       // This is really only to keep valgrind quiet.
64       // The logic in isLive() is too much for it.
65       memset(Stack, 0, sizeof(Stack));
66       memset(RegMap, 0, sizeof(RegMap));
67     }
68 
getAnalysisUsage__anon455145810111::FPS69     void getAnalysisUsage(AnalysisUsage &AU) const override {
70       AU.setPreservesCFG();
71       AU.addRequired<EdgeBundles>();
72       AU.addPreservedID(MachineLoopInfoID);
73       AU.addPreservedID(MachineDominatorsID);
74       MachineFunctionPass::getAnalysisUsage(AU);
75     }
76 
77     bool runOnMachineFunction(MachineFunction &MF) override;
78 
getPassName__anon455145810111::FPS79     const char *getPassName() const override { return "X86 FP Stackifier"; }
80 
81   private:
82     const TargetInstrInfo *TII; // Machine instruction info.
83 
84     // Two CFG edges are related if they leave the same block, or enter the same
85     // block. The transitive closure of an edge under this relation is a
86     // LiveBundle. It represents a set of CFG edges where the live FP stack
87     // registers must be allocated identically in the x87 stack.
88     //
89     // A LiveBundle is usually all the edges leaving a block, or all the edges
90     // entering a block, but it can contain more edges if critical edges are
91     // present.
92     //
93     // The set of live FP registers in a LiveBundle is calculated by bundleCFG,
94     // but the exact mapping of FP registers to stack slots is fixed later.
95     struct LiveBundle {
96       // Bit mask of live FP registers. Bit 0 = FP0, bit 1 = FP1, &c.
97       unsigned Mask;
98 
99       // Number of pre-assigned live registers in FixStack. This is 0 when the
100       // stack order has not yet been fixed.
101       unsigned FixCount;
102 
103       // Assigned stack order for live-in registers.
104       // FixStack[i] == getStackEntry(i) for all i < FixCount.
105       unsigned char FixStack[8];
106 
LiveBundle__anon455145810111::FPS::LiveBundle107       LiveBundle() : Mask(0), FixCount(0) {}
108 
109       // Have the live registers been assigned a stack order yet?
isFixed__anon455145810111::FPS::LiveBundle110       bool isFixed() const { return !Mask || FixCount; }
111     };
112 
113     // Numbered LiveBundle structs. LiveBundles[0] is used for all CFG edges
114     // with no live FP registers.
115     SmallVector<LiveBundle, 8> LiveBundles;
116 
117     // The edge bundle analysis provides indices into the LiveBundles vector.
118     EdgeBundles *Bundles;
119 
120     // Return a bitmask of FP registers in block's live-in list.
calcLiveInMask__anon455145810111::FPS121     static unsigned calcLiveInMask(MachineBasicBlock *MBB) {
122       unsigned Mask = 0;
123       for (const auto &LI : MBB->liveins()) {
124         if (LI.PhysReg < X86::FP0 || LI.PhysReg > X86::FP6)
125           continue;
126         Mask |= 1 << (LI.PhysReg - X86::FP0);
127       }
128       return Mask;
129     }
130 
131     // Partition all the CFG edges into LiveBundles.
132     void bundleCFG(MachineFunction &MF);
133 
134     MachineBasicBlock *MBB;     // Current basic block
135 
136     // The hardware keeps track of how many FP registers are live, so we have
137     // to model that exactly. Usually, each live register corresponds to an
138     // FP<n> register, but when dealing with calls, returns, and inline
139     // assembly, it is sometimes necessary to have live scratch registers.
140     unsigned Stack[8];          // FP<n> Registers in each stack slot...
141     unsigned StackTop;          // The current top of the FP stack.
142 
143     enum {
144       NumFPRegs = 8             // Including scratch pseudo-registers.
145     };
146 
147     // For each live FP<n> register, point to its Stack[] entry.
148     // The first entries correspond to FP0-FP6, the rest are scratch registers
149     // used when we need slightly different live registers than what the
150     // register allocator thinks.
151     unsigned RegMap[NumFPRegs];
152 
153     // Set up our stack model to match the incoming registers to MBB.
154     void setupBlockStack();
155 
156     // Shuffle live registers to match the expectations of successor blocks.
157     void finishBlockStack();
158 
159 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
dumpStack__anon455145810111::FPS160     void dumpStack() const {
161       dbgs() << "Stack contents:";
162       for (unsigned i = 0; i != StackTop; ++i) {
163         dbgs() << " FP" << Stack[i];
164         assert(RegMap[Stack[i]] == i && "Stack[] doesn't match RegMap[]!");
165       }
166     }
167 #endif
168 
169     /// getSlot - Return the stack slot number a particular register number is
170     /// in.
getSlot__anon455145810111::FPS171     unsigned getSlot(unsigned RegNo) const {
172       assert(RegNo < NumFPRegs && "Regno out of range!");
173       return RegMap[RegNo];
174     }
175 
176     /// isLive - Is RegNo currently live in the stack?
isLive__anon455145810111::FPS177     bool isLive(unsigned RegNo) const {
178       unsigned Slot = getSlot(RegNo);
179       return Slot < StackTop && Stack[Slot] == RegNo;
180     }
181 
182     /// getStackEntry - Return the X86::FP<n> register in register ST(i).
getStackEntry__anon455145810111::FPS183     unsigned getStackEntry(unsigned STi) const {
184       if (STi >= StackTop)
185         report_fatal_error("Access past stack top!");
186       return Stack[StackTop-1-STi];
187     }
188 
189     /// getSTReg - Return the X86::ST(i) register which contains the specified
190     /// FP<RegNo> register.
getSTReg__anon455145810111::FPS191     unsigned getSTReg(unsigned RegNo) const {
192       return StackTop - 1 - getSlot(RegNo) + X86::ST0;
193     }
194 
195     // pushReg - Push the specified FP<n> register onto the stack.
pushReg__anon455145810111::FPS196     void pushReg(unsigned Reg) {
197       assert(Reg < NumFPRegs && "Register number out of range!");
198       if (StackTop >= 8)
199         report_fatal_error("Stack overflow!");
200       Stack[StackTop] = Reg;
201       RegMap[Reg] = StackTop++;
202     }
203 
isAtTop__anon455145810111::FPS204     bool isAtTop(unsigned RegNo) const { return getSlot(RegNo) == StackTop-1; }
moveToTop__anon455145810111::FPS205     void moveToTop(unsigned RegNo, MachineBasicBlock::iterator I) {
206       DebugLoc dl = I == MBB->end() ? DebugLoc() : I->getDebugLoc();
207       if (isAtTop(RegNo)) return;
208 
209       unsigned STReg = getSTReg(RegNo);
210       unsigned RegOnTop = getStackEntry(0);
211 
212       // Swap the slots the regs are in.
213       std::swap(RegMap[RegNo], RegMap[RegOnTop]);
214 
215       // Swap stack slot contents.
216       if (RegMap[RegOnTop] >= StackTop)
217         report_fatal_error("Access past stack top!");
218       std::swap(Stack[RegMap[RegOnTop]], Stack[StackTop-1]);
219 
220       // Emit an fxch to update the runtime processors version of the state.
221       BuildMI(*MBB, I, dl, TII->get(X86::XCH_F)).addReg(STReg);
222       ++NumFXCH;
223     }
224 
duplicateToTop__anon455145810111::FPS225     void duplicateToTop(unsigned RegNo, unsigned AsReg, MachineInstr *I) {
226       DebugLoc dl = I == MBB->end() ? DebugLoc() : I->getDebugLoc();
227       unsigned STReg = getSTReg(RegNo);
228       pushReg(AsReg);   // New register on top of stack
229 
230       BuildMI(*MBB, I, dl, TII->get(X86::LD_Frr)).addReg(STReg);
231     }
232 
233     /// popStackAfter - Pop the current value off of the top of the FP stack
234     /// after the specified instruction.
235     void popStackAfter(MachineBasicBlock::iterator &I);
236 
237     /// freeStackSlotAfter - Free the specified register from the register
238     /// stack, so that it is no longer in a register.  If the register is
239     /// currently at the top of the stack, we just pop the current instruction,
240     /// otherwise we store the current top-of-stack into the specified slot,
241     /// then pop the top of stack.
242     void freeStackSlotAfter(MachineBasicBlock::iterator &I, unsigned Reg);
243 
244     /// freeStackSlotBefore - Just the pop, no folding. Return the inserted
245     /// instruction.
246     MachineBasicBlock::iterator
247     freeStackSlotBefore(MachineBasicBlock::iterator I, unsigned FPRegNo);
248 
249     /// Adjust the live registers to be the set in Mask.
250     void adjustLiveRegs(unsigned Mask, MachineBasicBlock::iterator I);
251 
252     /// Shuffle the top FixCount stack entries such that FP reg FixStack[0] is
253     /// st(0), FP reg FixStack[1] is st(1) etc.
254     void shuffleStackTop(const unsigned char *FixStack, unsigned FixCount,
255                          MachineBasicBlock::iterator I);
256 
257     bool processBasicBlock(MachineFunction &MF, MachineBasicBlock &MBB);
258 
259     void handleCall(MachineBasicBlock::iterator &I);
260     void handleZeroArgFP(MachineBasicBlock::iterator &I);
261     void handleOneArgFP(MachineBasicBlock::iterator &I);
262     void handleOneArgFPRW(MachineBasicBlock::iterator &I);
263     void handleTwoArgFP(MachineBasicBlock::iterator &I);
264     void handleCompareFP(MachineBasicBlock::iterator &I);
265     void handleCondMovFP(MachineBasicBlock::iterator &I);
266     void handleSpecialFP(MachineBasicBlock::iterator &I);
267 
268     // Check if a COPY instruction is using FP registers.
isFPCopy__anon455145810111::FPS269     static bool isFPCopy(MachineInstr *MI) {
270       unsigned DstReg = MI->getOperand(0).getReg();
271       unsigned SrcReg = MI->getOperand(1).getReg();
272 
273       return X86::RFP80RegClass.contains(DstReg) ||
274         X86::RFP80RegClass.contains(SrcReg);
275     }
276 
277     void setKillFlags(MachineBasicBlock &MBB) const;
278   };
279   char FPS::ID = 0;
280 }
281 
createX86FloatingPointStackifierPass()282 FunctionPass *llvm::createX86FloatingPointStackifierPass() { return new FPS(); }
283 
284 /// getFPReg - Return the X86::FPx register number for the specified operand.
285 /// For example, this returns 3 for X86::FP3.
getFPReg(const MachineOperand & MO)286 static unsigned getFPReg(const MachineOperand &MO) {
287   assert(MO.isReg() && "Expected an FP register!");
288   unsigned Reg = MO.getReg();
289   assert(Reg >= X86::FP0 && Reg <= X86::FP6 && "Expected FP register!");
290   return Reg - X86::FP0;
291 }
292 
293 /// runOnMachineFunction - Loop over all of the basic blocks, transforming FP
294 /// register references into FP stack references.
295 ///
runOnMachineFunction(MachineFunction & MF)296 bool FPS::runOnMachineFunction(MachineFunction &MF) {
297   // We only need to run this pass if there are any FP registers used in this
298   // function.  If it is all integer, there is nothing for us to do!
299   bool FPIsUsed = false;
300 
301   static_assert(X86::FP6 == X86::FP0+6, "Register enums aren't sorted right!");
302   const MachineRegisterInfo &MRI = MF.getRegInfo();
303   for (unsigned i = 0; i <= 6; ++i)
304     if (!MRI.reg_nodbg_empty(X86::FP0 + i)) {
305       FPIsUsed = true;
306       break;
307     }
308 
309   // Early exit.
310   if (!FPIsUsed) return false;
311 
312   Bundles = &getAnalysis<EdgeBundles>();
313   TII = MF.getSubtarget().getInstrInfo();
314 
315   // Prepare cross-MBB liveness.
316   bundleCFG(MF);
317 
318   StackTop = 0;
319 
320   // Process the function in depth first order so that we process at least one
321   // of the predecessors for every reachable block in the function.
322   SmallPtrSet<MachineBasicBlock*, 8> Processed;
323   MachineBasicBlock *Entry = &MF.front();
324 
325   bool Changed = false;
326   for (MachineBasicBlock *BB : depth_first_ext(Entry, Processed))
327     Changed |= processBasicBlock(MF, *BB);
328 
329   // Process any unreachable blocks in arbitrary order now.
330   if (MF.size() != Processed.size())
331     for (MachineBasicBlock &BB : MF)
332       if (Processed.insert(&BB).second)
333         Changed |= processBasicBlock(MF, BB);
334 
335   LiveBundles.clear();
336 
337   return Changed;
338 }
339 
340 /// bundleCFG - Scan all the basic blocks to determine consistent live-in and
341 /// live-out sets for the FP registers. Consistent means that the set of
342 /// registers live-out from a block is identical to the live-in set of all
343 /// successors. This is not enforced by the normal live-in lists since
344 /// registers may be implicitly defined, or not used by all successors.
bundleCFG(MachineFunction & MF)345 void FPS::bundleCFG(MachineFunction &MF) {
346   assert(LiveBundles.empty() && "Stale data in LiveBundles");
347   LiveBundles.resize(Bundles->getNumBundles());
348 
349   // Gather the actual live-in masks for all MBBs.
350   for (MachineBasicBlock &MBB : MF) {
351     const unsigned Mask = calcLiveInMask(&MBB);
352     if (!Mask)
353       continue;
354     // Update MBB ingoing bundle mask.
355     LiveBundles[Bundles->getBundle(MBB.getNumber(), false)].Mask |= Mask;
356   }
357 }
358 
359 /// processBasicBlock - Loop over all of the instructions in the basic block,
360 /// transforming FP instructions into their stack form.
361 ///
processBasicBlock(MachineFunction & MF,MachineBasicBlock & BB)362 bool FPS::processBasicBlock(MachineFunction &MF, MachineBasicBlock &BB) {
363   bool Changed = false;
364   MBB = &BB;
365 
366   setKillFlags(BB);
367   setupBlockStack();
368 
369   for (MachineBasicBlock::iterator I = BB.begin(); I != BB.end(); ++I) {
370     MachineInstr *MI = I;
371     uint64_t Flags = MI->getDesc().TSFlags;
372 
373     unsigned FPInstClass = Flags & X86II::FPTypeMask;
374     if (MI->isInlineAsm())
375       FPInstClass = X86II::SpecialFP;
376 
377     if (MI->isCopy() && isFPCopy(MI))
378       FPInstClass = X86II::SpecialFP;
379 
380     if (MI->isImplicitDef() &&
381         X86::RFP80RegClass.contains(MI->getOperand(0).getReg()))
382       FPInstClass = X86II::SpecialFP;
383 
384     if (MI->isCall())
385       FPInstClass = X86II::SpecialFP;
386 
387     if (FPInstClass == X86II::NotFP)
388       continue;  // Efficiently ignore non-fp insts!
389 
390     MachineInstr *PrevMI = nullptr;
391     if (I != BB.begin())
392       PrevMI = std::prev(I);
393 
394     ++NumFP;  // Keep track of # of pseudo instrs
395     DEBUG(dbgs() << "\nFPInst:\t" << *MI);
396 
397     // Get dead variables list now because the MI pointer may be deleted as part
398     // of processing!
399     SmallVector<unsigned, 8> DeadRegs;
400     for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
401       const MachineOperand &MO = MI->getOperand(i);
402       if (MO.isReg() && MO.isDead())
403         DeadRegs.push_back(MO.getReg());
404     }
405 
406     switch (FPInstClass) {
407     case X86II::ZeroArgFP:  handleZeroArgFP(I); break;
408     case X86II::OneArgFP:   handleOneArgFP(I);  break;  // fstp ST(0)
409     case X86II::OneArgFPRW: handleOneArgFPRW(I); break; // ST(0) = fsqrt(ST(0))
410     case X86II::TwoArgFP:   handleTwoArgFP(I);  break;
411     case X86II::CompareFP:  handleCompareFP(I); break;
412     case X86II::CondMovFP:  handleCondMovFP(I); break;
413     case X86II::SpecialFP:  handleSpecialFP(I); break;
414     default: llvm_unreachable("Unknown FP Type!");
415     }
416 
417     // Check to see if any of the values defined by this instruction are dead
418     // after definition.  If so, pop them.
419     for (unsigned i = 0, e = DeadRegs.size(); i != e; ++i) {
420       unsigned Reg = DeadRegs[i];
421       // Check if Reg is live on the stack. An inline-asm register operand that
422       // is in the clobber list and marked dead might not be live on the stack.
423       if (Reg >= X86::FP0 && Reg <= X86::FP6 && isLive(Reg-X86::FP0)) {
424         DEBUG(dbgs() << "Register FP#" << Reg-X86::FP0 << " is dead!\n");
425         freeStackSlotAfter(I, Reg-X86::FP0);
426       }
427     }
428 
429     // Print out all of the instructions expanded to if -debug
430     DEBUG(
431       MachineBasicBlock::iterator PrevI(PrevMI);
432       if (I == PrevI) {
433         dbgs() << "Just deleted pseudo instruction\n";
434       } else {
435         MachineBasicBlock::iterator Start = I;
436         // Rewind to first instruction newly inserted.
437         while (Start != BB.begin() && std::prev(Start) != PrevI) --Start;
438         dbgs() << "Inserted instructions:\n\t";
439         Start->print(dbgs());
440         while (++Start != std::next(I)) {}
441       }
442       dumpStack();
443     );
444     (void)PrevMI;
445 
446     Changed = true;
447   }
448 
449   finishBlockStack();
450 
451   return Changed;
452 }
453 
454 /// setupBlockStack - Use the live bundles to set up our model of the stack
455 /// to match predecessors' live out stack.
setupBlockStack()456 void FPS::setupBlockStack() {
457   DEBUG(dbgs() << "\nSetting up live-ins for BB#" << MBB->getNumber()
458                << " derived from " << MBB->getName() << ".\n");
459   StackTop = 0;
460   // Get the live-in bundle for MBB.
461   const LiveBundle &Bundle =
462     LiveBundles[Bundles->getBundle(MBB->getNumber(), false)];
463 
464   if (!Bundle.Mask) {
465     DEBUG(dbgs() << "Block has no FP live-ins.\n");
466     return;
467   }
468 
469   // Depth-first iteration should ensure that we always have an assigned stack.
470   assert(Bundle.isFixed() && "Reached block before any predecessors");
471 
472   // Push the fixed live-in registers.
473   for (unsigned i = Bundle.FixCount; i > 0; --i) {
474     MBB->addLiveIn(X86::ST0+i-1);
475     DEBUG(dbgs() << "Live-in st(" << (i-1) << "): %FP"
476                  << unsigned(Bundle.FixStack[i-1]) << '\n');
477     pushReg(Bundle.FixStack[i-1]);
478   }
479 
480   // Kill off unwanted live-ins. This can happen with a critical edge.
481   // FIXME: We could keep these live registers around as zombies. They may need
482   // to be revived at the end of a short block. It might save a few instrs.
483   adjustLiveRegs(calcLiveInMask(MBB), MBB->begin());
484   DEBUG(MBB->dump());
485 }
486 
487 /// finishBlockStack - Revive live-outs that are implicitly defined out of
488 /// MBB. Shuffle live registers to match the expected fixed stack of any
489 /// predecessors, and ensure that all predecessors are expecting the same
490 /// stack.
finishBlockStack()491 void FPS::finishBlockStack() {
492   // The RET handling below takes care of return blocks for us.
493   if (MBB->succ_empty())
494     return;
495 
496   DEBUG(dbgs() << "Setting up live-outs for BB#" << MBB->getNumber()
497                << " derived from " << MBB->getName() << ".\n");
498 
499   // Get MBB's live-out bundle.
500   unsigned BundleIdx = Bundles->getBundle(MBB->getNumber(), true);
501   LiveBundle &Bundle = LiveBundles[BundleIdx];
502 
503   // We may need to kill and define some registers to match successors.
504   // FIXME: This can probably be combined with the shuffle below.
505   MachineBasicBlock::iterator Term = MBB->getFirstTerminator();
506   adjustLiveRegs(Bundle.Mask, Term);
507 
508   if (!Bundle.Mask) {
509     DEBUG(dbgs() << "No live-outs.\n");
510     return;
511   }
512 
513   // Has the stack order been fixed yet?
514   DEBUG(dbgs() << "LB#" << BundleIdx << ": ");
515   if (Bundle.isFixed()) {
516     DEBUG(dbgs() << "Shuffling stack to match.\n");
517     shuffleStackTop(Bundle.FixStack, Bundle.FixCount, Term);
518   } else {
519     // Not fixed yet, we get to choose.
520     DEBUG(dbgs() << "Fixing stack order now.\n");
521     Bundle.FixCount = StackTop;
522     for (unsigned i = 0; i < StackTop; ++i)
523       Bundle.FixStack[i] = getStackEntry(i);
524   }
525 }
526 
527 
528 //===----------------------------------------------------------------------===//
529 // Efficient Lookup Table Support
530 //===----------------------------------------------------------------------===//
531 
532 namespace {
533   struct TableEntry {
534     uint16_t from;
535     uint16_t to;
operator <__anon455145810311::TableEntry536     bool operator<(const TableEntry &TE) const { return from < TE.from; }
operator <(const TableEntry & TE,unsigned V)537     friend bool operator<(const TableEntry &TE, unsigned V) {
538       return TE.from < V;
539     }
operator <(unsigned V,const TableEntry & TE)540     friend bool LLVM_ATTRIBUTE_UNUSED operator<(unsigned V,
541                                                 const TableEntry &TE) {
542       return V < TE.from;
543     }
544   };
545 }
546 
Lookup(ArrayRef<TableEntry> Table,unsigned Opcode)547 static int Lookup(ArrayRef<TableEntry> Table, unsigned Opcode) {
548   const TableEntry *I = std::lower_bound(Table.begin(), Table.end(), Opcode);
549   if (I != Table.end() && I->from == Opcode)
550     return I->to;
551   return -1;
552 }
553 
554 #ifdef NDEBUG
555 #define ASSERT_SORTED(TABLE)
556 #else
557 #define ASSERT_SORTED(TABLE)                                              \
558   { static bool TABLE##Checked = false;                                   \
559     if (!TABLE##Checked) {                                                \
560        assert(std::is_sorted(std::begin(TABLE), std::end(TABLE)) &&       \
561               "All lookup tables must be sorted for efficient access!");  \
562        TABLE##Checked = true;                                             \
563     }                                                                     \
564   }
565 #endif
566 
567 //===----------------------------------------------------------------------===//
568 // Register File -> Register Stack Mapping Methods
569 //===----------------------------------------------------------------------===//
570 
571 // OpcodeTable - Sorted map of register instructions to their stack version.
572 // The first element is an register file pseudo instruction, the second is the
573 // concrete X86 instruction which uses the register stack.
574 //
575 static const TableEntry OpcodeTable[] = {
576   { X86::ABS_Fp32     , X86::ABS_F     },
577   { X86::ABS_Fp64     , X86::ABS_F     },
578   { X86::ABS_Fp80     , X86::ABS_F     },
579   { X86::ADD_Fp32m    , X86::ADD_F32m  },
580   { X86::ADD_Fp64m    , X86::ADD_F64m  },
581   { X86::ADD_Fp64m32  , X86::ADD_F32m  },
582   { X86::ADD_Fp80m32  , X86::ADD_F32m  },
583   { X86::ADD_Fp80m64  , X86::ADD_F64m  },
584   { X86::ADD_FpI16m32 , X86::ADD_FI16m },
585   { X86::ADD_FpI16m64 , X86::ADD_FI16m },
586   { X86::ADD_FpI16m80 , X86::ADD_FI16m },
587   { X86::ADD_FpI32m32 , X86::ADD_FI32m },
588   { X86::ADD_FpI32m64 , X86::ADD_FI32m },
589   { X86::ADD_FpI32m80 , X86::ADD_FI32m },
590   { X86::CHS_Fp32     , X86::CHS_F     },
591   { X86::CHS_Fp64     , X86::CHS_F     },
592   { X86::CHS_Fp80     , X86::CHS_F     },
593   { X86::CMOVBE_Fp32  , X86::CMOVBE_F  },
594   { X86::CMOVBE_Fp64  , X86::CMOVBE_F  },
595   { X86::CMOVBE_Fp80  , X86::CMOVBE_F  },
596   { X86::CMOVB_Fp32   , X86::CMOVB_F   },
597   { X86::CMOVB_Fp64   , X86::CMOVB_F  },
598   { X86::CMOVB_Fp80   , X86::CMOVB_F  },
599   { X86::CMOVE_Fp32   , X86::CMOVE_F  },
600   { X86::CMOVE_Fp64   , X86::CMOVE_F   },
601   { X86::CMOVE_Fp80   , X86::CMOVE_F   },
602   { X86::CMOVNBE_Fp32 , X86::CMOVNBE_F },
603   { X86::CMOVNBE_Fp64 , X86::CMOVNBE_F },
604   { X86::CMOVNBE_Fp80 , X86::CMOVNBE_F },
605   { X86::CMOVNB_Fp32  , X86::CMOVNB_F  },
606   { X86::CMOVNB_Fp64  , X86::CMOVNB_F  },
607   { X86::CMOVNB_Fp80  , X86::CMOVNB_F  },
608   { X86::CMOVNE_Fp32  , X86::CMOVNE_F  },
609   { X86::CMOVNE_Fp64  , X86::CMOVNE_F  },
610   { X86::CMOVNE_Fp80  , X86::CMOVNE_F  },
611   { X86::CMOVNP_Fp32  , X86::CMOVNP_F  },
612   { X86::CMOVNP_Fp64  , X86::CMOVNP_F  },
613   { X86::CMOVNP_Fp80  , X86::CMOVNP_F  },
614   { X86::CMOVP_Fp32   , X86::CMOVP_F   },
615   { X86::CMOVP_Fp64   , X86::CMOVP_F   },
616   { X86::CMOVP_Fp80   , X86::CMOVP_F   },
617   { X86::COS_Fp32     , X86::COS_F     },
618   { X86::COS_Fp64     , X86::COS_F     },
619   { X86::COS_Fp80     , X86::COS_F     },
620   { X86::DIVR_Fp32m   , X86::DIVR_F32m },
621   { X86::DIVR_Fp64m   , X86::DIVR_F64m },
622   { X86::DIVR_Fp64m32 , X86::DIVR_F32m },
623   { X86::DIVR_Fp80m32 , X86::DIVR_F32m },
624   { X86::DIVR_Fp80m64 , X86::DIVR_F64m },
625   { X86::DIVR_FpI16m32, X86::DIVR_FI16m},
626   { X86::DIVR_FpI16m64, X86::DIVR_FI16m},
627   { X86::DIVR_FpI16m80, X86::DIVR_FI16m},
628   { X86::DIVR_FpI32m32, X86::DIVR_FI32m},
629   { X86::DIVR_FpI32m64, X86::DIVR_FI32m},
630   { X86::DIVR_FpI32m80, X86::DIVR_FI32m},
631   { X86::DIV_Fp32m    , X86::DIV_F32m  },
632   { X86::DIV_Fp64m    , X86::DIV_F64m  },
633   { X86::DIV_Fp64m32  , X86::DIV_F32m  },
634   { X86::DIV_Fp80m32  , X86::DIV_F32m  },
635   { X86::DIV_Fp80m64  , X86::DIV_F64m  },
636   { X86::DIV_FpI16m32 , X86::DIV_FI16m },
637   { X86::DIV_FpI16m64 , X86::DIV_FI16m },
638   { X86::DIV_FpI16m80 , X86::DIV_FI16m },
639   { X86::DIV_FpI32m32 , X86::DIV_FI32m },
640   { X86::DIV_FpI32m64 , X86::DIV_FI32m },
641   { X86::DIV_FpI32m80 , X86::DIV_FI32m },
642   { X86::ILD_Fp16m32  , X86::ILD_F16m  },
643   { X86::ILD_Fp16m64  , X86::ILD_F16m  },
644   { X86::ILD_Fp16m80  , X86::ILD_F16m  },
645   { X86::ILD_Fp32m32  , X86::ILD_F32m  },
646   { X86::ILD_Fp32m64  , X86::ILD_F32m  },
647   { X86::ILD_Fp32m80  , X86::ILD_F32m  },
648   { X86::ILD_Fp64m32  , X86::ILD_F64m  },
649   { X86::ILD_Fp64m64  , X86::ILD_F64m  },
650   { X86::ILD_Fp64m80  , X86::ILD_F64m  },
651   { X86::ISTT_Fp16m32 , X86::ISTT_FP16m},
652   { X86::ISTT_Fp16m64 , X86::ISTT_FP16m},
653   { X86::ISTT_Fp16m80 , X86::ISTT_FP16m},
654   { X86::ISTT_Fp32m32 , X86::ISTT_FP32m},
655   { X86::ISTT_Fp32m64 , X86::ISTT_FP32m},
656   { X86::ISTT_Fp32m80 , X86::ISTT_FP32m},
657   { X86::ISTT_Fp64m32 , X86::ISTT_FP64m},
658   { X86::ISTT_Fp64m64 , X86::ISTT_FP64m},
659   { X86::ISTT_Fp64m80 , X86::ISTT_FP64m},
660   { X86::IST_Fp16m32  , X86::IST_F16m  },
661   { X86::IST_Fp16m64  , X86::IST_F16m  },
662   { X86::IST_Fp16m80  , X86::IST_F16m  },
663   { X86::IST_Fp32m32  , X86::IST_F32m  },
664   { X86::IST_Fp32m64  , X86::IST_F32m  },
665   { X86::IST_Fp32m80  , X86::IST_F32m  },
666   { X86::IST_Fp64m32  , X86::IST_FP64m },
667   { X86::IST_Fp64m64  , X86::IST_FP64m },
668   { X86::IST_Fp64m80  , X86::IST_FP64m },
669   { X86::LD_Fp032     , X86::LD_F0     },
670   { X86::LD_Fp064     , X86::LD_F0     },
671   { X86::LD_Fp080     , X86::LD_F0     },
672   { X86::LD_Fp132     , X86::LD_F1     },
673   { X86::LD_Fp164     , X86::LD_F1     },
674   { X86::LD_Fp180     , X86::LD_F1     },
675   { X86::LD_Fp32m     , X86::LD_F32m   },
676   { X86::LD_Fp32m64   , X86::LD_F32m   },
677   { X86::LD_Fp32m80   , X86::LD_F32m   },
678   { X86::LD_Fp64m     , X86::LD_F64m   },
679   { X86::LD_Fp64m80   , X86::LD_F64m   },
680   { X86::LD_Fp80m     , X86::LD_F80m   },
681   { X86::MUL_Fp32m    , X86::MUL_F32m  },
682   { X86::MUL_Fp64m    , X86::MUL_F64m  },
683   { X86::MUL_Fp64m32  , X86::MUL_F32m  },
684   { X86::MUL_Fp80m32  , X86::MUL_F32m  },
685   { X86::MUL_Fp80m64  , X86::MUL_F64m  },
686   { X86::MUL_FpI16m32 , X86::MUL_FI16m },
687   { X86::MUL_FpI16m64 , X86::MUL_FI16m },
688   { X86::MUL_FpI16m80 , X86::MUL_FI16m },
689   { X86::MUL_FpI32m32 , X86::MUL_FI32m },
690   { X86::MUL_FpI32m64 , X86::MUL_FI32m },
691   { X86::MUL_FpI32m80 , X86::MUL_FI32m },
692   { X86::SIN_Fp32     , X86::SIN_F     },
693   { X86::SIN_Fp64     , X86::SIN_F     },
694   { X86::SIN_Fp80     , X86::SIN_F     },
695   { X86::SQRT_Fp32    , X86::SQRT_F    },
696   { X86::SQRT_Fp64    , X86::SQRT_F    },
697   { X86::SQRT_Fp80    , X86::SQRT_F    },
698   { X86::ST_Fp32m     , X86::ST_F32m   },
699   { X86::ST_Fp64m     , X86::ST_F64m   },
700   { X86::ST_Fp64m32   , X86::ST_F32m   },
701   { X86::ST_Fp80m32   , X86::ST_F32m   },
702   { X86::ST_Fp80m64   , X86::ST_F64m   },
703   { X86::ST_FpP80m    , X86::ST_FP80m  },
704   { X86::SUBR_Fp32m   , X86::SUBR_F32m },
705   { X86::SUBR_Fp64m   , X86::SUBR_F64m },
706   { X86::SUBR_Fp64m32 , X86::SUBR_F32m },
707   { X86::SUBR_Fp80m32 , X86::SUBR_F32m },
708   { X86::SUBR_Fp80m64 , X86::SUBR_F64m },
709   { X86::SUBR_FpI16m32, X86::SUBR_FI16m},
710   { X86::SUBR_FpI16m64, X86::SUBR_FI16m},
711   { X86::SUBR_FpI16m80, X86::SUBR_FI16m},
712   { X86::SUBR_FpI32m32, X86::SUBR_FI32m},
713   { X86::SUBR_FpI32m64, X86::SUBR_FI32m},
714   { X86::SUBR_FpI32m80, X86::SUBR_FI32m},
715   { X86::SUB_Fp32m    , X86::SUB_F32m  },
716   { X86::SUB_Fp64m    , X86::SUB_F64m  },
717   { X86::SUB_Fp64m32  , X86::SUB_F32m  },
718   { X86::SUB_Fp80m32  , X86::SUB_F32m  },
719   { X86::SUB_Fp80m64  , X86::SUB_F64m  },
720   { X86::SUB_FpI16m32 , X86::SUB_FI16m },
721   { X86::SUB_FpI16m64 , X86::SUB_FI16m },
722   { X86::SUB_FpI16m80 , X86::SUB_FI16m },
723   { X86::SUB_FpI32m32 , X86::SUB_FI32m },
724   { X86::SUB_FpI32m64 , X86::SUB_FI32m },
725   { X86::SUB_FpI32m80 , X86::SUB_FI32m },
726   { X86::TST_Fp32     , X86::TST_F     },
727   { X86::TST_Fp64     , X86::TST_F     },
728   { X86::TST_Fp80     , X86::TST_F     },
729   { X86::UCOM_FpIr32  , X86::UCOM_FIr  },
730   { X86::UCOM_FpIr64  , X86::UCOM_FIr  },
731   { X86::UCOM_FpIr80  , X86::UCOM_FIr  },
732   { X86::UCOM_Fpr32   , X86::UCOM_Fr   },
733   { X86::UCOM_Fpr64   , X86::UCOM_Fr   },
734   { X86::UCOM_Fpr80   , X86::UCOM_Fr   },
735 };
736 
getConcreteOpcode(unsigned Opcode)737 static unsigned getConcreteOpcode(unsigned Opcode) {
738   ASSERT_SORTED(OpcodeTable);
739   int Opc = Lookup(OpcodeTable, Opcode);
740   assert(Opc != -1 && "FP Stack instruction not in OpcodeTable!");
741   return Opc;
742 }
743 
744 //===----------------------------------------------------------------------===//
745 // Helper Methods
746 //===----------------------------------------------------------------------===//
747 
748 // PopTable - Sorted map of instructions to their popping version.  The first
749 // element is an instruction, the second is the version which pops.
750 //
751 static const TableEntry PopTable[] = {
752   { X86::ADD_FrST0 , X86::ADD_FPrST0  },
753 
754   { X86::DIVR_FrST0, X86::DIVR_FPrST0 },
755   { X86::DIV_FrST0 , X86::DIV_FPrST0  },
756 
757   { X86::IST_F16m  , X86::IST_FP16m   },
758   { X86::IST_F32m  , X86::IST_FP32m   },
759 
760   { X86::MUL_FrST0 , X86::MUL_FPrST0  },
761 
762   { X86::ST_F32m   , X86::ST_FP32m    },
763   { X86::ST_F64m   , X86::ST_FP64m    },
764   { X86::ST_Frr    , X86::ST_FPrr     },
765 
766   { X86::SUBR_FrST0, X86::SUBR_FPrST0 },
767   { X86::SUB_FrST0 , X86::SUB_FPrST0  },
768 
769   { X86::UCOM_FIr  , X86::UCOM_FIPr   },
770 
771   { X86::UCOM_FPr  , X86::UCOM_FPPr   },
772   { X86::UCOM_Fr   , X86::UCOM_FPr    },
773 };
774 
775 /// popStackAfter - Pop the current value off of the top of the FP stack after
776 /// the specified instruction.  This attempts to be sneaky and combine the pop
777 /// into the instruction itself if possible.  The iterator is left pointing to
778 /// the last instruction, be it a new pop instruction inserted, or the old
779 /// instruction if it was modified in place.
780 ///
popStackAfter(MachineBasicBlock::iterator & I)781 void FPS::popStackAfter(MachineBasicBlock::iterator &I) {
782   MachineInstr* MI = I;
783   DebugLoc dl = MI->getDebugLoc();
784   ASSERT_SORTED(PopTable);
785   if (StackTop == 0)
786     report_fatal_error("Cannot pop empty stack!");
787   RegMap[Stack[--StackTop]] = ~0;     // Update state
788 
789   // Check to see if there is a popping version of this instruction...
790   int Opcode = Lookup(PopTable, I->getOpcode());
791   if (Opcode != -1) {
792     I->setDesc(TII->get(Opcode));
793     if (Opcode == X86::UCOM_FPPr)
794       I->RemoveOperand(0);
795   } else {    // Insert an explicit pop
796     I = BuildMI(*MBB, ++I, dl, TII->get(X86::ST_FPrr)).addReg(X86::ST0);
797   }
798 }
799 
800 /// freeStackSlotAfter - Free the specified register from the register stack, so
801 /// that it is no longer in a register.  If the register is currently at the top
802 /// of the stack, we just pop the current instruction, otherwise we store the
803 /// current top-of-stack into the specified slot, then pop the top of stack.
freeStackSlotAfter(MachineBasicBlock::iterator & I,unsigned FPRegNo)804 void FPS::freeStackSlotAfter(MachineBasicBlock::iterator &I, unsigned FPRegNo) {
805   if (getStackEntry(0) == FPRegNo) {  // already at the top of stack? easy.
806     popStackAfter(I);
807     return;
808   }
809 
810   // Otherwise, store the top of stack into the dead slot, killing the operand
811   // without having to add in an explicit xchg then pop.
812   //
813   I = freeStackSlotBefore(++I, FPRegNo);
814 }
815 
816 /// freeStackSlotBefore - Free the specified register without trying any
817 /// folding.
818 MachineBasicBlock::iterator
freeStackSlotBefore(MachineBasicBlock::iterator I,unsigned FPRegNo)819 FPS::freeStackSlotBefore(MachineBasicBlock::iterator I, unsigned FPRegNo) {
820   unsigned STReg    = getSTReg(FPRegNo);
821   unsigned OldSlot  = getSlot(FPRegNo);
822   unsigned TopReg   = Stack[StackTop-1];
823   Stack[OldSlot]    = TopReg;
824   RegMap[TopReg]    = OldSlot;
825   RegMap[FPRegNo]   = ~0;
826   Stack[--StackTop] = ~0;
827   return BuildMI(*MBB, I, DebugLoc(), TII->get(X86::ST_FPrr))
828       .addReg(STReg)
829       .getInstr();
830 }
831 
832 /// adjustLiveRegs - Kill and revive registers such that exactly the FP
833 /// registers with a bit in Mask are live.
adjustLiveRegs(unsigned Mask,MachineBasicBlock::iterator I)834 void FPS::adjustLiveRegs(unsigned Mask, MachineBasicBlock::iterator I) {
835   unsigned Defs = Mask;
836   unsigned Kills = 0;
837   for (unsigned i = 0; i < StackTop; ++i) {
838     unsigned RegNo = Stack[i];
839     if (!(Defs & (1 << RegNo)))
840       // This register is live, but we don't want it.
841       Kills |= (1 << RegNo);
842     else
843       // We don't need to imp-def this live register.
844       Defs &= ~(1 << RegNo);
845   }
846   assert((Kills & Defs) == 0 && "Register needs killing and def'ing?");
847 
848   // Produce implicit-defs for free by using killed registers.
849   while (Kills && Defs) {
850     unsigned KReg = countTrailingZeros(Kills);
851     unsigned DReg = countTrailingZeros(Defs);
852     DEBUG(dbgs() << "Renaming %FP" << KReg << " as imp %FP" << DReg << "\n");
853     std::swap(Stack[getSlot(KReg)], Stack[getSlot(DReg)]);
854     std::swap(RegMap[KReg], RegMap[DReg]);
855     Kills &= ~(1 << KReg);
856     Defs &= ~(1 << DReg);
857   }
858 
859   // Kill registers by popping.
860   if (Kills && I != MBB->begin()) {
861     MachineBasicBlock::iterator I2 = std::prev(I);
862     while (StackTop) {
863       unsigned KReg = getStackEntry(0);
864       if (!(Kills & (1 << KReg)))
865         break;
866       DEBUG(dbgs() << "Popping %FP" << KReg << "\n");
867       popStackAfter(I2);
868       Kills &= ~(1 << KReg);
869     }
870   }
871 
872   // Manually kill the rest.
873   while (Kills) {
874     unsigned KReg = countTrailingZeros(Kills);
875     DEBUG(dbgs() << "Killing %FP" << KReg << "\n");
876     freeStackSlotBefore(I, KReg);
877     Kills &= ~(1 << KReg);
878   }
879 
880   // Load zeros for all the imp-defs.
881   while(Defs) {
882     unsigned DReg = countTrailingZeros(Defs);
883     DEBUG(dbgs() << "Defining %FP" << DReg << " as 0\n");
884     BuildMI(*MBB, I, DebugLoc(), TII->get(X86::LD_F0));
885     pushReg(DReg);
886     Defs &= ~(1 << DReg);
887   }
888 
889   // Now we should have the correct registers live.
890   DEBUG(dumpStack());
891   assert(StackTop == countPopulation(Mask) && "Live count mismatch");
892 }
893 
894 /// shuffleStackTop - emit fxch instructions before I to shuffle the top
895 /// FixCount entries into the order given by FixStack.
896 /// FIXME: Is there a better algorithm than insertion sort?
shuffleStackTop(const unsigned char * FixStack,unsigned FixCount,MachineBasicBlock::iterator I)897 void FPS::shuffleStackTop(const unsigned char *FixStack,
898                           unsigned FixCount,
899                           MachineBasicBlock::iterator I) {
900   // Move items into place, starting from the desired stack bottom.
901   while (FixCount--) {
902     // Old register at position FixCount.
903     unsigned OldReg = getStackEntry(FixCount);
904     // Desired register at position FixCount.
905     unsigned Reg = FixStack[FixCount];
906     if (Reg == OldReg)
907       continue;
908     // (Reg st0) (OldReg st0) = (Reg OldReg st0)
909     moveToTop(Reg, I);
910     if (FixCount > 0)
911       moveToTop(OldReg, I);
912   }
913   DEBUG(dumpStack());
914 }
915 
916 
917 //===----------------------------------------------------------------------===//
918 // Instruction transformation implementation
919 //===----------------------------------------------------------------------===//
920 
handleCall(MachineBasicBlock::iterator & I)921 void FPS::handleCall(MachineBasicBlock::iterator &I) {
922   unsigned STReturns = 0;
923 
924   for (const auto &MO : I->operands()) {
925     if (!MO.isReg())
926       continue;
927 
928     unsigned R = MO.getReg() - X86::FP0;
929 
930     if (R < 8) {
931       assert(MO.isDef() && MO.isImplicit());
932       STReturns |= 1 << R;
933     }
934   }
935 
936   unsigned N = countTrailingOnes(STReturns);
937 
938   // FP registers used for function return must be consecutive starting at
939   // FP0.
940   assert(STReturns == 0 || (isMask_32(STReturns) && N <= 2));
941 
942   for (unsigned I = 0; I < N; ++I)
943     pushReg(N - I - 1);
944 }
945 
946 /// handleZeroArgFP - ST(0) = fld0    ST(0) = flds <mem>
947 ///
handleZeroArgFP(MachineBasicBlock::iterator & I)948 void FPS::handleZeroArgFP(MachineBasicBlock::iterator &I) {
949   MachineInstr *MI = I;
950   unsigned DestReg = getFPReg(MI->getOperand(0));
951 
952   // Change from the pseudo instruction to the concrete instruction.
953   MI->RemoveOperand(0);   // Remove the explicit ST(0) operand
954   MI->setDesc(TII->get(getConcreteOpcode(MI->getOpcode())));
955 
956   // Result gets pushed on the stack.
957   pushReg(DestReg);
958 }
959 
960 /// handleOneArgFP - fst <mem>, ST(0)
961 ///
handleOneArgFP(MachineBasicBlock::iterator & I)962 void FPS::handleOneArgFP(MachineBasicBlock::iterator &I) {
963   MachineInstr *MI = I;
964   unsigned NumOps = MI->getDesc().getNumOperands();
965   assert((NumOps == X86::AddrNumOperands + 1 || NumOps == 1) &&
966          "Can only handle fst* & ftst instructions!");
967 
968   // Is this the last use of the source register?
969   unsigned Reg = getFPReg(MI->getOperand(NumOps-1));
970   bool KillsSrc = MI->killsRegister(X86::FP0+Reg);
971 
972   // FISTP64m is strange because there isn't a non-popping versions.
973   // If we have one _and_ we don't want to pop the operand, duplicate the value
974   // on the stack instead of moving it.  This ensure that popping the value is
975   // always ok.
976   // Ditto FISTTP16m, FISTTP32m, FISTTP64m, ST_FpP80m.
977   //
978   if (!KillsSrc &&
979       (MI->getOpcode() == X86::IST_Fp64m32 ||
980        MI->getOpcode() == X86::ISTT_Fp16m32 ||
981        MI->getOpcode() == X86::ISTT_Fp32m32 ||
982        MI->getOpcode() == X86::ISTT_Fp64m32 ||
983        MI->getOpcode() == X86::IST_Fp64m64 ||
984        MI->getOpcode() == X86::ISTT_Fp16m64 ||
985        MI->getOpcode() == X86::ISTT_Fp32m64 ||
986        MI->getOpcode() == X86::ISTT_Fp64m64 ||
987        MI->getOpcode() == X86::IST_Fp64m80 ||
988        MI->getOpcode() == X86::ISTT_Fp16m80 ||
989        MI->getOpcode() == X86::ISTT_Fp32m80 ||
990        MI->getOpcode() == X86::ISTT_Fp64m80 ||
991        MI->getOpcode() == X86::ST_FpP80m)) {
992     duplicateToTop(Reg, ScratchFPReg, I);
993   } else {
994     moveToTop(Reg, I);            // Move to the top of the stack...
995   }
996 
997   // Convert from the pseudo instruction to the concrete instruction.
998   MI->RemoveOperand(NumOps-1);    // Remove explicit ST(0) operand
999   MI->setDesc(TII->get(getConcreteOpcode(MI->getOpcode())));
1000 
1001   if (MI->getOpcode() == X86::IST_FP64m ||
1002       MI->getOpcode() == X86::ISTT_FP16m ||
1003       MI->getOpcode() == X86::ISTT_FP32m ||
1004       MI->getOpcode() == X86::ISTT_FP64m ||
1005       MI->getOpcode() == X86::ST_FP80m) {
1006     if (StackTop == 0)
1007       report_fatal_error("Stack empty??");
1008     --StackTop;
1009   } else if (KillsSrc) { // Last use of operand?
1010     popStackAfter(I);
1011   }
1012 }
1013 
1014 
1015 /// handleOneArgFPRW: Handle instructions that read from the top of stack and
1016 /// replace the value with a newly computed value.  These instructions may have
1017 /// non-fp operands after their FP operands.
1018 ///
1019 ///  Examples:
1020 ///     R1 = fchs R2
1021 ///     R1 = fadd R2, [mem]
1022 ///
handleOneArgFPRW(MachineBasicBlock::iterator & I)1023 void FPS::handleOneArgFPRW(MachineBasicBlock::iterator &I) {
1024   MachineInstr *MI = I;
1025 #ifndef NDEBUG
1026   unsigned NumOps = MI->getDesc().getNumOperands();
1027   assert(NumOps >= 2 && "FPRW instructions must have 2 ops!!");
1028 #endif
1029 
1030   // Is this the last use of the source register?
1031   unsigned Reg = getFPReg(MI->getOperand(1));
1032   bool KillsSrc = MI->killsRegister(X86::FP0+Reg);
1033 
1034   if (KillsSrc) {
1035     // If this is the last use of the source register, just make sure it's on
1036     // the top of the stack.
1037     moveToTop(Reg, I);
1038     if (StackTop == 0)
1039       report_fatal_error("Stack cannot be empty!");
1040     --StackTop;
1041     pushReg(getFPReg(MI->getOperand(0)));
1042   } else {
1043     // If this is not the last use of the source register, _copy_ it to the top
1044     // of the stack.
1045     duplicateToTop(Reg, getFPReg(MI->getOperand(0)), I);
1046   }
1047 
1048   // Change from the pseudo instruction to the concrete instruction.
1049   MI->RemoveOperand(1);   // Drop the source operand.
1050   MI->RemoveOperand(0);   // Drop the destination operand.
1051   MI->setDesc(TII->get(getConcreteOpcode(MI->getOpcode())));
1052 }
1053 
1054 
1055 //===----------------------------------------------------------------------===//
1056 // Define tables of various ways to map pseudo instructions
1057 //
1058 
1059 // ForwardST0Table - Map: A = B op C  into: ST(0) = ST(0) op ST(i)
1060 static const TableEntry ForwardST0Table[] = {
1061   { X86::ADD_Fp32  , X86::ADD_FST0r },
1062   { X86::ADD_Fp64  , X86::ADD_FST0r },
1063   { X86::ADD_Fp80  , X86::ADD_FST0r },
1064   { X86::DIV_Fp32  , X86::DIV_FST0r },
1065   { X86::DIV_Fp64  , X86::DIV_FST0r },
1066   { X86::DIV_Fp80  , X86::DIV_FST0r },
1067   { X86::MUL_Fp32  , X86::MUL_FST0r },
1068   { X86::MUL_Fp64  , X86::MUL_FST0r },
1069   { X86::MUL_Fp80  , X86::MUL_FST0r },
1070   { X86::SUB_Fp32  , X86::SUB_FST0r },
1071   { X86::SUB_Fp64  , X86::SUB_FST0r },
1072   { X86::SUB_Fp80  , X86::SUB_FST0r },
1073 };
1074 
1075 // ReverseST0Table - Map: A = B op C  into: ST(0) = ST(i) op ST(0)
1076 static const TableEntry ReverseST0Table[] = {
1077   { X86::ADD_Fp32  , X86::ADD_FST0r  },   // commutative
1078   { X86::ADD_Fp64  , X86::ADD_FST0r  },   // commutative
1079   { X86::ADD_Fp80  , X86::ADD_FST0r  },   // commutative
1080   { X86::DIV_Fp32  , X86::DIVR_FST0r },
1081   { X86::DIV_Fp64  , X86::DIVR_FST0r },
1082   { X86::DIV_Fp80  , X86::DIVR_FST0r },
1083   { X86::MUL_Fp32  , X86::MUL_FST0r  },   // commutative
1084   { X86::MUL_Fp64  , X86::MUL_FST0r  },   // commutative
1085   { X86::MUL_Fp80  , X86::MUL_FST0r  },   // commutative
1086   { X86::SUB_Fp32  , X86::SUBR_FST0r },
1087   { X86::SUB_Fp64  , X86::SUBR_FST0r },
1088   { X86::SUB_Fp80  , X86::SUBR_FST0r },
1089 };
1090 
1091 // ForwardSTiTable - Map: A = B op C  into: ST(i) = ST(0) op ST(i)
1092 static const TableEntry ForwardSTiTable[] = {
1093   { X86::ADD_Fp32  , X86::ADD_FrST0  },   // commutative
1094   { X86::ADD_Fp64  , X86::ADD_FrST0  },   // commutative
1095   { X86::ADD_Fp80  , X86::ADD_FrST0  },   // commutative
1096   { X86::DIV_Fp32  , X86::DIVR_FrST0 },
1097   { X86::DIV_Fp64  , X86::DIVR_FrST0 },
1098   { X86::DIV_Fp80  , X86::DIVR_FrST0 },
1099   { X86::MUL_Fp32  , X86::MUL_FrST0  },   // commutative
1100   { X86::MUL_Fp64  , X86::MUL_FrST0  },   // commutative
1101   { X86::MUL_Fp80  , X86::MUL_FrST0  },   // commutative
1102   { X86::SUB_Fp32  , X86::SUBR_FrST0 },
1103   { X86::SUB_Fp64  , X86::SUBR_FrST0 },
1104   { X86::SUB_Fp80  , X86::SUBR_FrST0 },
1105 };
1106 
1107 // ReverseSTiTable - Map: A = B op C  into: ST(i) = ST(i) op ST(0)
1108 static const TableEntry ReverseSTiTable[] = {
1109   { X86::ADD_Fp32  , X86::ADD_FrST0 },
1110   { X86::ADD_Fp64  , X86::ADD_FrST0 },
1111   { X86::ADD_Fp80  , X86::ADD_FrST0 },
1112   { X86::DIV_Fp32  , X86::DIV_FrST0 },
1113   { X86::DIV_Fp64  , X86::DIV_FrST0 },
1114   { X86::DIV_Fp80  , X86::DIV_FrST0 },
1115   { X86::MUL_Fp32  , X86::MUL_FrST0 },
1116   { X86::MUL_Fp64  , X86::MUL_FrST0 },
1117   { X86::MUL_Fp80  , X86::MUL_FrST0 },
1118   { X86::SUB_Fp32  , X86::SUB_FrST0 },
1119   { X86::SUB_Fp64  , X86::SUB_FrST0 },
1120   { X86::SUB_Fp80  , X86::SUB_FrST0 },
1121 };
1122 
1123 
1124 /// handleTwoArgFP - Handle instructions like FADD and friends which are virtual
1125 /// instructions which need to be simplified and possibly transformed.
1126 ///
1127 /// Result: ST(0) = fsub  ST(0), ST(i)
1128 ///         ST(i) = fsub  ST(0), ST(i)
1129 ///         ST(0) = fsubr ST(0), ST(i)
1130 ///         ST(i) = fsubr ST(0), ST(i)
1131 ///
handleTwoArgFP(MachineBasicBlock::iterator & I)1132 void FPS::handleTwoArgFP(MachineBasicBlock::iterator &I) {
1133   ASSERT_SORTED(ForwardST0Table); ASSERT_SORTED(ReverseST0Table);
1134   ASSERT_SORTED(ForwardSTiTable); ASSERT_SORTED(ReverseSTiTable);
1135   MachineInstr *MI = I;
1136 
1137   unsigned NumOperands = MI->getDesc().getNumOperands();
1138   assert(NumOperands == 3 && "Illegal TwoArgFP instruction!");
1139   unsigned Dest = getFPReg(MI->getOperand(0));
1140   unsigned Op0 = getFPReg(MI->getOperand(NumOperands-2));
1141   unsigned Op1 = getFPReg(MI->getOperand(NumOperands-1));
1142   bool KillsOp0 = MI->killsRegister(X86::FP0+Op0);
1143   bool KillsOp1 = MI->killsRegister(X86::FP0+Op1);
1144   DebugLoc dl = MI->getDebugLoc();
1145 
1146   unsigned TOS = getStackEntry(0);
1147 
1148   // One of our operands must be on the top of the stack.  If neither is yet, we
1149   // need to move one.
1150   if (Op0 != TOS && Op1 != TOS) {   // No operand at TOS?
1151     // We can choose to move either operand to the top of the stack.  If one of
1152     // the operands is killed by this instruction, we want that one so that we
1153     // can update right on top of the old version.
1154     if (KillsOp0) {
1155       moveToTop(Op0, I);         // Move dead operand to TOS.
1156       TOS = Op0;
1157     } else if (KillsOp1) {
1158       moveToTop(Op1, I);
1159       TOS = Op1;
1160     } else {
1161       // All of the operands are live after this instruction executes, so we
1162       // cannot update on top of any operand.  Because of this, we must
1163       // duplicate one of the stack elements to the top.  It doesn't matter
1164       // which one we pick.
1165       //
1166       duplicateToTop(Op0, Dest, I);
1167       Op0 = TOS = Dest;
1168       KillsOp0 = true;
1169     }
1170   } else if (!KillsOp0 && !KillsOp1) {
1171     // If we DO have one of our operands at the top of the stack, but we don't
1172     // have a dead operand, we must duplicate one of the operands to a new slot
1173     // on the stack.
1174     duplicateToTop(Op0, Dest, I);
1175     Op0 = TOS = Dest;
1176     KillsOp0 = true;
1177   }
1178 
1179   // Now we know that one of our operands is on the top of the stack, and at
1180   // least one of our operands is killed by this instruction.
1181   assert((TOS == Op0 || TOS == Op1) && (KillsOp0 || KillsOp1) &&
1182          "Stack conditions not set up right!");
1183 
1184   // We decide which form to use based on what is on the top of the stack, and
1185   // which operand is killed by this instruction.
1186   ArrayRef<TableEntry> InstTable;
1187   bool isForward = TOS == Op0;
1188   bool updateST0 = (TOS == Op0 && !KillsOp1) || (TOS == Op1 && !KillsOp0);
1189   if (updateST0) {
1190     if (isForward)
1191       InstTable = ForwardST0Table;
1192     else
1193       InstTable = ReverseST0Table;
1194   } else {
1195     if (isForward)
1196       InstTable = ForwardSTiTable;
1197     else
1198       InstTable = ReverseSTiTable;
1199   }
1200 
1201   int Opcode = Lookup(InstTable, MI->getOpcode());
1202   assert(Opcode != -1 && "Unknown TwoArgFP pseudo instruction!");
1203 
1204   // NotTOS - The register which is not on the top of stack...
1205   unsigned NotTOS = (TOS == Op0) ? Op1 : Op0;
1206 
1207   // Replace the old instruction with a new instruction
1208   MBB->remove(I++);
1209   I = BuildMI(*MBB, I, dl, TII->get(Opcode)).addReg(getSTReg(NotTOS));
1210 
1211   // If both operands are killed, pop one off of the stack in addition to
1212   // overwriting the other one.
1213   if (KillsOp0 && KillsOp1 && Op0 != Op1) {
1214     assert(!updateST0 && "Should have updated other operand!");
1215     popStackAfter(I);   // Pop the top of stack
1216   }
1217 
1218   // Update stack information so that we know the destination register is now on
1219   // the stack.
1220   unsigned UpdatedSlot = getSlot(updateST0 ? TOS : NotTOS);
1221   assert(UpdatedSlot < StackTop && Dest < 7);
1222   Stack[UpdatedSlot]   = Dest;
1223   RegMap[Dest]         = UpdatedSlot;
1224   MBB->getParent()->DeleteMachineInstr(MI); // Remove the old instruction
1225 }
1226 
1227 /// handleCompareFP - Handle FUCOM and FUCOMI instructions, which have two FP
1228 /// register arguments and no explicit destinations.
1229 ///
handleCompareFP(MachineBasicBlock::iterator & I)1230 void FPS::handleCompareFP(MachineBasicBlock::iterator &I) {
1231   ASSERT_SORTED(ForwardST0Table); ASSERT_SORTED(ReverseST0Table);
1232   ASSERT_SORTED(ForwardSTiTable); ASSERT_SORTED(ReverseSTiTable);
1233   MachineInstr *MI = I;
1234 
1235   unsigned NumOperands = MI->getDesc().getNumOperands();
1236   assert(NumOperands == 2 && "Illegal FUCOM* instruction!");
1237   unsigned Op0 = getFPReg(MI->getOperand(NumOperands-2));
1238   unsigned Op1 = getFPReg(MI->getOperand(NumOperands-1));
1239   bool KillsOp0 = MI->killsRegister(X86::FP0+Op0);
1240   bool KillsOp1 = MI->killsRegister(X86::FP0+Op1);
1241 
1242   // Make sure the first operand is on the top of stack, the other one can be
1243   // anywhere.
1244   moveToTop(Op0, I);
1245 
1246   // Change from the pseudo instruction to the concrete instruction.
1247   MI->getOperand(0).setReg(getSTReg(Op1));
1248   MI->RemoveOperand(1);
1249   MI->setDesc(TII->get(getConcreteOpcode(MI->getOpcode())));
1250 
1251   // If any of the operands are killed by this instruction, free them.
1252   if (KillsOp0) freeStackSlotAfter(I, Op0);
1253   if (KillsOp1 && Op0 != Op1) freeStackSlotAfter(I, Op1);
1254 }
1255 
1256 /// handleCondMovFP - Handle two address conditional move instructions.  These
1257 /// instructions move a st(i) register to st(0) iff a condition is true.  These
1258 /// instructions require that the first operand is at the top of the stack, but
1259 /// otherwise don't modify the stack at all.
handleCondMovFP(MachineBasicBlock::iterator & I)1260 void FPS::handleCondMovFP(MachineBasicBlock::iterator &I) {
1261   MachineInstr *MI = I;
1262 
1263   unsigned Op0 = getFPReg(MI->getOperand(0));
1264   unsigned Op1 = getFPReg(MI->getOperand(2));
1265   bool KillsOp1 = MI->killsRegister(X86::FP0+Op1);
1266 
1267   // The first operand *must* be on the top of the stack.
1268   moveToTop(Op0, I);
1269 
1270   // Change the second operand to the stack register that the operand is in.
1271   // Change from the pseudo instruction to the concrete instruction.
1272   MI->RemoveOperand(0);
1273   MI->RemoveOperand(1);
1274   MI->getOperand(0).setReg(getSTReg(Op1));
1275   MI->setDesc(TII->get(getConcreteOpcode(MI->getOpcode())));
1276 
1277   // If we kill the second operand, make sure to pop it from the stack.
1278   if (Op0 != Op1 && KillsOp1) {
1279     // Get this value off of the register stack.
1280     freeStackSlotAfter(I, Op1);
1281   }
1282 }
1283 
1284 
1285 /// handleSpecialFP - Handle special instructions which behave unlike other
1286 /// floating point instructions.  This is primarily intended for use by pseudo
1287 /// instructions.
1288 ///
handleSpecialFP(MachineBasicBlock::iterator & Inst)1289 void FPS::handleSpecialFP(MachineBasicBlock::iterator &Inst) {
1290   MachineInstr *MI = Inst;
1291 
1292   if (MI->isCall()) {
1293     handleCall(Inst);
1294     return;
1295   }
1296 
1297   switch (MI->getOpcode()) {
1298   default: llvm_unreachable("Unknown SpecialFP instruction!");
1299   case TargetOpcode::COPY: {
1300     // We handle three kinds of copies: FP <- FP, FP <- ST, and ST <- FP.
1301     const MachineOperand &MO1 = MI->getOperand(1);
1302     const MachineOperand &MO0 = MI->getOperand(0);
1303     bool KillsSrc = MI->killsRegister(MO1.getReg());
1304 
1305     // FP <- FP copy.
1306     unsigned DstFP = getFPReg(MO0);
1307     unsigned SrcFP = getFPReg(MO1);
1308     assert(isLive(SrcFP) && "Cannot copy dead register");
1309     if (KillsSrc) {
1310       // If the input operand is killed, we can just change the owner of the
1311       // incoming stack slot into the result.
1312       unsigned Slot = getSlot(SrcFP);
1313       Stack[Slot] = DstFP;
1314       RegMap[DstFP] = Slot;
1315     } else {
1316       // For COPY we just duplicate the specified value to a new stack slot.
1317       // This could be made better, but would require substantial changes.
1318       duplicateToTop(SrcFP, DstFP, Inst);
1319     }
1320     break;
1321   }
1322 
1323   case TargetOpcode::IMPLICIT_DEF: {
1324     // All FP registers must be explicitly defined, so load a 0 instead.
1325     unsigned Reg = MI->getOperand(0).getReg() - X86::FP0;
1326     DEBUG(dbgs() << "Emitting LD_F0 for implicit FP" << Reg << '\n');
1327     BuildMI(*MBB, Inst, MI->getDebugLoc(), TII->get(X86::LD_F0));
1328     pushReg(Reg);
1329     break;
1330   }
1331 
1332   case TargetOpcode::INLINEASM: {
1333     // The inline asm MachineInstr currently only *uses* FP registers for the
1334     // 'f' constraint.  These should be turned into the current ST(x) register
1335     // in the machine instr.
1336     //
1337     // There are special rules for x87 inline assembly. The compiler must know
1338     // exactly how many registers are popped and pushed implicitly by the asm.
1339     // Otherwise it is not possible to restore the stack state after the inline
1340     // asm.
1341     //
1342     // There are 3 kinds of input operands:
1343     //
1344     // 1. Popped inputs. These must appear at the stack top in ST0-STn. A
1345     //    popped input operand must be in a fixed stack slot, and it is either
1346     //    tied to an output operand, or in the clobber list. The MI has ST use
1347     //    and def operands for these inputs.
1348     //
1349     // 2. Fixed inputs. These inputs appear in fixed stack slots, but are
1350     //    preserved by the inline asm. The fixed stack slots must be STn-STm
1351     //    following the popped inputs. A fixed input operand cannot be tied to
1352     //    an output or appear in the clobber list. The MI has ST use operands
1353     //    and no defs for these inputs.
1354     //
1355     // 3. Preserved inputs. These inputs use the "f" constraint which is
1356     //    represented as an FP register. The inline asm won't change these
1357     //    stack slots.
1358     //
1359     // Outputs must be in ST registers, FP outputs are not allowed. Clobbered
1360     // registers do not count as output operands. The inline asm changes the
1361     // stack as if it popped all the popped inputs and then pushed all the
1362     // output operands.
1363 
1364     // Scan the assembly for ST registers used, defined and clobbered. We can
1365     // only tell clobbers from defs by looking at the asm descriptor.
1366     unsigned STUses = 0, STDefs = 0, STClobbers = 0, STDeadDefs = 0;
1367     unsigned NumOps = 0;
1368     SmallSet<unsigned, 1> FRegIdx;
1369     unsigned RCID;
1370 
1371     for (unsigned i = InlineAsm::MIOp_FirstOperand, e = MI->getNumOperands();
1372          i != e && MI->getOperand(i).isImm(); i += 1 + NumOps) {
1373       unsigned Flags = MI->getOperand(i).getImm();
1374 
1375       NumOps = InlineAsm::getNumOperandRegisters(Flags);
1376       if (NumOps != 1)
1377         continue;
1378       const MachineOperand &MO = MI->getOperand(i + 1);
1379       if (!MO.isReg())
1380         continue;
1381       unsigned STReg = MO.getReg() - X86::FP0;
1382       if (STReg >= 8)
1383         continue;
1384 
1385       // If the flag has a register class constraint, this must be an operand
1386       // with constraint "f". Record its index and continue.
1387       if (InlineAsm::hasRegClassConstraint(Flags, RCID)) {
1388         FRegIdx.insert(i + 1);
1389         continue;
1390       }
1391 
1392       switch (InlineAsm::getKind(Flags)) {
1393       case InlineAsm::Kind_RegUse:
1394         STUses |= (1u << STReg);
1395         break;
1396       case InlineAsm::Kind_RegDef:
1397       case InlineAsm::Kind_RegDefEarlyClobber:
1398         STDefs |= (1u << STReg);
1399         if (MO.isDead())
1400           STDeadDefs |= (1u << STReg);
1401         break;
1402       case InlineAsm::Kind_Clobber:
1403         STClobbers |= (1u << STReg);
1404         break;
1405       default:
1406         break;
1407       }
1408     }
1409 
1410     if (STUses && !isMask_32(STUses))
1411       MI->emitError("fixed input regs must be last on the x87 stack");
1412     unsigned NumSTUses = countTrailingOnes(STUses);
1413 
1414     // Defs must be contiguous from the stack top. ST0-STn.
1415     if (STDefs && !isMask_32(STDefs)) {
1416       MI->emitError("output regs must be last on the x87 stack");
1417       STDefs = NextPowerOf2(STDefs) - 1;
1418     }
1419     unsigned NumSTDefs = countTrailingOnes(STDefs);
1420 
1421     // So must the clobbered stack slots. ST0-STm, m >= n.
1422     if (STClobbers && !isMask_32(STDefs | STClobbers))
1423       MI->emitError("clobbers must be last on the x87 stack");
1424 
1425     // Popped inputs are the ones that are also clobbered or defined.
1426     unsigned STPopped = STUses & (STDefs | STClobbers);
1427     if (STPopped && !isMask_32(STPopped))
1428       MI->emitError("implicitly popped regs must be last on the x87 stack");
1429     unsigned NumSTPopped = countTrailingOnes(STPopped);
1430 
1431     DEBUG(dbgs() << "Asm uses " << NumSTUses << " fixed regs, pops "
1432                  << NumSTPopped << ", and defines " << NumSTDefs << " regs.\n");
1433 
1434 #ifndef NDEBUG
1435     // If any input operand uses constraint "f", all output register
1436     // constraints must be early-clobber defs.
1437     for (unsigned I = 0, E = MI->getNumOperands(); I < E; ++I)
1438       if (FRegIdx.count(I)) {
1439         assert((1 << getFPReg(MI->getOperand(I)) & STDefs) == 0 &&
1440                "Operands with constraint \"f\" cannot overlap with defs");
1441       }
1442 #endif
1443 
1444     // Collect all FP registers (register operands with constraints "t", "u",
1445     // and "f") to kill afer the instruction.
1446     unsigned FPKills = ((1u << NumFPRegs) - 1) & ~0xff;
1447     for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
1448       MachineOperand &Op = MI->getOperand(i);
1449       if (!Op.isReg() || Op.getReg() < X86::FP0 || Op.getReg() > X86::FP6)
1450         continue;
1451       unsigned FPReg = getFPReg(Op);
1452 
1453       // If we kill this operand, make sure to pop it from the stack after the
1454       // asm.  We just remember it for now, and pop them all off at the end in
1455       // a batch.
1456       if (Op.isUse() && Op.isKill())
1457         FPKills |= 1U << FPReg;
1458     }
1459 
1460     // Do not include registers that are implicitly popped by defs/clobbers.
1461     FPKills &= ~(STDefs | STClobbers);
1462 
1463     // Now we can rearrange the live registers to match what was requested.
1464     unsigned char STUsesArray[8];
1465 
1466     for (unsigned I = 0; I < NumSTUses; ++I)
1467       STUsesArray[I] = I;
1468 
1469     shuffleStackTop(STUsesArray, NumSTUses, Inst);
1470     DEBUG({dbgs() << "Before asm: "; dumpStack();});
1471 
1472     // With the stack layout fixed, rewrite the FP registers.
1473     for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
1474       MachineOperand &Op = MI->getOperand(i);
1475       if (!Op.isReg() || Op.getReg() < X86::FP0 || Op.getReg() > X86::FP6)
1476         continue;
1477 
1478       unsigned FPReg = getFPReg(Op);
1479 
1480       if (FRegIdx.count(i))
1481         // Operand with constraint "f".
1482         Op.setReg(getSTReg(FPReg));
1483       else
1484         // Operand with a single register class constraint ("t" or "u").
1485         Op.setReg(X86::ST0 + FPReg);
1486     }
1487 
1488     // Simulate the inline asm popping its inputs and pushing its outputs.
1489     StackTop -= NumSTPopped;
1490 
1491     for (unsigned i = 0; i < NumSTDefs; ++i)
1492       pushReg(NumSTDefs - i - 1);
1493 
1494     // If this asm kills any FP registers (is the last use of them) we must
1495     // explicitly emit pop instructions for them.  Do this now after the asm has
1496     // executed so that the ST(x) numbers are not off (which would happen if we
1497     // did this inline with operand rewriting).
1498     //
1499     // Note: this might be a non-optimal pop sequence.  We might be able to do
1500     // better by trying to pop in stack order or something.
1501     while (FPKills) {
1502       unsigned FPReg = countTrailingZeros(FPKills);
1503       if (isLive(FPReg))
1504         freeStackSlotAfter(Inst, FPReg);
1505       FPKills &= ~(1U << FPReg);
1506     }
1507 
1508     // Don't delete the inline asm!
1509     return;
1510   }
1511 
1512   case X86::RETQ:
1513   case X86::RETL:
1514   case X86::RETIL:
1515   case X86::RETIQ:
1516     // If RET has an FP register use operand, pass the first one in ST(0) and
1517     // the second one in ST(1).
1518 
1519     // Find the register operands.
1520     unsigned FirstFPRegOp = ~0U, SecondFPRegOp = ~0U;
1521     unsigned LiveMask = 0;
1522 
1523     for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
1524       MachineOperand &Op = MI->getOperand(i);
1525       if (!Op.isReg() || Op.getReg() < X86::FP0 || Op.getReg() > X86::FP6)
1526         continue;
1527       // FP Register uses must be kills unless there are two uses of the same
1528       // register, in which case only one will be a kill.
1529       assert(Op.isUse() &&
1530              (Op.isKill() ||                        // Marked kill.
1531               getFPReg(Op) == FirstFPRegOp ||       // Second instance.
1532               MI->killsRegister(Op.getReg())) &&    // Later use is marked kill.
1533              "Ret only defs operands, and values aren't live beyond it");
1534 
1535       if (FirstFPRegOp == ~0U)
1536         FirstFPRegOp = getFPReg(Op);
1537       else {
1538         assert(SecondFPRegOp == ~0U && "More than two fp operands!");
1539         SecondFPRegOp = getFPReg(Op);
1540       }
1541       LiveMask |= (1 << getFPReg(Op));
1542 
1543       // Remove the operand so that later passes don't see it.
1544       MI->RemoveOperand(i);
1545       --i, --e;
1546     }
1547 
1548     // We may have been carrying spurious live-ins, so make sure only the returned
1549     // registers are left live.
1550     adjustLiveRegs(LiveMask, MI);
1551     if (!LiveMask) return;  // Quick check to see if any are possible.
1552 
1553     // There are only four possibilities here:
1554     // 1) we are returning a single FP value.  In this case, it has to be in
1555     //    ST(0) already, so just declare success by removing the value from the
1556     //    FP Stack.
1557     if (SecondFPRegOp == ~0U) {
1558       // Assert that the top of stack contains the right FP register.
1559       assert(StackTop == 1 && FirstFPRegOp == getStackEntry(0) &&
1560              "Top of stack not the right register for RET!");
1561 
1562       // Ok, everything is good, mark the value as not being on the stack
1563       // anymore so that our assertion about the stack being empty at end of
1564       // block doesn't fire.
1565       StackTop = 0;
1566       return;
1567     }
1568 
1569     // Otherwise, we are returning two values:
1570     // 2) If returning the same value for both, we only have one thing in the FP
1571     //    stack.  Consider:  RET FP1, FP1
1572     if (StackTop == 1) {
1573       assert(FirstFPRegOp == SecondFPRegOp && FirstFPRegOp == getStackEntry(0)&&
1574              "Stack misconfiguration for RET!");
1575 
1576       // Duplicate the TOS so that we return it twice.  Just pick some other FPx
1577       // register to hold it.
1578       unsigned NewReg = ScratchFPReg;
1579       duplicateToTop(FirstFPRegOp, NewReg, MI);
1580       FirstFPRegOp = NewReg;
1581     }
1582 
1583     /// Okay we know we have two different FPx operands now:
1584     assert(StackTop == 2 && "Must have two values live!");
1585 
1586     /// 3) If SecondFPRegOp is currently in ST(0) and FirstFPRegOp is currently
1587     ///    in ST(1).  In this case, emit an fxch.
1588     if (getStackEntry(0) == SecondFPRegOp) {
1589       assert(getStackEntry(1) == FirstFPRegOp && "Unknown regs live");
1590       moveToTop(FirstFPRegOp, MI);
1591     }
1592 
1593     /// 4) Finally, FirstFPRegOp must be in ST(0) and SecondFPRegOp must be in
1594     /// ST(1).  Just remove both from our understanding of the stack and return.
1595     assert(getStackEntry(0) == FirstFPRegOp && "Unknown regs live");
1596     assert(getStackEntry(1) == SecondFPRegOp && "Unknown regs live");
1597     StackTop = 0;
1598     return;
1599   }
1600 
1601   Inst = MBB->erase(Inst);  // Remove the pseudo instruction
1602 
1603   // We want to leave I pointing to the previous instruction, but what if we
1604   // just erased the first instruction?
1605   if (Inst == MBB->begin()) {
1606     DEBUG(dbgs() << "Inserting dummy KILL\n");
1607     Inst = BuildMI(*MBB, Inst, DebugLoc(), TII->get(TargetOpcode::KILL));
1608   } else
1609     --Inst;
1610 }
1611 
setKillFlags(MachineBasicBlock & MBB) const1612 void FPS::setKillFlags(MachineBasicBlock &MBB) const {
1613   const TargetRegisterInfo *TRI =
1614       MBB.getParent()->getSubtarget().getRegisterInfo();
1615   LivePhysRegs LPR(TRI);
1616 
1617   LPR.addLiveOuts(&MBB);
1618 
1619   for (MachineBasicBlock::reverse_iterator I = MBB.rbegin(), E = MBB.rend();
1620        I != E; ++I) {
1621     if (I->isDebugValue())
1622       continue;
1623 
1624     std::bitset<8> Defs;
1625     SmallVector<MachineOperand *, 2> Uses;
1626     MachineInstr &MI = *I;
1627 
1628     for (auto &MO : I->operands()) {
1629       if (!MO.isReg())
1630         continue;
1631 
1632       unsigned Reg = MO.getReg() - X86::FP0;
1633 
1634       if (Reg >= 8)
1635         continue;
1636 
1637       if (MO.isDef()) {
1638         Defs.set(Reg);
1639         if (!LPR.contains(MO.getReg()))
1640           MO.setIsDead();
1641       } else
1642         Uses.push_back(&MO);
1643     }
1644 
1645     for (auto *MO : Uses)
1646       if (Defs.test(getFPReg(*MO)) || !LPR.contains(MO->getReg()))
1647         MO->setIsKill();
1648 
1649     LPR.stepBackward(MI);
1650   }
1651 }
1652